ARCHIVE

archive.org

IP

—
23]
P
24
o8]
—
=z

AFFIDAVIT OF NATHANIEL E FRANK-WHITE

I am a Records Request Processor at the Internet Archive. I make this declaration
of my own personal knowledge.

The Internet Archive is a website that provides access to a digital library of Internet
sites and other cultural artifacts in digital form. Like a paper library, we provide
free access to researchers, historians, scholars, and the general public. The Internet
Archive has partnered with and receives support from various institutions,
including the Library of Congress.

The Internet Archive has created a service known as the Wayback Machine. The
Wayback Machine makes it possible to browse more than 450 billion pages stored
in the Internet Archive's web archive. Visitors to the Wayback Machine can search
archives by URL (i.e., a website address). If archived records for a URL are
available, the visitor will be presented with a display of available dates. The visitor
may select one of those dates, and begin browsing an archived version of the Web.
Links on archived files in the Wayback Machine point to other archived files
(whether HTML pages or other file types), if any are found for the URL indicated
by a given link. For instance, the Wayback Machine is designed such that when a
visitor clicks on a hyperlink on an archived page that points to another URL, the
visitor will be served the archived file found for the hyperlink’s URL with the
closest available date to the initial file containing the hyperlink.

The archived data made viewable and browsable by the Wayback Machine is
obtained by use of web archiving software that automatically stores copies of files
available via the Internet, each file preserved as it existed at a particular point in
time.

The Internet Archive assigns a URL on its site to the archived files in the format
http://web.archive.org/web/[Year in yyyy][Month in mm][Day in dd][Time code in
hh:mm:ss]/[Archived URL] aka an “extended URL”. Thus, the extended URL
http://web.archive.org/web/19970126045828/http://www.archive.org/ would be the
URL for the record of the Internet Archive home page HTML file
(http://www.archive.org/) archived on January 26, 1997 at 4:58 a.m. and 28
seconds (1997/01/26 at 04:58:28). The date indicated by an extended URL applies
to a preserved instance of a file for a given URL, but not necessarily to any other
files linked therein. Thus, in the case of a page constituted by a primary HTML file
and other separate files (e.g., files with images, audio, multimedia, design
elements, or other embedded content) linked within that primary HTML file, the
primary HTML file and the other files will each have their own respective extended
URLs and may not have been archived on the same dates.

Attached hereto as Exhibit B are true and accurate copies of the Internet Archive's
records of the archived files for the URLs and the dates specified in the attached
coversheet of each file.

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

NTERNET

ARCHIVE

archive.org

ID

7.

DATE:

I declare under penalty of perjury that the foregoing is true and correct.

09/07/2022 \: \ \ 6’; V2 - QA

Nathaniel E Frank-White

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

EXHIBIT B

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

https://web.archive.org/web/20101204023745/http:/developer.apple.com/library/mac/documentation/UserE
xperience/Conceptual/AppleHIGuidelines/OSXHIGuidelines.pdf

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

Apple Human Interface Guidelines

User Experience

<
2009-08-20

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

.

[$

Apple Inc.

© 1992, 2001-2003, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.
iDisk is a registered service mark of Apple Inc.

Apple, the Apple logo, Aperture, AppleScript,
Aqua, Bonjour, Carbon, Chicago, Cocoa, Cover
Flow, eMac, Exposé, Finder, FireWire, Geneva,
iBook, iCal, iChat, iPhoto, iPod, iTunes, Keychain,
Keynote, Leopard, Logic, Mac, Mac OS,
Macintosh, Numbers, Objective-C, Pages,
Quartz, QuickDraw, QuickTime, Safari, Spaces,
Spotlight, Tiger, Time Machine, Velocity Engine,
and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

iWeb and Multi-Touch are trademarks of Apple
Inc.

Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java is a registered trademark of Oracle and/or
its affiliates.

OpenGlL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTARBILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

Contents

Introduction

Introduction to Apple Human Interface Guidelines 19

Part |

Who Should Read This Document? 20
Organization of This Document 20
Conventions Used in This Document 20
See Also 21

Application Design Fundamentals 23

Chapter 1

The Design Process 25

Chapter 2

Involving Users in the Design Process 25
Know Your Audience 25
Analyze User Tasks 26
Build Prototypes 26
Observe Users 26

Guidelines for Conducting User Observations 27

Making Design Decisions 28
Avoid Feature Cascade 28
Apply the 80 Percent Solution 29

Characteristics of Great Software 31

Chapter 3

High Performance 31
Ease of Use 32
Attractive Appearance 34
Reliability 34
Adaptability 35
Interoperability 36
Mobility 37

Human Interface Design 39

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

Human Interface Design Principles 39
Metaphors 39
Reflect the User’'s Mental Model 39
Explicit and Implied Actions 41
Direct Manipulation 41
User Control 42
Feedback and Communication 42
Consistency 43

3
MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

Chapter 4

CONTENTS

WYSIWYG (What You See Is What You Get) 44

Forgiveness 44

Perceived Stability 45

Aesthetic Integrity 45

Modelessness 46

Managing Complexity in Your Software 46
Keep Your Users in Mind 47

Worldwide Compatibility 47

Universal Accessibility 49
Extending the Interface 51

Build on the Existing Interface 51

Don't Assign New Behaviors to Existing Objects 51

Create a New Interface Element Cautiously 52

Prioritizing Design Decisions 53

Part Il

Meet Minimum Requirements 53
Deliver the Features Users Expect 55
Differentiate Your Application 56

The Macintosh Experience 59

Chapter 5

The Mac OS X Environment 61

Chapter 6

The Always-On Environment 61
Disk Size and Usage Information 61
Displays 61
The Dock 62
Conveying Information in the Dock 62
Clicking in the Dock 62
The Finder 63
File Formats and Filename Extensions 64
Internationalization 64
Multiple User Issues 65
Resource Management 65
Threads 66

Using Mac OS X Technologies 67

Address Book 67
Animation 68
Automator 70
Bonjour 71
Colors 71
Dashboard 72

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

CONTENTS

High-Level Design Guidelines for Widgets 72
User-Interface Design Guidelines for Widgets 73
Fonts 74
Preferences 75
Printing 76
Security 76
Services 77
Speech 78
Spotlight 78
User Assistance 80
Apple Help 81
Help Tags 81

Chapter 7 Software Installation and Software Updates 83

Packaging 83
Identify System Requirements 83
Bundle Your Software 83
Installation 84
Use Internet-Enabled Disk Images 84
Drag-and-Drop Installation 84
Installation Packages 85
General Installer Guidelines 85
Setup Assistants 86
Updating Installed Applications 88

Part Il The Aqua Interface 93

Chapter 8 User Input 95

The Mouse and Other Pointing Devices 95
Clicking 95
Double-Clicking 96
Pressing and Holding 96
Dragging 96
The Trackpad 96
The Keyboard 97
The Functions of Specific Keys 98
Keyboard Shortcuts 104
Keyboard Focus and Navigation 108
Type-Ahead and Key-Repeat 109
Selecting 109
Selection Methods 110
Selections in Text 113
Selections in Spreadsheets 114

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

5
MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

Chapter 9

CONTENTS

Selections in Graphics 115
Editing Text 115

Inserting Text 115

Deleting Text 115

Replacing a Selection 116

Intelligent Cut and Paste 116

Editing Text Fields 117

Entering Passwords 117

Drag and Drop 119

Chapter 10

Drag-and-Drop Overview 119
Drag-and-Drop Semantics 119

Move Versus Copy 120

When to Check the Option Key State 120
Selection Feedback 120

Single-Gesture Selection and Dragging 121

Background Selections 121
Drag Feedback 121
Destination Feedback 121

Windows 122

Text 122

Lists 122

Multiple Dragged Items 123

Automatic Scrolling 123

Using the Trash as a Destination 123
Drop Feedback 123

Finder Icons 123

Graphics 124

Text 124

Transferring a Selection 124

Feedback for an Invalid Drop 124
Clippings 125

Text 127

Fonts 127
Style 128
Inserting Spaces Between Sentences 129
Using the Ellipsis Character 129
Using the Colon Character 130
Labels for Interface Elements 133
Capitalization of Interface Element Labels and Text 133
Using Contractions in the Interface 135
Using Abbreviations and Acronyms in the Interface 135
Developer Terms and User Terms 136

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

Chapter 11

CONTENTS

lcons 137

Chapter 12

Icon Genres and Families 137
138

User Application Icons

Application Icons
138
Viewer, Player, and Accessory Icons
140

140

140
Utility Icons
Document Icons
Toolbar Icons 141
Icons for Plug-ins, Hardware, and Removable Media
Icon Perspectives and Materials 143
Creating Icons 145
Tips for Designing Icons 145
A Suggested Process for Creating Icons 145
Creating Icons for Mac OS X v10.5 and Later
149
150

Designing Icons for Icon Buttons

147

Scaling Your Artwork
Designing Toolbar Icons
151

Designing Icons for Capsule-Style Toolbar Controls
Designing Icons for Rectangular-Style Toolbar Controls

System-Provided Images 153
System-Provided Images for Use in Controls

System-Provided Images for Use as Toolbar Items

System-Provided Images that Indicate Privileges
A System-Provided Drag Image 158

Pointers 159

154

System-Provided Images for Use as Standalone Buttons
156

158

142

152

152

155

Chapter 13

Standard Pointers 159

Designing Your Own Pointers 161

Menus 163

Menu Behavior 163

Designing the Elements of Menus
Titling Menus 165
Naming Menu Items

165

165
167
168

Using lcons in Menus
Using Symbols in Menus
170
Grouping Items in Menus 171
Hierarchical Menus (Submenus)
The Menu Bar and Its Menus 173
The Apple Menu 175
The Application Menu

Toggled Menu Items

172

175

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

7
MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

Chapter 14

CONTENTS

The File Menu 177
The Edit Menu 179
The Format Menu 181
The View Menu 182
Application-Specific Menus 183
The Window Menu 184
The Help Menu 185
Menu Bar Extras 185
Contextual Menus 186
Dock Menus 188

Windows 189

Types of Windows 189
Window Appearance 190
Window Elements 192
The Title Bar 195
Toolbars 198
Scope Bars 203
Source Lists 206
Bottom Bars 210
Drawers 212
Window Behavior 214
Opening Windows 214
Naming New Windows 215
Positioning Windows 216
Moving Windows 218
Resizing and Zooming Windows 218
Minimizing and Expanding Windows 219
Closing Windows 219
Window Layering 220
Scrolling Windows 223
Panels 225
Inspector Windows 227
Transparent Panels 228
Fonts Window and Colors Window 232
About Windows 232
Dialogs 233
Types of Dialogs and When to Use Them 233
Dialog Appearance and Behavior 238
Find Windows 241
Preferences Windows 241
The Open Dialog 243
Dialogs for Saving, Closing, and Quitting 244
The Choose Dialog 249
The Print Dialog 250

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

CONTENTS

Chapter 15 Controls 253

Window-Frame Controls 253

Determining the State of a Window-Frame Control from its Appearance 254

Rectangular-Style Toolbar Controls 255

Capsule-Style Toolbar Controls 259

Legacy Toolbar Controls 262
Buttons 263

Push Buttons 263

Icon Buttons 267

Scope Buttons 269

Gradient Buttons 271

The Help Button 274

Bevel Buttons 275

Round Buttons 277
Selection Controls 278

Radio Buttons 278

Checkboxes 281

Segmented Controls 284

Icon Buttons and Bevel Buttons with Pop-Up Menus 286

Pop-Up Menus 287
Action Menus 291
Combination Boxes 293
Path Controls 296
Color Wells 298
Image Wells 298
Date Pickers 299
Command Pop-Down Menus 301
Sliders 303
The Stepper Control (Little Arrows) 307
Placards 308
Indicators 308
Progress Indicators 308
Level Indicators 313
Text Controls 318
Static Text Fields 319
Text Input Fields 320
Token Fields 322
Search Fields 323
Scrolling Lists 325
View Controls 326
Disclosure Triangles 326
Disclosure Buttons 328
List Views 330
Column Views 331
Split Views 333

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

9
MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

Chapter 16

CONTENTS

Tab Views 335
Grouping Controls 338
Separators 339
Group Boxes 341

Layout Guidelines 343

Appendix A

Positioning Regular-Size Controls in a Window Body 343
A Simple Preferences Window 343
A Tabbed Window 346
A Standard Alert 349
A Dialog with a List View 350
Positioning Small and Mini Controls in a Window Body 352
Layout Example for Small Controls 352
Layout Example for Mini Controls 355
Grouping Controls in a Window Body 357
Grouping with White Space 357
Grouping with Separators 358
Grouping with Group Boxes 359
Positioning Text and Controls in a Bottom Bar 361

Keyboard Shortcuts Quick Reference 363

Glossary 371

Document Revision History 379

Index 383

10

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

Figures and Tables

Chapter 4 Prioritizing Design Decisions 53
Figure 4-1 Prioritizing design decisions in three layers 53
Chapter 6 Using Mac OS X Technologies 67
Figure 6-1 A people-picker window as used in Mail 67
Figure 6-2 Animation allows items in a stack to emerge smoothly 68
Figure 6-3 Colors window 71
Figure 6-4 Dashboard widgets 72
Figure 6-5 Fonts window 74
Figure 6-6 Minimal Fonts window 74

Figure 6-7 Typography inspector 75

Figure 6-8 Print options available in Mac OS X 76
Figure 6-9 The Spotlight icon and search field 78
Figure 6-10 Spotlight search in a contextual menu 79
Figure 6-11 A Spotlight results window 79

Figure 6-12 Ahelptag 81

Chapter 7 Software Installation and Software Updates 83
Figure 7-1 Examples of assistant icons 86
Figure 7-2 A setup assistant window 87
Figure 7-3 An application-update preferences window 89
Figure 7-4 An alert to describe the availability of a free application update 90
Figure 7-5 An alert to describe the availability of a for-purchase upgrade 91
Chapter 8 User Input 95
Figure 8-1 Keyboard focus for a text field 108
Figure 8-2 Keyboard focus for a scrolling list 108
Figure 8-3 Primary highlight color on child item; secondary color on parent 109
Figure 8-4 Selection of a single item 110
Figure 8-5 Selection of arange 111
Figure 8-6 Shift-clicking in the addition model and the fixed-point model 111
Figure 8-7 Discontinuous selection 112
Figure 8-8 Discontinuous selection within an array 112
Table 8-1 Moving the insertion point with the arrow keys 101
Table 8-2 Extending text selection with the Shift and arrow keys 102
Table 8-3 Keyboard shortcuts reserved by the operating system 105
Table 8-4 Key combinations reserved for international systems 106
n
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

FIGURES AND TABLES

Table 8-5 Recommended keyboard shortcuts using Shift to complement other commands
106
Table 8-6 Example of using Option to modify a shortcut already using Command 107
Chapter 9 Drag and Drop 119
Table 9-1 Common drag-and-drop operations and results 120
Chapter 10 Text 127
Figure 10-1 Don't use a colon in the title of a group box 131
Figure 10-2 Use a colon in text that precedes a control on the same line 131
Figure 10-3 Use a colon in text that precedes the first control in a vertical list of controls 132
Figure 10-4 Use a colon in text that precedes the first control in a horizontal list of controls
132
Figure 10-5 Use a colon in introductory text that appears above a control 132
Figure 10-6 Use a colon in checkbox or radio button text that introduces a second control 132
Figure 10-7 A colon is recommended in a sentence that is completed by a control's value 133

Figure 10-8 A colon is optional if the text following the control forms a substantial part of the
sentence 133

Table 10-1 Carbon constants and Cocoa methods for system fonts 128

Table 10-2 Proper capitalization of onscreen elements 134

Table 10-3 Translating developer terms into user terms 136

Chapter 11 Icons 137

Figure 11-1 Application icons of different genres—user applications and utilities—shown as
they can appear in the Dock 137

Figure 11-2 Two icon genres: User application icons in top row; utility icons in bottom row
138

Figure 11-3 An icon family: The iTunes application icon and its associated icons 138

Figure 11-4 The TextEdit application icon makes it obvious what this application is for 139

Figure 11-5 The Preview application icon: An example of a tool element 139

Figure 11-6 The Stickies application icon: Effective without the addition of a tool 139
Figure 11-7 The icons for QuickTime Player, DVD Player, and Calculator 140

Figure 11-8 Discriminating use of color in the Activity Monitor and System Profiler icons 140
Figure 11-9 Icons for the Preview application and a Preview document 141

Figure 11-10 Incorrect and correct badging of a document icon 141

Figure 11-11 Keynote toolbar icons portray objects and tasks in a simple, streamlined way 141
Figure 11-12 A plug-inicon 142

Figure 11-13 Icons for external (top row) and internal hardware devices 142

Figure 11-14 Icons for removable media 143

Figure 11-15 Perspective for application icons: Sitting on a desk in front of you 143
Figure 11-16 Perspective for flat utility icons 144

Figure 11-17 Perspective for three-dimensional objects 144

Figure 11-18 Perspective for toolbar icons 144

12
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

FIGURES AND TABLES

Figure 11-19 Materials: Transparency used to convey meaning 145

Figure 11-20 A 512 x 512 pixel icon should not be a scaled-up 128 x 128 pixel icon 147

Figure 11-21 An icon with black edges can include an inner glow to look good in Cover Flow
148

Figure 11-22 Areas of high alpha levels at the lower edge of an icon can get clipped in Cover
Flow 149

Figure 11-23 Three ways to represent toolbar items 150

Figure 11-24 When possible, use familiar symbols and images to represent toolbar items 151

Figure 11-25 Images inside capsule-style toolbar controls should appear balanced and
coordinated 151

Figure 11-26 The circled icons appear elsewhere in the interface; they retain their perspective
when used in a toolbar 152

Figure 11-27 Standard images as used in the Finder toolbar 153

Figure 11-28 The free-standing images can be used as borderless buttons 156

Figure 11-29 Animage that represents multiple documents in transit between locations 158

Table 11-1 Template images that represent common tasks 154

Table 11-2 Free-standing images that represent common actions 156

Table 11-3 Images that represent system entities 157

Table 11-4 Images that represent common preferences categories 157

Table 11-5 Images that represent standard toolbar items 158

Table 11-6 Images that represent categories of user permissions 158

Chapter 12 Pointers 159
Figure 12-1 Spinning wait cursor 161
Table 12-1 Standard pointers in Mac OS X 159
Chapter 13 Menus 163

Figure 13-1 Menu bar, Dock, and contextual menus 163

Figure 13-2 Scrolling menu 164

Figure 13-3 Menu elements 165

Figure 13-4 Dynamic menu items 166

Figure 13-5 Icons in the Finder Go menu 167

Figure 13-6 Icons in the Safari History menu 168

Figure 13-7 Symbols in menus 169

Figure 13-8 Don't use arbitrary symbols in menus 169

Figure 13-9 Avoid ambiguous toggled menu items 171

Figure 13-10 Grouping items in menus 172

Figure 13-11 A hierarchical menu 173

Figure 13-12 The menu bar displayed when the Finder is active 174

Figure 13-13 A menu title is undimmed, even when all items are unavailable 174

Figure 13-14 The Apple menu 175

Figure 13-15 The Mail application menu 175

Figure 13-16 The File menu 177

Figure 13-17 The Edit menu 179

13
MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Figure 13-18 A Format menu 181

Figure 13-19 A View menu 182

Figure 13-20 Finder toolbar customization window 183

Figure 13-21 Application-specific menus in Safari 183

Figure 13-22 A Window menu 184

Figure 13-23 A Help menu 185

Figure 13-24 A contextual menu for an icon in the Finder and for a text selection in a document
187

Figure 13-25 The customized iTunes Dock menu 188

Table 13-1 Acceptable characters for use in menus 168

Chapter 14 Windows 189

Figure 14-1 Types of windows in Mac OS X 190

Figure 14-2 Toolbars and bottom bars are optional window parts 191

Figure 14-3 A brushed metal window designed for Tiger changes its look for Leopard 192

Figure 14-4 Standard window parts displayed in a document window 193

Figure 14-5 A bottom bar in an application window 194

Figure 14-6 A scope bar in an application window 195

Figure 14-7 Title bar buttons for standard windows 196

Figure 14-8 The close button in its unsaved changes state 197

Figure 14-9 A proxy icon being dragged to another application 197

Figure 14-10 Proxy icons in windows with saved and unsaved changes 198

Figure 14-11 A document path pop-up menu, opened by Command-clicking the proxy icon
198

Figure 14-12 Many Tiger applications automatically receive the Leopard look when running in
Mac OS X v10.5 and later 199

Figure 14-13 Many standard icons are available for use in window-frame controls 200

Figure 14-14 The RSS pane of the Mail preferences window 200

Figure 14-15 The toolbar control 201

Figure 14-16 Three options for arranging toolbar items 202

Figure 14-17 Toolbar items arranged by functionality 202

Figure 14-18 Two styles for toolbar items 203

Figure 14-19 A scope bar supports find operations within a window 204

Figure 14-20 A scope bar can display filter rows for refining a search 205

Figure 14-21 A scope bar can act as a filter 206

Figure 14-22 Source lists help users navigate and select collections of objects or data 207

