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Abstract-Competition in the semiconductor industry is forcing 
manufacturers to continuously improve the capability of their 
equipment. The analysis of real-time sensor data from semi- 
conductor manufacturing equipment presents the opportunity to 
reduce the cost of ownership of the equipment. Previous work 
by the authors showed that time series filtering in combination 
with multivariate analysis techniques can be utilized to perform 
statistical process control, and thereby generate real-time alarms 
in the case of equipment malfunction. A more robust version 
of this fault detection algorithm is presented. The algorithm is 
implemented through RTSPC, a software utility which collects 
real-time sensor data from the equipment and generates real- 
time alarms. Examples of alarm generation using RTSPC on a 
plasma etcher are presented. 

I .  INTRODUCTION 

0 COMPETE in today’s semiconductor industry, compa- T nies must continuously improve upon their manufacturing 
skills to maintain high product quality throughout the entire 
process. The ability to automatically perform early detection of 
equipment failures in a production line can lead to significant 
improvements in the overall capability and profitability of the 
process. 

Recently, there has been tremendous growth in the use of 
Statistical Process Control (SPC) to generate alarms when 
the variation occumng on the manufacturing line is unusually 
large. There are, however, limitations to the effectiveness of 
traditional SPC techniques when applied to modern semicon- 
ductor fabrication lines. First, the data ordinarily used for 
SPC is often collected long after misprocessing has occurred, 
causing additional scrap to be needlessly produced from the 
time of the initial malfunction until its detection. Much earlier 
detection of equipment malfunctions which cause yields loss 
will improve the capability and up time of critical process 
equipment. Second, much of the data available directly from 
equipment has statistical properties which violate the implicit 
assumptions used in traditional SPC. Therefore, new tech- 
niques are required to improve SPC on real-time data from 
semiconductor manufacturing equipment. 

In a previous publication, we have shown that the real- 
time data available from sensors in modern manufacturing 
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equipment can be used effectively to detect malfunctions 
within seconds after they occur [ I ] ,  [2]. The signals of interest, 
related to the electrical and mechanical signals within the 
equipment, are automatically collected while the equipment 
is processing. In this paper we present a method which has 
improved detection characteristics and is also suitable for 
equipment diagnosis. 

This improved algorithm is based on a decomposition of 
the signals and a different time series modeling scheme. 
Furthermore, the new algorithm has been implemented in 
RTSPC, a software package which includes automated model 
generation, data filtering, and a novel double T’ graphical 
control chart for the display of alarm conditions. RTSPC 
interfaces with a workcell controller and can serve as a 
platform for future real-time process control. 

In this paper, an overview of the improved algorithms for 
real-time SPC is given in Section 11. RTSPC, the software 
platform for implementing these algorithms is given in Section 
111, followed by an example of model generation and fault 
detection in Section IV. 

11. REAL-TIME STATISTICAL PROCESS CONTROL 
This section begins with an overview of the improved real- 

time SPC algorithm. Next, the real-time signals are described, 
followed by a description of the automatic time series model 
generator. Finally, the use of the Hotelling’s 7” to combine 
the multivariate signals into the double T 2  chart is discussed. 

A. Overview of RTSPC 

This section presents the real-time SPC algorithm. Much 
of the background information about time series has been 
previously presented in [2], and will not be repeated here. 

1)  Buseline Modeling: The real-time SPC methodology uti- 
lizes time series models to analyze the real-time signals 
available from manufacturing equipment through the SECS- 
I1 (SEMI Equipment Communication Standard-11) interface. 
The objective is to use these automatically collected signals 
to establish the baseline behavior of a complex tool, and later 
detect deviations from this baseline. Before running RTSPC on 
production wafers, the following steps are taken to model the 
baseline condition of the process. The real-time signals from 
10 to 15 baseline wafers are first decomposed into long- and 
short-term components. In single wafer processing equipment, 
these components represent the wafer-to-wafer averages and 
the within-wafer signal trends, respectively. Each component 
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Fig. 1. Real-time SPC data flow. 

is then modeled with a time series model. The resulting model 
forecasts the in-control behavior of the machine. 

