/P semr

PROVISIONAL SPECIFICATION FOR CIM FRAMEWORK DOMAIN

SEMI E81-0600

ARCHITECTURE

This provisional specification was technically approved by the Global Information & Control Committee and
is the direct responsibility of the North American Information & Control Committee. Current edition

approved by the North American Regional Standards Committee on March 2, 2000.

Initially available at

www.semi.org April 1999: to be published June 2000. Originally published June 1999.

1 Purpose

1.1 This document is an overview of the structure and
contents of a suite of documents representing an
application framework for the Computer Integrated
Manufacturing (CIM) systems as used in semiconductor
factories. A framework is a software infrastructure that
creates a common environment for integrating appli-
cations and sharing information in a given domain. The
purpose of this framework is to establish an industry
standard architecture for complex manufacturing
systems, leading to an open, multisupplier CIM system
environment. The framework described in this
specification is called the CIM Framework.

2 Scope

2.1 The intent of this document is to describe the
Manufacturing Execution Systems (MES) domain that
is the subject of the CIM Framework and to provide a
reference for concepts that are common to the set of
documents that specify the CIM Framework. The
Provisional Specification for CIM Framework Domain
Architecture defines the structure, relationships and
interworkings of the components that together comprise
the CIM Framework. This architecture defines the
partitioning of the CIM Framework components and the
responsibilities of each of those components. It also
specifies the common abstractions for manufacturing
jobs, material, and factory resources that are used
consistently throughout the CIM Framework as
unifying themes.

2.2 The CIM Framework Domain Architecture does
not address the dependencies on computing tech-
nologies needed to implement these components. These
aspects apply more to the realization of the components
as software artifacts than to their functionality in terms
of semiconductor manufacturing concepts. The
technical aspects of the CIM Framework architecture
are captured in a separate document, SEMI E96, Guide
for CIM Framework Technical Architecture.

2.3 This specification does not purport to address
safety issues, if any, associated with its use. It is the
responsibility of the users of this specification to
establish appropriate safety and health practices and

DOCKET

_ ARM

determine the applicability of regulatory limitations
prior to use.

3 Limitations

3.1 The CIM Framework Specification must continue
to evolve to meet the needs of a competitive and vital
industry. The content of this framework represents a
significant amount of real development experience from
a number of commercial software suppliers and their
customers. These specifications reflect the product
architectures of those companies, as well as the
requirements of their customers.

3.2 As a SEMI Provisional Standard, the Specification
for CIM Framework Domain Architecture has specific
deficiencies that must be addressed before it may be
upgraded to full SEMI Standard status. These
deficiencies are:

e Ensuring consistency with the details of subsequent
related specifications that are based on this domain
architecture.

e Evolving from coarse-grained component partitions

to fine-grained components that provide
substitutability of smaller components.
e Expanding interfaces to include build-time

configuration functions.

¢ Providing fully validated models using the standard
Unified Modeling Language (UML) notation.

e Aligning the CIM Framework representation of
equipment and interfaces for interactions with
equipment automation software with emerging
standards in areas such as Object-Based Equipment
Model (OBEM) and Automated Material Handling
Systems (AMHS).

e Modifying the CIM Framework use of the “in”
parameter mode and operation return value to
include also the “out” and “inout” modes to better
accommodate implementations based on Microsoft
DCOM and IDL enhancements for pass-by-value
of objects.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

/»semr

e Adjusting the functional partitioning of the Domain
Architecture to reflect the final positioning of sub-
components in the anticipated revisions of the other
CIM Framework specifications.

4 Referenced Standards

4.1 SEMI Standards

SEMI E5 — SEMI Equipment Communications
Standard 2 Message Content (SECS-II)

SEMI E10 — Standard for Definition and Measurement
of Equipment Reliability, Availability, and
Maintainability (RAM)

SEMI E30 — Generic Model for Communications and
Control of Manufacturing Equipment (GEM)

SEMI E32
(MMM)

— Material Movement Management

SEMI E42 — Recipe Management Standard: Concepts,
Behavior, and Message Services

SEMI E58 — Automated Reliability, Availability, and
Maintainability Standard (ARAMS): Concepts,
Behavior, and Services

SEMI E86 — Provisional Specification for CIM
Framework Factory Labor Component

SEMI E93 — Provisional Specification for CIM
Framework Advanced Process Control Component

SEMI E96 — Guide for CIM Framework Technical
Architecture

SEMI E97 — Provisional Specification for CIM
Framework Global Declarations and Abstract Interfaces

SEMI E102 — Provisional Specification for CIM
Framework Material Transport and Storage Component

4.2 OMG Documents'

CORBA — Common Object Request Broker Archi-
tecture, Version 2.3.1 (OMG Document formal/99-10-
07).

