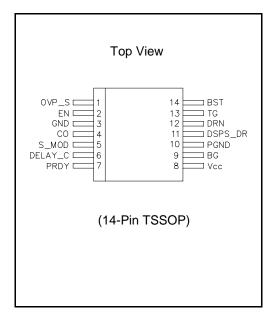


HIGH SPEED SYNCHRONOUS POWER MOSFET SMART DRIVER


August 31, 2000

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

DESCRIPTION

The SC1405 is a Dual-MOSFET Driver with an internal Overlap Protection Circuit to prevent shoot-through from V_{IN} to GND in the main switching and synchronous MOSFET's. Each driver is capable of driving a 3000pF load in 20ns rise/fall time and has ULTRA-FAST propagation delay from input transition to the gate of the power FET's. The Overlap Protection circuit ensures that the second FET does not turn on until the top FET source has reached a voltage low enough to prevent shoot-through. The delay between the bottom gate going low to the top gate transitioning to high is externally programmable via a capacitor for optimal reduction of switching losses at the operating frequency. The bottom FET may be disabled at light loads by keeping S_MOD low to trigger asynchronous operation, thus saving the bottom FET's gate drive current and inductor ripple current. An internal voltage reference allows threshold adjustment for an Output Over-Voltage protection circuitry, independent of the PWM feedback loop. Under-Voltage-Lock-Out circuit is included to guarantee that both driver outputs are low when the 5V logic level is less than or equal to 4.4V (typ) at supply ramp up (4.35V at supply ramp down). A CMOS output provides status indication of the 5V supply. A low enable input places the IC in stand-by mode thereby reducing supply current to less than 10µA. SC1405 is offered in a high pitch (.025" lead spacing) TSSOP package.

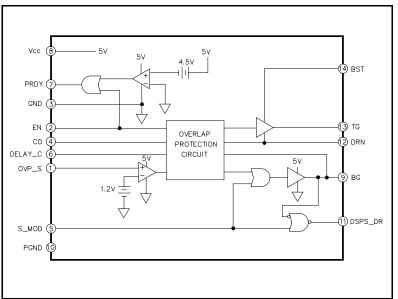
PIN CONFIGURATION

FEATURES

- Fast rise and fall times (20ns typical with 3000pf load)
- 20ns max. Propagation delay (BG going low)
- Adaptive/programmable shoot-through protection
- Wide input voltage range (4.5-25V)
- Programmable delay between MOSFET's
- Power saving asynchronous mode control
- Output overvoltage protection/overtemp shutdown
- Under-Voltage lock-out and power ready signal
- Less than 10µA stand-by current (EN=low)
- Power ready output signal

APPLICATIONS

- High Density/Fast transient power supplies
- Motor Drives/Class-D amps
- High frequency (to 1.2 MHz) operation allows use of small inductors and low cost caps in place of electrolytics
- Portable computers


ORDERING INFORMATION

DEVICE ⁽¹⁾	PACKAGE	TEMP. RANGE (T _J)
SC1405TS.TR	TSSOP-14	0 - 125°C

Note:

(1) Only available in tape and reel packaging. A reel contains 2500 devices.

BLOCK DIAGRAM

HIGH SPEED SYNCHRONOUS POWER MOSFET SMART DRIVER

August 31, 2000

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Maximum	Units
V _{cc} Supply Voltage	V_{MAX5V}		7	V
BST to PGND	VMAX _{BST-PGND}		30	V
BST to DRN	VMAX _{BST-DRN}		7	V
DRN to PGND	VMAX _{DRN-PGN}		25	V
OVP_S to PGND	VMAX _{OVP_S-PGND}		10	V
Input pin	CO		-0.3 to 7.3	V
Continuous Power Dissipation	Pd	Tamb = 25°C, T_J = 125°C Tcase = 25°C, T_J = 125°C	0.66 2.56	W
Thermal Resistance Junction to Case	θ_{JC}		40	°C/W
Thermal Resistance Junction to Ambient	$ heta_{\sf JA}$		150	°C/W
Operating Temperature Range	T_J		0 to +125	°C
Storage Temperature Range	$T_{\mathtt{STG}}$		-65 to +150	°C
Lead Temperature (Soldering) 10 sec	T_{LEAD}		300	°C

NOTE:

(1) Specification refers to application circuit in Figure 1.

