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Real-Time Statistical Process Control Using Tool 
Data 

Costas J. Spanos, Member, IEEE, Hai-Fang Guo, Alan Miller, and Joanne Levine-Parrill 

Abstract-During the last five years we have witnessed the 
widesprelld application of statistical process control in semi- 
conductor manufacturing. As the requirements for process 
control grow, however, traditional statistical process control 
applications fall short of their goal. This happens because mod- 
ern processes are more complex than they used to he. Further, 
because of the expanding use of the so called “cluster” tools, 
modern technologies are also less observable than before. Be- 
cause of these difficulties, we can no longer afford to wait until 
a malfunction can be detected on a traditional control chert. 

Fortunately, modern semiconductor manufacturing tools can 
communicate to the outside world a number of their internal 
parameters, such as throttle valve positions, chamber pres- 
sures, temperatures, etc. It is intuitively obvious that equip- 
ment malfunctions will manifest themselves first in the values 
of these internal parameters and much later on the wafer prop- 
erties. In this paper we describe a process monitoring scheme 
that takes advantage of such real-time information in order to 
generate malfunction alarms. This is accomplished with the ap- 
plication of time-series filtering and multivariate statistical 
process control. This scheme is capable of generating alarms 
on true real-time basis, while the wafer is still in the processing 
chamber. Several examples are presented with tool data col- 
lected from the SECSII port of single-wafer plasma etchers. 

I .  INTRODUCTION 

S INTEGRATED CIRCUITS (ICs) become more A complex, the semiconductor manufacturing commu- 
nity is focusing its resources on achieving tight process 
control over the critical process steps. Many tools and 
techniques are being used toward this end. Statistical Pro- 
cess Control (SPC) is prominent among them, as it can 
help in the timely detection of costly process shifts. 

Historically, SPC has been used with process measure- 
ments in order to uncover equipment and process prob- 
lems. Such problems are manifested by significant deg- 
radation in equipment operation and product quality. To 
discover this degradation, critical process parameters are 
monitored using various types of control charts. The mea- 
surements consist mainly of in-line readings collected 
from wafers after the completion of the process step in 
question. 

Although this method is helpful in detecting process 
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drifts, there is significant delay between the occurrence of 
a drift and the resulting control chart violation. As pro- 
duction volume increases, faster response to process drifts 
becomes necessary in order to assure high product quality 
and low cost. In addition, the proliferation of multi-cham- 
ber (cluster) tools, makes it even more difficult to collect 
the necessary in-line measurements. Under these circum- 
stances we must use other types of information for quality 
control purposes. 

Modem semiconductor manufacturing equipment can 
communicate internal sensor readings oyer standard 
RS232 ports using the SECSII protocol. This capability 
has been recognized as crucial for the diagnosis of equip- 
ment failures, and for the improvement of the overall 
product quality [I]. Unfortunately, in a high volume pro- 
duction facility the monitoring of multiple sensors results 
in an overload of information. Further, most of the pop- 
ular SPC strategies cannot be applied to real-time read- 
ings, since these readings usually show non-stationary , 
auto-correlated and cross-correlated variation. A special 
type of SPC procedure is therefore needed to automate the 
processing of tool data. 

This paper describes the development and the applica- 
tion of a novel SPC method that uses the-series filters 
[2] and multivariate statistics [3] to analyze internal ma- 
chine parameters. These parameters are sampled several 
times per second, and the readings are filtered using a 
time-series model. The filtered readings are then com- 
bined into a single variable with well defined statistical 
properties [4]. This single statistical variable is calculated 
every few seconds, and is plotted against formally defined 
control limits. Real-time misproceshg alarms generated 
in this manner allow a controller to interrupt faulty runs 
and prevent any adverse effects on the equipment or the 
product. These alarms can be used for scheduling preven- 
tive maintenance. In the future, these alarms might also 
be used in conjunction with automated diagnosis routines 
t51. 

This method has been applied on a Lam Research Rain- 
bow single wafer plasma etcher, and on an Applied Ma- 
terials Precision 5000 cluster tool. The results show that 
the filtered statistical parameter has successfully re- 
sponded to several types of process faults, which were 
introduced in a controlled fashion. The faults included 
mismatched RF components, different loading factors, gas 
leaks, and miscalibrated equipment controls. It is note- 
worthy that none of these faults could have been easily 
detected by traditional wafer measurements. 
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The rest of this paper is structured as follows: Section 
I1 presents a brief overview of traditional statistical pro- 
cess control. Section I11 describes the real-time, multi- 
variate SPC approach, which includes the time series- 
model and the calculation of Hotelling’s T 2  statistic. Ex- 
perimental results are presented in Section IV along with 
a brief description of the equipment and the data acqui- 
sition tools. Finally, Section V contains a summary and 
some suggestions for future extensions of this work. 

