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Abstract—This paper describes a new methodology for equip- The use of site-specific models has been shown to have
ment fault detection. The key features of this methodology are petter sensitivity, with respect to spatially dependent process
that it allows for the incorporation of spatial information and variations, than mean-based models [1]. However, detection
that it can be used to detect and diagnose equipment faults si- f . faults identified f d s b C,I d
multaneously. This methodology consists of constructing a virtual ©f €dquipment faults identified from models based on data
wafer surface from spatial data and using physically based spatial from different sites can have inconsistent results; i.e., some
signature metrics to compare the virtual wafer surface to an site models may detect a certain type of equipment fault,
established baseline process surface in order to detect equipment,yhile other site models do not [1]. Saxergt, al. [2] have
faults. Statistical distributional studies of the spatial signature used a monitor wafer controller (MWC) to fix this to some

metrics provide the justification of determining the significance )
of the spatial signature. Data collected from a rapid thermal degree. It has also been shown that the use of a virtual

chemical vapor deposition (RTCVD) process and from a plasma wafer surface, rather than specific sites on a wafer, captures
enhanced chemical vapor deposition (PECVD) process are used toeven more information about the spatial signatures generated
illustrate the procedures. This method detected equipment faults .o different equipment conditions [3]. Kibarian and Strojwas
for all 11 wafers that were subjected to induced equipment faults . .

in the RTCVD process, and even diagnosed the type of equipment [4] have al_so developed models which account for spatial
fault for 10 of these wafers. This method also detected 42 of 44 dependencies and shown how the models can be used to
induced equipment faults in the PECVD process. separate spatial dependencies from other causes.

Index Terms—Equipment fault diagnosis, process improve-  1he detection and diagnosis of equipment faults in semi-
ment, simulation, statistical metrology. conductor processes is usually a two step procedure. Detection
refers to the identification of the occurrence of an equipment
fault, whereas diagnosis refers to the classification of equip-
ment faults. Faults are detected using one method. Then faults

QUIPMENT faults are often the cause of major variationgre classified using another method. Current research in the
in semiconductor manufacturing processes. Considerifi@rature has concentrated on equipment fault diagnosis, rather
the expense of processing, these variations can cause dramptify the detection of the existence of equipment faults. For
yield losses [1]. Traditionally, the mean or signal-to-noise rati&xample, pattern recognition techniques including statistical
of the wafer surface data is mOdeled, and the resulting modebigcriminant ana'ysis techniques [1], fuzzy |ogic techniques
used to detect equipment faults according to statistical Procesg and neural networks [6] have been used for diagnosis
control (SPC) techniques; however, as wafer sizes increéﬁﬁposes. Het al. [7], Butler and Stefani [8], and Bombay
and film thicknesses are reduced, the use of integrated spajg} Spanos [9] have applied empirical (or semi-empirical)
information will have a greater impact on detecting equipme55|ynomia| modeling techniques to relate process outputs
faults. to process settings, and May and Spanos [10] have used
evidential reasoning to integrate in-line, off-line, and main-
tenance data for fault diagnosis. However, methods such as
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1) Establish base-line condition
2) Select a few known faults for initial studies
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Collect data using designs of experiments
and sampling schemes

§ Develop wafer surface spatial models %

Construct spatial signature metrics
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i Detect and diagnose equipment faults %—
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Fig. 2. Fitted wafer surfaces from wafers processed (a) with no equipment
Fig. 1. Equipment fault detection and diagnosis chart. faults and (b) with known equipment faults.

