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We prolpose a system which uses real-time equipment sensor signals to automatically detect and analyze 
semicortductor equipment faults, and evaluate the impact of the fault on the wafer parameters. The system, 
which has been applied on plasma processes, consists of three modules: (1) fault detection, (2) fault analysis, 
and (3) prediction of final wafer parameters such as etch rate, uniformity, selectivity, and anisotropy. 

1.0 Introduction 
To compete in today's semiconductor industry, compa- 

nies must continuously improve upon their manufacturing 
skills to both maintain high yield and reduce the cost of own- 
ership of the equipment on the manufacturing line. A key ele- 
ment required io achieve these goals is to monitor the 
equipment to ensure that the semiconductor wafers are pro- 
cessed properly at each step. Measuring each wafer after it 
completes each step, however, is especially difficult in semi- 
conductor factories producing chips with over 100 manufac- 
turing steps. Moreover, due to throughput requirements, each 
wafer processed in each machine can not be measured indi- 
vidually. Present practice is to measure monitor wafers peri- 
odically, perhaps at the start of each work shift, after 
performing maintenance, or after changing the machine set- 
tings. Unfortunately, monitor wafers give no guarantee that 
subsequent procluction wafers will be processed properly. 
Thus, instead of detecting equipment faults causing yield loss 
early in the process flow, yield loss is usually found at the 
very end of the processing line. 

We propose a novel system which uses equipment sensor 
signals to automatically detect equipment faults in real-time, 
and analyze and evaluate the effect of the fault on wafer 
parameters on a run-to-run basis. The three modules of the 
system are (1) detection of equipment malfunctions, (2) anal- 
ysis (classification) of equipment faults, and (3) the predic- 
tion of output wafer parameters (Figure 1). The system 
impacts the semiconductor fabrication line by reducing the 
scrap produced by the equipment, reducing the down-time, 
and reducing the mean-time-to-repair. The result is a reduc- 
tion in the overall cost of ownership of the equipment. 

This general methodology is verified on a plasma etcher, 
one of the cost1ii:st pieces of equipment in the semiconductor 
fabrication line. Not only is the etcher usually a bottleneck 
piece of equipment, it is difficult to control because it is not 
well understood. Most importantly, each etcher can generate 
up to $100,000 worth of scrap per hour. The plasma etcher 
used in this work is a Lam Rainbow 4400 polysilicon etcher. 

In this paper, the designed experiment is described first. 
A discussion of the fault detection and analysis modules is 

next, followed by a description of the wafer parameterpredic- 
tion module. 

Equipment 

r - - T - i  I, Real-time , 

p&-J Analvsis 

Figure 1 Proposed system 

2.0 Designed Experiment 
This section describes the experiment conducted to 

obtain the real-time data sets used to develop and verify the 
system. First, the wafer test structure is briefly described, fol- 
lowed by a discussion of both the training and the prediction 
experiments. Finally, the measurements taken on each wafer 
arc described along with a discussion of the real-time signals 
collected during wafer processing. 

2.1 Test Structure 
The test structure was designed so all processes of inter- 

est are simultaneously obtained in the same etch step. Due to 
complex loading effects, this method results in more accurate 
etch rates and selectivities than etching blanket wafers 
individually'). A simplified view of the test structure indicat- 
ing the etched surfaces is shown in Figure 2. First, a 600A 
thermal gate oxide is grown on the 4" wafers, followed by 
5500A n+ doped polysilicon, deposited via low pressure 
chemical vapor deposition. After a 20 minute nitrogen anneal 
at 95OoC, 2800A undoped low temperature oxide (LTO) is 
deposited by chemical vapor deposition. A three step mask 
process is required to build the test structure. 

- 133 - 

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 12,2021 at 04:22:28 UTC from IEEE Xplore.  Restrictions apply. 

Applied Materials, Inc. Ex. 1026 
Applied v. Ocean, IPR Patent No. 6,836,691 

Page 1 of 4f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


2.2 Training and Prediction Experiments 
In both the training and prediction experiments, a fixed 

pre-etch recipe was used for all runs. The main etch recipe 
was modified according to a designed experiment described 
below. To obtain accurate etch rates the main etch was a timed 
etch, so no overetch was performed. The input parameters 
varied in the experiment are the chamber pressure, RF for- 
ward power, electrode gap spacing, the ratio of C12 to He, and 
the total gas flow of C12 and He. Because the ratio and total 
gas flows are more significant to the etch results, they were 
varied in the experiment instead of the individual gas flows. 
The output wafer parameters of interest are the etch rate of 
polysilicon, selectivity of polysilicon to oxide and I-line pos- 
itive photoresist, polysilicon wafer uniformity, and anisot- 
ropy. 

Parameter 

Pressure 

2XWA LT 
5500A polySi 

Phase I Phase II Prediction 

15% 22.5% 10% 

.9pm I P R I  
6008, gate oxide 

Figure 2 Test structure for the experiment. 