11. TRADITIONAL STATISTICAL PROCESS CONTROL 
The concept of statistical control of a production se- 

quence was introduced in 1924 by Walter A. Shewhart of 
the Bell Telephone Laboratories [6 ] .  Today, SPC is 
understood as a collection of methods whose objective is 
to improve the quality of a process by reducing the vari- 
ability of its critical parameters. 

A process is said to be in statistical control when, 
“through the use of past experience, we cun predict, at 
least within limits, how the process may be expected to 
vary in the future” [7]. When a process is in statistical 
control, there is only natural variation or “background 
noise” because of mechanisms known as chance causes. 
Sometimes, however, a process can change due to assign- 
able causes, such as significant environmental changes, 
miscalibrations, variability of raw material, or human er- 
ror. Assignable causes make a process unpredictable and 
cause it to lose thg state of control as defined above. The 
main purpose of SPC is to detect the presence of an as- 
signable cause so that it can be corrected. 

From a statistical point of view, SPC casts the decision- 
making process as a formal hypothesis test. In this con- 
text, the null hypothesis (H,) states that the process under 
consideration is under statistical control, while the alter- 
native hypothesis (Ha) states that the process is out of sta- 
tistical contral. To test these hypotheses, a random sam- 
ple x is selected from the population of interest, and the 
suitable test statistic is calculated. Typically, we calculate 
the average of several readings of x ,  and the resulting sta- 
tistical score is tested against the limits listed in (1). The 
range of v?!pes that leads to the rejection of a hypothesis 
is called the cr+al region or the rejection region. For 
the Shewhart X chart, the upper and lower (UCL and 
LCL) limits used to validate Ha are given next: 

UCL = I” + Z&Ui 

LCL = p - Z&UF (1) 
where x is distributed according to the N ( p ,  U’) normal 
distribution, X is the arithmetic average calculated from n 
samples of x ,  and U? = U / & .  Also, ZUl2  is the standard 
normal score which excludes the a / 2  portion off the high 
tail of the standard normal distribution. According to this 
equation, the probability of rejecting Ha by mistake, an 
occurrence known as a type I error, is equal to a. Alter- 
natively, accepting Ho by mistake is known as a type I1 
error. Thq distribution that illustrates the nature of the x 
chart is shoivn in Fig. 1. 

Fig. I .  An x control chart and its hypothesis-testing nature 

A popular set of rules developed by Western Electric 
in the 1950s and known as the Western Electric Rules, 
provides additional ways to generate alarms [8]. 

At this point, it is important to emphasize that the op- 
eration of the X chart is based on the model described by 
(1). This equation implies that all the “good” data must 
come from the same population, which must follow a nor- 
mal distribution around a fixed value. In other words, the 
data must be Identically, Independently and Normally 
Distributed. This is known as the IIND assumption and is 
summarized below: 

x l = p + a ,  r = l , 2 ; - .  

a, - N ( 0 , u 2 ) .  (2) 

The IIND assumption is essential for the simple control 
chart. Without it, the chart and its limits would not truly 
reflect the process. Unfortunately, real time data often vi- 
olate the IIND assumption. In the next chapter we focus 
on the statistical nature of such data. 

111. REAL-TIME STATISTICAL PROCESS CONTROL 
As the volume of production increases, instantaneous 

detection of process drifts becomes necessary. Most mod- 
em equipment have some automated data acquisition ca- 
pabilities. Unfortunately, traditional statistical process 
control methods cannot be applied directly on tool data, 
because most tool-generated data violate the IlND as- 
sumption. Indeed, in most cases, real-time data are non- 
stationary, and in addition they are auto-correlated and 
cross-correlated, even when they originate from a process 
that is under control. 

To accommodate this situation, a novel SPC scheme is 
developed and applied to several test processes. This 
scheme employs time-series [2] multivariate statistics [3]. 
First, time-series models are needed to transform real-time 
sensor data into IIND signals; and a particular multivari- 
ate technique, known as the Hotelling’s T 2  statistic, is 
used to combine the IIND signals into a single, well be- 
haved statistical variable. 

This scheme is capable of generating alarms on true 
real-time basis, while the wafer is still in the processing 
chamber. In this way, we are able to detect misprocessing 
before it impacts the product. In this section we describe 
in some detail this real-time SPC scheme. 