) ] ~ A. Modeling Wafer Surface Data Using Thin-Plate Splines
experimental data, one can construct physically based signa-

ture metrics to detect and identify equipment faults. When the While recognizing that other modeling methods are avail-
basic faults are understood, new faults can be added into fHtS: this study uses thin-plate splines to model the virtual
study. Fig. 1 shows a flow chart of all the steps in the proce afer surface. A virtual wafer surface model of spatial process

If a. certéin type of fault is known to have a specific Shapﬁéhavior is less sensitive to the position of measurement sites,
then classification of faults can also be verified by comparifg€asurement error, and angular orientation than techniques
a newly fitted surface to the known fault surface. In this cas@Ccusing on individual data points [11]. The thin-plate spline
by treating the fault surface as the “target,” the methodology ik beh_V|ewe|(_j aSA"T rr]nultlhdlml_ensmnal extenIS|on of the CL_Jb'(;’j
spatial signature metrics can be used to statistically comp3f8°°t |n%sp 'nﬁ' ht Eug spfmﬁs,]in general, are constramde
the newly fitted surface to this “target’ to determine if thé?, P@ss through the knots of the function [e.g., gate oxide
newly fitted surface belongs in this fault class. thickness measurements at ;) distances from the center of a

Section Il describes the equipment fault detection methoW?fer]’ the t_hln-plate spline attempts to produce the smoothest
ology using spatial signatures in detail. Sections Ill and I#4"Ve hpossml_e betweerz]n tT]e kn(;ts and, trﬂerefore,hdoeshnr?t
provide illustrating examples from experiments conducted @€ the requirement that the surface actually pass through the
North Carolina State University (NCSU) and Texas InstrkNOts: The estimator of the thin-plate splinés the minimizer
ments, Inc. (TI), respectively. Section V draws conclusiorfg the following penalized sums of squares [12]:
from this study and points to potential future work. n )

> i = g(@)P /n+ Am(g) 1)

II. FAULT DETECTION METHODOLOGY =1

Fig. 2(a) and (b) show how equipment faults can be manifeépere the first term represents the lack of fif,(g) is the
in the spatial response of the process. Fig. 2(a) shows the g&éghness penalty function, and is the spline smoothing
oxide thickness surface of a wafer that was processed unBafameter. For this study, thin-plate spline fittings were formed
fault-free conditions. Fig. 2(b) shows the gate oxide thickne8¥ using a collection of routines called FUNFITS written for
surface of a wafer processed under known equipment fauki§e in the S-plus statistical software [13]. A thin-plate spline
X andY represent the: andy distances from the center of¢an then be used to predict the response at any location on the
the wafer. Not only is there an apparent decrease in thickn&§afer and thus can be used to predict the entire wafer surface.
between the two surfaces, but also a change in spatial pattéfnthis study, A is set to be very small (0.001) which gives

The next five subsections present the new methodology™®Pre of an interpolating surface as recommended by Davis
using spatial signatures to detect equipment faults: et al. [3].

1) modeling wafer surface data using thin-plate splines; .

2) estimation of the baseline or “fault-free” surface; B. Estimation of the Target Surface

3) construction of physically based signature metrics for A target surface needs to be specified for evaluating equip-

comparing wafer surfaces; ment performance. In many cases, the target surface may be

A\ _actimatinn_nf tha ctatictical dictrihiitinn nf matrire: lklnnwin: a i a nan Linifarmitv ctiicdhs whara tha tarnat thicknace
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Fig. 3. Replicate wafer surfaces from wafers processed under fault-fieig. 5. Two replicates from fault-free conditions averaged to form target
conditions in a RTCVD experiment. surface.

a result of equipment Qe3|gn, the wafer surface may not Srameter estimates from the individual spline equations. As
flat even though there is no equipment fault. Assuming a fl example, by averaging the two surfaces in Fig. 3(a) and (b)
target surface in this situation may lead to incorrect equipmq%m the R'IICVD experiment at NCSU, we obtain the target
fault detection. Thus, if the experimental wafer surfaces un lrface as shown in Fig. 5. A randomiz;ation procedure for use
equipment fault-free conditions are not flat, then these surfac@g, \yafer surfaces processed under the fault-free condition is
should be used as the target surface rather than a constant.clap'renﬂy being studied to better incorporate wafer-to-wafer

example, the two surfaces shown in Fig. 3(a) and (b) are Hgiation in the proposed methodology, but this randomization
surfaces from two replicates at the fault-free condition in Grocedure is beyond the scope of this paper.