MfgDTF — Manufacturing Domain Task Force Road-
map, Version 3.1 (OMG Document mfg/98-06-11).

OMA — Object Management Architecture Guide,
Version 3.0 (OMG Document ab/97-05-05).

UML — UML Notation Guide, Version 1.1 (OMG
Document ad/97-08-05).

Workflow — Joint Workflow RFP Revised Submission
(OMG Document bom/98-06-07).

1 Object Management Group, 492 Old Connecticut Path.
Framingham, MA 01701, USA

DOCKET

_ ARM

4.3 SEMATECH Documents’

CIMArch — Computer Integrated Manufacturing
(CIM) Framework Architecture Concepts, Principles,
and Guidelines, Version 1.0 (SEMATECH-Technology
Transfer #97103379A-ENG).

CIMFW — Computer Integrated Manufacturing (CIM)
Application Framework 2.0 (SEMATECH Technology
Transfer #93061697J-ENG).

4.4 Other References

ALBUS — J.S. Albus and A.M. Meystel, A reference
model architecture for design and implementation of
intelligent control in large and complex systems,
International Journal of Intelligent Control and Systems

vol. 1, no.l p.15-30, World Scientific: Singapore,
March 1996.°

ANSI — ANSI Standard ANSI/ISA-S88.01-1995,
Batch Control Part 1: Models and Terminology*

COM+ — http://www.microsoft.com/msj/1197/
complus.htm; http://www.microsoft.com/com/’

DCOM — http://www.microsoft. com/wmdows/down—
loads/bin/nts/dcom_architecture.exe.’

JAVA — http://www.javasoft.com.’

WMC — http://www.wfmc.org.7

NOTE 1: As listed or revised, all documents cited shall be the
latest publications of adopted standards.

5 Terminology

5.1 Abbreviations and Acronyms

5.1.1 AMHS — Automated Material Handling System
5.1.2 APC — Advanced Process Control

5.1.3 APCFI — Advanced Process Control Framework
Initiative

5.1.4 API— Application Programm ing Interface
5.1.5 CIM — Computer Integrated M anufacturing
5.1.6 MES — Manufacturing Execution System

2 SEMATECH, 2706 Montopolis Dr.. Austin, TX 78741, USA

3 World Scientific Publishing Co., 1060 Main St., River Edge, NJ
07661, USA

4 American National Standards Institute. 11 West 42nd St., New
York. NY 10036, USA

5 Microsoft, 10500 NE 8th St.. Ste. 1300, Bellevue, WA 98004, USA
6 Sun Microsystems Inc., 901 San Antonio Road, Palo Alto, CA
94303, USA

7 Workflow Management Coalition Office, 2 Crown Walk,
Winchester, Hampshire, 8022 SXE, United Kingdom

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

/P semr

5.1.7 MMMS — Material Movement Management
Services (SEMI)

5.1.8 OBEM — Object Based Equip ment Model
5.1.9 OMA — Object Management Architecture
5.1.10 PFC — Process Flow Context

5.1.11 PFI— Process Flow Iterator

5.1.12 RFP — Request for Proposal

5.1.13 RMS — Recipe Management System
5.1.14 UI— User Interface

5.1.15 WIP — Work In Process

5.2 Definitions

5.2.1 abstract interface — an interface defined outside
any component that generalizes common features of the
CIM Framework. The abstract interfaces are intended
for use in multiple components via interface inheritance
mechanisms.

5.2.2 application — 1. One or more programs
consisting of a collection of interoperating objects
which provide domain specific functionality to an end
user or other applications. 2. Functionality provided by
one or more programs consisting of a collection of
interoperating objects.

5.2.3 application framework — a framework that
constitutes an application or a set of applications for a
domain area.

5.2.4 application interface — the interface provided
by an application or application program.

5.2.5 application object — an object implementing an
application interface.

5.2.6 architecture — the structure of the components
of a program/system, their interrelationships, and
principles and guidelines governing their design and
evolution over time.

5.2.7 attribute — an identifiable association between
an object and a value. An attribute may have functions
to set and retrieve its value.

5.2.8 behavior — the effects of performing a
requested service including its results.