‘The expression a,  - N ( 0 ,  a2)  means that the random variable a, is dis- 
tributed accordingly to a normal distribution with zero mean and a variance 
U 2 .  
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A .  Time-Series Modeling 
Readings collected sequentially are rarely independent. 

It is this lack of independence, for example, that allows 
the forecasting of daily temperature lows and highs from 
recent readings and from historical records. Often, the 
statistical behavior of a time-varying parameter can be de- 
scribed by time-series model. The purpose of a time-se- 
ries model is to capture the dependencies among sequen- 
tial readings of a variable. Time-series models are often 
used to forecast the value of a future reading from the 
values of several past observations [9], [ l l ] .  

The statistical behavior of data collected from most 
modem semiconductor manufacturing equipment can be 
modelled with the help of a time-series model. The fact 
that process readings are statistically related to past values 
can be intuitively understood: Consider, for example, that 
modem equipment use feedback control on critical pa- 
rameters, such as temperature or pressure. The sensors in 
the control loop record the deviation of the parameter from 
its target value, and, in the next instant, the controller 
tends to compensate the observed deviation. Thus, a read- 
ing higher than a target value is very likely to be followed 
by a low value and vice versa, leading to an apparent neg- 
ative autocorrelation between consecutive readings. Con- 
versely, at high sampling rates the monitored parameters 
are subject to “inertia,” leading to an apparent positive 
autocorrelation between consecutive readings. In general, 
dependencies among readings collected over time can be 
described by the following equation: 

where x is the signal and a is the IZND prediction error of 
the time series model. In this work, the main goal is to 
find suitable time-series models to filter real-time data 
used for statistical process control. The methods used to 
obtain the models are discussed next. Later we will see 
how the model can be applied within a practical real-time 
SPC technique. Next we give a very brief overview of 
time-series modeling. For an in-depth coverage, the reader 
should consult the extensive literature on the subject [2], 
[41, [91, [101, 1131, ~ 4 1 .  

B. Univariate Box-Jenkins Analysis 

In this application we use the univariate Box-Jenkins 
time-series analysis [2]. The assumption behind the uni- 
variate analysis is that the time-series behavior of one pa- 
rameter can be fully explained by using past observations 
of this parameter. A Box-Jenkins model is also called an 
ARIMA(p, d ,  q) model, and it consists of three linear 
components (or filters) as illustrated in Fig. 2. These 
components are the auto-regressive part of order p ,  the 
integration part of order d ,  and the moving-average part 
of order q [2]. 

Fig. 2. The three components of the ARIMA model 

The general form of the ARIMA(p, d ,  q )  model is 
given below: 

d(B)w, = O(B)a,, 

d(B) = 1 - d l B  - d2B2 - . . . - dpBP 

O(B)  = 1 - e ,B  - - . . . e,Bq 

w, = Vdz, where d z 0 (4) 

Difference Operator: 

vz, = z, - z,- , v2z, = V(Vz,) * . . 
Backward Shift Operator: 

Bz, = z , - ~  B2z, = z1-2 . . . 
where z, is the original reading collected at time t, w, is 
the respective differentiated signal, and a, is the IZND re- 
sidual. Below we explain the function of each of the three 
components of the ARIMA model. 

The first part of the ARIMA model is the integration 
component. This part is necessary because a condition for 
fitting the autoregressive and moving-average parts of the 
model, is that the signal must be stationary. This means 
that the mean, variance and autocorrelation functions of 
the time-series must be time invariant. The integration 
component of the ARIMA model is used to convert a non- 
stationary signal to a stationary one. Simple or higher- 
order differentiation can be used to achieve a time-invari- 
ant mean.’ 

The second part of the ARIMA model is the autore- 
gressive (AR) part, which is needed in order to describe 
the dependency of the current observation on previous ob- 
servations. This is done through the autoregressive coef- 
ficients d i .  

The third part of the ARIMA model is the moving-av- 
erage (MA) part, which describes the dependency of the 
current observation on previous forecasting errors (also 
known as random shocks), by means of the moving-av- 
erage coefficients O1. 

