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Abstract—This paper describes a new methodology for equip-
ment fault detection. The key features of this methodology are
that it allows for the incorporation of spatial information and
that it can be used to detect and diagnose equipment faults si-
multaneously. This methodology consists of constructing a virtual
wafer surface from spatial data and using physically based spatial
signature metrics to compare the virtual wafer surface to an
established baseline process surface in order to detect equipment
faults. Statistical distributional studies of the spatial signature
metrics provide the justification of determining the significance
of the spatial signature. Data collected from a rapid thermal
chemical vapor deposition (RTCVD) process and from a plasma
enhanced chemical vapor deposition (PECVD) process are used to
illustrate the procedures. This method detected equipment faults
for all 11 wafers that were subjected to induced equipment faults
in the RTCVD process, and even diagnosed the type of equipment
fault for 10 of these wafers. This method also detected 42 of 44
induced equipment faults in the PECVD process.

Index Terms—Equipment fault diagnosis, process improve-
ment, simulation, statistical metrology.

I. INTRODUCTION

EQUIPMENT faults are often the cause of major variations
in semiconductor manufacturing processes. Considering

the expense of processing, these variations can cause dramatic
yield losses [1]. Traditionally, the mean or signal-to-noise ratio
of the wafer surface data is modeled, and the resulting model is
used to detect equipment faults according to statistical process
control (SPC) techniques; however, as wafer sizes increase
and film thicknesses are reduced, the use of integrated spatial
information will have a greater impact on detecting equipment
faults.
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The use of site-specific models has been shown to have
better sensitivity, with respect to spatially dependent process
variations, than mean-based models [1]. However, detection
of equipment faults identified from models based on data
from different sites can have inconsistent results; i.e., some
site models may detect a certain type of equipment fault,
while other site models do not [1]. Saxena,et al. [2] have
used a monitor wafer controller (MWC) to fix this to some
degree. It has also been shown that the use of a virtual
wafer surface, rather than specific sites on a wafer, captures
even more information about the spatial signatures generated
from different equipment conditions [3]. Kibarian and Strojwas
[4] have also developed models which account for spatial
dependencies and shown how the models can be used to
separate spatial dependencies from other causes.

The detection and diagnosis of equipment faults in semi-
conductor processes is usually a two step procedure. Detection
refers to the identification of the occurrence of an equipment
fault, whereas diagnosis refers to the classification of equip-
ment faults. Faults are detected using one method. Then faults
are classified using another method. Current research in the
literature has concentrated on equipment fault diagnosis, rather
than the detection of the existence of equipment faults. For
example, pattern recognition techniques including statistical
discriminant analysis techniques [1], fuzzy logic techniques
[5], and neural networks [6] have been used for diagnosis
purposes. Huet al. [7], Butler and Stefani [8], and Bombay
and Spanos [9] have applied empirical (or semi-empirical)
polynomial modeling techniques to relate process outputs
to process settings, and May and Spanos [10] have used
evidential reasoning to integrate in-line, off-line, and main-
tenance data for fault diagnosis. However, methods such as
statistical discriminant analysis do not make use of the spatial
information and the physical knowledge of equipment faults.

The equipment fault detection methodology described in
this paper is unique not only in that it incorporates the use
of integrated spatial information in a virtual wafer surface, but
also in that it can be used todetectand classify equipment
faults at the same time. The main focus of this paper is using
the spatial signatures of the differences between observed and
expected virtual wafer surfaces to construct physically based
metrics which can be used to detect and diagnose various types
of equipment faults. When establishing an equipment fault sig-
nature library, it would be ideal to have experiments conducted
to model wafer spatial measurements at process conditions
without faults and with certain known faults; however, his-
torical data on existing faults may also be used. Using the
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Fig. 1. Equipment fault detection and diagnosis chart.

experimental data, one can construct physically based signa-
ture metrics to detect and identify equipment faults. When the
basic faults are understood, new faults can be added into the
study. Fig. 1 shows a flow chart of all the steps in the process.

