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Real-Time Diagnosis of Semiconductor
Manufacturing Equipment Using a
Hybrid Neural Network Expert System

Byungwhan Kim,Member, IEEE and Gary S. MaySenior Member, IEEE

Abstract—This paper presents a tool for the real-time diag- identifying the assignable causes for the equipment malfunc-
nosis of integrated circuit fabrication equipment. The approach tions and correcting them quickly to prevent the subsequent
focuses on integrating neural networks into an expert system. .. rrence of expensive misprocessing. With the advent of
The system employs evidential reasoning to identify malfunctions highl fici ble of o .
by combining evidence originating from equipment maintenance Ig Yy Pro !C'ent .Sensors ca_pa €o mo”'to“”g prOC?SS con
history, on-line sensor data, and in-line post-process measure- ditions in-situ, it is now desirable to perform diagnosis on a
ments. Neural networks are used in the maintenance phase real-time basis.
of diagnosis to approximate the functional form of the failure Algorithmic diagnostic systems such B§PPOCRATES$1]
history distribution of each component. Predicted failure rates have been developed to identify process faults from statistical

are then converted to belief levels. For on-line diagnosis in the . h
case of previously unencountered faults, a CUSUM control chart inference procedures and electrical measurements performed

is implemented on real sensor data to detect very small processOn finished IC wafers. Although this system makes good use
shifts and their trends. For the known fault case, continuous of quantitative models of process behavior, it can only arrive at

hypothesis testing on the statistical mean and variance of the yseful diagnostic conclusions in the limited regions of opera-
sensor data is performed to search for similar data patterns and jon gyer which these models are valid. Furthermore, in critical

assign belief levels. Finally, neural process models of process L .
figures of merit (such as etch uniformity) derived from prior PTOCESS Steps such as reactive ion etching (RIE), the theo-

experimentation are used to analyze the in-line measurements, retical basis for determining causal relationships is not well
and identify the most suitable candidate among faulty input understood, thereby limiting the usefulness of physical models
parameters (such as gas flow) to explain process shifts. A working [2]. Expert systems such aBIES [3] have been designed
prototype for this hybrid diagnostic system has been implemented 4 4y upon experiential knowledge to develop qualitative
on the Plasma Therm 700 series reactive ion etcher located in the . . . o
Georgia Tech Microelectronics Research Center. models qf process 'behawc'Jr. This approach has attained I|m|t'ed
success in attempting to diagnose unstructured problems which
lack a solid conceptual foundation for reasoning. However, a
purely knowledge-based technique often lacks the precision
inherent in deep-level physical models, and is thus incapable
|. INTRODUCTION of deriving solutions for unanticipated situations from the

S THE semiconductor industry moves toward submicrdif'derlying principles surrounding the process. _
fabrication technology, tight control of process variabiliy Neural networks have recently emerged as an effective
is an essential requirement. A certain amount of variabilitp©! for process modeling [4], [5] as well as fault diagnosis

is inherent in sophisticated semiconductor equipment, aftl: [7]- Diagnostic problem solving using neural networks
significant performance shifts may occur when this variabfféduires the association of input patterns representing quanti-
ity becomes large compared to random process noise (i_tg_tive and qualitative process behavior to fault identification.

fluctuations resulting from small and essentially uncontroROPUSINess to noisy sensor data and high speed parallel
lable causes). Such shifts are often indicative of equipmé}ﬂmputanon make neural networks an attractive alternative for
malfunctions. When unreliable equipment performance caudg&l-time diagnosis. However, the pattern recognition-based
operating conditions to vary beyond an acceptable level, ov8f2ural network approach has limitations. First, a complete set
all product quality is jeopardized. Thus, timely and accurafg fault signatures IS _hard to obtain, and the represen'Fatmnal
equipment malfunction diagnosis can be a key to the succes&dequacy of a limited number of data sets can induce

the semiconductor manufacturing process. Diagnosis involyagiwork overtraining, thus increasing the misclassification or
“false alarm” rate. Also, pattern matching approaches in which

