

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

NINTENDO CO., LTD., and

NINTENDO OF AMERICA INC.,

Petitioners,

v.

ANCORA TECHNOLOGIES, INC.,

Patent Owner.

PTAB Case No. IPR2021-01338

Patent No. 6,411,941 B1

DECLARATION OF ANDREW WOLFE IN SUPPORT OF PETITION FOR
INTER PARTES REVIEW OF U.S. PATENT NO. 6,411,941

Nintendo - Ancora Exh. 1003

ii

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. Qualifications ... 2
1. Education ... 2

2. Work Experience .. 2
3. Curriculum Vitae .. 6

B. Materials Reviewed .. 7
C. Level of Ordinary Skill in the Art .. 7

D. Summary of Opinions .. 9
II. OVERVIEW OF THE TECHNOLOGY .. 9

A. Priority Date of the Claims ... 9

B. Overview of Relevant Technology When the ’941 Patent Was
Filed .. 10
1. Software Licenses .. 10

2. Computer BIOS.. 12
C. The ’941 Patent .. 14
D. Claim Construction .. 21

III. OVERVIEW OF THE PRIOR ART .. 21
A. Hellman .. 21
B. Chou ... 31

C. Schneck... 35
IV. UNPATENTABILITY OF THE ’941 PATENT CLAIMS 42

A. Standards for Invalidity .. 42
B. Claim 1 ... 43

1. Preamble: “A method of restricting software operation
within a license for use with a computer including an
erasable, non-volatile memory area of a BIOS of the
computer, and a volatile memory area; the method
comprising the steps of:” ... 43

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

iii

2. Element 1.a: “selecting a program residing in the volatile
memory” ... 55

3. Element 1.b: “using an agent to set up a verification
structure in the erasable, non-volatile memory of the
BIOS, the verification structure accommodating data that
includes at least one license record” .. 60

4. Element 1.c: “verifying the program using at least the
verification structure from the erasable non-volatile
memory of the BIOS, and” .. 69

5. Element 1.d: “acting on the program according to the
verification.” .. 71

C. Claim 2: “A method according to claim 1, further comprising
the steps of: establishing a license authentication bureau.” 71

D. Claim 3 ... 72
1. Preamble: “A method according to claim 2, wherein

setting up a verification structure further comprising the
steps of:” .. 72

2. Element 3.a: “establishing, between the computer and
the bureau, a two-way data-communications linkage;” 73

3. Element 3.b: “transferring, from the computer to the
bureau, a request-for-license including an identification
of the computer and the license-record’s contents from
the selected program;” ... 73

4. Element 3.c: “forming an encrypted license-record at the
bureau by encrypting parts of the request-for-license
using part of the identification as an encryption key;” 77

5. Element 3.d: “transferring, from the bureau to the
computer, the encrypted license-record; and” 79

6. Element 3.e: “storing the encrypted license record in the
erasable non-volatile memory area of the BIOS.” 79

E. Claim 6: “A method according to claim 1 wherein selecting a
program includes the steps of: establishing a licensed-software-
program in the volatile memory of the computer wherein said
licensed-software-program includes contents used to form the
license-record.” ... 80

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

iv

F. Claim 7 ... 81
1. Preamble: “A method according to claim 6 wherein

using an agent to set up the verification structure includes
the steps of:” ... 81

2. Element 7.a: “establishing or certifying the existence of
a pseudo-unique key in a first non-volatile memory area
of the computer; and” ... 81

3. Element 7.b: “establishing at least one license-record
location in the first nonvolatile memory area or in the
erasable, non-volatile memory area of the BIOS.” 83

G. Claim 8 ... 84
1. Preamble: “A method according to claim 6 wherein

establishing a license-record includes the steps of:” 84
2. Element 8.a: “forming a license-record by encrypting of

the contents used to form a license-record with other
predetermined data contents, using the key; and” 84

3. Element 8.b: “establishing the encrypted license-record
in one of the at least one established license-record
locations.” .. 85

H. Claim 9 ... 86
1. Preamble: “A method according to claim 7 wherein

verifying the program includes the steps of:” 86

2. Element 9.a: “encrypting the licensed-software-
program's license-record contents from the volatile
memory area or decrypting the license-record in the
erasable, non-volatile memory area of the BIOS, using
the pseudo-unique key; and” .. 86

3. Element 9.b: “comparing the encrypted licenses-
software-program’s license-record contents with the
encrypted license-record in the erasable, non-volatile
memory area of the BIOS, or comparing the license-
software-program's license-record contents with the
decrypted license-record in erasable non-volatile memory
area of the BIOS.” .. 87

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

v

I. Claim 10: “A method according to claim 9 wherein acting on
the program includes the step: restricting the program's
operation with predetermined limitations if the comparing
yields non-unity or insufficiency.” ... 89

J. Claim 11: “A method according to claim 1 wherein the volatile
memory is a RAM.” ... 90

K. Claim 12: “The method of claim 1, wherein a pseudo-unique
key is stored in the non-volatile memory of the BIOS.” 90

L. Claim 13: “The method of claim 1, wherein a unique key is
stored in a first non-volatile memory area of the computer.” 93

M. Claim 14: “The method according claim 13, wherein the step
of using the agent to set up the verification record, including the
license record, includes encrypting a license record data in the
program using at least the unique key.” ... 94

N. Claim 16: “The method according to claim 13, wherein the
step of verifying the program includes a decrypting the license
record data accommodated in the erasable second non-volatile
memory area of the BIOS using at least the unique key.” 95

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

vi

LIST OF APPENDICES

Appendix A Curriculum Vitae of Andrew Wolfe, Ph.D.

Appendix B Documents Cited

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

1

I. INTRODUCTION

1. I, Andrew Wolfe, have been retained by Petitioner Nintendo of

America Inc. (“Petitioner”) to investigate and opine on certain issues relating to

United States Patent No. 6,411,941 (“the ’941 patent”) in their Petition for Inter

Partes Review of that patent. The Petition requests that the Patent Trial and Appeal

Board (“PTAB” or “Board”) review and cancel claims 1-3, 6-14, and 16 of the ’941

patent.

2. The opinions set forth in this report are based on my personal

knowledge, my professional judgment, and my analysis of the materials and

information referenced in this report and its exhibits.

3. I am being compensated for consulting services including time spent

testifying at any hearing that may be held. I am also reimbursed for reasonable and

customary expenses associated with my work in this case. I receive no other forms

of compensation related to this case. My compensation does not depend on the

outcome of this inter partes review or the co-pending district court litigation, and I

have no other financial interest in this inter partes review.

4. I understand that the ’941 patent has been assigned to Ancora

Technologies, Inc.

5. This declaration is based on the information currently available to me.

To the extent that additional information becomes available, I reserve the right to

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

2

continue my investigation and study, which may include a review of documents and

information that may be produced, as well as testimony from depositions that have

not yet been taken.

A. Qualifications

1. Education

6. In 1985, I earned a B.S.E.E. degree in Electrical Engineering and

Computer Science from The Johns Hopkins University. In 1987, I received an M.S.

degree in Electrical and Computer Engineering from Carnegie Mellon University.

In 1992, I received a Ph.D. in Computer Engineering from Carnegie Mellon

University. My doctoral dissertation proposed a new approach for the architecture

of a computer processor.

2. Work Experience

7. I have more than 35 years of experience as a computer architect,

computer system designer, personal computer graphics designer, educator, and

executive in the electronics industry.

8. In 1983, I began designing touch sensors, microprocessor-based

computer systems, and I/O (input/output) cards for personal computers as a senior

design engineer for Touch Technology, Inc. During the course of my design projects

with Touch Technology, I designed I/O cards for PC-compatible computer systems,

including the IBM PC-AT, to interface with interactive touch-based computer

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

3

terminals that I designed for use in public information systems. I continued

designing and developing related technology as a consultant to the Carroll Touch

division of AMP, Inc., where in 1986 I designed one of the first custom touch-screen

integrated circuits. I designed the touch/pen input system for the Linus WriteTop,

which many believe to be the first commercial tablet computer.

9. From 1986 through 1987, I designed and built a high-performance

computer system as a student at Carnegie Mellon University. From 1986 through

early 1988, I also developed the curriculum and supervised the teaching laboratory

for processor design courses.

10. In the latter part of 1989, I worked as a senior design engineer for ESL-

TRW Advanced Technology Division. While at ESL-TRW, I designed and built a

bus interface and memory controller for a workstation-based computer system, and

also worked on the design of a multiprocessor system.

11. At the end of 1989, I (along with some partners) reacquired the rights

to the technology I had developed at Touch Technology and at AMP and founded

The Graphics Technology Company. Over the next seven years, as an officer and a

consultant for The Graphics Technology Company, I managed the company's

engineering development activities and personally developed dozens of touch screen

sensors, controllers, and interactive touch-based computer systems.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

4

12. I have consulted, formally and informally, for a number of fabless

semiconductor companies. In particular, I have served on the technical advisory

boards for two processor design companies: BOPS, Inc., where I chaired the board;

and Siroyan Ltd., where I served in a similar role for three networking chip

companies—Intellon, Inc., Comsilica, Inc., and Entridia, Inc.—and one 3D game

accelerator company, Ageia, Inc.

13. I have also served as a technology advisor to Motorola and to several

venture capital funds in the U.S. and Europe. Currently, I am a director of Turtle

Beach Corporation, providing guidance in its development of premium audio

peripheral devices for a variety of commercial electronic products.

14. From 1991 through 1997, I served on the Faculty of Princeton

University as an Assistant Professor of Electrical Engineering. At Princeton, I taught

undergraduate and graduate-level courses in Computer Architecture, Advanced

Computer Architecture, Display Technology, and Microprocessor Systems, and

conducted sponsored research in the area of computer systems and related topics. I

was also a principal investigator for DOD research in video technology and a

principal investigator for the New Jersey Center for Multimedia Research. From

1999 through 2002, while a Consulting Professor, I taught a Computer Architecture

course to both undergraduate and graduate students at Stanford University. At

Princeton, I received several teaching awards, both from students and from the

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

5

School of Engineering. I have also taught advanced microprocessor architecture to

industry professionals in seminars sponsored by the Institute of Electrical and

Electronics Engineers (“IEEE”) and the Association for Computing Machinery

(“ACM”). I am currently a lecturer at Santa Clara University teaching courses on

Microprocessor Systems, Real-Time Computing, and Mechatronics.

15. From 1997 through 2002, I held a variety of executive positions at a

publicly-held fabless semiconductor company originally called S3, Inc. and later

called SonicBlue Inc. I held the positions of Chief Technology Officer, Vice

President of Systems Integration Products, Senior Vice President of Business

Development, and Director of Technology, among others. At the time I joined S3,

the company supplied graphics accelerators for more than 50% of the PCs sold in

the United States. At S3 I supervised the design of several PC graphics accelerators.

During my time at SonicBlue we launched more than 30 new consumer electronics

products including devices to support copy-protected video and many of the first

commercial products to support copy-protected internet audio content.

16. I have published more than fifty peer-reviewed papers in computer

architecture and computer systems and IC design. I also have chaired IEEE and

ACM conferences in microarchitecture and integrated circuit design and served as

an associate editor for IEEE and ACM journals. I served on the IEEE Computer

Society Awards committee. I am a Senior Member of IEEE and a Member of ACM.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

6

I am a named inventor on at least fifty-six U.S. patents and thirty-seven foreign

patents, which are listed in my curriculum vitae.

17. In 2002, I was the invited keynote speaker at the ACM/IEEE

International Symposium on Microarchitecture and at the International Conference

on Multimedia. From 1990 through 2005, I have also been an invited speaker on

various aspects of technology and the PC industry at numerous industry events

including the Intel Developer’s Forum, Microsoft Windows Hardware Engineering

Conference, Microprocessor Forum, Embedded Systems Conference, Comdex, and

Consumer Electronics Show, as well as at the Harvard Business School and the

University of Illinois Law School. I have been interviewed on subjects related to

computer graphics and video technology and the electronics industry by publications

such as the Wall Street Journal, New York Times, Los Angeles Times, Time,

Newsweek, Forbes, and Fortune as well as on CNN, NPR, and the BBC. I have also

spoken at dozens of universities including MIT, Stanford, University of Texas,

Carnegie Mellon University, UCLA, University of Michigan, Rice University, and

Duke University.

3. Curriculum Vitae

18. A copy of my curriculum vitae is attached as Appendix A to this

declaration.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

7

B. Materials Reviewed

19. My opinions expressed in this declaration are based on documents and

materials identified in this declaration, including the ’941 patent, the prior art

references and background materials discussed in this declaration, and the other

references specifically identified in this declaration. I have considered these

materials in their entirety, even if only portions are discussed here.

20. I have also relied on my own experience and expertise in digital security,

software licensing, and computer architecture.

C. Level of Ordinary Skill in the Art

21. I am not an attorney and offer no legal opinions. I have been informed

about certain aspects of the law for purposes of my analyses and opinions.1

22. I understand that in analyzing questions of invalidity, the perspective

of a person having ordinary skill in the art (“POSA”) is often implicated, and the

Board may need assistance in determining that level of skill.

23. I understand that the claims and written description of a patent must be

understood from the perspective of a POSA. I have been informed that the following

1 I understand that the patent laws were amended by the America Invents Act
(AIA), but that the earlier statutory requirements still apply to pre-AIA patents. I
have been informed that the ’941 Patent is a pre-AIA patent, so the pre-AIA
requirements control. Unless otherwise stated, my understanding of the law about
patent invalidity as set forth in this declaration relates to the pre-AIA requirements.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

8

factors may affect the level of skill of a POSA: (1) the educational level of the

inventor; (2) the type of problems encountered in the art; (3) the prior-art solutions

to those problems; (4) the rapidity with which innovations are made; (5) the

sophistication of the technology; and (6) the educational level of active workers in

the field. A person of ordinary skill in the art is also a person of ordinary creativity

in the art.

24. Based on my experience in digital security, software licensing, and

computer architecture, as well as my reading of the ’941 Patent, it is my opinion that

a person of ordinary skill with respect to the subject matter of the ’941 Patent at the

time of the alleged invention would have had at least a B.S. degree in computer

science, computer engineering, or electrical engineering (or equivalent experience)

and would have had at least two years of experience with computer science and

computer engineering, including information encryption, computer architecture, and

firmware programming. This definition is approximate, and additional educational

experience in computer science and computer engineering could make up for less

work experience and vice versa.

25. I am a person of at least ordinary skill in the art and was so on the date

to which the ’941 Patent claims priority (May 21, 1998). As shown by my

qualifications and my curriculum vitae attached as Appendix A, I am aware of the

knowledge and skill possessed by a person of ordinary skill in the art at the time of

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

9

the alleged invention claimed by the ’941 Patent. In performing my analysis, I have

applied the standard set forth above.

D. Summary of Opinions

26. I have reviewed and analyzed the ’941 Patent (Ex. B-1, same as Ex.

1001 in the Petition) as well as prior art references Hellman (U.S. Patent 4,658,093)

(Ex. B-3, same as Ex. 1004 in the Petition), Chou (U.S. Patent 5,892,906) (Ex. B-4,

same as Ex. 1005 in Petition), and Schneck (U.S. Patent 5,933,498) (Ex. B-5, same

as Ex. 1006 in Petition).

27. Based on my review and analysis, it is my opinion that claims 1-2, 11,

and 13 of the ’941 Patent are invalid as obvious based on Hellman in view of Chou.

Based on my review and analysis, it is also my opinion that claims 1-3, 6-14, and 16

of the ’941 Patent are invalid as obvious based on Hellman in view of Chou and

Schneck.

II. OVERVIEW OF THE TECHNOLOGY

A. Priority Date of the Claims

28. I have been informed that a U.S. patent application may claim the

benefit of the filing date of an earlier patent application if the earlier patent

application disclosed each limitation of the invention claimed in the later-filed U.S.

patent application. I have also been informed that priority is determined on a claim-

by-claim basis so that certain claims of a patent may be entitled to the priority date

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

10

of an earlier-filed patent application even if other claims of the same patent are not

entitled to that priority date.

29. I have also been informed that for patent applications filed before

March 16, 2013, a patented claim is invalid if the claimed invention was patented or

described in a printed publication in any country more than one year before the

effective filing date of the claim, regardless of when the applicant conceived of the

claimed invention.

30. I understand that the ’941 Patent claims a priority date of May 21, 1998.

B. Overview of Relevant Technology When the ’941 Patent Was
Filed

1. Software Licenses

31. By the time of the ’941 Patent’s priority date in 1998, the field of

software licensing was well-developed. Since at least the 1980s, practitioners in the

field had widely recognized the new risks to software piracy introduced by the

transformations to digital media.

32. Many entities recognized that one such risk was “copy protection” or

“secondary distribution.” Secondary distribution contrasted with, for example,

preventing an unauthorized user from obtaining access to a software program in the

first place. Secondary distribution dealt with the more challenging problem of

allowing a user to have an authorized access to the software program but preventing

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

11

the user from then making unauthorized copies and distributing those copies. This

problem was more challenging because it required some level of trust in the user but

balanced against the possibility that the user may still have malicious motivations.

33. For secondary distribution, as with other forms of piracy prevention,

encryption was considered a key tool to providing protection. Encryption was a

leading solution for various reasons. Encryption was easy to implement but hard to

break, making it an efficient solution. Encryption also allowed user-specific and

device-specific solutions, given that different devices could be given different

encryption/decryption keys.

34. European patent Application EP 0766165A2, Ex. B-6 (“’165

Application”), which published in 1997 from an application filed in 1996, disclosed

a license notification system. The ’164 Application disclosed sending encoded

license information to a user terminal, with the license information encoded with a

key specific to the user terminal. The user terminal checks the license information

when the user operates a software program. If the license information is valid, then

the licensee’s name is displayed.

35. U.S. Patent 5,724,425, Ex. B-6 (“’425 Patent”), which issued in 1998

from an application filed in 1994, disclosed a “software passport.” The software

passport was formed by encrypting a message digest using an application writer’s

private key, a license, and the software program binary code. A user’s computer

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

12

uses the encrypted message digest and the license to determine if the software

program is secure to operate. The ’425 Patent disclosed this technique to deal with

the risk of users purchasing pirated software when they thought they were

purchasing legitimate software.

2. Computer BIOS

36. By the time of the ’941 Patent’s priority date in 1998, the field of

computer BIOS was well-developed. BIOS began to be used at least as far back as

the 1970s, for example in 8-bit computers that ran the CP-M operating system. The

usage of BIOS increased rapidly, and by 1998 BIOS was present in essentially all

general-purpose computers, e.g., personal computers and servers. In these situations,

BIOS provided the basic software routines that were run when the computer was

first powered on. One of the primary responsibilities of BIOS was to load the

operating system code and allow it to start executing, often called “booting” the

computer.

37. For many years, including through to 1998, it was typical to provide

BIOS in a separate memory module, apart from the main memory. These came

about for numerous reasons. As one reason, the BIOS programs needed to be secure

and away from other program code. Namely, accidentally overwriting or destroying

the BIOS program could permanently disable the computer. So storing it on a

separate memory module was considered a good approach. As another reason, early

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

13

versions of BIOS were expected to remain static through the life of the device. As

such, it was common to provide BIOS programs in a true read only memory (ROM).

By “true” ROM, I mean a memory chip that could not have its contents changed,

whether electronically or otherwise. Using true ROM also provided the benefit of

not allowing BIOS to be accidentally modified, which was beneficial as described

above. Additionally, it was advantageous to provide the BIOS in a non-volatile

memory so that it was present when the computer was powered on.

38. By the 1990s, it became more common to store BIOS programs in

alterable memory, i.e., memory that could be rewritten. This became more common

at least in part because computer manufacturers came to realize that there was a

benefit to being able to modify the BIOS programs “in the field,” as opposed to have

those programs completely static for the life of the devices.

39. Among these forms of rewritable memory, electrically-erasable

programmable read-only memory (EEPROM) was a popular technology. EEPROM

was considered beneficial for a number of reasons. For one reason, EEPROM could

be rewritten using simple memory access routines that could be programmatically

controlled. This provided the sort of flexibility that computer manufacturers were

seeking. For another reason, EEPROM could be implemented as “flash memory,”

which was both reliable (not prone to unexpected loss of data) and cost effective

(relatively less expensive than some other rewritable ROM technologies).

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

14

40. U.S. Patent 6,138,236, Ex. B-7 (“’236 Patent”), which issued in 2000

from an application filed in 1996, disclosed the use of both “boot ROM (read only

memory)” and “boot PROM (programmable read only memory).” The ’236 Patent

explained that the boot PROM could be implemented as flash PROM, “often referred

to as flash memory.”

41. U.S. Patent 5,802,592, Ex. B-8 (“’592 Patent”), which issued in 1998

from an application filed in 1996, disclosed a technique for verifying the integrity

BIOS programs stored in “alterable read only memory (such as FLASH ROM).”

42. U.S. Patent 5,835,594, Ex. B-9 (“’594 Patent”), which issued in 1998

from an application filed 1996, disclosed a system for protecting the content, such

as BIOS updates, in “FLASH memory or erasable programmable read-only-memory

(EPROM).”

C. The ’941 Patent

43. The ’941 Patent describes a “method of restricting software operation

within a license limitation.” ’941 Patent, Abstract. The ’941 Patent explains that

there were many known techniques for restricting the operation of an unauthorized

software program. ’941 Patent, 1:12-17. The ’941 Patent indicates that these

techniques were “primarily motivated by the grand proliferation of illegally copied

software, which is engulfing the marketplace,” and commented on the large financial

impact of this illegal copying. ’941 Patent, 1:12-17.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

15

44. The ’941 Patent indicates that one prior art technique involved “writing

a license signature onto the computer’s volatile memory (e.g., hard disk).” ’941

Patent, 1:19-26. The ’941 Patent explained that this technique was “very vulnerable

to attack at the hands of skilled system’s programmers (e.g. ‘hackers’).” ’941 Patent,

1:19-26.

45. The ’941 Patent indicates that hardware-based techniques, such as the

use of a “dongle” were “expensive, inconvenient, and not particularly suitable for

software that may be sold by downloading.” ’941 Patent, 1:27-32.

46. Against that backdrop, the ’941 Patent discloses its technique with

respect to a computer configuration shown in Figure 1 and a process shown in Figure

2.

47. The computer configuration of Figure 1 (shown below) contains

numerous storage devices. The storage devices include the first non-volatile

memory area 4, the second non-volatile memory area 5, and the volatile memory

area 6. ’941 Patent, Abstract, Figure 1, 5:9-16. The first non-volatile memory area

4 stores a key 8. ’941 Patent, Figure 1, 5:19-24. The second non-volatile memory

area 5 has a license record area 9 with license records 10, 11, 12. ’941 Patent,

Figure 1, 5:25-33. The volatile memory area 6 include a license program 16, which

has license record field 13, 14, and 15. ’941 Patent, Figure 1, 5:25-33. The computer

can communicate with a license bureau 7. ’941 Patent, Figure 1, 5:17-18.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

16

’941 Patent, Figure 1.

48. The ’941 Patent provides an example implementation of the invention

in a “conventional computer having a conventional BIOS module.” ’941 Patent,

1:43-52. The computer can have a “ROM section” with a key embedded therein at

the time of manufacture. ’941 Patent, 1:43-52. “The key constitutes, effectively, a

unique identification code for the host computer.” ’941 Patent, 1:43-52. The key

cannot be removed or modified. ’941 Patent, 1:43-52.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

17

49. An “application program that is to be licensed to run on the specified

computer, is associated with a license record.” ’941 Patent, 1:53-58. “The license

record may be held in either encrypted to explicit form.” ’941 Patent, 1:53-58.

50. A license establishment procedure is then performed. ’941 Patent,

1:59-2:9. “[A] verification structure is set in the BIOS so as to indicate that the

specified program is licensed to run on the specified computer.” ’941 Patent, 1:59-

2:9. “This is implemented by encrypting the license record … using said key … as

an encryption key.” ’941 Patent, 1:59-2:9. “The resulting encrypted license record

is stored in another (second) non-volatile section of the BIOS, e.g., E2PROM2 (or

the ROM).” ’941 Patent, 1:59-2:9. The ’941 Patent notes that “unlike the first non-

volatile section, the data in the second non-volatile memory may optionally be

erased or modified (using E2PROM manipulation commands), so as to enable to add,

modify or remove licenses.” ’941 Patent, 1:59-2:9.

51. Once the encrypted license record is stored “in the second non-volatile

memory (e.g. E2PROM),” a process for verifying the license can be performed. ’941

Patent, 2:10-2:26. When a “program is loaded into the memory of the computer,”

the verification process is performed. ’941 Patent, 2:10-2:26. A license record is

retrieved from the program. ’941 Patent, 2:10-2:26. The license record is then

2 E2PROM is another spelling of EEPROM.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

18

encrypted using the unique key from ROM. ’941 Patent, 2:10-2:26. That encrypted

license record is then compared “to the encrypted records that reside in the

E2PROM.” ’941 Patent, 2:10-2:26. If there is a match, then “the program is verified

to run on the computer.” ’941 Patent, 2:10-2:26. If there is not a match, then “the

program under question is not properly licensed” and appropriate action is

taken. ’941 Patent, 2:10-2:26.

52. The ’941 Patent describes this technique again with respect to the

process of Figure 2, shown below. At step 17, a program is selected. ’941 Patent,

6:7-17. This can include “establishing a licensed-software-program in the volatile

memory of the computer. ’941 Patent, 6:7-17. At step 18, the verification structure

is set up. ’941 Patent, 6:17-28. This can include “certifying the existence of a

pseudo-unique key in the first non-volatile memory area” and “establishing at least

one license-record location in the first or the second nonvolatile memory area.” ’941

Patent, 6:17-28. Establishing the license record can include encrypting contents and

storing the encrypted license-record in one of the “established license-record

locations.” ’941 Patent, 6:17-28. At step 19, the program is verified. ’941 Patent,

6:28-38. This can include encrypting license record contents from the program, and

comparing the result with “the encrypted license-record in the first or the second

non-volatile memory area.” ’941 Patent, 6:28-38. At step 20, the program is acted

on. ’941 Patent, 6:40-52. This can include “restricting the program’s operation with

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

19

the predetermined limitations if the comparing yields non-unite or

insufficiency.” ’941 Patent, 6:40-52.

’941 Patent, Figure 2.

53. The ’941 Patent explains various purported benefits/improvements

with the disclosed techniques.

54. The ’941 Patent alleges that “[t]hose versed in the art will readily

appreciate that any attempt to run a program at an unlicensed site will be

immediately detected.” ’941 Patent, 2:28-35. If the program is not licensed on a

specific computer, then that will be detected because there will not be an appropriate

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

20

license record encrypted with that computer’s unique key and stored in the

E2PROM. ’941 Patent, 2:28-35.

55. Further, a user cannot subvert this protection by copying a license

record in the E2PROM of a first computer to the E2PROM of a second

computer. ’941 Patent, 2:37-59. If this were done, then when the verification of the

program were performed on the second computer using the key of the second

computer, the encryption result would not match the copied license record, which

would have been encrypted with the key of the first computer. ’941 Patent, 2:37-59.

And the user cannot change the key because it is ROM. ’941 Patent, 2:37-59.

56. The ’941 Patent also says that storing the license record in BIOS

improves the securing of that information. “An important advantage in utilizing

non-volatile memory such as that residing in the BIOS is that the required level of

system programming expertise that is necessary to intercept or modify commands,

interacting with the BIOS, is substantially higher than those needed for tampering

with data residing in volatile memory such as hard disk.” ’941 Patent, 3:4-17.

“Furthermore, there is a much higher cost to the programmer, if his tampering is

unsuccessful, i.e. if data residing in the BIOS (which is necessary for the computer's

operability) is inadvertently changed by the hacker. This is too high of a risk for the

ordinary software hacker to pay.” ’941 Patent, 3:4-17.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

21

D. Claim Construction

57. I understand that claim terms generally are construed in accordance

with the ordinary and customary meaning they would have to a POSA at the time of

the invention in light of the claim language, the specification, and the prosecution

history. I understand that dictionaries and other extrinsic evidence may be

considered as well, though such evidence is typically regarded as less significant

than the intrinsic record in determining the meaning of the claim language

58. For all terms of the challenged claims of the ’941 patent, I have

interpreted them as they would have been understood by a POSA at the time of the

invention, i.e., May 21, 1998.

III. OVERVIEW OF THE PRIOR ART

A. Hellman

59. Hellman’s disclosure, which dates back to its 1983 filing date, describes

a system for software distribution. In the system, software (including “programs”)

can be authorized for a given number of uses on a base unit (including a “computer”).

Hellman, Abstract. The authorization for additional uses comes from the software’s

manufacturer. Hellman, Abstract. Hellman discloses a technique whereby the

authorization message cannot be reused. Hellman, Abstract. The authorization can

be specific to a base unit, “so that an authorization for one base unit cannot be

transferred to another base unit.” Hellman, Abstract. Hellman represents that its

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

22

technique “solves the ‘software piracy problem’.” Hellman, Abstract. As such,

Hellman seeks to solve the same problem as the ’941 Patent: using computer-

specific authorizations to use a program that prevents unauthorized uses on other

computers.

60. Hellman provides more explanation on the “software piracy problem”

and the objectives of its disclosure. Hellman explains that “‘software piracy’ is a

major problem in the computer and videogame industry.” Hellman, 1:15-16.

Hellman discusses a number of existing solutions to software piracy, such as storing

a program in a non-standard format and providing a program on a physical disk with

a physical defect. Hellman, 1:39-2:6. Hellman says that it would also be beneficial

to allow a limit on the number of uses of a program, but that techniques for so

limiting program use do not provide for protection against copying once the user has

access to the full program. Hellman, 2:7-53.

61. Hellman explains that cryptography is a possible tool for solving these

problems, and Hellman discusses various relevant cryptography technologies.

Hellman, 2:54-4:21.

62. Hellman sets out three objections to be achieved by its disclosure. First,

a software manufacturer should be able to control the number of times a piece of

software is used, and the authorization should not be recordable and reusable, and

should not be transferable between base units. Hellman, 4:22-27. Second, software

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

23

should be able to be sold over telephone or other similar communications channels,

without the authorization being reusable on any base unit other than the licensed one.

Hellman, 4:28-33. Third, Hellman aims to prevent software piracy, i.e., “the illegal

use of software on a base unit which has not paid a license fee.” Hellman, 4:34-36.

63. Hellman depicts the system of its disclosure in Figure 1, shown below.

The system includes a base unit 12 and an authorization and billing unit 13 that

communicate over an insecure channel 11. Hellman, 5:39-50. The user of base unit

12 obtains “software package 17 by purchasing it at a store, over telephone line, or

in some similar manner.” Hellman, 5:51-56.

Hellman, Figure 1.

64. The base unit 12 generates a “user originated request for software use”

for the software package 17. Hellman, 5:57-6:2. The request contains various

elements of information. Hellman, 5:57-6:2. The request includes a software name,

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

24

a serial number, a value N, a value R, and billing information. Hellman, 5:57-6:2.