ELECTRICAL CHARACTERISTICS (DC OPERATING SPECIFICATIONS)

Unless specified: -0 < θ_J < 125°C; V_{CC} = 5V; $4V \le V_{BST} \le 26V$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
POWER SUPPLY	POWER SUPPLY							
Supply Voltage	V _{cc}	V _{cc}	4.15	5	6.0	V		
Quiescent Current	Iq_stby	EN = 0V			10	μA		
Quiescent Current, operating	lq_op	V _{CC} = 5V,CO=0V		1		ma		
PRDY					1			
High Level Output Voltage	V _{OH}	V _{CC} = 4.6V, Iload = 10mA	4.5	4.55		V		
Low Level Output Voltage	V _{OL}	V _{CC} < UVLO threshold, lload = 10μA		0.1	0.2	V		
DSPS_DR					1			
High Level Output Voltage	V _{OH}	V _{CC} = 4.6V, Cload = 100pF	4.15			V		
Low Level Output Voltage	V _{OL}	V _{CC} = 4.6V, Cload = 100pF			0.05	V		
UNDER-VOLTAGE LOCKOUT								
Start Threshold	V_{START}		4.2	4.4	4.6	V		
Hysteresis	Vhys _{UVLO}			0.05		V		
Logic Active Threshold	V _{ACT}	EN is low			1.5	V		

August 31, 2000

ELECTRICAL CHARACTERISTICS (DC OPERATING SPECIFICATIONS) Cont.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OVERVOLTAGE PROTECTION	N					
Trip Threshold	V_{TRIP}		1.145	1.2	1.255	V
Hysteresis	Vhys _{OVP}			0.8		V
S_MOD	1					
High Level Input Voltage	V _{IH}		2.0			V
Low Level Input Voltage	V _{IL}				0.8	V
ENABLE						
High Level Input Voltage	V _{IH}		2.0			V
Low Level Input Voltage	V _{IL}				0.8	V
со	<u> </u>					
High Level Input Voltage	V _{IH}		2.0			V
Low Level Input Voltage	V _{IL}				0.8	V
THERMAL SHUTDOWN						
Over Temperature Trip Point	T _{OTP}			165		°C
Hysteresis	T _{HYST}			10		°C
HIGH-SIDE DRIVER						
Peak Output Current	I _{PKH}			1.5		Α
Output Resistance	Rsrc _{TG}	duty cycle < 2%, tpw < 100 μ s, $T_J = 125^{\circ}$ C, $V_{BST} - V_{DRN} = 4.5$ V, $V_{TG} = 4.0$ V (src)+ V_{DRN}		1.4		Ω
	Rsink _{TG}	or $V_{TG} = 0.5V (sink) + V_{DRN}$		1.4		Ω
LOW-SIDE DRIVER	1					
Peak Output Current	I _{PKL}			2		Α
Output Resistance	Rsrc _{BG}	duty cycle < 2%, tpw < 100μs, Τ _⊥ = 125°C		2		Ω
	Rsink _{BG}	$V_{V_{-5}} = 4.6V$, $V_{BG} = 4V$ (src), or $V_{LOWDR} = 0.5V$ (sink)		2		Ω