If a certain type of fault is known to have a specific shape,
then classification of faults can also be verified by comparing
a newly fitted surface to the known fault surface. In this case,
by treating the fault surface as the “target,” the methodology of
spatial signature metrics can be used to statistically compare
the newly fitted surface to this “target” to determine if the
newly fitted surface belongs in this fault class.

Section II describes the equipment fault detection method-
ology using spatial signatures in detail. Sections III and IV
provide illustrating examples from experiments conducted at
North Carolina State University (NCSU) and Texas Instru-
ments, Inc. (TI), respectively. Section V draws conclusions
from this study and points to potential future work.

II. FAULT DETECTION METHODOLOGY

Fig. 2(a) and (b) show how equipment faults can be manifest
in the spatial response of the process. Fig. 2(a) shows the gate
oxide thickness surface of a wafer that was processed under
fault-free conditions. Fig. 2(b) shows the gate oxide thickness
surface of a wafer processed under known equipment faults.

and represent the and distances from the center of
the wafer. Not only is there an apparent decrease in thickness
between the two surfaces, but also a change in spatial pattern.

The next five subsections present the new methodology of
using spatial signatures to detect equipment faults:

1) modeling wafer surface data using thin-plate splines;
2) estimation of the baseline or “fault-free” surface;
3) construction of physically based signature metrics for

comparing wafer surfaces;
4) estimation of the statistical distribution of metrics;
5) use of spatial metrics for equipment fault detection.

(a)

(b)

Fig. 2. Fitted wafer surfaces from wafers processed (a) with no equipment
faults and (b) with known equipment faults.

A. Modeling Wafer Surface Data Using Thin-Plate Splines

While recognizing that other modeling methods are avail-
able, this study uses thin-plate splines to model the virtual
wafer surface. A virtual wafer surface model of spatial process
behavior is less sensitive to the position of measurement sites,
measurement error, and angular orientation than techniques
focusing on individual data points [11]. The thin-plate spline
can be viewed as a multi-dimensional extension of the cubic
smoothing spline. Although splines, in general, are constrained
to pass through the knots of the function [e.g., gate oxide
thickness measurements at (, ) distances from the center of a
wafer], the thin-plate spline attempts to produce the smoothest
curve possible between the knots and, therefore, does not
have the requirement that the surface actually pass through the
knots. The estimator of the thin-plate splineis the minimizer
of the following penalized sums of squares [12]:

(1)

where the first term represents the lack of fit, is the
roughness penalty function, and is the spline smoothing
parameter. For this study, thin-plate spline fittings were formed
by using a collection of routines called FUNFITS written for
use in the S-plus statistical software [13]. A thin-plate spline
can then be used to predict the response at any location on the
wafer and thus can be used to predict the entire wafer surface.
In this study, is set to be very small (0.001) which gives
more of an interpolating surface as recommended by Davis
et al. [3].

B. Estimation of the Target Surface

A target surface needs to be specified for evaluating equip-
ment performance. In many cases, the target surface may be
known; e.g., a non uniformity study where the target thickness
is 70 Å at all locations. However, due to process effects as
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(a)

(b)

Fig. 3. Replicate wafer surfaces from wafers processed under fault-free
conditions in a RTCVD experiment.

a result of equipment design, the wafer surface may not be
flat even though there is no equipment fault. Assuming a flat
target surface in this situation may lead to incorrect equipment
fault detection. Thus, if the experimental wafer surfaces under
equipment fault-free conditions are not flat, then these surfaces
should be used as the target surface rather than a constant. For
example, the two surfaces shown in Fig. 3(a) and (b) are the
surfaces from two replicates at the fault-free condition in a
RTCVD experiment conducted at NCSU and have a nonlinear
pattern. Fig. 4 shows a surface from the fault-free condition
in a PECVD silicon nitride experiment conducted at Texas
Instruments, and this surface has a linear pattern. However,
none of the surfaces shown in Fig. 3(a) and (b) or Fig. 4 reflect
a constant baseline process surface.

