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Abstract- The development and implementation of robust 
methods for fault detection promises to enhance manufmtur- 
ing by improving our capability to monitor equipment and 
processes. in  order to f i l l y  utilize this capabiltty, it is impor- 
tant that the machine fault is not only detected but also diag- 
nosed as belonging to a fault category so that appropriate 
corrective action can promptly be taken. In this paper we 
exmine the diagnostic pelformanee of two probabilistic 
modeling techniques in using sensor signals to classify 
faults. We also discuss how the strength of these models 
may be combin!ed in a hierarchical architecture giving rise to 
a more powe @ul diagnostic tool. 

INTRODUCTION 
To guarantee continued success in the industry, semiconduc- 
tor manufacturers compete in product differentiation and 
development, !specifically by taking advantage of decreasing 
circuit geometries and through tighter specifications. How- 
ever, accommodating larger wafer sizes and meeting more 
stringent design demands necessitates accurate and robust 
chiuacterizatioln of the manufacturing process as well as reli- 
able prediction and control of its effects on the final wafer 
product. Proicess improvements translate directly to 
increased efficiency, decreased machine downtime, and sav- 
ings in that ealrly detection and diagnosis of potential prob- 
lems can prevent long runs of misprocessed product. 
Furthermore, to be competitive economically involves 
increasing throughput, maintaining high yield, lowering the 
cost of machine ownership and speeding up the process 
development cycle. 

Achieving these goals set by the industry requires better 
process characterization and control. This motivates the 
development of a manufacturing tool to monitor equipment 
and diagnose problems or abnormalities in machine behav- 
ior. Our approach is to use probabilistic models to character- 
ize variability in the process and to identify modes of 
operation or nnachine states. 

Although the techniques presented are general, we have cho- 
sen the plasma etch process as a test vehicle for the method- 
ology. Much attention has focused on plasma aching 
because it is considered a critical manufacturing process and 
yield limiter. However, due to its complexity, the process is 
not easily repsented by physically based models. Further- 
more, in the current production situation, data gathering 
capabilities are surpassing the development of useful andyti- 
cal tools. A system is needed to automatically extract infer- 
ences hom the various data sources in a timely fashion, so 
that appropriate action can be taken. Ironically, although the 
total volume of data is significant, relevant representative 
data properly annotated with machine log information is stil l  
a rare commodity, and hence the situation lends itself well to 

statistical methods to draw inferences from a sample repre- 
sentative of a larger population. 

In this papex we examine two techniques for diagnosing 
faults in machine sensor data. Tree-based models are shown 
to be an effective method of identifying sensor signals most 
sensitive to changes in the input settings of the machine. This 
method is compared with the performance of generalized lin- 
ers models built to predict levels of the input settings based 
on sensor signals. Emally, we discuss how the strengths of 
the two methods can be combined to enhance diagnostic per- 
formance. 
For practical reasons, the system is constructed using data 
collected easily and economically &om the machine without 
interrupting the process. A designed experiment was con- 
ducted on a Lam Rainbow 4400 plasma etcher in the U.C. 
Berkeley microfabrication Laboratory, providing the multi- 
variate real-time tool data used to build the models in this 
work. 

MONlTORING AND FAULT DETECTION 
Through the use of real-time tool signals, in particular, SEC- 
SII machine information collected in-situ, we can effectively 
monitor the machine state without interrupting the process. 
Using data collected as part of the regular production pro- 
cess, we have built time-series models to monitor machind 
behavior on different time-scales, namely on a lot-to-lot, 
wafer-to-wafer, and real-time basis, and have used SPC tech- 
niques to detect faults [1][2]. The detection of an out-of-con- 
trol condition by the fault detection mechanism indicates the 
possible presence of a fault. In order to confirm the hypothe- 
sis that a fault has occurred and to identify an assignable 
cause, a diagnostic system in a probabilistic framework is 
developed which will class@ faults into discrete categories. 
In itself, the system serves as a tool to assist engineers in 
identifying problems affecting machine performance which 
could result in damage to the product, and as an early warn- 
ing system to aid in scheduling preventative maintenance 
events, potentially reducing machine downtime. However, in 
the larger framework, this classification capability identifies 
modes of equipment operation, allowing us to utilize the 
appropriate blend of models best suited for that operation 
mode. Accordingly, wafer chatacteristics can be predicted 
based on a better estimate of the machine state. 