2) Monitoring the Production Wafers: Once the baseline 
behavior has been established, production wafers can be run 
through the machine. As in the training case, the real-time 
signals from the production wafers are decomposed into the 
long- and short-term components. Each component is then 
filtered using the respective baseline time series model. The 
residuals (the difference between the actual and forecasted 
baseline values) for each component are then combined using 
the multivariate Hotelling’s T 2  statistic into a single score, 
which is graphically displayed in the resulting double T2 
control chart. 

If no equipment faults are detected, normal operation of 
the machine continues. When a malfunction is detected, the 
diagnostic routine is triggered, and an alarm is generated 
to alert the operator. Diagnosis currently uses the long-term 
residuals (the difference between the actual real-time signal 
averages for that wafer and the time series model predictions 
for the signal averages) as a signature of the specific equipment 
malfunction [3]. An overview of the real-time SPC data 
analysis flow is shown in Fig. 1. 

B. Real-Time Signals 

This section describes the properties of the real-time signals, 
followed by a discussion of the prefiltering and decomposition 
performed in the algorithm. 

1 )  Properties of Real-Time Signals: The data collected for 
fault detection are comprised of various electrical signals 
such as the radio frequency (RF) impedance and D.C. bias, 
and mechanical signals such as those signifying the coil and 
throttle positions. Since the data are collected sequentially at 
a typical sampling rate of 1 Hz, the signals are correlated in 
time, demonstrating time series behavior. Time series patterns 
are observed both within each wafer and across several wafers 
due to controller adjustments and equipment aging. 

Time series signals are highly auto- and cross-correlated. In 
addition, the correlation structure and the mean value for a 
given signal may also vary with time, making the series non- 
stationary. Thus, the data are not identically, independently, 
normally distributed (IIND), and can not be used directly in 
a traditional control chart, e.g., a Shewhart chart. Since an 
underlying assumption of most conventional control charts 
is that the data is IIND, the first step in the algorithm is 

to transform the equipment signals to IIND signals. This is 
achieved by building time series models for each component 
of each signal. The time series models account for the expected 
patterns in the data. Once these patterns (whose presence does 
not indicate a malfunction) are filtered from the signal, SPC 
can be used to detect deviations in the filtered signals. 

The purpose of a time series model is to capture the 
dependencies among sequential readings of the same process 
variable. Dependencies within readings collected over time can 
be described by univariate time series models such as ARIMA 
( p , d , q )  models, where p is the auto-regressive order, d is 
the integration order, and q is the moving average order. The 
form of the equation for a nonstationary time series xt with 
autoregressive parameters & and moving average parameters 
Ok is [4] 

P 9 

wt = - 1 4kwt-k + o k a t - k  (1) 
k=l k=O 

where 80 = 1, the error at - N ( 0 , g 2 ) ,  and wt are the 
differenced data 

wt = Vdxt (2) 

where 

Vd is the dth order of differencing operator (3) 

and 

v l x t  = xt - xt-1,v2xt = v’xt - VlXt-1 

= xt - 2xt-1 + xt-2,. . . . (4) 

The assumption behind the univariate analysis is that a sig- 
nificant portion of a parameter’s behavior can be explained 
by using past observations of the parameter. A more thorough 
explanation of time series models is given in [5]-[8]. 

ARIMA (p, d ,  q )  models can be derived from the collected 
data when the process is under statistical control; in this way 
the models describe the baseline behavior of the process. 
Once developed, the models are used with current readings to 
forecast each new value. The difference between the forecasted 
value and the actual value is the forecasting error, or residual. 
When the equipment is in statistical control, the residuals are 
by definition IIND variables. As shown in [2], the residuals re- 
flect the equipment state and can be combined in a multivariate 
control chart to generate alarms. 