The software name is the name of the software package 17. Hellman, 5:57-6:2. The

serial number is “a serial number, an identification number, user name or similar

identifier unique to base unit 12.” Hellman, 5:57-6:2. The value N is how many

additional uses are requested. Hellman, 5:57-6:2. The value R is a “random number,

counter value, or other non-repeating number generated by the base unit 12.”

Hellman, 5:57-6:2. The billing information is “a credit car[d] number or similar

means for billing the user.” Hellman, 5:57-6:2.

65. The base unit 12 transmits the request to the authorization and billing

unit 13 over the insecure channel 11. Hellman, 5:57-6:2. The authorization and

billing unit 13 receives the request, generates an authorization A “for that particular

base unit 12 to use the software package 17 an additional N times” and then transmits

the authorization A to the base unit 12. Hellman, 6:3-15. The base unit 12 checks

whether the authorization A is correct, and if so updates its memory to allow N

additional uses of software package 17. Hellman, 6:3-15.

66. Hellman depicts the operation of the authorization and billing unit 13

in Figure 2, shown below. The authorization and billing unit 13 stores a table of

serial numbers and secrets keys in memory 18. Hellman, 6:16-30. The authorization

and billing unit 13 uses the serial number received from the base unit 12 to determine

the secret key, SK, for the base unit 12. Hellman, 6:16-30. The authorization and

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

25

billing unit 13 stores a table of software in memory 19 that allows it to determine a

software package 21 from the software name provided in the request, and software

package 21 is identical to software package 17. Hellman, 6:16-30.

Hellman, Figure 2.

67. A one-way hash function 22 take the software package 21 as input and

generates a hash value H. Hellman, 6:31-61. “This output H is used as an

‘abbreviation’ or name for describing the software package 21.” Hellman, 6:31-61.

The value H is easily computable from the software package 21 using the one-way

has function generator 22, but “given an H value it is difficult, taking perhaps

millions of years, to computer any other software package which produces this same

H value.” Hellman, 6:31-61. The hash value H is much smaller than the software

program 21, with the former containing “perhaps 100 bits,” and the latter containing

“typically 10,000 to 1,000,000 bits.” Hellman, 6:31-61. Storage of the hash value

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

26

H is preferred to the software name, because, unlike the hash value H, the software

name can be easily modified for purposes of circumventing the protections of

Hellman. Hellman, 6:31-61.

68. A cryptographic function generator 23 takes as inputs the hash value H,

the number of additional uses N, and the random number R, encrypts the inputs using

the secret key SK, and thereby generates the authorization A. Hellman, 6:63-7:16.

Because the secret key SK is not publicly known, the authorization A can be

transmitted over the insecure channel 11 without the risk that it could be decrypted

and modified. Hellman, 6:63-7:16. Because the authorization A is encrypted with

the secret key SK that is unique to the base unit 12, the authorization A, if intercepted

on the insecure channel 11, cannot be reused on another base unit 12 (which would

have a different secret key). Hellman, 6:63-7:16. Because the authorization A

contains the hash value H, the authorization A, if intercepted on the insecure channel

11, cannot be reused for any other software package (which would have a different

hash value). Hellman, 6:63-7:16. Because the authorization A contains the number

of uses, N, the authorization A, if intercepted on the insecure channel 11, cannot be

reused for a different number of authorized uses. Hellman, 6:63-7:16. Because the

authorization A contains the random number, R, the authorization A, if intercepted

on the insecure channel 11, cannot be reused for another request that uses a different

random value. Hellman, 6:63-7:16. In this way, even when an authorization to use

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

27

a software package is transmitted over an insecure channel, the software

manufacturer can be sure that the authorization A cannot be reused to allow for other,

unauthorized uses of the software package.

69. Hellman depicts the operation of the base unit 12 during verification of

authorization A in Figure 6, shown below. The base unit 12 provides the software

package 17 as an input to one-way hash generator 33 to generate hash value H, the

same hash value generated previously by the authorization and billing unit 13.

Hellman, 9:16-28.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

28

Hellman, Figure 6.

70. The base unit 12 has a key K stored in permanent memory 31. Hellman,

9:29-40. The permanent memory 31 can be “for example a PROM which was

burned in during manufacture of the base unit.” Hellman, 9:7-10. The key K can

be the same as the secret key SK used by the authorization and billing unit 13.

Hellman, 9:29-40.

71. The base unit has the values N and R stored in temporary memory 28.

Hellman, 9:50-63. The temporary memory 28 can be “for example a RAM.”

Hellman, 8:67-68.

72. The base unit 12 operates a cryptographic check unit 34 in order to

verify the authorization A. Hellman, 9:50-63. The base unit 12 provides the key K,

the value N, the value R, the hash value H, and the received authorization A as inputs

to the cryptographic check unit 34. Hellman, 9:50-63. Cryptographic check unit 34

determines that the authorization A is valid if the input of K, N, R, and H results in

generation of the same authorization A. Hellman, 9:50-63.

73. If the base unit determines that the authorization A is valid, then the

update unit 36 accesses non-volatile memory 37. Hellman, 9:64-10:13. The base

unit retrieves the value stored in the memory address represented by hash value H.

Hellman, 9:64-10:13. This retrieves the value M, which is the current number of

authorized uses remaining. Hellman, 9:64-10:13. The base unit 12 then adds M to

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

29

the new number of authorized uses, N., and stores the new total number of authorized

uses in non-volatile memory 37 at the address indicated by hash value H. Hellman,

9:64-10:13. The non-volatile memory 37 can be “for example an EEPROM or a

CMOS memory with battery backup.” Hellman, 9:64-10:13.

74. Hellman depicts the operation of the base unit 12 upon operation of

software package 17 in Figure 6, shown below. When operation of the software

package 17 is attempted, the software package 17 is provided as an input to the one-

way hash function generator 33 in order to generate the hash value H. Hellman,

10:33-43. The update unit 36 uses the hash value H “as an address to non-volatile

memory 37. Hellman, 10:33-43. The non-volatile memory 37 responds by

providing the “signal representing M, the number of uses of software package 17

which are still available.” Hellman, 10:33-43.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

30

Hellman, Figure 8.

75. The update unit 36 then determines whether operation of the software

package 17 will be permitted. Hellman, 10:44-54. If the value M received from the

non-volatile memory 37 is greater than zero, then the update unit 36 uses the switch

41 which “activates software player 42, allowing it to use software package 17.”

Hellman, 10:44-54. The update unit 36 then decrements the value M, and “stores

this as the new value in address H in non-volatile memory 37.” Hellman, 10:44-54.

If the value M retrieved from non-volatile memory 37 is zero, then operation of the

software package 17 by the software player 42 is not permitted. Hellman, 10:44-54.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

31

76. Hellman describes a variation to the above disclosure where the

software package 17 is authorized for an “unlimited number of uses.” Hellman,

10:55-65. This approach can be implemented “by reserving one value of M to

represent infinity.” Hellman, 10:55-65. For example, in an eight-bit value for M,

the all 1’s value, 255, can be reserved for “unlimited uses.” Hellman, 10:55-65. “the

update unit 36 would be designed to recognize the special pattern of all 1’s and not

change it when to software package was used.” Hellman, 10:55-65.

77. The software player 42 “will vary from application to application.”

Hellman, 10:66-11:3. “[I]f the software is a computer program, then software player

42 would be a microprocessor or central processing unit (CPU).” Hellman, 10:66-

11:3.

B. Chou

78. Chou’s disclosure, which dates back to a 1996 filing date, describes an

approach to discouraging computer theft. Chou, Abstract. A security routine is

added to the BIOS memory. Chou, Abstract. The security routine looks for an

externally connected memory device or checks for entry of a stored password. Chou,

Abstract. Without passing this security check, the computer will not operate. Chou,

Abstract. The computer can be changed between a mode that requires this security

check and a mode that does not require the security check. Chou, Abstract.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

32

79. Chou explained that an important technological development that

motivated the disclosed security techniques was a shift to using writable memory,

such as EEPROM, as BIOS memory. Chou, 1:62-2:7. This created “the opportunity

to provide password protection within the same memory which stores the BIOS

routines.” Chou, 1:62-2:7. Chou explained that storing this sensitive information

like passwords in the BIOS memory provided a security benefit: “any attempt to

delete the protection will result in the BIOS routine being disabled, disabling the

boot up process.” Chou, 1:62-2:7. In other words, Chou made the same observation

as the ’941 Patent, but several years earlier: by storing information with BIOS, the

risk of rendering the entire computer inoperable discouraged tampering by all but

the most advanced hacker. Chou, 1:62-2:7.

80. Chou disclosed that EEPROM memory was one advantageous way to

implement this memory that comingled BIOS routines with other sensitive

information. Chou, 2:2-7. In particular, EEPROM flash devices allowed the user to

write data to the memory “without requiring the computer to be returned to the

manufacture[r].” Chou, 2:2-7. Chou disclosed that its invention “makes use of these

new BIOS memory devices effecting security measures which discourage theft.”

Chou, 2:2-7.

81. Chou disclosed a personal computer 10, as depicted in Figure 1, shown

below. The computer 10 included a BIOS EEPROM 15 storing “the BIOS routines

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

33

which provide for the basic input/output system.” Chou, 3:21-28. The BIOS

routines also “perform various functions, such as power-on self tests (POST),

peripheral routines, boot codes, etc., for initially loading the computer operating

system software.” Chou, 3:44-48. The BIOS EEPROM 15 further stored “a security

function stored as a programming routine.” Chou, 3:21-28.

Chou, Figure 1.

82. Chou discloses various configurations for the BIOS memory in Figures

3 and 7, shown below. The BIOS memory “may be a flash EEPROM containing

various executable BIOS routines as well as routines for implementing a security

function.” Chou, 3:51-67. The BIOS memory can include such BIOS routines as

POST (power-on self test) routine 23, boot code 22, and “routine 21 for configuring

peripheral devices connected to computer 10.” Chou, 3:51-67.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

34

Chou, Figure 3.

Chou, Figure 7.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

35

83. The BIOS memory further includes the security routines 25 that

implement the security techniques disclosed by Chou. Chou, 4:1-5. The security

routine includes information to verify whether the user is an authorized user. Chou,

Figure 3, 4:6-19. The BIOS memory stores further information for use in the

security routines, such as a computer identifier (alternately referred to as 28, 29, and

33(a), a public key (alternately referred to as 15, 29, and 29(a)), and one or more

passwords 28(a) / 28(b). Chou, Figure 3, Figure 7, 4:6-19, 7:14-35.

C. Schneck

84. Schneck’s disclosure, which dates back to a 1997 filing date and a 1996

priority date, describes an approach to controlling access and distribution of digital

data. Schneck, Abstract. Schneck explains that the transition from analog data to

digital data greatly increased the ability to create unauthorized copies of data.

Schneck, 1:40-2:67. Schneck referred to this issue as “secondary distribution” of

the digital data. Schneck, 2:46-67.

85. Schneck discloses that cryptography was the “principal technology” for

protecting intellectual property. Schneck, 3:30-36. But Schneck observed a problem

in the then-existing techniques: “Of those prior art systems which make some use

of encryption, none protects the data after it has been decrypted. Thus, secondary

distribution and multiple uses are possible.” Schneck, 3:57-61. That is, Schneck

observes that even if encryption is used to securely transfer digital data or to prevent

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

36

unauthorized access to digital data, once an authorized access is permitted, a user

can make unauthorized copies. Schneck, 3:30-61.

86. Schneck describes that it would be best for control to the digital data to

be controlled by the “originator,” similar to the software package manufacturer in

Hellman. Schneck, 3:66-67.

87. Schneck discloses the structure of a system 100 in Figure 1, shown

below. The system includes a distributor 102 and a user 104. Schneck, 9:37-59.

The distributor takes data 106 as input and uses the authoring mechanism 112 to

create packaged data 108. Schneck, 9:37-59. “The packaged data 108 may include

access rules 116 in encrypted form encoded therewith, or the access rules 116 may

be provided to the user 104 separately.” Schneck, 9:37-59. The distribution

mechanism 118 distributes the package data 108 to the user. Schneck, 9:37-59.

Schneck, Figure 1.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

37

88. Schneck discloses a structure of the packaged data 108 in Figure 2,

shown below. The packaged data 108 can included both encrypted body part 120

and unencrypted body part 122. Schneck, 10:35-58. The two body parts are the

digital content that the system is protecting (e.g., the data 106). Schneck, 10:35-58.

The packaged data 108 also includes encrypted rules 124, which “are an encrypted

version of access rules 116,” and encrypted ancillary information 126. Schneck,

10:35-58. The access rules are encrypted using a “rule-encrypting key” that is

“known only to (and protected within) each receiving computer of each user.”

Schneck, 12:1-16.

Schneck, Figure 2.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

38

89. Schneck discloses a structure of the access rules 116 in Figure 3, shown

below. The access rules “include various forms of validity checking and

identification information.” Schneck, 10:59-11:3. The access rules can include a

license number 130. Schneck, 10:59-11:3. The access rules can include encrypted

data key 138. Schneck, 10:59-11:3. The access rules can include “the actual rules

140, 142, 144-146 to be Is [sic] applied when access is made to the data by a user.”

Schneck, 10:59-11:3. The actual rules included various permissions and permission

lists. Schneck, 10:59-11:3.

Schneck, Figure 3.

90. Scheck describes additional information for the content of access rules

116 in Table 1, shown below. The access rules 116 can include “System IDs/Public

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

39

keys” that serve the function of identifying “Other system to which these rules may

be redistributed.” Schenck, 11:32-35.

91. As noted previously, Schneck allows for the encrypted rules 124 to be

provided separate from the packaged data 108. Schneck, 9:51-54. Schneck

describes such an embodiment with respect to Figure 5, where the packaged data

150 is transmitted to the user separately from the packaged rules 152. Schneck,

13:37-45. “The packaged data 150 without the rules has the form shown in Fig. 6,

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

40

which is essentially the same as the structure shown in Fig. 2, but without the

encrypted rules 124.” Schneck, 13:37-45.

92. Schneck discloses the structure of the user device with respect to Figure

8, shown below. “The access mechanism 114 allows a user 104 to access the data

in packaged data 108 (or 150) according to the rules provided with (or separately

from, as packaged rules 152) the packaged data and prevents the user or anyone else

from accessing the data other than as described by the rules.” Schneck, 15:20-29.

Schneck notes that the access mechanism can alternatively be provided in a co-

processor that operates in cooperation with an existing processing, as shown in

Figure 9. Schenck 16:27-38.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

41

Schneck, Figure 8.

93. The access mechanism 114 has a number of storage components, such

as “volatile memory (RAM) 158,” “electrically-alterable non-volatile memory 160,”

a hard disk 162, and read-only memory (ROM) 156. Schneck 15:30-38.

94. The access 114 mechanism includes a tamper detect mechanism 169.

The purpose of the tamper detect mechanism 169 is to “allow[] the access

mechanism 114 to ensure that all internal data (both the system’s data and any user

data) are destroyed before any tamperer can obtain them.” Schneck, 16:16-19.

When tampering with access mechanism 114 is detected, any cryptographic keys

can be destroyed and memory devices can be cleared. Schneck 15:64-16:15.

95. Schneck disclosed that data stored in non-volatile memory should be

stored in encrypted form in order to avoid unauthorized access. Schneck, 16:64-

17:5, 17:6-12, 25:64-67. For example: “All communication between the

components of the access mechanism 114 and the enclosed hard disk 162 is

encrypted. Therefore, if the hard disk is removed the mechanism, any data stored

thereon will be inaccessible without the appropriate keys.” Schneck, 16:64-17:5.

Further: “In general, within the system, the data are encrypted on any non-volatile

storage devices so that they remain unavailable in the case of tampering.” Schneck

17:6-12.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

42

96. Schneck explains that this encrypting of the data on all non-volatile

memory is important to prevent unauthorized secondary distribution: “Since all

storage of data on internal non-volatile memory devices (for example, disks, flash

memory, and the like) is encrypted, this ensures that a physical attack on the system

will not result in compromise of plaintext.” Schneck, 25:64-67.

IV. UNPATENTABILITY OF THE ’941 PATENT CLAIMS

A. Standards for Invalidity

97. I am informed and understand that a patent cannot be properly granted

for subject matter that would have been obvious to a person of ordinary skill in the

art at the time of the alleged invention, and that a patent claim directed to such

obvious subject matter is invalid under 35 U.S.C. § 103. It is also my understanding

that in assessing the obviousness of claimed subject matter, one should evaluate

obviousness in light of the prior art from the perspective of a person having ordinary

skill in the art at the time the alleged invention was made (and not from the

perspective of either a layman or a genius in that art). It is my further understanding

that the question of obviousness is to be determined based on:

• The scope and content of the prior art;

• The difference or differences between the subject matter of the claim
and the prior art (whereby in assessing the possibility of obviousness
one should consider the manner in which a patentee and/or a Court has
construed the scope of a claim);

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

43

• The level of ordinary skill in the art at the time of the alleged invention
of the subject matter of the claim; and

• Any relevant objective factors (the “secondary indicia”) indicating
nonobviousness, including evidence of any of the following:
commercial success of the products or methods covered by the patent
claims; a long-felt need for the alleged invention; failed attempts by
others to make the alleged invention; copying of the alleged invention
by others in the field; unexpected results achieved by the alleged
invention; praise of the alleged invention by the alleged infringer or
others in the field; the taking of licenses under the patent by others and
the nature of those licenses; expressions of surprise by experts and those
skilled in the art at the subject matter of the claim; and whether the
patentee proceeded contrary to accepted wisdom of the prior art.

• Any relevant objective factors (the “secondary indicia”) indicating
obviousness: independent invention of the claimed invention by others
before or at about the same time as the named inventor thought of it;
and other evidence tending to show obviousness.

B. Claim 1

1. Preamble: “A method of restricting software operation
within a license for use with a computer including an
erasable, non-volatile memory area of a BIOS of the
computer, and a volatile memory area; the method
comprising the steps of:”

98. I take no position as to whether this preamble is limiting on the claim,

however, it is my opinion that Hellman discloses this feature other than the “erasable,

non-volatile memory area of a BIOS.” It is my opinion that Chou discloses the

“erasable, non-volatile memory area of a BIOS,” and that a POSA would have found

it obvious to include the “erasable, non-volatile memory area of a BIOS” in

Hellman’s system.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

44

99. Hellman discloses a “computer” in the form of the base unit 12.

Hellman, Figure 1, Figure 6. Hellman indicates that the base unit 12 can be a

computer: “the base unit (computer, videogame base unit, record player,

videorecorder or video disk player).” Hellman, Abstract. Hellman also refers to

“acquaintances with similar base units (computer).” Hellman, 2:24-29. Hellman

discloses that the base unit 12 can have a software player 42 that can be “a

microprocessor or central processing unit (CPU).” Hellman, 10:66-11:3. Based at

least on these disclosures, a POSA would have recognized that the base unit 12 is a

“computer.”

100. Hellman discloses restricting software operation within a license. In

particular, Hellman teaches restricting software operation within a license through

the disclosure of the number of authorized uses value, M, which is later stored as a

license record. Hellman describes M as “the number of authorized uses of the

software package … which still remain unused prior to this new authorization.”

Hellman, 9:64-10:13. Hellman discloses that the value M is used to determine if

operation of the software is permitted consistent with previous authorizations.

Hellman, 9:64-10:13, 10:33-49. The value of M is increased based on payment for

uses made by the user. Hellman, 9:64-10:13 (incrementing M with new authorized

uses N), 5:57-6:15 (receiving authorization for N uses in exchange for billing

information). Based at least on these disclosures, a POSA would have recognized

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

45

that the right to use the software package embodied in the value M reflects

“restricting software operation within a license.”

101. Hellman discloses “software” and “software operation” in the form of

the software package 17 and its use by the software player 42. Hellman discloses a

software package 17 that can be a “computer program.” Hellman, 10:66-11:3.

Hellman discloses activating software player 42, “allowing it to use software

package 17.” Hellman, 10:44-49. Hellman discloses that the software package 17

can be operated by software play 42, as a computer program being operated by “a

microprocessor or central processing unit (CPU).” Hellman, 10:66-11:3. Based at

least on these disclosures, a POSA would have recognized that software package 17

is “software” and that use of software package 17 by the software player 42 is

“software operation.”

102. Hellman further discloses a “method of restricting software operation

within a license” in the form of restricting use of software package 17 by the software

player 42 within the limits of authorized uses value, M. Hellman discloses that the

base unit 12 only allows use of the software package 17 by the software player 42 if

the value M is greater than zero, and thus more licensed uses are remaining. Hellman,

10:33-65.

103. Hellman discloses that the base unit 12 has a “volatile memory area” in

the form of temporary memory 28. Hellman discloses that the base unit 12 has a

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

46

temporary memory 28. Hellman 8:66-67, Figure 6. Hellman discloses that the

temporary memory 28 can be provided as RAM. Hellman 8:66-67. A POSA would

have recognized that RAM (an acronym for Random Access Memory) is a type of

volatile memory.

104. Hellman discloses that the base unit 12 has an “erasable, non-volatile

memory area” in the form of non-volatile memory 37. Hellman discloses that the

base unit has a non-volatile memory 37. Hellman, Figure 6, 9:64-10:13. Hellman

discloses that the non-volatile memory 37 can be provided as “an EEPROM.”

Hellman, 9:64-10:13. A POSA would have recognized that EEPROM was an

acronym for electrically erasable programmable read-only memory. Based at least

on these disclosures, a POSA would have recognized that the non-volatile memory

37 was an “erasable, non-volatile memory area.”

105. Hellman does not disclose that the non-volatile memory 37 is a BIOS,

or that the base unit 12 included BIOS.

106. Chou disclosed a computer with BIOS and an “erasable, non-volatile

memory area of a BIOS.” Chou discloses a “BIOS EEPROM 15.” Chou, Figure 1,

3:21-28. Chou discloses that the BIOS memory 15 “may be a flash EEPROM

containing the various executable BIOS routines.” Chou, 3:52-55. Chou discloses

the “BIOS Memory” containing various BIOS routines. Chou, Figure 3, Figure 7.

Chou disclosed that there had been a transition from using other types of memory

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

47

for BIOS to the use of EEPROM. Chou, 1:63-2:7. Based at least on these

disclosures, a POSA would have recognized that the BIOS EEPROM 15 was an

“erasable, non-volatile memory area of the BIOS.”

107. A POSA would have found it obvious to include BIOS in the base unit

12 of Hellman. Hellman’s disclosure does not describe BIOS routines, or a memory

storing those routines. In my opinion, that lack of disclosure made sense in context,

and was not based on any incompatibility between Hellman’s base unit 12 and BIOS.

108. First, while BIOS existed in 1983, BIOS was ubiquitous in all

computers at that time. A POSA would have recognized that BIOS was ubiquitous

in computers by the time of the May 1998 priority date of the ’941 Patent.

109. Second, while the “BIOS” terminology was used with respect to some

general-purpose computers (e.g., microcomputers) in 1983, the terminology was not

as consistently used for other types of electronic devices. And Hellman disclosed

its invention generically for multiple types of “base units.” For example, Hellman

discloses that the base unit 12 can be any of a “computer,” a “videogame base unit,”

a “record player,” a “videorecorder,” and a “videodisk player.” Hellman, Abstract,

10:66-11:3. Because Hellman’s disclosure was generic to these various types of

electronic devices, it is understandable why Hellman did not describe BIOS routines

and a BIOS memory for every embodiment. Furthermore, although many non-

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

48

computer devices at the time stored code in non-volatile memory with the structure

and function of a BIOS, they did not generally use that term.

110. Based at least on the foregoing reasons, a POSA would have recognized

that Hellman did not disclose BIOS or a BIOS memory in the base unit 12 due to the

time of Hellman’s disclosure and the generic nature of the base unit 12. A POSA

would have recognized that the lack of a BIOS disclosure in Hellman was not due

to any incompatibility of BIOS or BIOS memory with Hellman. In fact, the opposite.

A POSA would have understood that at least Hellman’s computer embodiment

included a BIOS.

111. By the time of the May 1998 priority date of the ’941 Patent, a POSA

would have been aware that BIOS was ubiquitous in general purpose computers (e.g.,

personal computers). The applicant for the ’941 Patent took an even stronger

position during prosecution of the ’941 Patent, saying that “Since all computer must

have a BIOS …” Office Action dated February 5, 2002, page 7. As a result, when

implementing Hellman’s approach as of the May 1998 priority date of ’941 Patent,

a POSA would have found it obvious to implement Hellman’s technique in a

computer having a BIOS and thus a memory storing the BIOS.

112. When adding BIOS to the base unit 12 of Hellman, a POSA would have

found it obvious to use the non-volatile memory 37 of Hellman to store the BIOS

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

49

routines. There are several independent reasons why a POSA would have been

motivated to store the BIOS routines in the non-volatile memory 37 of Hellman.

113. First, a POSA would have been motivated to use non-volatile memory

37 of Hellman to store BIOS because non-volatile memory 37 used a type of memory

disclosed by Chou as being advantageous for storing BIOS. Hellman disclosed that

non-volatile memory 37 could be provided as EEPROM. Hellman, 9:64-10:13.

Hellman disclosed other memory modules, such as permanent memory 31 and

temporary memory 28, but Hellman did not disclose any other EEPROM modules.

Hellman, 8:61-9:15. Chou disclosed that a transition had occurred to using

EEPROM for BIOS, and that the programmability of EEPROM made that an

advantageous medium for storing BIOS. Chou, 1:63-2:7. Based at least on those

disclosures, a POSA, when adding BIOS to the base unit 12 of Hellman, would have

been motivated to store the BIOS in the non-volatile memory 37 (i.e., EEPROM) of

Hellman.

114. Second, a POSA would have been motivated to use non-volatile

memory 37 of Hellman to store BIOS because non-volatile memory 37 would have

been one of a limited number of design choices. Hellman disclosed that non-volatile

memory 37 could be provided as EEPROM. Hellman, 9:64-10:13. Hellman

disclosed other memory modules, such as permanent memory 31 and temporary

memory 28, but Hellman did not disclose any other EEPROM modules. Hellman,

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

50

8:61-9:15. A POSA would have recognized that in a typical computer as of the May

1998 priority date of the ’941 Patent, there would have been a limited number of

EEPROM modules available. EEPROM modules were a specialized type of

memory not used for general purpose storage. As such, they were generally only

added to a computer for a special purpose use. As of May 1998, a typical computer

would have had less than five such EEPROM modules, and perhaps only one. As

such, the EEPROM module embodied in non-volatile memory 37 of Hellman would

have been one of a limited number of choices for where to store the BIOS routines.

It would have been easy and obvious to choose non-volatile memory 37 from among

this limited set of options. In many computers, the BIOS EEPROM would be the

only EEPROM module in the computer.

115. Third, a POSA would have been motivated to use non-volatile memory

37 of Hellman to store BIOS because Chou disclosed that storing sensitive

information with the BIOS routines provided extra protection to that sensitive

information. Chou disclosed that it was beneficial to store sensitive information like

passwords in the BIOS memory because “any attempt to delete the protection will

result in the BIOS routine being disabled, disabling the boot up process.” Chou,

1:63-2:7. A POSA would have understood this disclosure to mean that information

should be stored within the BIOS memory because tampering with that information

would risk disabling the entire computer. A POSA would have recognized that this

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

51

would have discouraged many users from attempting to tamper with that information

in the first place. Hellman disclosed storing sensitive information, the number of

authorized uses M, in non-volatile memory 37. Hellman, 9:63-10:13. Thus, a POSA

would have been motivated to store BIOS together with the values M in the non-

volatile memory 37, in order to discourage users from tampering with the values M.

Chou, 1:63-2:7.

116. Fourth, a POSA would have been motivated to use non-volatile

memory 37 of Hellman to store BIOS because that would have been the most

efficient cost and space implementation. As of the May 1998 priority date of

the ’941 Patent, and still to this day, computer manufacturers generally tried to

implement functionality with little cost as possible and in as small of a form factor

as possible. A POSA would have recognized that storing BIOS routines in the

already existing non-volatile memory 37 of the base unit 12, as opposed to adding

another memory module, would have reduced cost and minimized the physical space

occupied by the memory modules.

117. A POSA would have had a strong expectation of success in storing

BIOS in the non-volatile memory 37 for numerous reasons.

118. First, Chou already describes storing BIOS in EEPROM, which was

one of the formats disclosed for use for non-volatile memory 37. Hellman, 9:64-

10:13; Chou, 1:63-2:7, 3:21-28, 3:62-67.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

52

119. Second, Chou already disclosed that add-on information, such as

passwords, encryption keys, and security modules could be added to the memory

space used by the BIOS. Chou, 3:62-4:5, Figure 3, Figure 7. A POSA would have

recognized that license information, such as the value M or any other license

information, could easily be stored within that BIOS memory space instead.

120. Third, a POSA would have recognized that EEPROM modules of the

time had sufficient space to store both the authorization values M from Hellman

(which is disclosed in some embodiments as being only 8 bits) and the BIOS routines

from Chou. Chou implicitly disclosed this in that it disclosed storing add-on

information and security modules in a single EEPROM with BIOS routines. Chou,

3:62-4:5, Figure 3, Figure 7. A POSA would have recognized that there were

numerous sizes of EEPROM modules available in May 1998 which would have had

sufficient space to store the BIOS routines and the authorization values from

Hellman.

120A. A POSA would not have been discouraged from the above-described

motivations to combine and strong expectation of success based on any alleged

incompatibility between the teachings of Hellman and Chou.

120B. As an initial matter, a POSA would have been encouraged by Chou

itself to store sensitive information, like Hellman’s licensing information, in the

BIOS memory. Chou, 1:63-2:7. While there would have been some risk introduced

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

53

by storing non-BIOS information in BIOS memory, that increased risk is what Chou

observed as the benefit of doing so in the first place: preventing tampering with the

sensitive information without also impacting the BIOS data and thus disabling the

entire device. Chou, 1:63-2:7.

120C. Hellman’s use of a hash value as a memory address would not have

negated this motivation provided by Chou. With Hellman’s approach of using a

hash value as a memory address, there already would have been some risk of

duplicate uses of memory addresses. Namely, with Hellman’s approach, one value

(i.e., a numerical representation of the software package content itself) was mapped

into a second data space (i.e., the maximum range of memory addresses allocated

for the purposes of storing the license information in non-volatile memory 37) using

one-way hash function generator 33. A POSA would have recognized that the

former value (the software package contents) would have been a larger data space

than the latter value (the range of memory addresses). Hellman, 6:48-53. Hence,

while perhaps unlikely, it would have been possible for two different software

packages to map to hash to the same hash value H and thus the same memory address.

This is a fundamental property of hash tables, but in practice is made statistically

unlikely enough to be tolerable or insignificant.