Figure 14-23 A source list may support selection in a window, not in the application as a whole
208

Figure 14-24 A source list can contain disclosure triangles 209

Figure 14-25 A bottom bar contains controls that affect the window-body contents or
organization 210

Figure 14-26 A bottom bar and its controls can be regular-size or small 211

Figure 14-27 Controls in bottom bars can contain system-provided or custom images 212

Figure 14-28 An open drawer next to its parent window 213

Figure 14-29 The System Preferences window in its default state 215

14

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

Chapter 15

FIGURES AND TABLES

Figure 14-30
Figure 14-31
Figure 14-32
Figure 14-33

Figure 14-34
Figure 14-35
Figure 14-36
Figure 14-37
Figure 14-38
Figure 14-39
Figure 14-40
Figure 14-41
Figure 14-42

Figure 14-43

Figure 14-44
Figure 14-45
Figure 14-46

Figure 14-47
Figure 14-48
Figure 14-49
Figure 14-50
Figure 14-51
Figure 14-52
Figure 14-53
Figure 14-54
Figure 14-55
Figure 14-56
Figure 14-57
Figure 14-58
Figure 14-59
Figure 14-60

Figure 14-61
Figure 14-62
Figure 14-63
Figure 14-64

Appropriate titles for a series of unnamed windows 216
Examples of correct and incorrect window titles 216
Placement of a new nondocument window 217

Appropriate placement of a new window on a system with multiple monitors (the
user moved the first window to span the screens) 218

Main, key, and inactive windows 221

An inactive window with controls that support click-through 222

The Delete button on the inactive window does not support click-through 223
The elements of a scroll bar 224

Examples of standard panels 226

Panel controls 227

An inspector window 228

An example of a transparent panel 229

A transparent panel allows users to make adjustments without distracting them
from the main window 230

A transparent panel can be appropriate for tasks that focus on highly visual content
231

The Fonts window and Colors window provided by Mac OS X 232
Example of an About window 232

The Save Changes alert: An example of using a sheet to display a document-modal
dialog 234

A standard alert 236

A customized alert showing the caution icon badged with an applicationicon 237
A poorly written alert message 237

An improved alert message 237

A well-written alert message 238

Position of buttons at the bottom of a dialog 239

A Find window 241

An example of a preferences window 242

An Open dialog 243

A customized Open dialog 244

The minimal (collapsed) Save dialog 245

The expanded Save dialog 246

A Save Changes alert for an application that is not document-based 247

The Review Changes (application-modal) alert that appears when the user quits
with more than one unsaved document open 248

Alert for confirming replacing a file 249

A Choose dialog 249

A Print dialog (a sheet attached to a document window) 250
The Page Setup dialog 251

Controls 253

Figure 15-1
Figure 15-2
Figure 15-3

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

Variations of the rectangular-style toolbar control 255
Rectangular-style toolbar controls in a toolbar 256
Rectangular-style toolbar controls in a bottom bar 256

15
MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

FIGURES AND TABLES

Figure 15-4 Toggle controls in the iCal bottom bar clearly indicate their current state 258
Figure 15-5 A capsule-style toolbar control used as a segmented control 260
Figure 15-6 Capsule-style toolbar controls in a toolbar 261

Figure 15-7 Examples of push buttons in different types of windows 264
Figure 15-8 A push button label can include an ellipsis 266

Figure 15-9 OK and Cancel buttons 266

Figure 15-10 Icon button examples 267

Figure 15-11 Example relationships of the icon, button, and hit-target dimensions in an icon
button 268

Figure 15-12 Recessed scope buttons used to define the scope of a look-up 270
Figure 15-13 Round rectangle scope buttons used to save, change, and set scoping criteria 270
Figure 15-14 Gradient buttons used to add and remove items in a list 272

Figure 15-15 Gradient buttons can behave in different ways 273

Figure 15-16 Help button in a preferences pane 274

Figure 15-17 Bevel buttons in an inspector window 275

Figure 15-18 Bevel button examples 276

Figure 15-19 Examples of round buttons 277

Figure 15-20 Radio buttons offer mutually exclusive choices 278

Figure 15-21 A radio button can change the state of an application 279

Figure 15-22 Radio button label alignment 280

Figure 15-23 Checkboxes provide on-off choices to the user 281

Figure 15-24 Checkboxes can be indented to show a dependent relationship 282
Figure 15-25 Checkbox label alignment 283

Figure 15-26 Segmented controls can be used as radio buttons 284

Figure 15-27 Segmented controls can contain icons or text 285

Figure 15-28 Bevel and icon buttons can include pop-up menus 287

Figure 15-29 Pop-up menus provide users with menu functionality in a control 288
Figure 15-30 An open pop-up menu 289

Figure 15-31 A pop-up menu with an introductory label and menu-item text 290
Figure 15-32 Pop-up menus stacked vertically 290

Figure 15-33 An Action menu in the Finder toolbar 291

Figure 15-34 An Action menu can be below a list view or source list 292

Figure 15-35 A combo box allows users to select from a list or supply their own item 294
Figure 15-36 A combo box with the list open 294

Figure 15-37 A combo box with an introductory label and list-item text 295
Figure 15-38 A path control displays the path of the current item 296

Figure 15-39 A path control can accommodate a large number of locations 297
Figure 15-40 Color wells in an inspector window 298

Figure 15-41 An image well in a preferences pane 299

Figure 15-42 Textual and graphical date pickers in a preferences pane 300

Figure 15-43 A textual date-picker control 300

Figure 15-44 A graphical date-picker control 301

Figure 15-45 A command pop-down menu in the Colors window 301

Figure 15-46 An open command pop-down menu 302

Figure 15-47 A command pop-down menu 302

Figure 15-48 Sliders allow users to choose from a continuous range of values 303

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

FIGURES AND TABLES

Figure 15-49
Figure 15-50
Figure 15-51
Figure 15-52
Figure 15-53
Figure 15-54
Figure 15-55

Figure 15-56
Figure 15-57

Figure 15-58
Figure 15-59
Figure 15-60
Figure 15-61

Figure 15-62

Figure 15-63
Figure 15-64
Figure 15-65
Figure 15-66
Figure 15-67
Figure 15-68
Figure 15-69
Figure 15-70
Figure 15-71
Figure 15-72
Figure 15-73
Figure 15-74
Figure 15-75
Figure 15-76
Figure 15-77
Figure 15-78
Figure 15-79
Figure 15-80
Figure 15-81
Figure 15-82
Figure 15-83
Figure 15-84
Figure 15-85
Figure 15-86
Figure 15-87

Figure 15-88
Figure 15-89

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

A circular slider 304

A linear slider without tick marks should display a round thumb 305
Examples of different types of sliders 305

Stepper controls in a panel 307

A regular-size stepper control 308

A placard 308

A determinate progress bar provides feedback on a process with a known duration
309

The active and inactive appearance of a determinate progress bar 310

An indeterminate progress bar provides feedback on a process of unknown duration
311

The active and inactive appearance of an indeterminate progress bar 311
An asynchronous progress indicator provides feedback on a process 312

A regular-size asynchronous progress indicator 313

A continuous capacity indicator shows a fine-grained representation of current
capacity 314

A discrete capacity indicator shows a medium-grained representation of current
capacity 314

A continuous capacity indicator displaying values in three different ranges 315
A discrete capacity indicator displaying values in three different ranges 316
A rating indicator shows the user-assigned rating for an item 317

Rating indicators showing different ratings 317

A relevance indicator shows the relevance of each itemin alist 318
Relevance indicator states 318

Static text fields provide information to users 319

A text input field allows the user to supply information 320

A regular-size text input field in various states 321

A token field control in use 322

A token field control can display a contextual menu 323

A search field in a toolbar 324

A regular-size search field 325

A disclosure triangle can reveal more dialog contents 327

Disclosure triangles 328

A disclosure button expands a Save dialog 329

A list view in a window 330

A list view with disclosure triangles 331

A column view is useful for displaying a hierarchy of objects 332

The pointer changes when it hovers over a splitter 333

A window can have multiple split views 334

A tab view allows switching among multiple panes in a window 335

Tab panes inset from the edge of a window 337

Tab panes edge to edge 337

Acceptable, but not recommended, usage of a pop-up menu to switch among
panes 338

Separators divide controls into subgroups or categories 339
Separators 340

17
MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

FIGURES AND TABLES

Figure 15-90 Group boxes can organize controls in a window 341

Table 15-1 Window-frame control appearances, based on window state and control state 254
Chapter 16 Layout Guidelines 343

Figure 16-1 Preferences window example 344

Figure 16-2 Example center-equalization in a preferences window 344

Figure 16-3 Example label and control alignment in a preferences window 345

Figure 16-4 Example layout of a preferences window 346

Figure 16-5 Tabbed window example 347

Figure 16-6 Example of center-equalization in a tabbed window 347

Figure 16-7 Example of alignment of labels and controls in a tabbed window 348

Figure 16-8 Example of layout of a tabbed window 349

Figure 16-9 A standard alert example 349

Figure 16-10 Layout of a standard alert 350

Figure 16-11 Example layout of a list view in a dialog without an icon 351

Figure 16-12 Example layout of a list view in a dialog with an icon 351

Figure 16-13 Example of a panel with small controls 352

Figure 16-14 Center-equalization in a panel with small controls 353

Figure 16-15 Alignment of labels and controls in a panel with small controls 354

Figure 16-16 Layout of a panel with small controls 355

Figure 16-17 Example of a panel with mini controls 356

Figure 16-18 Layout of a panel with mini controls 357

Figure 16-19 Example of grouping with white space 358

Figure 16-20 Example layout using white space 358

Figure 16-21 Example of grouping with separators 359

Figure 16-22 Example layout using separators 359

Figure 16-23 Example of grouping with group boxes 360

Figure 16-24 Example layout using group boxes 360

Figure 16-25 Layout specifications for a bottom bar with regular-size controls 361

Figure 16-26 Layout specifications for a bottom bar with small controls 362
Appendix A Keyboard Shortcuts Quick Reference 363

Table A-1 Keyboard shortcuts 364
18

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

INTRODUCTION

Introduction to Apple Human Interface
Guidelines

Apple has the world’s most advanced operating system, Mac OS X, which combines a powerful core foundation
with a compelling user interface called Aqua. With advanced features and an aesthetically refined use of
color, transparency, and animation, Mac OS X makes computing even easier for new users, while providing
the productivity that professional users have come to expect of the Macintosh. The user interface features,
behaviors, and appearances deliver a well-organized and cohesive user experience available to all applications
developed for Mac OS X.

These guidelines are designed to assist you in developing products that provide Mac OS X users with a
consistent visual and behavioral experience across applications and the operating system. Following the
guidelines is to your advantage because:

m Users will learn your application faster if the interface looks and behaves like applications they're already
familiar with.

m Users can accomplish their tasks quickly, because well-designed applications don’t get in the user’s way.
m Users with special needs will find your product more accessible.
m Your application will have the same modern, elegant appearance as other Mac OS X applications.

m Your application will be easier to document, because an intuitive interface and standard behaviors don't
require as much explanation.

m Customer support calls will be reduced (for the reasons cited above).

m Your application will be easier to localize, because Apple has worked through many localization issues
in the Aqua design process.

m Media reviews of your product will be more positive; reviewers easily target software that doesn’t look
or behave the way “true” Macintosh applications do.

The implementation of Apple’s human interface principles make the Macintosh what it is: intuitive, friendly,
elegant, and powerful.

What Are the Apple Human Interface Guidelines?

This document is the primary user interface documentation for Mac OS X. It provides specific details about
designing for Aqua compliance in Mac OS X version 10.6, although some of the information may apply to
previous versions of Mac OS X.

Aqua is the overall appearance and behavior of Mac OS X. Aqua defines the standard appearance of specific
user interface components such as windows, menus, and controls, and is also characterized by the anti-aliased
appearance of text and graphics, shadowing, transparency, and careful use of color. Aqua delivers standardized
consistent behaviors and promotes clear communication of status through animated notifications, visual
effects, and more. Designing for Aqua compliance will ensure you provide the best possible user experience
for your customers.

What Are the Apple Human Interface Guidelines? 19
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

INTRODUCTION

Introduction to Apple Human Interface Guidelines

Aqua is available to Cocoa, Carbon, and Java software. For Cocoa and Carbon application development,
Interface Builder is the best way to begin building an Aqua-compliant graphical user interface. If you are
porting an existing Mac OS 9 application to Mac OS X, see the Carbon Porting Guide. Java developers can use
the Swing toolkit, which includes an Aqua look and feel in Mac OS X.

Who Should Read This Document?

Anyone building applications for Mac OS X should read and become familiar with the contents of this
document. This document combines information on the mechanics of designing a great user interface with
fundamental software design principles and information on leveraging Mac OS X technologies.

Organization of This Document

The document is divided into three main parts, each of which contains several chapters:

m Thefirst part, “Application Design Fundamentals” (page 23) describes the fundamental design principles
to keep in mind while designing an application.

m The second part, “The Macintosh Experience” (page 59) discusses many of the Mac OS X technologies
that users are accustomed to using. You can take advantage of these technologies to streamline your
development process and ensure that your application is well-behaved in the context of the operating
system as a whole.

m The third part, “The Aqua Interface” (page 93) describes the Mac OS X Aqua user interface. It explains
the specific user interface components available to you and includes extensive guidelines on how to use
and implement them in your application.

Supplementary information is provided in the following locations:

m Alisting of the recommended and reserved keyboard shortcuts for Mac OS X, in “Keyboard Shortcuts
Quick Reference” (page 363).

m A summary of the changes made to this document in its various incarnations appears in “Document
Revision History” (page 379).

m Alisting of the terms used in this document, along with their definitions, is provided in the “Glossary” (page
371).

Conventions Used in This Document

Throughout this document, certain conventions are used to provide additional information:

Some of the example images include visual cues to note whether a particular implementation is appropriate
or not:

=V

indicates an example of the correct way to use an interface element.

20 Who Should Read This Document?
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

INTRODUCTION

Introduction to Apple Human Interface Guidelines

= O
indicates an example of the wrong way to use an interface element. An example accompanied by this
symbol often illustrates common mistakes.

Bold text indicates that a new term is being defined and that a definition of the word or phrase appears in
the glossary.

Mac OS X developer documentation is available from the Reference Library on the Mac Dev Center website:
http://developer.apple.com/library/mac/navigation/

In this document, cross-references to Apple documents look like this:

See Accessibility Overview.

Cross-references to APl reference documentation on specific methods or classes look like this:

See NSButton.

See Also

To get an overview of the technologies available in Mac OS X, you should read Mac OS X Technology Overview.

The Mac OS X Reference Library website at http://developer.apple.com/library/mac/navigation/ has links to
API reference and conceptual documentation for many of the topics discussed in this book.

If you are using Xcode, you can peruse the Reference Library without leaving the Xcode development
environment. In the Xcode Help menu, choose Documentation to open a document-viewing window. (For
more information about using Xcode, see Xcode Workspace Guide.)

The Apple Publications Style Guide provides information helpful for choosing the correct language and
terminology to use throughout your application in text displays and dialogs as well as your documentation.

To get access to pre-release software, technical support, and the Apple Developer Forums, you can sign up
to become a Mac developer. For more details about this program, see http://developer.apple.com/pro-
grams/mac/.

See Also 21
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

INTRODUCTION

Introduction to Apple Human Interface Guidelines

22 See Also
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

PART |

Application Design Fundamentals

This part of Apple Human Interface Guidelines presents the philosophy and psychology behind the Macintosh
interface. Read this part to learn about the design principles and considerations you can use to create an
excellent software product that provides an intuitive and attractive human interface. You'll find out how to
incorporate good human interface consideration with your design and decision-making processes and how
to involve users throughout the design process. It also tells you how to work with and go beyond the guidelines
while maintaining their spirit and intent.

23
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

24

PART |

Application Design Fundamentals

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

CHAPTER 1

The Design Process

This chapter offers some basic tips on how to make the best design choices for your software. Great software
design involves a careful analysis of the needs of your users; after all, they are the ones who will use your
product. Identifying their needs and finding ways to meet those needs are important first steps in the design
process.

Involving Users in the Design Process

The best way to make sure your product meets the needs of your target audience is to expose your designs
to the scrutiny of your users. Doing this during every phase of the design process can help reveal which
features of your product work well and which need improvement.

When you give people an opportunity to use your product (or a prototype of it) you may uncover usability
problems that you did not anticipate during your initial design phase. Finding and eliminating these problems
early can save you time and money later on. Clearly identifying the needs of your users helps you create
products that deliver effective solutions and are typically easier for them to learn and use. These improvements
can translate into competitive advantages, increased sales, and enhanced customer satisfaction.

Know Your Audience

Identifying and understanding your target audience are important first steps when designing your product.
Equally important is the analysis of similar products in related markets to see what audiences they target

and whether those products would be competitors or would interleave nicely with yours. Understanding the
approach taken by other product designers might give you insight into the needs of your own target users.

It is useful to create scenarios that describe a typical day of a person who uses the type of software product
you are designing. Think about the different environments, tools, and constraints that this person deals with.
If possible, visit actual workplaces and study how people perform those tasks you intend your product to
help them perform.

Throughout the design process, find people who fit your target audience to test your prototypes. Listen to
their feedback and try to address their concerns. Develop your product with people and their capabilities—not
computers and their capabilities—in mind.

Recognize that, as an application developer or interface designer, you have a greater wealth of knowledge
and a more intricate understanding of your application than your customers are likely to have. Although you
should use that knowledge to choose the best default settings or decide the best presentation of information,
remember that you are not designing the program for yourself. It is not your needs or your usage patterns
that you are designing for, but those of your (potential) customers.

Involving Users in the Design Process 25
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 1

The Design Process

Analyze User Tasks

When you have defined your audience, you need to define and analyze the tasks that your users might
perform. Discover the mental or conceptual model people associate with the task your product will help
them perform. A mental model paints a picture of a task and defines expectations about the components of
the task, the organization of those components, and the overall workflow.

To help you discover the mental models people associate with your product’s tasks, look at how they perform
similar tasks without a computer. What terminology do they use? What concepts, objects, and gestures do
your users associate with this task? Design your product to reflect these things, but don't insist on replicating
each step a user might take when performing the task without a computer. Take advantage of the inherent
strengths of the computing environment to make the whole process easier or more streamlined. For more
information on how the user’s mental models should inform your design, see “Reflect the User’s Mental
Model” (page 39).

Build Prototypes

Use the information about tasks and their component steps to create an initial design, and then create a
prototype of your design. Prototyping is a good way to test aspects of your design and verify how well they
will work for your users. You can use a variety of techniques to construct prototypes, not all of which involve
writing code. For example, you can create storyboards that visually show the appearance of your product as
users go through the steps of a specific task. You can also use prototyping software to simulate some features
of your product or demonstrate how it will operate.

Note: Keep in mind that prototyping should be done quickly and only for the purpose of improving your
design. If you write code for your prototype, avoid using that same code in your final product.

Observe Users

Once you have a prototype, let some target users try it out and observe their reactions to it. Watch and listen
carefully to these users, and try to videotape their reactions as they work through specific tasks you've defined
for your prototype. User observations can help you determine how well your design works or where there
are problemes. If product designers and engineers are available, encourage them to watch the tests, but
prevent them from interacting with the users so that they do not influence the test results.

During user testing, be sure to limit the scope of your tests to key areas of your product. Focus on the tasks
you identified during your task analysis. Your instructions to the participants should be clear and complete
but should not explain how to do things you're trying to test.

Use the information recorded from your user tests to analyze your design and use that information to revise
your prototype. When you have a second prototype, conduct a second set of user observations to test the
workability of your design changes. You can repeat this process as often as you like until you feel confident
that you've addressed the needs of your target audience and created a highly usable product that displays
the characteristics of great software (see “Characteristics of Great Software” (page 31)).

26 Involving Users in the Design Process
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 1

The Design Process

Guidelines for Conducting User Observations

There are many ways to get feedback from users during the design process. These include usability testing,
cognitive walkthroughs, group walkthroughs, on-site observations, and heuristic walkthroughs. You can use
the following guidelines when conducting user observations, but note that they can apply more generally

to other types of testing as well. Remember that testing is not an experiment; you will not get quantitative
data that can be statistically analyzed. You can, however, see where people have difficulty using your product,
and then use that information to improve your product.

If time and budget permit, consider working with a professional usability testing facility to conduct this type
of testing. If this is not feasible, try to allow a cross-section of colleagues within your company to use a
prototype of your product and gather their feedback. This alone will improve the usability of your product
because some testing is far better than no testing.

If you choose to conduct your own user observation-based testing, following these guidelines will help you
get the most valuable data:

m Introduce yourself and describe the purpose of the observation (in very general terms). Most of the time,
you shouldn't mention what you'll be observing. Make it clear to the participant that you are testing
your product, not the participant.

m Tell the participant about how long the test will take and that it's OK to quit at any time, for any reason.
The user should never feel pressured to complete a test. Besides, quitting may indicate that the underlying
task is too difficult or complex and should be simplified.

m A common testing methodology is to use the think-aloud protocol. If you are using this protocol, explain
how to do it. Ask participants to think aloud during the observation, saying what comes to mind as they
work. By listening to participants think and plan, you'll be able to examine their expectations for your
product as well as their intentions and their problem-solving strategies.

