
ENCRYPTION

8
Network Security December 2009

We have seen plenty of evidence of
this since the introduction of the Data
Encryption Standard (DES) in the 70s,
its various incarnations since then, and
most recently its upgrade to Triple DES
in 1999 (which happened as attacks on
the original cipher became increasingly
viable as computing resources grew).
However, even Triple DES has had
its day and has, since 2002, been
superseded by the Advanced Encryption
Standard (AES) that we should all
be using. But keeping encryption
technology ahead of the game is
a continual process, and security
professionals are already investigating
the successor to AES.

“Even Triple DES has had its
day and has, since 2002, been
superseded by the Advanced
Encryption Standard (AES) that
we should all be using”

This is, inevitably, a moving target;
it has to be to keep up with computing
power and increasingly sophisticated
mathematical analysis. But AES is still
a long way from being obsolete. There
are still many solutions that are using
its predecessor 3DES. So in this paper,
I will look at how AES works, without
going into the maths.

Explanation
Before going in to the detail, here are
definitions of some of the terms I will
be using:

Plaintext: The original message and the
one that is to be encrypted.

Ciphertext: The encrypted message
which is the output of the algorithm.

Block Size: The number of bits that
the cipher will operate on. This is
128 bits in AES. Each message is split
up into this number of bits and the
operations described below carried
out.

Even Triple DES has had its day and
has, since 2002, been superseded by
the Advanced Encryption Standard
(AES) that we should all be using”

AES has a fixed block size of 128
bits. So all data that is to be encrypted
will be broken up into 128 bit blocks.
Padding is added if the data is not a
multiple of 128bits. For manipulation
purposes, 128 bits = 16 bytes (8 * 16
= 128) which is then treated as a 4 x 4
byte matrix.

This is termed the ‘state’. This is
important as the subsequent algorithm
will manipulate this ‘state’ to create
the ciphertext.

Encryption Key Size: This is the
length in bits of the key used to encrypt
or decrypt the message. In this standard
the cipher key can only be 128, 192 or
256 bits long.

There are some differences in the way
the algorithm works for the different
encryption key lengths, so this paper
will primarily focus on the cipher key
of 128 bits.

Some basic principles
There are three important issues for an
encryption algorithm:

Only the encryption key is secret
The algorithm can be made public but
that does not help an attacker decipher a
message as the encryption key is required
to implement the algorithm. This allows
us to define a standard which everybody
can follow.

Confusion
This involves obscuring the relationship
between the plaintext and the
ciphertext. So in its simplest form, it is
substituting one letter for a completely
different one. The trick is to make that
relationship impenetrable.

Advanced Encryption
Standard (AES)
Simon Heron, Internet Security Analyst, Network Box

Ever since humans started talking, we have been trying to work out a way
of communicating information to one person, while keeping it secret from
everyone else. Certainly, when you start to look at encryption methods, you are
introduced to the ‘Caesar’ Cypher. which shows how old encryption is and how
simple old ciphers now are for us to break.

Figure 1: The State.

Figure 2: The Encryption Key.

Simon Heron

PNC 1053 Page 1 of 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ENCRYPTION

Diffusion
This is the mixing and reordering of the
message. So operations here would be
shifting data or transposing columns,
for instance.

Rijndael’s Substitution
Box (S-Box)
This is the most important function
that performs substitution which
obscures the relationship between
the plaintext and the ciphertext. It
introduces the second of the three
requirements above: confusion.

The S-Box is created by using a
form of modulus mathematics which
is called Rijndael’s Galois field and
within this field, arithmetic has special
properties which ensure values do not
exceed 28 which keeps everything in
a byte, which is great for computers.
The choice of this field and other steps
that are taken to derive the S-Box are
carefully chosen to resist cryptanalysis
and are definitely beyond the scope
of this article. In practice, S-box is
generally used in the form of a lookup
table:

The thing to hang onto here is
that to process a number through the
S-Box, each number is divided into
its most and least significant nibble
(4 bits). The least significant nibble
identifies the column to use in the
above table and the most significant
nibble defines the row.

An example
For this, we have to move to
hexadecimal which is frequently
indicated by prefixing a number
with ‘0x’ so that 16 in base 10
(decimal) becomes 0x10 in base 16
(hexadecimal).