120D. Based at least on the foregoing observation, a POSA would have

recognized that an implementation of Hellman’s approach would have had to

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

54

account for potential duplicate uses of memory locations. Namely, if two software

packages hashed to the same hash value H, Hellman’s approach would have need to

account for the fact that both would by default have stored license information in the

same memory location, one overwriting the other. With that understanding in mind,

a POSA would have likewise recognized that an implementation of Hellman’s

approach where non-volatile memory 37 was the BIOS memory (in light of Chou’s

disclosure, as discussed above) would also have had to account for potential

duplicate uses of memory locations by both BIOS data and a hash value H. A POSA

would not have been discouraged by these observations from making the

modification of Hellman based on Chou. Rather a POSA would have understood

these to be the sort of ordinary and minute implementation details required by any

computer implementation, including, as just discussed, an implementation of

Hellman’s unmodified disclosure.

120E. As for how a POSA would have avoided duplicate use of a memory

location by both BIOS data and a hash value H, there are likely endless such

possibilities. As one example, a POSA would have recognized that the one-way

hash function generator 33 of Hellman could have been modified to map to a specific

range of memory values. Hellman already disclosed this ability, because the one-

way hash function generator 33 would already have to be mapping to the range of

acceptable memory addresses in non-volatile memory 37. With the combination of

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

55

Hellman and Chou, a POSA would have found it trivial to modify one-way hash

function generator 33 to a different memory address range where the BIOS data was

not being stored. For instance, in Chou shows in Figure 3 that a memory space 25

labelled “Security” is allocated in the BIOS Memory 15 in the BIOS space for

storing the new security function software disclosed by Chou. A POSA would have

recognized that this memory space--potentially enlarged if needed--could be reused

for mapping the has values H from the one-way hash function generator 33. In that

way, the license information from Hellman would be stored amidst the BIOS data in

non-volatile memory 37, but without risk of the license data overwriting the BIOS

data.

120F. There are likely countless other ways that a POSA would have found

it reasonable to implement Hellman as modified by Chou to avoid duplicate use of

a memory location by both BIOS data and Hellman’s license data. This is precisely

the sort of routine and ordinary design and implementation process that a POSA

would be accustomed to performing.

2. Element 1.a: “selecting a program residing in the volatile
memory”

121. It is my opinion that Hellman discloses this feature and alternatively

renders it obvious based on knowledge of skill in the art. It is my opinion that

Schneck further demonstrates that a POSA would have found this feature obvious.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

56

122. Hellman discloses a program in the form of software package 17.

Hellman, 5:51-56, 10:50-54, 10:66-11:3. Hellman discloses a volatile memory in

the form of temporary memory 28. Hellman, 8:61-9:15.

123. Hellman discloses numerous ways in which the software package 17 is

selected. Hellman either discloses explicitly, discloses implicitly, or renders obvious

that this selection would be of the software package 17 in the temporary memory 28.

124. First, Hellman discloses that the software package 17 is selected in the

form of purchasing the software package 17 “at a store, over telephone line, or in

some similar manner.” Hellman, 5:51-56. A POSA would have recognized that as

part of loading the purchased software package 17, the software package 17 would

have been loaded into temporary memory 28 (e.g., RAM), such as part of

transferring the software package 17 from the medium on which it was purchased

into some other storage device used by the base unit 12 for storage.

125. Second, Hellman discloses that the software package 17 is selected

when the base unit 12 is generating a request for software use. Hellman, 5:57-6:2.

As part of generating the request for software use, the base unit 12 determines a

software name for the software package 17. Hellman, 5:57-63. A POSA would

have recognized that one way in which to determine the software name would have

been to load the software package 17 into RAM (temporary memory 28), and extract

the software name from the contents of the software package 17.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

57

126. Third, Hellman discloses that the software package 17 is selected when

the software package 17 is input into the one-way hash function generator 33.

Hellman, 9:16-28, 9:50-63, 10:33-49. The software package 17 is provided as an

input to the one-way hash function generator 33 in order to generate the hash value

H. Hellman, 9:16-28, 9:50-63, 10:33-49. A POSA would have recognized that the

software package 17 would have been present in RAM (temporary memory 28)

when it was input to the one-way hash function generator 33. A POSA would have

recognized that the one-way hash function generator 33 could have been

implemented as either a hardware or a software module. At least in the case where

one-way hash function generator 33 was a software module, a POSA would have

recognized that a standard way to provide software package 17 as input to one-way

hash function generator 33 would have been to first load software package 17 into

RAM, and then provide it as input to the one-way hash function generator 33.

127. Fourth, Hellman discloses that the software package 17 is selected

when the software package 17 is selected for use by the software player 42. Hellman,

10:33-11:3. Hellman discloses that software player 42 can “use software package

17.” Hellman, 10:44-49. Hellman discloses that when software package 17 is a

“computer program,” the software player 42 is “a microprocessor or central

processing unit (CPU).” Hellman, 10:66-11:3. A POSA would have recognized that

in this context, the typical way for a software program to be used by a

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

58

microprocessor or CPU would be to first load it into RAM (temporary memory 28),

and then to select it for execution by the microprocessor or CPU.

128. Fifth, a POSA would have found it obvious to modify Hellman so that

the software package 17 was maintained in RAM (temporary memory 28) between

the time that it was selected for extraction of the software name and the time when

it was selected for verifying the authorization A. More specifically, as part of

generating the request for software use, the base unit 12 determines a software name

for the software package 17. Hellman, 5:57-63. A POSA would have recognized

that one way in which to determine the software name would have been to load the

software package 17 into RAM (temporary memory 28), and to extract the software

name from the contents of the software package 17. Thereafter, the same software

package 17 is provided as an input to the one-way hash function generator 33 in

order to generate the hash value H. Hellman, 9:16-28, 9:50-63.

129. A POSA would have recognized that the time between sending the

request for software use and the validation of the returned authorization could be a

short period of time, e.g., a number of seconds or minutes. A POSA would have

recognized that it would have been efficient to maintain the software package 17 in

RAM (temporary memory 28) between these two events in order to avoid having to

re-load the software package 17 into RAM (temporary memory 28) twice. With

such a modification, the software package 17 would still have been in the temporary

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

59

memory 28 when it is selected for providing as input to one-way hash function

generator 33.

130. While this feature was disclosed by or alternatively rendered obvious

by Hellman, the feature would further have been obvious based on the teachings of

Schneck.

131. Schneck discloses that a first step to accessing protected information

would be to “request the operating system to read such data into memory.” Schneck

at 18:7–10. The protected information, such as software package 17 from Hellman,

would then be selected for any further operations while it was residing in volatile

memory (temporary memory 28). Schneck at 18:7–10. Thus, even if Hellman did

not explicitly disclose that the software package 17 was first loaded into temporary

memory 28 prior to any of the occasions on which it was selected.

132. A POSA would have been motivated to modify the base unit 12 to first

load the software package 17 into temporary memory 28 for several reasons. First,

Schneck teaches that this was a standard approach for operating a protected software

program, and thus a POSA would have been motivated to use a known and reliable

method for operating on software package 17. Second, a POSA would have been

motivated to first load the software package 17 into temporary memory 28 because

a POSA would have recognized temporary memory 28 as one of a limited number

of design choices. In fact, other than temporary memory 28, Hellman does not

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

60

explicitly describe any other memory devices in the base unit 12 where the software

package 17 could be stored during the selecting activities described above. Third, a

POSA would have been motivated to first load the software package 17 into

temporary memory 28 because a POSA would have recognized that it would have

been faster to perform the various selecting activities described above if the software

package 17 were present in temporary memory 28 (e.g., RAM), as opposed to some

other, slower storage medium.

3. Element 1.b: “using an agent to set up a verification
structure in the erasable, non-volatile memory of the BIOS,
the verification structure accommodating data that includes
at least one license record”

133. It is my opinion that, based on the modification of Hellman to use non-

volatile memory 37 as the “erasable, non-volatile memory of the BIOS” as taught

by Chou (discussed above), Hellman discloses this feature. Furthermore, a POSA

would have found it obvious to modify Hellman based on the teachings of Schneck

to store the number of authorized uses in encrypted form, which is relevant to certain

dependent claims.

134. Hellman discloses a “license record” in the form of the number of

authorized uses value M. Hellman describes M as “the number of authorized uses

of the software package … which still remain unused prior to this new authorization.”

Hellman, 9:64-10:13. Hellman discloses that the value M is used to determine if

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

61

operation of the software is permitted consistent with previous authorizations.

Hellman, 9:64-10:13, 10:33-49. The value of M is increased based on payment for

uses made by the user. Hellman, 9:64-10:13 (incrementing M with new authorized

uses N), 5:57-6:15 (receiving authorization for N uses in exchange for billing

information). In at least some embodiments, M represents unlimited authorized use.

Based at least on these disclosures, a POSA would have recognized that the right to

use the software package embodied in the value M is a “license record.”

135. Hellman discloses a “verification structure” in the form of the memory

structure of non-volatile memory 37 storing at least one value M at memory

addresses defined by at least one hash value H. Hellman discloses that hash value

H is “an ‘abbreviation’ or name for describing the software package 21,” which is

an “exact replica” of software package 17. Hellman, 6:16-61. Hellman discloses

that hash value H has the characteristic that “it is easily com[]puted from its input

signal, software package 21, but given an H value it is difficult, taking perhaps

millions of years, to compute any other software package w[h]ich produces this same

H value.” Hellman, 6:16-61. Hellman discloses that H is used as an “interrogatory

signal” to the non-volatile memory 37, and that update unit 36 uses H “as an address

to non-volatile memory 37.” Hellman, 9:64-10:13, 10:33-43.

136. Based at least on these disclosures, a POSA would have recognized that

update unit 36 sets up a structure of memory addresses defined by hash value H for

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

62

storing authorized use values M in the non-volatile memory 37. And because the

stored authorized use value M is used to verify if operation of software package 17

is permitted, a POSA would have recognized that this memory structure is a

verification structure.

137. Hellman discloses an “agent” in the form of update unit 36. As

described above, update unit 36 stores the authorized use value M in the non-volatile

memory 37. Hellman, 9:64-10:13. Update unit 36 retrieves the authorized use value

M from the non-volatile memory 37. Hellman, 10:33-43. Update unit 36 updates

the value M in the non-volatile memory 37. Hellman, 10:44-49. While Hellman

does not specifically disclose how update unit 36 is implemented, a POSA would

have recognized that the update unit 36 would have been implemented by a software

routine, potentially along with a hardware module. Based at least on these

disclosures, a POSA would have recognized that the update unit 36 is an agent, and

that it sets up the verification structure in the non-volatile memory 37.

137A. A POSA would have recognized that the update unit 36 would have

been implemented by software, hardware, or some combination of the two. Hellman

does not explicitly say whether the update unit 36 should be implemented in software,

hardware, or a combination of the two. A POSA would have recognized from this

lack of discussion that it was not necessary that one type of implementation be used

over another. In other words, a POSA would have understood that it was up to the

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

63

discretion of the implementer whether to use software, hardware, or a combination

of the two.

137B. This understanding would have been confirmed by the fact that the

activities performed by the update unit 36 were of a type that could be performed in

software, hardware, or both. The update unit 36 retrieves a value stored at a location

in EEPROM, performs integer addition and/or subtraction, and transmits a value to

be stored at a location in EEPROM. Hellman, 9:64-10:13. These are all tasks that

a POSA would have understood could be implemented in software, hardware, or

both. A POSA would have been motivated to implement the update unit 36 in

software in particular because that would have allowed the provider of the base unit

to change the implementation logic of the update unit 36 over time, without having

to physically disassemble, modify, and reassemble the base unit.

138. A POSA would additionally have recognized that the authorization and

billing unit 13 may cooperate with the update unit 36 to act as the “agent.” Hellman

discloses that the authorization and billing unit 13 stores a table of serial numbers

and secrets keys in memory 18. Hellman, 6:16-30. The authorization and billing

unit 13 uses the serial number received from the base unit 12 to determine the secret

key, SK, for the base unit 12. Hellman, 6:16-30. The authorization and billing unit

13 stores a table of software in memory 19 that allows it to determine a software

package 21 from the software name provided in the request, and software package

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

64

21 is identical to software package 17. Hellman, 6:16-30. Because authorization

and billing unit 13 generates the authorization A that leads to the updating of the

authorized use value M in the non-volatile memory 37, a POSA would have

recognized that the authorization and billing unit 13 may be considered an agent.

138A. A POSA would have recognized that the authorization and billing unit

13 would have been implemented by software, hardware, or some combination of

the two. Hellman does not explicitly say whether the authorization and billing unit

13 should be implemented in software, hardware, or a combination of the two. A

POSA would have recognized from this lack of discussion that it was not necessary

that one type of implementation be used over another. In other words, a POSA

would have understood that it was up to the discretion of the implementer whether

to use software, hardware, or a combination of the two.

138B. This understanding would have been confirmed by the fact that the

activities performed by the authorization and billing unit 13 were of a type that could

be performed in software, hardware, or both. The authorization and billing unit 13

stores a table of serial numbers and secret keys, stores a table of information about

software packages, performs a hash function, and performs a cryptographic function.

Hellman, 6:16-7:16. These are all tasks that a POSA would have understood could

be implemented in software, hardware, or both. A POSA would have recognized

that the maintaining of the two lookup tables in particular would have been the type

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

65

of functionality typically involving a software implementation. A POSA would have

been motivated to implement the authorization and billing unit 13 in software in

particular because that would have allowed the provider of the authorization and

billing unit 13 to change the implementation logic of the authorization and billing

unit 13 over time, without having to physically disassemble, modify, and reassemble

the authorization and billing unit 13.

139. Furthermore, a POSA would have found it obvious to modify Hellman

based on the teachings of Schneck to store the number of authorized uses in

encrypted form, which is relevant to certain dependent claims.

140. As an initial observation, Hellman and Schneck attempt to solve a

similar problem: preventing an authorized user from distributing unauthorized

copies of licensed software. Hellman at 1:39–2:53; Schneck at 2:40–67. Hellman

calls this “copy protection,” while Schneck calls this “secondary distribution.”

Hellman at 1:39–2:53; Schneck at 2:40–67.

141. While both Hellman and Schenck attempt to address this same problem,

Hellman only effectively deals with one aspect of it. Hellman’s approach prevents

the interception and reuse of the authorization signal A. Hellman at 6:62–7:16. This

thereby protects against the risk of a malicious tampering with respect to the insecure

channel 11 between the base unit 12 and the authorization and billing unit 13.

Hellman at 6:62–7:16. Hellman achieves this result because the authorization A is

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

66

encrypted with a key, SK, specific to the base unit 12 and a cryptographic hash

specific to the software package 17. Hellman at 6:62–7:16. As a result, the

authorization A cannot be reused for a different software package 17 or on a different

base unit 12. Hellman at 6:62–7:16.

142. However, a POSA would have recognized that Hellman’s approach

does not protect against tampering once the authorized use value M is stored in the

non-volatile memory 37 of the base unit 12. This is the case because M is stored

simply as an integer value, i.e., in plaintext, in the non-volatile memory 37. Hellman

at 9:64–10:13. And, the value M is stored at an address determined by hash value

H. Hellman at 9:64–10:13. A POSA would have recognized that, as a result, for a

software package 17 present on the base unit 12, a malicious user could generate the

hash value H, interrogate the non-volatile memory 37, and thereby retrieve the

authorized use value M. A POSA could then write a new authorized use value M to

the memory address for hash value H, thereby granting new, unauthorized uses to

the software package 17. A POSA would have recognized that this tampering was

possible because M was stored as a plaintext numerical value, and thus could be

overwritten without any need for cryptographic verification.

143. A POSA would have recognized that this risk was heightened for the

situation where the number of authorized uses was the special value indicating an

“unlimited number of uses of a software package.” Hellman, 10:55-65. Hellman

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

67

disclosed that a special value of M could be used to indicate infinite uses of the

software package 17. Hellman, 10:55-65. Hellman suggests an “all 1’s pattern” for

this special value. Hellman, 10:55-65. But, a POSA would have recognized that, to

the extent that a malicious user does not know in advance what the special value is,

the malicious user could interrogate the non-volatile memory 37 as described above

and thereby discover this special infinite use value. A POSA would have recognized

that this special value of M could then be stored at the memory address for any

software package 17, and thereby grant unlimited uses that were not paid for.

144. Given that Hellman had a shortcoming in its technique for preventing

unauthorized secondary distribution, a POSA would have found it obvious to modify

Hellman to correct that shortcoming. Schneck discloses one technique that a POSA

would have found obvious for correcting this shortcoming of Hellman.

145. Like Hellman, Schneck disclosed that the authorization information,

authorization A in Hellman and access rules 116 in Schneck, were transmitted to the

user device in encrypted form. Schneck at 9:46–59. But Schneck also disclosed that

information that arrives at the user device should be stored in encrypted form, which

is the cause of Hellman’s shortcoming. Schneck, 16:64-17:5, 17:6-12, 25:64-67.

Schneck discloses that, because “all storage of data on internal non-volatile memory

devices (for example, disks, flash memory, and the like) is encrypted, this ensures

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

68

that a physical attack on the system will not result in compromise of plaintext.”

Schneck, 25:64-67.

146. In light of this disclosure of Schneck, a POSA would have found it

obvious to modify Hellman to store the number of authorized uses value M in

encrypted form in non-volatile memory 37. A POSA would have recognized that

storing M in encrypted form would prevent the sort of tampering described above

and warned against by Schneck.

147. In considering how to store M in encrypted form, one technique that a

POSA would have found obvious would have been to store the authorization A in

non-volatile memory 37 at memory address H. A POSA would have considered this

as a desirable solution because base unit 12 already receives authorization A in

encrypted form, and thus base unit 12 could simply store the authorization A without

the need for additional decrypting/encrypting beyond that already disclosed in

Hellman.

148. A POSA would have recognized that storing authorization A in non-

volatile memory 37 could have been especially beneficial where the special value M

for an unlimited number of uses was used. Hellman, 10:55-65. With the unlimited

uses value, the value M never needs to be incremented or decremented. Hellman,

10:55-65. As such, a POSA would have recognized that each time the software

package 17 is used, the update unit 36 could simply perform the verification of the

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

69

value M instead of having to modify M, re-encrypt the value, and then update the

storage at address H in non-volatile memory 37.

149. A POSA would have recognized that storing the authorization A in the

non-volatile memory 37 would have corrected the vulnerability in Hellman

described above. First, because authorization A is encrypted with a key, K, unique

to the base unit 12, a malicious user could not copy the authorization A into the non-

volatile memory 37 of some other base unit 12 and still have it enable use of software

package 17 on that other base unit 12. Second, because authorization A is encrypted

with hash value H unique to the software package 17, a malicious user could not

copy the authorization A into some other memory address H on the same base unit

12 and have it enable use of the other software package 17.

150. A POSA would have recognized that Hellman’s system, when modified

based on the teachings of Schneck as described above would achieve the objective

of both references of preventing unauthorized secondary distribution of software.

4. Element 1.c: “verifying the program using at least the
verification structure from the erasable non-volatile
memory of the BIOS, and”

151. It is my opinion that Hellman discloses this feature. As discussed above,

Hellman disclosed: the “program” in the form of software package 17; the

“verification structure” in the form of the structure of non-volatile memory 37

defined by hash values H storing authorized use values M; and the “erasable non-

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

70

volatile memory of the BIOS” in the form of the non-volatile memory 37, as

modified by the teachings of Chou to store BIOS routines.

152. Hellman discloses verifying the software package 17 using the

verification structure stored in non-volatile memory 37. Hellman discloses that,

when use of the software package 17 is attempted, the base unit generates the hash

value H. Hellman, 10:33-54. The base unit then uses hash value H as a memory

address in non-volatile memory 37 in order to retrieve the number of authorized uses

M for that software package 17. Hellman, 10:33-54. The base unit 12 then checks

whether the authorized use value M is greater than zero in order to verify whether

operation of the software package 17 is permitted. Hellman, 10:33-54. Based at

least on these disclosures, a POSA would have recognized that Hellman discloses

this feature.

153. When Hellman was modified by the teachings of Schneck to store

authorization A in the non-volatile memory 37, a POSA would have recognized that

verification would have been performed using the authorization A. A POSA would

have recognized that one way in which the verification could be performed would

be to decrypt the authorization A using the unique key K of the base unit in order to

retrieve the value M included therein. The value M could then be used as already

described in Hellman. Hellman, 10:33-54. A POSA would have recognized that,

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

71

because the authorization A was encrypted, the authorization A would have to be

decrypted in order to retrieve the number of authorized uses value M.

5. Element 1.d: “acting on the program according to the
verification.”

154. It is my opinion that Hellman discloses this feature. As discussed above,

Hellman disclosed: the “program” in the form of software package 17. Hellman

disclosed “the verification” in the form of the verification process described for

claim element 1.c.

155. Hellman discloses acting on the program according to the verification

in the form of allowing use of the software package 17 by the software player 42

only if the number of authorized uses is greater than zero. Hellman, 10:44-65. If

the value of M is greater than zero, then the update unit 36 sends a control signal to

the switch 41 to allow software player 42 to use software package 17. Hellman,

10:44-49. If the value of M is zero, then the update unit 36 does not activate the

switch to allow the software player 42 to use software package 17. Hellman, 10:50-

54. “The user is thus prevented from using software for which he does not have

current authorized use.” Hellman, 10:50-54.

C. Claim 2: “A method according to claim 1, further comprising the
steps of: establishing a license authentication bureau.”

156. It is my opinion that Hellman discloses this feature.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

72

157. Hellman discloses establishing a “license authentication bureau” in the

form of establishing authorization and billing unit 13. Hellman discloses that

authentication and billing unit generates an authorization A. Hellman, 6:3-8.

Hellman refers to the authorization A as an “authenticator”: “The software

manufacturer generates an authenticator which is a cryptographic function of the

base unit’s key, the software, the number of times use of the software is authorized,

and the random number generated by the base unit.” Hellman, 4:46-63. As

discussed previously, a POSA would have recognized that the number of authorized

uses is a license because it defines the scope of use of software package 17 that is

permitted. Hellman, 6:3-15, 9:64-10:13.

158. As such, the authorization and billing unit 13 generates an authenticator

for a license of a software package by encrypting license content for the software

package using an encryption key unique to the base unit 12. Based at least on these

disclosures, a POSA would have recognized that Hellman discloses “establishing a

license authentication bureau.”

D. Claim 3

1. Preamble: “A method according to claim 2, wherein setting
up a verification structure further comprising the steps of:”

159. It is my opinion that Hellman discloses this feature, as described for

claim 2 above.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

73

2. Element 3.a: “establishing, between the computer and the
bureau, a two-way data-communications linkage;”

160. It is my opinion that Hellman discloses this feature.

161. As discussed above, Hellman disclosed: the “computer” in the form of

base unit 12; and the “bureau” in the form of the authorization and billing unit 13.

162. Hellman disclosed “establishing … a two-way data communications

linkage” between the base unit 12 and the authorization and billing unit 13 in the

form of insecure communication channel 11. Hellman, 5:39-50. Hellman discloses

communication over insecure communication channel 11 in one direction when the

base unit 12 transmits the request for software use to the authorization and billing

unit 13. Hellman, 5:57-6:2. Hellman discloses communication insecure

communication channel 11 in the other direction when the authorization and billing

unit 13 transmits the authorization A to the base unit 12. Hellman, 6:3-15.

3. Element 3.b: “transferring, from the computer to the
bureau, a request-for-license including an identification of
the computer and the license-record’s contents from the
selected program;”

163. It is my opinion that Hellman discloses this feature. Furthermore, a

POSA would have found it obvious to modify Hellman based on the teachings of

Schneck to include additional information in the request-for-license beyond what

Hellman discloses.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

74

164. Hellman discloses a “request-for-license” in the form of the “user

originated request for software use.” Hellman, 5:57-6:2.

165. Hellman discloses “transferring, from the computer to the bureau” the

request for software use, in the form of the base unit 12 transmitting the request for

software use to the authorization and billing unit 13. Hellman, 5:57-6:2.

166. Hellman discloses that the request for software use includes “an

identification of the computer” in the form of the serial number for the base unit 12.

Hellman, 5:57-6:2. Hellman discloses that the request for software use includes a

“serial number.” Hellman, 5:57-6:2. Hellman discloses that the serial number can

be “a serial number, identification number, user name or similar identifier unique to

base unit 12.” Hellman, 5:57-6:2.

167. A POSA would have found it obvious to modify Hellman to use a

public key for the base unit 12 in the request for software as the “serial number.”

Hellman disclosed that the serial number could be any “serial number, identification

number, user name or similar identifier unique to base unit 12.” Hellman, 5:57-6:2.

Schneck disclosed that “System IDs/Public keys” can be used to identify a device.

Schneck 11:32-34. A POSA would have been motivated to use a public key in

Hellman’s system because Hellman already disclosed that a public key

cryptographic system was compatible with Hellman’s system. Hellman, 11:20-68.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

75

168. A POSA would have recognized that the public key could be

transmitted from the base unit 12 to the authorization and billing unit 13 as part of

the request for software use in order to identify the base unit 12, as suggested by

Schneck. Schneck 11:32-34. A POSA would have recognized the additional benefit

of including the public key in the request for software use in order to allow the

authorization and billing unit 13 to generate the authorization A without needing to

maintain secret keys for the base units 12 in memory of the authorization and billing

unit 13. Hellman, 6:16-30. A POSA would have recognized that this would have

improved the efficiency and security of the authorization and billing unit 13.

169. Hellman discloses that the request for software use includes “the

license-record’s contents from the selected program” in the form of the software

name and the number of request uses value N. Hellman, 5:57-6:2. Hellman

discloses that the request for software use includes the “software name,” which is

“the name of the software package to be used.” Hellman, 5:57-6:2. Hellman

discloses that the request for software use includes the value N, which is “the number

of additional uses of software requested.” Hellman, 5:57-6:2.

170. At least where the request for software use is the first request for

software use for the software package 17, the value N is the value that is ultimately

stored in the non-volatile memory 37 as the license record. A POSA would have

recognized that when the first request for software use is transmitted, the existing

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

76

value M for the number of authorized uses is zero. When the base unit 12 receives

the authorization A, which contains the transmitted value N, it is the value N that is

stored as the value M in the non-volatile memory 37. Hellman, 9:64-10:13. This is

so because “M+N” is equal to the value N when the preexisting value of M is zero.

Hellman, 9:64-10:13.

171. A POSA would have found it obvious to modify Hellman to use the

hash value H in the request for software use instead of the “software name.”

Hellman discloses that the software name “allows authorization and billing unit 13

to determine the complete contents of software package 17 from knowledge of the

much smaller information software name.” Hellman, 6:16-30. A POSA would have

recognized that in some circumstances, a software name may not be sufficiently

unique or well-structured to unique identify the software package 17. For example,

if multiple software manufacturers share an authorization and billing unit 13, then

there would be a risk that two software manufacturers could inadvertently use the

same software name for two different software packages.

172. Based on the risk that the software name would not uniquely identify a

software package, a POSA would have been motivated to use the hash value H

instead. Hellman discloses that hash value H is an “‘abbreviation’ or name for

describing the software package.” Hellman, 6:31-61. As such, Hellman already

indicates that hash value H could be used as a shortened identifier for the software

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

77

package 17. As such, a POSA would have recognized that the hash value H could

serve as an identifier of the software package 17 and would be more likely to

uniquely identify the software package 17 than would the software name. With such

a modification, the billing and authorization unit could maintain a table correlating

hash value H to software package 17, instead of software name to software package

17. Hellman, 6:16-30.

4. Element 3.c: “forming an encrypted license-record at the
bureau by encrypting parts of the request-for-license using
part of the identification as an encryption key;”

173. It is my opinion that Hellman discloses this feature other than use of

“part of the identification as an encryption key.” It is my opinion that a POSA would

have found it obvious to include this feature in Hellman’s system based Schneck’s

teachings.

174. Hellman discloses forming an “encrypted license-record” in the form

of authorization A. As discussed previously for element 1.b, authorization A is a

license record. Authorization A is encrypted. Hellman, 6:62-7:2.

175. As discussed previously for claim 2, the authorization and billing unit

13 is a “bureau.” Hellman discloses forming the authorization A at the “bureau” in

the form of forming authorization A at the authorization and billing unit 13. Hellman,

6:62-7:2.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

78

176. Hellman discloses encrypting “parts of the request-for-license” to form

authorization A in the form of using the value N to form the authorization A.

Hellman, 6:62-7:2. The value N is included in the request for software use. Hellman,

5:57-6:2. The value N is encrypted as part of the authorization A. Hellman, 6:62-

7:2.

177. As discussed above for element 3.b, a POSA would have found it

obvious to include the hash value H in the request for software use. Hellman

discloses that the hash value H is included in the authorization A. Hellman 6:62-7:2.

In this additional way, a POSA would have found it obvious to encrypt “parts of the

request-for-license” to form authorization A.

178. As discussed above for element 3.b, a POSA would have found it

obvious to use a public key for the base unit 12 as the “identification of the computer”

in the request for software use. As discussed above for element 3.b, a POSA would

have found it obvious to make this modification because it would allow the

authorization and billing unit 13 to use the public key as the encryption key for

forming authorization A instead of a locally-maintained secret key. For at least those

reasons, a POSA would have found it obvious to use “part of the identification as an

encryption key.”

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

79

5. Element 3.d: “transferring, from the bureau to the
computer, the encrypted license-record; and”

179. It is my opinion that Hellman discloses this feature. As discussed above,

Hellman disclosed: the “bureau” in the form of authorization and billing unit 13; the

“computer” in the form of base unit 12; and the “encrypted license-record” in the

form of authorization A.

180. Hellman discloses transferring the encrypted license-record from the

bureau to the computer in the form of transmitting the authorization A from the

authorization and billing unit 13 to the base unit 12. Hellman, 6:3-15.

6. Element 3.e: “storing the encrypted license record in the
erasable non-volatile memory area of the BIOS.”

181. It is my opinion that, based on the modification of Hellman to use

non-volatile memory 37 as the “erasable, non-volatile memory of the BIOS” as

taught by Chou (discussed for claim 1 preamble), and based on the modification of

Hellman to store the authorization A instead of the plaintext value M (discussed for

element 1.b), Hellman discloses this feature.

182. Hellman disclosed storing the value M in the non-volatile memory 37.

Hellman, 9:64-10:13. As discussed for claim 1 preamble, a POSA would have

found it obvious to use non-volatile memory 37 as the erasable, non-volatile

memory of the BIOS.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

80

183. Hellman disclosed storing the value M in the non-volatile memory 37.

As discussed for element 1.b, a POSA would have found it obvious to store the

authorization A in the non-volatile memory 37 instead of the plaintext value M.

184. Based on those modification to Hellman discussed previously, a

POSA would have found it obvious to store “the encrypted license record in the

erasable non-volatile memory area of the BIOS.”

E. Claim 6: “A method according to claim 1 wherein selecting a
program includes the steps of: establishing a licensed-software-
program in the volatile memory of the computer wherein said
licensed-software-program includes contents used to form the
license-record.”