diagnostic actions take place following a sequence of several
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This paper presents a prototype tool for the automated mal-
function diagnosis of integrated circuit fabrication equipment
The methodology described combines the best characteristig
of quantitative algorithmic, qualitative experiential and patterrrg
recognition-based neural network approaches. This systefft
offers advantages in that it yields a stable and reliable ranke j n = EY B [ =) B (Y b Throttle Valve
list of fault possibilities, even in the presence of measuremenp i ¥ =¥ s=v & ¥ ¥\, Gas line
noise (in part due to the inherent noise resistance of neur ¢
networks). In addition, the varying degrees of belief in eac
stage of diagnosis aids in the early detection of suspicious
trends, often prior to an actual failure occurrences. This work-
ing prototype is currently being developed and implemente
on a Plasma Therm 700 series RIE located in the Georgia Tech
Microelectronics Research Center. Fig. 1. Partial schematic of RIE gas delivery system.
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II. DIAGNOSTIC INFERENCE METHOD Dempster’s rules for evidence combination provide a de-

As a diagnostic inference method, the Dempster—Shaterministic and unambiguous method of combining BPMD'’s
theory of evidential reasoning [8] has proven to be suitableom separate and distinct sources of evidence contributing
for real-time malfunction diagnosis applications [9]. This techrarying degrees of belief to several propositions under a
nigue allows the combination of various pieces of uncertasommon frame of discernment. The rule for combing the
evidence obtained at irregular intervals, and its implementatiobserved BPM's of two arbitrary and independent knowledge
results in time-varying, nonmonotonic belief functions whickourcesn; andm, into a thirdms is as follows:
ref_lect_ the_ current status of diagnostic conclusions at any given Y (X)) ma(Y))
point in time. ma(Z) = 7 3)

One of the basic concepts in Dempster—Shafer theory is
the frame of discernmengsymbolized by#), defined as an WhereZ = X; nY; and
exhaustive set qf mutually exclusive p_ropositions. In c_iiagnosis, k= Smy (X;) * ma(Y;) (4)
the frame of discernment is the union of all possible fault
hypotheses. Each piece of collected evidence can be mappbére X; NY; = @. Here X; and Y, represent various
to a fault or group of faults withi®. The likelihood of a fault propositions which consist of fault hypotheses and disjunctions
propositionA is expressed as a bounded intensl4), p(A)] thereof. Thus, the BPM of the intersection.®f andY/ is the
which lies in [0, 1]. The parametef A) represents theupport product of the individual BPM's ofX; andY;. The factor
for A, which measures the weight of evidence in support ¢f — &) is a normalization constant which prevents the total
A. The other parametep(A), called theplausibility of A, belief from exceeding unity due to attributing portions of belief
is defined as the degree to which contradictory evidencet@sthe empty set.
lacking. Plausibility measures the maximum amount of belief Consider the combination af.; andm, when each contains
that can possibly be assigned th The quantityu(A) is different evidence concerning the diagnosis of a malfunction
the uncertainty of A, which is the difference between thein the RIE application. Such evidence could result from two
evidential plausibility and support. For example, an evidenckfferent sensor readings for example. In particular, suppose
interval of [0.3, 0.7] for proposition4 indicates that the that the sensors have observed that the flow of one of the
probability of A is between 0.3 and 0.7, with an uncertaintgtch gases into the process chamber is too low. Let the
of 0.4. frame of discernment = {A, B,C, D}, where A through

For diagnosis, propositionl represents a given fault hy- D symbolically represent the following mutually exclusive
pothesis. An evidence interval for fault is determined from equipment faults:

a basic probability mass distribution (BPMD). The BPM A) A mass flow controller miscalibration;
indicates the portion of the total belief in evidence assignedp  gas line leak;

to a particular fault hypothesis set. Any residual belief in the ¢ throttle valve malfunction;

frame of discernment that cannot be attributed to any subsetp  incorrect sensor signal.

of ¢ is assigned directly t@ itself, which in effect introduces These components are illustrated graphically in the partial
uncertainty into the diagnosis. Using this framework, th&.hematic of the etcher gas flow system shown in Fig. 1.