In addition, the target surface should be validated after
preventive maintenance or any other procedure which alters
the tool. The proposed methodology can be used to determine
if any significant changes in the tool have occurred. If no
significant changes have occurred, then the new data can be
used in conjunction with the historical data to update the target
surface. The following method allows for a target surface to
be estimated from data collected from fault-free runs.

Data is collected from wafers under the equipment fault-
free condition to obtain a good estimate of the target surface. If
there is slow drift, and this slow drift is considered to be typical
phenomenon, then the wafers are still considered fault-free.
Statistical outlier diagnosis can be used to screen the data. Af-
ter fitting the spline surface to each set of wafer measurements,

Fig. 4. Individual wafer surface from wafer processed under fault-free
conditions in a PECVD experiment.

Fig. 5. Two replicates from fault-free conditions averaged to form target
surface.

the target surface is obtained by averaging location specific
parameter estimates from the individual spline equations. As
an example, by averaging the two surfaces in Fig. 3(a) and (b)
from the RTCVD experiment at NCSU, we obtain the target
surface as shown in Fig. 5. A randomization procedure for use
with wafer surfaces processed under the fault-free condition is
currently being studied to better incorporate wafer-to-wafer
variation in the proposed methodology, but this randomization
procedure is beyond the scope of this paper.

A typical method for deriving the target surface is to first
average the data collected from specific sites on “replicated”
wafers at the fault-free condition and then fit a spline surface
to the averaged data to create the target surface. However, this
approach averages the data atsites, where is the number
of data collected on a wafer, and requires that data be collected
at the same sites on all wafers, as well as does not take into
account any wafer-to-wafer variation. The approach described
in the previous paragraph averages the spline estimates, which,
in the intuitive sense, averages the spline surface at all possible
sites. In the spatial signature metrics developed in next section,
a grid of close to 700 sites is used for prediction.

If the purpose of the statistical test is to compare an average
of wafer surfaces to a target, then averaging the wafer data
first would be appropriate. However, our concentration in this
work is to compare the spatial surface of asingle wafer to
the target, subject to random variation, and the variance is
underestimated if the data from the target wafers are averaged
before the spline is fit. For example, if the spline fits from three
replicate wafers have individual variances, , and , then
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averaging the variance after the splines are fit yields a variance
of . Now if we let represent the vector
of averaged data, then since the variance of a meanis
where is the variance of , by averaging the data first, an
extra factor of 1/3 will be introduced into the variation before
the spline is ever fit. Thus, the variance of the spline fit when
averaging the wafer data first will be ( ) times smaller than
the variance of the spline fit to the individual wafer data, where

is the number of replicated wafers.
Another alternative is to treat data from all wafers pro-

cessed under the fault-free condition as coming from a single
wafer, then construct a spline to estimate the target surface.
Although this method can capture variation at a particular site
without deflating it, this method also loses individual wafer
characteristics.

C. Construction of Physically Based Spatial Signature Metrics

Different equipment faults may produce distinct spatial
signatures. For instance, an equipment fault may affect only
a specific region of the wafer surface rather than the entire
wafer surface. In this case, a certain performance evaluation
metric may better detect this particular type of equipment fault.
It is also possible that several metrics may have to be used
simultaneously to detect certain types of faults. Understanding
the physical processes that create faults, and their resulting
signatures, also greatly aids in constructing and deciding what
types of evaluation metrics to use. Four metrics are presented
below as examples of how different metrics may be needed for
detecting certain fault signatures. The metrics are extensions
of the uniformity metrics presented by Daviset al. [3] with
an expected surface used as the target surface. All metrics dis-
cussed here are based on loss functions. For all these metrics,

denotes a newly fitted thin-plate spline surface,denotes
the target surface, and denotes the wafer surface region.