185. It is my opinion that, based on the modification of Hellman to store the

authorization A instead of the plaintext value M (discussed for element 1.b),

Hellman discloses this feature.

186. As discussed above, Hellman disclosed: the “computer” in the form of

base unit 12; the “volatile memory” in the form of temporary memory 28; a

“licensed-software-program” in the form of software package 17; and the “license-

record” in the form of authorized uses value M.

187. As discussed for element 1.a, Hellman disclosed loading the software

package 17 in the temporary memory 28. Based at least on these disclosures, a

POSA would have recognized that Hellman discloses “establishing a licensed-

software-program in the volatile memory of the computer.”

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

81

188. As discussed for element 1.b, a POSA would have found it obvious to

store the authorization A in the non-volatile memory 37 instead of the plaintext value

M. Hellman discloses that the software package 17 includes contents used to form

the authorization A. Hellman discloses that the entirety of the software package 17

is used to generate the hash value H. Hellman, 6:31-61, 9:16-28. The hash value H

is part of the authorization A. Hellman, 6:62-7:2. Based at least on these disclosures,

a POSA would have recognized that Hellman discloses that the “licensed-software-

program includes contents used to form the license-record.”

F. Claim 7

1. Preamble: “A method according to claim 6 wherein using
an agent to set up the verification structure includes the
steps of:”

189. It is my opinion that Hellman discloses this feature, as described for

claim 6 above.

2. Element 7.a: “establishing or certifying the existence of a
pseudo-unique key in a first non-volatile memory area of
the computer; and”

190. It is my opinion that Hellman discloses this feature

191. As discussed above, Hellman disclosed: the “computer” in the form of

base unit 12.

192. Hellman discloses “a first non-volatile memory area” in the form of

permanent memory 31. Hellman discloses that base unit 12 includes a “permanent

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

82

memory 31, for example a PROM.” Hellman 8:61-9:15. A POSA would have

recognized that PROM is an acronym for programmable read-only memory, and that

PROM was a non-volatile memory.

193. Hellman discloses a “pseudo-unique key” in the permanent memory 31

in the form of key K stored in permanent memory 31. Hellman, 9:29-40. Hellman

discloses that the key K can be the same as the secret key SK. Hellman, 9:29-40.

Hellman discloses that “no two users share the same secret key.” Hellman, 9:41-45.

194. Hellman discloses “certifying the existence” of the key K in the

permanent memory 31 in the form of retrieving the key K for input to the

cryptographic check unit 34 in order to verify the validity of authorization A.

Hellman, 9:50-63, 9:64-10:13, Figure 6.

195. Based at least on these disclosures, a POSA would have recognized

that Hellman discloses “certifying the existence of a pseudo-unique key in a first

non-volatile memory area of the computer.”

196. As an additional note, the ’941 Patent says that in “the context of the

present invention, a ‘pseudo-unique’ key may relate to a bit string which uniquely

identifies each first non-volatile memory. Alternately the ‘pseudo-unique’ key

may relate to a random bit string (or to an assigned bit string) of sufficient length

such that: there is an acceptably low probability of a successful unauthorized

transfer of licensed software between two computers, where the first volatile

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

83

memories of these two computers have the same key.” ’941 Patent, 4:10-18.

Because Hellman discloses that the key K is unique amongst base units 12, a

POSA would recognize that the key K is a pseudo-unique key as recited in this

claim.

3. Element 7.b: “establishing at least one license-record
location in the first nonvolatile memory area or in the
erasable, non-volatile memory area of the BIOS.”

197. It is my opinion that Hellman discloses this feature

198. As discussed above, Hellman disclosed: the “non-volatile memory area

of the BIOS” in the form of non-volatile memory 37, as modified by Chou to also

store BIOS routines.

199. Hellman discloses “establishing at least one license-record location” in

the non-volatile memory 37 in the form of establishing a memory address defined

by hash value H where a license record (number of authorized uses M, or

authorization A) for the correspond software package 17 will be stored. Hellman,

9:64-10:13. Hellman discloses that a license record for the software package 17 will

be stored at a single, specific memory address: the memory address that corresponds

to hash value H. Hellman, 9:64-10:13. And hash value H is generated based on the

content of the software package itself. Hellman, 31-61, 9:16-28. As such, a POSA

would have recognized that Hellman discloses establishing a license record location

in the non-volatile memory 37.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

84

200. Based at least on these disclosures, a POSA would have recognized that

Hellman discloses “establishing at least one license-record location in the first

nonvolatile memory area or in the erasable, non-volatile memory area of the BIOS.”

G. Claim 8

1. Preamble: “A method according to claim 6 wherein
establishing a license-record includes the steps of:”

201. It is my opinion that Hellman discloses this feature, as described for

claim 6 above.

2. Element 8.a: “forming a license-record by encrypting of the
contents used to form a license-record with other
predetermined data contents, using the key; and”

202. It is my opinion that, based on the modification of Hellman to store the

authorization A instead of the plaintext value M (discussed for element 1.b),

Hellman discloses this feature.

203. As discussed above, Hellman disclosed: a “license-record” in the form

of authorization A, as modified to Schneck to store authorization A in non-volatile

memory 37; the “contents used to form a license-record” in the form of the software

package 17 and its corresponding hash value H; and a “key” in the form of key SK.

204. Hellman discloses forming the authorization A by encrypting the

“contents used to form a license-record … using the key” in the form of encrypting

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

85

the hash value H with other contents using the key SK (which can be the same as

key K). Hellman, 6:62-7:2, 9:29-40.

205. Hellman discloses encrypting “other predetermined data contents” in

the license record in the form of number of requested uses N and random number R.

Hellman, 6:62-7:2, 9:50-63.

206. Based at least on these disclosures, a POSA would have recognized that

Hellman as modified by Schneck discloses “forming a license-record by encrypting

of the contents used to form a license-record with other predetermined data contents,

using the key.”

3. Element 8.b: “establishing the encrypted license-record in
one of the at least one established license-record locations.”

207. It is my opinion that, based on the modification of Hellman to store the

authorization A instead of the plaintext value M (discussed for element 1.b),

Hellman discloses this feature.

208. As discussed above, Hellman disclosed: an “encrypted license-record”

in the form of authorization A, as modified to Schneck to store authorization A in

non-volatile memory 37; and the “established license-record locations” in the form

the memory addresses defined by a hash value H.

209. Hellman discloses establishing the number of authorized uses value M

in the memory location defined by hash value H. Hellman, 9:64-10:13. As discussed

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

86

above for element 1.b, a POSA would have found it obvious to store the

authorization A in the memory location defined by hash value H, instead of the value

M. Based at least on these disclosures, a POSA would have recognized that Hellman

as modified by Schneck discloses “establishing the encrypted license-record in one

of the at least one established license-record locations.”

H. Claim 9

1. Preamble: “A method according to claim 7 wherein
verifying the program includes the steps of:”

It is my opinion that Hellman discloses this feature, as described for claim 7

above.

2. Element 9.a: “encrypting the licensed-software-program's
license-record contents from the volatile memory area or
decrypting the license-record in the erasable, non-volatile
memory area of the BIOS, using the pseudo-unique key;
and”

210. It is my opinion that, based on the modification of Hellman to store the

authorization A instead of the plaintext value M (discussed for element 1.b), this

feature would have been an obvious modification of Hellman.

211. As discussed above, Hellman disclosed: the “license-record” in the

form of authorization A, as modified to Schneck to store authorization A in non-

volatile memory 37; the “non-volatile memory area of the BIOS” in the form of the

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

87

non-volatile memory 37, as modified by Chou to store the BIOS routines; and the

“pseudo-unique key” in the form of the key K.

212. As discussed above for element 1.c, when Hellman was modified by

the teachings of Schneck to store authorization A in the non-volatile memory 37, a

POSA would have recognized that verification would have been performed using

the authorization A. A POSA would have recognized that one way in which the

verification could be performed would be to decrypt the authorization A using the

unique key K for the base unit 12 in order to retrieve the value M included therein.

The value M could then be used as already described in Hellman. Hellman, 10:33-

54. A POSA would have recognized that, because the authorization A was encrypted,

the authorization A would have to be decrypted in order to retrieve the number of

authorized uses value M.

3. Element 9.b: “comparing the encrypted licenses-software-
program’s license-record contents with the encrypted
license-record in the erasable, non-volatile memory area of
the BIOS, or comparing the license-software-program's
license-record contents with the decrypted license-record in
erasable non-volatile memory area of the BIOS.”

213. It is my opinion that, based on the modification of Hellman to store the

authorization A instead of the plaintext value M (discussed for element 1.b), a POSA

would have found this feature to be an obvious modification of Hellman.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

88

214. As discussed above, Hellman disclosed: the “license-software-

program's license-record contents” in the form of the software package 17 and its

corresponding hash value H; the “license-record” in the form of authorization A, as

modified to Schneck to store authorization A in non-volatile memory 37; and the

“non-volatile memory area of the BIOS” in the form of the non-volatile memory 37,

as modified by Chou to store the BIOS routines.

215. As discussed above for element 9.a, when Hellman was modified by

the teachings of Schneck to store authorization A in the non-volatile memory 37, a

POSA would have found it obvious to decrypt the authorization A from the non-

volatile memory 37 as part of verification of the software package 17.

216. A POSA would have found it obvious to compare the decrypted

authorization A with the software package 17 and the corresponding hash value H.

As discussed above for element 1.b, one of the reasons that a POSA would have

been motivated to modify Hellman to store the authorization A instead of the number

of authorized uses value M in the non-volatile memory 37 was the fact that storing

plaintext value M would allow a malicious user to change the value of M for any

software package 17. Further, as discussed above for element 1.b, a POSA would

have recognized that storing authorization A would have prevented this tampering,

because the hash value H was part of the authorization A, and as such the

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

89

authorization A could not be reused at any other memory location in the non-volatile

memory 37.

217. A POSA would have found it obvious that in order to achieve this

benefit in the modification of Hellman, it would be necessary to compare the hash

value H included as part of the authorization A to the software package 17 that the

user was attempting to use. If the base unit 12 did not perform this comparison of

the hash value H in the authorization A to the hash value H for the software package

17 in use, then the tampering described above would not be prevented. As such, a

POSA would have found it obvious to implement this comparison in the modified

system of Hellman, and thereby include “comparing the license-software-program's

license-record contents with the decrypted license-record in erasable non-volatile

memory area of the BIOS.”

I. Claim 10: “A method according to claim 9 wherein acting on the
program includes the step: restricting the program's operation
with predetermined limitations if the comparing yields non-unity
or insufficiency.”

218. It is my opinion that Hellman discloses this feature. As discussed above,

Hellman disclosed: the “program” in the form of software package 17.

219. Hellman discloses restricting the operation of the software package 17

in the form of preventing the user from using the software package 17 when the

number of authorized uses equals zero. Hellman, 10:50-54.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

90

220. As discussed above for element 9.b, a POSA would have found it

obvious to compare the hash value H from the authorization A stored in the non-

volatile memory 37 to the hash value H for the software package 17 that the user is

attempting to use. A POSA would have recognized that when those hash values H

do not match, the authorization A does not correspond to the software package 17

that the user is attempting to use. In such a case, a POSA would have found it

obvious to prevent the user from using the software package 17. Hellman, 10:50-

54. A POSA would have been motivated to prevent this operation in order to prevent

the user from making unauthorized use of the software package 17.

J. Claim 11: “A method according to claim 1 wherein the volatile
memory is a RAM.”

221. It is my opinion that Hellman discloses this feature. As discussed above

for claim 1 preamble, Hellman disclosed the “volatile memory” in the form of

temporary memory 28. Hellman disclosed that temporary memory could be “for

example a RAM.” Hellman, 8:67-68.

K. Claim 12: “The method of claim 1, wherein a pseudo-unique key
is stored in the non-volatile memory of the BIOS.”

222. It is my opinion that this feature would have been an obvious

modification of Hellman based on the teachings of Schneck. As discussed above,

Hellman disclosed: the “non-volatile memory of the BIOS” in the form non-volatile

memory 37, as modified by Chou to store BIOS routines.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

91

223. A POSA would have found it obvious to modify Hellman to use a

public key for the base unit 12 in the request for software as the “serial number.”

Hellman disclosed that the serial number could be any “serial number, identification

number, user name or similar identifier unique to base unit 12.” Hellman, 5:57-6:2.

Schneck disclosed that “System IDs/Public keys” can be used to identify a device.

Schneck 11:32-34. A POSA would have been motivated to use a public key in

Hellman’s system because Hellman already disclosed that a public key

cryptographic system was compatible with Hellman’s system. Hellman, 11:20-68.

224. A POSA would have recognized that the public key could be

transmitted from the base unit 12 to the authorization and billing unit 13 as part of

the request for software use in order to identify the base unit 12, as suggested by

Schneck. Schneck 11:32-34. A POSA would have recognized the additional benefit

of including the public key in the request for software use in order to allow the

authorization and billing unit 13 to generate the authorization A without needing to

maintain secret keys for the base units 12 in memory of the authorization and billing

unit 13. Hellman, 6:16-30. A POSA would have recognized that this would have

improved the efficiency and security of the authorization and billing unit 13.

225. A POSA would have recognized that the public key would be a

“pseudo-unique key.” Schneck disclosed that “System IDs/Public keys” can be used

to identify a device. Schneck 11:32-34. Based on this disclosure of Schneck and

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

92

the knowledge of public key cryptography in the art as of May 1998, a POSA would

have recognized that the public key would be able to identify a particular base unit

12.

226. When Hellman was modified to use a public key, a POSA would have

recognized that the public key could be stored in the non-volatile memory 37. A

POSA would have recognized that the public key, like any other key disclosed in

Hellman, would need to be stored in non-volatile memory in order to be maintained

when power was lost. Hellman, 9:16-49. Hellman only disclosed two such non-

volatile memories: permanent memory 31 and non-volatile memory 37. Hellman,

8:61-9:15, Figure 6. A POSA would have found it obvious to store the public key

in the non-volatile memory 37 as one of a limited number of design choices, i.e., one

of two options.

227. Additionally, a POSA ould have found it obvious to store the public

key in the non-volatile memory 37 in order to allow that value to change. Hellman

disclosed that the key K was stored in permanent memory 31 because it would not

change. Hellman, 9:16-49. But a POSA would have recognized that it may be

beneficial to change a key periodically, including a public key, such as to prevent a

brute force attack attempting to determine the private key being used by the base

unit 12. A POSA would recognize that, in order for the public key to be able to

change, it would be beneficial to public key in the non-volatile memory 37.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

93

228. A POSA would have further found it obvious to store the public key in

the non-volatile memory 37 because Chou discloses that a public key can be stored

in the BIOS memory. Chou, 4:6-19, Figure 3, Figure 7. And, as discussed above

for claim 1 preamble, a POSA would have found it obvious to use the non-volatile

memory 37 as the BIOS memory.

L. Claim 13: “The method of claim 1, wherein a unique key is stored
in a first non-volatile memory area of the computer.”

229. It is my opinion that Hellman discloses this feature. As discussed above,

Hellman disclosed: the “computer” in the form of base unit 12.

230. Hellman discloses “a first non-volatile memory area” in the form of

permanent memory 31. Hellman discloses that base unit 12 includes a “permanent

memory 31, for example a PROM.” Hellman 8:61-9:15. A POSA would have

recognized that PROM is an acronym for programmable read-only memory, and that

PROM was a non-volatile memory.

231. Hellman discloses a “unique key” in the permanent memory 31 in the

form of key K stored in permanent memory 31. Hellman, 9:29-40. Hellman

discloses that the key K can be the same as the secret key SK. Hellman, 9:29-40.

Hellman discloses that “not two users share the same secret key.” Hellman, 9:41-

45.

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

94

M. Claim 14: “The method according claim 13, wherein the step of
using the agent to set up the verification record, including the
license record, includes encrypting a license record data in the
program using at least the unique key.”

232. It is my opinion that, based on the modification of Hellman to store the

authorization A instead of the plaintext value M (discussed for element 1.b),

Hellman discloses this feature.

233. As discussed above, Hellman disclosed: the “agent” in the form of the

update unit 36 in cooperation with authorization and billing unit 13; a “verification

record, including the license record” in the form of the authorization A, as modified

to Schneck to store authorization A stored at the specific memory location defined

by hash value H in the non-volatile memory 37; the “program” in the form of

software package 17; and the “unique key” in the form of the key K, which can be

the same as the secret key SK.

234. Hellman discloses that the software package 17 includes data used to

form the authorization A. Hellman discloses that the entirety of the software

package 17 is used to generate the hash value H. Hellman, 6:31-61, 9:16-28. The

hash value H is part of the authorization A. Hellman, 6:62-7:2. Hellman discloses

that the authorization A is encrypted using the secret key SK, which can be the same

as the key K. Hellman, 6:62-7:2, 9:29-40. Based at least on these disclosures, a

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

95

POSA would have recognized that Hellman discloses that the “encrypting a license

record data in the program using at least the unique key.”

N. Claim 16: “The method according to claim 13, wherein the step of
verifying the program includes a decrypting the license record data
accommodated in the erasable second non-volatile memory area of
the BIOS using at least the unique key.”

235. It is my opinion that, based on the modification of Hellman to store the

authorization A instead of the plaintext value M (discussed for element 1.b), this

feature would have been an obvious modification of Hellman.

236. As discussed above, Hellman disclosed: the “license-record” in the

form of authorization A, as modified to Schneck to store authorization A in non-

volatile memory 37; an “erasable, non-volatile memory area of the BIOS” in the

form of the non-volatile memory 37, as modified by Chou to store the BIOS routines;

and the “unique key” in the form of the key K. A POSA would have recognized that

the non-volatile memory 37, an “erasable, non-volatile memory area of the BIOS”

could also be an erasable second non-volatile memory area of the BIOS.

237. As discussed above for element 1.c, when Hellman was modified by

the teachings of Schneck to store authorization A in the non-volatile memory 37, a

POSA would have recognized that verification would have been performed using

the authorization A. A POSA would have recognized that one way in which the

verification could be performed would be to decrypt the authorization A using the

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe

In Support of Petition for Inter Partes Review of
U.S. Pat. No. 6,411,941

unique key K for the base unit 12 in order to retrieve the value M included therein.

The value M could then be used as already described in Hellman. Hellman, 10:33-

54. A POSA would have recognized that, because the authorization A was encrypted,

the authorization A would have to be decrypted in order to retrieve the number of

authorized uses value M.

238. I have considered the impact of secondary indicia in forming my

op1mons. I am unaware of any secondary indicia at this time that would impact my

conclusions that these claims are obvious in view of the recited art.

239. I declare under the penalty of perjury that all statements made in

this Declaration are true and correct.

Executed on 8-1- 21'/Z(in (t>, C-<-/01

Andrew Wolfe

96

Nintendo - Ancora Exh. 1003

Declaration of Andrew Wolfe
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 6,411,941

97

Appendix B

B-1 (Ex. 1001 in the Petition) U.S. Patent No. 6,411,941 to Mullor et al. (“’941
Patent”)

B-2 (Ex. 1002 in the Petition) Image File Wrapper of U.S. Patent No. 6,411,941
(“File History”)

B-3 (Ex. 1004 in the Petition) U.S. Patent No. 4,658,093 (“Hellman”)

B-4 (Ex. 1005 in the Petition) U.S. Patent No. 5,892,906 (“Chou”)

B-5 (Ex. 1006 in the Petition) U.S. Patent No. 5,933,498 (“Schneck”)

B-6 European patent Application EP 0766165A2 (“’165 Application”)

B-7 U.S. Patent 5,724,425 (“’425 Patent”)

B-8 U.S. Patent 6,138,236 (“’236 Patent”)

B-9 U.S. Patent 5,802,592 (“’592 Patent”)

B-10 U.S. Patent 5,835,594 (“’594 Patent”)

Nintendo - Ancora Exh. 1003

APPENDIX A

Nintendo - Ancora Exh. 1003

Andrew Wolfe Ph.D.
20 S. Santa Cruz Ave. Suite 101

Los Gatos, CA 95030

(408) 402-5872 (office) (408) 394-1096 (mobile)

Email: awolfe@awolfe.org

Education:

 Ph.D. in Computer Engineering, Carnegie Mellon University, 1992

 Visiting Graduate Student, Center for Reliable Computing, Stanford University, 1988-1989

 M.S. in Electrical and Computer Engineering, Carnegie Mellon University, 1987

 B.S.E.E. in Electrical Engineering and Computer Science, The Johns Hopkins University, 1985

Recent Employment:

Consultant, [October 2002-present]

Wolfe Consulting

Consultant on processor technology, computer systems, consumer electronics, software, design tools, and

intellectual property issues. Testifying and consulting expert for IP and other technology-related litigation

matters.

Sample clients include:

Lecturer, [September 2013-present]

Santa Clara University

Teaching graduate and undergraduate courses on embedded computing, mechatronics and computer

architecture.

Chief Technical Officer, [1999-2002]; Sr. VP of Business Development, [2001-2002]; VP, Systems Integration,

S3 Fellow , [1998 – 1999]; Director of Technology, S3 Fellow , [1997 - 1998]

SONIC|blue, Inc, Santa Clara, CA (formerly S3 Inc.)

Strategic Business Development:

Developed and implemented strategy to reposition S3 from PC graphics into the leading networked consumer

electronics company.

• Acquired Diamond Multimedia and coordinated integration of communications, Rio digital music, and

workstation graphics divisions into S3.

• Identified and negotiated acquisitions to grow digital media businesses including Empeg, ReplayTV, and

Sensory Science.

• Identified and negotiated strategic investments including Comsilica, Intellon, KBGear Interactive, Entridia,

DataPlay and others.

• Developed strategy for integrated graphics/core-logic products and established a joint venture with Via

Technologies to design and market these products.

• Negotiated divestiture of graphics chip business to Via and the workstation graphics division to ATI.

AMD Nvidia Samsung

IBM Motorola HTC

SMIC AMKOR Huawei

Dell Honeywell Western Digital

Nintendo Kingston Sonos

Moneygram Arraycomm Insilica

Synaptics Activision Sawstop

Mysticom P.A.R.C. Quester Ventures

Nintendo - Ancora Exh. 1003

 2

Product Planning and Development:

• Drove roadmap development within SONICblue product divisions.

• Managed Business Development for all product lines.

• Led New Product Development and Corporate Vision processes.

• Acting co-General Manager of Rio digital music business in 2nd half of 2001. Responsible for all areas of

product development, business development, and cost management.

• Managed development of the Savage/MX and Savage/IX mobile 3D graphics accelerators and Savage/NB

system logic products.

Public Relations, Public Policy and Investor Relations:

• Present company products and strategy at industry events such as CES, Comdex, and Microprocessor Forum.

• Discuss new products and initiatives with the press.

• Promote issues of interest to SONICblue to industry groups and in Washington.

• Brief analysts, and investors on company progress. Participate in quarterly conference calls.

IP Management and Licensing:

• Negotiated and managed partnership agreements including a critical cross-licensing agreement with Intel.

• Renegotiated technology-licensing agreements with IBM for workstation graphics products.

• Evaluated outside technology opportunities, managed video research and development, and managed

corporate IP strategy with legal staff including patent filings, cross licensing, and litigation.

Consulting Professor , [1999-2002]

Stanford University, Stanford, CA

Teaching computer architecture and microprocessor design.

Assistant Professor [1991 - 1997]

Princeton University, Princeton, NJ

Teaching and research in the Electrical Engineering department. Research in embedded computing systems,

multimedia, video signal processors, compiler optimization, and high performance computer architecture.

Principal investigator or project manager for ~$6M in funded research.

Visiting Assistant Professor , [1992]

Carnegie Mellon University, Pittsburgh, PA

Research and preparation of teaching materials on advanced microprocessor designs including new superscalar

and superpipelined processor architectures.

Founder and Vice President and Consultant, [1989 - 1995]

The Graphics Technology Company, Inc., Austin, TX

Founded company to develop touch-sensitive components and systems for the first generation of PDA devices

and interactive public systems. Obtained financing from Gunze Corp., Osaka, Japan. Company is now part of

3M.

Senior Electrical Engineer, [1989]

ESL - TRW, Advanced Technology Division, Sunnyvale, CA

Designed the architecture for an Intel i860-based multiple-processor digital signal processing system for

advanced military applications. Designed several FPGA interface chips for VME-bus systems.

Design Consultant, [1986 -1987]

Carroll Touch Division, AMP Inc., Round Rock, TX

Developed several new technologies for touch-screen systems. Designed the first ASIC produced for AMP, a

mixed-signal interface chip for controlling touch-screen sensors. Developed the system electronics, system

firmware, and customer utility software for numerous products including those based on the new ASIC.

Senior Design Engineer, [1983 -1985]

Touch Technology Inc., Annapolis, MD

Nintendo - Ancora Exh. 1003

 3

Advisory Boards:

Director, Turtle Beach Corporation (NASDAQ:HEAR) (formerly Parametric Sound Corporation), KBGear

Interactive, Inc., Comsilica, Inc., Rioport.com, various S3 subsidiaries.

Technical Advisory Boards, Ageia, Inc., Intellon, Inc., Comsilica, Inc., Entridia, Inc., Siroyan, Ltd., BOPS, Inc,

Quester Venture Funds

Carnegie Mellon University Silicon Valley Advisory Board; Johns Hopkins University Tech Transfer Advisory

Board

Awards:

Micro Test-of-Time Award (in recognition of one of the ten most influential papers of the first 25 years of the

symposium), 2014

Business 2.0 “20 Young Executives You Need to Know”, 2002

Walter C. Johnson Prize for Teaching Excellence, 1997.

Princeton University Engineering Council Excellence in Teaching Award, Spring 1996

AT&T/Lucent Foundation Research Award, 1996.

Walter C. Johnson Prize for Teaching Excellence, 1995

IEEE Certificate of Appreciation, 1995, 2001.

AT&T Foundation Research Award, 1993.

Semiconductor Research Corporation Fellow, 1986 - 1991.

Burroughs Corporation Fellowship in Engineering, 1985 - 1986.

Professional Activities:

Program Chair: Micro-24, 1991, Hot Chips 13, 2001.

General Chair: Micro-26, 1993, Micro-33, 2000.

Associate Editor: IEEE Computer Architecture Letters; ACM Transactions in Embedded Computing Systems

Speaker at CES, WinHec, Comdex, Intel Dev. Forum, Digital Media Summit, Microprocessor Forum, etc.

Keynote speaker at Micro-34, ICME 2002

IEEE B. Ramakrishna Rau Award committee – 2012-2016

IEEE Computer Society Awards Committee – 2015

CES Awards Judge – 2016

Entrepreneurship Mentor – Draper University

Over 50 refereed publications.

Publications since January 2006:

Wolfe, A., “Retrospective on Code Compression and a Fresh Approach to Embedded Systems”, IEEE MICRO,

July/Aug. 2016, Invited paper.

Nintendo - Ancora Exh. 1003

 4

Patents:

U.S. Pat. 5,041,701 – Edge Linearization Device for a Contact Input System, Aug. 20, 1991.

U.S. Pat. 5,438,168 – Touch Panel, Aug. 1, 1995.

U.S. Pat. 5,736,688 – Curvilinear Linearization Device for Touch Systems, Apr. 7, 1998.

U.S. Pat. 6,037,930 – Multimodal touch sensitive peripheral device, March 14, 2000.

U.S. Pat. 6,408,421 – High-speed asynchronous decoder circuit for variable-length coded data, June 18,

 2002.