EXPERIMENTfi SETUP 

Data Description and Experimental Design 
?he monitored signals used in this work are those suspected 
to be most sensitive to changes in the chamber state of the 
etcher [2]. These signals are known as real-time tool signals 
and are collected while wafers are being processed at a rate 
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of 1 Hz. The changes we wish to detect and classlfy in this 
paper correspond to specific shifts in the input settings of the 
machine. The assumption i s  that abnormal machine behavior 
will manifest itself in  a mann 
change in the input settings 
which are varied over three 
composite design; this is 

range of different faulty 

period for each of the 3 

Table 1.  Input settings for the plasma etcher 

Signal Selection 
In this study, the probability of a high, medium, or Zow value 

using 
real-time tool signals collected from the p ber as 
predictors. To determine a preliminary set of predictor vari- 
ables to be used for modeling, boxplots are used to view the 
distributions of the real-time tool signals as a function of 
each input setting. Table 2 summarizes the real-time signals 
identilied as potential predictors for the factor responses. 
These signals reflect changes in the machine state which are 
in turn affected by changes in the input settings. 

for an input setting to a plasma etcher is 

1 Pressure 
Gau Suacinn I RFFuue, W o i l ,  Phase, Impedance, Volt, 

I 

DCBias, EndpointC, &essure I 
Table 2. Predictor variables for input setting responses 

The signal selection, model constructio 
-PLUS software in an S-PLUS environ- 

TREE-BASED MODELS 

Description 
Tree-based modeling is an exploratory 
be used to devise prediction rules, to select or screen vari- 
ables for prediction, and to examine complex multivariate 

datasets, The algorithm implementing the construction of 
tree-based models must determine variables on which to 
divide, and how to split the space into partitions. It does this 
by partitioning the space of the predictor variables x into 
homogeneous regions, attempting to make the conditional 
distribution of the response y given x, f(y/x), independent of 
x. The algorithm accomplishes this task by using a criterion 
" i h g  a measure of deviance. 

Classification trees are based on the multinomial distribu- 
tion. If we considea a vector, for example, y = (O,l,O), to rep- 
resent the response J belonging to the second of three factor 
levels, then the probability corresponding to a response fall- 

into each level would be given by 1 = (p1,p2,p3), with the 
straint E p i  = 1, i = 1,2,3. 

'Ibe model consists of a stochastic component given by 

yi - Mh), i = 1,2, ...,N 

CI, = mJ 
and a structural component 

The deviance- is defined as minus twice the log likelihood 
K 

D(pi;yi) = -2 y , k l O g ( P , k )  (1) 
k =  1 

and because the splits in a decision tree are based on maxi- 
mizing the change in deviance, the mechanism determining 
the partitions is equivalent to maximum likelihood estima- 
tion. 

Tree models are compared by how well the partition corre- 
sponds to the true decision rule for problem. For classifica- 
tion trees, a count of the number of errors as a proportion of 
the training set provides an estimate of the misclassification 
rate. Similarly, a probability distribution over the classes is 
formed from the training set, and using a Bayes decision 
rule, the algorithm chooses the class with the highest proba- 
bility as the prediction. l l~us,  the tree serves as a probability 
model by providing a probability distribution over each one 
of the classes. The reader is referred to 131 and [4] for a more 

'be data set was divided into two mutually exclusive sets by 
arbitrarily picking 12 m s  out of the 36 to use as a validation 
set. Classification trees for each factor response (input set- 
ting) were then construct the training data of 24 runs 
using the preliminary set ctors identitied in Table 2. 

An e x a l e  of a classilkation tree built for the factor 
response gas rado is summarized in Table 3. Although the 

predictors listed in Table 2, 
RFTune and RFCoil as the most 
lassifying the gas ratio response. 

runs. Following the root are 
es where a split condition is 

with an asterisk (*) and represent final values or predictions. 
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These nodes atre also called leaves. Note that there is a distri- 
bution by class within each node giving the probability of 
observations 'belonging to each factor response level. The 
shaded boxes indicate the diagnosis which is based on the 
level with the highest probability value. 

Node) Spltt ( 
I) Root 
* 2) m e  
3) m e >  
*6) RFcoil* 
*7) m o i l :  

Table 3. Classification tree for Gas Ratio Response. 

A partition of the predictor space for the gas response 
is displayed in Figure 1. The partitions are based on the sim- 
plified classification trees obtained after snipping unneces- 
sary nodes. The resulting trees for each response span a 
domain defiled by no more than two predictor variables, 
thus enabling the plots of the partitioned space. 

H 

high 

L 

H 
H 

-7 

11400 11600 11800 12WO 

RFTune 

Figure 1, Partition for Gas Ratio Response 

dation set. In general, reasonable models were obtained for 
the responses RFpower, totalflow and gap spacing, and 
these were tested by the validation set consisting of runs not 
used in building the models. However, the models for pres- 
sure and gas ratio performed rather poorly based on the val- 
idation sets. 

GENERALAZED LINEAR MODELS 

Description 
Geneaalized linear models (GLM's) extend linear models to 
allow for nonlinearity and heterogeneous variances. In the 
case for diagnosis, the factor responses can be modeled as 
binary response data (by grouping two factors together and 
attempting to distinguish them from the third). This is the 
approach taken Me. 
Assuming that the response y is encoded as binary data, the 
presence or absence of a condition, for example high pres- 
sure versus not high (medium or low) pressure, can be 
treated as a "success" with a value 'I", or "failure" with a 
value ''0'. This response data has a mean p, the probability 
of success, and a variance that depends on the mean. This 
leads to defining a link function relating the mean to the lin- 
ear predictors, g(p) = PTx, where the linear predictor is the 
logit link function 

q = l o p )  
1 -P 

e" 