2) Pre-Filtering of Real-Time Data: RTSPC performs anal- 
ysis on the main etch step for each wafer. The signals collected 
during the main etch step are concatenated and filtered as 
described below. If necessary, the algorithm can be extended 
to include more than one etch step. The algorithm can also be 
extended to monitor the length of the etch step (as an additional 
“long-term” parameter of the wafer) and produce an alarm if 
the process step takes too long; for example, if an etch step 
did not endpoint correctly. 

Characteristics of the real-time signals caused by transient 
effects during processing must be accounted for before statisti- 
cal analysis. At the beginning of processing for each wafer, for 
example when RF power is applied, a small transient occurs 
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while power is stabilizing. For SPC purposes, the analysis is 
delayed by a few seconds until the power has stabilized. The 
delay time is based on the stabilization time for a normally 
processed wafer. If the RF power, or any other monitored 
signal does not stabilize in the specified time, an alarm will be 
generated. To simplify the time series model building process, 
the same number of data points, or step length, is used for 
each wafer. Finally, to compensate for the noise in the signals, 
local averaging is performed within each wafer. The number 
of samples used in local averaging, or group size, is used 
to adjust the sensitivity of alarm generation. The delay, step 
length, and group size are illustrated in Fig. 2. 

3 )  Signal Decomposition of Real-Time Datu: As 
mentioned in the Section Properties (f Red-Erne Signals, 
time-series models of baseline equipment sensor data are 
used to filter the nonstationary and autocorrelated patterns in 
the data. The algorithm presented in 121 builds one seasonal 
ARIMA (SARIMA) model for each sensor variable.’ A major 
disadvantage of this algorithm is that false alarms often 
occur at the start of a wafer. While these false alarms can 
be anticipated and ignored, the new algorithm solves this 
problem more formally. 

First, SARIMA models are not appropriate to model the 
real-time data, because as described in the Section Pre- 
Filtering of Real-Time Data, the pre-filtered wafer signals 
from the main etch step are concatenated together. This 
concatenation means the data do not form a natural continuous 
stream. One assumption behind the SARIMA model is that 
the variance and the mean of the filtered residuals is the 
same regardless of the season. Since the discontinuity violates 
this assumption, the idea of seasons is eliminated in the new 
algorithm. 

The most significant change in the algorithm is the de- 
composition of the real-time signals from each sensor into 
long-term and short-term components before modeling. This 
decomposition is necessary because each component describes 
a different behavior of the process. An example of signal 
decomposition of the impedance signal for several wafers is 
shown in Fig. 3. The long-term component, comprised of the 
average value of the signal for each wafer, models the overall 
trend across a number of wafers. On the other hand, the smaller 
deviations within each wafer create the short-term component, 

‘Time series exhibiting periodic variation are \aid to have seasons, and can 
be modeled with SARIMA models. 

which captures the short-term patterns during the processing 
of each wafer. Most importantly, the variation of the long- 
term component is much larger than that of the short-term 
component, illustrating the point that the short-term compo- 
nents are more sensitive to faster equipment fluctuations, while 
the long-term components reflect longer duration changes in 
overall equipment state. This decomposition of the signals into 
components with drastically different variances is the primary 
reason the false alarm rate has been decreased. After the 
decomposition, both components are demeaned to simplify 
later calculations. 

Notice that the short-term component for each wafer in 
Fig. 3 roughly follows a downward trend. This trend, modeled 
by the integrative part of the ARIMA model, is captured for 
each wafer so that deviations from this trend will be detected. 
Deviations in each of the components reflect different changes 
in equipment state. For example, a shift in RF power that lasts 
the duration of the wafer each will be seen as a shift in the 
long-term signal. A short spike in RF power, however, will be 
exhibited in the short-term signals. As another example, a dirty 
film on the wafer is seen by the short-term signals but not by 
the long-term signal. Because the decomposition allows us to 
model two different types of faults, the resulting algorithm is 
more robust than the original method, gives significantly fewer 
false alarms, and generates residuals that are much more suited 
for diagnosis. 