U.S. Pat. 6,865,668 – Variable-length, high-speed, asynchronous decoder circuit, March 8, 2005

U.S. Pat. 7,079,133 – Superscalar 3D Graphics Engine, July 18, 2006

EP 1 661 131 B1 – PORTABLE ENTERTAINMENT APPARATUS, Jan. 21, 2009

U.S. Pat. 7,555,006 – Method and system for adaptive transcoding and transrating in a

 video network, June 30, 2009

U.S. Pat. 7,996,595 – Interrupt Arbitration for Multiprocessors, Aug. 9, 2011

EP 2 241 979 B1 – Interrupt Arbitration for Multiprocessors, Oct. 10, 2011

U.S. Pat. 8,131,970 – Compiler Based Cache Allocation, March 6, 2012

U.S. Pat. 8,180,963 – Hierarchical read-combining local memories, May 15, 2012

U.S. Pat. 8,193,941 – Snoring Treatment, June 5, 2012

U.S. Pat. 8,203,541 – OLED display and sensor, June 19, 2012

U.S. Pat. 8,243,045 – Touch-sensitive display device and method, August 14, 2012

U.S. Pat. 8,244,982 – Allocating processor cores with cache memory associativity, August 14, 2012

U.S. Pat. 8,260,996 – Interrupt Optimization for Multiprocessors, Sept. 4, 2012

101185761 (KR) – Noise Cancellation for Phone Conversation, Sept. 19, 2012

101200740 (KR) – OLED display and sensor, November 7, 2012

101200741 (KR) – Touch-sensitive display device and method, November 7, 2012

U.S. Pat. 8,321,614 – Dynamic scheduling interrupt controller for multiprocessors, Nov. 27, 2012

U.S. Pat. 8,352,679 – Selectively securing data and/or erasing secure data caches responsive to security

 compromising conditions, Jan. 8, 2013

U.S. Pat. 8,355,541 – Texture Sensing, Jan. 15, 2013

U.S. Pat. 8,370,307 – Cloud Data Backup Storage Manager, Feb. 5, 2013

U.S. Pat. 8,398,451 – Tactile Input Interaction, March. 19, 2013

JP 5241032 B2 – Routing Across Multicore Network Using Real World or Modeled Data, April 13, 2013

ZL201010124820.3 – Interrupt Optimization for Multiprocessors, April 17, 2013

U.S. Pat. 8,428,438 – Apparatus for Viewing Television with Pause Capability, April 23, 2013

JP 5266197 B2 – Data Centers Task Mapping, May 10, 2013

U.S. Pat. 8,508,498 – Direction and Force Sensing Input Device, August 13, 2013

U.S. Pat. 8,547,457 – Camera Flash Mitigation, October 1, 2013

U.S. Pat. 8,549,339 – Processor core communication in multi-core processor, October 1, 2013

101319048 (KR) – Camera Flash Mitigation, October 10, 2013

U.S. Pat. 8,628,478 – Microphone for remote health sensing, January 14, 2014

101362017 (KR) – Thread Shift: Allocating Threads to Cores, Feb. 5, 2014

101361928 (KR) – Cache Prefill on Thread Migration, Feb. 5, 2014

101361945 (KR) – Mapping Of Computer Threads onto Heterogeneous Resources, Feb. 5, 2014

JP 5487307 B2 – Mapping Of Computer Threads onto Heterogeneous Resources, Feb. 28, 2014

JP 5484580 B2 – Task Scheduling Based on Financial Impact, Feb. 28, 2014

JP 5487306 B2 – Cache Prefill on Thread Migration, Feb. 28, 2014

101372623 (KR) – Power Management for Processor, March. 4, 2014

101373925 (KR) – Allocating Processor Cores with Cache Memory Associativity, March 6, 2014

U.S. Pat. 8,676,668 – Method for the determination of a time, location, and quantity of goods to be made

available based on mapped population activity, March 18, 2014

U.S. Pat. 8,687,533 – Energy Reservation in Power Limited Networks, April 1, 2014

101388735 (KR) – Routing Across Multicore Networks Using Real World or Modeled Data, April 17, 2014

U.S. Pat. 8,725,697 – Cloud Data Backup Storage, May 13, 2014

U.S. Pat. 8,726,043 – Securing Backing Storage Data Passed Through a Network, May 13, 2014

ZL201010124826.0 – Dynamic scheduling interrupt controller for multiprocessors, May 14, 2014

JP 5547820 B2 – Processor core communication in multi-core processor, May 23, 2014

U.S. Pat. 8,738,949 – Power Management for Processor, May 27, 2014

Nintendo - Ancora Exh. 1003

 5

U.S. Pat. 8,751,854 – Processor Core Clock Rate Selection, June 10, 2014

JP 5559891 B2 – Thermal Management in Multi-Core Processor, June 13, 2014

101414033 (KR) – Dynamic Computation Allocation, June 25, 2014

JP 5571184 B2 – Dynamic Computation Allocation, July 4, 2014

101426341 (KR) – Processor core communication in multi-core processor, May 23, 2014

U.S. Pat. 8,799,671 – Techniques for Detecting Encrypted Data, Aug 5, 2014

101433485 (KR) – Task Scheduling Based on Financial Impact, Aug. 18, 2014

U.S. Pat. 8,824,666 – Noise Cancellation for Phone Conversation, Sept. 2, 2014

U.S. Pat. 8,836,516 – Snoring Treatment, Sept. 16, 2014

U.S. Pat. 8,838,370 – Traffic flow model to provide traffic flow information, Sept. 16, 2014

U.S. Pat. 8,838,797 – Dynamic Computation Allocation, Sept. 16, 2014

U.S. Pat. 8,854,379 – Routing Across Multicore Networks Using Real World or Modeled Data, Oct. 7, 2014

JP 5615361 B2 – Thread Shift: Allocating Threads to Cores, Oct. 15, 2014

U.S. Pat. 8,866,621 – Sudden infant death prevention clothing, Oct. 21, 2014

U.S. Pat. 8,881,157 – Allocating threads to cores based on threads falling behind threads, Nov. 4, 2014

ZL201080024755.5 – Camera Flash Mitigation, Nov 5, 2014

U.S. Pat. 8,882,677 – Microphone for remote health sensing, Nov. 11, 2014

U.S. Pat. 8,924,743 – Securing Data Cache through Encryption, December 30, 2014

U.S. Pat. 8,994,857 – Camera Flash Mitigation, March 31, 2015

JP 5699140 B2 – Camera Flash Mitigation, April 8, 2015

ZL201080035189.8 – Thread Shift: Allocating Threads to Cores, June 10, 2015

ZL201180005030.6 – Processor core communication in multi-core processor, June 10, 2015

U.S. Pat. 9,143,814 – Method and system for adaptive transcoding and transrating in a

 video network, Sept 22, 2015

ZL201080035177.5 – Mapping Of Computer Threads onto Heterogeneous Resources, Oct. 14, 2015

U.S. Pat. 9,178,694 – Securing Backing Storage Data Passed Through a Network, November 3, 2015

U.S. Pat. 9,189,282 – Thread-to-core mapping based on thread deadline, thread demand, and hardware

 characteristics data collected by a performance counter, November 17, 2015

U.S. Pat. 9,189,448 – Routing image data across on-chip networks, November 17, 2015

U.S. Pat. 9,208,093 – Allocation of memory space to individual processor cores, December 8, 2015

U.S. Pat. 9,239,994 – Data Centers Task Mapping, January 19, 2016

ZL201080036611.1 – Allocating Processor Cores with Cache Memory Associativity, January 20, 2016

EP2228779 B1 – Traffic flow model to provide traffic flow information, Jan. 27, 2016

U.S. Pat. 9,262,628 – Operating System Sandbox, February 16, 2016

GB2485682 – Mapping Of Computer Threads onto Heterogeneous Resources, Sept. 28, 2016

U.S. Pat. 9,330,137 – Cloud Data Backup Storage Manager, May. 3, 2016

ZL201080035185.X – Cache Prefill on Thread Migration, Aug. 24, 2016

U.S. Pat. 9,519,305 – Processor Core Clock Rate Selection, December 13, 2016

U.S. Pat. 9,569,270 – Mapping thread phases onto heterogeneous cores based on execution characteristics

and cache line eviction count, February 14, 2017

GB2485683 – Thread Shift: Allocating Threads to Cores, Oct. 18, 2017

U.S. Pat. 9,852,435 – Telemetrics based location and tracking, December 26, 2017.

U.S. Pat. 9,915,994 – Power management for processor, March 13, 2018

U.S. Pat. 9,927,254 – Traffic flow model to provide traffic flow information, March 27, 2018

EP2254048 B1 – Thread Mapping in Multi-Core Processors, August 29, 2018

U.S. Pat. 10,860,432 – Cloud Data Backup Storage Manager, December 8, 2020

Nintendo - Ancora Exh. 1003

 6

Expert testimony by deposition or at trial – April 15, 2016 - -present

Case Venue Case Number

INTELLECTUAL VENTURES II LLC v JP MORGAN

CHASE & CO., et al., Southern District of NY 13 Civ. 3777

Certain Table Saws Incorporating Active Injury

Mitigation Technology and Components Thereof

(Sawstop v Bosch) ITC 337-TA-965

INTER PARTES REVIEW OF U.S. PATENT NO.

RE43,931 (TCL v Ericsson) PTO

IPR2015-01602

IPR2015-01637

IPR2015-01641

IPR2015-01646

IPR2015-01674

IPR2015-01676

IPR2015-01761

IPR2015-01806

T-Mobile, USA, Inc. v. Huawei Device USA, Inc. and

Huawei Technologies Co., Ltd. W. D. Washington 14-cv-1351

AVM Technologies, LLC v. Intel Corporation and

Related Matters District of Delaware 15-33-RGA

TCL v. Ericsson, et al. C.D. California 8:14-cv-341

Sonos Inc. v D&M Holdings Inc. d/b/a the D&M Group;

D&M Holdings U.S. Inc. and Denon Electronics (USA)

LLC. District of Delaware 14-1330-RGA

Waymo v Uber et. al

N. D. CA

3:17-cv-00939

Certain Graphics Systems,Components Thereof and

Consumer Products Containing the Same ITC 337-TA-1044

Intellisoft, Ltd. v Acer

Superior Court of California

for the County of Santa Clara l-14-CV-272381

INTER PARTES REVIEW OF U.S. PATENT NO.

7,987,294 (D&M Holdings v Sonos) PTO IPR2017-01045

Joe Andrew Salazar v HTC Corporation E.D. Texas

2:16-cv-010986-

JRG-RSP

Hitachi Maxell, Ltd. v. ZTE Corporation and ZTE

(USA), Inc. E.D. Texas

5:16-cv-00179

5:16-cv-00178

D&M Holdings Inc. d/b/a the D&M Group; D&M

Holdings U.S. Inc. v. Sonos Inc. District of Delaware 16-00141-RGA

INTER PARTES REVIEW OF U.S. PATENT NO.

7,663,506 (Mediatek v AMD) PTAB

IPR2017-00101

IPR2017-00102

Papst Licensing GmbH & Co. KG v. Samsung

Electronics Co.,Ltd. and Samsung Electronics America,

Inc. E.D. Texas 6:15-CV-1102

HTC Corporation v. Telefonaktiebolaget LM Ericsson E.D. Texas 6: 18-cv-00243-JRG

Seven Networks, LLC v ZTE (USA) Inc and ZTE

Corporation N. D. Texas - Dallas 3:17-CV-1495

AGIS Software Development, LLC v. HTC Corporation E. D. Texas 2:17-cv-514

Barbaro Technologies, LLC v. Niantic, Inc N.D. CA 3:18-cv-02955-RS

Immersion Corp. v. Samsung Electronics America, Inc.

et al

E.D. Texas 2:17-cv-00572

INTER PARTES REVIEW OF U.S. PATENT NO.

7,171,526 (Northstar Innovations – Micron)

PTAB IPR2018-01004

IPR2018-01005

Nintendo - Ancora Exh. 1003

 7

CISCO SYSTEMS, INC.,

vs.

UNILOC USA, INC., UNILOC 2017 LLC

and UNILOC LICENSING USA LLC

N.D. CA 3:18-cv-04991-SI

INTER PARTES REVIEW OF U.S. PATENT NO.

8,020,014 (Intel/VLSI)

PTAB IPR2018-01661

IPR2018-01312

INTER PARTES REVIEW OF U.S. PATENT NO

Patent 9,294,799 (Comcast/Rovi)

PTAB IPR2019-00299

Inter Partes Review of U.S. Patent No 7720929 (Unified

Patents v Datascape)

PTAB IPR2019-01115

Solas OLED Ltd,, v. Samsung Display Co,, Ltd,,

Samsung Electronics Co, Ltd,, and Samsung Electronics

America, Inc,,

PTAB IPR2019-01668

INTER PARTES REVIEW OF U.S. PATENT NO

Patent 8,973,069 (Comcast/Rovi)

PTAB IPR2019-01434

U.S. Patent No. 8,448,215 IPR (Comcast v Rovi) PTAB IPR2019-01353

U.S. PATENT NO. 8,847,898 IPR filing (Samsung v

Neodron)

PTAB IPR2020-00234

U.S. PATENT NO. 8,610,009 IPR filing (Samsung v

Neodron)

PTAB IPR2020-00225

U.S. PATENT NO. 10,365,747 IPR filing (Samsung v

Neodron)

PTAB IPR2020-00308

AGIS Software Development LLC v. Google LLC,

AGIS Software Development LLC v. WAZE Mobile

Limited,and AGIS Software Development LLC v.

Samsung Elecs. Co., Ltd. et al

E.D. Texas 2:19-cv-00361-JRG

2:19-cv-00359-JRG

2:19-cv-00362-JRG

Inter Partes Review of U.S. Patent No 8,112,670 (Sony) PTAB IPR2020-00726

U.S. Patent 8,819,505 IPR (Intel v PACT) PTAB IPR2020-00525

Inter Partes Review of U.S. Patent No 8,078,540 (Sony) PTAB IPR2020-00922

Inter Partes Review of U.S. Patent No 9,037,807 (Intel v

PACT)

PTAB IPR2020-00540

HONG KONG UCLOUDLINK NETWORK

TECHNOLOGY LIMITED AND UCLOUDLINK

(AMERICA), LTD., vs. SIMO HOLDINGS INC. AND

SKYROAM, INC.,

N.D. CA 3:18-cv-05031-EMC

Nintendo - Ancora Exh. 1003

APPENDIX B-6

Nintendo - Ancora Exh. 1003

(19) J

(12)

(43) Date of publication:
02.04.1997 Bulletin 1997/14

(21) Application number: 96111086.3

(22) Date of filing : 1 0.07.1 996

Europaisches Patentamt | | | | | 1 1| | | | | | | | | | | | | | | | | || 1 1|
European Patent Office

Office europeen des brevets (11) E P 0 7 6 6 1 6 5 A 2

EUROPEAN PATENT A P P L I C A T I O N

ation : (51) Int. CI 6 : G06 F 1 / 00

(84) Designated Contracting States:
DE FR GB

(30) Priority: 31.08.1995 J P 224338/95

(71) Applicant: FUJITSU LIMITED
Kawasaki-shi, Kanagawa 211 (JP)

(72) Inventors:
• Hasebe, Takayuki,

c/o Fujitsu Limited
Kawasaki-shi, Kanagawa 211 (JP)

• Torii, Naoya,
c/o Fujitsu Limited
Kawasaki-shi, Kanagawa 211 (JP)

(74) Representative: Seeger, Wolfgang, Dipl.-Phys.
Georg-Hager-Strasse 40
81369 Munchen (DE)

CM
<
LO
CO

CO
CO

o
Q_
LU

(54) Licensee notification system

(57) There is disclosed a licensee notification sys-
tem for implementing a software sales system wherein
license information for converting to executable form
software that is presented to a user in non-executable
form is communicated to the user from a management
center on condition of payment of a charge, and the
software is converted into executable form at the user
terminal using this license information. The subject of
the licensee notification system is software that decides
whether or not the correspondence relationship
between user identification information and signature
information stored in the license file is legitimate, and, if
it is legitimate, displays the user identification informa-
tion to the user before starting proper operation; or, if it
is not legitimate, does not start proper operation. The
licensee notification system is constituted by connecting
the management center and user terminals by commu-
nication circuits. If license information is requested from
the user terminal, the management center transmits
license information combining in integral form the user
identification information identifying the user and con-
version information for converting the software to exe-
cutable form. The user terminal enables the software
using the conversion information contained in this
license information and writes user identification infor-
mation and signature information whose content is
determined in accordance with the content of the user
identification information to a license file that is referred
to when this software is operating.

F I G . 6

c START 3

N G

O K
X L S1 03

DISPLAY USER NAME

X L SI 04

EXECUTE MAIN PROGRAM

c END 3

Printed by Rank Xerox (UK) Business Services
2.14.0/3.4

Nintendo - Ancora Exh. 1003

1 EP 0 766 165 A2 2

Description

BACKGROUND OF THE INVENTION

1 .Field of the Invention 5

The present invention relates to a licensee notifica-
tion system employed for the sale of software using a
high speed communication network such as B-ISDN
and a large-capacity storage medium such as a CD- w
ROM.

2. Description of the Related Art

With the development of high speed communica- is
tion technology such as B-ISDN (broad-band integrated
services digital network) and high-capacity storage
media such as CD-ROMs (compact disk read only
memory) such means can now be used to distribute
computer programs or video data or audio data. For 20
example, video works which were previously supplied
on video tape are now being sold stored on CD-ROM.
Also, game programs etc, which contain a large amount
of picture data, are being sold stored on CD-ROM. The
same applies to high speed communication networks, in 25
which the software supplier can now distribute the soft-
ware by various methods.

One of these methods of software sales is the so-
called "locked software" sales system. In the locked
software sales system, a CD ROM on which are stored 30
a large number of software items whose functions are
restricted is sold cheaply. By using the various items of
software of software on the CD-ROM that is purchased,
in a condition with the functional restrictions imposed,
the end user is able to make a decision as to whether or 35
not he needs each software item. Then, if the end user
does require the software, he obtains (purchases) a
restriction-removal code corresponding to this software
from a management center operated by the software
distributor, and is able to use this restriction-removal 40
code to remove the functional restrictions on the soft-
ware.

Such a sales system may be implemented, as a
specific example, using the software sales system
shown in Fig. 10. As shown in this Figure, this software 45
sales system comprises user terminals 31 and manage-
ment center 32. The user terminal 31 and the manage-
ment center 32 are connected by means of a
communication circuit.

When actually purchasing the software (i.e. when so
purchasing a restriction-removal code), the end user,
using a user ID etc, sets up a communication path with
the management center and executes the prescribed
procedure required to request that a restriction-removal
code be sent to the user terminal 31. This procedure 55
includes the input of a "contents ID", which is informa-
tion for identifying the software item that is to be pur-
chased actually. In response to the execution of such a
procedure, the user terminal 31 sends to the manage-

ment center 32 the contents ID and for example the
characteristic information of the user, consisting of the
ID of the CPU provided in user terminal 31 .

Within the management center 32, there is pro-
vided a software database (software DB) in which soft-
ware decoding keys employed for encoding the various
software items are stored in association with the con-
tents ID. When a contents ID is received from user ter-
minal 31, the software decoding key corresponding to
the contents ID is read from software database 33. Also,
encoding unit 34 in management center 32 generates a
user individual key by encoding the user characteristic
information from user terminal 31 by the key "Ks".
Encoding unit 35 sends the results of the encoding of
the software decoding key from software database 33 to
user terminal 31 as restriction-removal code, using the
user individual key from encoding unit 34.

Encoding unit 36 in user terminal 31 generates a
user individual key by encoding the user characteristic
information with the key "Ks". Decoding unit 37 uses the
user individual key generated by encoding unit 36 to
decode the restriction removal code from management
center 32, thereby generating the software decoding
key. Installation unit 38 then uses this software decod-
ing key to decode the software in CD-ROM correspond-
ing to the contents ID sent to center terminal 32: thus
the software is put in a condition where it can be used
with the functional restrictions removed, and, in this
form, is installed on to a storage device such as a hard
disk device.

With such a software sales system, it is possible to
determine the software item to be purchased after actu-
ally ascertaining its contents: thus, the possibility that
the purchased software might be completely different
from that intended, as could happen if the purchase
were made solely on the basis of the details contained
in a catalogue, can be completely eliminated. Also,
since the software on the CD ROM is stored in a form
which is not executable without knowing special infor-
mation, illicit installation can be prevented.

However, once the software has been installed, it is
an extremely easy operation to copy this. Thus, the
problem has arisen of unscrupulous persons copying
the software without the consent of the software sup-
plier. Various methods (so-called protection methods) of
preventing such illicit copying are known but there is no
way to prevent illicit copying by a person possessing
knowledge at the level of the BIOS (basic input/output
system). Whichever method is used, it can do no more
than make it more difficult to perform illicit copying.

For this reason, software is sold in which the name
of the authorized user is displayed on start-up, with the
object of preventing illicit copying psychologically rather
than physically. That is, the aim is to prevent illicit copy-
ing of software by displaying the name of the authorized
user of the software when the illicitly copied software is
executed.

However, even with such software, if the copying is
inclusive of the installation software that sets the user

2

Nintendo - Ancora Exh. 1003

3 EP 0 766 165 A2 4

name, when the software is run, it can be made to dis-
play the name of the person who made the illicit copy:
thus, sufficient effectiveness in preventing illicit copying
was not obtained.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a
licensee notification system whose psychological effec-
tiveness in preventing illicit copying is very high.

A first licensee notification system according to the
present invention consists in a system for implementing
a software sales system in which software in non-exe-
cutable form is presented to a user, and license informa-
tion for converting the software into executable form is
informed to the user on condition of payment of a
charge, and the software is converted into executable
form using this license information.

The first licensee notification system is constituted
of a management center and user terminals; its subject
is software which includes instructions that command a
terminal to read user identification information in a
license file and to notify the user identification informa-
tion to the user on commencement of its operation.

The management center comprises a license infor-
mation generating unit that generates license informa-
tion combining in integrated form user identification
information that specifies a user and conversion infor-
mation for converting software to executable form.

The user terminal comprises a storage unit, a con-
version unit, and license file creating unit. In more detail,
the storage unit is employed for storing the license file
and software converted to executable form. The license
information, which is generated by the license informa-
tion generating unit in the management center, is given
to the conversion unit. The conversion unit then con-
verts the software to executable form using the license
information and installs it in the storage unit. The license
file creating unit creates the license file which contains
the user identification information contained in the
license information, and stores the license file in the
storage unit.

That is, in the first licensee notification system, soft-
ware is installed in the user terminal so that the user
identification information of the legitimate user is noti-
fied to the user on its start-up, using the license informa-
tion which is generated in the management center and
contains the user identification information.

A second licensee notification system according to
the present invention is constituted of a management
center and user terminal; its subject is software which
includes instructions that commands the user terminal
to read user identification information in the prescribed
location in the software and to notify the user identifica-
tion information to the user on commencement of its
operation.

The management center comprises a license infor-
mation generating unit that generates license informa-
tion combining in integrated form user identification

information identifying a user and conversion informa-
tion for converting software into executable form.

The user terminal comprises a storage unit, a con-
version unit and a software rewriting unit. Of these, the

5 storage unit is employed for storing the software after
this has been converted to executable form. The con-
version unit converts the software to executable condi-
tion using the license information generated by the
license information generating unit in the management

10 center, and then installs it in the storage unit. The soft-
ware rewriting unit rewrites the information of the pre-
scribed location of the software that has been installed
by the conversion unit with the user identification infor-
mation contained in the license information.

15 That is, in this second licensee notification system,
installation is performed with the content of the software
rewritten such that the user identification information of
the legitimate user is notified on start-up, using the
license information which is generated in the manage-

20 ment center and contains the user identification infor-
mation.

The third licensee notification system according to
the present invention has as its subject software that, on
commencement of operation, includes instructions

25 commanding the user terminal to read user identifica-
tion information in a license file and to notify the user
identification information to the user.

The management center in the third licensee notifi-
cation system comprises a license information generat-

30 ing unit that generates license information consisting of
an integral combination of conversion information for
converting the software to executable form and user
identification information identifying a user.

The user terminal comprises a storage unit for stor-
35 ing a license file, a license file creating unit, and a soft-

ware execution unit. The license file creating unit
creates the license file containing the license informa-
tion generated by the license information generating
unit, and stores the license file in the storing unit. The

40 software execution unit, when execution of the software
is designated, converts the software to executable form
using the license information stored in the license file
and expands it into memory, and commences operation
in accordance with the expanded software.

45 That is, in the third licensee notification system, the
software, which is presented to the user in non-execut-
able form, is converted to executable form in accord-
ance with the license information containing the user
identification information every time execution is desig-

50 nated.
The fourth licensee notification system according to

this invention is constituted of management center and
user terminal. The subject of the system is software
which judges the legitimacy of user identification infor-

55 mation on the basis of signature information stored in a
license file on commencement of operation and, if the
user identification information is legitimate, commences
proper operation after notifying this user identification
information to the user, and, if the user identification

3

Nintendo - Ancora Exh. 1003

5 EP 0 766

information is not legitimate, terminates operation.
The management center comprises a license infor-

mation generating unit that generates license informa-
tion combining in integral form the user identification
information identifying the user and signature informa- s
tion whose content is determined in accordance with
the user identification information.

The user terminal comprises a storage unit for stor-
ing the license file and a license file creating unit that
creates the license file containing the user identification w
information contained in the license information gener-
ated by the license information generating unit and
stores the license file in the storage unit.

That is, in the fourth licensee notification system,
the license information which is necessary for running is
the software normally is generated on the basis of the
user identification information in the management
center and is informed to the user terminal.

It may be noted that although in the first to the
fourth licensee notification system any means could be 20
employed for notification of the license information, if
notification of license information is performed using a
communication circuit, a system that is simple to oper-
ate can be formed.

Also, it is possible to employ information including 25
the name of the user as user identification information.
It is also possible to employ a unit that generates license
information including user identification information
encoded with a characteristic key of the software. In this
case, software is presented to user which including 30
instructions that command the user terminal to notify to
the user the result of decoding the user identification
information using the characteristic key.

In the first to the third licensee notification systems,
it is also possible to make the software that is presented 35
to the user encoded, and to make the conversion infor-
mation for decoding the encoded software. Also, it is
possible to employ, in such a licensee notification sys-
tem, license information containing the user identifica-
tion information in a form that cannot be separated 40
without special information. For example, it is possible
to employ information, as license information, which is
the result of encoding the conversion information and
user identification information, combined in integrated
manner. 45

Also, it is possible to make the first to third licensee
notification system a system whose subject is software
that, if the signature information stored in the license file
does not correspond to the user identification informa-
tion, terminates operation, and, as the license file creat- so
ing unit, to employ a unit that generates signature
information whose content is determined in accordance
with the content of the user identification information,
and creates the license file containing the signature
information. In this case, it can be made more difficult to ss
alter the user identification information that is notified to
the user on start-up of the software. Also, in the case of
such software, it is possible to employ as license infor-
mation generating unit a unit that generates license

55 A2 6

information containing signature information whose
contents are determined in accordance with the con-
tents of the user identification information, and, as
license file creating unit, to employ a unit that creates
the license file containing signature information con-
tained in the license information.

Also, it is possible to make the second licensee
notification system a system whose subject is software
that, if signature information stored in the second prede-
termined location does not correspond to user identifi-
cation information stored in a prescribed location,
terminates its operation, and, as software rewriting unit,
to employ a unit that rewrites the information of the pre-
scribed location of the software with the user identifica-
tion information contained in the license information and
that rewrites the information at the second prescribed
location of the software with signature information
whose content is determined in accordance with the
user identification information. Also, in the case of such
software, it is possible to employ as license information
generating unit a unit that generates license information
containing signature information whose content is
determined in accordance with the content of the user
identification information, and, as software rewriting
unit, to employ a unit that rewrites information of the
prescribed location with user identification information
contained in the license information and that rewrites
the information at the second prescribed location in the
software by signature information contained in the
license information.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a functional block diagram illustrating the
layout of a licensee notification system according to
a first embodiment of the present invention;
Fig. 2 is a diagram given in explanation of the con-
tent of the user database provided in the manage-
ment center comprised in the licensee notification
system according to the first embodiment;
Fig. 3 is a diagram illustrating the content of the
software database provided in the management
center comprised in the licensee notification sys-
tem according to the first embodiment;
Fig. 4 is a diagram illustrating the content of a
license file provided in a user terminal comprised in
the licensee notification system according to the
first embodiment;
Fig. 5 is a diagram illustrating the structure of soft-
ware that is the subject of the licensee notification
system according to the first embodiment;
Fig. 6 is a flow chart illustrating the operating
sequence of software that is the subject of the licen-
see notification system according to the first
embodiment;
Fig. 7 is a function block diagram illustrating the
organization of a user terminal employed in the
licensee notification system according to a second
embodiment;

EP 0 766 165 A2

4

Nintendo - Ancora Exh. 1003

7 EP 0 766 165 A2 8

Fig. 8 is a diagram illustrating the structure of soft-
ware that is the subject of the licensee notification
system according to the second embodiment;
Fig. 9 is a flow chart showing the operating
sequence of software that is the subject of the licen- s
see notification system according to the second
embodiment; and
Fig. 10 is a functional block diagram showing the
structure of the licensee notification system used in
a prior art locked software sales system. w

DESCRIPTION OF THE PREFERRED EMBODI-
MENTS

The present invention is described in detail below is
with reference to the drawings.

First embodiment

Fig. 1 is a functional block diagram of a licensee 20
notification system according to a first embodiment of
the present invention. This licensee notification system
is a system where CD-ROMs storing a large number of
software items of restricted function are sold cheaply,
and software sales are effected by selling the informa- 25
tion needed to cancel the function restrictions of the
software in this CD-ROM. Payment of the fee could be
effected by for example notification of the subscriber
number of a cash card or notification of a bank account
withdrawal number or the like. 30

As shown in the drawings, the licensee notification
system is constituted by user terminals 1 1 and manage-
ment center 1 2 connected by means of a communica-
tion circuit. User terminals 1 1 and management center
12 may be described as computers and commence 35
operation as an ensemble of the function blocks illus-
trated when prescribed programs are run.

First of all, the operation of management center 12
will be described.

Management center 12 is provided with two data- 40
bases, called user database (user DB) 13 and software
database (software DB) 14. As shown in Fig. 2, user DB
1 3 stores the correspondence relationship between the
user ID, which is identification information given to users
of this system by the manager, and the user name, 45
which is the identification information of the user as
employed in ordinary society. As shown in Fig. 3, soft-
ware DB 14 stores the correspondence relationship
between the contents ID, which is the identification infor-
mation of each software item supplied and stored in the so
CD ROM, and the software decoding key, which is the
decoding information needed to decode this software
item.

A link-up unit 15 in management center 12 gener-
ates license information by combining the two data 55
items: user name and software decoding key. An encod-
ing unit 16 generates a user's individual key by encod-
ing with key "Ks" the user characteristic information
(details to be explained later) from user terminal 1 1 . An

encoding unit 17 generates coded license information
by encoding the license information from link-up unit 15
using the user's individual key generated by encoding
unit 16. In the present licensee notification system, a
DES (data encryption standard) algorithm is employed
for encoding and decoding.

The various function blocks that are not in manage-
ment center 1 2 are arranged to operate synchronously
when there is a request from user terminal 1 1 for infor-
mation for removal of the function restrictions. Specifi-
cally, when management center 12 receives a request
for information for removal of function restrictions relat-
ing to a software item from user terminal 1 1 , it transmits
to user terminal 1 1 coded license information containing
the user's name and the software decoding key needed
to remove the functional restrictions on the software
item.

Next, the operation of user terminal 11 will be
described. When user terminal 1 1 runs the programs for
communication and installation, it executes the opera-
tion described below.

A request transmission unit 18 in user terminal 11
transmits to management center 12 information includ-
ing the user ID, contents ID, and user's characteristic
information. Request transmission unit 18 commences
operation when the keyboard (not shown) of user termi-
nal 1 1 is operated in accordance with a prescribed pro-
cedure that is predetermined as the procedure for
request of information for removal of functional restric-
tions. This request procedure includes keyboard input of
the user ID and contents ID; request transmission unit
18 transmits to management center 12 the keyboard
input information and the user's characteristic informa-
tion, which is constituted by the ID of the CPU which is
employed in user terminal 1 1 .

As already explained, when a request for informa-
tion for removal of functional restrictions is received
from user terminal 1 1 , management center 12 sends to
user terminal 11 encoded license information. As a
result, after request transmission unit 1 8 has been oper-
ated, user terminal 1 1 receives encoded license infor-
mation from management center 12.

As shown in the drawings, the encoded license
information is input to decoding unit 20 in user terminal
11. Decoding unit 20 also inputs the user's individual
key, which is generated by encoding unit 19 using the
user's characteristic information and "Ks". Using this
user's individual key, decoding unit 20 decodes the
encoded license information from center terminal 12.
The license information, which is the result of this
decoding, is input to separating unit 21, which is a unit
that performs reverse processing against link-up unit 15
in management center 12. Separating unit 21 separates
and extracts the software decoding key and user name
from the license information, and respectively supplies
the extracted software decoding key and user name to
installation unit 22 and license file compilation unit 23.

Installation unit 22, using the software decoding key
from separating unit 21, removes the functional restric-

5

Nintendo - Ancora Exh. 1003

9 EP 0 766 165 A2 10

tions on the specific software item (details to be
described later) in accordance with the contents ID
transmitted by request transmission unit 18. License file
compilation unit 23 compiles a license file 24 using the
user name and contents ID from separating unit 21 .

Fig. 4 shows diagrammatically the contents of
license file 24. As shown in the drawing, license file 24
stores information consisting of contents ID and user
name, and signature information, which is information
encoded using a signature key.

Further detailed description of the operation of
installation unit 22 and the operation of the software
installed by installation unit 22 is given below using Fig.
5 and Fig. 6. Of these Figures, Fig. 5 is a view showing
diagrammatically the structure of software that is the
subject of the present licensee notification system and
Fig. 6 is a flow chart showing the operating sequence of
the CPU in the user terminal when the software that is
the subject of the present licensee notification system is
actuated.

