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Real-Time Diagnosis of Semiconductor
Manufacturing Equipment Using a

Hybrid Neural Network Expert System
Byungwhan Kim,Member, IEEE, and Gary S. May,Senior Member, IEEE

Abstract—This paper presents a tool for the real-time diag-
nosis of integrated circuit fabrication equipment. The approach
focuses on integrating neural networks into an expert system.
The system employs evidential reasoning to identify malfunctions
by combining evidence originating from equipment maintenance
history, on-line sensor data, and in-line post-process measure-
ments. Neural networks are used in the maintenance phase
of diagnosis to approximate the functional form of the failure
history distribution of each component. Predicted failure rates
are then converted to belief levels. For on-line diagnosis in the
case of previously unencountered faults, a CUSUM control chart
is implemented on real sensor data to detect very small process
shifts and their trends. For the known fault case, continuous
hypothesis testing on the statistical mean and variance of the
sensor data is performed to search for similar data patterns and
assign belief levels. Finally, neural process models of process
figures of merit (such as etch uniformity) derived from prior
experimentation are used to analyze the in-line measurements,
and identify the most suitable candidate among faulty input
parameters (such as gas flow) to explain process shifts. A working
prototype for this hybrid diagnostic system has been implemented
on the Plasma Therm 700 series reactive ion etcher located in the
Georgia Tech Microelectronics Research Center.

Index Terms—Diagnosis, expert systems, neural networks, re-
active ion etching.

I. INTRODUCTION

A S THE semiconductor industry moves toward submicron
fabrication technology, tight control of process variability

is an essential requirement. A certain amount of variability
is inherent in sophisticated semiconductor equipment, and
significant performance shifts may occur when this variabil-
ity becomes large compared to random process noise (i.e.,
fluctuations resulting from small and essentially uncontrol-
lable causes). Such shifts are often indicative of equipment
malfunctions. When unreliable equipment performance causes
operating conditions to vary beyond an acceptable level, over-
all product quality is jeopardized. Thus, timely and accurate
equipment malfunction diagnosis can be a key to the success of
the semiconductor manufacturing process. Diagnosis involves

Manuscript received January 31, 1996; revised March 1997. This work was
supported by the National Science Foundation Grant DDM-9 358163 and the
IEEE/CPMT Motorola Fellowship.

B. Kim is with the Memory R&D Division, Department of Equipment
Engineering, Hyundai Electronics Industries Co., Ltd., Korea.

G. S. May is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0250 USA.

Publisher Item Identifier S 1083-4400(97)04320-9.

identifying the assignable causes for the equipment malfunc-
tions and correcting them quickly to prevent the subsequent
occurrence of expensive misprocessing. With the advent of
highly proficient sensors capable of monitoring process con-
ditions in-situ, it is now desirable to perform diagnosis on a
real-time basis.

Algorithmic diagnostic systems such asHIPPOCRATES[1]
have been developed to identify process faults from statistical
inference procedures and electrical measurements performed
on finished IC wafers. Although this system makes good use
of quantitative models of process behavior, it can only arrive at
useful diagnostic conclusions in the limited regions of opera-
tion over which these models are valid. Furthermore, in critical
process steps such as reactive ion etching (RIE), the theo-
retical basis for determining causal relationships is not well
understood, thereby limiting the usefulness of physical models
[2]. Expert systems such asPIES [3] have been designed
to draw upon experiential knowledge to develop qualitative
models of process behavior. This approach has attained limited
success in attempting to diagnose unstructured problems which
lack a solid conceptual foundation for reasoning. However, a
purely knowledge-based technique often lacks the precision
inherent in deep-level physical models, and is thus incapable
of deriving solutions for unanticipated situations from the
underlying principles surrounding the process.

Neural networks have recently emerged as an effective
tool for process modeling [4], [5] as well as fault diagnosis
[6], [7]. Diagnostic problem solving using neural networks
requires the association of input patterns representing quanti-
tative and qualitative process behavior to fault identification.
Robustness to noisy sensor data and high speed parallel
computation make neural networks an attractive alternative for
real-time diagnosis. However, the pattern recognition-based
neural network approach has limitations. First, a complete set
of fault signatures is hard to obtain, and the representational
inadequacy of a limited number of data sets can induce
network overtraining, thus increasing the misclassification or
“false alarm” rate. Also, pattern matching approaches in which
diagnostic actions take place following a sequence of several
processing steps are sub-optimal since evidence pertaining
to potential equipment malfunctions accumulates at irregular
intervals throughout the process sequence. At the end of a
sequence, significant misprocessing and yield loss may have
already taken place, making post-process diagnosis alone
economically undesirable.
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This paper presents a prototype tool for the automated mal-
function diagnosis of integrated circuit fabrication equipment.
The methodology described combines the best characteristics
of quantitative algorithmic, qualitative experiential and pattern
recognition-based neural network approaches. This system
offers advantages in that it yields a stable and reliable ranked
list of fault possibilities, even in the presence of measurement
noise (in part due to the inherent noise resistance of neural
networks). In addition, the varying degrees of belief in each
stage of diagnosis aids in the early detection of suspicious
trends, often prior to an actual failure occurrences. This work-
ing prototype is currently being developed and implemented
on a Plasma Therm 700 series RIE located in the Georgia Tech
Microelectronics Research Center.