1 +e" 
p = -  (3) 

and p is guaranteed to lie within the range [0,11. 
The selection of the logit link is based on the binomial distri- 
bution and its conresponding log likelihood function. 
Thus the logistic regression model is defined by the logit link 
and the binomial variance function V(p) = p( 1 -p). 
Model Construction and Validation 
Rvo sets of models were built by encoding each factor 
response into a binary response. The first set was based on 
the high level as a "success" encoded with value "l", while 
the medium and low levels were grouped together as a ''fa;' 
we" and encoded with value "0'. The second set reversed t 
high and low roles, with low being a "success" encoded w 
value "l", and medium and high together encoded as "0' .  
GLM models were constructed using the training data set 
24 tuns to predict the probability of success for each facl 
response. As in the building of classification trees, the lint 
predictors for the models were chosen using the same set 
preliminary variables identilied for each factor in Table2. FUI 
example, the form of the model fitted for RFpower is repre- 
sented symbolically as 

logit@) = a + pTx 
where p is the probability of high RFpower for the first set of 
models. Table 5 shows the results of model building based 

Table 4. Summary of Classification Results 

Table 4 lists the PrmctOrS used in me final &"mJn 
models for eaichiesponse, along with a Summary ofthe on the trainiig data for each factor response. A m&e of 

(4) 

B-5 1 

nostic results. The "M~sc" column contains the misclassifica- g o h e s s  for the models was calculated using the fomula 
tion rate, a measure of the model fit to the training data. The 
"Valid' colurnn contains the misclassified points in the vali- 
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In other words, the difference between the null and residual 
deviance is tested on the Chi-squared distributed with degree 
of freedom equal to the difference in the degrees (p-q) of the 
null and residual deviance respecti e interested reader 
is referred to [3] for a more thoro 
criteria. All of the models were found to be significant 

1 -  ! 
RF Power o.oo00 0 . m  0 . m  0 . m  
Gas Ratio 0.2500 0.2500 0.1250 0.2500 

I I I 

Pressure I O . m  I 0 I o.oo00 I O . m  1 

Table 5. Summary of GLM Results 
Model validation was conducted on the remaining set of 12 
runs not used in bu the models. The results are shown 
in Table 5. Perfect ction (diagnosis) was 
the high and low levels for RFPower andpressu 
g a s f i w ,  and low gap spacing. The misclassification results 
are summarized in Table 5 for predictions of high and low 
responses respectively. The misclassification headings for 
the training and validation are the same as those in Table 4. 

DECISION TREE ARCHITECTURE 

The two modeling techniques for diagnosis examined in thcj 
paper can be combined in a decision tree architecture which 
makes use of the conditioning and partitioning of the input 
space in the classilkation trees, and the greater flexibility for 
modeling probabilities provided by the GLM’s. Specifically, 
it is wortb noting that the performance of the classification 
trees could be vastly improved if artitions were not con- 
strained to being constant hnc  in a single variable. 
Using the logit link function to model the probabilities alle- 
viates this constraint. Similarly, because the GLM’s are fit to 
a single binary response, their performance as predictors 
could be improved by conditional knowledge of the operat- 
ing space (knowledge of the other responses). ’ h s  could be 
achieved using the natural hierarchy provided by a tree- 
based model to partition the input space. For further explora- 
tion of these ideas, the interested reader is referred to PI. 

SUMMARYAND RE WORK 

Classification trees ate shown tQ be effective in predicting 
changes in the input settings using only a small subset of the 
real-time tool signals. In all cases, the trees are reduced to 
operate on a space defined by at most two predrctor variables 
(real-time signals), without an increase in the misclassifica- 
tion rate. Unfortunately the performance of these models is 

t used to train them. In our 
the results of the diagnosis 
or response to another. 

modeling binary response 
data shows that the increased flexibility in this modeling 

technique can lead to promising nostic results. Again the 
models can only be improved with a larger data set. 

We plan to expand our study to include data taken from man- 
ufacturing machines which have been known to exhibit real 
problems. This will test our assumptions about using 
designed experiments as simulations for faul 

complement each others pitfalls. 

CONCLUSIONS 
Automated diagnosis of faults will provide a systematic 
method of drawing inferences from the availab 
while accounting for uncertainty by retaining a 
likelihood for each classification decision, The architecture 
under investigation gives structure to the problem and deals 
naturally with its inherent complexities. This is accom- 
plished by successively dividing the input space into operat- 
ing regions defined by fault categories and keeping track of 
independence assumptions. Future work includes automat- 
ing the calculation and updating of the model parameters and 
incorporating the models through the use of a hierarchical 
mixture of experts (HME) architecture [5 ] .  

A diagnostic system promises to be invaluable to th 
tor, especially as a trouble-shooting tool to find problems 
early, thus preventing the propagation of faults and M e r  
damage to the machine. When implemented and used in con- 
junction with good engineering practices, this tool provides a 
means of mastery over the increasingly overwhelming 
amounts of data. By looking into the future and anticipating 
the needs generated by the advancement of technology, we 
set our research goals to advance the state of the aft in manu- 
facturing tools which brings us that much closer to automa- 
tion and better control in the fab. 
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