As shown in Fig. 5, the software that is the subject
of the present system includes a license display routine
25 and main program 26. In the main program there are
defined the operating procedures relating to the proper
functions of this software; in license display routine 25,
there is defined the content to be executed prior to exe-
cution of main program 26.

When this software is actuated, as shown in Fig. 6,
the CPU, first of all, by checking the contents ID in the
license file, decides whether or not data corresponding
to the software that is being actuated is present in the
license file (step S101). Then, if the corresponding data
exists (step S101:Y), the CPU performs a check of the
legitimacy of the corresponding data (step 102). In this
step, the CPU encodes the information consisting of
contents ID and user name stored in the license file
using the signature key that is set as data in license dis-
play routine 25, and if the result of this encoding agrees
with the signature information, decides that the data is
legitimate.

If it is legitimate (step S102:OK), the CPU displays
the user name which is read from the license file (step
S103), and commences operation in accordance with
the main program (step S104).

Also, if the corresponding data is not present in the
license file (step S101 :N) or if the content of the license
file is found to be not legitimate (step S102:NG), i.e. if
the content of the license file is found to be different
from the result of the compilation performed by license
file compilation unit 23, the CPU terminates operation
without displaying the user name or executing the main
program.

As described above, with the licensee notification
system according to the first embodiment, in the user
terminal, installation of the software is performed such
that the user name is displayed on start-up, using the
encoded license information supplied from the manage-
ment center. Also, the installed software is executed
only when the legitimacy of the license file is verified. As

a result, with this licensee notification system, even if
the software and license file are copied illicitly after
being installed, it is difficult to change the user name
appearing on start-up of the software. The person who

5 has made the illicit copy has no alternative but to use
the software with the name of another person being dis-
played. As a result, illicit copying of the software can be
prevented if the present licensee notification system is
employed.

10 It should be noted that the licensee notification sys-
tem of the first embodiment could be modified in various
ways.

It would for example be possible to constitute the
system such that notification of the contents ID etc to

15 the management center and notification of the encoded
license information to the user terminal were performed
by another information transmission unit, such as the
post. In this case, the user terminal is constituted such
that installation is effected using encoded license infor-

20 mation input from the keyboard. It is also possible to
constitute the system such that the license information
is notified in un-encoded form.

It is also possible to arrange that the signature infor-
mation is generated at the management center end,

25 and encoded license information containing this signa-
ture information is notified to the user terminal.

It is also possible to constitute the system such that,
instead of the user name and signature information,
information representing the user name in encoded

30 form is stored in the license file, and, when the installed
software is executed, the information in the license file is
decoded by the software and displayed.

It would also be possible to arrange that the soft-
ware was converted into executable condition not on

35 installation of the software but rather every time execu-
tion of the software was specified, the software then
being expanded in the memory and operation com-
menced in accordance with the software now in the
memory.

40 Also, the medium whereby the software is supplied
is not restricted to CD-ROM; a supply mode could be
adopted in which the software was stored on another
recording medium such as a floppy disk, or downloaded
through a communication circuit.

45
Second embodiment

A licensee notification system according to a sec-
ond embodiment of the present invention is described

so below with reference to Fig. 7 and Fig. 9. Of these Fig-
ures, Fig. 7 is a functional block diagram illustrating the
layout of a user terminal wherein a licensee notification
system according to the second embodiment is pro-
vided. Fig. 8 is a diagram illustrating the structure of

55 software that is the subject of this licensee notification
system. Fig. 9 is a flow chart showing the operating pro-
cedure of the CPU when the software that is the subject
of the present licensee notification system is executed.

In the licensee notification system according to the

6

Nintendo - Ancora Exh. 1003

11 EP 0 766 165 A2 12

second embodiment, a management center of the same
construction as management center 12 in the first
embodiment is employed. Also, as can be seen from the
functional block diagram shown in Fig. 7, the difference
of the action of the user terminal 1 1 is slight, so the
description will be confined to the parts of which the
details of operation differ with respect to the licensee
notification system of the first embodiment.

As shown in Fig. 7, in user terminal 1 1 according to
the second embodiment, the software decoding key and
user name that are separated by separating unit 21 are
both input to the installation unit 29. Installation unit 29
effects installation by decoding the software in the CD
ROM using the software decoding key, and generates
the user name in encoded form by encoding the user
name. Thus, installation unit 29, as shown diagrammat-
ically in Fig. 8, writes the encoded user name 28 that is
thus generated in a prescribed location of license dis-
play routine 26.

As shown in Fig. 9, when the software that is the
subject of the licensee notification system of the second
embodiment is started up, the encoded user name that
was written in the prescribed location in license display
routine 25 is read and decoded (step S201). Then, after
display of the decoded user name has been performed
(step S202), main program 27 is executed (step S203).

That is, with this licensee notification system, the
user name that is displayed on start-up of the software
is set by directly rewriting the content of the software.

Even with the licensee notification system of this
second embodiment, enabling of the software such that
the user's name is displayed on start-up is effected
independently of keyboard input from the user terminal,
so it is not possible to alter the user name that is dis-
played by the software simply by making an illicit copy of
the installation software. Also, the installed software is
executed only when the legitimacy of the license file has
been verified. Consequently, with this licensee notifica-
tion system, even if the installed software is illicitly cop-
ied, it is difficult to alter the user name that is displayed
on start-up, so the person who has made the illicit copy
has no alternative but to use the software with another
person's name displayed. Thus, use of this licensee
notification system can psychologically prevent illicit
copying.

It should be noted that with this licensee notification
system according to the second embodiment, various
modifications are possible just as in the case of the
licensee notification system according to the first
embodiment.

For example, it would be possible to constitute a
system such that the notification of the contents ID etc
to the management center and the notification of the
encoded license information to the user terminal were
performed by another information transmission unit
such as the post. And it is also possible to constitute a
system such that license information is notified in unen-
coded form.

Also, it is possible to constitute a system such that

the software in question is made software wherein oper-
ation is stopped if signature information stored in a sec-
ond prescribed location of the software does not
correspond to user identification information stored in a

5 first prescribed location and to arrange that the installa-
tion unit 29 writes the user name to the first prescribed
location in the software and writes the signature infor-
mation, consisting of this user name in encoded form, to
the second prescribed location.

10
Claims

1 . A licensee notification system for use in a software
sales system in which software in non-executable

15 form is presented to a user, and license information
for converting the software into executable form is
informed to the user on condition of payment of a
charge, said licensee notification system compris-
ing:

20
a management center including
license information generating means for gen-
erating license information combining in inte-
grated form conversion information for

25 converting software to executable form and
user identification information specifying the
user; and
a user terminal including
storage means,

30 conversion means for converting the software
in non-executable form into executable form
using the license information generated by said
license information generating means and
installing the software in executable form into

35 said storage means, and
license file creating means for creating a
license file containing the user identification
information contained in the license information
generated by said license information generat-

40 ing means, and for storing the license file in
said storage means; and

wherein the software includes instruc-
tions that command the user terminal to read
user identification information in the license file

45 and to notify the user identification information
to the user on commencement of its operation.

2. A licensee notification system for use in a software
sales system in which software in non-executable

so form is presented to a user, and license information
for converting the software in non-executable form
to executable form is informed to the user on condi-
tion of payment of a charge, said licensee notifica-
tion system comprising:

55
a management center including
license information generating means for gen-
erating license information combining in inte-
grated form the conversion information for

7

Nintendo - Ancora Exh. 1003

13 EP0 766

converting software to executable form and
user identification information specifying the
user; and
a user terminal including
storage means, s
conversion means that converts the software in
non-executable form into executable form using
the license information generated by said
license information generating means and
installing the software in executable form in 10
said storage means, and
software rewriting means for rewriting the infor-
mation in a prescribed location of the software
installed by said conversion means with the
user identification information contained in the is
license information generated by said license
information generating means; and

wherein the software includes instruc-
tions that commands the user terminal to read
user identification information in the prescribed 20
location in the software and to notify the user
identification information to the user on com-
mencement of its operation.

3. A licensee notification system for use in a software 25
sales system in which software in non-executable
form is presented to a user, and license information
for converting the software in non-executable form
to executable form is informed to the user on condi-
tion of payment of a charge, said licensee notifica- 30
tion system comprising:

a management center including
license information generating means for gen-
erating license information combining in inte- 35
grated form conversion information for
converting software to executable form and
user identification information specifying the
user; and
a user terminal including 40
storage means;
license file creating means for creating a
license file containing the user identification
information contained in the license information
generated by said license information generat- 45
ing means, and for storing the license file in
said storing means, and
software execution means for converting, when
execution of the software is designated, the
software into executable form using the license so
information in the license file and expanding
the software in executable form into memory
and executing operation in accordance with the
software in the memory; and

wherein the software includes instruc- ss
tions that commands the user terminal to read
user identification information in the license file
and to notify the user identification information
to a user on commencement of its operation.

B5A2 14

4. A licensee notification system for use in a software
sales system in which software that refers to license
information is presented to a user, and the license
information in respect of software is informed to the
user on condition of payment of a charger said
licensee notification system comprising:

a management center including
license information generating means for gen-
erating license information combining in inte-
grated form user identification information
specifying the user and signature information
whose content is determined in accordance
with the user identification information; and
a user terminal including
storage means, and
license file creating means for creating the
license file containing the license information
generated by the license information generat-
ing means and storing the license file in the
storage means, and

wherein the software includes instruc-
tions that command the user terminal to judge
the legitimacy of the user identification informa-
tion in the license file using the signature infor-
mation in the license file on commencement of
its operation and, if the user identification infor-
mation is legitimate, to commence proper oper-
ation after notifying the user identification
information to the user, but, if the user identifi-
cation information is not legitimate, to stop the
operation.

5. A licensee notification system according to claim 1 ,
2, 3 or 4, wherein the software includes instructions
that command the user terminal to display the user
identification information on a display of the user
terminal.

6. A licensee notification system according to claim 1 ,
2, 3, or 4, wherein the user terminal further com-
prises:

transmitting means for transmitting a request
signal which requests license information to the
management center through a communication
circuit; and
said license information generating means in
the management center, when the request sig-
nal is received from the user terminal, gener-
ates license information and transmits the
license information to the user terminal through
the communication circuit.

7. A licensee notification system according to claim 1 ,
2, 3 or 4, wherein the user identification information
includes the name of the user.

8. A licensee notification system according to claim 1 ,

EP 0 766 165 A2

8

Nintendo - Ancora Exh. 1003

15 EP 0 766 165 A2 16

2, 3 or 4, wherein the license information generat-
ing means generates license information including
user identification information encoded with a char-
acteristic key of the software; and

5
the software includes instructions that com-
mand the user terminal to inform to the user the
result of decoding the user identification infor-
mation using the characteristic key.

10
9. A licensee notification system according to claim 1 ,

2, or 3, wherein the software is presented to the
user in encoded form, and the conversion informa-
tion is information for decoding the software.

15
10. A licensee notification system according to claim 1 ,

2, or 3, wherein the license information contains the
user identification information in a form that is inca-
pable of being separated without special informa-
tion. 20

1 1 . A licensee notification system according to claim 1 ,
2, or 3, wherein the license information is the result
of encoding the conversion information and user
identification information, combined in integrated 25
manner.

1 2. A licensee notification system according to claim 1
or claim 3, wherein the license file creating means
creates the license file containing signature infor- 30
mation whose content is determined in accordance
with the content of the user identification informa-
tion; and

the software includes instructions that com-
mands the user terminal to terminate operation if 35
the signature information in the license file does not
correspond to the user identification information in
the license file.

1 3. A licensee notification system according to claim 1 40
or claim 3, wherein said license information gener-
ating means generates license information contain-
ing signature information whose content is
determined in accordance with the content of the
user identification information; 45

said license file creating means creates the
license file containing the signature information
contained in the license information generated
by said license information generating means; so
and
the software includes instructions that com-
mand the user terminal to terminate operation
if the signature information in the license file
does not correspond to the user identification 55
information in the license file.

14. A licensee notification system according to claim 2,
wherein the software rewriting means rewrites the

information of the prescribed location of the soft-
ware with the user identification information con-
tained in the license information and rewrites the
information of a second location in the software with
the signature information whose content is deter-
mined in accordance with the user identification
information; and

the software including instructions that com-
mand the user terminal to terminate operation if the
signature information stored in the second pre-
scribed location does not correspond to the user
identification information stored in the prescribed
location.

15. A licensee notification system according to claim 2,
wherein said license information generating means
generates license information including signature
information whose content is determined in accord-
ance with the content of the user identification infor-
mation;

said software rewriting means rewrites the
information of the prescribed location with the user
identification information contained in the license
information and rewrites the information of the sec-
ond prescribed location in the software by means of
the signature information contained in the license
information; and

the software includes instructions that com-
mand the user terminal to terminate operation if the
signature information stored in the second pre-
scribed location does not correspond to the user
identification information that is stored at the pre-
scribed location.

9

Nintendo - Ancora Exh. 1003

EP 0 766 165 A2

10

Nintendo - Ancora Exh. 1003

EP 0 766 165 A2

al
LINA

NOLLWTIVLSNI|p70th22:

‘AQ

eeeceeceeeueeeseceecuesnsseccsccecitttteseceeeesaaes||NOLLW1idWOSJYVMLIOSNOLLVAHOANI!|314SONSOMNNOLLVWWHOANIGONSOMN|NOLLVWHOANI;Tinn|_2ONaONTinn|_._daqoona:2TINn|_2ONS9NNAL|dN-NITONIGOONSONIGODAGONLLWHWSS| AdyWNGIAIGNI
Y3SNL¢

LINNSNIGOONS52
ASWNGIAIGNI'02Wasn

 2:Lu1wo:eo>:Q-a :-Q(GI-NdO)NOLLWWHOANIZOmarOLLSIHS.LOVHVHOY3SN2na;;5Lttnm‘SGISLNA.LNOO0<<YeZzns'ccMyo;uwZoGa>:3oFo>aiwasneI:!81YHALNAOLNSWSDVNVWWNIWYALHaSnclit
10

Nintendo - Ancora Exh. 1003

Cf U /DD 1 DO AZ

13

USER ID USER NAME

M00011 11 TOKKYOTARO

14

CONTENTS ID DECODING KEY

ABC00001 xxxxxxxxx

24
J

CONTENTS ID USER NAME S J £ ^ ™ R E , INFORMATION
ABC00001 TOKKYOTARO z z z z z z z z

Nintendo - Ancora Exh. 1003

EP 0 766 165 A2

F I G . 5

25 i LICENCE DISPLAY ROUTINE

26 MAIN PROGRAM

F I G . 6

^hUUTE MAIN PROGRAM

6—

:ND

Nintendo - Ancora Exh. 1003

EP 0 766 165 A2

F I G . 7

11

- 1 3
u r n
> D
Z c

73
O
z

z
H

USER TERMINAL
18

USER ID

CONTENTS ID

USER CHARACTERISTIC
INFORMATION (CPU-ID)

K s

19

ENCODING
UNIT

21
c L

USER
INDIVIDUAL KEY

ofcrAHAI INlal
I UNIT I

SOFTWARE
DECODING
KEY :

10

LICENCE
INFORMATION

DECODING
UNIT

USER NAME
29

No I ALLATION
JNIT

ENCODED LICENCE
INFORMATION

3

Nintendo - Ancora Exh. 1003

EP 0 766 165 A2

F I G . 8

25

26

LICENCE DISPLAY ROUTINE

ENCODED USER NAME 27

MAIN PROGRAM

F I G . 9

c START)

Ax/S201

DECODE ENCODED USER NAME

^ 2 0 2

DISPLAY DECODED USER NAME

^ S 2 0 3

EXECUTE MAIN PROGRAM

c END

14

Nintendo - Ancora Exh. 1003

: uj " a
: O
: <
: Z
: <
■ "5

E o

Nintendo - Ancora Exh. 1003

EP 0 766 165 A2

3d000WAOWSY

oyTan]SNouoiwisaygyONIGOONS| gAaTWAGIAICNILe:QD‘YSN8LNa}ow*1lLpNIGOONaiogrE:x

FéoY;IS|aqsuvmiios:!”;igg:!}HaLN3OINAWSSVNVW!

INANOILVTIVLSNI

AdyTWNAGIAIGNIyasnSs>

(daI-Ndd)NOILWANYOSNIOLLSIHS.LOVYVHOyWasn
QISLNA.LNOO

WNIWHYSLYaSN

15

Nintendo - Ancora Exh. 1003

APPENDIX B-7

Nintendo - Ancora Exh. 1003

United States Patent (19)
Chang et al.

54 METHOD AND APPARATUS FOR
ENHANCNG SOFTWARE SECURITY AND
DSTRIBUTING SOFTWARE

75) Inventors: Sheue-Ling Chang, Cupertino; James
Gosling, Woodside, both of Calif.

73) Assignee: Sun Microsystems, Inc.

(21) Appl. No.: 258,244
22 Filed: Jun. 10, 1994

(51) Int. Cl. H04L 9/00; H04L 9/30;
H04L 9/32

52 U.S.C. 380/25; 380/4; 380/23;
380/30; 380/49; 380/50

58) Field of Search 38014, 23, 25,
380/30, 49,50

56 References Cited

U.S. PATENT DOCUMENTS

4.558,176 12/1985 Arnold et al. 38Of4
4,634,807 1/1987 Chorley et al. 33OfA.
4,670,857 6/1987 Rackman 380/4
5.343,527 8/1994 Moore .. 380/4

OTHER PUBLICATIONS

Davida et al., "Defending Systems Against Viruses through
Cryptographic Authentication", IEEE Symposium, 1989,
pp. 312-318.
RSAData Security, Inc., “RSA Certificate Services”. Jul. 15.
1993, pp. 1-41.

Primary Examiner-Bernarr E. Gregory
Attorney, Agent, or Firm-McCutchen. Doyle, Brown &
Enersen LLP; Ronald S. Laurie, Esq.; Joseph Yang

DOOOOOOOOOO
OODDDDDDDDDD
OOOOOOOOOOOO
OODOOOO

USOO5724425A

11) Patent Number: 5,724.425
45) Date of Patent: Mar. 3, 1998

57 ABSTRACT

Source code to be protected, a software application writer's
private key, along with an application writer's license pro
vided to the first computer. The application writer's license
includes identifying information such as the application
writer's name as well as the application writer's public key.
A compiler program executed by the first computer compiles
the source code into binary code, and computes a message
digest for the binary code. The first computer then encrypts
the message digest using the application writer's private key,
such that the encrypted message digest is defined as a digital
“signature" of the application writer. A software passport is
then generated which includes the application writer's digi
tal signature, the application writer's license and the binary
code. The software passport is then distributed to a user
using any number of software distribution models known in
the industry. A user, upon receipt of the software passport,
loads the passport into a computer which determines
whether the software passport includes the application writ
er's license and digital signature. In the event that the
software passport does not include the application writer's
license, or the application writer's digital signature, then the
user's computer system discards the software passport and
does not execute the binary code. As an additional security
step, the user's computer computes a second message digest
for the software passport and compares it to the first message
digest, such that if the first and second message digests are
not equal, the software passport is also rejected by the user's
computer and the code is not executed. If the first and second
message digests are equal, the user's computer extracts the
application writer's public key from the application writer's
license for verification. The application writer's digital sig
nature is decrypted using the application writer's public key.
The user's computer then compares a message digest of the
binary code to be executed, with the decrypted application
writer's digital signature, such that if they are equal, the
user's computer executes the binary code.

72 Claims, 5 Drawing Sheets

Nintendo - Ancora Exh. 1003

U.S. Patent Mar. 3, 1998 Sheet 1 of 5 5,724.425

FIG. 1

OOOOOOOOOO
DOOOOOOOOOOO
OOOOOOOOOOOO
ODOOOO

APPLICATION
RITER

SOURCE CODE
20

APP WRITER'S LACENSE 24

APP WRITERS WAME 3.0

APP WRIERS PUBLIC KEY 32

ALIDITY DAJE 34

APP, WRITER'S
PRIVATE KEY 22

COMPLER
26

FIG. 4
38

: ANY DISTRIBUTION CHANNEL

Nintendo - Ancora Exh. 1003

U.S. Patent Mar. 3, 1998 Sheet 2 of 5 5,724.425

FIG. 2

PRODUCT INFO,
COMPANY INFO
WALIDITY DAIE.
RESTRICTED RIGHTS LEGEND.

APP WRITERS WAME
APP WRITER'S PUBLIC KEYAH

(DENTIFICATION AUTHORITY THE PLAIFORM BUILDER
PLATFORM BUILDER'S SIGNATUREA
APP WRITER'S SIGNATUREA
CODE BODY

PRODUCT INFO,
COMPANY INFO.
ALIDITY DAIE.
RESTRICTED RIGHTS LEGEND...

APP WRITER'S MAME
APP WRITER'S PUBLIC KEYA

IDENIFICATION AUTHORITY THE PLAIFORM BUILDER
PLATFORM BUILDER'S SIGNATUREA

APP WRITER'S SIGNATUREAf
CODE BODY

FIG.

Nintendo - Ancora Exh. 1003

U.S. Patent Mar. 3, 1998 Sheet 3 of 5 5,724.425

FIG. 5
PLAIFORM
BUILDER

APPLICATION
WRITER 60

SOURCE CODE
APP WRITER'S LICENSE 52

APP, WRITER
PRIWAs KEY

COMPLER
68

PASSPORT 50

PLAIFORM BUILDER'S

PLAIFORM

Nintendo - Ancora Exh. 1003

U.S. Patent Mar. 3, 1998 Sheet 4 of 5 5,724.425

HARDWARE PLATFOR
WITH PUBLIC KEY IN

REGISTER FIG. 6(a)

ATEMPT TO LOAD
SOFTWARE

SOFTWARE
HAS PASSPORT

2

NO RELECT SOFTWARE

RELECT SOFTWARE
PASSPORT

YES

PASSPORT
HAS LCENSE

2

EXTRACT LICENSE FROM
SOFTWARE PASSPORT

LCENSE HAS
ISSUERS SIGNATURE

2

DECRYPT ISSUER'S SIGNATURE
USING PUBLIC KEY IN REGISTER

RECOMPUTE MESSAGE
DIGEST OF LICENSE

ARE MESSAGE
DIGESIS EO

p
SW LICENSE NOT GENUINE

YES

Nintendo - Ancora Exh. 1003

U.S. Patent Mar. 3, 1998 Sheet 5 of 5 5,724.425

EYIRACT SWS PUBLIC
KEY FROf APPLICATION WRITER'S

LICENSE

EXTRACT CODE BODY
FROM THE PASSPORT

EXTRACT SWS
SIGNATURE

RECOMPUTE MESSAGE MD = MESSAGE DIGEST
DIGEST OF THE CODE SW = SOFTWARE

BODY (APPLICATION)
WRITER

DECRYPT S/S
SIGNATURE USING
SWS AUBLIC EY

COMPARE RECOMPUTED
MESSAGE DIGEST WITH
SWS DECRYPTED SIG

NO REJECT SOFTWARE
PASSPORT

YES

EXECUTE CODE

Nintendo - Ancora Exh. 1003

5,724.425
1

METHOD AND APPARATUS FOR
ENHANCNG SOFTWARE SECURITY AND

DISTRIBUTING SOFTWARE

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to the use of public key

encryption, and more particularly, the present invention
relates to the use of public key encryption to achieve
enhanced security and product authentication in the distri
bution of software.

2. Art Background
Public key encryption is based on encryption algorithms

that have two keys. One key used for encryption, and the
other key is used for decryption. There is a known algorithm
that computes the second key given the first. However,
without full knowledge of all the parameters, one cannot
compute the first key given the second key. The first key is
referred to as the "private key", and the second key is
referred to as the "public key". In practice, either the private
key or the public key may be used to encrypt a message, with
the opposite key used to decrypt it. In general, the private
key must be kept private, but the public key may be provided
to anyone. A variety of public key cryptographic schemes
have been developed for the protection of messages and data
(See, Whitfield Diffie. "The First Ten Years of Public Key
Cryptography" (IEEE Proceedings, Vol. 76, No. 5, 1988)
and Fahn, "Answers to Frequently Asked Questions about
Today's Cryptography (RSA Laboratories 1992).

Public key cryptography is used to send secure messages
across public communication links on which an intruder
may eavesdrop, and solves the problem of sending the
encryption password to the other side securely.

Public key systems may also be used to encrypt messages,
and also to effectively sign messages, allowing the received
party to authenticate the sender of the message. One can also
use public key cryptography to seal or render tamper-proof
a piece of data. In such event, the sender computes a
message digest from the data using specially designed
cryptographically strong digests designed for this purpose.
The sender then uses the private key to encrypt the message
digest, wherein this encrypted message digest is called a
digital "signature". The sender then packages the data, the
message digest and the public key together. The receiver
may check for tampering by computing the message digest
again, then decrypting the received message digest with the
public key. If the recomputed and decrypted message digests
are identical, there was no tampering of the data.

"Viruses" and "worms" are computer code cleverly
inserted into legitimate programs which are subsequently
executed on computers. Each time the program is executed
the virus or worm can cause damage to the system by
destroying valuable information, and/or further infect and
spread to other machines on the network. While there are
subtle differences between a virus and a worm, a critical
component for both is that they typically require help from
an unsuspecting computer user to successfully infect a
computer or a corporate network.

Infection of computers by viruses and worms is a general
problem in the computer industry today. In addition, corpo
rate networks are vulnerable to frontal assaults, where an
intruder breaks into the network and steals or destroys
information. Security breaches of any kind on large corpo
rate networks are a particularly worrisome problem, because
of the potential for large-scale damage and economic loss.

O

15

20

25

30

35

45

50

55

65

2
Moreover, security breaches are more easily accomplished
when a corporate network is connected to a public network,
such as the Internet. Companies take a variety of measures
to guard against breaches of network security, either through
frontal assaults or infections, without cutting themselves off
from the benefits of being connected to a world-wide
network.
The solution adopted by most companies that wish to reap

the benefits of connecting to the Internet, while maintaining
security, is the installation of a firewall. Firewalls generally
restrict Internet file transfers and telnet connections. Such
transfers and connections can only be initiated from within
the corporate network, such that externally initiated file
transfers and telnet connections are refused by the firewall.
Firewalls allow electronic mail and network news to freely
flow inside the firewall's private network. The use of cor
porate firewalls allows employees to readily exchange infor
mation within the corporate environment, without having to
adopt extreme security measures. A good firewall imple
mentation can defend against most of the typical frontal
assaults on system security.
One method of preventing viruses and worms from infect

ing a corporate network is to never execute a program that
may contain viruses. In general, programs legitimately
deployed throughout the corporate network should be con
sidered virus free. All binary executables, all unreviewed
shell scripts, and all source code fetched from outside the
firewall are software that may contain a worm or virus.

However, outside binary executables, shell scripts, and
source code may enter a corporate firewall through an
E-mail attachment. For example, the shell scripts that are
used to make and send multiple files using E-mail and the
surveytools that startup by activating the E-mail attachment
may allow virus entry. Executables can also be directly
fetched through the iftp program, through a world-wide web
browser such as Mosaic, or from an outside contractor
whose network has already been compromised.

In addition, the commercial software release and distri
bution process presents security and authentication prob
lems. For example, some of the information associated with
software, such as the originating company or author,
restricted rights legends, and the like are not attached to the
code itself. Instead, such information is provided as printed
matter, and is separated from the code once the package is
opened and the code installed. Even applications that
attempt to identify themselves on start-up are susceptible to
having the identification forged or otherwise counterfeited.
A user has no mechanism to authenticate that the software

sold is actually from the manufacturer shown on the label.
Unauthorized copying and the sale of software is a signifi
cant problem, and users who believe that they are buying
software with a manufacturer's warranty instead purchase
pirated software, with neither a warranty nor software sup
port. The problem of authenticating the original source of
the software is accentuated when software is intended to be
distributed through networks, and a user's source for the
software may be far removed from the original writer of the
software. In addition, a user does not have that ability to
verify that the software purchased contains only the original
manufacturer's code. A user also does not have a method for
detecting any tampering, such as the existence of a virus,
that may cause undesirable effects.

All of the above problems are related to the transport of
software both from manufacturers to users and from user to
user. Furthermore, the transport problem is independent of
the transport medium. The problem applies to all transport
media, including floppy disk, magnetic tape, CD-ROM and
networks.

Nintendo - Ancora Exh. 1003

5,724.425
3

As will be described, the present invention provides a
method and apparatus for authenticating that software dis
tributed by a manufacturer is a legitimate copy of an
authorized software release, and that the software contains
only the original manufacturers code without tampering.
The present invention solves the above identified problems
through the use of a “software passport" which includes the
digital signature of the application writer and manufacturer.
As will be described, the present invention may also be used
to protect intellectual property, in the form of copyrighted
computer code. by utilizing cryptographic techniques
referred to herein as public key encryption.

SUMMARY OF THE INVENTION
This invention provides a method and apparatus utilizing

public key encryption techniques for enhancing software
security and for distributing software. The present invention
includes a first computer which is provided with source code
to be protected using the teachings of the present invention.
In addition, a software application writer's private key,
along with an application writer's license provided to the
first computer. An application writer generally means a
software company such as Microsoft Corporation. Adobe or
Apple Computer. Inc. The application writer's license
includes identifying information such as the application
writer's name as well as the application writer's public key.
A compiler program executed by the first computer compiles
the source code into binary code, and computes a message
digest for the binary code. The first computer then encrypts
the message digest using the application writer's private key,
such that the encrypted message digest is defined as a digital
"signature' of the application writer. A software passport is
then generated which includes the application writer's digi
tal signature, the application writer's license and the binary
code. The software passport is then distributed to a user
using any number of software distribution models known in
the industry.
A user, upon receipt of the software passport, loads the

passport into a computer which determines whether the
software passport includes the application writer's license
and digital signature. In the event that the software passport
does not include the application writer's license, or the
application writer's digital signature, then the user's com
puter system discards the software passport and does not
execute the binary code. As an additional security step, the
user's computer computes a second message digest for the
software passport and compares it to the first message digest,
such that if the first and second message digests are not
equal, the software passport is also rejected by the user's
computer and the code is not executed. If the first and second
message digests are equal. the user's computer extracts the
application writer's public key from the application writer's
license for verification. The application writer's digital sig
nature is decrypted using the application writer's public key.
The user's computer then compares a message digest of the
binary code to be executed, with the decrypted application
writer's digital signature, such that if they are equal, the
user's computer executes the binary code. Accordingly,
software products distributed with the present invention's
software passport permits the user's computer to authenti
cate the software as created by an authorized application
writer who has been issued a valid application writer's
license. Any unauthorized changes to the binary code com
prising the distributed software is evident through the com
parison of the calculated and encrypted message digests.
The present invention is also described with reference to

an embodiment used by computing platforms designed to

10

15

20

25

30

35

45

50

55

65

4
execute only authorized software. A platform builder pro
vides an application writer with a platform builder's digital
signature which is included in the application writer's
license. The first computer compiles the software into binary
code and computes a first message digest for the binary
code. The first computer further encrypts the first message
digest using the application writer's private key, such that
the encrypted first message digest is defined as the applica
tion writer's digital signature. A software passport is gen
erated which includes the application writer's digital
signature, the application writer's license and the binary
code. The software passport is then distributed to a user
through existing software distribution channels. The user's
computing platform, which may be a computer, a video
game box or a set top box, is provided with the platform
builder's public key. Upon receipt of the software passport,
the computing platform determines if the software passport
includes an application writer's license. If it does not, the
hardware platform rejects the execution of the code. If a
software passport is present, the hardware platform extracts
the application writer's license from the passport and deter
mines whether or not the passport includes the platform
builder's signature. The platform builder's signature is then
decrypted using the public key provided in the platform. The
computing platform recomputes the message digest of the
application writer's license, and compares the received
message digest with the recomputed message digest, such
that if the digests are not equal, the software passport is not
considered genuine and is rejected. If the message digests
are equal, the hardware platform extracts the application
writer's public key from the application writer's license, and
extracts the application writer's digital signature. The hard
ware platform then recomputes the message digest of the
binary code comprising the application software to be
executed, and decrypts the application writer's digital sig
nature using the application writer's public key. The hard
ware platform then compares the recomputed message
digest for the binary code with the application writer's
decrypted signature, such that if they are equal, the binary
code is executed by the hardware platform. If the recom
puted message digest and the application writer's decrypted
signature are not equal, the software passport is rejected and
the code is not executed.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a data processing system incorporating

the teachings of the present invention.
FIG. 2 conceptually illustrates use of the present inven

tion's software passport where the application code and the
software passport are provided in separate files.