The quadratic and absolute loss functions are commonly
used in many fields to quantify the penalty from departing
from the target. The first two metrics used in this work
are a squared deviate from target metric and an absolute
value deviate from target metric. Both statistics are general
metrics used to quantify the surface difference ( ) and are
nonlinear functions of the error volume between two spline
surfaces. The metrics are calculated as

(2)

The squared metric, , penalizes much more than the
absolute metric, , with respect to larger departures from
the target. Both metrics cover the entire wafer surface and
place equal weights on information at all wafer sites. In
addition, both metrics yield the same equipment fault detection
results in this study.

The following metric is an example of a metric that can be
used to detect an equipment fault that leads to a thicker wafer
surface. This metric is calculated as

(3)

where ( ) could be any functions. For example,
could be the squared error loss function andset to 0. This
example would only penalize surfaces thicker than the target.
Another example is to place different weights on the penalties
for than for . Again, understanding the reasons for
getting equipment faults and their resulting spatial signatures
plays an important role in the selection of thefunctions.

Another type of metric that should be considered is one
which allows for different regions of the wafer surface to
be weighted differently. For instance, error in the center of
the wafer may be of more importance than error toward the
edge of the wafer. Also, certain equipment faults may cause
defects, such as a thinner surface, in specific regions of the
wafer surface rather than the entire wafer surface. An example
of a metric that weights wafer surface regions differently is
calculated as

(4)

where denotes the number of nonoverlapping regions, and
and denote the weight and penalty functions for theth

region, respectively. This metric has the potential to be very
useful, particularly in the stage of equipment fault diagnosis,
since it is more general than the other suggested metrics. In
fact, the previous metrics may be considered as special cases
of this metric.

D. Estimation of Signature Metrics

The calculation of the metrics discussed in Section II-C
involves integration of the difference of two spline surfaces
over certain regions. This integration can be done by using a
numerical integration technique where the fitted surfaceis
evaluated on an grid (with points outside the radius of
the wafer removed) and the evaluated results, e.g., , are
then summed for each of the grid points and multiplied
by the area of one of the grid elements. The metrics may be
approximated as [3]

metrics (5)

where is the loss function incorporated into the metric,
is an vector of the target, is an matrix
of thin-plate spline coefficients for the measurements,is
an vector of the measurements, is the number of
measurements taken on the wafer, andis the area of one
of the grid elements. This approximation was shown to have
good results for 30 [3]. Thus, 30 is used in the
experimental examples presented in this paper.

E. Use of the Signature Metrics in Equipment Fault Detection

If the metrics indicate that the surface of a newly processed
wafer is statistically significantly different from the target
wafer surface, then the conclusion is that an equipment fault
has occurred. Therefore, the null distributions of the metrics
should be studied in order to set up the “cut-off value” for
determining if there is a significant difference between a newly
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TABLE I
WAFER LABELS FOR WAFERS PROCESSEDUNDER

EACH COMBINATION OF EXPERIMENTAL CONDITIONS

fitted surface and the target wafer surface. In other words, the
distributions of the metrics under the “fault-free” condition are
needed to determine the “cut-off values” in the tail(s) of the
distributions for a specified level of significance.

An analytical approach based on standard statistical asymp-
totic normal approximation theory was first considered. Ap-
proximation theory cannot be applied in this study since
traditional distributional spline results are for the independent
identically distributed case; however, as (the number of
spatial measurements) goes to a very large number, many
devices are being sampled on a fixed size wafer, and the data
become more dependent because of spatial correlations. This
resulting increasing dependence is called infill-asymptotics
[14]. An alternate Bayesian (simulation) approach can be taken
to determine the null distribution of the metrics using the
following steps.

