

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

G01B 11/24, A61C 13/00, 19/04

(11) International Publication Number:

WO 00/08415

(43) International Publication Date:

17 February 2000 (17.02.00)

(21) International Application Number:

PCT/IL99/00431

A1

(22) International Filing Date:

5 August 1999 (05.08.99)

(30) Priority Data:

125659

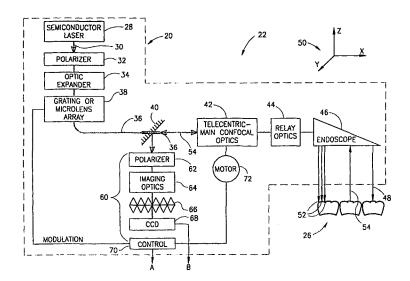
5 August 1998 (05.08.98) IL

(71) Applicant (for all designated States except US): CADENT LTD. [IL/IL]; Hamelacha Street 14, 60372 Or Yehuda (IL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BABAYOFF, Noam [IL/IL]; Laskov Street 25, 58672 Holon (IL). GLASER-INBARI, Isaia [IL/IL]; Hashnayim Street 24, 53230 Givataim (IL).

(74) Agent: REINHOLD COHN AND PARTNERS; P.O. Box 4060. 61040 Tel-Aviv (IL).


(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: IMAGING A THREE-DIMENSIONAL STRUCTURE BY CONFOCAL FOCUSSING AN ARRAY OF LIGHT BEAMS

(57) Abstract

Determining surface topology of a portion (26) of a three-dimensional structure is provided. An array of incident light beams (36) passing through a focusing optics (42) and a probing face is shone on said portion. The focusing optics defines one or more focal planes forward the probing face in a position which can be changed (72) by the focusing optics. The beams generate illuminated spots (52) on the structure and the intensity of returning light rays propagating in an optical path opposite to that of the incident light rays is measured (60) at various positions of the focal plane(s). By determining spot-specific positions yielding a maximum intensity of the returned light beams, data is generated which is representative of said topology. Measurement of teeth. Light beams by grating of matrix of pinholes, micro lens array. Simultaneous imaging from three angles. Quicker with three different light components.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

·1.

IMAGING A THREE-DIMENSIONAL STRUCTURE BY CONFOCAL FOCUSSING AN ARRAY OF LIGHT BEAMS

FIELD OF THE INVENTION

This invention in the field of imaging techniques and relates to a method and an apparatus for non-contact imaging of three-dimensional structures, particularly useful for direct surveying of teeth.

5 BACKGROUND OF THE INVENTION

A great variety of methods and systems have been developed for direct optical measurement of teeth and the subsequent automatic manufacture of dentures. The term "direct optical measurement" signifies surveying of teeth in the oral cavity of a patient. This facilitates the obtainment of digital constructional data necessary for the computer-assisted design (CAD) or computer-assisted manufacture (CAM) of tooth replacements without having to make any cast impressions of the teeth. Such systems typically includes an optical probe coupled to an optical pick-up or receiver such as charge coupled device (CCD) and a processor implementing a suitable image processing technique to design and fabricate virtually the desired product.

One conventional technique of the kind specified is based on a laser-triangulation method for measurement of the distance between the surface of the tooth and the optical distance probe, which is inserted into the

oral cavity of the patient. The main drawback of this technique consists of the following. It is assumed that the surface of the tooth reflects optimally, e.g. Lambert's reflection. Unfortunately, this is not the case in practice and often the data that is obtained is not accurate.

Other techniques, which are embodied in CEREC-1 and CEREC-2 systems commercially available from Siemens GmbH or Sirona Dental Systems, utilize the light-section method and phase-shift method, respectively. Both systems employ a specially designed hand-held probe to measure the three-dimensional coordinates of a prepared tooth. However, the methods require a specific coating (i.e. measurement powder and white-pigments suspension, respectively) to be deposited to the tooth. The thickness of the coating layer should meet specific, difficult to control requirements, which leads to inaccuracies in the measurement data.

By yet another technique, mapping of teeth surface is based on physical scanning of the surface by a probe and by determining the probe's position, e.g. by optical or other remote sensing means, the surface may be imaged.

U.S. Patent No. 5,372,502 discloses an optical probe for three-dimensional surveying. The operation of the probe is based on the following. Various patterns are projected onto the tooth or teeth to be measured and corresponding plurality of distorted patterns are captured by the probe. Each interaction provides refinement of the topography.

SUMMARY OF THE INVENTION

The present invention is directed to a method and apparatus for imaging three-dimensional structures. A preferred, non-limiting embodiment, is concerned with the imaging of a three-dimensional topology of a teeth segment, particularly such where one or more teeth are missing. This may allow the generation of data for subsequent use in design and manufacture of,

20

5

WO 00/08415 - 3 - PC1/1L99/004

for example, prosthesis of one or more teeth for incorporation into said teeth segment. Particular examples are the manufacture of crowns or bridges.

The present invention provides, by a first of its aspects, a method for determining surface topology of a portion of a three-dimensional structure, comprising:

- (a) providing an array of incident light beams propagating in an optical path leading through a focusing optics and a probing face; the focusing optics defining one or more focal planes forward said probing face in a position changeable by said optics, each light beam having its focus on one of said one or more focal plane; the beams generating a plurality of illuminated spots on the structure;
- (b) detecting intensity of returned light beams propagating from each of these spots along an optical path opposite to that of the incident light;
- 15 **(c)** repeating steps (a) and (b) a plurality of times, each time changing position of the focal plane relative to the structure; and
 - (d) for each of the illuminated spots, determining a spot-specific position, being the position of the respective focal plane, yielding a maximum measured intensity of a respective returned light beam; and
 - (e) based on the determined spot-specific positions, generating data representative of the topology of said portion.

By a further of its aspects, the present invention provides an apparatus for determining surface topology of a portion of a three-dimensional structure, comprising:

- a probing member with a sensing face;
- an illumination unit for providing an array of incident light beams transmitted towards the structure along an optical path through said probing unit to generate illuminated spots on said portion;

5

10

20

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