FIG. 3 conceptually illustrates use of the present inven
tion's use of the software passport where the application
code and the software passport are distributed in the same
file.

FIG. 4 diagrammatically illustrates the present inven
tion's process for generating a software passport.

FIG. 5 diagrammatically illustrates the use of the present
invention for platform producer licensing.

FIGS. 6a and 6b are flowcharts illustrating the steps
executed by the present invention for verifying that a valid
software license exists, and that the software writer's
("SW's") signature is valid, prior to permitting the execution
of a computer program.

NOTATION AND NOMENCLATURE
The detailed descriptions which follow are presented

largely in terms of symbolic representations of operations of

Nintendo - Ancora Exh. 1003

5,724.425
5

data processing devices. These process descriptions and
representations are the means used by those skilled in the
data processing arts to most effectively convey the substance
of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a

self-consistent sequence of steps leading to a desired result.
These steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities may take the form of electrical or magnetic
signals capable of being stored, transferred, combined,
compared, displayed and otherwise manipulated. It proves
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, messages,
names, elements, symbols, operations, messages. terms,
numbers, or the like. It should be borne in mind, however,
that all of these similar terms are to be associated with the
appropriate physical quantities and are merely convenient
labels applied to these quantities.

In the present invention, the operations referred to are
machine operations. Useful machines for performing the
operations of the present invention include general purpose
digital computers or other similar devices. In all cases, the
reader is advised to keep in mind the distinction between the
method operations of operating a computer and the method
of computation itself. The present invention relates to
method steps for operating a computer, coupled to a series
of networks, and processing electrical or other physical
signals to generate other desired physical signals.
The present invention also relates to apparatus for per

forming these operations. This apparatus may be specially
constructed for the required purposes or it may comprise a
general purpose computer selectively activated or reconfig
ured by a computer program stored in the computer. The
method/process steps presented herein are not inherently
related to any particular computer or other apparatus. Vari
ous general purpose machines may be used with programs in
accordance with the teachings herein, or it may prove more
convenient to construct specialized apparatus to perform the
required method steps. The required structure for a variety of
these machines will be apparent from the description given
below.

DETALED DESCRIPTION OF THE
NVENTION

In the following description, numerous specific details are
set forth such as system configurations, representative data,
computer code organization, encryption methods, and
devices, etc., to provide a thorough understanding of the
present invention. However, it will be apparent to one skilled
in the art that the present invention may be practiced without
these specific details. In other instances, well known circuits
and structures are not described in detail in order to not
obscure the present invention. Moreover, certain terms such
as "knows", “verifies", "compares", "examines", "utilizes".
"finds", "determines", "challenges”, “authenticates”, etc.,
are used in this Specification and are considered to be terms
of art. The use of these terms, which to a casual reader may
be considered personifications of computer or electronic
systems, refers to the functions of the system as having
human-like attributes, for simplicity. For example, a refer
ence herein to an electronic system as "determining" some
thing is simply a shorthand method of describing that the
electronic system has been programmed or otherwise modi
fied in accordance with the teachings herein. The reader is
cautioned not to confuse the functions described with every
day human attributes. These functions are machine functions
in every sense.

10

5

20

25

30

35

45

50

55

65

6
Exemplary Hardware

FIG. 1 illustrates a data processing system in accordance
with the teachings of the present invention. Shown is a
computer 10, which comprises three major components. The
first of these is an input/output (I/O) circuit 12 which is used
to communicate information in appropriately structured
form to and from other portions of the computer 10. In
addition, computer 10 includes a central processing (CPU)
13 coupled to the I/O circuit 12 and a memory 14. These
elements are those typically found in most general purpose
computers and, in fact, computer 10 is intended to be
representative of a broad category of data processing
devices. Also, the computer 10 may be coupled to a network.
in accordance with the teachings herein. The computer 10
may further include encrypting and decrypting circuitry
incorporating the present invention, or as will be
appreciated, the present invention may be implemented in
software executed by computer 10. A raster display monitor
16 is shown coupled to the I/O circuit 12 and issued to
display images generated by CPU 13 in accordance with the
present invention. Any well known variety of cathode ray
tube (CRT) or other type of display may be utilized as
display 16.
The present invention's software passport identifies a

portion of software, or some machine code (hereinafter
"code"), in a manner similar to how a physical passport
identifies a person. The concept is similar to the real-life
passport system which forms the basis of a trust model
among different nations. Physical passports enable border
entry officers to identify each individual and make certain
decisions based on his/her passport. As will be described
below, a software passport is a modern release process for
distributing software products. A software passport gives a
software product an identity and a brand name. The software
passport provides the basis of a trust model and allows
computer users to identify and determine the genuineness of
a software product based on the information contained in its
passport.

Referring now to FIG. 2, the present invention is illus
trated in conceptual form for the case where the computer
code (comprising a piece of software) and the software
passport are in separate files. FIG. 3 illustrates the use of the
present invention where the computer code comprising a
piece of software and the software passport are in the same
file.
As illustrated in FIGS. 2 and 3, the information included

in the present invention's software passport may include:
product information, such as the software product's name
and any other relevant information to the specific
product;

company information including the name of the company
or the software application writer who has produced the
product;

a validity date which includes the issue date of the
software passport and the expiration date of the pass
port;

a restricted rights legend including copyright notices and
other similar legends;

the software code body including executable application
code distributed to the user:

an application writer's license; and,
a software application writer's digital signature.
It will be appreciated that the components of a software

passport are generally self-explanatory, with the application
writer's license and digital signature explained in more
detail below.

Nintendo - Ancora Exh. 1003

5,724.425
7

SOFTWARE PRODUCER'S DIGITAL SIGNATURE
A digital "signature" is produced by using certain cryp

tographic techniques of computing a message digest of a
piece of software code (hereinafter "code"), and encrypting
the message digest using the signer's private key. There are
many known message digest algorithms, such as the MD2,
MD4, and MD5 algorithms published by RSA, Inc. The use
of private cryptographic techniques makes this signature
very difficult to forge since the signer keeps the private key
secret. The reader is referred to the papers by Whitfield
Diffie, "The First Ten Years of Public Key Cryptography".
Vol. 76. No. 5 (IEEE Proceedings, May 1988), which is
attached hereto as Appendix A; and Whitfield Diffie, et al.,
"Authentication and Authenticated Key Exchanges" (1992
Kluwer Academic Publishers) attached hereto as Appendix
B, for a detailed description of the operation of Diffie
Helman certificates and public key cryptography.
One may conceptualize the computing of the message

digest for a piece of code as a mechanism of taking a photo
snapshot of the software. When the code changes, its mes
sage digest reflects any differences. In the system of the
present invention, this "digital signature" is stamped on the
product prior to its release. The digital signature associates
a product with the entity that has produced it, and enables
consumers to evaluate the quality of a product based on the
reputation of the producer. The signature also permits a
consumer to distinguish the genuineness of a product.
SOFTWARE PRODUCER'S LCENSE
The present invention's software producer's license (at

time referred to herein as the "application writer's license")
is an identification similar to the home repair contractor's
license issued by a state. A software producer's license
identifies and certifies that the producer is authorized to
perform certain software production activities. It is contem
plated that the software producer's license will be issued by
some commonly-trusted authority established by the com
puter software industry. Before issuing an license to a
software producer, this authority performs a defined process
to authenticate the person or company, and to verify their job
skill; as a state does before issuing a contractor's license. For
convenience, in this Specification, this commonly-trusted
entity is referred to as the Software Publishing Authority
(“SPA").
A software producer's license contains the following

information:
the producer's name;
the license's issue date;
the license's expiration date;
the producer's public key;
the name of the issuing authority, SPA; and
the SPA's digital signature.
A software producer's license associates an application

writer with a name and a public key. It enables a software
producer to produce multiple products, and to sign every
product produced. The public key embedded in a license
belongs to the person who owns the license. This public key
can later be used by any third party to verify the producer's
digital signature. A user who has purchased a product can
determine the genuineness of a product by using the public
key embedded in the producer's identification to authenti
cate the digital signature.
The SPA's digital signature is generated by computing the

message digest of the producer's identification and encrypt
ing the message digest using the SPA's private key. Since the
SPA's private key is kept private to the SPA, third parties are
notable to easily forge the SPA's signature to produce a fake
identification.

10

15

20

25

30

35

45

50

55

65

8
In accordance with the teachings of the present invention,

a software application writer ("SW") supplies three major
pieces of information to a compiler prior to compilation of
the code:

the source code written by the application writer;
the application writer's private key; and
the application writer's license.
The code included in a passport may comprise source

code in various computer languages, assembly code,
machine binary code, or data. The code may be stored in
various formats. For example, a piece of source code may be
stored in a clear text form in the passport. A portion of binary
executable machine code may also be stored in a compacted
formatin the passport, using certain well known compaction
algorithms such as Huffman encoding. The format used in a
particular implementation is indicated by a flag in the
passport.

Binary executable code may further be stored in a
printable-character set format to allow the passport to be
printed. A user would then reverse the printable-format to
recover the software. Moreover, code protected by intellec
tual property, such as copyright or patent, may be stored in
an encrypted format in the passport. In such case, it is
contemplated that a user may be required to pay a license fee
prior to gaining access to the software.

Referring now to FIG.4, to generate the software passport
of the present invention, the original source code 20, the
application writer's private key 22, and the application
writer's license 24 is provided to a compiler 26. As
illustrated, the application writer's license 24 includes the
writer's name 30, the writer's public key 32 and a validity
date 34.
The compiler 26 then compiles the source code 20 into

binary code. The compiler 26 further computes the message
digest of the binary code, and encrypts the message digest
using the private key 22 supplied by the application writer.
This encrypted message digest constitutes the application
writer's signature.
A digital signature of the application writer is produced

and embedded in the passport. The compiler 26 also embeds
the application writer's license 24 in the passport. The
application writer's license 24 allows any user who has
purchased the product to recognize the maker of the product.
The application writer's digital signature in the passport
allows any user to verify the genuineness of the product. The
SPA's digital signature in the application writer's license 24
provides the user with the ability to verify that an application
writer is a licensed application writer by using SPA's public
key to encrypt the signature.
As shown in FIG. 4, the generated software passport 38,

including the application code is then distributed using any
desired software distribution model. The passport 38 is
received by a user and is executed using an operating system
(OS) running on a computer system ("platform”) such as the
system of FIG. 1.

Referring now to FIG. 5, the use of the present invention
by platform builders will be described. In the electronic
game industry and the interactive television cable set-top
box industry, platform producers often desire to allow only
authorized code to be executed on their particular platform.
To be able to control the accessibility of a platform, the
received code must be identifiable and the platform must be
able to identify the software when it arrives. As illustrated in
FIG. 5, the present invention may be applied in a platform
producer licensing scheme with particular application for
use in settop box and video game environments.

Referring now to FIGS. 6a and 6b, a platform producer
may issue a "programmer's license" to a set of application

Nintendo - Ancora Exh. 1003

5,724.425

writers (alternatively referred to as "software writers") who
are authorized to write application code for a particular
platform. A programmer's license issued by a platform
producer is similar to the programmer's identification issued
by the SPA, except that the license is digitally signed by the
platform producer instead of by the SPA. The programmer's
license contains the following information:

the producer's name:
the issue license data;
the license expiration date;
the producer's public key;
the issuing authority (the platform producer); and
the platform producer's digital signature.
The platform producer's digital signature is generated by

computing the message digest of the license, and encrypting
the message digest using the platform producer's private
key.
The software produced by a licensed application writer

will include a valid passport 50 (see FIGS. 5 and 6a) which
contains a genuine writer's digital signature, and a valid
application writer's license 52 issued by the platform
builder. Any application writer who is not authorized by the
platform builder will not possess a valid license. Therefore,
the software passport generated by an unauthorized person
will either have no valid license or no valid signature.
The public key 54 of the platform builder is embedded in

the platform (e.g., video game) for the verification process.
At execution time, the platform extracts the public key 54
embedded in the system to verify that a passport contains a
valid application writer's license 52. The digital signature in
the application writer's license is generated by computing
the message digest of the license 52 and encrypting the
message digest using the platform builder's private key. The
system of the present invention can thus recover the original
message digest by decrypting the signature using the plat
form builder's public key 54. The verification process of the
application writer's license may be accomplished by:

1. recomputing the message digest of the application
license 52 in the passport 50,

2. recovering the original message digest, and
3. comparing the old digest with the newly computed

digest.
The passport 50 contains a valid application writer's

license if the two message digests are the same. Otherwise
the license is not valid. The verification process of the
present invention is illustrated in the flow chart of FIG. 6(a).

It will be appreciated that even if the passport 50 does
contain a valid application writer's license, the application
writer might have stolen the license by copying it from some
other authorized writer's passport. In this case, the unau
thorized writer would not have a correct private key 58 to
forge the signature of the authorized writer. It is contem
plated that the system will further verify the signature of the
application writer 60. It will be recalled that the application
writer's digital signature in the passport was generated by
computing the message digest of the passport and encrypting
the message digest using the application writer's private key
58. The original message digest may be recovered by
decrypting the signature using the writer's public key 62
embedded in the application writer's license 52, which is
embedded in the passport 50. The application writer's digital
signature may then be verified by:

1. recomputing the message digest of the passport 50,
2. recovering the original message digest, and
3. comparing the old digest with the new digest.

10

15

20

25

30

35

45

50

55

65

10
The signature is valid if the two message digests are the

same. Otherwise the passport is not valid and the platform
will reject the execution of the software. The steps executed
by the present invention to verify the application writer's
digital signature are illustrated in flow chart for FIG. 6(b).

It will be further noted that the security scheme of the
present invention may be used to protect inventions and
authorship protected by intellectual property, such as copy
rights and patents. The one additional procedure that is
added to protect intellectual property is that the compiler
(e.g. a compiler 68 shown in FIG. 5) generates encrypted
byte codes. When a user attempts to run the code on the
platform operating system ("OS") the verification proce
dures are followed as described above with reference to
FIGS. 6(a) and 6(b). However, with the code encrypted, the
operating system requires an additional approval before it is
permitted to run the code. A cryptographic key is required
which essentially results in an IP license to run the code.
After authenticating the code, the operating system requests
the IP license. The operating system verifies that the IP
license is signed by the person who authored the code, and
then proceeds to decrypt and execute the code. A further
feature of the present invention is that third parties do not
have the ability to inspect the code since it is encrypted.

Accordingly, the present invention has disclosed a method
and apparatus for enhancing software security. Although the
present invention has been described with reference to FIGS.
1-6, it will be apparent that may alternatives, modifications
and variations may be made in light of the foregoing
description.

APPENDIX A

THE FIRST TEN YEARS OF PUBLIC-KEY
CRYPTOGRAPHY

WHTFIELD DIFFIE
Invited Paper

Public-key cryptosystems separate the capacities for
encryption and decryption so that 1) many people can
encrypt messages in such a way that only one person can
read them, or 2) one person can encrypt messages in such a
way that many people can read them. This separation allows
important improvements in the management of crypto
graphic keys and makes it possible to 'sign' a purely digital
message.

Public key cryptography was discovered in the Spring of
1975 and has followed a surprising course. Although diverse
systems were proposed early on, the ones that appear both
practical and secure today are all very closely related and the
search for new and different ones has met with little success.
Despite this reliance on a limited mathematical foundation
public-key cryptography is revolutionizing communication
security by making possible secure communication net
works with hundreds of thousands of subscribers.

Equally important is the impact of public key cryptogra
phy on the theoretical side of communication security. It has
given cryptographers a systematic means of addressing a
broad range of security objectives and pointed the way
toward a more theoretical approach that allows the devel
opment of cryptographic protocols with proven security
characteristics.
I, NTIAL DISCOVERIES

Public key cryptography was born in May 1975, the child
of two problems and a misunderstanding.

First came the problem of key distribution. If two people
who have never met before are to communicate pri
vately using conventional cryptographic means, they

Nintendo - Ancora Exh. 1003

5,724.425
11

must somehow agree in advance on a key that will be
known to themselves and to no one else.

The second problem, apparently unrelated to the first, was
the problem of signatures. Could a method be devised
that would provide the recipient of a purely digital
electronic message with a way of demonstrating to
other people that it had come from a particular person.
just as a written signature on a letter allows the recipi
ent to hold the author to its contents?

On the face of it, both problems seem to demand the
impossible. In the first case, if two people could somehow
communicate a secret key from one to the other without ever
having met, why could they not communicate their message
in secret? The second is no better. To be effective, a signature
must be hard to copy. How then can a digital message, which
can be copied perfectly, bear a signature?
The misunderstanding was mine and prevented me from

rediscovering the conventional key distribution center. The
virtue of cryptography, Ireasoned, was that, unlike any other
known security technology, it did not require trust in any
party not directly involved in the communication, only trust
in the cryptographic systems. What good would it do to
develop impenetrable cryptosystems. I reasoned, if their
users were forced to share their keys with a key distribution
center that could be compromised by either burglary or
subpoena.
The discovery consisted not of a solution, but of the

recognition that the two problems, each of which seemed
unsolvable by definition, could be solved at all and that the
solutions to both problems came in one package.

First to succumb was the signature problem. The conven
tional use of cryptography to authenticate messages had
been joined in the 1950s by two new applications, whose
functions when combined constitute a signature.

Beginning in 1952, a group under the direction of Horst
Feistel at the Air Force Cambridge Research Center began to
apply cryptography to the military problem of distinguishing
friendly from hostile aircraft. In traditional Identification
Friend or Foe systems, a fire control radar determines the
identity of an aircraft by challenging it, much as a sentry
challenges a soldier on foot. If the airplane returns the
correct identifying information, it is judged to be friendly,
otherwise it is thought to be hostile or at best neutral. to
allow the correct response to remain constant for any
significant period of time, however, is to invite opponents to
record a legitimate friendly response and play it back
whenever they themselves are challenged. The approach
taken by Feistel's group, and now used in the MKXII IFF
system, is to vary the exchange cryptographically from
encounter to encounter. The radar sends a randomly selected
challenge and judges the aircraft by whether it receives a
correctly encrypted response. Because the challenges are
never repeated, previously recorded responses will not be
judged correct by a challenging radar.

Later in the decade, this novel authentication technique
was joined by another, which seems first to have been
applied by Roger Needham of Cambridge University (112).
This time the problem was protecting computer passwords.
Access control systems often suffer from the extreme sen
sitivity of their password tables. The tables gather all of the
passwords together in one place and anyone who gets access
to this information can impersonate any of the system's
users. To guard against this possibility, the password table is
filled not with the passwords themselves, but with the
images of the passwords under a one-way function. A
one-way function is easy to compute, but difficult to invert.
For any password, the correct table entry can be calculated

5

10

15

25

30

35

45

50

55

60

65

12
easily. Given an output from the one-way function, however,
it is exceedingly difficult to find any input that will produce
it. This reduces the value of the password table to an intruder
tremendously, since its entries are not passwords and are not
acceptable to the password verification routine.

Challenge and response identification and one-way func
tions provide protection against two quite different sorts of
threats. Challenge and response identification resists the
efforts of an eavesdropper who can spy on the communica
tion channel. Since the challenge varies randomly from
event to event, the spy is unable to replay it and fool the
challenging radar. There is, however, no protection against
an opponent who captures the radar and learns its crypto
graphic keys. This opponent can use what he has learned to
fool any other radar that is keyed the same. In contrast, the
one-way function defeats the efforts of an intruder who
captures the system password table (analogous to capturing
the radar) but succumbs to anyone who intercepts the login
message because the password does not change with time.

I realized that the two goals might be achieved simulta
neously if the challenger could pose questions that it was
unable to answer, but whose answers it could judge for
correctness. I saw the solution as a generalization of the
one-way function: a trap-door one-way function that
allowed someone in possession of secret information to go
backwards and compute the function's inverse. The chal
lenger would issue a value in the range of the one-way
function and demand to know its inverse. Only the person
who knew the trapdoor would be able to find the corre
sponding element in the domain, but the challenger, in
possession of an algorithm for computing the one-way
function, could readily check the answer. In the applications
that later came to seem most important, the role of the
challenge was played by a message and the process took on
the character of a signature, a digital signature.

It did not take long to realize that the trap-door one-way
function could also be applied to the baffling problem of key
distribution. For someone in possession of the forward form
of the one-way function to send a secret message to the
person who knew the trapdoor, he had only to transform the
message with the one-way function. Only the holder of the
trap-door information would be able to invert the operation
and recover the message. Because knowing the forward
form of the function did not make it possible to compute the
inverse, the function could be made freely available. It is this
possibility that gave the field its name: public-key cryptog
raphy.
The concept that emerges is that of a public-key crypto

system: a cryptosystem in which keys come in inverse pairs
(36) and each pair of keys has two properties.
Anything enclosed with one key can be decrypted with

the other.
Given one member of the pair, the public key, it is

infeasible to discover the other, the secret key.
This separation of encryption and decryption makes it

possible for the subscribers to a communication system to
list their public keys in a "telephone directory" along with
their names and addresses. This done, the solutions to the
original problems can be achieved by simple protocols.
One subscriber can send a private message to another

simply by looking up the addressee's public key and
using it to encrypt the message. Only the holder of the
corresponding secret key can read such a message;
even the sender, should he lose the plaintext, is inca
pable of extracting it from the ciphertext.

A subscriber can sign a message by encrypting it with his
own secret key. Anyone with access to the public key

Nintendo - Ancora Exh. 1003

5,724.425
13

can verify that it must have been encrypted with the
corresponding secret key, but this is of no help to him
in creating (forging) a message with this property.

The first aspect of public-key cryptography greatly sim
plifies the management of keys, especially in large commu
nication networks. In order for a pair of subscribers to
communicate privately using conventional end-to-end
cryptography, they must both have copies of the same
cryptographic key and this key must be kept secret from
anyone they do not wish to take into their confidence. If a
network has only a few subscribers, each person simply
stores one key for every other subscriber against the day he
will need it, but for a large network, this is impractical.

In a network with n subscribers there are n(n-1)/2 pairs,
each of which may require a key. This amounts to five
thousand keys in a network with only a hundred subscribers,
half a million in a network with one thousand, and twenty
million billion in a network the size of the North American
telephone system. It is unthinkable to distribute this many
keys in advance and undesirable to postpone secure com
munication while they are carried from one party to the other
by courier.
The second aspect makes it possible to conduct a much

broader range of normal business practices over a telecom
munication network. The availability of a signature that the
receiver of a message cannot forge and the sender cannot
readily disavow makes it possible to trust the network with
negotiations and transactions of much higher value than
would otherwise be possible.

It must be noted that both problems can be solved without
public-key cryptography, but that conventional solutions
come at a great price. Centralized key distribution centers
can on request provide a subscriber with a key for commu
nicating with any other subscriber and protocols for this
purpose will be discussed later on. The function of the
signature can also be approximated by a central registry that
records all transactions and bears witness in cases of dispute.
Both mechanisms, however, encumber the network with the
intrusion of a third party into many conversations, dimin
ishing security and degrading performance.
At the time public-key cryptography was discovered. I

was working with Martin Hellman in the Electrical Engi
neering Department at Stanford University. It was our imme
diate reaction, and by no means ours alone, that the problem
of producing public-key cryptosystems would be quite dif
ficult. Instead of attacking this problem in earnest. Marty
and I forged ahead in examining the consequences.
The first result of this examination to reach a broad

audience was a paper entitled "Multi-User Cryptographic
Techniques" (35), which we gave at the National Computer
Conference in 1976. We wrote the paper in December 1975
and sent preprints around immediately. One of the preprints
went to Peter Blatman, a Berkeley graduate student and
friend since childhood of cryptography's historian David
Kahn. The result was to bring from the woodwork Ralph
Merkle, possibly the single most inventive character in the
public-key saga.
Merkle's Puzzles

Ralph Merkle had registered in the Fall of 1974 for Lance
Hoffman's course in computer security at U.C. Berkeley.
Hoffman wanted term papers and required each student to
submit a proposal early in the term. Merkle addressed the
problem of public-key distribution or as he called it "Secure
Communication over Insecure Channels' 70. Hoffman
could not understand Merkle's proposal. He demanded that
it be rewritten, but alas found the revised version no more
comprehensible than the original. After one more iteration of

O

15

25

30

35

45

50

55

65

14
this process, Merkle dropped the course, but he did not cease
working on the problem despite continuing failure to make
his results understood.

Although Merkle's original proposal may have been hard
to follow, the idea is quite simple. Merkle's approach is to
communicate a cryptographic key from one person to
another by hiding it in a large collection of puzzles. Fol
lowing the tradition in public-key cryptography the parties
to this communication will be called Alice and Bob rather
than the faceless A and B, X and Y, or I and J. common in
technical literature.

Alice manufactures a million or more puzzles and sends
them over the exposed communication channel to Bob. Each
puzzle contains a cryptographic key in a recognizable stan
dard format. The puzzle itself is a cryptogram produced by
a block cipher with a fairly small key space. As with the
number of puzzles, a million is a plausible number. When
Bob receives the puzzles, he picks one and solves it, by the
simple expedient of trying each of the block cipher's million
keys in turn until he finds one that results in plaintext of the
correct form. This requires a large but hardly impossible
amount of work.

In order to inform Alice which puzzle he has solved, Bob
uses the key it contains to encrypt a fixed test message.
which he transmits to Alice. Alice now tries her million keys
on the test message until she finds the one that works. This
is the key from the puzzle Bob has chosen.
The task facing an intruder is more arduous. Rather than

selecting one of the puzzles to solve, he must solve on
average half of them. The amount of effort he must expend
is therefore approximately the square of that expended by
the legitimate communicators.
The n to n' advantage the legitimate communicators have

over the intruder is small by cryptographic standards, but
sufficient to make the system plausible in some circum
stances. Suppose, for example, that the plaintext of each
puzzle is 96 bits, consisting of 64 bits of key together with
a thirty-two bit block of zeros that enables Bob to recognize
the right solution. The puzzle is constructed by encrypting
this plaintext using a block cipher with 20 bits of key. Alice
produces a million of these puzzles and Bob requires about
half a million tests to solve one. The bandwidth and com
puting power required to make this feasible are large but not
inaccessible. On a DS1 (1.544 Mbit) channel it would
require about a minute to communicate the puzzles. If keys
can be tried on the selected puzzle at about ten-thousand per
second, it will take Bob another minute to solve it. Finally,
it will take a similar amount of time for Alice to figure out,
from the test message, which key has been chosen.
The intruder can expect to have to solve half a million

puzzles at half a million tries apiece. With equivalent
computational facilities, this requires twenty-five million
seconds or about a year. For applications such as
authentication, in which the keys are no longer of use after
communication is complete, the security of this system
might be sufficient.
When Merkle saw the preprint of “Multi-User Crypto

graphic Techniques" he immediately realized he had found
people who would appreciate his work and sent us copies of
the paper he had been endeavoring unsuccessfully to pub
lish. We in turn realized that Merkle's formulation of the
problem was quite different from mine and, because Merkle
had isolated one of the two intertwined problems I had seen.
potentially simpler.

Even before the notion of putting trap-doors into one-way
functions had appeared, a central objective of my work with
Marty had been to identify and study functions that were

Nintendo - Ancora Exh. 1003

5,724.425
15

easy to compute in one direction, but difficult to invert.
Three principal examples of this simplest and most basic of
cryptographic phenomena occupied our thoughts.
John Gill, a colleague in the Electrical Engineering

Department at Stanford, had suggested discrete expo
nentiation because the inverse problem, discrete
logarithm, was considered very difficult.

I had sought suitable problems in the chapter on
NP-complete functions in Aho. Hopcroft, and Ullman's
book on computational complexity 3 and selected the
knapsack problem as most appropriate.

Donald Knuth of the Stanford Computer Science Depart
ment had suggested that multiplying a pair of primes
was easy, but that factoring the result, even when it was
known to have precisely two factors, was exceedingly
hard.

All three of these one-way functions were shortly to assume
great importance.
II. EXPONENTIAL KEY EXCHANGE
The exponential example was tantalizing because of its

combinatorial peculiarities. When I had first thought of
digital signatures. I had attempted to achieve them with a
scheme using tables of exponentials. This system failed, but
Marty and I continued twisting exponentials around in our
minds and discussions trying to make them fit. Marty
eventually made the breakthrough early one morning in May
1976. I was working at the Stanford Artificial Intelligence
Laboratory on the paper that we were shortly to publish
under the title "New Directions in Cryptography" (36 when
Marty called and explained exponential key exchange in its
unnerving simplicity. Listening to him, I realized that the
notion had been at the edge of my mind for some time, but
had never really broken through.

Exponential key exchange takes advantage of the ease
with which exponentials can be computed in a Galois (finite)
field GF(q) with a prime number of q of elements (the
numbers {0, 1. . . . , q-1} under arithmetic modulo q) as
compared with the difficulty of computing logarithms in the
same field. If

where o is a fixed primitive element of GF(q) (that is the
powers of or produce all the nonzero elements 1, 2, q-1
of GF(q)), then X is referred to as the logarithm of Y to the
base ol, over GF(q):

Calculation of Y from X is easy: Using repeated squaring, it
takes at most 2xlog q multiplications. For example

Computing Xfrom Y. on the other hand, is typically far more
difficult (104), 83). 29). If q has been chosen correctly,
extracting logarithms modulo q requires a precomputation
proportional to

though after that individual logarithms can be calculated
fairly quickly. The function L(q) also estimates the time
needed to factor a composite number of comparable size and
will appear again in that context.
To initiate communication Alice chooses a random num

ber X uniformly from the integers 1,2,..., q-1. She keeps
X secret, but sends

10

15

20

25

30

35

45

50

55

65

16
Y=o moda

to Bob. Similarly, Bob chooses a random number X and
sends the corresponding Y to Alice. Both Alice and Bob
can now compute

KFor moda

and use this as their key, Alice computes K by raising the
Y she obtained from Bob to the power X

KAB = r moda
(obya moda

= oBA = oaXB mod 2

and Bob obtains K in a similar fashion

Ka-Y' moda.