1) According to a procedure given in Green and Silverman
[12], assuming a Gaussian prior distribution, the poste-
rior distribution of the spline surfacehas the following
multivariate normal distribution [12]:

MVN (6)

where is the vector of fitted values, is calcu-
lated as: (the residual sums of squares about the fitted
curve)/equivalent error degrees of freedom, and
is the projection matrix which maps the vector of ob-
served values to their predicted values. Since there were
multiple wafers processed independently at the baseline
conditions in this study, the averages of the’s and

’s from all baseline wafers were used in (6).
2) The following parametric bootstrapping approach can

be used to simulate independent observations from the
null posterior distribution of the metric. First, 5000 sets
of observations are simulated from the multivariate
normal model (6). A spline surface is fitted to each
set of observations, and the spatial signature metrics
are calculated using (2)–(5). As a result, 5000 indepen-
dent observations are obtained from the null posterior
distribution of each signature metric.

3) With a pre-specified significance level, 0.01 (or
0.05), a “cut-off” value is defined as the 99th (or 95th)
percentile from the null distribution of a specific metric.
If the calculated metrics (2), (3), or (4) for a newly fitted
surface are larger than their respective “cut-off values,” it
is statistically significant at level that the wafer was not
processed under fault-free conditions. The decision rule
is still applicable even if the sampling scheme changes
since the target surface remains the same. The decision
rule is selected to balance the Type I error (false positive)

and the Type II error (false negative) as follows: Fix
Prob(Type I error) below a chosen level, e.g., 0.01, and
select the test that minimizes Prob(Type II error).
The choice of is up to the discretion of the practitioner.
In this study, more conservative “cut-off” values were
desired, so 0.01 was selected.

III. EXPERIMENTALVERIFICATION WITH

NCSU LABORATORY EQUIPMENT

A. Design of Experiment and Data Collection

To test the proposed methodology, a laboratory experiment
was conducted at NCSU where the following two types of
equipment faults were induced in a prototype RTP (rapid ther-
mal processing) single wafer system: lamps burning out and
a miscalibrated SiH/Ar mass flow controller. The response
measured was SiOthickness. There were 15 wafers available
for the experiment. Preliminary experiments, in which one
lamp at a time was removed, were performed to decide on how
many lamps should be disengaged during an experiment. The
removal of a single lamp caused a marked decrease in oxide
thickness. For example, when a side lamp was disengaged,
a 13.5Å decrease in average oxide thickness was observed.
When a bottom center lamp was disengaged, the average oxide
thickness decreased by 10.22Å.

The final experimental design used to induce equipment
faults was an unbalanced 3design. While the NO flow was
held constant at 500 sccm, three 10% SiH/Ar flow rates of
20, 25, and 30 sccm were used for low, medium, and high flow
rates, respectively. Table I shows all possible experimental
conditions along with the wafer labels of each wafer processed
under each combination of conditions. The baseline “fault-
free” state was the condition with all lamps working and
with medium flow rate. Three replicates were allocated for
estimating the target surface and for constructing the posterior
distributions of the spatial signature metrics. For each wafer,
the oxide thickness was estimated at 17 points. The sampling
scheme was designed to cover the wafer regions evenly as
shown in Fig. 6.

The oxide thickness was estimated by measuring the–
characteristics of capacitors located at the measurement points
using a Keithley 595 Quasistatic Meter and a Keithley 590

– Analyzer. The gate oxide thickness was then extracted
from the – data while accounting for polysilicon depletion
and quantum effects using a program written by Hauser [15].
Unfortunately, data could not be collected from wafer 5 (low
flow rate and a side lamp out) since the wafer was damaged
during processing. However, since the goal of this study is not
an experimental design analysis, this was not a major concern.

B. Application of the Proposed Methodology
to the Experimental Data

The laboratory experiment had three runs processed under
the baseline condition. One of the wafers appeared to be
consistently thicker than the other two wafers at all sampled
sites. The data from this wafer was excluded from the esti-
mation of the target surface, but was set aside for verification
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