2.2.1 Training Experiment 
The training experiment consisted of two phases. Phase 

I, the variable screening stage, determined the statistically 
significant variables in the models. Phase I1 assessed the qua- 
dratic nature of the system via a star design. The input values 
used for all experiments are listed in Table 1, in terms of per- 
cent offset from the nominal values. The particular values 
were chosen to cover a wide range of operating conditions of 
the machine. Of the 37 runs in both phases of the training 
experiment, including replicated runs, 10 were eliminated 
before modeling due to unstable real-time signals or mispro- 
cessing. 

Table 1: Change in % From Nominal 

Power 22.5% 

Flow Ratio 19% 23% 10% 

I TotalFlow I 11% I 22% I 10% I 
Phase I consists of a two-level, 16 run fractional 25-’ fac- 

torial design and 4 center points. The design is resolution V 

with no blocking, but drops to resolution JII when blocked for 
time and split lots. The design is essentially resolution V 
because blocking was not a factor in any of the phase I 
response surface models. Assuming that four factor interac- 
tions are negligible, this experiment provides a good estimate 
of the main effects. 

The variable screening analysis was performed by build- 
ing models from the phase I data. The statistical significance 
of each parameter was determined via the student-t test at the 
0.05 significance level. Results of the analysis show that 
although input settings are not all statistically significant in 
every model, all are required to model the four output charac- 
teristics of interest. 

Additional runs were performed in phase II to estimate 
the quadratic behavior of the system. The models are limited 
to quadratic terms to limit complexity. The phase I1 runs con- 
sisted of center points and “star” points, arranged symmetri- 
cally along the axis of each variable2). Two star points were 
run for each variable. Two center points were also run, for a 
total of 12 additional runs. 

2.2.2 Prediction Experiment 
The purpose of the prediction experiment is to collect 

another data set used to simulate equipment faults and test the 
prediction capability of the models. The prediction experi- 
ment was run approximately four weeks after the phase II 
experiment. The input settings for this experiment were var- 
ied one at a time. 

2.3 Wafer Measurements 
In both experiments, film thickness measurements were 

taken by a Nanometrics Nanospec AFT system on 9 die per 
wafer. Four points were measured on the outer perimeter of 
the wafer, four were measured half-way from the edge of the 
wafer, and one point was measured at the center. Measure- 
ment error was approximately lOA. The Alphastep 200 Auto- 
matic Step Profiler was used to confirm the Nanospec 
measurements. Film thicknesses were measured before and 
after etching; etch rates at each measured point are calculated 
by subtracting the post-etch from the pre-etch measurements, 
and dividing by the etch time. Wafer etch rates are averaged 
over the 5 inner points. Uniformity is calculated by scaling 
the difference between the etch rates of the outer and the inner 
rings by the etch rate of the inner ring. 

2.4 Real-time Data 
The real-time data collected from the plasma etcher are 

comprised of various electrical and mechanical signals. 
Between six and thirteen signals are collected. Six signals are 
collected via a Comdel Real Power Monitor (RPM-I), placed 
directly above the upper electrode3). The remaining seven 
signals are collected via the Lamstation software, which 
reads the signals from the SECS11 serial port on the etcher4). 
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Because a number of the measurements are related electri- 
cally or mechanically, many of the signals are highly corre- 
lated. A few signals are collected from different places in the 
equipment by the two different monitoring systems. 
Although correlated, these signals are not identical. The 
important sign.& monitored are RF Power, RF Voltage (rms), 
RF Current (nns), Load Impedance, RF Phase Error, Tune 
Vane Position, Load Coil Position, Peak-to-Peak Voltage, and 
End Point Data. 

3.0 Fault Detection and Analysis 
Since the data are collected sequentially at a sampling 

rate of 1 Hz the real-time signals are correlated in time, dem- 
onstrating time series behavior. The real-time fault detection 
module utilizes time series models to analyze the real-time 
signals. The objective i s  to use these automatically collected 
signals to establish the baseline behavior of a complex tool 
and later detec t deviations from this baseline. The fault detec- 
tion algorithm is implemented through RTSPC, a software 
utility which automatically collects real-time sensor data and 
generates real-time alarms7). Examples of faults include 
shifts in the process parameters, such as changes in chamber 
pressure, RF power, or gas flows. 

If no equipment faults are detected, normal operation of 
the machine c'ontinues. When a malfunction is detected, the 
diagnostic routine is triggered, and an alarm is generated to 
alert the operai.or. After being filtered in RTSPC, the real-time 
residual data form distinct signatures which can be traced 
back to a specific equipment fault or group of faults. Initially, 
a training set of faults must be generated to teach the diagno- 
sis module fault signatures, creating a library of signatures. 
Discriminant analysis techniques are employed to analyze the 
equipment faults and train the system. Once training is com- 
plete, equipment faults are detected and analyzed on a run-to- 
run 

4.0 Wafer Parameter Prediction 
Empirical models are used to predict the outcome of each 

wafer immediately after it is processed by the equipment. To 
provide useful prediction capabilities, robust prediction mod- 
els of the machines are required. The industry standard is to 
use response surface methodology to build models relating 
the input settings of the machine to the output characteristics. 
Response surface models, however, become unusable in time 
due to machine drifts, rendering them ineffective for predic- 
tion. 