HIGH SPEED SYNCHRONOUS POWER MOSFET SMART DRIVER

August 31, 2000

ELECTRICAL CHARACTERISTICS (DC OPERATING SPECIFICATIONS) Cont.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AC OPERATING SPECIFIC	CATIONS				I	1
HIGH-SIDE DRIVER						
rise time	tr _{TG} ,	$CI = 3nF, V_{BST} - V_{DRN} = 4.6V,$		16	25	ns
fall time	tf _{TG}	$CI = 3nF, V_{BST} - V_{DRN} = 4.6V,$		17	27	ns
propagation delay time, TG going high	tpdh _{TG}	$CI = 3nF$, $V_{BST} - V_{DRN} = 4.6V$, C -delay=0		35	56	ns
propagation delay time, TG going low	tpdl _{TG}	$CI = 3nF, V_{BST} - V_{DRN} = 4.6V,$		25	40	ns
LOW-SIDE DRIVER						
rise time	tr _{BG}	$CI = 3nF, V_{V_{-5}} = 4.6V,$		20	32	ns
fall time	tr _{BG}	$CI = 3nF, V_{V_{-5}} = 4.6V,$		18	29	ns
propagation delay time BG going high	tpdh _{BGHI}	$CI = 3nF, V_{V_{-}5} = 4.6V,$ $DRN \le 1V$		45	72	ns
progagation delay time BG going low	tpdl _{BG}	$CI = 3nF, V_{V_{-}5} = 4.6V,$		12	20	ns
UNDER-VOLTAGE LOCKOUT	- 1				1	
V_5 ramping up	tpdh _{UVLO}	EN is High			10	us
V_5 ramping down	tpdl _{UVLO}	EN is High			10	us
PRDY						
EN is transitioning from low to high	tpdhPRDY	V_5 \geq UVLO threshold, Delay measured from EN \geq 2.0V to PRDY \geq 3.5V			10	μs
EN is transitioning from high to low	tpdh _{uvLO}	V_5 ≥ UVLO threshold. Delay measured from EN ≤ 0.8V tp PRDY ≤ 10% of V_5			500	μs
DSPS_DR				•		
rise/fall time	tr _{DSPS_DR} , tf _{DSPS_DR}	CI = 100pf, V_5 = 4.6V,			20	ns
propagation delay, DSPS_DR going high	tpdh _{DSPS_DR}	S_MOD goes high and BG goes high or S_MOD goes low			10	ns
propagation delay DSPS_DR goes low	tpdl _{DSPS_DR}	S_MOD goes high and BG goes low			10	ns
OVERVOLTAGE PROTECTION						
propagation delay OVP_S going high	tpdh _{OVP_S}	$V_5 = 4.6V$, $T_J = 125$ °C, $OVP_S \ge 1.2V$ to BG > 90% of V_5			1	μs

(1) This device is ESD sensitive. Use of standard ESD handling precautions is required.

HIGH SPEED SYNCHRONOUS POWER MOSFFT SMADT DRIVED MOSFET SMART DRIVER

August 31, 2000

PIN DESCRIPTION

Pin#	Pin Name	Pin Function		
1	OVP_S	Overvoltage protection sense. External scaling resistors required to set protection threshold.		
2	EN	When high, this pin enables the internal circuitry of the device. When low, TG, BG and PRDY are forced low and the supply current (5V) is less than 10µA.		
3	GND	Logic GND.		
4	СО	TTL-level input signal to the MOSFET drivers.		
5	S_MOD	When low, this signal forces BG to be low. When high, BG is not a function of this signal.		
6	DELAY_C	Sets the additional propagation delay for BG going low to TG going high. Total propagation delay= 20ns + 1ns/pF.		
7	PRDY	This pin indicates the status of 5V. When 5V is less than 4.4V(typ) this output is driven low. When 5V is greater than or equals to 4.4V(typ) this output is driven to 5V level. This output has a 10mA drive capability and 10µA sink capability.		
8	V _{cc}	+5V supply. A .22-1 μ F ceramic capacitor should be connected from 5V to PGND very close to this pin.		
9	BG	Output drive for the synchronous MOSFET.		
10	PGND	Power ground. Connect to the synchronous FET power ground.		
11	DSPS_DR	Dynamic Set Point Switch Drive. TTL level output signal. When S_MOD is high, this pin follows the BG driver pin voltage.		
12	DRN	This pin connects to the junction of the switching and synchronous MOSFET's. This pin can be subjected to a -2V minimum relative to PGND without affecting operation.		
13	TG	Output gate drive for the switching (high-side) MOSFET.		
14	BST	Bootstrap pin. A capacitor is connected between BST and DRN pins to develop the floating bootstrap voltage for the high-side MOSFET. The capacitor value is typically between 0.1µF and 1µF (ceramic).		

NOTE:

(1) All logic level inputs and outputs are open collector TTL compatible.

PIN CONFIGURATION

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