RTCVD experiment conducted at NCSU and have a nonlineara ynical method for deriving the target surface is to first

pattern. Fig. 4 shows a surface from the fault-free conditiofyerage the data collected from specific sites on “replicated”
in @ PECVD silicon nitride experiment conducted at Texagafers at the fault-free condition and then fit a spline surface
Instruments, and this surface has a linear pattern. Howevgyhe averaged data to create the target surface. However, this
none of the surfaces shown in Fig. 3(a) and (b) or Fig. 4 reflegiproach averages the datanasites, wheren is the number
a constant baseline process surface. of data collected on a wafer, and requires that data be collected
In addition, the target surface should be validated aftgf the same sites on all wafers, as well as does not take into
preventive maintenance or any other procedure which altgfgcount any wafer-to-wafer variation. The approach described
the tool. The proposed methodology can be used to determifghe previous paragraph averages the spline estimates, which,
if any significant changes in the tool have occurred. If nig the intuitive sense, averages the spline surface at all possible
significant changes have occurred, then the new data canshes. In the spatial signature metrics developed in next section,
used in conjunction with the historical data to update the targgfgrid of close to 700 sites is used for prediction.
surface. The following method allows for a target surface to If the purpose of the statistical test is to compare an average
be estimated from data collected from fault-free runs. of wafer surfaces to a target, then averaging the wafer data
Data is collected from wafers under the equipment faulfirst would be appropriate. However, our concentration in this
free condition to obtain a good estimate of the target surfacewbrk is to compare the spatial surface ofsimgle wafer to
there is slow drift, and this slow drift is considered to be typicahe target, subject to random variation, and the variance is
phenomenon, then the wafers are still considered fault-fregnderestimated if the data from the target wafers are averaged

Qtaticticral nuitliar diannncic ~ran ha 1icad tn erraan tha data Adfara tha enlina ic fit Enr avamnla if tha enlina fite from thraa

gh: target surface is obtained by averaging location specific
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averaging the variance after the splines are fit yields a variangbere; (i = 1,2) could be any functions. For example,

of V = (V1 +V2+V3)/3. Now if we let X represent the vector could be the squared error loss function dndset to 0. This

of averaged data, then since the variance of a n¥@s2/m example would only penalize surfaces thicker than the target.

whereg? is the variance of{, by averaging the data first, anAnother example is to place different weights on the penalties

extra factor of 1/3 will be introduced into the variation beforéor g > 7" than forg < 7°. Again, understanding the reasons for

the spline is ever fit. Thus, the variance of the spline fit wheagetting equipment faults and their resulting spatial signatures

averaging the wafer data first will b& fm) times smaller than plays an important role in the selection of thefunctions.

the variance of the spline fit to the individual wafer data, where Another type of metric that should be considered is one

m is the number of replicated wafers. which allows for different regions of the wafer surface to
Another alternative is to treat data from all wafers probe weighted differently. For instance, error in the center of

cessed under the fault-free condition as coming from a sindle wafer may be of more importance than error toward the

wafer, then construct a spline to estimate the target surfaedge of the wafer. Also, certain equipment faults may cause

Although this method can capture variation at a particular sitefects, such as a thinner surface, in specific regions of the

without deflating it, this method also loses individual wafewafer surface rather than the entire wafer surface. An example

characteristics. of a metric that weights wafer surface regions differently is

calculated as
C. Construction of Physically Based Spatial Signature Metrics

k
Different equipment faults may produce distinct spatial Mgrg = Z/ wihi(g — T) dIR; 4)
signatures. For instance, an equipment fault may affect only i=1 /IR

a specific region of the wafer surface rather than the entireh I denotes th b f laoDi . d
wafer surface. In this case, a certain performance evaluati§AC'e © deNOtes the number of nonoveriapping regions, an
and h; denote the weight and penalty functions for ttie

metric may better detect this particular type of equipment faulf’ ¢ . . . .