II. DIAGNOSTIC INFERENCE METHOD

As a diagnostic inference method, the Dempster–Shafer
theory of evidential reasoning [8] has proven to be suitable
for real-time malfunction diagnosis applications [9]. This tech-
nique allows the combination of various pieces of uncertain
evidence obtained at irregular intervals, and its implementation
results in time-varying, nonmonotonic belief functions which
reflect the current status of diagnostic conclusions at any given
point in time.

One of the basic concepts in Dempster–Shafer theory is
the frame of discernment(symbolized by ), defined as an
exhaustive set of mutually exclusive propositions. In diagnosis,
the frame of discernment is the union of all possible fault
hypotheses. Each piece of collected evidence can be mapped
to a fault or group of faults within . The likelihood of a fault
proposition is expressed as a bounded interval [ ]
which lies in [0, 1]. The parameter represents thesupport
for , which measures the weight of evidence in support of

. The other parameter, , called theplausibility of ,
is defined as the degree to which contradictory evidence is
lacking. Plausibility measures the maximum amount of belief
that can possibly be assigned to. The quantity is
the uncertainty of , which is the difference between the
evidential plausibility and support. For example, an evidence
interval of [0.3, 0.7] for proposition indicates that the
probability of is between 0.3 and 0.7, with an uncertainty
of 0.4.

For diagnosis, proposition represents a given fault hy-
pothesis. An evidence interval for fault is determined from
a basic probability mass distribution (BPMD). The BPM
indicates the portion of the total belief in evidence assigned
to a particular fault hypothesis set. Any residual belief in the
frame of discernment that cannot be attributed to any subset
of is assigned directly to itself, which in effect introduces
uncertainty into the diagnosis. Using this framework, the
support and plausibility of proposition are given by

(1)

(2)

where and and the summation is taken over
all propositions in a given BPM. Thus the total belief inis
the sum of support ascribed to and all subsets thereof.

Fig. 1. Partial schematic of RIE gas delivery system.

Dempster’s rules for evidence combination provide a de-
terministic and unambiguous method of combining BPMD’s
from separate and distinct sources of evidence contributing
varying degrees of belief to several propositions under a
common frame of discernment. The rule for combing the
observed BPM’s of two arbitrary and independent knowledge
sources and into a third is as follows:

(3)

where and

(4)

where Ø. Here and represent various
propositions which consist of fault hypotheses and disjunctions
thereof. Thus, the BPM of the intersection of and is the
product of the individual BPM’s of and . The factor

is a normalization constant which prevents the total
belief from exceeding unity due to attributing portions of belief
to the empty set.

Consider the combination of and when each contains
different evidence concerning the diagnosis of a malfunction
in the RIE application. Such evidence could result from two
different sensor readings for example. In particular, suppose
that the sensors have observed that the flow of one of the
etch gases into the process chamber is too low. Let the
frame of discernment , where through

symbolically represent the following mutually exclusive
equipment faults:

mass flow controller miscalibration;
gas line leak;
throttle valve malfunction;
incorrect sensor signal.

These components are illustrated graphically in the partial
schematic of the etcher gas flow system shown in Fig. 1.

Suppose that belief in this frame of discernment is dis-
tributed according to the BPMD’s:

The calculation of the combined BPMD ( ) is shown in
Table I. Each cell of the table contains the intersection of the
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TABLE I
ILLUSTRATION OF BPMD COMBINATION

corresponding propositions from and , along with the
product of their individual beliefs. Note that the intersection
of any proposition with is the original proposition. The
BPM attributed to the empty set,, which originates from
the presence of various propositions in and whose
intersection is empty, is 0.11. By applying (3), BPM’s for the
remaining propositions result in

The plausibilities for propositions in the combined
BPM are calculated by applying (2). The individual
evidential intervals implied by are

and .
Combining the evidence available from knowledge sources

and thus leads to the conclusion that the most
likely cause of the insufficient gas flow malfunction is a
miscalibration of the mass flow controller (proposition).