You may find that listening to users as they work will provide you with an enormous amount of useful
information. In particular, you'll discover some of the details of the mental model the user has of the
task. You can help users practice thinking aloud by having them describe a simple task, like how they
prepare a cup of coffee.

m Describe in general terms what the participant will be doing. Explain what all the materials are and the
sequence in which the participant will use them. If you are using a lab, explain the purpose of each piece
of equipment in the room (hardware, software, recording devices, and so forth) and how it will be used
in the test. If you need to demonstrate your product before the user observation begins, be sure you
don’t demonstrate something you're trying to test.

m Itis very important that you allow participants to work with your product without any interference or
extra help from the facilitator, the analyzer, or anyone else. This is the best way to see how people really
interact with the product. For example, if you see a participant begin to have difficulty and you
immediately provide an answer, you will lose the most valuable information you can gain from user
observation: determining where users have trouble and how they figure out what to do.

Note: There may be situations in which you will have to step in and provide assistance, but you should
decide what those situations will be before you begin testing. For example, you may decide that you
will allow someone to struggle for at least 3 minutes before you provide assistance or that there is a
distinct set of problems on which you will provide help. However, if a participant becomes very frustrated,
it's better to intervene than have the participant give up completely.

m Conclude by explaining what you were trying to find out and answer any questions the participant may
have.

Involving Users in the Design Process 27
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 1

The Design Process

m Use the results. As you observe, you will see users doing things you may never have expected them to
do. When you see participants making mistakes, your first instinct may be to blame their inexperience
or lack of intelligence. This is the wrong response to have. Remember that the purpose of observing
users is to learn what parts of your product might be difficult to use or ineffective because of faulty
product design.

m Watch for patterns. Just because one user has a problem with something, that doesn’t mean every user
will. Carefully consider why the single user had the problem and consider discarding that finding if it
can be easily explained, otherwise, recognize that the software may be faulty.

m Review all results with a cross-functional team comprising representatives of product management,
marketing, engineering, human interface design, documentation, and quality assurance. Each of these
participants will view the results through the lens of their own expertise, enabling them to provide
valuable insights into various usability issues with which the users might have struggled.

Making Design Decisions

When making design decisions regarding features in your application, it’s important to weigh the costs, not
all of which are financial, against the potential benefits. Every time you add a feature to your application, the
following things can happen:

m Your application gets larger.

m Your application gets slower.

m Your application’s human interface becomes more complex.

m You spend time developing new features rather than refining existing features.

m Your application’s documentation and help become more extensive.

m You run the risk of introducing changes that could adversely affect existing features.

m You increase the time required to validate the behavior of your application.

Choosing appropriate features and devoting the needed resources to implement them correctly can save
you time and effort later. Choosing poor feature sets or failing to assign appropriate design, engineering,
testing, and documentation resources often incurs heavier costs later when critical bugs appear or users
can't figure out how to use your product.

The following sections present several additional factors to take into consideration before adding features
to your product.

Avoid Feature Cascade

If you are developing a simple application, it can be very tempting to add features that aren’t wholly relevant
to the original intent of the program. This feature cascade can lead to a bloated interface that is slow and
difficult to use because of its complexity. Try to stick to the original intent of your program and include only
features that are relevant to the main workflow.

The best products aren't the ones with the most features. The best products are those whose features are
tightly integrated with the solutions they provide, making them the most usable.

28 Making Design Decisions
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 1

The Design Process

Apply the 80 Percent Solution

During the design process, if you discover problems with your product design, you might consider applying
the 80 percent solution—that is, designing your software to meet the needs of at least 80 percent of your
users. This type of design typically favors simpler, more elegant approaches to problems.

If you try to design for the 20 percent of your target audience who are power users, your design may not be
usable by the other 80 percent of users. Even though that smaller group of power users is likely to have good
ideas for features, the majority of your user base may not think in the same way. Involving a broad range of
users in your design process can help you find the 80 percent solution.

Making Design Decisions 29
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 1

The Design Process

30 Making Design Decisions
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 2

Characteristics of Great Software

Users are attracted to the Macintosh in general and to Mac OS X specifically because they feel the combination
offers a superior user experience over other platforms. Macintosh computers are stylish, flexible, easy to set
up, easy to maintain, and powerful. Mac OS X combines a reliable core with an intuitive design, stunning
graphics, excellent security, and the features users want. Third-party applications enhance this package by
delivering specific vertical solutions with sophisticated features and behaviors that are consistent with Apple
guidelines.

In the spirit of helping you deliver outstanding solutions in your software products, the following sections
present some high-level goals to strive for in your software design.

For information about the technologies you can use to implement these design attributes, see Mac OS X
Technology Overview.

Note: Although achieving all of the goals in the following sections is desirable, doing so may not be practical
or necessary in all cases. In the end, the needs of your user audience should guide you towards the most
relevant choices. For more information about how to define your audience, see “Know Your Audience” (page
25).

High Performance

Performance is the perceived measure of how fast or efficient your software is and it is critical to the success
of all software. If your software seems slow, users may be less inclined to buy it. Even software that uses the
most optimal algorithms may seem slow if it spends more time processing data than responding to the user.

Developers who have experience programming on other platforms (including Mac OS 9) should take the
time to learn about the factors that influence performance on Mac OS X. Understanding these factors can
help you make better choices in your design and implementation. For an overview of performance factors
and links to information on how to identify problems, see Performance Overview.

Here are some performance-related guidelines to keep in mind:

m Use metrics to identify performance problems. Never try to tune the performance of your software based
on assumptions. Use the Apple-provided tools, such as Shark, to gather data about where your software
is performing poorly. Use that data to isolate problems and fix them. You might also want to create your
own tools to gather metrics that are specific to your software.

m Avoid waiting until the end of your development cycle to do performance tuning. Include specific goals
in your product requirements. Gather baseline metrics early and continue gathering metrics during
development to measure progress against those goals. If you see performance degrading, take immediate
corrective actions to fix the problem.

m Choose modern APIs over legacy APIs. Modern interfaces are built for Mac OS X and take advantage of
the latest technology and design information to deliver the best possible performance.

High Performance 31
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 2

Characteristics of Great Software

m Choose appropriate technologies for the task at hand. For example, Cocoa distributed objects may be
easier to use, but if your program needs maximum performance over the network, CFNetwork or BSD
sockets may be a better choice. See CFNetwork Programming Guide for more information.

m Use threads to improve the responsiveness of your code. Taking advantage of the parallelism offered
by threads can offer significant performance advantages, especially on multiprocessor systems. Technical
Note TN2028, “Threading Architectures” includes an excellent overview of threading architectures. See
“Threads” (page 66) for more information.

m Avoid polling the system for information. Polling wastes a significant amount of CPU time and is
unnecessary with most modern APIs. Most modern APIs provide asynchronous callback mechanisms to
notify you when conditions change or requested data is available. Use these mechanisms instead.

m Eliminate any unnecessary I/0 operations. Accessing a hard drive or optical drive is one of the slowest
operations you can perform on any computer. Minimizing these operations can improve performance
tremendously. See File-System Performance Guidelines for more information.

m Optimize your memory usage to take advantage of the Mac OS X virtual memory system. Understanding
how virtual memory works in Mac OS X can help you make more efficient use of memory. See Memory
Usage Performance Guidelines for information about the Mac OS X virtual memory system.

m Avoid loading resources until they are actually needed by your software. Loading resources early wastes
memory and can trigger paging before the resource is ever used. Wait until you need the resource and
then cache it as appropriate.

m Use the Mach-O executable format. Mach-O is the native executable format of Mac OS X and is used by
all system frameworks. Using the legacy Code Fragment Manager (CFM) executable format requires
additional bridging code between your code and system libraries. This bridging incurs a small performance
penalty that can add up over time.

Ease of Use

32

An easy-to-use program offers a compelling, intuitive experience for the user. It offers elegant solutions to
complex problems and has a well thought out interface that uses familiar paradigmes. It is easy to install and
configure because it makes intelligent choices for the user, but it also gives the user the option to override
those choices when needed. It presents the user with tools that are relevant in the current context, eliminating
or disabling irrelevant tools. It also warns the user against performing dangerous actions and provides ways
to undo those actions if taken.

Here are some guidelines to keep in mind when designing for ease of use:

m In your user interface, use metaphors that represent concrete, familiar ideas. Make your metaphors
obvious so that users can more easily apply a set of expectations to the computer environment. For
example, Mac OS X uses the metaphor of file folders for storing documents. For more information, see
“Metaphors” (page 39).

m Focus on solutions, not features. Avoid adding features solely for competitive reasons. Make sure every
feature offers real benefit to your users. See “Making Design Decisions” (page 28) for additional
information.

m Make sure your packaging clearly indicates the system requirements and contains everything the user
needs to get started immediately. See “Packaging” (page 83) for more information.

Ease of Use
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 2

Characteristics of Great Software

m Establish intelligent default settings for your program. Avoid requiring a lengthy configuration process.
Consider providing a setup assistant if you need information from the user (see “Setup Assistants” (page
86) for more information). Provide your users with appropriate initial settings and give them the option
to change those settings using preferences or options panels.

m Try not to overwhelm users by presenting too much information at once. Use progressive disclosure to
reveal information as it is needed and give users the option to hide information they don't consider
useful. See “Managing Complexity in Your Software” (page 46) for additional information.

m Bundle your application. Application bundles are the preferred mechanism for software distribution.
They simplify installation and are easy to move around in the Finder. See Bundle Programming Guide for
guidelines on how to support bundles.

m If you are a hardware developer, support published standards for plug-and-play hardware. Mac OS X
supports many published hardware standards for USB and FireWire devices such as mice, keyboards,
and hard drives. If you follow these standards, new devices should “just work” when plugged into the
computer and not require custom device drivers. See I/0 Kit Fundamentals for information on built-in
driver support.

m Avoid the assumption that a single user is logged in and that the current user has access to the console.
Fast user switching means that multiple instances of your application could be running simultaneously.
Your application should be ready to handle this situation appropriately. See Multiple User Environments
for information on how to operate safely when fast user switching is enabled.

m Provide useful error messages to users when something does go wrong. An error message should clearly
convey what happened, why it happened, and the options for proceeding. Offer a workaround if one is
available and do whatever you can to prevent the user from losing any data. See “Alerts” (page 235) for
more information on how to provide useful error messages.

m Use display names in your user interface in place of raw pathnames and filenames. Display names take
into account the user’s established language preferences and filename extension preferences. See File
System Overview for more information on display names and guidelines on how to support them.

m Let users explore the features of your application without causing irreversible damage to their data.
Support features such as Undo and Redo. You might also want to support a Revert feature for files.

m Internationalize your software. Provide localized versions whenever possible. Users feel more comfortable
using a program that is in their native language. See “Internationalization” (page 64) for additional
information.

m Make your application accessible to people with disabilities. Assistive applications interact with your
application and allow people with disabilities to use it. Although much support for accessibility is provided
automatically by the system, there are things you can do to improve that support. See Getting Started
With Accessibility for an overview of available information.

m Provide appropriate documentation for your software. Apple Help is an HTML-based help system that
lets you integrate documentation into your application. See Apple Help Programming Guide for information
on how to incorporate Apple Help into your applications.

For high-level information on designing an easy-to-use interface, see “Human Interface Design Principles” (page
39).

Ease of Use 33
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 2

Characteristics of Great Software

Attractive Appearance

One feature that draws users to the Macintosh platform, and to Mac OS X in particular, is the stylish design

and attractive appearance of the hardware and software. Although creating attractive hardware and system
software is Apple’s job, you should take advantage of the strengths of Mac OS X to give your own software

an attractive appearance.

The Finder and other applications that come with Mac OS X use high-resolution, high-quality graphics and
icons that include 32-bit color and transparency. Make sure that your applications also use high-quality
graphics both for the sake of appearance and to better convey relevant information to users. For example,
the system uses pulsing buttons to identify the most likely choice and transparency effects to add a
dimensional quality to windows.

Here are some guidelines to keep in mind as you design the appearance of your software:

m Follow the guidelines in Part Ill of this document when designing your user interface. The guidelines
offer advice on how to lay out content and design the visual appearance of your software.

m From packaging to user interface polish, make sure your software looks professionally designed.

0 Use high-quality graphics and icons. If needed, contract with a professional graphic design firm to
create these for you.

0 Adopt standard Mac OS X user-interface elements, such as controls, menus, and dialogs. Do not
implement your own custom controls or dialogs to replace those provided by the system.

O Refer to the guidelines in this document if you absolutely need a control that is not provided by the
system and read “Extending the Interface” (page 51) before you decide to create a new element or
change the behavior or an existing element.

m Use 32-bit color. Mac OS X is optimized to provide the best performance for 32-bit color. You don't have
to limit yourself to an 8-bit color palette for visual elements. Support for 8-bit graphics is minimal and
available mostly to support legacy applications.

m Use Interface Builder to design your user interface. Even if you do not use the resulting nib files, you can
use the metrics provided by Interface Builder to lay out your views and controls precisely in your code.
See Interface Builder for an introduction to this application’s features.

m Render your text and graphics using modern APIs such as Quartz, Cocoa, ATSUI, and OpenGL. Avoid
using legacy drawing APIs such as QuickDraw.

Reliability

A reliable program is one that earns the user’s trust. Such a program presents information to the user in an
expected and desired way. A reliable program maintains the integrity of the user’s data and does everything
possible to prevent data loss or corruption. It also has a certain amount of maturity to it and can handle
complex situations without crashing.

Reliability is important in all areas of software design, but especially in areas where a program may be running
for an extended period of time. For example, scientific programs often perform calculations on large data
sets and can take a long time to complete. If such a program were to crash during a long calculation, the
scientist could lose days or weeks worth of work.

34 Attractive Appearance
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 2

Characteristics of Great Software

Here are some guidelines to keep in mind as you design your software for reliability:

m Make sure your user interface behaves in a predictable way. The same set of actions should generate
the same results each time. See “Consistency” (page 43) for additional information.

m Provide predictable output from your documents. For printing, make sure that the content the user sees
on the screen is what gets printed. (Note that the Mac OS X printing dialogs provide a print preview
option for you.)

m Reduce or eliminate data loss when importing or exporting documents. If your program imports or
exports files associated with other applications, make sure you fully support the file format. If your
application cannot import all data from a given file format, warn the user that data loss may occur and
offer the option to work on a copy of the original file.

m Test your software under a wide variety of conditions and verify that it responds appropriately. Simulate
the network going down or a mounted volume disappearing and ensure that your software adapts
appropriately.

m Make sure your packaging clearly indicates the system requirements for your software. Don’t assume
your software runs on lower-end hardware until you test it on that hardware. Similarly, indicate which
versions of Mac OS X you support.

m Anticipate errors and handle them gracefully. If a function returns a result code, check it to see if there
was a problem and respond appropriately. You can also use exception handlers to catch errors; however,
use them sparingly. Exception handlers increase the memory footprint of your application, which can
degrade performance.

m Validate user input to ensure that it is what you expect. Formatter objects help ensure that users enter
numbers and dates correctly. (For information on formatting data in a Carbon application, see Data
Formatting Guide for Core Foundation. For information on formatting data in a Cocoa application, see
Data Formatting Guide.) Your own code should validate user-entered data to prevent it from causing
problems later. See “The Functions of Specific Keys” (page 98) for information on how a user uses specific
keys to enter data.

m Use the Apple-provided performance and debugging tools to find memory leaks and other problem
areas in your code. These tools can uncover hidden bugs that you did not know you had.

m Choose modern APIs over legacy APIs. Modern APIs provide better handling of system configuration
changes than legacy APIs.

m Prefer system and standards-based APIs to your own custom APIs. See “Using Mac OS X
Technologies” (page 67) for additional information.

Adaptability

An adaptable program is one that adjusts appropriately to its surroundings; that is, it does not stop working
when the current conditions change. If a network connection goes down, an adaptable program lets the
user continue to work offline. Similarly, if certain resources are locked or become unavailable, an adaptable
program finds other ways to meet the user’s request.

One of the strengths of Mac OS X is its ability to adapt to configuration changes quickly and easily. For
example, if the user changes a computer’s network configuration from System Preferences, the changes are
automatically picked up by applications such as Safari and Mail, which use CFNetwork to handle network
configuration changes automatically.

Adaptability 35
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 2

Characteristics of Great Software

Here are some guidelines to keep in mind as you design your software to be adaptable:

m Build forgiveness and intelligence into your interface. Make sure your software can handle cases in which
a file-system volume or the network disappears. Offer the user an option for saving files to a different
volume or reconnecting to the network later.

m Avoid making assumptions about available hardware and access to that hardware. Hardware
configurations can vary greatly based on the computer, country, and user. For example, not every
Macintosh is equipped with Velocity Engine on the processor. Similarly, not all keyboards have the same
set of keys. Hardware can also be added or removed at runtime. Use the I/0O Kit interfaces to detect
available device configurations. See Accessing Hardware From Applications for more information.

m Avoid making assumptions based on the current user’s locale. Be prepared to handle different date,
time, and number formats. Also, don't assume that the address format of the current user is the only
address format in use. For example, the user may store contacts with foreign addresses in Address Book.

m Avoid making assumptions about your execution environment. If your program is running in a NetBoot
environment, your access to the system resources may be limited or read-only. For example, in a typical
NetBoot environment, only the user’s home directory is writable.

m Use Bonjour to automatically discover devices and network services on IP networks. Don't make the user
type in an IP address or configure a DNS server.

m Be sensitive to changes in screen availability and resolution. Mac OS X supports hot-plugging of monitors
and notifies applications of the changes through Quartz Services. Your software should respond
appropriately by adjusting window locations and dimensions as described in “Window Behavior” (page
214).

m Use modern system APIs. Apple works to ensure that its modern system APIs properly handle configuration
changes. Although some legacy APIs may also support configuration changes, that support may change
in future releases.

m Avoid writing custom device drivers. The I/O Kit contains working drivers to support many standard
protocols and device types. Relying on these drivers means your hardware should automatically work
with each new version of Mac OS X.

Interoperability

Interoperability refers to a program’s ability to communicate across environments. This communication can
occur at either the user or the program level and can involve processes on the current computer or on remote
computers. At the program level, an interoperable program supports ways to move data back and forth
between itself and other programs. It might therefore support the pasteboard and be able to read file formats
from other programs on either the same or a different platform. It also makes sure that the data it creates
can be read by other programs on the system.

Users see interoperability in features such as the pasteboard (the Clipboard in the user interface), drag and
drop, AppleScript, Bonjour, and services in the Services menu. All these features provide ways for the user
to get data into or out of an application.

Here are some guidelines to keep in mind as you design your software for interoperability:

m Avoid custom file formats whenever possible to ensure that users can easily exchange documents with
users of other programs. If you must use custom file formats, provide import and export capabilities to
allow users to exchange data with other applications.

36 Interoperability
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 2

Characteristics of Great Software

m Use the same file format on all supported platforms. Make sure documents created by your application
on one platform can be read by your application on other platforms.

m Support filename extensions to ensure that users on other platforms can recognize and open your files.
See File System Overview for more information on the importance of filename extensions.

m Use standard protocols for data interchange whenever possible. XML is a preferred format for exchanging
data among applications and platforms because it is cross-platform and widely supported. Mac OS X
also supports numerous network protocols, as listed in Mac OS X Technology Overview.

m Save configuration data using the Mac OS X preferences system implementations offered by Cocoa and
Core Foundation. These implementations store configuration data in plain-text files, which gives the
user the opportunity to modify the data either directly or with a script.

m Design your AppleScript object model carefully to allow for flexibility and future expansion. Good
AppleScript integration requires some thought as to how users or other programs might interact with
your data. It also requires careful integration with your program’s data structures. See Scripting Interface
Guidelines for more information.

For more information on how to leverage Mac OS X features and technologies in your application, see “Using
Mac OS X Technologies” (page 67).

Mobility

Designing for mobility has become increasingly important as laptop usage soars. A program that supports
mobility doesn’t waste battery power by polling the system or accessing peripherals unnecessarily, nor does
it break when the user moves from place to place, changes monitor configurations, puts the computer to
sleep, or wakes the computer up.

To support mobility, programs need to be able to adjust to different system configurations, including network
configuration changes. Many hardware devices can be plugged in and unplugged while the computer is still
running. Mobility-aware programs should respond to these changes gracefully. They should also be sensitive
to issues such as power usage. Constantly accessing a hard drive or optical drive can drain the battery of a
laptop quickly. Be considerate of mobile users by helping them use their computer longer on a single battery
charge.