It is also possible that several metrics may have to be ussd'on respecuvely. This metric has the potential o be very
simultaneously to detect certain types of faults. Understandil; eful,. parncularly in the stage of equipment fault d|agn_OS|s,
the physical processes that create faults, and their result ce it is more generz_sll than the other_ suggested mgtrlcs. In
signatures, also greatly aids in constructing and deciding w L _the Previous mefrics may be considered as special cases
types of evaluation metrics to use. Four metrics are presen? dth's metric.

below as examples of how different metrics may be needed for

detecting certain fault signatures. The metrics are extensiddsEstimation of Signature Metrics

of the uniformity metrics presented by Daws al. [3] with

cussed here are based on loss functions. For all these meties, certain regions. This integration can be done by using a
g denotes a newly fitted thin-plate spline surfagedenotes |, erical integration technique where the fitted surfade
the target surface, arill denotes the wafer surface region. o1 ated on amv x NV grid (with points outside the radius of

The quadratic and absolute loss functions are common|y, \ afer removed) and the evaluated results, &g-7')2, are

used in many fields to quantify the penalty from departinﬁhen summed for each of thHé x V grid points and multiplied

from the target. The first two metrics used in this Worlﬁ%;pthe area of one of the grid elements. The metrics may be

are a squared deviate from target metric and an absolg roximated as [3]
value deviate from target metric. Both statistics are general

metr_ics used to_quantify the surface differenge-(I") and are metrics~ h(T — ng)T s Lyzsy ¥ A (5)
nonlinear functions of the error volume between two spline
surfaces. The metrics are calculated as where i is the loss function incorporated into the metric,

is an N2 x 1 vector of the targetW, is an N2 x n matrix

_ _ T2 — _
Msq = /]R(g I)"dR, Maps = /ng TIdR. () o thin-plate spline coefficients for the measurementss
an n x 1 vector of the measurements, is the number of

The squared metricMsq, penalizes much more than the K h tor atds th ¢
absolute metric) 5ps, with respect to larger departures fronfneasurements taken on the water, S the area of one

the target. Both metrics cover the entire wafer surface aﬂ& the grid elements. This approximation was showq to have
place equal weights on information at all wafer sites. IHOOd _results forv > 30 [3]. ThUS’N — 30 is used in the
addition, both metrics yield the same equipment fault detectig?%':’e”mental examples presented in this paper.
results in this study.

The following metric is an example of a metric that can bE. Use of the Signature Metrics in Equipment Fault Detection
used to detect an equipment fault that leads to a thicker WaferI

; C f the metrics indicate that the surface of a newly processed
surface. This metric is calculated as

wafer is statistically significantly different from the target
Mwr :/ hi(g—T)dR if g > T; wafer surface, then the conclusion is that an equipment fault
R

has occurred. Therefore, the null distributions of the metrics
r .

chniild ha ctiidiad in_nrdar tn _cat 1in_tha “cut-nff \vialia” far
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TABLE | and the Type Il error (false negative) as follows: kix=
WAFER LABELS FOR WAFERS PROCESSEDUNDER Prob(Type | error) below a chosen level, e.g., 0.01, and
EAacH COMBINATION OF EXPERIMENTAL CONDITIONS .
select the test that minimizes = Prob(Type Il error).
T Low F‘;W Rate Medi‘;mlflol‘;’ Rate | High 210;/ Rate The choice ofx is up to the discretion of the practitioner.
amps Working , L, ) . . « _ 9
Bottom Lamp Out 7} TR, R In thls study, more conservative “cut-off” values were
Side Lamp Out 5 6. 13 9 desired, sax = 0.01 was selected.