Occasionally, the original data show seasonal periodic 
patterns. These patterns can be modeled by creating 
ARIMA models for the seasonal variation as well as for 
the individual samples. The composite model is known as 
a Seasonal ARIMA model or SARIMA(p, d ,  q) x (P, 
D, Q)f, where p is the number of significant autocorrela- 
tions, d is the number of differentiations, q is the number 
of significant moving average terms within each season, 

2Taking the log or the square root of the data might be necessary in order 
to produce a constant variance. 
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and P, D ,  Q are the autocorrelations, differentiations and 
moving average terms, taken across seasons of duration s 
[14]. The complete SARIMA(p, d ,  q)  X ( P ,  D ,  Q), 
model is expressed by ( 5 ) :  

I#J(E)@(B~)W, = O(B)O(BS)al 

w1 = V P ( V d Z , )  

A model can be obtained from the collected data when 
the process is under control; in this way the model de- 
scribes the “good” process. Once a model has been de- 
veloped, it can be used to forecast (or predict) each new 
value. The difference between the forecast value and the 
actual value is the forecasting error, or residual. The re- 
sidual is by definition, an IIND ~ a r i a b l e : ~  

a, = Z, - 2, - N(0 ,  (r2) (6) 

C. Creating Box-Jenkins Models 
To obtain a useful ARIMA model, Box and Jenkins 

proposed a three-step procedure [9]. This procedure is il- 
lustrated in Fig. 3.  Two devices are used to select the 
ARIMA models: These are the discrete autocorrelation 
function (acf ) and the discrete partial autocorrelation 
function ( p a c f ) .  The acfand the pacfare calculated from 
the properly differentiated signal and are compared with 
the theoretical acf and pacf patterns from known model 
structures. 

To further explain the acf we need to talk about the 
autocorrelation coefficient. The autocorrelation coeffi- 
cient describes the statistical dependence between two 
readings collected at different times. The auto-correlation 
coefficient takes values in the range from - 1 to + 1 .  A 
zero value will be obtained when the observation of in- 
terest is independent from other observations, while a 
value of + 1 indicates complete synergistic dependence. 
The value of - 1  indicates complete antisynergistic de- 
pendence. The following equation defines the auto-cor- 
relation coefficient between all pairs of n readings that 
have been collected k observation time intervals apart from 
each other. The autocorrelation coefficient is calculated 
from n consecutive observations, by using the ( n  - k )  
pairs of observations separated by k observation intervals. 
Expressed as a function of the integer k ,  the estimated acf 
is given by (7): 

n - k  

( z i  - 7)  ( z r + k  - 7) 
n (7) k =  1 , 2 ,  . . .  r = 1  rk = 

c (z,  - z ) 2  
I =  I 

The partial autocorrelation function ( p a c f )  also gives 
a measure of dependence across pairs of readings, only 
now this dependence is given after the dependence of the 
intervening readings has been accounted for. This is ac- 

3The hat ( . ) signifies a value predicted by the model 

Dinerentiate and 
use acland cfto seled 
candidate AKMA model 

Estimate the parameters 
01 the model seleded 
at step 1 

Check the adequacy 
of the model 

Fig. 3.  The 3-step procedure for ARIMA modeling 

complished by fitting the following regression equation: 

z t + k  = 6 k l Z r C k - l  + 6 k Z Z r + k - 2  

+ 6 k 3 Z r i k - 3  f 
’ . ’ + 6 k k Z r  + Ur+I  (8) 

where this equation is fitted on the signal multiple times, 
with increasing value of k starting from k = 1. The pacf 
is the series 6, I ,  622r . . . , qhkk which is usually displayed 
as a discrete function of k .  

Both the acf and the pacf are needed in order to infer 
the structure of the best fitting ARIMA model. The infer- 
ence of the best model structure is usually done by trial 
and error, using the acf and pacf of the original signal and 
its residuals for guidance [9]. After the structure of the 
model is inferred and its coefficients extracted, the acf and 
the pacf of the residuals are used to check the adequacy 
of the selected model. The process terminates when a sat- 
isfactory model is obtained. This interactive sequence is 
illustrated in Fig. 3.  Attempts to automate this procedure 
have also been reported in the literature [IO]. 

D. Hotelling’s T 2  Statistic 
A piece of equipment will, in general, be monitored 

through a number of sensor signals. Using the appropriate 
time-series model, each signal is filtered down to its IIND 
residual. Assuming that the time-series models have been 
properly built and that the machine is under control, each 
of these residuals will be an IIND random number. 

This means that one could use a simple Shewhart con- 
trol chart to monitor each residual. However, since the 
signals are originating from the same physical process, 
their residuals will probably be statistically correlated and 
using them in separate control charts can be misleading. 
In fact, it can be shown that as the number of correlated 
variables increases, the probability of generating false 
alarms from a control procedure that uses a large number 
of separate charts grows significantly [6]. This is because 
treating correlated signals separately leads to the under- 
estimation of the probability of generating false alarms 
and the probability of not detecting a malfunction. Fur- 
ther, the information content of multiple, concurrent real- 
time control charts will undoubtedly overwhelm the hu- 
man operator. 