support and plausibility of proposition are given by Suppose that belief in this frame of discernment is dis-
s(A) = Im(A;) 1) tributed according to the BPMD's:

p(A) =1-3m(B;) 2) mi{AUC,BUD,6) =(0.4,0.3,0.3)

where A; C A andB; C A and the summation is taken over ma2(4U B,C,D,0) = {05,01,02,0.2).

all nranncitinne in_a nivvan RDAM _ Thiic tha tntal haliaf inic  Tha caleiillatinn nf tha comhinad RDMDWL) ic chnwn in
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the presence of various propositions sim and m- whose Fig. 2. Typical back-propagation neural network.
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The plausibilities for propositions in
BPM are calculated by applying (2). The individual &
evidential intervals implied byms are A[0.225,0.550], !
B[0.169,0.472],C[0.079,0.235], and  D[0.135,0.269)]. 0,
Combining the evidence available from knowledge sources °° |
my and mo thus leads to the conclusion that the most 0
likely cause of the insufficient gas flow malfunction is a -os ImeS¥eresaznsae
miscalibration of the mass flow controller (propositig).

N
1

Incident RF Power

o
4

SENS

Reflective RF Power

Fig. 3. Data signatures for a malfunctioning GHfhass flow controller.

I1l. NEURAL NETWORK-BASED RIE MODELING

Neural networks have the capability of learning complex Neural networks used to generalize the behavior of a time
P y 9 P€%eries are referred to aeural time seriegNTS) models. The

relationships between groups of related parameters. TP}S S model is capable of simultaneously filtering both auto-

consist of parallel processing units (callegurons), which aad cross-correlated data. That is, the NTS model can account

are interconnected in such a way that knowledge is stor ) ) . . ;
y 9 l%r correlation among several variables being monitored simul-

in the weight of the connections between them. Each neurgn

. . g . . . te}neously. To illustrate, real-time tool data was collected via an
contains the weighted sum of its inputs filtered by a sigmoidal o )
?qmpment monitoring system designed to transfer data from an

activation function. The nonlinear mapping capabilities o . o )
pping. cap etcher to a remote workstation. Monitoring was accomplished

neural netwqus haye recently been applied _by several Othering a Tektronix Model 251TestLabdata acquisition system
researchers in semiconductor process modeling [10]-[13].

model the RIE process, the quantitative relationships Whilfrgl%erfaced to the Plasma Therm RIE system via serial ports. In

. is example, an equipment alarm was signaled, and its cause
relate input parameters to output responses have been encoded

in feed-forward neural networks via the error back-propagati S later identified to be an insufficient gas s_upply frqm the
(BP) algorithm [14]. The structure of a typical BP netWorkrl-fluoro methane mass flow controller (CE)FFig. 3 depicts

A e ; . alfunctioning behavior of the CHFgas flow.
appears in Flg.. 2. The_ specnjc.manner_ in which BP neurr:;qAn NTS network was trained to model the CHElow
nets are used in RIE diagnosis is described below.

pattern in the RIE process using a simple sampling technique
) . . which involved training the network to forecast the next GHF
A. Time Series Modeling from the behavior of five past values. The training set for the
For real-time diagnosis, it is critical to model the variatio?tNTS network consisted of one out of every ten data samples.
of in-situ sensor data and develop an efficient method féis shown in Fig. 4, auto-correlation among consecutive £HF
handling this voluminous and multidimensional data. Timeneasurements was accounted for by simultaneously training
series modeling is a means to achieve each of these erlls. network on the present value of CHRnd five past
Under malfunction conditions, sensor readings can serve\adues. The cross-correlation among the GH¥as modeled
process “signatures” which assist in identifying the occurrenbg including as inputs to the network the present values of
of a particular fault. Recently, neural networks have bedhe temperature, incident and reflected RF power, oxygen and

nronncad ac a maanc tn _davalan tima cariae mndale nf tARAME. Tha acciiracyv nf tha trainad nahanrle \wae maaciirad hyv
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Cross F SHF3(0 Maintenance Diagnosis On-line Diagnosis In-line Diagnosis
correlated Prze(sgure ® - before run during run after run
L. RF Power(t) _J
Neural CHF;5(t+K)
™ CcHF D) Time-Series 4
4(t- Y
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correlated . -
- * History *» Gas Flows « Etch Rate
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L CHF;(t-k) J « Utilities * RF Power * Anisotropy
* Temperature * Uniformuty
Fig. 4. Inputs (auto and cross-correlated data) and output of a neura

time-series model.