So to convert 0x53, divide into 0x50
and 0x03 and at the intersection of row
and column we find: 0xed. Similarly,
0xe5 becomes 0xd9.

December 2009 Network Security
9

Table 1: S-box data is generally provided as a look-up table.

Table 2: The look-up table that results from the RCON function.

Figure 4: S-Box step.Figure 3: Shift Function.

Page 2 of 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ENCRYPTION

10
Network Security December 2009

Rcon
This function is used to confuse the
derivations of the encryption key that
will be used in the standard. Very
simplistically, this function is putting
2 to the power of 254 to 509 but in
the Rijndael’s Galois field which uses
its form of mathematics to keep values
within a byte. The result is another look
up table.

This is used to create a number of
encryption keys (or round keys). Each
key size (128, 192 and 256 bits) has
a different number of ‘rounds’. Each
round requires a different key to provide
the required diffusion and hence a
different number of round keys need to
be derived from the encryption key.

For AES128, the first ‘n’ bytes are the
original key itself. Then the last column

of the key is taken and round shifted (as
shown in figure 3, above).

The result is then pushed through
the s-box to provide a completely new
column:
The most significant byte of the result
is then XOR-ed with a value from the
Rcon table above. For the first round,
the index into the Rcon table will be 1,
and then is incremented for each new
round.

To create the first column of the next
round key, the result of this XOR is
XOR-ed with the first column of the
previous round key. In the case of the
first round, this is:

The next three columns of the new
‘key’ are created by taking each new
column created and XOR-ing it with
the four byte block 16 bytes before the
new expansion key.

This is repeated until there are enough
keys for each round. For AES128, there
are 10 rounds and so 10 extra keys are
required.

Enough groundwork. Now lets start
the encryption.

The Advanced Encryption Standard
There are three main stages in the
standard:

The initial round (this is really just
initialisation).
The intermediate rounds
The final round

This is straightforward: take the plain-
text and XOR it with the encryption
key.

This stage has four steps:

 – use the s-box to replace
each byte of the state with a new
value.

 – Rotate the state in a
prescribed fashion.

 – Take 4 bytes and mix
them so that all four bytes have an
effect on the value of each of the
resulting four bytes.

 – each byte of the
state is combined with the round key
created by the key schedule above.

Figure 8: The initial round.

Figure 5: 1st Round so Rcon step, rcon(1) = 0x01.

Figure 6: Creating the first column of the new key.

Figure 7: Creating round key for round 1.

Page 3 of 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ENCRYPTION

Let us look at each of these steps in a bit
more detail.

Step 1: SubBytes
Take each byte and using Rijndael’s
S-Box algorithm map that byte to the
new value.

Step 2: ShiftRows
The next two steps now introduce
‘diffusion’ into the standard. For
AES128, each row is shifted left by the
value of the row where the top row is
row zero. So the top row stays as it is,
the first row is shift 1 to the left, the
second row is shifted two to the left and
the third row three to the left.

Step 3: MixColumns
In this step the four bytes of each
column of the state are used as input.
So, for example, from figure 10, the first
four bytes to be used are:
This step takes these four bytes and
multiplies them in Rijndael’s Galois
field by a fixed polynomial:

c(x) = 3x3 + x2 + x + 2 modulo x4 + 1

This results in the following matrix
which may make things clearer:

Since this is done in Rijndael’s Galois
field, the addition is just exclusive OR
(^) but the multiplication is followed
by dividing by a reducing polynomial

x8 + x4 + x3 + x + 1 to keep it within
the finite field. In the following, the

multiplication:

x0 0 5 ^ Y10 ^ Y15
x4 = Y0 5 10 ^ Y15
x8 = Y0 ^ Y5 10 15
x12 0 ^ Y5 ^ Y10 15

The result, rx, satisfies the requirement to
ensure that all four rows impact on the
result. As this step uses XOR and is care-
fully designed, it can be reduced to
the lines of C outlined in listing 1:

Step 4: AddRoundKey
This is the same as the initial round above,
but using one of the keys derived from the
Rijndael’s key schedule. So, the result from
Step 3, MixColumns, is XOR-ed with the
next in the sequence of keys generated by
the Rijndael’s Key Schedule so each round
is XOR-ed with a different key derived
from the original.