5.2.9 binding — a specific choice of platform
technologies and other implementation-specific criteria.

5.2.10 class — the shared common structure and
common behavior of a set of objects. Class often
implies an implementation of the common structure and
behavior while interface represents a specification of
those common features.

DOCKET

_ ARM

5.2.11 client — an object that uses the services of
another object by operating upon it or referencing its
state.

5.2.12 collection — an object containing references to
(collections of) other objects with services for
managing them and providing access to them as a
related group of objects.

5.2.13 component — a reusable package of
encapsulated objects and/or other components with
well-specified interfaces. The component is the element
of standardization and substitutability in the CIM
Framework.

5.2.14 Computer Integrated Manufacturing (CIM) —
an approach that leverages the information handling
capability of computers to manage manufacturing
information and support or automate the execution of
manufacturing operations.

5.2.15 conformance — adherence to a standard or
specification in the implementation of a product,
process, or service.

5.2.16 conformance requirement — identification in
the specification of behavior and/or capabilities
required by an implementation for it to conform to that
specification.

5.2.17 conforming implementation — an
implementation that satisfies all relevant specified
conformance requirements.

5.2.18 distributed system — an integrated collection of
several processing and memory components whose
distribution is transparent to the user so that the system
appears to be local.

5.2.19 domain interface — an interface specific to an
application subject area.

5.2.20 domain object — an object implementing a
domain interface.

5.2.21 events — an asynchronous message denoting
the occurrence of some incident of importance. For
example, state change or new object created.

5.2.22 event channel — the intermediate object that
forwards published events to interested subscribers.

5.2.23 exception — an infrastructure mechanism used
to notify a calling client of an operation that an unusual
condition occurred in carrying out the operation.

5.2.24 extensibility — the ability to extend or
specialize existing components and add new object
classes or components while preserving architectural
integrity and component conformance to standards.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

/P semr

5.2.25 framework — a collection of classes or
components that provide a set of services and
functionality for a particular domain.

5.2.26 implementation — the internal view of a class,
object or module, including any non-public behavior.
The specific code and functionality that implements an
interface.

5.2.27 infrastructure — the services, facilities, and
communications mechanisms that support the collabor-
ation between and lifecycle of distributed objects.

5.2.28 inheritance — a relationship among classes
wherein one class (a subclass) shares the structure or
behavior defined in one or more other classes
(superclass). A subclass typically specializes its
superclasses by augmenting or redefining existing
structure and behavior.

5.2.29 instance — a software entity that has state,
behavior and identity. The terms instance and object are
interchangeable. An object is an instance of an interface
if it provides the operations, signatures and semantics
specified by that interface. An object is an instance of
an implementation if its behavior is provided by that
implementation.

5.2.30 interface — the external view of a class, object,
or module that emphasizes its abstraction while hiding
its structure and internal behavior. An interface
definition ideally includes the semantics.

5.2.31 interface inheritance — the construction of an
interface by incremental modification of other
interfaces (see implementation inheritance). The CIM
Framework specifies interface inheritance but not
implementation inheritance.

5.2.32 interoperability — the ability for two
applications or the parts of an application to cooperate.
In the CIM Framework, interoperability requires that
application components be able to share data, invoke
each others’ behavior (services), exchange events, and
publish service exceptions.

5.2.33 job — some system level operation whose
execution may be requested by an entity whose
responsibility it is to manage jobs. The job concept is
analogous to operations performed on the “factory
floor” in a physical factory. There, operators are
requested to perform operations (jobs) requested by
their managing supervisors or some other managing
source. A job often spans a significant amount of time
and multiple resources within the system. In the CIM
Framework, the job construct is intended for
specialization to enable specific job supervisors and
jobs to provide system solutions.

DOCKET

_ ARM

5.2.34 lifecycle — the life of an object, including
creation, deletion, copy, and equivalence.

5.2.35 method — an operation upon an object defined
as part of the declaration of a class. In general, the
terms message, method and operation can be used
interchangeably. Technically, a method is defined
within a class and an operation is defined within the
IDL. An operation is implemented by a method.

5.2.36 object — an identifiable encapsulated entity
that implements one or more services that can be
requested by a client. An instance of a class.

5.2.37 object services — interfaces for general
services that are likely to be used in any program based
on distributed objects.

5.2.38 Object Management Group (OMG) — an
international consortium dedicated to the development
of open specifications for distributed, heterogeneous,
object-oriented systems.