C. Automatic Time Series Model Generation 

Automatic time series model generation, a key module in the 
new RTSPC software package, makes the difficult and usually 
tedious process of generating models transparent to the user. 
In this section, the automatic time series model generation 
algorithm is described. 

1 )  Automatic Model Generation; Time series models are 
typically generated interactively using sophisticated statistical 
analysis tools. The process can be time consuming and tedious, 
requiring specialized skills to choose statistically significant 
models. Because models are built for each component of 
each signal for every recipe, the model generation process 
can be labor intensive and time consuming. The automatic 
model generator developed makes this difficult modeling step 
transparent to the user of RTSPC, thus making the software 
practical for the factory floor. It is also very fast, typically 
taking less than one minute on a modem workstation to 
generate a complete set of models. 

Automatic model generation is achieved through several 
stages. First, if the series is nonstationary, the data is differ- 
enced until stationarity is achieved. Next, both the order and 
values for the autoregressive coefficients are found. Finally, 
the moving average order is calculated, and an optimizer is 
used to solve for the moving average coefficients. These steps 
are outlined below. 

To determine whether the series is stationary and requires 
differencing, the autocorrelation function is calculated. If the 
first few absolute student4 values of the autocorrelation func- 
tion drop slowly, differencing is required [ 5 ] .  This procedure 
is repeated until the series becomes stationary. 
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Fig. 3. Real-time signal decomposition. 

Next, the modified Yule-Walker equations are used to 
determine both the order and the value of the autoregressive 
coefficients. As adapted from [9], the modified Yule-Walker 
equations are derived starting from the ARMA model. In the 
following expressions it is assumed that wt is a real, causal 
stationary time series that can be modeled with the form shown 
in (1) and the autocorrelation of the white noise error at is 
defined as Raa(k)  = a 2 S k .  

and taking the 
expectation, we obtain 

Multiplying both sides of (1) by 

where 

R,,(m) E(atw-,). (6) 

Since the error is white noise and is uncorrelated with future 
values of wt, it follows that RaTl,(m) = 0 for m > 0. 
Therefore, in (5),  we set Raw(Z - k)  = 0 for 1 > q and 
obtain an explicit set of equations used directly to solve for 
both the autoregressive order and coefficients. To accomplish 
this an initial value is chosen for q. The only requirement at 
this stage is to choose a value equal to or greater than the 
actual number of moving average terms in the final model. 
Since the actual value of q is not known at this stage, it is safe 

n 
to choose a fairly large initial value for q at this point 

(7) 
For the case of I = q + 1, q + 2 , .  . . , p + p ,  (7) can be 

rewritten in matrix form. This system is known as the modified 
Yule-Walker equations [see (8), shown at the bottom of the 
page]. As shown in (8), the modified Yule-Walker equations 
relate the ARIMA parameters to the autocorrelation function 
of the series, regardless of the MA behavior of the process, 
as long as q in (8) is chosen to be equal or larger than the 
actual q of the process. When the dimension of the matrix 
exceeds the number of autoregressive coefficients the matrix 
becomes singular and its determinant is zero. Therefore, one 
method often used to choose the autoregressive order of the 
model is to assume a large number for q so that (8) holds. 
Then starting with a small number for p , p  is increased until 
the determinant equals zero, or is sufficiently small. Once the 
autoregressive order has been found, the coefficients can be 
calculated by solving (8) [9]. This method, however, is not 
robust in the presence of noise because it is difficult to choose 
a cut-off point for the determinant, so an alternative method 
was chosen. 

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 12,2021 at 04:15:35 UTC from IEEE Xplore.  Restrictions apply. 

Applied Materials, Inc. Ex. 1027 
Applied v. Ocean, IPR Patent No. 6,836,691 

Page 4 of 9f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


LEE er ul.: RTSPC: A SOFTWARE UTILITY FOR REALTIME SPC AND TOOL DATA ANALYSIS 21 

Factory CIM i-) 
\ 

RT S K  

DB 

Fig. 4. RTSPC software system environment. 