Repeat the steps
Repeat steps 1 to 4 until the number of
‘rounds’ defined for the keysize by the
standard have been carried out for this
stage:

AES128 – repeat 9 times
AES192 – repeat 11 times
AES256 – repeat 13 times

This leaves one round for the final step.

There are more attacks being devised
against AES and as computing capac-
ity improves, developments of these
attacks may become practicable”

This round carries out three steps:

The reason why the final round does not
have a ‘mixcolumns’ step is because that
step is used to feed into the next round.
Since this is the final step and there is no
next round, the final round excludes that
step.

December 2009 Network Security
11

Figure 9: Use the S-Box to create ‘confusion’.

Figure 10: Shift Rows step.

Figure 11: The resulting four input bytes
from the row shifting step.

Figure 12: Matrix produced by polynomial
multiplation of four input bytes (as in listing 1).

Page 4 of 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Three types of authentication methods
are frequently used: identification (ID)
device-based, biometric-based and
password-based. A password-based
authentication method is easier to
implement and deploy, and costs less to
manage than the other two. The method
relies on a possession of knowledge

Seung S Yang and Hongsik Choi

Authentication is the process of confirming that something claimed is true,
and an authentication method is the way of proving the claim. As more and
more people use networked computer systems in their everyday lives – for
example, in online banking, email, and online shopping – the importance of
authentication is increasing.

Seung S Yang

That is it, the state is encrypted.

Conclusion
There are more attacks being devised
against AES and as computing capacity
improves, developments of these attacks
may become practicable. However,
AES can always up the number of
rounds or move to creating dynamic

S-boxes to improve the resistance of the
standard. The main attack is usually
against implementations of the standard
(where someone has programmed the
standard and made a mistake that can
be exploited). It is recommended that
properly validated and supported code
is used – of which there are a number of
options – to protect against this sort of
attack.

About the author

Simon Heron is an internet security analyst
at Network Box (UK) Ltd, a managed
security company, where he is responsible for
developing the overall business and technology
strategy and growth.

Heron has more than 16 years experience
in the IT industry, including eight years
experience in internet security. During
this time he has developed and designed
technologies ranging from firewalls, anti-virus,
LANs and WANs.

Prior to Network Box, Heron co-founded
and was Technical Director of Cresco
Technologies Ltd, a network design and
simulation solution company with customers
in the USA, Europe and China. Before that
he worked for Microsystems Engineering Ltd,
as a Project Manager, where he implemented
network security for the company.

Heron began his career as a digital
hardware and software engineer, developing
pioneering speech recognition technology before
moving on to work for the British Antarctic
Survey (B.A.S.) as science project leader.
While at the B.A.S. he spent two Antarctic
winters at the research station Halley in the
Antarctic, developing and enhancing graphical
technologies in the harshest of conditions.

Heron has an MSc in Microprocessor
Technology and Applications, and a BSc in
Naval Architecture and Shipbuilding and
is a Certified Information Systems Security
Professional (CISSP).

GRIDONE

12
Network Security December 2009

A complement
to the GridOne
authentication
method

void gmix_column(unsigned char *r) {
 unsigned char a[4];
 unsigned char b[4];
 unsigned char c;
 unsigned char h;
 /* The array ‘a’ is simply a copy of the input array ‘r’
 * The array ‘b’ is each element of the array ‘a’ multiplied by
 * in Rijndael’s Galois field
 * a[n] ^ b[n] is element n multiplied by 3 in Rijndael’s Galois field */
 for(c=0;c<4;c++) {
 a[c] = r[c];
 h = r[c] & 0x80; /* hi bit */
 b[c] = r[c] << 1;
 if(h == 0x80)
 b[c] ^= 0x1b; /* Rijndael’s Galois field */

 }
 r[0] = b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1]; /* 2 * a0 + a3 + a2 + 3 * a1 */
 r[1] = b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2]; /* 2 * a1 + a0 + a3 + 3 * a2 */
 r[2] = b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3]; /* 2 * a2 + a1 + a0 + 3 * a3 */
 r[3] = b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0]; /* 2 * a3 + a2 + a1 + 3 * a0 */
}

Listing 1: C code designed to mix columns in a Rijndael Galois field. (Code provided by: http://
en.wikipedia.org/wiki/Rijndael_mix_columns).

Hongsik Choi

Page 5 of 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