Here are some guidelines to keep in mind as you design your software to support mobility:

m Avoid polling for events. Polling the system needlessly wastes CPU time, which in turn wastes battery
power on portable systems. Most modern APIs have ways of notifying your program when something
interesting happens. Register to receive these notifications and respond to them as appropriate; otherwise
(if your program has nothing to do), it should be completely idle.

m Try not to require that the user insert the program CD when using your software. Give the user an option
to install everything on a local hard drive.

m Minimize access to files on the hard drive or on an optical drive. In addition to improving performance,
you can reduce battery consumption by letting the drives spin down more frequently.

m Use modern networking interfaces to adapt to network configuration changes. Mobile users may change
locations or wireless access points at any time. Use CFNetwork and other modern interfaces to handle
these configuration changes for you.

m Be forgiving when accessing the file system, in case network volumes go offline. If a network volume
disappears, notify the user and provide an option to save files to a different volume.

Mobility 37
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 2

Characteristics of Great Software

m Be sensitive to screen resolution changes and the plugging in and unplugging of monitors. Mobile users
may need to plug in a projector or other device that requires a different resolution, so do not assume a
fixed screen size in your software. If a monitor disappears, adjust the position of any windows that were
on that monitor so that they remain visible.

38 Mobility
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

Good product design incorporates a number of timeless principles for human-computer interaction. This
chapter presents these principles for your consideration as you design your product. It also points out what
to consider for worldwide compatibility and universal access.

For detailed information on specific user interface components and how to assemble them in your own
Aqua-compliant user interface, see the chapters in Part lll, “The Aqua Interface” (page 93).

Human Interface Design Principles

This section presents some key principles critical to the design of elegant, efficient, intuitive, and
Aqua-compliant user interfaces. Sometimes overlooked by developers, these principles are as relevant today
as when Apple first published them decades ago. In fact, they drive the design of the Mac OS X user interface.

Metaphors

Take advantage of people’s knowledge of the world by using metaphors to convey concepts and features
of your application. Metaphors are the building blocks in the user’s mental model of a task. Use metaphors
that represent concrete, familiar ideas, and make the metaphors obvious, so that users can apply a set of
expectations to the computer environment. For example, Mac OS X uses the metaphor of file folders for
storing documents; people can organize their hard disks in a way that is analogous to the way they organize
file cabinets. Other metaphor examples include iTunes playlists and iPhoto albums, which represent real-world
music playlists and photo albums. A Dashboard widget can also be a metaphor for the task it performs
because it instantly conveys its purpose to the user. (For Dashboard widget design guidelines, see
“Dashboard” (page 72).)

Metaphors should suggest a use for a particular element, but that use doesn’t have to limit the implementation
of the metaphor. It is important to strike a balance between the metaphor’s suggested use and the computer’s
ability to support and extend the metaphor. For example, the number of items a user puts in the Trash is not
limited to the number of items a physical wastebasket could hold.

Reflect the User’s Mental Model

The user already has a mental model that describes the task your software is enabling. This model arises from
a combination of real-world experiences, experience with other software, and with computers in general.
For example, users have real-world experience writing and mailing letters and most users have used email
applications to write and send email. Based on this, a user has a conceptual model of this task that includes
certain expectations, such as the ability to create a new letter, select a recipient, and send the letter. An email
application that ignores the user’s mental model and does not meet at least some of the user’s expectations

Human Interface Design Principles 39
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

would be difficult and even unpleasant to use. This is because such an application imposes an unfamiliar
conceptual model on its users instead of building on the knowledge and experiences those users already
have.

Before you design your application’s user interface, try to discover your users’ mental model of the task your
application helps them perform. Be aware of the model’s inherent metaphors, which represent conceptual
components of the task. In the letter-writing example, the metaphors include letters, mail boxes, and envelopes.
In the mental model of a task related to photography, the metaphors include photographs, cameras, and
albums. Strive to reflect the user’s expectations of task components, organization, and workflow in your
window layout, menu and toolbar organization, and use of panels.

A good example of how reflecting the appropriate mental model results in a clean, intuitive user interface
is the iTunes application. Apple designed iTunes to reflect the mental models people associate with playing
music and managing their music collections. In an uncluttered window, iTunes displays individual songs,
playlists, and playback and search controls in a song-centric arrangement. The largest pane displays a list of
songs, clearly sortable by categories such as title, artist, and album. The smaller pane displays the playlists
and collections, which control the list of songs currently displayed, just as the disk and folder icons in the
Finder sidebar control the display of files, folders, and applications. The prominent playback controls look
like similar controls on radios, CD players, and the iPod. The search field is identical to the search field in
Finder, Mail, and countless other Aqua-compliant applications. Because the iTunes user interface reflects a
well-defined mental model, instead of forcing users to adopt unfamiliar concepts, even novice users find
iTunes intuitive and easy to use.

The mental model your users have should infuse the design of your application’s user interface. It should
inform the layout of your application’s windows, the selection and organization of icons and controls in the
toolbars, and the functionality of panels. In addition, you should support the user’s mental model by striving
to incorporate the following characteristics:

m Familiarity. The user’s mental model is based primarily on experience. When possible, enhance user
interface components to reflect the model’s symbology and display labels that use the model’s
terminology. Then, where appropriate, use familiar Mac OS X user interface components to offer standard
functionality, such as searching and navigating hierarchical sets of data.

As described above, the iTunes application displays playback controls that use well-known symbols users
associate with play, pause, and rewind. Then, to offer searching and help, for example, iTunes uses
standard Aqua user interface components. A Mac OS X user automatically knows how to use such standard
user interface elements, regardless of the application in which they appear.

m Simplicity. A mental model of a task is typically streamlined and focused on the fundamental components
of the task. Although there may be myriad optional details associated with a given task, the basic
components should not have to compete with the details for the user’s attention.

In the iTunes application, for example, the basic task components of playing songs, selecting playlists,
and searching are prominently featured. However, these are supplemented by easily accessible menu
items and controls that perform additional tasks, such as ejecting a disk, shuffling a playlist, and displaying
song artwork.

m Availability. A corollary of simplicity is availability. An uncluttered user interface is essential, but the
availability of certain key features and settings the user needs is equally so. Avoid hiding such components
too deeply in submenus or making them accessible only from a contextual menu.

The iCal application, for example, has commands for subscribing to a new calendar and for publishing
a calendar in the Calendar menu. These tasks are easily accessible, but are not so frequently performed
that they warrant dedicated controls on the application’s main window.

40 Human Interface Design Principles
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

m Discoverability. Encourage your users to discover functionality by providing cues about how to use user
interface elements. If an element is clickable, for example, it must appear that way, or a user may never
try clicking it. Be sure to use Aqua controls properly and avoid making controls invisible to inexperienced
users.

Aqua buttons, for example, appear three-dimensional, enhancing their resemblance to buttons users
see on physical devices. Well-designed toolbar icons make the commands they portray recognizable to
users. This familiarity gives users the confidence to explore the functionality of a new application.

Don't discourage discovery by making actions difficult to reverse or recover from. For more information
on this, see “Forgiveness” (page 44).

Explicit and Implied Actions

Each Mac OS X operation involves the manipulation of an object using an action. In the first step of this
manipulation, the user sees the desired object onscreen. In the second step, the user selects or designates
that object. In the final step, the user performs an action, either using a menu command or by direct
manipulation of the object with the mouse or other device. This leads to two paradigms for manipulating
objects: explicit and implied actions.

Explicit actions clearly state the result of manipulating an object. For example, menus list the commands
that can be performed on the currently selected object. The name of the menu command clearly indicates
what the action is and the current state of the command (dimmed or enabled) indicates whether that action
is valid in the current context. Explicit actions do not require the user to memorize the commands that can
be performed on a given object.

Implied actions convey the result of an action through visual cues or context. A drag-and-drop operation is
a common example of an implied action. Dragging one object onto another object constitutes a relationship
between the objects and an action to be performed by the drag operation. For example, dragging a file icon
to the Trash implies the imminent removal of the underlying file from the file system. For implied actions to
be apparent, the user must be able to recognize the objects involved, the manipulation to be performed,
and the consequences of the action.

Keep these two paradigms in mind as you design your user interface. Examine the user’s mental model of
your application’s task to help you determine when each type of action is appropriate. For example, Automator
supports implied actions when the user drags actions into the workflow pane, creating relationships between
them. Automator conveys these relationships by displaying connection points between actions, warning of
potentially undesirable consequences, and suggesting types of input and output. When it requires the user
to provide specific information, however, Automator supports explicit actions with the display of checkboxes
and editable text fields.

Direct Manipulation

Direct manipulation is an example of an implied action that allows users to feel that they are controlling the
objects represented by the computer. According to this principle, an onscreen object should remain visible
while a user performs an action on it, and the impact of the action should be immediately visible. For example,
with a drag-and-drop operation (the most common example of direct manipulation) users can move a file
by dragging its icon from one location to another, or drag selected text directly into another document.
Other examples of direct manipulation are the resizing of a graphic object in a drawing application and the
positioning of an object or camera view in a three-dimensional scene.

Human Interface Design Principles 1
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

Support direct manipulation when users are likely to expect it. Avoid forcing users to use controls to manipulate
data. For example, an application that manages a virtual library might allow the user to drag a book icon
onto a patron’s name to check it out. Such direct manipulation supports the user’s mental model of the task
and is much more natural than opening a window, selecting a book title, selecting a patron name, and clicking
a Check Out button. (For more information on the concept of a mental model, see “Reflect the User’s Mental
Model” (page 39).)

User Control

Allow the user, not the computer, to initiate and control actions. Some applications attempt to assist the
user by offering only those alternatives deemed good for the user or by protecting the user from having to
make detailed decisions. Because this approach puts the computer, not the user, in control, it is best confined
to parts of the user interface aimed at novice users. Provide the level of user control that is appropriate for
your audience (see “Know Your Audience” (page 25) for more information on ways to determine the audience
for your application). For some suggestions on how to provide the appropriate level of detail in your user
interface, see “Managing Complexity in Your Software” (page 46).

The key is to provide users with the capabilities they need while helping them avoid dangerous, irreversible
actions. For example, in situations where the user might destroy data accidentally, you should always provide
a warning, but allow the user to proceed if they choose.

Feedback and Communication

Feedback and communication encompass far more than merely displaying alerts when something goes
wrong. Instead, it involves keeping users informed about what’s happening by providing appropriate feedback
and enabling communication with your application.

When a user initiates an action, always provide an indication that your application has received the user’s
input and is operating on it. Users want to know that a command is being carried out. If a command can't
be carried out, they want to know why it can't and what can be done instead. When used sparingly, animation
is one of the best ways to show a user that a requested action is being carried out. For example, when a user
clicks an icon in the Dock, the icon bounces to let the user know that the application is in the process of
opening.

Often, you can use animation to make clear the relationships between objects and the consequences of
actions. Mac OS X uses animation to subtly but clearly communicate with the user in many different ways,
a few of which are listed here:

m When a user minimizes a window, it doesn’t just disappear. Instead, it smoothly slips into the Dock,
clearly telling the user where to find it again.

m To communicate the relationship between a sheet and a window, the sheet unfurls from the window’s
title bar.

m To emphasize the relationship between a drawer and a window, the drawer slides out from beneath the
window, displaying shadowing that makes it look like a desk drawer.

You should consider using subtle animation effects such as these to enhance feedback in your user interface.

Human Interface Design Principles
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

For potentially lengthy operations, use a progress indicator to provide useful information about how long
the operation will take. Users don’t need to know precisely how many seconds an operation will take, but
an estimate is helpful. For example, Mac OS X uses statements such as “about a minute remains” to indicate
an approximate time frame. It can also be helpful to communicate the total number of steps needed to
complete a task—for example, you might include text that says “Copying 30 of 850 files.”

Note: A good reason to provide feedback during lengthy operations is that if your application fails to respond
to events for 2 seconds, the system automatically displays the spinning wait cursor for your application. Users
who see this cursor without any other feedback might think that your application is frozen and quit it using
the Force Quit window.

Provide direct, simple feedback that people can understand. For example, error messages should spell out
exactly what situation caused the error (“There’s not enough space on that disk to save the document”) and
possible actions the user can take to rectify it (“Try saving the document in another location”). For more
information on how to compose useful alert messages, see “Writing Good Alert Messages” (page 237).

If your application consists of a foreground process that displays a user interface and a background process
that performs some or all of the application’s main tasks, take special care to conduct all communication
with the user through the user interface of the foreground process. In particular, a background process should
never display a dialog or window in which the user is required to change settings or supply information. If
a background process must communicate with the user, it should start or bring forward the foreground
application. This is important because the user may not know (or remember) that a background process is
running and receiving communication from it would be confusing.

For example, consider a backup application consisting of a foreground process that displays a user interface
and a background process that performs the scheduled backups. The user starts the application, sets the
backup frequency and provides the data and backup locations, and quits the application, secure in the
knowledge that backups will proceed as scheduled. If, at some time in the future, the backup disk becomes
full, the background process must tell the user immediately; otherwise, the user may lose data. To do this,
the background process should start the application and cause its Dock icon to bounce. Drawing the user’s
attention to a familiar application, instead of displaying an alert from an invisible process, prepares the user
to receive the information and take appropriate action.

Note: A background-only application (also called a faceless background application) is not associated with
a user-visible application. When communication with a user is essential, a background-only application can
display an alert describing the situation, but the alert should direct the user to open some other application
(such as System Preferences) to handle the problem. For some information on background-only applications,
see Runtime Configuration Guidelines and the sample Carbon application Folder Watching.

Consistency

Consistency in the interface allows users to transfer their knowledge and skills from one application to another.
Use the standard elements of the Aqua interface to ensure consistency within your application and to benefit
from consistency across applications. Ask yourself the following questions when thinking about consistency
in your product:

m s it consistent with Mac OS X standards? For example, does the application use the reserved and
recommended keyboard equivalents (see “Keyboard Shortcuts Quick Reference” (page 363)) for their
correct purposes? Is it Aqua-compliant? Does it use the solutions to standard tasks Mac OS X provides?
(For more information on these solutions, see “Using Mac OS X Technologies” (page 67).)

Human Interface Design Principles 43
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

m Is it consistent within itself? Does it use consistent terminology for labels and features? Do icons mean
the same thing every time they are used? Are concepts presented in similar ways across all modules?
Are similar controls and other user interface elements located in similar places in windows and dialogs?

m Isit consistent with earlier versions of the product? Have the terms and meanings remained the same
between releases? Are the fundamental concepts essentially unchanged?

m Is it consistent with people’s expectations? Does it meet the needs of the user without extraneous
features? Does it conform to the user’s mental model? (For more information on this concept, see “Reflect
the User’s Mental Model” (page 39).)

Meeting everyone's expectations is the most difficult kind of consistency to achieve, especially if your product
is likely to be used by an audience with a wide range of expertise. You can address this problem by carefully
weighing the consistency issues in the context of your target audience and their needs. See “Know Your
Audience” (page 25) for more information on how to define your audience.

WYSIWYG (What You See Is What You Get)

In applications in which users can format data for printing, publish to the web, or write to film, DVD, or other
formats, make sure there are no significant differences between what users see onscreen and what they
receive in the final output. When the user makes changes to a document, display the results immediately;
the user shouldn't have to wait for the final output or make mental calculations about how the document
will look later. Use a preview function if necessary.

People should be able to find all the available features in your application. Don't hide features by failing to
make commands available in a menu. Menus present lists of commands so that people can see their choices
rather than try to remember command names. Avoid providing access to features only in toolbars or contextual
menus. Because toolbars and contextual menus may be hidden, the commands they contain should always
be available in menu bar menus as well.

Forgiveness

Encourage people to explore your application by building in forgiveness—that is, making most actions easily
reversible. People need to feel that they can try things without damaging the system or jeopardizing their
data. Create safety nets, such as the Undo and Revert to Saved commands, so that people will feel comfortable
learning and using your product.

Warn users when they initiate a task that will cause irreversible loss of data. If alerts appear frequently,
however, it may mean that the product has some design flaws. When options are presented clearly and
feedback is timely, using an application should be relatively error-free.

Anticipate common problems and alert users to potential side effects. Provide extensive feedback and
communication at every stage so users feel that they have enough information to make the right choices.
For an overview of different types of feedback you can provide, see “Feedback and Communication” (page

42).
44 Human Interface Design Principles
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

Perceived Stability

The Aqua interface is designed to provide an understandable, familiar, and predictable environment. To give
users a visual sense of stability, the interface defines many standard graphical elements, such as the menu
bar, window controls, and so on. These standard elements provide users with a familiar environment in which
they know how things behave and what to do with them.

To give users a conceptual sense of stability, the interface provides a clear, finite set of objects and a set of
actions to perform on those objects. For example, when a menu command doesn't apply to a selected object
or to the object in its current state, the command is dimmed rather than omitted.

To help convey the perception of stability, preserve user-modifiable settings such as window dimensions
and locations. When a user sets up his or her onscreen environment to have a certain layout, the settings
should stay that way until the user changes them.

Providing status and feedback also contributes to perceived stability by letting users know that the application
is performing the specified task.

Aesthetic Integrity

Aesthetic integrity means that information is well organized and consistent with principles of good visual
design. Your product should look pleasant on the screen, even when viewed for a long time.

Keep graphics simple, and use them only when they truly enhance usability. Don’t overload windows and
dialogs with dozens of icons or buttons. Don't use arbitrary symbols to represent concepts; they may confuse
or distract users. The overall layout of your windows and design of user interface elements should reflect the
user’s mental model of the task your application performs. See “Reflect the User’s Mental Model” (page 39)
for more information on this concept.

When implementing your user interface, there are many things you can do to ensure high quality. For example:

m Allicons should be rendered at the highest quality (see “Icons” (page 137) for extensive guidelines for
icon design).

m All text should be anti-aliased, which is automatic when you use the standard system fonts (see
“Fonts” (page 127) for more information).

m The font size and type should be consistent within a window (see “Text” (page 127) for more information
on the font sizes and styles available to you).

m The control size should be consistent within a window—for example, don’t mix small and standard
controls (see “Controls” (page 253) for more information on the controls Mac OS X supplies).

Match a graphic element with a user’s likely expectations of its behavior. Don’t change the meaning or
behavior of standard items. For example:

m Always use checkboxes for multiple choices, not for mutually exclusive choices
m Use push buttons for immediate commands such as “Open”
m Avoid using push buttons to display pop-up menus or serve as tabs

m Avoid using bevel buttons as tabs

Human Interface Design Principles 45
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

Modelessness

As much as possible, allow users to do whatever they want at all times. Avoid using modes that lock them
into one operation and prevent them from working on anything else until that operation is completed.

Mac OS X supports enhanced modelessness with drawers and sheets. Drawers provide additional functionality
while allowing continued access to the parent window. Sheets are modal dialogs attached to a parent window,
replacing the use of application-modal dialogs. For more information about drawers, see “Drawers” (page
212). For more information about sheets, see “Sheets (Document-Modal Dialogs)” (page 234).

Most acceptable uses of modes fall into one of the following categories:

m Short-term modes in which the user must constantly do something to maintain the mode. Examples are
holding down the mouse button to scroll text or holding down the Shift key to extend a text selection.

m Alerts, in which the user must rectify an unusual situation before proceeding. Keep these to a minimum.

m Installers and Assistants whose sole purpose is to guide users through important tasks.

Other modes are acceptable if they do one of the following:

m They emulate a familiar real-life situation that is itself modal. For example, choosing different tools in a
graphics application resembles the real-life choice of physical drawing tools.

m They change only the attributes of something, not its behavior. The boldface and underline modes of
text entry are examples.

m They block most other normal operation of the system to emphasize the modality. An example is a dialog
that makes all menu commands unavailable except Cut, Copy, and Paste.

If an application uses modes, there must be a clear visual indicator of the current mode, and it should be
very easy for users to get into and out of the mode. For example, in many graphics applications, the pointer
can look like a pencil, a cross, a paintbrush, or an eraser, depending on the function (the mode) the user
selects. Segmented controls are also useful to indicate modes, as is done in iPhoto.

Managing Complexity in Your Software

The best approach to developing easy-to-use software is to keep the design as simple as possible. In other
words, a simple design is a good design and the best tools are those that users are not even aware they are
using. The more you can do to simplify the interface of your application for your users, the more likely it is
that you will build a product that meets their needs and is enjoyable to use.

The more complex your application’s task, the more important it is to keep the user interface simple and
focused. Be sure your design reflects the user’s mental model (see “Reflect the User’'s Mental Model” (page
39) for more information on this concept). In addition to creating a streamlined design, you can also manage
complexity in the following ways:

m Progressive disclosure presents the most common choices to the user first and provides an option that
allows the user to view additional information and choices. This technique makes it easy for novice users
to understand your user interface while still giving power users the advanced features they want.

You can implement progressive disclosure using disclosure triangles (see “Disclosure Triangles” (page
326)) or disclosure buttons (see “Disclosure Buttons” (page 328)), depending on the context.

46 Human Interface Design Principles
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

m Inspector windows (and, to a lesser extent, Info windows) reduce the clutter of a user interface by placing
additional information and settings in a separate window that can be hidden or shown by the user.