We propase that using real-time signals to build the mod- 
els results in better prediction capabilities. Four types of 
regression methods were explored: ordinary least squares 
(OLS) regression, ridge regression, principal component 
regression (PCR), and partial least squares regression 
(PLSR). No ane modeling method was overwhelmingly bet- 
ter than the others, although OLS regression resulted in 

slightly better prediction models for polysilicon etch rate. 
PCR and PLSR models, however, were less sensitive to over- 
fitting. 

The time series nature of the signals is not exploited in 
the prediction module. Instead, each signal is averaged over 
the duration of the main etch step, which lasts approximately 
30 seconds. Approximately 30 points are collected per signal 
per wafer etch. Since the wafer-to-wafer variance of the real- 
time signals is much larger than the within wafer variance, the 
average values per signal across each wafer are used as the 
input for the prediction models built with the real-time sig- 
nals. The training model is built from data collected during 
the training experiment. The final prediction metric is based 
on how well the training model predicts the outcome of the 
data collected during the prediction experiment. By using this 
prediction data, the true prediction capability of the models 
can be gauged. The two metrics used are the average predic- 
tion error (PE) and the stanGard error prediction (SEP), where 
Yi is the ith observation, Yi is the predicted value of the ith 
point, and n is the number of observations: 

I n  

i =  1 

It must be emphasized that models with the best adjusted 
R2 value are not necessarily good for prediction. The best 
models built with real-time data have adjusted R2 values of 
0.95 or greater. These models, however, can potentially have 
huge prediction errors even if all the terms in the model are 
statistically significant. In some cases, especially for OLS 
models, the prediction error is huge. To allow for better pre- 
diction a few terms in the models are eliminated, at the cost 
of reducing the adjusted R2 value. 

Two sets of models were built for each of the wafer char- 
acteristics to show that the real-time signals are better suited 
for prediction than the machine input settings. The first uses 
the real-time signals and the second uses the input settings. 
Due to the small ranges of selectivities across the design 
space, models are created for the individual etch rates of gate 
oxide and photoresist instead of modeling the selectivities. 
The ranges of each output parameter are listed to give a rela- 
tive measure of the accuracy of the prediction. The resulting 
PE and SEP values for the etch rate and uniformity models 
are listed in Table 2 in terms of percent error of the range. In 
all cases, the models built with the real-time data are superior 
to those built with input settings. The best models for unifor- 
mity have 25% prediction error, indicating that uniformity 
can not be successfully modeled with this data set. 

One reason for the better prediction is that models built 
with input settings generally include statistically significant 
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blocking terms to account for differences in the machine 
between sets of runs. In this experiment, the chlorine bottle 
was refilled between phases I and 11, causing a slight shift in 
the baseline behavior of the machine. This shift is accounted 
for in the models built with input settings through a blocking 
parameter. Blocking terms, however, can not be used in pre- 
diction models. Without the blocking parameter, the predic- 
tion capability of the model built with input settings suffers. 

Table 2 Comparison of Models Built Using Input Settings 
vs. Real-Time Data 

Oxide Etch Rate PE 34% 4% 

(160-23OA) 1 SEP 1 82% 1 6% 
PREtchRate 1 1 ::z 1 z3 

Uniformity 58% 25 % 

(4 - 20%) SEP 83% 25% 

(1280 - 1750A) 

Unlike the fixed input settings the real-time signals 
change with the state of the machine, eliminating the need for 
blocking terms. Figure 3 compares the modeling results of 6 
centerpoint wafers. The model built with the fixed input set- 
tings predicts a constant etch rate, while the real-time model 
adjusts the prediction as a result of small changes in the 
machine state. Thus, from the results listed in Table 2 and the 
above argument, we conclude that models built using real- 
time data predict etch rates with more accuracy than those 
built with input settings. 

5.0 Conclusions 
The three-module system presented is especially power- 

ful because it does not depend upon monitor wafers or expen- 
sive metrology; rather, it uses non-invasive real-time signals 
collected automatically from the tool while the wafer is pro- 
cessing. These signals are used effectively to detect and ana- 
lyze equipment faults. Prediction models have also been 
developed using real-time signals. Since the wafer parame- 
ters are predicted immediately after the wafer has finished 
processing in the machine, important yield information is 
obtained on a run-to-run basis. In addition to catching prob- 
lems with the machine, the real-time data can be used to 
assess the quality of the wafer immediately after processing, 
making it possible to ensure that only wafers worth process- 

ing continue down the line. 
Another consequence of the prediction capability of the 

real-time models is that inexpensive run-to-run control is pos- 
sible. Future work includes pursuing such a run-to-run con- 
trol scheme of plasma etch equipment which will bring the 
specified output parameters back to their target value in the 
case of equipment drift. 

1 Input Setting Model 
8 \ 

I .  I 

Replication Wafer # 

Figure 3 Comparison of the model built with input 
settings versus the model built with real-time signals. 
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