Equation (7) is used directly to obtain both the autoregres- 
sive order the coefficients. For a large initial guess for (1 (which 
must be greater than or equal to the actual value of q) ,  a linear 
regression model using (7) is fitted to the time series data. 
To determine the order of the model, the significance of the 
coefficients is calculated using the student-f test. The least 
significant coefficients are eliminated one at a time until all 
of the coefficients are statistically significant. This method has 
been found to be both robust and computationally efficient. 

Once the autoregressive order and coefficients are deter- 
mined, the moving average order can easily be calculated 
from (7) using the proper autoregressive coefficients. This 
entails finding the largest integer k for which II'~,,,,,(/) + 
E:=, ~~k.R, , : , , , ( l -k)  # 0. The moving average coefficients are 
then solved using a nonlinear optimizer. The algorithm used 
for optimization is the Han-Powell variable metric algorithm, 
which is fairly efficient for a small number of parameters 
(under 10) and can easily handle both equality as well as 
inequality constraints. 

2) Applying the Short-Term and Long-Term Time Series 
Models: Usually, at least 10 to 15 baseline wafers are 
required for accurate baseline models. For each of the short- 
term components, the autocorrelation is calculated between 
adjacent points in each wafer, and then averaged across the 
wafers. The autocorrelations between adjacent wafers of the 
short-term components are ignored, which differs from the pre- 
viously published algorithm [ 2 ] .  The average autocorrelations 
across each wafer are then used in the modified Yule-Walker 
equations to build the models. The time series models of 
the long-term components are built from the average signal 
value sampled during the time it  takes to process one wafer. 
The resulting time series model generation follows the steps 
outlined in the previous section. 

If a new point is 3-sigma from the baseline forecasted point 
during the monitoring of production runs, an alarm is generated 
and the algorithm replaces the "bad' or faulty point with the 
forecasted point. Thus, consecutive faulty points are detected 
and the models retain their baseline behavior. This method is 
used for both the long- and short-term components. 

D. Multivariate Analysis: Double T' Chart 

In production, new observations are compared to the base- 
line time series model forecasts, creating lIND residuals that 
can be used in control charts. One set of residuals is generated 
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Fig. 5 .  RTSPC main window 

for each of the long- and short-term components for every 
monitored real-time signal. Because some of the signals are 
cross-correlated, using individual SPC charts will show an 
exaggerated false alarm rate [ 101. Instead, the residuals for 
each component are combined into a multivariate statistical 
score using Hotelling's T 2  statistic, which takes into account 
the correlation among the variables used in SPC. More detail 
on Hotelling's T 2  statistic in the context of this application 
can be found in [2]. 

The resulting Hotelling's T' scores for each component are 
plotted in a one-sided SPC chart. Data points corresponding 
to run-time faults have residuals which cause the Hotelling's 
7'' statistic to be significantly different from zero. One set 
of scores, obtained from the short-term components, detects 
faults during the process time of each of the wafers, while the 
second set of scores, obtained from the long-term components, 
detects faults by looking at violations in trends across several 
wafers. 

111. RTSPC: THE SOFI-WARE UTILITY 

RTSPC is a software application which interfaces with a 
workcell controller to perform statistical analysis on the real- 
time sensor data collected from the equipment. An overview of 
the RTSPC software system environment is shown in Fig. 4. 
RTSPC communicates with the workcell controller, which 
collects the real-time signals from the equipment over the 
SECS communication port. In the current implementation, the 
controller accumulates the real-time data from the processing 
of each wafer and then sends a file to RTSPC for analysis. 
This analysis is typically completed a few seconds after the 
wafer leaves the chamber.' 

RTSPC is written for UNIX workstations in a combination 
of the C and Tcl/Tk programming languages. Tcl/Tk is used for 
the graphical interface, while C is used for the data analysis. 

'In the current version of the RTSPC software, a true real-time implemen- 
tation is only inhibited by data collection logistics. 
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