For more information on the differences between Info windows and inspector windows and how to use
inspector windows, see “Inspector Windows” (page 227).

m Preferences reduce the complexity of the user interface by giving users the ability to customize what
they see on the display screen and, to some extent, how the application performs. By providing
preferences, you allow both novice and expert users to mold your application to fit their needs.

For more information on how to craft a useful set of preferences, see “Preferences” (page 75).

Keep Your Users in Mind

In addition to the basic principles of interface design, consider the needs of your audience. Are your users
more comfortable in a language other than English? Do they have special needs that might affect the way
you present data to them? The following sections identify areas that might influence your design.

Worldwide Compatibility

Mac OS X system software is designed to address the complex problems you encounter when you create an
application intended to be compatible with regional, linguistic, and writing systems around the globe. Be
aware that your users might be more comfortable with another language or culture even if they live in your
home country. It's much easier to include worldwide compatibility from the beginning of your development
process than to try to incorporate support for script systems after your product development is complete.
For more information, see Getting Started With Internationalization.

Before you develop software for worldwide use, consider the issues discussed in the following sections.

Cultural Values

Make sure that visible interface elements can be localized (that is, translated into other languages and
otherwise adapted for use in other countries). Whenever you design a user interface, consider that various
regions of the world may differ in their use of color, graphics, calendars, text, and the representation of time.
Specific objects or symbols (such as electrical outlets and the currency symbol) may also have a different
appearance, or not be understood, in other countries.

Graphics can enhance your application, but an image can also be offensive to certain audiences. Cultures
assign varying values and characteristics to living creatures, plants, and inanimate objects. For example, in
the United States the owl is a symbol of wisdom and knowledge, whereas in Central America the owl represents
witchcraft and black magic. It’s a good idea to avoid the use of seasons, holidays, or calendar events in
software that you expect to distribute worldwide. If you include images that represent holidays or
seasons—such as Christmas trees, pumpkins, or snow—be sure they can be localized.

Different calendars are used to mark time around the world. The United States and most of Europe observe
time according the Gregorian calendar. The traditional Arabic calendar, the Jewish calendar, and the Chinese
calendar are lunar rather than solar. In many places, time is marked according to one calendar for business
and government purposes, and another for religious events. Mac OS X allows users to select and customize
the way such information is displayed in the Formats pane of International preferences. Most APIs take these
locale preferences into account when getting or formatting dates, times, and number-based data, such as

Keep Your Users in Mind 47
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

monetary values or measurements. In most cases, therefore, your application should not have to perform
formatting or conversion tasks. See Internationalization Programming Topics for more information on how to
handle locale-sensitive data.

Also remember to support different address formats. Don’t assume all addresses are in the native format of
your country. Address Book lets users store address data for users in multiple countries. If you support or
display Address Book data, you must be prepared to handle different address formats and postal code
information.

Language Differences

Translating text is a sophisticated, delicate task. Avoid using colloquial phrases or nonstandard usage and
syntax that can be difficult to translate. Carefully choose words for menu commands, dialogs, and help text.
Be aware that text in U.S. English can grow up to 50 percent longer when translated to other languages.

Use complete sentences in string resources whenever possible. Grammar problems may arise when you
concatenate multiple strings to create sentences; the word order may become completely different in another
language, rendering the message nonsensical when translated. For example, word order in German sometimes
places the verb at the end of a sentence. For more information on handling text in other languages, see
Internationalization Programming Topics.

Text Display and Text Editing

Writing systems differ in the direction in which their characters and lines flow, the size of the character set
used, and whether certain characters are context-dependent. Mac OS X supports Unicode, a single character
set for most writing systems in the world. Unicode is a cross-platform, international standard for character
encoding.

Text handling for Cocoa is entirely based on Unicode. For Carbon developers, there is a set of functions for
manipulating Unicode text. For more information about Unicode support, see Internationalization Programming
Topics.

No matter what level of worldwide text support you provide, it's important to keep in mind that:

m Textisn't always left-aligned and read from left to right. This includes text within controls (such as button
labels), text that describes controls, and static text fields. Be aware that text translated into a right-to-left
language must also be displayed as right-aligned.

m Textisn't always read by a person; it might be spoken through a screen reader.

m System and application fonts may change, so don’t assume any particular font will be present. Instead,
use the calls provided by your application framework.

Resources

It's essential to store region-dependent information in separate resource files so that user-visible text can be
translated during localization without requiring your application’s code to be modified.

When creating window layouts, consider text size, location, and direction. Text size varies in different languages.
Also, depending on the script system, the direction of the text may change. Most Middle Eastern languages
read from right to left. Text location and alignment within a window should be easy to change.

Keep Your Users in Mind
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

As much as possible, identify the logical flow of content and use that to determine the layout of your user
interface. For example, the more important or higher level objects are usually placed near the upper left of
a window that is designed for regions associated with left-to-right languages. In a version of the window
that targets users who read right-to-left languages, it makes sense to reverse this layout. The more you can
characterize user interface objects according to their logical, not visual, position, the more easily you can
extend your application to other markets.

For more information on internationalization and localization, read Internationalization Programming Topics
and visit the Apple International Technologies website at http://developer.apple.com/intl.

Universal Accessibility

Millions of people have a disability or special need and computers hold tremendous promise for increasing
the productivity of such users. Many countries, including the United States, have laws mandating that certain
equipment provide access for users with a disability.

It's a good idea to build in support for universal access from the beginning of your design process rather
than add it at the end of your implementation cycle. When you think about designing for the wide range of
abilities in your target audience, think about increasing productivity for the entire audience; be careful not
to overcompensate for the disabilities of certain members. Don't let accommodations for a particular disability
create a burden for people who do not have that disability.

Mac OS X has many built-in features designed to accommodate people with special needs. Users can access
these features in the Universal Access pane of System Preferences. Once activated, these technologies
programmatically manipulate the user interface of your application in ways that can help users with disabilities.

Important: Your application should not override any of the accessibility features built in to Mac OS X, such
as the ability to perform all user interface functions using the keyboard instead of the mouse, or any preference
that a user might select to assist with a disability.

Be sure to test your applications with the assistive features available in the Universal Access pane of System
Preferences. Although there may be situations in which you do not need to accommodate all these features,
you should fully understand your user audience before making any design decisions that override these
features. For example, it might be extremely difficult to create a visual design tool that works in grayscale,
but you should still try to make the other parts of the program accessible whenever possible.

To learn more about the Mac OS X accessibility architecture and how to support accessibility in your application
(a process called access enabling), see Accessibility Overview. For more information on assistive technologies,
see Mac OS X Technology Overview.

When you design your application, you should be aware of potential manipulation by assistive technologies
and implement features in a way that does not degrade the experience for users with disabilities. The following
sections describe the main categories of disabilities and give suggestions for specific design solutions and
adaptations you can make. Keep in mind that there is a wide range of disabilities within each category and
there are many people with multiple disabilities.

Keep Your Users in Mind 49
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

Visual Disabilities

People with a visual disability have the most trouble with the display (the screen). Some users need high
contrast. Software that can handle different text sizes makes it easier to support people with a visual disability.
Mac OS X (version 10.2 and later) provides an onscreen zooming option in Universal Access preferences.
Following the layout guidelines provided in “Layout Guidelines” (page 343) helps users with low vision by
ensuring the proper use of spacing and alignment.

In Mac OS X version 10.4, Apple introduced VoiceOver, a full-featured spoken interface for the Macintosh.
VoiceOver allows users to navigate the user interface of the system and any accessible application and
provides an audible description of the user’s workspace and all the activities occurring on the computer. You
should test your application using VoiceOver to make sure it’s fully accessible. For more information on
accessibility in Mac OS X, see Accessibility Overview.

Keep in mind that some people have color-vision deficiencies. Although the judicious use of color can enhance
your application’s user interface, don't create interfaces that rely solely on color coding to convey important
information. Color coding should always be redundant to other types of cues, such as text, position, or
highlighting. Allowing users to select from a variety of colors to convey information enables them to choose
colors appropriate for their needs.

Hearing Disabilities

People with a hearing disability cannot hear auditory output at normal volume levels or cannot hear it at all.
Software should never rely solely on sound to provide information; if cues are given with sound, they should
be available visually as well. Since Mac OS X allows users to specify a visual cue in addition to the standard
audible cue for the system alert, be sure to use the standard system alert when you need to get the user’s
attention.

To indicate activity, hardware should have visible lights in addition to the sound generated by the mechanisms.

Hardware that specifically produces sound should facilitate external amplification. For example, including a
jack for external speakers or headphones allows people to amplify sound to an appropriate level.

Physical Disabilities

People who have a physical disability sometimes require additional access methods. For example, individuals
may be without the use of a hand or an arm because of congenital anomalies, spinal cord injuries, repetitive
stress injuries such as carpal tunnel syndrome, or progressive diseases. People in this group often have

difficulty with computer input devices—such as the mouse or keyboard—and with removable storage media.

Some people have difficulty pressing more than one key at a time (required for many keyboard shortcuts,
for example). With Sticky Keys, which can be turned on in the Keyboard pane of Universal Access preferences,
users can press keys sequentially instead of simultaneously.

Users who have difficulty with fine motor movements may be unable to use a conventional mouse or may
require modifications to keyboard behavior. In Keyboard preferences, users can choose how long they must
press a key before it repeats; they may also specify a delay between when a key is pressed and when it is
registered. In addition, Mac OS X provides ways for users to perform actions using the keyboard instead of
the mouse. When full keyboard access mode is on, users can navigate to and select interface items using the
keyboard. Mouse Keys, which can be turned on in the Mouse pane of Universal Access preferences, enables
users to control the mouse with the numeric keypad to perform tasks such as dragging and resizing windows.

Keep Your Users in Mind
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

Make sure your application does not override any keyboard navigation settings. For more information, see
“Keyboard Shortcuts Quick Reference” (page 363). In addition, don’t override the keyboard shortcuts used by
assistive technologies. When an assistive technology is enabled, keyboard shortcuts used by that technology
take precedence over the ones defined in your program.

If you design hardware, be sure not to impose physical barriers that would impede someone with limited or
no use of the hands or arms. For example, a disk drive with a latch would be difficult to open for a user who
interacts with the computer using a pencil held in the mouth.

Extending the Interface

This section describes how to extend the Mac OS X user interface when your application requires an element
or a behavior that doesn’t already exist. When a need arises that can’t be met by the standard elements, you
can extend the set of controls using these guidelines, provided that the new element or behavior supports
Apple’s interface design principles. This section contains information on how to determine when it's
appropriate to go beyond the guidelines, how to use the existing interface elements to build new elements,
and what to avoid when you design additional interface elements.

Build on the Existing Interface

People rely on the standard Mac OS X user interface for a consistent, predictable user experience. Don't copy
other platforms’ user interface elements or behaviors in Mac OS X, because they may confuse users who
aren’t familiar with them.

If you need to extend the interface of Mac OS X, the best place to begin is with the already defined visual
and behavioral language. Think about what the appearance communicates to people (the look) and how
they expect the element to behave (the feel).

Visual cues, such as the arrow on a pop-up menu, help people recognize familiar elements. People learn to
associate certain behaviors with specific elements based on their appearance. For example, people recognize
push buttons by their rounded shape and look for a label that identifies the action the button causes. This
particular appearance distinguishes a push button from other types of elements. When people click a button,
they expect it to be highlighted to indicate that the action took effect, and they expect the action to take
effect immediately. People may also expect that clicking a button will have additional behaviors related to
it, such as dismissing a dialog or changing the content area of the active document.

Don’t Assign New Behaviors to Existing Objects

When you use existing interface building blocks, use them in the standard way. Make sure you do not change
the behavior of standard elements. When you need a new behavior, design a new element for it. If elements
behave differently in different situations, the interface becomes unpredictable and therefore harder to figure
out. This can adversely affect the user’s confidence in your application.

Extending the Interface 51
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 3

Human Interface Design

Create a New Interface Element Cautiously

Be very cautious about creating new interface elements because you may introduce unnecessary complexity.
You will have to work extremely hard to make sure that any newly introduced elements fit in with those
provided by Cocoa and Carbon. Additionally, as the Aqua user interface continues to evolve, your custom
elements will require updating to adapt to changes in Aqua.

Before implementing a new interface element, make sure that you can't use existing elements or a combination
of them to achieve the desired result. Usability testing is essential for determining whether a new element

works.
52 Extending the Interface
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 4

Prioritizing Design Decisions

Apple Human Interface Guidelines contains myriad design principles and guidelines that, when followed, lead
to fully Aqua-compliant applications that support the appropriate Mac OS X technologies and stand out in
their target markets. As you design an application, however, you may find that business concerns, such as
resource constraints and schedule commitments, impact your ability to follow these guidelines to the fullest.
When this is the case, how do you decide which Mac OS X technologies to use and support? How do you
prioritize your work so your application is the best that it can be, given the realities of your development
environment?

To help you answer these questions, this chapter organizes human interface features, principles, and guidelines
into three layers. Figure 4-1 (page 53) displays these layers in the outline of a pyramid to emphasize the
progressive improvement and refinement of an application as it implements the guidelines in each successive
layer.

Figure 4-1 Prioritizing design decisions in three layers

Differentiation

Features users expect

Minimum requirements

Each layer in Figure 4-1 (page 53) correlates closely with a level of a user's satisfaction with an application.
For example, an application that merely meets the minimum requirements may be acceptable, but probably
does not deliver the features most users expect and is unlikely to inspire admiration and loyalty in its users.
Because user satisfaction ultimately determines the success or failure of your application, it should be at the
heart of your design decisions. If business realities require you to make design tradeoffs, use the guidelines
described in this chapter to help you decide which features to concentrate on first.

Meet Minimum Requirements

As you design or revise your application, there are a number of guidelines you must follow to ensure your
application is "at home" in Mac OS X. You should view these guidelines and the features associated with
them as nonnegotiable; if you don't follow them, users will notice that your application doesn't feel like it is
intended for the Macintosh.

To meet the minimum requirements of an application on the Mac OS X platform, be sure to:

Meet Minimum Requirements 53
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 4

Prioritizing Design Decisions

m Respect the single menu bar and avoid putting menu bars in your application's windows.

Mac OS X provides a single menu bar across the top of the screen, which gives applications a consistent
location to display commands. For more information on how your application interacts with the menu
bar, see “The Menu Bar and Its Menus” (page 173).

m Respect the Dock.

The Dock is an essential part of Mac OS X and users expect it to behave according to their preferences.
At the very least, your application must not interfere with the Dock’s position on the screen. Additionally,
your application should cooperate with the Dock to provide information and utility to your users. For
more information on the Dock, see “The Dock” (page 62).

m Respect the multilayered window environment of Mac OS X.

Mac OS X supports different types of windows for different uses. Be sure you know which types of
windows your application should display and how they should look (for more information on these
topics, see “Types of Windows” (page 189) and “Window Appearance” (page 190)). In addition, be sure
you follow the guidelines for opening, naming, positioning, resizing, and closing windows described in
“Window Behavior” (page 214).

m Put the files your application creates in the proper locations.

Mac OS X defines particular locations for application-specific files, such as preferences and user-created
documents. Don't place files associated with your application in arbitrary locations because they will
clutter the file system and users won't know where to look for them. For guidelines on how to interact
with the file system, see File System Overview.

m Use standard controls.

Mac OS X provides a wide range of controls with well-defined behaviors. Use these controls in your
application's user interface and be sure you support the prescribed behaviors. For extensive information
on the behavior, appearance, and usage of controls, see “Controls” (page 253). In very rare cases, you
may need to implement a custom control; if you think this might be necessary, see “Extending the
Interface” (page 51).

m Avoid the system-reserved keyboard shortcuts and respect the Apple-recommended keyboard shortcuts.

Applications should not override the system-reserved keyboard shortcuts. These shortcuts are intended
to supply specific behaviors regardless of which application is currently running. For more information
on the system-reserved keyboard shortcuts, see “Reserved Keyboard Shortcuts” (page 104) and “Keyboard
Shortcuts Quick Reference” (page 363).

An application should implement the recommended keyboard shortcuts associated with the tasks the
application performs. If, for example, your application performs a save operation, it should implement
the Command-S keyboard shortcut for this task. In almost all cases, an application should not override
the recommended keyboard shortcuts. For example, Macintosh users should be able to rely on Command-S
to mean Save no matter which application they are using. For a comprehensive list of the recommended
keyboard shortcuts, see “Keyboard Shortcuts Quick Reference” (page 363). To see how the recommended
keyboard shortcuts are used in menus, see the menu-specific sections in “The Menu Bar and Its
Menus” (page 173).

m Support the Clipboard.

Mac OS X makes the Clipboard available to all applications and users can rely on the Clipboard's contents
remaining unchanged when they switch applications. Be sure to support the Clipboard and implement
cut, copy, and paste operations in your application. For more information on operations that access the
Clipboard, see “The Edit Menu” (page 179) and “The Format Menu” (page 181).

54 Meet Minimum Requirements
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 4

Prioritizing Design Decisions

Deliver the Features Users Expect

After you've met the minimum requirements, you should concentrate on delivering the features users expect.
Macintosh users are sophisticated and most have come to expect a certain level of functionality and elegance
in the applications they use. Although the guidelines in this section are not as elementary as those described
in “Meet Minimum Requirements” (page 53), they embody key features your application should provide.

To deliver the features Macintosh users expect, be sure to:

m Communicate effectively.

Mac OS X excels at providing essential information to users in an integrated and effective manner.
Similarly, your application should provide useful error messages, feedback on commands and lengthy
tasks, and appropriate status information. For information on how to do this, see “Feedback and
Communication” (page 42).

m Support application bundles and drag-and-drop installation.

Application bundles simplify the user's interaction with your software and enable drag-and-drop
installation, which is the preferred method of application installation in Mac OS X. Macintosh users expect
a quick, painless application installation experience; be sure to supply it by making your application
available in a bundle and supporting drag-and-drop installation. For more information on bundles and
application installation, see “Packaging” (page 83) and “Installation” (page 84).

m Create high-quality icons and graphics.

Part of the allure of Mac OS X is the abundance of beautiful, realistic, photo-illustrative icons. Be sure
your application displays the type of high-quality, attractive icons Macintosh users expect. For guidance
on different types of icons and how to design them, see “Icons” (page 137).

m Comply with the layout guidelines.

Applications that follow the layout guidelines present a clean, organized, and intuitive look and feel to
users. Macintosh users are accustomed to uncluttered, visually appealing windows with conveniently
placed controls. For help with the spacing of individual controls, see “Controls” (page 253); for some
examples showing how to combine controls in windows, see “Layout Guidelines” (page 343).

m Provide effective user assistance.

Effective and readily available user assistance is a hallmark of a good application. Mac OS X supports
both Apple Help, which allows you to display in-depth help documents in Help Viewer, and help tags,
which allow you to display brief, context-sensitive information about user interface elements. Because
these help mechanisms are used extensively by the system, Apple applications, and most third-party
applications, Macintosh users rely on them when they need help with a task or control. For more
information on using these mechanisms to provide help to your users, see “User Assistance” (page 80).

m Support drag and drop.

Drag-and-drop functionality is ubiquitous in Mac OS X, making it one of the most appreciated and
well-known features of the platform. Although you should be sure to provide keyboard alternatives to
the drag-and-drop operations in your application, it's essential to fully support this direct manipulation
technology. For more information on this technology, see “Drag and Drop” (page 119).

m Use display names.

Deliver the Features Users Expect 55
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 4

Prioritizing Design Decisions

Mac OS X allows users to customize how file, directory, and application names are displayed. Macintosh
users are accustomed to making this choice and expect their preference to be observed throughout the
file system and in applications. Be sure to respect the user's display name preference in your application
(note that this also makes internationalization much easier). For more information about filename
extensions and display names, see “File Formats and Filename Extensions” (page 64).

Differentiate Your Application

56

Meeting the minimum requirements and delivering features users expect takes you a long way towards
producing an application that users in your target market will be eager to buy. Although the top layer of the
pyramid represents more work, the result is a user-acclaimed application that takes full advantage of the
powerful features of Mac OS X.

Follow the guidelines in this section to produce an application that goes above and beyond users' expectations.

m Support modelessness.

As much as possible, avoid forcing the user to complete the current task before they can do anything
else. Use sheets and drawers to allow the user more freedom (for more information about sheets and
drawers, see “Sheets (Document-Modal Dialogs)” (page 234) and “Drawers” (page 212)). If you must use
modes in your application, be sure to clearly communicate the current status and make it easy for users
to get into and out of a mode.

m Integrate Spotlight.

Spotlight technology allows users to find files anywhere in the system, using criteria they define. Be sure
to supply a Spotlight importer if your application uses a custom file format, so users can easily search
for the files your application creates. In addition, you should consider using Spotlight technology to
provide file system search capabilities in your application. For more information about Spotlight, see
“Spotlight” (page 78).

m Support fast user switching.

Mac OS X allows multiple users to use a single computer at the same time. With fast user switching, one
user's login session is active while the sessions of other users continue to run in the background. Users
switch simply by logging in; logging out between users is not required. Applications should take this
feature into account to avoid failing in a multiple, simultaneous user environment. If your application
relies on exclusive access to resources or assumes there is only one instance of a per-user service running
at any one time, be sure to modify the application to safely identify and share system resources. For
more information on how to support fast user switching, see Multiple User Environments.

m Internationalize the user interface.