The function of Hotelling’s T2 statistic is to combine 
several cross-correlated variables into a single statistical 
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score. This number is simply the square of the maximum 
possible univariate student-t score computed from any lin- 
ear combination of the various outcome measures [3]. This 
score is calculated from the p correlated residuals as fol- 

T2 = n(H - O)TS-l(ii - 0) 

i o ~ ~ : ~  

where group mean H T  = [a, . . . ii,] 
nominal value of residuals OT = [0 . . . 01 

r 1 

I variance-covariance matrix S = . . * . . . . . . I 
L 

(9) 
where, in order to further ascertain that the entries in this 
formula are normally distributed, it is customary to use 
averages calculated over small, consecutive groups of size 
n for each residual. Some discussion is necessary con- 
cerning the estimation of the variance-covariance matrix 
S. First, the diagonal elements in S are calculated as the 
average s value for each of the m groups of size n: 

(10) 
The off-diagonal terms are estimators of the covari- 

ances and are calculated as follows: 

k =  1 , 2 ,  . . .  , m  

j = l , 2 ; . . , p  j # h .  

h = 1 , 2 ,  * * *  , p  (11) 

Finally, the actual elements of the variance-covariance 
matrix S are calculated by averaging over the m groups 
the values found in (IO) and (11): 

. m  

The T 2  score is sensitive to a shift in the mean value of 
one or more of the variables. This score can be used in a 
one-sided control chart, whose limit is set according to 
the number of variables, the sample size and the accept- 
able false alarm rate. The control limit of the T 2  statistic 

'In this paper we employ bold-faced symbols to represent non-scalar 
quantities such as arrays and matrices. All arrays are columns, unless used 
with the superscript which symbolizes transposition. 

is related to the cumulative F distribution at level a: 

which, assuming that the number of measurements is high, 
can be approximated by a simple chi-square distribution 
with p degrees of freedom: 

Of course, the way the T2 score has been defined here 
makes it the optimum statistic for controlling "unstruc- 
tured" mean shifts, i.e., shifts that might happen in any 
direction within the p-dimensional space. This property is 
very useful in the context of our application, since shifts 
can indeed happen in any direction. When, however, par- 
ticular, known directions are more susceptible to a shift, 
better statistics (such as the principal components [7] or 
the Z-scores [SI) might be utilized. In addition, although 
this property is not being investigated in this paper, the 
T 2  statistic can be extended to guard against a shift in the 
variance of the monitored parameter [7]. 

Another potential problem might arise from the fact that 
the T Z  statistic is not geared towards identifying a shift in 
the variance-covariance matrix and, in fact, will confound 
such a shift with a shift in the mean vector. Because of 
this the S matrix has to be re-calculated every time a new 
time-series model is calculated. 

Other multivariate control methods are, of course, 
available. Most, however, suffer from the significant dis- 
advantage of requiring the monitoring of multiple control 
charts. Such methods might prove advantageous for ana- 
lyzing an alarm for diagnostic purposes and will most 
probably be the subject of future work by the authors. For 
routine monitoring applications, however, the simplicity 
of having to maintain a single control chart makes the T 2  
statistic a very attractive proposition. 

E. Implementation of the Real-Time SPC Scheme 
In summary, the real-time SPC scheme takes multiple 

sensor data that are auto-correlated and cross-correlated, 
and then feeds them into individual time-series filters that 
produce multiple, cross-correlated IIND residuals. Ho- 
telling's T 2  equations combine the cross-correlated resid- 
uals into a single real-time alarm signal. This sequence is 
illustrated in Fig. 4. 

This alarm signal can be used either as a passive SPC 
alarm, or it can initiate a diagnostic procedure [ 5 ] .  A soft- 
ware package has been developed to implement this real- 
time SPC scheme. It includes four modules: data manip- 
ulation, ARIMA filtering, Hotelling's T 2  calculation, and 
alarm generation. These operations were initially imple- 
mented in the commercial statistical packages SAS" [ 161 
and RS/l" [17]. Recently, we have completed indepen- 
dent implementations for Unix and DOS environments. 
Coupled with a SECS11 server, either of these implemen- 
tations is capable of actual real-time operation. The most 
recent implementation imports ARIMA models that are 
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