5.2.39 operation — an operation is an entity, identi-
fied by an operation identifier that denotes a service that
can be requested. An operation has a signature that
describes the legitimate values of request parameters
and returned results, including any exceptions.

5.2.40 persistent object — an object that can survive
the process or thread that created it. A persistent object
exists until it is explicitly deleted.

5.2.41 process definition — information characterizing
manufacturing processes including an estimate for the
time a process resource will be engaged in the process;
process resource settings; and the process capabilities
required for the process.

5.2.42 process flow — the part of a product
specification that defines the sequence of process steps
for the manufacturing of a specific product. The data
structure for representing a process flow is the directed
graph; specifically, a tree structure. The nodes of the
tree are called process flow nodes (see below). Services
are required to navigate the process flow.

5243 process flow context — navigational
information pertaining to a product’s progress as it
traverses its context process flow.

5.2.44 process step — the smallest unit of processing
activity that can be defined in a process flow. One or
more process steps are sequenced to define an operation
set.

5.2.45 recipe — the pre-planned and reusable portion
of the set of instructions, settings and parameters that
determine how a job is to be performed. For example,
recipes are used to describe Process Steps and are
typically contained within a Product Specification.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

/Ppsemr

They determine the processing environment seen by a
manufactured product (e.g., wafer). Processing recipes
may be subject to change between product runs or
processing cycles.

5.2.46 sub-component — a component that is fully
contained within a larger component. The interfaces of
the sub-component may be exposed or hidden by the
encapsulating component.

5.2.47 substitutability — the ability to replace a given
component from one supplier with a functionally
equivalent component from another supplier without
impacting the other components or its clients in the
system.

5.2.48 type — a declaration that describes the common
properties and behavior for a collection of objects.
Types classify objects according to a common interface;
classes classify objects according to a common
implementation.

6 Overview

6.1 This section provides background information that
will help readers get the most from the content of this
specification.

6.2 Intended Audience

6.2.1 The framework specification is intended to
address the needs of the following CIM technologists:

e Technical CIM managers.

e System architects and engineers.

e Application developers and integrators.
e Standards developers.

6.2.2 These groups may be found in a variety of
organizations, including semiconductor manufacturers,
software product suppliers, system integrators,
equipment suppliers, standards organizations,
universities, national laboratories, and other research
organizations.

6.2.3 Technical CIM Managers

6.2.3.1 Technical CIM managers are responsible for
managing the development, delivery, and integration of
complex manufacturing software applications. They can
use the CIM Framework specification to plan and
organize the development activities and guide
component testing and validation. Moreover, those who
buy some of their software from external sources can
use it as a purchasing guide when discussing system
architecture and integration requirements with potential
suppliers.

6.2.4 System Architects and Engineers

DOCKET

_ ARM

6.2.4.1 System architects and engineers are
responsible for overall system design, including
selection of industry standards for computing and
communications infrastructure, software development
processes, product roadmaps, and related topics. They
can make extensive use of the CIM Framework as a
starting point for many of their activities, including the

e partitioning and allocation of application functions
to specific modules,

e definition of the boundary between the distributed
system infrastructure and the rest of the system,
and

e specification of open interfaces between the
portions of the system they are designing and the
external environment.

6.2.42 They can also use the CIM Framework
specifications to define a strategic system roadmap for
migration to an open, distributed system environment.

6.2.5 Application Developers and Integrators

6.2.5.1 Application developers and integrators must
produce, install, and support software applications for
semiconductor manufacturing. The CIM Framework
specification, in conjunction with a specific framework
“binding” (i.e., target computer system hardware and
software technologies), represents a set of detailed
design requirements for the application developer. At a
minimum, the CIM Framework defines the scope and
boundaries of the essential standard components of a
manufacturing execution system, and can be used
principally as an interface specification. The object
models can also be used in the internal design of new
applications and/or legacy integration “wrappers,”
accelerating the development process even | further.
Finally, the specification can form the basis for creating
an independent set of tests necessary to verify
conformance.

6.2.6 Standards Developers

6.2.6.1 Developers of CIM software standards are
responsible for specifying the public interfaces and
shared information models that allow the many
software products found in a modern semiconductor
factory to work together. They can use the CIM
Framework as an open source of information for
establishing precise definitions for the many items in a
factory that must be represented in multiple suppliers’
products, including

e standards for partitioning and communicating with
complex equipment,

e product and raw material attributes and

relationships,

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