[lIl. EXPERIMENTALVERIFICATION WITH

fitted surface and the target wafer surface. In other words, the NCSU LABORATORY EQUIPMENT

distributions of the metrics under the “fault-free” condition are ) ) )
needed to determine the “cut-off values” in the tail(s) of th& Design of Experiment and Data Collection
distributions for a specified level of significance. To test the proposed methodology, a laboratory experiment
An analytical approach based on standard statistical asymyas conducted at NCSU where the following two types of
totic normal approximation theory was first considered. Apequipment faults were induced in a prototype RTP (rapid ther-
proximation theory cannot be applied in this study sinamal processing) single wafer system: lamps burning out and
traditional distributional spline results are for the independeatmiscalibrated SilfAr mass flow controller. The response
identically distributed case; however, as(the number of measured was SiCthickness. There were 15 wafers available
spatial measurements) goes to a very large number, mday the experiment. Preliminary experiments, in which one
devices are being sampled on a fixed size wafer, and the datap at a time was removed, were performed to decide on how
become more dependent because of spatial correlations. Thany lamps should be disengaged during an experiment. The
resulting increasing dependence is called infill-asymptotiecsmoval of a single lamp caused a marked decrease in oxide
[14]. An alternate Bayesian (simulation) approach can be takérickness. For example, when a side lamp was disengaged,
to determine the null distribution of the metrics using tha 13.5A decrease in average oxide thickness was observed.
following steps. When a bottom center lamp was disengaged, the average oxide
1) According to a procedure given in Green and Silvermdhickness decreased by 10.22
[12], assuming a Gaussian prior distribution, the poste- The final experimental design used to induce equipment
rior distribution of the spline surfacghas the following faults was an unbalanced 8esign. While the NO flow was
multivariate normal distribution [12]: held constant at 500 sccm, three 10% it flow rates of
oA R 20, 25, and 30 sccm were used for low, medium, and high flow
g ~MVN[g, 67A(N)] (6) rates, respectively. Table | shows all possible experimental
where § is the vector of fitted valuess? is calcu- conditions along with the wafer labels of each wafer processed
lated as: (the residual sums of squares about the fiti¢gder each combination of conditions. The baseline “fault-
curve)/equivalent error degrees of freedom, ahdi) fr(_ae" stat_e was the condition W|th_ all lamps working and
is the projection matrix which maps the vector of Ob\_Nlth mgdlum flow rate. Three replicates were allocated fqr
served values to their predicted values. Since there wé&gimating the target surface and for constructing the posterior
multiple wafers processed independently at the baselifiitributions of the spatial signature metrics. For each wafer,
conditions in this study, the averages of ths and the oxide thlcknegs was estimated at 17 pomts.' The sampling
a_QA(S\),S from all baseline wafers were used in (). scheme was designed to cover the wafer regions evenly as

. . . shown in Fig. 6.
2) The following parametric bootstrapping approach CarpThe oxide thickness was estimated by measuring(h&

be used to simulate independent observations from the L . .
null posterior distribution of the metric. First, 5000 set§ hfaractenst]cs of capacnors_loca_tted at the measurement points
of n observations are simulated from the muItivariatg%,Slng a Keithley 595 QuaS|'stat|c'Meter and a Keithley 590
normal model (6). A spline surface is fitted to eac -V Analyzer. The gate oxide thickness was then extracted

set of observations, and the spatial signature metri@gm the C—V" data while accounting for polysilicon depletion

are calculated using (2)—(5). As a result, 5000 indepe nd quantum effects using a program written by Hauser [15].
dent observations are obtained from the null posteri Infortunately, daFa could not be _collected from wafer 5 (low
distribution of each signature metric. ow rate and a side lamp OUI). since the wafer was damaged

3) With a pre-specified significance level, = 0.01 (or during processing. prever, since Fhe goal of this s_tudy IS not
0.05), a “cut-off’ value is defined as the 99th (or 95th5’m experimental design analysis, this was not a major concern.
percentile from the null distribution of a specific metric. o
If the calculated metrics (2), (3), or (4) for a newly fittedP- APPlication of the Proposed Methodology
surface are larger than their respective “cut-off values,” P the Experimental Data
is statistically significant at levet that the wafer was not  The laboratory experiment had three runs processed under
processed under fault-free conditions. The decision rulee baseline condition. One of the wafers appeared to be
is still applicable even if the sampling scheme changesnsistently thicker than the other two wafers at all sampled

cinra tha tarnat clirfara ramaine tha cama  Tha dacicaime Tha data from thic wwafar wac avelhiidad from tha acti-
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