III. N EURAL NETWORK-BASED RIE MODELING

Neural networks have the capability of learning complex
relationships between groups of related parameters. They
consist of parallel processing units (calledneurons), which
are interconnected in such a way that knowledge is stored
in the weight of the connections between them. Each neuron
contains the weighted sum of its inputs filtered by a sigmoidal
activation function. The nonlinear mapping capabilities of
neural networks have recently been applied by several other
researchers in semiconductor process modeling [10]–[13]. To
model the RIE process, the quantitative relationships which
relate input parameters to output responses have been encoded
in feed-forward neural networks via the error back-propagation
(BP) algorithm [14]. The structure of a typical BP network
appears in Fig. 2. The specific manner in which BP neural
nets are used in RIE diagnosis is described below.

A. Time Series Modeling

For real-time diagnosis, it is critical to model the variation
of in-situ sensor data and develop an efficient method for
handling this voluminous and multidimensional data. Time-
series modeling is a means to achieve each of these ends.
Under malfunction conditions, sensor readings can serve as
process “signatures” which assist in identifying the occurrence
of a particular fault. Recently, neural networks have been
proposed as a means to develop time series models of tool
data [15].

Fig. 2. Typical back-propagation neural network.

Fig. 3. Data signatures for a malfunctioning CHF3 mass flow controller.

Neural networks used to generalize the behavior of a time
series are referred to asneural time series(NTS) models. The
NTS model is capable of simultaneously filtering both auto-
and cross-correlated data. That is, the NTS model can account
for correlation among several variables being monitored simul-
taneously. To illustrate, real-time tool data was collected via an
equipment monitoring system designed to transfer data from an
etcher to a remote workstation. Monitoring was accomplished
using a Tektronix Model 2510TestLabdata acquisition system
interfaced to the Plasma Therm RIE system via serial ports. In
this example, an equipment alarm was signaled, and its cause
was later identified to be an insufficient gas supply from the
tri-fluoro methane mass flow controller (CHF). Fig. 3 depicts
malfunctioning behavior of the CHFgas flow.

An NTS network was trained to model the CHFflow
pattern in the RIE process using a simple sampling technique
which involved training the network to forecast the next CHF
from the behavior of five past values. The training set for the
NTS network consisted of one out of every ten data samples.
As shown in Fig. 4, auto-correlation among consecutive CHF
measurements was accounted for by simultaneously training
the network on the present value of CHFand five past
values. The cross-correlation among the CHFwas modeled
by including as inputs to the network the present values of
the temperature, incident and reflected RF power, oxygen and
CHF . The accuracy of the trained network was measured by
its root-mean-squared (RMS) error, which was 2.2%. Once
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Fig. 4. Inputs (auto and cross-correlated data) and output of a neural
time-series model.

trained, the NTS model provides a simple means to encode
this fault signature for later use.

B. Process Modeling

Diagnostic information can also be extracted from in-line
measurements of post-processed wafers. To achieve this, these
measurements must be compared to values predicted by a
process model. Differences between model predictions and
measured responses are indicative of potential equipment
malfunctions. In [5], neural network models of RIE responses
were developed from a Box–Wilsoncentral composite circum-
scribeddesign requiring 27 trials [16]. Etching was performed
on a test structure designed to facilitate the simultaneous
measurement of the etch rate, uniformity, anisotropy of SiO
in a CHF and oxygen plasma, as well as the selectivity of
the SiO etch with respect to photoresist. This characterization
experiment provided neural network training data.

A “forward” neural network-based process model defines
a functional relationship between RIE process conditions (in-
puts) such as RF power or gas composition and responses
(outputs) such as etch rate or uniformity. The forward process
model also provides a mechanism for comparing measured
RIE output responses to predicted values. Large differences,
which may indicate potential equipment faults, must then be
traced back to fluctuations in model input parameters. To
calculate the shift of the process input settings from their
nominal values, an inverse neural process model is employed.
This inverse model is obtained by training the network “in
reverse” (i.e., using output/input pairs, rather than input/output
pairs). The inverse model provides a means to identify the
input parameter which is most likely responsible for an output
process shift. Process shifts required for generating evidential
support and plausibility can then be computed by utilizing the
inverse neural process models.

IV. GENERATION OF EVIDENTIAL SUPPORT

The three relevant time periods for evidence collection in
semiconductor manufacturing are:

1) during equipment maintenance periods (before process-
ing);

2) during on-line equipment operation (during processing);
3) during in-line, post-process physical and/or electrical

inspection (after processing).

Fig. 5. Chronological evidence sources for equipment malfunction diagno-
sis.

Diagnosis based on this framework for evidence collection
takes place in three chronological stages (Fig. 5). Maintenance
diagnosis is performed by examining the relevant historical
records of equipment performance and building reliability
models of each equipment component. During on-line diag-
nosis, both neural time-series models and CUSUM control
chart [17] techniques are employed to analyze fault pat-
terns available from equipment monitoring system. For in-line
diagnosis, measurements on processed wafers are used in
conjunction with neural network process models. In each
phase, evidential support and plausibility for various fault
hypotheses are generated and mapped to particular equipment
components. The methodology employed to do so is discussed
below.