-

Time

trained, the NTS model provides a simple means to encode

this fault signature for later use. Fig. 5. Chronological evidence sources for equipment malfunction diagno-
sis.

B. Process Modeling
Qiagnosis based on this framework for evidence collection

measurements of post-processed wafers. To achieve this, f _ngs plgcg in three chronological _s@ages (Fig. 5). Ma|r_1tenz_;1nce
measurements must be compared to values predicted b 13gnosIs 1S performed by examining the re!e\_/ant h|§torlpal
process model. Differences between model predictions afgords of equipment performance and bu_lldlng rgllabl_llty
measured responses are indicative of potential equipmgh?qEIstfheaCh e?u!pment 'compogelnt. Dlé”ng on-line dlag—l
malfunctions. In [5], neural network models of RIE responsélﬁs's’ oth neural time-series models an CUSUM contro
were developed from a Box-Wilsaentral composite circum- © art [17_] techniques are employgd to analyze fau!t pat-
scribeddesign requiring 27 trials [16]. Etching was pen‘orme&e_rns avgnable from equipment momtorlng sys:em. For |n-I|nde .
on a test structure designed to facilitate the simultaneoﬁ@gnos's’ measurements on processed wafers are used in

measurement of the etch rate, uniformity, anisotropy of,Sicronjunction with neural network process models. In each
in a CHR; and oxygen plasma, as well as the selectivity hase, evidential support and plausibility for various fault

the SiG etch with respect to photoresist. This characterizati patheses are generated and mapped 1o partmulgr e_qument
experiment provided neural network training data. components. The methodology employed to do so is discussed

A “forward” neural network-based process model definé%elow'
a functional relationship between RIE process conditions (in-
puts) such as RF power or gas composition and respongesMaintenance Diagnosis

(outputs) such as etch rate or uniformity. The forward processDuring the maintenance phase, the objective of the diag-

model also provides a mechanism for comparing measuigdkyic system is to derive evidence of potential component
RIE output responses to pred|cte_d values. Large differencgg; s hased on the historical performance of equipment
which may indicate potential equipment faults, must then R, nents. The data available from which evidential belief

traced back to fluctuations in model input parameters. g,y 1o generated is limited, consisting of only the number of

calculate the shift of the process input settings from thq‘iéilures a given component has experienced and the compo-

nominal values, an inverse neural process model is employgdy age In order to derive evidential support for potential

This inverse model is obtained by training the network “if,ifnctions from this information, a reliability modeling

reverse” (i.e., using output/input pairs, rather than input/outPiifohnique has been developed to investigate the aging behavior
pairs). The inverse model provides a means to identify the .omnonents. The failure probability as a function of time
input parameter which is most likely responsible for an outpu, the instantaneous failure rate (or “hazard” rate) for each
process shift. Process shifts required for generating eVidenEﬁhponent may be estimated from a neural network trained on
§upport and plausibility can then be computed by utilizing thgj e history. The neural reliability model may then be used
inverse neural process models. to generate evidential support, plausibility and uncertainty for
each fault hypotheses (i.e., each potentially faulty component)
in the frame of discernment.