The global market for your application is defined by the extent to which it supports locale-specific content
and functionality. As you design or revise your application, be aware of differences in language and
cultural values and symbols so you can more easily localize your product for specific markets. For more
information on internationalization issues, see “Worldwide Compatibility” (page 47).

m Make your application accessible to users with disabilities.

To reach the millions of users with disabilities (and to comply with government-mandated accessibility
requirements in some markets), you should ensure that your application is accessible. Mac OS X supports
accessibility with a range of powerful features, including full keyboard access, speech technologies, and
VoiceOver, an integrated accessibility interface to the Macintosh. You should test your application with

Differentiate Your Application
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 4

Prioritizing Design Decisions

these features to make sure that the application does not interfere with them and potentially degrade
a disabled user's experience. For an overview of accessibility issues, see “Universal Accessibility” (page
49).

m Strive for high performance and reliability.

Even a stunning user interface is not likely to be enough to persuade users to continue using an application
that performs poorly or behaves in a counterintuitive and unreliable way. Remember that the perception
of performance is informed by two things: The speed with which an application processes data and
performs operations and the speed with which the application responds to the user. Take advantage of
the tools and optimization technologies Mac OS X provides to enhance the performance of your
application. Be sure your application responds quickly and keeps the user informed about the progress
of lengthy tasks. For more information on some techniques for achieving high performance, see “High
Performance” (page 31).

Users will be quick to reject your application if it loses or corrupts data or behaves erratically. Build in as
many safeguards against data loss as you can and be sure to warn users about potential problems,
allowing them to make alternate choices that avoid risky situations. Although unpredictable behavior
may not lead to data loss, it can cause users to distrust an application. Make sure the user interface
elements in your application behave in an expected and desired way so users can trust your application
to do what it promises. For more information on ways to make your application reliable, see
“Reliability” (page 34).

m Surprise and delight.

Although less concrete than the other guidelines, this guideline encompasses some of the most important
qualities of great software. Fundamentally, users delight in applications that seem to understand them,
anticipating their needs and providing them with powerful, intuitive, and streamlined solutions. The
best way to follow this guideline is to keep the user's mental model firmly in mind as you design your
application (for a discussion of this concept, see “Reflect the User’s Mental Model” (page 39)). Briefly,
you should discover your users' workflow, expectations, and real-world experiences and mirror them in
your application's terminology, window layout, menu organization and hierarchy, and toolbar contents.

Differentiate Your Application 57
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 4

Prioritizing Design Decisions

58 Differentiate Your Application
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

PART Il

The Macintosh Experience

This part of Apple Human Interface Guidelines presents an overview of the user-centric, integrated design of
Mac OS X. Read this part to learn about the design principles and technologies used in Mac OS X and how

your application fits into that environment. You can also find out how to leverage existing technologies to

add value to your user interface.

59
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

60

PART Il

The Macintosh Experience

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

CHAPTER 5

The Mac OS X Environment

This chapter covers relevant features of Mac OS X that can influence the design of your software. These
features are not always associated with a single technology or developer type but sometimes apply to
development in general. You should be familiar with these guidelines before developing your software.

The Always-On Environment

As the center of the user’s digital hub, Mac OS X is designed to be always ready to use. Because of energy
saving systems, it's common for a user to leave a computer on most of the time. To allow for the fact that a
computer may be on for hours, days, weeks, or even months at a time, you should consider the following
guidelines:

m Avoid relying on a restart to get rid of cached or temporary files that may use up disk space. Be prepared
to remove these files yourself when they are no longer needed.

m Avoid relying on startup or login items to initiate user-level processes. If the user quits a process initiated
only at boot time, that process will be unavailable until the machine restarts.

m Avoid requiring users to reboot as a part of an installation or software update unless absolutely necessary.
Your application is probably not the only one they have open, so a restart can come as a rude interruption.

Disk Size and Usage Information

If your software needs to report disk size or usage information, it's important to provide accurate values that
are consistent with values reported by the Finder and other system applications, such as Activity Monitor.
To do this, be sure to calculate all disk size statistics using GB, not GiB.

Briefly, a GB is defined as 1,000,000,000 bytes, whereas a GiB is defined as 1,073,741,824 bytes (which is the

value of 239). Using GB instead of GiB to calculate disk sizes avoids confusing users with values that differ
from the system-provided ones.

Displays

Avoid making assumptions about display size. Mac OS X can run on systems with a screen size as small as
800 x 600, but a user may have multiple high-resolution displays. Unless you know that your users will be
using a specific display size, it is best to optimize your applications for display at 1024 x 768 pixels.

The Always-On Environment 61
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 5
The Mac OS X Environment

Note: A resolution of 640 x 480 is also available for the iBook and for Classic applications, games, and other
multimedia applications. This does not mean that you should assume this is the minimum system resolution,
however. Design your user interface for a resolution of at least 800 x 600.

Be aware that users may have the ability to rotate their displays, so you should also avoid making assumptions
about the aspect ratio. Display rotation reverses the aspect ratio of the screen. For example, if a user's display
is set to a screen resolution of 800 x 600 (an aspect ratio of 1.33:1), after rotation the screen resolution is 600
x 800 (an aspect ratio of .75:1).

An application can get notified of some types of screen-update events by registering for a callback, such as
CGDisplayReconfigurationCallBack. For more information on this and other callbacks, see Quartz Display
Services Reference.

The Dock

The Dock is more than just a tool for users of Mac OS X. Developers need to be aware of the Dock and account
for its presence in their applications.

When creating new windows or resizing existing windows, make sure you take the Dock position into account.
New windows should not overlap the boundaries of the Dock. Similarly, you should prevent users from
moving or resizing windows so that they are behind the Dock. (Carbon developers can use the
GetAvailableWindowPositioningBounds function and Cocoa developers can use the methods of
NSScreen to get the screen area without the Dock or menu bar.)

Conveying Information in the Dock

Developers may also find some features of the Dock useful for conveying information.

m Use badging to convey status information in an unobtrusive manner. Badging is the process of
superimposing a small image on an application’s Dock tile icon. For example, Mail uses a badge to show
the number of unread messages. This is a good example of providing appropriate feedback and
communication. For more information on this principle of user interface design, see “Feedback and
Communication” (page 42).

m Use the Notification Manager to convey more serious information, such as error conditions. Notifications
cause your Dock tile icon to bounce. Make sure you disable this effect once the user has addressed the
problem. (Note that error-related classes in a Cocoa application initiate Dock notifications automatically.)

Clicking in the Dock

Clicking an application icon in the Dock should always result in a window becoming active.

m If the application is not open, a new window should open. In a document-based application, the
application should open a new, untitled window. In an application that is not document-based, the main
application window should open.

62 The Dock
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 5
The Mac OS X Environment

m When a user clicks an open application’s icon in the Dock, the application becomes active and all open
unminimized windows are brought to the front; minimized document windows remain in the Dock. If
there are no unminimized windows when the user clicks the Dock icon, the last minimized window
should be expanded and made active. If no windows are open, the application should open a new
window—a new untitled window for document-based applications, otherwise the main application
window.

When you press and hold the Dock icon of a running application, two things happen:

m Exposé displays all windows currently open in the application (including minimized windows)
m A minimal Dock menu appears that allows you to:

0 Quit the application

0 Hide or show the application’s windows

0 Show the application in the Finder and manage the Keep in Dock and Open at Login options

When you click and hold the Dock icon of an application that is not running, a minimal Dock menu appears
that allows you to:

m Open the application

m Show the application in the Finder and manage the Remove from Dock and Open at Login options

When you Control-click the Dock icon of a running application, a customizable Dock menu appears. By default,
this menu displays the same items as the minimal Dock menu you see when you press and hold the
application’s Dock icon. In addition, this menu lists all open windows (including minimized windows) and
may contain application-specific items. See “Dock Menus” (page 188) for more information on customizing
this Dock menu.

If you Control-click the Dock icon of an application that is not running, you see the same minimal Dock menu
displayed when you press and hold the Dock icon.

The Finder

Here are some tips to help your application integrate well with the Finder:

m Make sure your application bundle has a . app extension. The Finder looks for this extension and treats
your application appropriately when it finds it. The Finder also shows or hides this extension, depending
on the state of the "Show all file extensions" preference in the Advanced pane of Finder preferences.

m Package CFM applications in a bundle. Even if you develop using the CFM runtime, you can still take
advantage of the bundle mechanism in Mac OS X.

m Use an information property list to communicate information to the Finder. The information property
listis the standard place to store information about your application and document types. For information
on what to put in this file, see Runtime Configuration Guidelines.

The Finder 63
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 5
The Mac OS X Environment

m When saving files of your own document types, be sure to give them appropriate filename extensions
to ensure platform interoperability and to support the Mac OS X user experience. You can also set a file
type and optionally a creator type for a file. The file and creator type codes are not strictly necessary,
but they do ensure interoperability with applications in the Classic environment. See File System Overview
for more information about filename extensions, file types, and creator types.

m Avoid changing the creator type of existing documents. The creator type implies a distinct sense of
ownership over a file. Your application can assign a creator type for files it creates but it is not appropriate
to change creator types for documents created by other applications without the user's explicit consent.
The user can still associate files with a specific application through the Info window.

m If your application produces documents in content types other than HTML, RTF, plain text, TIFF, PNG,
JPEG, PDF, and QuickTime movies, you should include a Quick Look generator to convert your native
document format into a format the Finder can display in Cover Flow view and a Quick Look preview.
See Quick Look Programming Guide to learn how to do this.

File Formats and Filename Extensions

Whenever possible, include support for industry-standard file formats in your documents. Supporting standard
file formats makes it easier to exchange data between your application and other applications. Users might
also be more inclined to use your application if they know they can get their data into and out of it easily.

When saving user-configurable data, make sure you store it in a plain-text file that the user can modify. Mac
OS X applications traditionally store configuration data using XML. You can write out XML data using the
preferences system and the XML support found in Core Foundation and Cocoa. For information about user
preferences, see Runtime Configuration Guidelines.

Many platforms rely on the existence of filename extensions to identify the type of a file. Although many
longtime Mac OS X developers may decry their use, filename extensions make it easier for users to exchange
files with users of those other platforms. Applications that save documents should be sure to include a
filename extension appropriate to the contents of the document. At the same time, however, applications
should take care to respect the user's filename extension preferences when displaying the names of files and
documents.

For more information and guidelines about supporting filename extensions, see File System Overview.

Internationalization

The Mac OS X application bundling scheme is designed to support localized strings, images, nib files, and
other resources. However, there is more to designing an application for use in different markets than just
including the right translated strings. “Worldwide Compatibility” (page 47) provides some general design
considerations for building internationalization into your application.

At a minimum, your internationalization checklist should include the following items:

m Implement your program as a bundle so that you can take advantage of the built-in internationalization
support for bundles.

m Support Unicode text. Mac OS X provides full support for Unicode, and so should your application.

64 File Formats and Filename Extensions
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 5
The Mac OS X Environment

m Modify your code to get user-visible strings from . strings files. Use Core Foundation and Cocoa
interfaces to load strings from resource files in your bundle.

m Use nib files to store your user interface data.

For further guidelines and information about how to internationalize your applications, see Internationalization
Programming Topics.

Multiple User Issues

Remember that Mac OS X is a multiple-user system. Not only does the system support multiple user accounts,
it supports multiple users sharing the same computer simultaneously. This feature employs a technique
known as fast user switching, in which users trade use of the computer without logging out. With multiple
users accessing the computer, conflicts can arise if applications are not careful about how they use shared
resources. Shared memory, cache files, semaphores, and named pipes must be carefully labeled to prevent
corruption by users running the same application in different sessions. Applications cannot assume that they
have exclusive access to any system resources, such as a CD or DVD drive.

When considering access by multiple users, there are some specific things to keep in mind for your program
design:

m Named resources that might potentially be accessible to an application from multiple user sessions
should incorporate the session ID into the name of the resource. This applies to cache files, shared
memory, semaphores, and named pipes, among others.

m Not all users have the same privileges. For example, only administrator users can write files in
/Applications.Some users may be working under limited privileges and have limited access to some
parts of the system. In particular, they may not be able to do the following:

(]

Access all panes in System Preferences
0 Modify the Dock

0 Change their password

0 Burn DVDs and CDs

0 Open certain applications

m Users onacomputer can include both local and network users, so do not assume a user’s home directory
is on a local volume. You may be accessing a network volume instead.

The document Multiple User Environments describes issues that arise from the existence of multiple users on
a system. It also covers programmatic techniques for identifying users and protecting your application data
from external corruption.

Resource Management

Application bundles simplify installation and are easy for the user to move around in the Finder. Application
bundles are the preferred mechanism for software distribution. Here are some tips to help you manage your
application bundle’s resource files:

Multiple User Issues 65
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 5
The Mac OS X Environment

m Include all required resources inside your application bundle. Your application bundle should always
have everything it needs in order to run.

m Include only the specific subset of files that require localization in your application bundle’s
language-specific resource directories. If a resource does not require localization, there is no need to
create extra copies of it. The bundle-loading code checks for global resources as well as localized resources
and returns the one that is most appropriate.

m Useaninstaller to place optional resources in the appropriate Library subdirectory of the user’s system.
Optional resources are things like document templates or other resources that are useful to an application
but not required for it to launch. Most application-related files should go in an application-specific
subdirectory of ~/Library/Application Supportor/Library/Application Support.See File
System Overview for information on where to install files.

m Avoid storing data in the resource fork of your application executable. Resource forks are not an
appropriate way to store application-related resources. Instead, store your resources as individual files
inside your application bundle. See Bundle Programming Guide for more information on where resources
belong in the bundle structure.

Threads

66

As you design your application, think about the operations that could be performed in parallel. Multithreading
your application improves the responsiveness of your user interface by moving long calculations into separate
threads and away from your main event loop. Multithreading can also improve the speed of performing
some tasks, especially on multiprocessor systems. Of course, threading also requires great care during
implementation to ensure that shared data structures are not corrupted by different threads. For more
information on threading technologies, see Threading Programming Guide.

Threads
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6

Using Mac OS X Technologies

Mac OS X provides a wealth of highly developed technologies you can use that allow you to avoid spending
development time implementing custom solutions for generic tasks. Taking advantage of these fully integrated
technologies will enhance the way your application interacts with the system and with other applications
on the platform.

Address Book

If your application stores or uses contact information, use the Address Book framework to manage that
information. Contact information consists of information such as names, phone numbers, fax numbers, and
email addresses of the people known to the current user. Using the Address Book framework, you can access
contact information from the user’s database or display it in a customizable window.

Although the Address Book interfaces that allow you to customize the display window use the terms "people
picker" and "picker," these are not acceptable names to use in your application's user interface. Instead, you
should give the display window a name that describes its contents as they relate to your application, such
as "Addresses" or "Contacts."

The appearance of a people-picker window is customizable to allow you to display only the data relevant to
your application. For example, Mail customizes this window to show the email addresses of the contacts, as
shown in Figure 6-1.

Figure 6-1 A people-picker window as used in Mail
800 Addresses
To: 8. Cc: Bcc: Q, g
Group |Name | Email
E]jAII | | David Christopher dchristopher@work (work)
|- | Mia Fernandez miafern@work (work)
[|John G Jjohn@work (work)
|- | Rachael H rachael@school (other)
|| Grace Hsu grace@work (waork)
|- | Ingrid ingrid@home (home)
L | lan Maxwell ian@school (School)
|

You customize the appearance of a people-picker window using the interfaces of the Address Book framework.
See Address Book Programming Guide for Mac OS X for more information on using this framework.

Address Book 67
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

Animation

A hallmark of Mac OS X is the use of animation to enhance the user experience, such as in the minimizing
of windows to the Dock, the unfurling of sheets, and the sliding of drawers. In Mac OS X v10.5 and later,
animation powers the movement of icons in the Finder Cover Flow view, the springing of items from a stack
in the Dock, and the arrival of buddies in an iChat window, among other things. Figure 6-2 shows a
"time-lapsed” view of items springing from a stack.

Figure 6-2 Animation allows items in a stack to emerge smoothly

Downloads

O 6 | [
|)
n ()
ar
. I |9 M
|9¥|‘ bout Downloads.pgr I a ”)
o) =2
5o Fger o _.D’“"‘_ =
'l B_: AboutSIacks.pdr | == =)
|'9 About Stacks, pdf IR | .
= ‘—-— =
T {' | =5 3
—~ .
=y =
= Kcoﬂeusersuide.pdf ! ’ E— —
| —
! -' -m‘-‘-:
—— =
. ¥ [Picture 1 BRI
el il =
Figlure | ' u) . |
- . 7| I. . .

Animation allows users track the movements of objects, helps them understand the effects of their actions,
and lends a sense of physicality and realism to the virtual world they see on the display screen. In general,
animation is ideal for:

m Communicating progress
m Providing meaningful feedback

m Clarifying a process or concept

68 Animation
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

If you are developing an application to run in Mac OS X v10.5 and later, you, too, can take advantage of
animation by using Core Animation programming interfaces. As with most powerful tools, however, it's
important to use animation wisely, that is, as a subtle enhancement to the user experience, not as the focus
of the user experience. For example, you might consider using animation in the following cases:

m When users navigate a collection.

When navigation is similar to familiar, real-world activities, such as flipping through pages in a book or
DVDs on a shelf, users are better able to grasp the organization and extent of a collection. In addition,
when items in a collection appear to have realistic dimensionality and weight, they're easier to recognize
at a glance.

m When it’s helpful for users to understand the consequences of an action before they commit to it.

Showing users the results of an action before they complete it allows them to be sure of themselves and
avoid mistakes. For example, items in the Dock move aside when users drag an object into the Dock
area, showing them where the new object will reside when they release the mouse button.

m When users enter or initiate a different interaction mode.

When users enter a different mode of interaction, such as full-screen mode, animation can guide them
and provide clues that help them keep track of the current mode. For example, the animated star field
in Time Machine provides a completely different user experience that helps the user distinguish between
the Time Machine view of the system and the user’s standard view of the system.

m When an object changes its properties.

Showing an object’s transition from one state to another, instead of showing only the beginning and
ending states, helps users understand what'’s happening and gives them a greater sense of control over
the process. For example, in an application that allows users to change several properties of a document
at one time, an icon that smoothly shows the effects of the combination of changes would provide
valuable feedback.

m When an action occurs so quickly, users can’t track it.

Although speed and efficiency are essential in software, sometimes an action can take place so quickly
that its context or result is unclear. When it’s important that users understand a connection or a process,
animation can help them watch actions occur in a more human time frame. For example, when the user
minimizes a window it doesn't just disappear from the desktop and reappear in the Dock; instead, it
moves fluidly from the desktop to the Dock so the user knows where it went.

If you decide to use animation, therefore, be sure the animation subtly enhances the tasks and concepts your
application focuses on and doesn’t distract from them. Although animation can clarify obscure or hidden
processes and provide valuable feedback, gratuitous or illogical animation can degrade the user experience,
in addition to decreasing the performance of your application. In particular, you should:

m Avoid replicating a Front Row or Time Machine style of user interface for an application that requires a
lot of user input (especially textual input) or that users use for content creation. A fully animated, full-screen
user interface that displays large, simplified controls does not make detailed content-creation tasks easier
or more efficient.

m Avoid animating everything.

Although it's tempting to think that more animation results in greater clarification and better feedback,
it's not generally true. Most tasks and actions in an application are best performed quickly and with a
minimum of fanfare.

m Avoid animating routine user-interface actions supported by system-provided controls, such as:

0 Switching tabs

Animation 69
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

0 Opening or closing views

0 Clicking toolbar items

Users understand how common user interface elements work, and they don’t appreciate being forced
to spend extra time watching unnecessary animation every time they click a button.

To learn more about using animation in your application, see Core Animation Programming Guide.

Automator

With Automator, a user can automate common procedures and build workflows by arranging processes from
different applications into a desired order. Familiar Apple applications, such as Mail, iPhoto, and Safari make
their tasks available to users to organize into a workflow. These tasks (called actions) are simple and narrowly
defined, such as opening a file or applying a filter, so a user can include them in different workflows.

As an application developer, you can define actions that represent discrete tasks your application can perform.
You make these actions available to users by creating action plug-ins that implement the appropriate behavior.
An action plug-in contains a nib file and some code to manage the action’s user interface and implement its
behavior. You can develop action plug-ins using either AppleScript or Objective-C. You might consider
creating a set of basic actions to ship with your application so users have a starting point for using your
application with Automator.