A. Maintenance Diagnosis

During the maintenance phase, the objective of the diag-
nostic system is to derive evidence of potential component
failures based on the historical performance of equipment
components. The data available from which evidential belief
may be generated is limited, consisting of only the number of
failures a given component has experienced and the compo-
nent age. In order to derive evidential support for potential
malfunctions from this information, a reliability modeling
technique has been developed to investigate the aging behavior
of components. The failure probability as a function of time
and the instantaneous failure rate (or “hazard” rate) for each
component may be estimated from a neural network trained on
failure history. The neural reliability model may then be used
to generate evidential support, plausibility and uncertainty for
each fault hypotheses (i.e., each potentially faulty component)
in the frame of discernment.

1) The Weibull Distribution:Consider reliability model-
ing based on the Weibull distribution. The Weibull distribution
has been used extensively as a model of time to failure in
electrical and mechanical components and systems. Examples
of systems which lend themselves to the Weibull model include
electrical components such as batteries and ceramic multilayer
capacitors, mechanical systems such as gas turbine engines,
semiconductor devices such as memory circuits, individual
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Fig. 6. Scheme to estimate Weibull function parameters.

mechanical parts such as bearings, and structural elements in
aircraft and automobiles [18]. When a system is composed
of a number of components and failure is due to the most
serious of a large number of possible faults, the Weibull
distribution seems to be a particularly accurate model [17],
and this closely resembles the situation being addressed in
semiconductor equipment malfunction diagnosis.

The cumulative distribution function (which represents the
failure probability of a component at time) for the two-
parameter Weibull distribution is given by

(5)

where and are called scale and shape parameters, respec-
tively. If a device exhibits Weibull-like reliability behavior, the
appropriate selection of and will allow this distribution
functions to closely approximate the observed failure behavior
throughout its lifetime. The Weibull hazard rate, , is given
by

(6)

The hazard rate may be computed from the failure history of
each component by plotting the number of failures versus time
and finding the slope of this curve at each time point.

A scheme designed to extract the shape and scale parameters
using neural networks has been developed and tested, and
is outlined in [18]. This scheme is depicted schematically
in Fig. 6. Here the network outputs represent the initially
unknown scale and shape parameters. These outputs are iter-
atively adjusted to reach to their optimal values as the neural
network learns. The outputs are fed into the failure hazard
function in (6), a predicted hazard rate () is computed, and
the result is compared with the actual hazard rate (), which
has been computed from the failure history data.

The standard back-propagation training algorithm for feed-
forward neural networks begins with a random set of weights.
An input vector which has been normalized so that all input
data lies in the interval between1 and 1 is then presented
to the network, and the output is calculated using this initial
weight matrix. Next, the calculated output vector is compared
to the measured output vector, and the squared difference
between the two is used to determine the system error.
Error minimization is accomplished via the gradient descent
approach, in which the weights are adjusted in the direction
of decreasing error.

The error signal for the modified back-propagation neural
network in this case is

(7)

Since the predicted hazard rate is differentiable, the error
gradient with respect to the network weights may be computed
using the chain rule as

(8)

where is the calculated output of theth neuron in the
th layer. The first partial derivative in (8) is ,

and the third is the same as in the standard implementation
of the back-propagation algorithm [14]. As for the second
factor, this partial derivative may be computed separately
for each individual output neuron (or equivalently, for each
unknown parameter to be estimated). Due to the initially
random network weights, the first predicted values of the
hazard rate are arbitrary. However, after several training
iterations, the predicted hazard rate converges to the actual
rate. At this point, the scale and shape parameters computed
at the network output are the estimates which best fit the
distribution indicated by the training data.

Following parameter estimation using this technique, the
evidential support for each equipment component is then
obtained from the Weibull distribution function in (5) with
the estimated parameters. The corresponding plausibility is the
confidence level associated with this probability estimate,
which is defined as [19]

(9)

where denotes the total number of component failures which
have been observed at time.

2) The Exponential Distribution:Although the Weibull
distribution provides one approach to component reliability
modeling, due to its simple functional form, the exponential
distribution is widely used to describe the time elapsing
between two failures by characterizing the period during which
a failure rate is constant [17]. The cumulative distribution
function of this distribution is

(10)

where is a constant equal to the reciprocal of the mean-time-
to-failure. This parameter may be estimated as

(11)

where represents the elapsed time betweenth and (
)th failure of a specific component. The evidential support

is obtained by inserting (11) into (10) and subsequently
computing the corresponding Dempster–Shafer plausibility by
using (9).
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