1) The Weibull Distribution: Consider reliability model-
The three relevant time periods for evidence collection ifg based on the Weibull distribution. The Weibull distribution

Diagnostic information can also be extracted from in-lin

IV. GENERATION OF EVIDENTIAL SUPPORT

semiconductor manufacturing are: has been used extensively as a model of time to failure in
1) during equipment maintenance periods (before processectrical and mechanical components and systems. Examples
ing); of systems which lend themselves to the Weibull model include

2) during on-line equipment operation (during processinggjectrical components such as batteries and ceramic multilayer

2\ _Adurina_in_lina _nnet-nrnrace nhvcical and/ar _alactricoebhnacitnre . machanical cvetame ciirh _ac nac turhina anninac
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The error signal for the modified back-propagation neural
network in this case is

 J

. = 2
Neural Networ Welbl?u )»p ® E= O'O()‘P - )‘a) ' (7)
Function
by © Since the predicted hazard rate is differentiable, the error
gradient with respect to the network weights may be computed
using the chain rule as
Fig. 6. Scheme to estimate Weibull function parameters. = | = (8)
Owiji, 8)\p dout;x Owi i,

mechanical parts such as bearings, and structural element%lii%reOut
aircraft and automobiles [18]. When a system is compos%ﬂ1 layer.
of a number of components and failure is due to the mo

serious of a large number of possible faults, the Weib

distribution seems to be a particularly accurate model [1f
and this closely resembles the situation being addressedfd
semiconductor equipment malfunction diagnosis.

., IS the calculated output of thi#th neuron in the
The first partial derivative in (8) S\, — A,),
d the third is the same as in the standard implementation
the back-propagation algorithm [14]. As for the second
ctor, this partial derivative may be computed separately
P each individual output neuron (or equivalently, for each
unknown parameter to be estimated). Due to the initially
fandom network weights, the first predicted values of the
hazard rate are arbitrary. However, after several training
iterations, the predicted hazard rate converges to the actual
\* rate. At this point, the scale and shape parameters computed
F(t)=1-exp [— <—> ] (5)  at the network output are the estimates which best fit the
distribution indicated by the training data.
where« and 3 are called scale and shape parameters, respecFollowing parameter estimation using this technique, the
tively. If a device exhibits Weibull-like reliability behavior, theevidential support for each equipment component is then
appropriate selection ok and 5 will allow this distribution obtained from the Weibull distribution function in (5) with
functions to closely approximate the observed failure behavigre estimated parameters. The corresponding plausibility is the
throughout its lifetime. The Weibull hazard ragdz), is given confidence leve|C) associated with this probability estimate,
by which is defined as [19]
ﬁt’@_l
M) = =5~ (6) Ct)y=1-[1-F@)" (9)
The hazard rate may be computed from the failure history of ) )
each component by plotting the number of failures versus tiréheren denotes the total number of component failures which
and finding the slope of this curve at each time point. have been observed at tinte .
A scheme designed to extract the shape and scale parametefs  The Exponential Distribution:Although  the  Weibull
using neural networks has been developed and tested, Sffdribution provides one approach to component reliability
is outlined in [18]. This scheme is depicted schematicallémde“”gv due to its simple functional form, the exponential

failure probability of a component at timg for the two-
parameter Weibull distribution is given by

in Fig. 6. Here the network outputs represent the initiallfiStribution is widely used to describe the time elapsing
unknown scale and shape parameters. These outputs are Rgfween two failures by characterizing the period during which
atively adjusted to reach to their optimal values as the neufalf@ilure rate is constant [17]. The cumulative distribution
network learns. The outputs are fed into the failure hazafgnction of this distribution is
function in (6), a predicted hazard ratg,j is computed, and
the result is compared with the actual hazard ratg,(which Fty=1-e™ (10)
has been computed from the failure history data.

The standard back-propagation training algorithm for feedsmere) is a constant equal to the reciprocal of the mean-time-
forward neural networks begins with a random set of weight®-failure. This parameter may be estimated as
An input vector which has been normalized so that all input
data lies in the interval betweenl and 1 is then presented f=_" (11)
to the network, and the output is calculated using this initial Yo ti
weight matrix. Next, the calculated output vector is compared
to the measured output vector, and the squared differenveleere ¢; represents the elapsed time betweén and ¢ —
between the two is used to determine the system errajth failure of a specific component. The evidential support
Error minimization is accomplished via the gradient desceist obtained by inserting (11) into (10) and subsequently

annrnach in which tha wainhte ara adilnictad in tha diractimmmniitinn tha carracnnndinn NDamnctar_Qhafar nlanicihilitv hy
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