For more information on developing Automator actions, see Automator Programming Guide.
As you design the user interface of an action, keep the following guidelines in mind:

m Users stack actions on top of each other in Automator. Because display screens are wider than they are
tall, you should minimize the use of vertical space. One way to do this is to use a pop-up menu instead
of radio buttons, even if there are only two choices.

m Don't use group boxes. An action does not need to separate or group controls with a group box.
m Avoid tab views. Instead, use hidden tab views to alternate between different sets of controls.
m Avoid using labels to repeat the action’s title or description; these take up space without providing value.

m Use adisclosure triangle to hide and display optional settings. (See “Disclosure Triangles” (page 326) for
more information on disclosure triangles.)

m Use small Aqua controls to minimize the use of space. (In “Controls” (page 253) you can find information
on the dimensions of those controls that are available in the small size.)

m Use 10-pixel margins to make the best use of the space.

m Provide feedback. Use the appropriate progress indicator when an action needs time to complete (see
“Progress Indicators” (page 308) for more information on these controls).

m If possible, display an example showing the effect of the action so users can see the impact of various
settings.

70 Automator
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

Bonjour

If you develop applications that need to communicate with other computers and processes on the Internet
or a local area network, you should avoid making assumptions about the user’s network settings. Ensuring
fast, efficient connections to other programs and computers is an important part of providing a good user
experience.

Mac OS X supports a dynamically updating networking model. Because a user may change IP addresses many
times during a single session, don't save settings based on the IP address. Use Bonjour instead of requiring
a user to type in an IP address. Bonjour enables automatic discovery of computers, devices, and services on
IP networks, and makes file and media sharing easy. The use of Bonjour can dramatically simplify network
configuration for your users. For more information on Bonjour, see Bonjour Overview.

Colors

If your application deals with color, you may need a way for the user to enter color information. Mac OS X
provides a standard Colors window for picking colors. Shown in Figure 6-3 this window lets the user enter
color data using any of five different color models. You should use this window rather than create a custom
interface for color selection.

Figure 6-3 Colors window

800 Colors =

o I

L4l

For information on how to use this window in Cocoa applications, see Color Programming Topics; for Carbon
programs, see Color Picker Manager Reference.

Bonjour 71
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

Dashboard

Dashboard provides a way for users to get information and perform simple tasks quickly and easily. Appearing
and disappearing with a single keystroke or mouse gesture, Dashboard presents a default or user-defined
set of widgets in a format reminiscent of a heads-up display. Each widget is small, visually appealing, and
clearly indicative of its purpose. For example, each of the Mac OS X Dashboard widgets shown in Figure
6-4 (page 72) is an attractive, scaled-down interface to a common task.

Figure 6-4 Dashboard widgets

Dictionary

TUE WED THU FRI SAT SUN

® &0 64 e
55° 57° 57° 60° 61° 59°

Track your flight by
aitline or city

- CUPERTING
("John ¢ Q)

work john@work

Tuesday <« December2007 »
SM TWTF S

1
‘4 213 4/ 56 78
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29

30 3

You can develop a standalone widget that performs a lightweight, well-defined task or a widget whose task
is actually performed by your larger, more functional application. This section summarizes both the high-level
and user-interface guidelines you should follow as you design your widget. Step-by-step instructions for how
to implement a Dashboard widget, including plentiful code and user interface examples, are available in
Dashboard Tutorial.

Many of the user-interface design principles covered in “Human Interface Design” (page 39) are also applicable
to Dashboard widgets. Following these guidelines gives users an automatic familiarity with this technology.

High-Level Design Guidelines for Widgets

Dashboard widgets are small and compact in part because they occupy prime screen space but also because
they perform a single, well-defined task. It's especially important to avoid providing functionality that is
extraneous to a widget's central task, because this dilutes a widget's usefulness. As with the design of a
full-size application, taking the time to carefully define your widget's target audience (see “Involving Users
in the Design Process” (page 25)) will help you focus on the task your widget will perform.

72 Dashboard
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

As you design your widget, keep these high-level guidelines in mind:

m A widget’s purpose should be immediately apparent to the user.

To achieve this, be sure you understand the user's mental model of the task your widget performs (for
more information on this concept, see “Reflect the User’s Mental Model” (page 39)).

m A widget is not the place to display aggressive company advertising or branding.

Your widget is not merely an entrance to another application, even if that other application performs
the processing for the widget's task. If you take advantage of Dashboard’s prominence to display a
banner ad, for example, users will be likely to stop including your widget in the Dashboard display.

m A widget is not simply a miniaturized version of a standard application window.

Avoid making your widget look crowded by displaying only the controls that are essential to the task.

User-Interface Design Guidelines for Widgets

When you've decided on the widget’s task, follow these guidelines for designing the user interface:

m Use color to enhance the visual impact of your widgets.

Widgets should be visually stimulating, and good color choices can help convey the type of task the
widget performs. As with application icons (described in “Icon Genres and Families” (page 137)), you
should consider using bright, saturated colors for fun, creative tasks and more sombre, desaturated
colors for utilitarian tasks

m Don't use Aqua controls on the front of your widget. Instead, design controls that support and enhance
the task-oriented appearance of the widget.

m Display the widget’s information at once. Dashboard appears and disappears quickly, so you don't want
to make the user wait for your content to display.

m The default size of the widget should be small, but it should be able to expand if the task requires it.

Be aware that a user might want to populate the Dashboard with a very large number of widgets. If your
widget is too large and seems to monopolize the screen, a user might choose not to include it.

If appropriate you can provide a resize control, but recognize that if a user misses this control and clicks
outside the widget, Dashboard is hidden.

m The default set of information your widget displays should be minimal and should not require scrolling.

If, however, the widget's function is to provide a lot of information, consider making the presence of a
scroll bar an option the user can select.

m Use clearly readable fonts.

Avoid sacrificing readability to achieve a particular appearance. Focus on building the widget’s personality
into the contours and the controls you design.

m If appropriate, provide a way for the user to set a few options on the back of the widget (to do this,
display an Info button in the lower right quadrant of the widget; see Dashboard Tutorial for more
information).

Use a more subdued version of your color scheme on the back of the widget. This helps the user
distinguish the widget’s back from its front.

Provide a Done button on the back of your widget that allows users to return to the front of the widget
(for more information on how to provide this control, see Dashboard Tutorial).

Dashboard 73
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

Fonts

74

CHAPTER 6
Using Mac OS X Technologies

If your program supports typography and text layout using user-selectable fonts, you should use the Fonts
window to obtain the user’s font selection. Users can select fonts and sizes in both the standard (Figure 6-5)
and the minimized (Figure 6-6) view of the Fonts window. In the standard view, there are also controls for
fine-tuning the display characteristics of fonts. Most important, the Fonts window is implemented for you.
You do not have to create a Fonts menu or other special user interface to display and gather font information

from the user.

Figure 6-5 Fonts window
1800 Fonts
Helvetica
Helvetica 12.0 pt.
— ~ 0 0 .
TM=EMTED | [T] e o Q315
Collections Family Typeface Size
:" :_‘}:ﬁ Haettenschweiler e s
g Is_ Harrington s B
:avorltlesu d i :0:: Obli =
F_Eced"::d :.e Helvetica 1 hae s {11
Fl:(e o Helvetica CY | 12
i Helvetica Neue 13
Maodern
POF Herculanum 14
T — Hiragino Kaku Gothic | 18 e
wrabltlona Hiragino Kaku Gothic |4 24 |2
< Hiragine Kaku Gothic |7 .
P ——
+ | = | [Search]
%] y
Action menu
Figure 6-6 Minimal Fonts window
jSonts
Collections Family Typeface Size
[English H‘ [Hel\re‘tica I-G-‘ [Regular I-G-‘ [12 I-q‘-‘

)

The Fonts window also provides advanced typography controls for fonts that support those options. The
user can open a Typography inspector by choosing Typography from the action menu. Figure 6-7 shows the

typography controls for the Zapfino font.

Fonts

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

Figure 6-7 Typography inspector

©0 0 Typography |

¥ Ligatures

™ Common Ligatures
E Special Ligatures

¥ Vertical Position
() No Change
8 Superscript
() Subscript
() ordinals

() Contextual Fractions

¥ Ornaments

E Ornaments

P Stylistic Variants
¥ Oldstyle Figures
™ Oldstyle Figures

¥ Special
™ Avoid d-collisions

¥ Glyph Variants

For more information about font selection and management in Cocoa applications, see Font Panel; for Carbon
applications, see Apple Type Services for Fonts Programming Guide.

Preferences

Preference settings are user-defined parameters that your software remembers from session to session.
Preferences can be a way for your application to offer choices to users about how the application runs.
Preferences often affect the behavior of the application or the default appearance of content created with
the application.

To reduce the complexity of your application, be picky about which features should have preferences and
which should not. Avoid implementing all the preferences you can think of. Instead, be decisive and focus
your preferences on the features users might really want to modify.

A preference should be a setting that the user changes infrequently. If a user might change the attributes of
a feature many times in a work session, avoid using preferences to set those attributes. Instead, give the user
modeless access to the controls for modifying that feature. For example, you might implement the feature
using a menu item or a control in a palette or window.

Because a user does not change preference settings frequently, you should not provide a preferences toolbar
item. Instead, provide access to application-level preferences in the application menu (see “The Application
Menu” (page 175) for more information) and to document-specific preferences in the File menu (see “The File
Menu” (page 177) for more information).

For information on implementing preferences with Cocoa, see User Defaults Programming Topics. For
information on implementing preferences with Core Foundation, see Preferences Programming Topics for Core
Foundation.

Preferences 75
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

Printing

Mac OS X includes an advanced printing system. Because of all the options this system provides, it is important
that you use the standard printing dialogs so that users understand the options that are available to them
without getting lost in features. The printing architecture allows users to print “digital paper” documents
that can be sent to a printer, faxed, or saved as a PDF file (Figure 6-8). These features are all available
automatically when you use the Mac OS X printing system in your application.

Figure 6-8 Print options available in Mac OS X

@ (PDFv:) ,(Supplies...\, [Cancel)

See “The Print Dialog” (page 250) for information about the standard printing dialog. See Mac OS X Printing
System Overview for general information about the printing system. For information on how to extend the
Print dialog to include options not provided in the standard panes, see Extending Printing Dialogs.

Security

Mac OS X provides numerous technologies to help you perform secure operations. Using these technologies,
you can store secret information locally, authorize a user for specific operations, or transport information
securely across a network.

Consider the following guidelines when you need to work with sensitive information or work in a secure
environment:

m Factor out code that requires privileged access into a separate process. Factoring isolates the secure
code from the nonsecure code and makes it easier to verify that no rogue operations are occurring that
could do damage, whether intentionally or unintentionally.

m Avoid storing passwords and secrets in plain-text files. Even if you restrict access to the file using file
permissions, the information is much safer in a keychain.

m Avoid inventing your own authentication schemes. If you want a client-server operation to be secure,
use the authorization APIs to guarantee the identity of the client.

m Avoid loading plug-ins from privileged code. Plug-ins receive the same privileges as the parent process.
m Avoid calling potentially dangerous functions, such as system or popen, from privileged code.

m Don't assume only one user is logged in. With fast user switching, multiple users may be active on the
same system. See Multiple User Environments for more information.

m Don't assume that keychains are always stored as files.

m Avoid relying solely on passwords for authentication. Mac OS X already supports smart card devices.
Biometric devices such as fingerprint scanners may also be available some day.

If your application stores passwords or other sensitive information, such as credit card numbers, store that
information using Keychain Services. The keychain mechanism in Mac OS X provides the following benefits:

76 Printing
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

m It provides a secure, predictable, consistent experience for users when dealing with passwords and other
secret information.

m Users can modify settings for all of the passwords as a group or create separate keychains for different
activities, with each keychain having its own activation settings. (By default, passwords are modified as
a group.)

m The Keychain Access application provides a simple user interface for managing keychains and their
settings, relieving you of this task.

For information and links to security-related documentation in Mac OS X, see Getting Started With Security.

Services

Mac OS X services are features that applications can make available to each other. Through services, you can
share your application’s resources and capabilities with other applications. In turn, users of your application
can take advantage of the resources and capabilities provided by other applications. The Services feature is
one of the many ways Mac OS X helps your application interoperate with others. (Interoperability is a
characteristic of great software; to learn more about it, see “Interoperability” (page 36).)

By default, the application menu contains a Services submenu that lists services that are appropriate for the
currently selected or targeted content in your application. This submenu automatically includes a command
that opens Services preferences in Keyboard Shortcuts preferences. The services can be provided by
applications installed anywhere on the system.

To vend services to other applications, your application provides information about each service, such as:

m The data types on which it operates
m The command that can appear in the Services menu

m The keyboard shortcut for invoking the command, if appropriate. Note that if the keyboard shortcut you
choose conflicts with a keyboard shortcut in the currently running application, the application’s shortcut
is always used.

To learn the programmatic steps you need to take to provide services and take advantage of them, read
Services Implementation Guide.

To ensure a good user experience, you should follow these guidelines when defining the services your
application can provide:

m Give each service a short, focused title that describes exactly what it does.

Strive to create a unique service title. If there are two or more services with identical names, the application
name is automatically displayed after each service to distinguish them.

m As with all menu-item names, use title-style capitalization for the service title and, in general, avoid
including definite or indefinite articles.

Good examples are “Look Up in Dictionary” and “Make New Sticky Note.”
m Avoid providing an “Open in Application Name” service.

Instead, users should view the applications that can open a selected file in the Open With menu item of

the Finder.
Services 77
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

Speech

Mac OS X contains speech technologies that enable software to recognize and speak U.S. English. These
technologies provide benefits for all users and present the possibility of a new paradigm for human-computer
interaction.

Speech recognition is the ability for the computer to recognize and respond to a person’s speech. Using
speech recognition, users can accomplish tasks comprising multiple steps—for example, “Schedule a meeting
next Friday at 3 p.m. with John, Paul, and George” or “Create a 3-by-3 table”—with one spoken command.
Mac OS X users can control the computer by voice rather than be limited to the mouse or keyboard;
consequently, speech-recognition technology is very important for both people with special needs and
general users. Developers can take advantage of the speech engine and APl included with Mac OS X, as well
as the built-in user interface.

Speech synthesis also called text-to-speech (TTS), converts text into audible speech. It provides a way to
deliver information to users without forcing them to shift attention from their current task. For example, the
computer could, in the background, deliver such messages as “Your download is complete; one of the files
has been corrupted” and “You have email from your boss; would you like to read it now?” TTS is also crucial
for users with vision or attention disabilities. As with speech recognition, Mac OS X TTS provides both an API
and several user interface features.

For information about implementing speech synthesis and recognition, see the documents in Guides > User
Experience > Speech Technologies.

Spotlight

Spotlight is a powerful Mac OS X search technology available to both users and application developers. Built
on top of Search Kit and integrated with the file system, Spotlight makes searching for files on the computer
as easy as searching the web. With Spotlight, users can search for things using attributes that have meaning
for them, such as the intended audience for a document, the orientation of an image, or the key signature
of the music in an audio file. Information like this (called metadata) is embedded in a file by the application
that created it. Spotlight’s power comes from being able to extract, store, update, and organize the metadata
of files to allow fast, comprehensive searches.

Spotlight is always available to users to help them find their files on the computer. Even better, the search
technologies that power Spotlight are available to developers to help them find files to display, plug-ins to
load, and data to use in their applications. For example, a developer can define complex queries to find only
the types of files an application needs to work with or provide Spotlight functionality from within an
application. The rest of this section introduces the user’s view of Spotlight and describes some of the ways
an application can take advantage of its features.

Users can easily initiate a Spotlight search using the Spotlight icon at the far right end of the menu bar. Figure
6-9 (page 78) shows the Spotlight icon and search field displayed when a user clicks the icon.

Figure 6-9 The Spotlight icon and search field

00:39:28 % 4 E= (=] (99%) Sat4:13 PM
- HEEEX

78 Speech
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

In addition, a user can select a word or phrase in a text document and Control-click to reveal a contextual
menu that allows a Spotlight search for the selected text. Figure 6-10 (page 79) shows this contextual menu.

Figure 6-10 Spotlight search in a contextual menu

®0O0 The harvest is in! =

To: | Rachael H

Cc:

EI Subject: | The harvest is in!

Hi Rachael—

T e . Search in Spotlight 9

Search in Google
Look Up in Dictionary

Cut

Copy

Paste

Link

Quote Level

Spelling and Grammar
Font

Speech

Writing Direction

vyVvvwYyYwy wYy

Whichever way a search is initiated, Spotlight quickly displays the results, conveniently sorted into categories
the user can adjust in Spotlight Preferences. Figure 6-11 (page 79) shows the standard Spotlight results
window.

Figure 6-11 A Spotlight results window

@ 3 < ® = = 989 Fri10:50 Am %
Spotlight

persimmon

[Show All

Top Hit | [Persimmon Cookbook

Definition 8 noun 1 an edible fruit thatr...

Documents [#] Persimmon Cookbook
"y Persimmon bread.rtf

Messages |~ The harvest is in!
- Re: Persimmons

Webpages E persimmon - Google Search ...
= Persimmon Cookbook
a persimmon - Google Search ...

Spotlight Preferences...

Spotlight 79
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

Spotlight uses Quick Look technology to display thumbnails and full-size previews of the documents returned
in a search. If your application produces documents in common content types, such as HTML, RTF, plain text,
TIFF, PNG, JPEG, PDF, and QuickTime movies, Spotlight can display the thumbnails and previews automatically.
If your application creates documents in an uncommon or custom content type, you can include a Quick
Look generator to convert your native document format into a format Spotlight can display. See Quick Look
Programming Guide to learn how to do this.

To applications, Spotlight provides almost limitless ability to find files and to give advanced file-search
capabilities to users within the context of the application. For example, an application might choose to
replicate the Spotlight contextual-menu item (shown in Figure 6-10 (page 79)) with a button that initiates
a Spotlight search for the user’s selected text. The application could then display its own window that contains
all the search results or a filtered subset of them.

An application might also choose to give users access to Spotlight searches in a rounded search field (for
more information on this control, see “Search Fields” (page 323)). A user often needs to work on a file that
was saved in an atypical place or given an unexpected or forgotten name. If an application offers only a
Finder-based Open dialog, it might force the user to waste a lot of time navigating the file system, trying to
remember what the file was named and where it was saved. Instead, an application can provide a
Spotlight-powered search that allows the user to search the entire file system, using meaningful attributes
other than the filename.

Applications can also use Spotlight functionality behind the scenes to find needed files or plug-ins. For
example, an application that provides a back-up service might allow the user to choose a broad category of
file type to back up, such as images. Instead of asking users to identify all the folders that contain theirimages
or just backing up a Pictures folder, the application could perform a Spotlight search to find every image file
in the file system, regardless of its location.

It's important to emphasize that Spotlight is tuned to search for files; it's not intended to do extensive
text-based searching within a document. If you need to do fine-grained textual searching, you should use
Search Kit technologies instead. An application that stores data in database records, for example, should not
base its database search on Spotlight because the data are not stored in separate files. For more information
on using Search Kit in your application, see Search Kit Programming Guide.

Spotlight offers unparalleled search functionality to both users and developers. Along with these opportunities,
however, comes an important developer responsibility. If your application uses a custom file format, you
must supply a plug-in (called a Spotlight importer) that describes the types of metadata your file format
contains. This ensures that a user will be able to search for the files your application creates using the attributes
described by the metadata your files contain. For comprehensive information on how to do this, see Spotlight
Importer Programming Guide.

User Assistance

Mac OS X supports two user help components: Apple Help and help tags. Help tags allow you to provide
temporary context-sensitive help whereas Apple Help allows you to provide a more thorough discussion of
a topic or procedure.

Use these mechanisms to provide user help in your application instead of using help mechanisms that are
specific to your application. When users refer to help, it is usually because they are having difficulty
accomplishing a task and therefore might be frustrated. This is not a good time to make them learn yet
another task, such as figuring out a help viewing mechanism that differs from the one they use in all the
other applications on their computer.

80 User Assistance
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 6
Using Mac OS X Technologies

Apple Help

With Apple Help, you can display HTML files in Help Viewer, a browser-like application designed for displaying
and searching help documents. Help Viewer can also display documents containing QuickTime content, open
AppleScript-based automations, retrieve updated help content from the Internet, and provide context-sensitive
assistance.

Users can access Apple Help by launching the Help Viewer application but they will more commonly access
it from your application, in one of three ways:

m The Help menu. The Help menu is the far-right item in the application region of the menu bar. When
you register your help book with Help Viewer, the first item in the Help menu is the system-provided
Spotlight For Help search field. The second item in the menu should be ApplicationName Help, which
opens Help Viewer to the first page of your help content. For more information on the Help menu, see
“The Help Menu” (page 185).

m Help buttons. When necessary, you can use a Help button to provide easy access to specific sections of
your help. When a user clicks a Help button, send either a search term or an anchor lookup (which leads
to a specific page or pages) to Help Viewer. It's not necessary for every dialog and window in your
application to have a Help button. If there is no contextually relevant information in the help, don't
display a Help button.

m From a contextual menu item. If contextually appropriate help content is available for the object being
pointed to, the first item in the contextual menu is Help. As with Help buttons, the menu item can send
either a search term or an anchor lookup to Help Viewer.

See Apple Help Programming Guide for more information on writing Apple Help content and providing it with
your application.

Help Tags

Help tags enable your application to provide basic help information for its interface elements without forcing
the user to leave the primary interface.

Help tags are short messages that appear when the user leaves the mouse pointer hovering over an interface
element for a few seconds (see Figure 6-12 for an example of a help tag). When the pointer leaves the object,
the tag vanishes. If the mouse pointer is not moved, the operating system hides the help tag after about 10
seconds.

Figure 6-12 A help tag

+ | X S| &

Turn shuffle on or off.

User Assistance 81
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

82

CHAPTER 6
Using Mac OS X Technologies

The text of a help tag should briefly describe what an interface element does. If you find that you need more
than a few words to describe the function of a control, you might want to reconsider the design of your
application’s user interface.

Define help tags in Interface Builder, where they are called tooltips. Here are some guidelines to help you
create effective help tag messages.

m Use the fewest words possible. Try to keep your tags to a maximum of 60 to 75 characters. Because help
tags are always on, it is important to keep your tag text unobtrusive—that is, short—and useful. A tag
should present only one concept and that concept should be directly related to the interface element.
Localization can lengthen the text by 20 to 30 percent, which is another good reason to keep the tag
short.

m Don't put the interface element’s name in the tag unless the name helps the user and isn't available
onscreen. If an element is referred to by name in the documentation and in the tag, make sure the names
match.

m Describe only the element the mouse pointer hovers over.

m You can use a sentence fragment beginning with a verb, for example, “Restores default settings” You
can also omit articles to limit the size of the tag. If the tag text is a complete sentence, end it with a
period.

m Use help tags to provide functional information for controls that are unique to your application. Don't
tag window controls, scroll bars, and other parts of the standard Mac OS X interface.

m You can create contextually sensitive help tags, but you don’t have to; the same text can appear when
an item is selected, dimmed, and so on. By describing what the interface element accomplishes, you
may help the user understand the current state of the control even if the tag is applicable to all situations.

m Write the help tag text in one of these ways, depending on the interface you're documenting:

Describe what the user will accomplish by using the control. For example, “Add or remove a language
from your list” or “Reduce red tint in the selected area” Most help tags can use this format.

Give extra information to explain the results of the user’s action. This kind of tag is most effective in an
interface that already includes some instructional text, because the tag and the interface text work
together to describe what the control does and how the user manipulates it.

Define terms that may be unknown to the user. This kind of tag should be used only if the interface
already contains instructions to the user.

User Assistance
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

First impressions are lasting impressions, so design your installation process accordingly. If users have trouble
getting your application up and running, they are going to make judgements about it even before they use
it. Your software update mechanism also creates an impression. Users want to be able to get the newest
version of your application easily and when it's convenient for them. If users have trouble getting and installing
the latest software updates or patches you provide, you may find your technical support costs rising.

This chapter discusses some things you can do to provide the best Macintosh experience before the user
launches your application for the first time. It also describes how you can provide an unobtrusive and
customizable software update experience to your users.

Packaging

Users begin making assessments of your application based on its presentation in the physical or electronic
package in which it arrives. Delivering a great user experience begins with thinking about how your product
is presented prior to installation. Whether you distribute your application in a box or online, your goal should
be to make the packaging aesthetically pleasing and informative.

Identify System Requirements

Including system requirements on your packaging is critical. Be sure to identify which version of Mac OS X
is required for your software to run. Mac OS X runs on both PowerPC-based and Intel-based Macintosh
computers. If your application targets a specific platform or processor, make sure it's clearly stated in your
system requirements. Be sure to test on as wide a variety of configurations as you can. If you know your
application does not work under certain conditions, make that clear by stating it on your packaging.

Mac Developer Program members can take advantage of the Developer Compatibility Labs to test applications
on a variety of different types of hardware and operating system versions. The labs are equipped with every
supported model of Macintosh and every Apple display. Lab technicians can install different versions of
operating systems on these machines. This is an excellent resource for you to test your software in many
different environments. Visit Apple’s Compatibility Labs website for the latest details.

Bundle Your Software

If you are creating a new application, make sure it is contained in an application bundle. Application bundles
provide a structure for your executables, resources, and configuration files. Application bundles also simplify
the user’s interaction with your application and make it harder for the user to delete critical resources
accidentally. Even applications that must support both Mac OS X and earlier versions of the Mac OS can use
the bundle format. For more information on application bundles, see Bundle Programming Guide.

Packaging 83
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

Installation

You should ensure that installing your software is a quick and painless experience. This section provides
guidelines on how to handle the installation of your software. For more information on how to implement
different installation mechanisms, see Software Delivery Guide.

Whichever installation method you choose, be sure to avoid creating application-specific subfolders in the
user’s Downloads folder (which is accessible as a stack in the Dock). If you do so you degrade the utility of
the Downloads stack, because clicking the stack in the Dock will no longer accurately represent the contents
of the Downloads folder.

Use Internet-Enabled Disk Images

If you provide users with a downloadable version of your application on the Internet, you can simplify the
installation process by packaging your software in an Internet-enabled disk image. Disk images eliminate
the need to compress your files, because the disk image itself can compress the enclosed data. After the disk
image is downloaded, Mac OS X automatically opens it and mounts it on the user’s desktop. All the user has
to do is copy over the desired files or run the installer.

For information on how to create an Internet-enabled disk image, see Software Delivery Guide.

Drag-and-Drop Installation

Bundles make it possible to provide drag-and-drop installation for applications (for more information on
application bundles, see Bundle Programming Guide). Using bundles is the preferred way to install an application
for the following reasons:

m Itis easy for users to install and uninstall the application.
m It takes less time to install (only the time needed to copy the bundle).

m You don't have to spend time developing an installer.

Providing drag-and-drop installation does not preclude you from placing files in specific places on the system.
When your application is first run, it can copy any needed support files to appropriate places on the system.
However, you should avoid using this technique to install additional executable code and should instead
use it to install preference files, document templates, or other resources that can be regenerated as needed
and are not required for the application to run.

84 Installation
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

Note: If you install additional files when your application is first run, be sure to install them in obvious places,
suchasinthe Application Support directory.Place your resources in a directory named for your application
to make it easy for the user to find these files if they ever need to uninstall your application.

Installation Packages

You should support drag-and-drop installation if your application bundle contains everything needed for
the application to run. However, you might need to create an installation package if any of the following
conditions is true:

m You need to install frameworks or other files in specific locations on the user’s system.

m You need to install software on any part of the system that requires administrative access.

If you are developing software other than an application, the need for an installation package depends on
the type of software and where it is installed. For example, you might want to use an installer to install a
screen saver, because it involves placing files in either the user’s Library directory or the local Library
directory.

You can create an installation package with PackageMaker, which is available with the Xcode Tools. For
information on installers and packaging, see Software Delivery Guide.

General Installer Guidelines

When designing your product’s installation package, keep the following guidelines in mind:

m Before installing anything, your installer should check the destination volume for previously installed
application components.

m Always provide users with a simple default installation (an “Easy Install”). Most products should also
provide a custom installation; if a user has accidentally thrown away a particular file, for example, the
user should be able to restore it without having to reinstall the whole application. (Your application can
also check for required files every time it runs and automatically install them if they are missing.)

m Provide choices and explain their impact. For example, one installation option could result in faster
performance but consume more disk space; another might use less space but result in slower performance.
Be sure to make these choices clear in terms that will be meaningful to your users.

m Always let users choose a specific folder as the installation destination. Don't require your application
to be installed in a particular location.

m Install files only in recommended locations. (For a list of system directories and their recommended
content, see File System Overview.) If users want to delete your application for some reason, most will
simply drag its icon to the Trash; avoid littering the user’s hard disk with remnant files. If your product
uses an installer, it should include an uninstall option that lets the user delete all associated files.

m Advise users about data that might be overwritten during the installation, and provide a way for them
to back it up first. Don't overwrite previous user preferences. Deal with version and format differences
the first time the user opens the updated application.

m Provide help where appropriate. For example, in a custom installation pane, clicking a More Info button
should explain why the user would want to install the component and the consequences of not installing
it.

Installation 85
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

m Don't uninstall any of the Apple system software in /System.

m If your application installs software that may already be installed on the user’s system, make sure the
version you install is newer than any version the user already has. Make it clear to users which version
they already have and which version your application needs, and provide an option for skipping installation
of that software.

m Indicate progress during installation, such as the current stage and the time remaining. For related
information, see “Feedback and Communication” (page 42)

m Provide a Cancel button. If canceling the installation would compromise the system’s stability, disable
the button during those times. If a user cancels an installation, leave the destination disk in the same
state it was in before the installation (in other words, delete any files installed before the process was
canceled).

m Consider installing any supporting files when the user first launches your application. This technique
alleviates the need to create an installation package and makes it possible for your application to reinstall
the files if they are accidentally deleted by the user.

m Consider your application’s audience. It's common, for example, for children to install their own games
at home, so tailor your instructions for them (don't use confusing or technical terms) and make installation
as easy as possible for that audience.

Setup Assistants

For products with complex setup procedures, a setup assistant can be helpful. A setup assistant is a small
application that guides users through the setup options. You store setup assistants in a location where your
application can find them, such as inside your application bundle.

Your application should open a setup assistant automatically whenever appropriate—when the system
detects a new hardware device or the first time the user opens your application, for example. Ideally, the
user should use the assistant only once.

The assistant application’s icon should be a combination of the setup assistant icon with your application’s
icon superimposed as a badge in the lower-right corner, as shown in Figure 7-1.

Figure 7-1 Examples of assistant icons

Figure 7-2 shows the layout for a sample setup assistant window.

86 Setup Assistants
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

Figure 7-2 A setup assistant window

Migration Method

How would you like to transfer your information?
@ From another Mac
You can transfer information from another Mac
s equipped with FireWire.
I O From another volume on this Mac

You can transfer information from another
volume on this Mac if it has Mac OS X installed.

() From a Time Machine backup

You can restore information from a
Time Machine backup.

(: Go Back) (: Continue)

Keep the following guidelines in mind when designing a setup assistant:

m While the assistant is active, display only the application menu (containing About and Quit items) and
the Edit menu (containing standard items to assist users in entering text). Don’t provide a Help menu
(or a Help button); the setup assistant is help.

m Provide Go Back and Continue buttons for navigation.

m The assistant window title bar should contain a dimmed close button, an available minimize button, and
a dimmed zoom button.

m Title the first pane “Introduction.” This pane should explain the purpose of subsequent panes.

m Title the last pane “Conclusion.” This pane should tell users what changes were made to their system
and how to modify those settings. This pane should have a default Done button and a dimmed Go Back
button.

m In most cases, it’s best to ask only one question per pane.

m Whenever appropriate, use selection controls that do not support the empty selection to avoid having
to ask for the same information more than once.

m Avoid displaying an asterisk or custom icon next to each required text field. Instead, check for empty
text fields when the user clicks Continue. If there are any, return to the current pane and display the
asterisk or other marker next to the empty text fields.

m As much as possible, use system applications and services to provide intelligent default choices to the
user. For example, you should use Bonjour to determine an appropriate IP address.

m Limit the total number of questions to the minimum required to get the job done. The best setup assistant
gets users up and running as soon as possible, allowing the main application to present the user with
opportunities to refine preferences and settings.

Setup Assistants 87
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

m Provide relevant feedback when appropriate. If needed, you can display a progress bar next to the Go
Back button (aligning the progress bar’s left edge with the left edge of the pane).

m Don'tfill the entire screen; users should be able to access other parts of their system while the assistant
is open.

Updating Installed Applications

If you need to update an already installed application, you should provide an installer that modifies only the
files required for the new version. Remember that files may have been renamed or moved; don't look only
in the AppTlications directory and don't rely exclusively on filenames to identify your application files.
Instead, check for creation and modification dates, version numbers, file size, and so on to uniquely identify
your application. If you detect multiple versions of your application, provide information about each, such
as the location and creation date, so that the user can choose which one to update.

Macintosh users are accustomed to using Software Update in System Preferences to upgrade the operating
system and system software. Upgrading the operating system has implications different from those for
upgrading a third-party application, however, and the user experiences for these procedures must reflect
this. Third-party applications should not attempt to duplicate the user experience of Software Update. If you
want to provide your users with automatic updates, offer a streamlined and consistent user experience
following the guidelines in this section.

The goal of a software update mechanism is to be convenient, yet unobtrusive. To achieve this, it's essential
that your application perform all software update procedures at launch time only. In particular, you should
avoid checking for updates using a background process or standalone, faceless utility that executes
independently of your application. If the user is unaware that such a process is running even after your
application quits, the random appearance of update notifications will be unexpected and may be unsettling.

Note: If you provide a first-time user experience with your application, such as a setup assistant, it's appropriate
to perform a check for available updates while the user is engaged in this task. If a newer version of your
application is available, allow the user to upgrade immediately, before the user begins working with the
currently installed version. On subsequent launches, follow the guidelines below.

To provide a convenient application-update experience, follow these steps:

1. When your application fully launches the first time after installation, start a separate thread that checks
for updates.

2. Ifa newer version is available, keep track of this fact in your application. Do not notify the user at this
time.

3. The next time your application launches, check the state of update availability you determined in step
2. If a newer version is available, immediately notify the user.

If a newer version is not available, start a separate thread to check for updates and keep track of the
results in your application. Do not notify the user at this time.

Your application then repeats step 3 every time it launches. If the user chooses to install a newer version,
the upgraded application begins again with step 1.

88 Updating Installed Applications
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

Using this method confers several advantages:

m You avoid slowing launch time by using a separate thread after your application launches.

Checking for updates frequently involves making an Internet connection. If you do this on the application’s
main thread, it can significantly slow your launch time.

m Users will appreciate receiving an update notification consistently and immediately at launch time, rather
than at random times during their work.

Because the display of the update notification depends on the quick check of an internal state (not on
the completion of a potentially lengthy search for available updates) you ensure it always arrives
immediately at launch time.

m You do not have to design additional dialogs that ask the user if update checks should be performed
while your application is running.

m You avoid startling the user with unexpected and intrusive update notifications that occur outside the
context of your running application.

Allow the user to customize the software update behavior in your preferences window. A user should have
the option to allow automatic software updates and the ability to check for updates immediately. Figure
7-3 (page 89) shows an example of how a sample preferences window can be modified to do this.

Figure 7-3 An application-update preferences window

[General View Print | Software Update }

Software Update checks for new and updated versions of
MyApplication.

"1 Automatically check for updates

(*Check Now)

When your application checks its internal update state and finds that a newer version is available, display an
alert that describes the type and availability of the update and gives the user the option to get the new
version. You can customize the alert for a free or for-purchase update. Figure 7-4 (page 90) shows how the
alert for a free update should look.

Updating Installed Applications 89
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

Figure 7-4 An alert to describe the availability of a free application update

800 =

A newer version of MyApplication is available from MyCompany.
Do you want to upgrade your copy?

) &’Z‘. MyApplication can automatically check for new and updated versions using its

Software Update feature. Select Software Update in MyApplication Preferences to
specify how frequently to check for updates.

E—Ehuwgeﬁefemmes—a (Ask Again Later) (Upgrade Now)
A'

Each element of the alert shown in Figure 7-4 (page 90) is required. In many cases, the only changes you
need to make are to replace MyApplication and MyCompany with your application and company names and
to badge the caution icon with your application icon. Note that it is important to display the caution icon in
this alert because the installation of software has the potential to destroy user data. For more information
about the components of an alert (and using the caution icon), see “The Elements of an Alert” (page 236) You
might also choose to replace the phrase “newer version of” with a phrase like “minor update to’ if appropriate.

The software update alert in Figure 7-4 (page 90) displays the main message in emphasized (bold) system
font and the explanatory text in small system font. A simplified alert (one that displays only the main message)
is not used here because it does not give the user enough information to customize the update process.

The three required alert buttons shown in Figure 7-4 (page 90) describe the actions the user can take. Each
button leads to a specific set of actions your application should perform:

m The Change Preferences default button removes the alert and opens the software update preferences
window. After the user adjusts the software update preferences and dismisses the preferences window,
your application resumes.

m The Ask Again Later button leaves the internal update state unchanged and removes the alert. Because
the state is still set to indicate the availability of an update, the alert will appear again the next time the
user launches your application.

m The Upgrade Now button resets the internal state, removes the alert, and initiates a download of the
new software. After the download is complete, your application asks the user to save all open documents
and updates with the downloaded version.

If you offer a software update for purchase, you should use an alert like the one shown in Figure 7-5 (page

91)
90 Updating Installed Applications
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

Figure 7-5 An alert to describe the availability of a for-purchase upgrade

A newer version of MyApplication is available for purchase from
MyCompany. Do you want to learn more?

MyApplication can automatically check for new and updated versions using its

Software Update feature. Select Software Update in MyApplication Preferences to
specify how frequently to check for updates.

E—Eﬁnvgrﬁu&mm—-’ (Ask Again Later) (Learn More...)

The alert in Figure 7-5 is different from the alert for a free software update in two ways:

m The main message clearly states that the new version of the software is for purchase and the question
leads the user to click the Learn More button if they're interested in receiving the upgrade.

m The Learn More button resets the application’s internal state, removes the alert, and leads to your
company’s website where the user can learn more about the update and select a purchasing option. If
the user chooses to upgrade the software, a bundle or installation package should be downloaded

independently of the currently running application. The user can then install the update when it’s
convenient.

Updating Installed Applications 91
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 7

Software Installation and Software Updates

92 Updating Installed Applications
2009-08-20 | © 1992,2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

PART IlI

The Aqua Interface

Aqua is the overall appearance and behavior of Mac OS X. Aqua defines the standard appearance of specific
user interface components such as windows, menus, and controls and is also characterized by the anti-aliased
appearance of text and graphics, shadowing, transparency, and careful use of color. Aqua delivers standardized
consistent behaviors and promotes clear communication of status through animated notifications, visual
effects, and more. Designing for Aqua compliance will ensure you provide the best possible user experience
for your customers.

Aqua is available to Cocoa, Carbon, and Java software. For Cocoa and Carbon application development,
Interface Builder is the best way to begin building an Aqua-compliant graphical user interface. If you are
porting an existing Mac OS 9 application to Mac OS X, see the Carbon Porting Guide in Carbon Porting
Documentation. Java developers can use the Swing toolkit, which includes an Aqua look and feel in Mac OS
X.

Read this part to learn about what Aqua provides and how best to take full advantage of it to ensure your
application feels completely “at home” in Mac OS X.

93
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

94

PART Il
The Aqua Interface

2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved.

MemoryWeb Ex. 2027
Apple v. MemoryWeb — IPR2022-00033

CHAPTER 8

User Input

The Mac OS X graphical user interface is optimized for use with a pointing device, such as a mouse. Many
users, however, prefer or need to interact with the computer using the keyboard instead of the mouse. In
Mac OS X, users have the option of enabling keyboard access for all functions available using a point-and-click
device.

The Mouse and Other Pointing Devices

In the Macintosh interface, the standard pointing device is the mouse. Users can substitute other devices—such
as trackballs and stylus pens—that maintain the behavior of direct manipulation of objects on screen.

Moving the mouse without pressing the mouse button moves the pointer, or cursor. The onscreen pointer
can assume different shapes according to the context of the application and the pointer’s position. For
example, in a word processor, the pointer takes the I-beam shape while it's over the text and changes to an
arrow when it's over a tools palette. Change the pointer’s shape only to provide information to the user about
changes in the pointer’s function. More information on using pointers correctly can be found in “Pointers” (page
159)

Just moving the mouse changes only the pointer’s location, and possibly its shape. Pressing the mouse button
indicates the intention to do something, and releasing the mouse button completes the action.

These guidelines apply to single-button mice and to the primary button of multi-button mice. Note that
users can select which button of a multi-button mouse to designate as the primary button in Mouse
preferences.

Clicking

Clicking has two components: pushing down on the mouse button and releasing it without moving the
mouse. (If the mouse moves between button down and button up, it's dragging, not clicking.)

The effect of a click should be immediate and obvious. If the function of the click is to cause an action (such
as clicking a button), the selection is made when the button is pressed, and the action takes place when the
button is released. For example, if a user presses down the mouse button while the pointer is over an onscreen
button, thereby putting the button in a selected state, and then moves the pointer off the button before
releasing the mouse button, the onscreen button is not clicked. If the user presses an onscreen button and
rolls over another button before releasing the mouse, neither button is clicked.

The Mouse and Other Pointing Devices 95
2009-08-20 | © 1992, 2001-2003, 2009 Apple Inc. All Rights Reserved. MemoryWeb Ex. 2027

Apple v. MemoryWeb — IPR2022-00033

CHAPTER 8

User Input

Double-Clicking

Double-clicking involves a second click that follows immediately after the first click. If the two clicks are close
enough to each other in terms of time (as set by the user in Keyboard & Mouse preferences) and location
(usually within a couple of points), they constitute a double click.

Double-clicking is most commonly used as a shortcut for other actions, such as pressing Command-O to
open a document or dragging to select a word. Because not everyone is physically able to perform a double
click, it should never be the only way to perform an action.

Some applications support triple-clicking. For example, in a word processor, the first click sets the insertion
point, the second click selects the whole word, and the third