No one except Alice and Bob knows either X or X, so
anyone else must compute K from Y and Y alone. The
equivalence of this problem to the discrete logarithm prob
lem is a major open question in public-key cryptography. To
date no easier solution than taking the logarithm of either Y.
or Y has been discovered.

If q is a prime about 1000 bits in length, only about 2000
multiplications of 1000-bit numbers are required to compute
Y from X, or K from Y and X Taking logarithms
over GF(q), on the other hand, currently demands more than
2' (or approximately 10') operations.
The arithmetic of exponential key exchange is not

restricted to prime fields; it can also be done in Galois Fields
with 2" elements, or in prime product rings (103), 68. The
"2" approach has been taken by several people (64). 117).
56) because arithmetic in these fields can be performed with
linear shift registers and is much faster than arithmetic over
large primes. It has turned out, however, that discrete
logarithms can also be calculated much more quickly in "2"
fields and so the sizes of the registers must be about 50
percent greater.

Marty and I immediately recognized that we had a far
more compact solution to the key distribution problem than
Merkle's puzzles and hastened to add it to both the upcom
ing National Computer Conference presentation and to
"New Directions." The latter now contained a solution to
each aspect of the public-key problem, though not the
combined solution I had envisioned. It was sent off to the
IEEE TRANSACTIONS ON INFORMATION THEORY
prior to my departure for NCC and like all of our other
papers was immediately circulated in preprint.
II. TRAP-DOOR KNAPSACKS

Later in the same year, Ralph Merkle began work on his
best known contribution to public-key cryptography: build
ing trapdoors into the knapsack one-way function to produce
the trap-door knapsack public-key cryptosystem.
The knapsack problem is fancifully derived from the

notion of packing gear into a knapsack. A shipping clerk
faced with an odd assortment of packages and a freight
container will naturally try to find a subset of the packages
that fills the container exactly with no wasted space. The
simplest case of this problem, and the one that has found
application in cryptography is the one dimensional case:
packing varying lengths of fishing rod into a tall thin tube.

Given a cargo vector of integers a-(a.a. a) it is
easy to add up the elements of any specified subvector.
Presented with an integer S, however, it is not easy to find
a subvector of a whose elements sum to S. even if such a

Nintendo - Ancora Exh. 1003

5,724.425
17

subvector is known to exist. This knapsack problem is well
known in combinatorics and is believed to be extremely
difficult in general. It belongs to the class of NP-complete
problems, problems thought not to be solvable in polyno
mial time on any deterministric computer.

I had previously identified the knapsack problem as a
theoretically attractive basis for a one-way function. The
cargo vector a can be used to encipher an n-bit message
x=(x1, x2, x) by taking the dot product S=ax as the
ciphertext. Because one element of the dot product is binary,
this process is easy and simply requires n additions. Invert
ing the function by finding a binary vector x such that ax=S
solves the knapsack problem and is thus believed to be
computationally infeasible if a is randomly chosen. Despite
this difficulty in general, many cases of the knapsack prob
lem are quite easy and Merkle contrived to build a trapdoor
into the knapsack one-way function by starting with a simple
cargo vector and converting it into a more complex form
71).
If the cargo vector a is chosen so that each element is

larger than the sum of the preceding elements, it is called
superincreasing and its knapsack problem is particularly
simple. (In the special case where the components are 1, 2,
4, 8, etc., this is the elementary operation of binary
decomposition.) For example, if a'=(171, 197, 459, 1191,
2410) and S'-3798 then x must equal 1. If it were 0 then
even if x1, x2, x, and x were all equal to 1. the dot product
ax would be too small. Since x=1, S'-a's=3797-2410=
1387 must be a sum of a subset of the first four elements of
a'. The fact that 1387>a=1191 means that x too must equal
1. Finally S'-a'-a'-196=a' so x=0, x=1, and x=0.
The simple cargo vector a' cannot be used as a public

enciphering key because anyone can easily recover a vector
x for which x-a'-S" from a' and S'by the process described
above. The algorithm for generating keys therefore chooses
a random superincreasing cargo vectora' (with a hundred or
more components) and keeps this vector secret. It also
generates a random integer m, larger than Xa', and a random
integer w, relatively prime to m, whose inverse w' mod m
will be used in decryption. The public cargo vector or
enciphering key a is produced by multiplying each compo
nent of a' by w mod m

a=wa' modm.

Alice publishes a transposed version of a as her public
key, but keeps the transposition, the simple cargo vectora',
the multiplier w and its inverse, and the modulus m secret as
her private key.
When Bob wants to send the message x to Alice he

computes and sends

Because

S = wS modm

= wa, , modm
= w y (wa, modmyx, modm
= x. (wwa'; mod m)x, modm
=Xa', ; modm

when maya', Alice can use her secret information, w" and
m, to transformany message Sthat has been enciphered with
her public key into S'-w' x S and solve the easy knapsack
problem S'-a'-x to obtain x.

O

15

20

25

35

45

50

55

65

18
For example, for the secret vector a', above the values

w=2550 and m=8443, result in the public vector a-(5457.
4213,5316, 6013, 7439), which hides the structure present
in a'.

This process can be iterated to produce a sequence of
cargo vectors with more and more difficult knapsack prob
lems by using transformations (w m). (w m2), etc. The
overall transformation that results is not, in general, equiva
lent to any single (w, m) transformation.
The trap-door knapsack system does not lend itself readily

to the production of signatures because most elements S of
the ciphertext space {0sSsXa}, do not have inverse
images. This does not interfere with the use of the system for
sending private messages, but requires special adaptation for
signature application (71), (98). Merkle had great confidence
in even the single iteration knapsack system and posted a
note on his office offering a $100 reward to anyone who
could break it.
IV. The RSA System
Unknown to us at the time we wrote "New Directions"

were the three people who were to make the single most
spectacular contribution to public-key cryptography: Ronald
Rivest, Adi Shamir, and Leonard Adleman. Ron Rivest had
been a graduate student in computer science at Stanford
while I was working on proving the correctness of programs
at the Stanford Artificial Intelligence Laboratory. One of my
colleagues in that work was Zohar Manna, who shortly
returned to Israel and supervised the doctoral research of Adi
Shamir, at the Weitzman Institute. Len Adleman was a native
San Franciscan with both undergraduate and graduate
degrees from U.C. Berkeley. Despite this web of near
connections, not one of the three had previously crossed our
paths and their names were unfamiliar.
When the New Directions paper reached MIT in the fall

of 1976, the three took up the challenge of producing a
full-fledged public-key cryptosystem. The process lasted
several months during which Rivest proposed approaches,
Adleman attacked them, and Shamir recalls doing some of
each.

In May 1977 they were rewarded with success. After
investigating a number of possibilities, some of which were
later put forward by other researchers 67. 1, they had
discovered how a simple piece of classical number theory
could be made to solve the problem. The resulting paper 91
also introduced Alice and Bob, the first couple of cryptog
raphy 53).
The RSA cryptosystem is a block cipher in which the

plaintexts and ciphertexts are integers between 0 and N-1
for some N. It resembles the exponential key exchange
system described above in using exponentiation in modular
arithmetic for its enciphering and deciphering operations
but, unlike that system, RSA must do its arithmetic not over
prime numbers, but over composite ones.

Knowledge of plaintextM, a modulus N. and an exponent
e are sufficient to allow calculation of M mod N.
Exponentiation, however, is a one-way function with respect
to the extraction of roots as well as logarithms. Depending
on the characteristics of N.M. and e, it may be very difficult
to invert,
The RSA system makes use of the fact that finding large

(e.g., 200 digit) prime numbers is computationally easy, but
that factoring the product of two such numbers appears
computationally infeasible. Alice creates her secret and
public keys by selecting two very large prime numbers, P
and Q, at random, and multiplying them together to obtain
a bicomposite modulus N. She makes this product public
together with a suitably chosen enciphering exponent e, but
keeps the factors. P and Q secret.

Nintendo - Ancora Exh. 1003

5,724.425
19

The enciphering process of exponentiation modulo N can
be carried out by anyone who knows N, but only Alice, who
knows the factors of N. can reverse the process and decipher.
Using P and Q, Alice can compute the Euler totient

function c)(N), which counts the number of integers between
1 and N that are relatively prime to N and consequently
invertible in arithmetic modulo N. For a bicomposite num
ber this is

((N)-(P-1)(O-1).

The quantity ()(N) plays a critical role in Euler's theorem,
which says that for any number x that is invertible modulo
N (and for large N that is almost all of them)

(X(N =1 (mod N)

or slightly more generally

** = (mod N).

Using (b(N) Alice can calculate 60 a number d such that

er der (mod 4) (N))

which is equivalent to saying that
e x dek r p(N)+1.

When the cryptogram M mod N is raised to the power d the
result is

(M)-M-M**'s M (mod N)

the original plaintext M.
As a very small example, suppose P=17 and Q=31 are

chosen so that N=PQ=527 and O(N)=(P-1)(Q-1)=480. If
e=7 is chosen then d=343. (7x343=2401=5x480+1). And if
M=2 then

C=M mod N=2" mod 527=128.

Note again that only the public information (e.N) is required
for enciphering M. To decipher, the private key d is needed
to compute

M = Cimod N
= 1283 mod 527

- 128256 x 12864 x 1286 x 1284 x 1282 x 128 mod527
= 3.5 x 2.56x35 x 101 x 47 x 128 mod527
= 2 mod 527.

Just as the strength of the exponential key exchange
system is not known to be equivalent to the difficulty of
extracting discrete logarithms, the strength of RSA has not
been proven equivalent to factoring. There might be some
method of taking the eth root of M without calculating d
and thus without providing information sufficient to factor.
While at MIT in 1978, M. O. Rabin (86) produced a variant
of RSA. subsequently improved by Hugh Williams of the
University of Manitoba (113), that is equivalent to factoring.
Rivest and I have independently observed 38). 92).
however, that the precise equivalence Rabin has shown is a
two-edged sword.
V. THE McELIECE CODNG SCHEME

Within a short time yet another public-key system was to
appear, this due to Robert J. McEliece of the Jet Propulsion
Laboratory at CalTech 69. McEliece's system makes use
of the existence of a class of error correcting codes, the

O

15

20

25

30

35

45

50

55

65

20
Goppa codes, for which a fast decoding algorithm is known.
His idea was to construct a Goppa code and disguise it as a
general linear code, whose decoding problem is
NP-complete. There is a strong parallel here with the trap
door knapsack system in which a superincreasing cargo
vector, whose knapsack problem is simple to solve, is
disguised as a general cargo vector whose knapsack problem
is NP-complete.

In a knapsack system, the secret key consists of a super
increasing cargo vector v, together with the multiplier w and
the modulus m that disguise it; in McEliece's system, the
secret key consists of the generator matrix G for a Goppa
code together with a nonsingular matrix S and a permutation
matrix P that disguise it. The public key appears as the
encoding matrix G'=SGP of a general linear code.
To encode a data block u into a message x. Alice multi

plies it by Bob's public encoding matrix G' and adds a
locally generated noise block Z.

To decode, Bob multiplies the received message x by p',
decodes xp' to get a word in the Goppa code and
multiplies this by S' to recover Alice's data block.

McEliece's system has never achieved wide acceptance
and has probably never even been considered for implemen
tation in any real application. This may be because the public
keys are quite large, requiring on the order of a million bits;
it may be because the system entails substantial expansion of
the data; or it may be because McEliece's system bears a
frightening structural similarity to the knapsack systems
whose fate we shall discover shortly.
VI. THE FALL OF THE KNAPSACKS

Nineteen eighty-two was the most exciting time for
public-key cryptography since its spectacular first three
years. In March. Adi Shamir sent out a research announce
ment: He had broken the single iteration Merkle-Hellman
knapsack system (101. 102). By applying new results of
Lenstra at the Mathematische Centrum in Amsterdam,
Shamir had learned how to take a public cargo vector and
discover a w' and m' that would convert it back into a
superincreasing "secret" cargo vector-not necessarily the
same one the originator had used, but one that would suffice
for decrypting messages encrypted with the public cargo
Wector.

Shamir's original attack was narrow. It seemed that per
haps its only consequence would be to strengthen the
knapsack system by adding conditions to the construction
rules for avoiding the new attack. The first response of
Gustavus J. Simmons, whose work will dominate a later
section, was that he could avoid Shamir's attack without
even changing the cargo vector merely by a more careful
choice of w and m 16. He quickly learned, however, that
Shamir's approach could be extended to break a far larger
class of knapsack systems (16).

Crypto '82 revealed that several other people had contin
ued down the trail Shamir had blazed. Shamir himself had
reached the same conclusions. Andy Odlyzko and Jeff
Lagarias at Bell Labs were on the same track and Len
Adleman had not only devised an attack but programmed it
on an Apple II. The substance of the attacks will not be
treated here since it is central to another paper in this special
section (E. F. Brickell and A. M. Odlyzko "Cryptanalysis: A
Survey of Recent Results"). The events they engendered,
however, will.

I had the pleasure of chairing the cryptanalysis session at
Crypto '82 in which the various results were presented.
Ironically, at the time I accepted the invitation to organize
such a session, Shamir's announcement stood alone and
knapsack systems were only one of the topics to be dis

Nintendo - Ancora Exh. 1003

5,724.425
21

cussed. My original program ran into very bad luck, how
ever. Of the papers initially scheduled only Donald Davies's
talk on: "The Bombe at Bletchley Park," was actually
presented. Nonetheless, the lost papers were more than
replaced by presentations on various approaches to the
knapsack problem.

Last on the program were Len Adleman and his computer,
which had accepted a challenge on the first night of the
conference. The hour passed; various techniques for attack
ing knapsack systems with different characteristics were
heard; and the Apple II sat on the table waiting to reveal the
results of its labors. At last Adleman rose to speak mumbling
something self-deprecatingly about "the theory first, the
public humiliation later" and beginning to explain his work.
All the while the figure of Carl Nicolai moved silently in the
background setting up the computer and copying a sequence
of numbers from its screen onto a transparency. At last
another transparency was drawn from a sealed envelope and
the results placed side by side on the projector. They were
identical. The public humiliation was not Adleman's, it was
knapsack's.

Ralph Merkle was not present, but Marty Hellman, who
was, gamely arose to make a concession speech on their
behalf. Merkle, always one to put his money where his
mouth was, had long since paid Shamir the $100 in prize
money that he had placed on the table nearly six years
before.
The press wrote that knapsacks were dead. I was skeptical

but ventured that the results were sufficiently threatening
that I felt "nobody should entrust anything of great value to
a knapsack system unless he had a much deeper theory of
their functioning than was currently available." Nor was
Merkle's enthusiasm dampened. He promptly raised his bet
and offered $1000 to anyone who could break a multiple
iteration knapsack 72).

It took two years, but in the end, Merkle had to pay (42).
The money was finally claimed by Ernie Brickell in the
summer of 1984 when he announced the destruction of a
knapsack system offorty iterations and a hundred weights in
the cargo vector in about an hour of Cray-1 time 17). That
Fall I was forced to admit: "knapsacks are flat on their back."

Closely related techniques have also been applied to make
a dramatic reduction in the time needed to extract discrete
logarithms in fields of type GF(2"). This approach was
pioneered by Blake, Fuji-Hara. Vanstone, and Mullin in
Canada (10) and refined by Coppersmith in the U.S. 28). A
comprehensive survey of this field was given by Andy
Odlyzko at Eurocrypt 84 (79).
VI. EARLY RESPONSES TO PUBLIC KEY
A copy of the MIT report (90) on the RSA cryptosystem

was sent to Martin Gardner, Mathematical Games editor of
Scientific American, shortly after it was printed. Gardner
promptly published a column 48 based on his reading of
both the MIT report and "New Directions." Bearing the title:
“A New Kind of CryptosystemThat Would Take Millions of
Years to Break," it began a confusion that persists to this day
between the two directions explored by the "New Direc
tions" paper: public-key cryptography and the problem of
proving the security of cryptographic systems. More
significant. however, was the prestige that public-key cryp
tography got from being announced in the scientific world's
most prominent lay journal more than six months before its
appearance in the Communications of the ACM.
The excitement public-key cryptosystems provoked in the

popular and scientific press was not matched by correspond
ing acceptance in the cryptographic establishment, however.
In the same year that public-key cryptography was

O

15

20

25

30

35

45

50

55

65

22
discovered, the National Bureau of Standards, with the
support of the National Security Agency, proposed a con
ventional cryptographic system, designed by IBM, as a
federal Data Encryption Standard 44. Hellman and I criti
cized the proposal on the grounds that its key was too small
37, but manufacturers were gearing up to support the
proposed standard and our criticism was seen by many as an
attempt to disrupt the standards-making process to the
advantage of our own work. Public key in its turn was
attacked, in sales literature 74 and technical papers (76).
59 alike, more as though it were a competing product than
a recent research discovery. This, however, did not deter
NSA from claiming its share of the credit. Its director, in the
words of the Encyclopaedia Britannica 110. "pointed out
that two-key cryptography had been discovered at the
agency a decade earlier," though no evidence for this claim
was ever offered publicly.

Far from hurting public key, the attacks and counter
claims added to a ground swell of publicity that spread its
reputation far faster than publication in scientific journals
alone ever could. The criticism nonetheless bears careful
examination, because the field has been affected as much by
discoveries about how public key cryptosystems should be
used as by discoveries about how they can be built.

In viewing public-key cryptography as a new form of
cryptosystem rather than a new form of key management, I
set the stage for criticism on grounds of both security and
performance. Opponents were quick to point out that the
RSA system ran about one thousandth as fast as DES and
required keys about ten times as large. Although it had been
obvious from the beginning that the use of public-key
systems could be limited to exchanging keys for conven
tional cryptography, it was not immediately clear that this
was necessary. In this context, the proposal to build hybrid
systems 62 was hailed as a discovery in its own right.
At present, the convenient features of public-key crypto

systems are bought at the expense of speed. The fastest RSA
implementations run at only a few thousandbits per second,
while the fastest DES implementations run at many million.
It is generally desirable, therefore, to make use of a hybrid
in which the public-key systems are used only during key
management processes to establish shared keys for employ
ment with conventional systems.
No known theorem, however, says that a public-key

cryptosystem must be larger and slower than a conventional
one. The demonstrable restrictions mandate a larger mini
mum block size (though perhaps no larger than that of DES)
and preclude use in stream modes whose chunks are smaller
than this minimum. For a long time I felt that "high
efficiency" public-key systems would be discovered and
would supplant both current public key and conventional
systems in most applications. Using public-key systems
throughout, I argued, would yield a more uniform architec
ture with fewer components and would give the best pos
sible damage limitation in the event of a key distribution
center compromise (38. Most important, I thought, if only
one system were in use, only one certification study would
be required. As certification is the most fundamental and
most difficult problem in cryptography, this seemed to be
where the real savings lay.

In time I saw the folly of this view. Theorems or not, it
seemed silly to expect that adding a major new criterion to
the requirements for a cryptographic system could fail to
slow it down. The designer would always have more latitude
with systems that did not have to satisfy the public key
property and some of these would doubtless be faster. Even
more compelling was the realization that modes of operation

Nintendo - Ancora Exh. 1003

5,724.425
23

incompatible with the public-key property are essential in
many communication channels.
To date, the "high-efficiency public-key systems" that I

had hoped for have not appeared and the restriction of
public-key cryptography to key management and signature
applications is almost universally accepted. More funda
mental criticism focuses on whether public-key actually
makes any contribution to security, but, before examining
this criticism, we must undertake a more careful study of key
distribution mechanisms.
Key Management
The solution to the problem of key management using

conventional cryptography is for the network to provide a
key distribution center (KDC): a trusted network resource
that shares a key with each subscriber and uses these in a
bootstrap process to provide additional keys to the subscrib
ers as needed. When one subscriber wants to communicate
securely with another, he first contacts the KDC to obtain a
session key for use in that particular conversation.
Key distribution protocols vary widely depending on the

cost of messages, the availability of multiple simultaneous
connections, whether the subscribers have synchronized
clocks, and whether the KDC has authority not only to
facilitate, but to allow or prohibit, communications. The
following example is typical and makes use of an important
property of cryptographic authentication. Because a mes
sage altered by anyone who does not have the correct key
will fail when tested for authenticity, there is no loss of
security in receiving a message from the hands of a potential
opponent. In so doing, it introduces, in a conventional
context, the concept of a certificate-a cryptographically
authenticated message containing a cryptographic key-a
concept that plays a vital role in modern key management.

1) When Alice wants to call Bob, she first calls the KDC
and requests a key for communicating with Bob.

2) The KDC responds by sending Alice a pair of certifi
cates. Each contains a copy of the required session key,
one encrypted so that only Alice can read it and one so
that only Bob can read it.

3) When Alice calls Bob, she presents the proper certifi
cate as her introduction. Each of them decrypts the
appropriate certificate under the key that he shares with
the KDC and thereby gets access to the session key.

4) Alice and Bob can now communicate securely using
the session key.

Alice and Bob need not go through all of this procedure
on every call; they can instead save the certificates for later
use. Such cacheing of keys allows subscribers to avoid
calling the KDC every time they pick up the phone, but the
number of KDC calls is still proportional to the number of
distinct pairs of subscribers who want to communicate
securely. Afar more serious disadvantage of the arrangement
described above is that the subscribers must share the
secrecy of their keying information with the KDC and if it
is penetrated, they too will be compromised.
A big improvement in both economy and security can be

made by the use of public-key cryptography. A certificate
functions as a letter of introduction. In the protocol above.
Alice has obtained a letter that introduces her to Bob and
Bob alone. In a network using public-key encryption, she
can instead obtain a single certificate that introduces her to
any network subscriber 62.
What accounts for the difference? In a conventional

network, every subscriber shares a secret key with the KDC
and can only authenticate messages explicitly meant for
him. If one subscriber has the key needed to authenticate a
message meant for another subscriber, he will also be able

10

15

20

25

30

35

45

50

55

65

24
to create such a message and authentication fails. In a
public-key network, each subscriber has the public key of
the KDC and thus the capacity to authenticate any message
from the KDC, but no power to forge one.

Alice and Bob, each having obtained a certificate from the
KDC in advance of making any secure calls, communicate
with each other as follows:

1) Alice sends her certificate to Bob.
2) Bob sends his certificate to Alice.
3) Alice and Bob each check the KDC's signature on the

certificates they have received.
4) Alice and Bob can now communicate using the keys

contained in the certificates.
When making a call, there is no need to call the KDC and
little to be gained by cacheing the certificates. The added
security arises from the fact that the KDC is not privy to any
information that would enable it to spy on the subscribers.
The keys that the KDC dispenses are public keys and
messages encrypted with these can only be decrypted by
using the corresponding secret keys, to which the KDC has
O acCCSS.

The most carefully articulated attack came from Roger
Needham and Michael Schroeder (76), who compared con
ventional key distribution protocols with similar public-key
ones. They counted the numbers of messages required and
concluded that conventional cryptography was more effi
cient than public-key cryptography. Unfortunately, in this
analysis, they had ignored the fact that security was better
under the public-key protocol they presented than the con
ventional one.

In order to compromise a network that employs conven
tional cryptography, it suffices to corrupt the KDC. This
gives the intruders access to information sufficient for recov
ering the session keys used to encrypt past, present, and
perhaps future messages. These keys, together with infor
mation obtained from passive wiretaps, allow the penetra
tors of the KDC access to the contents of any message sent
on the system.
A public-key network presents the intruder with a much

more difficult problem. Even if the KDC has been corrupted
and its secret key is known to opponents, this information is
insufficient to read the traffic recorded by a passive wiretap.
The KDC's secret key is useful only for signing certificates
containing subscribers' public keys: it does not enable the
intruders to decrypt any subscriber traffic. To be able to gain
access to this traffic, the intruders must use their ability to
forge certificates as a way of tricking subscribers into
encrypting messages with phony public keys.

In order to spy on a call from Alice to Bob, opponents who
have discovered the secret key of the KDC must intercept
the message in which Alice sends Bob the certificate for her
public key and substitute one for a public key they have
manufactured themselves and whose corresponding secret
key is therefore known to them. This will enable them to
decrypt any message that Alice sends to Bob. If such a
misencrypted message actually reaches Bob, however, he
will be unable to decrypt it and may alert Alice to the error.
The opponents must therefore intercept Alice's messages,
decrypt them, and reencrypt them in Bob's public key in
order to maintain the deception. If the opponents want to
understand Bob's replies to Alice, they must go through the
same procedure with Bob, supplying him with a phony
public key for Alice and translating all the messages he
sends her.
The procedure above is cumbersome at best. Active

wiretaps are in principle detectable, and the number the
intruders must place in the net in order to maintain their

Nintendo - Ancora Exh. 1003

5,724.425
25

control, grows rapidly with the number of subscribers being
spied on. Over large portions of many networks-radio
broadcast networks, for example-the message deletions
essential to this scheme are extremely difficult. This forces
the opponents to place their taps very close to the targets and
recreates the circumstances of conventional wiretapping.
thereby denying the opponents precisely those advantages of
communications intelligence that make it so attractive.

It is worth observing that the use of a hybrid scheme
diminishes the gain in security a little because the intruder
does not need to control the channel after the session key has
been selected. This threat, however, can be countered,
without losing the advantages of a session key, by periodi
cally (and unpredictably) using the public keys to exchange
new session keys (40).

Public-key techniques also make it possible to conquer
another troubling problem of conventional cryptographic
security, the fact that compromised keys can be used to read
traffic taken at an earlier date. At the trial of Jerry Whitworth,
a spy who passed U.S. Navy keying information to the
Russians, the judge asked the prosecution's expert witness
27): "Why is it necessary to destroy yesterday's . . . key
... list if it's never going to be used again?" The witness
responded in shock: "A used key, Your Honor, is the most
critical key there is. If anyone can gain access to that, they
can read your communications."
The solution to this problem is to be found in a judicious

combination of exponential key exchange and digital
signatures, inherent in the operation of a secure telephone
currently under development at Bell-Northern Research
(41), 81) and intended for use on the Integrated Services
Digital Network.

Each ISDN secure phone has an operating secret-key/
public-key pair that has been negotiated with the network's
key management facility. The public-key portion is embod
ied in a certificate signed by the key management facility
along with such identifying information as its phone number
and location. In the call setup process that follows, the phone
uses this certificate to convey its public key to other phones.

1) The telephones perform an exponential key exchange
to generate session keys unique to the current phone
call. These keys are then used to encrypt all subsequent
transmissions in a conventional cryptosystem.

2) Having established an encrypted (though not yet
authenticated) channel, the phones begin exchanging
credentials. Each sends the other its public-key certifi
cate.

3) Each phone checks the signature on the certificate it has
received and extracts from it the other phone's public
key.

4) The phones now challenge each other to sign test
messages and check the signatures on the responses
using the public keys from the certificates.

Once the call setup is complete, each phone displays for its
user the identity of the phone with which it is in commu
nication.
The use of the exponential key exchange creates unique

session keys that exist only inside the phones and only for
the duration of the call. This provides a security guarantee
whose absence in conventional cryptography is at the heart
of many spy cases: once a call between uncompromised
ISDN secure phones is completed and the session keys are
destroyed, no compromise of the long term keys that still
reside in the phones will enable anyone to decrypt the
recording of the call. Using conventional key management
techniques, session keys are always derivable from a com
bination of long-term keying material and intercepted traffic.

10

5

20

25

30

35

45

50

55

65

26
If long-term conventional keys are ever compromised, all
communications, even those of earlier date, encrypted in
derived keys, are compromised as well.

In the late 1970s, a code clerk named Christopher Boyce,
who worked for a CIA-sponsored division of TRW. copied
keying material that was supposed to have been destroyed
and sold it to the Russians (66). More recently, Jerry
Whitworth did much the same thing in the communication
center of the Alameda Naval Air Station 8. The use of
exponential key exchange would have rendered such previ
ously used keys virtually worthless.

Another valuable ingredient of modern public-key tech
nology is the message digest. Implementing a digital signa
ture by encrypting the entire document to be signed with a
secret key has two disadvantages. Because public key sys
tems are slow, both the signature process (encrypting the
message with a secret key), and the verification process
(decrypting the message with a public key) are slow. There
is also another difficulty. If the signature process encrypts
the entire message, the recipient must retain the ciphertext
for however long the signed message is needed. In order to
make any use of it during this period, he must either save a
plaintext copy as well or repeatedly decrypt the ciphertext.
The solution to this problem seems first to have been

proposed by Donald Davies and Wyn Price of the National
Physical Laboratory in Teddington, England. They proposed
constructing a cryptographically compressed form or digest
of the message 33 and signing by encrypting this with the
secret key. In addition to its economies, this has the advan
tage of allowing the signature to be passed around indepen
dently of the message. This is often valuable in protocols in
which a portion of the message that is required in the
authentication process is not actually transmitted because it
is already known to both parties.
Most criticism of public-key cryptography came about

because public-key management has not always been seen
from the clear, certificate oriented, view described above.
When we first wrote about public key, we spoke either of
users looking in a public directory to find each other's keys
or simply of exchanging them in the course of communica
tion. The essential fact that each user had to authenticate any
public key he received was glossed over. Those with an
investment in traditional cryptography were not slow to
point out this oversight. Public-key cryptography was stig
matized as being weak on authentication and, although the
problems the critics saw have long been solved, the criticism
is heard to this day.
VI. APPLICATION AND IMPLEMENTATION

While arguments about the true worth of public-key
cryptography raged in the late 1970s, it came to the attention
of one person who had no doubt: Gustavus J. Simmons, head
of the mathematics department of Sandia National Labora
tories. Simmons was responsible for the mathematical
aspects of nuclear command and control and digital signa
tures were just what he needed. The applications were
limitless: A nuclear weapon could demand a digitally signed
order before it would arm itself; a badge admitting someone
to a sensitive area could bear a digitally signed description
of the person; a sensor monitoring compliance with a
nuclear test ban treaty could place a digital signature on the
information it reported. Sandia began immediately both to
develop the technology of public-key devices (108). 107.
89) and to study the strength of the proposed systems (105.
16). 34).
The application about which Simmons spoke most

frequently, test-ban monitoring by remote seismic observa
tories (106). is the subject of another paper in this special

Nintendo - Ancora Exh. 1003

5,724.425
27

section (G. J. Simmons. "How to Insure that Data Acquired
to Verify Treaty Compliance are Trustworthy"). If the United
States and the Soviet Union could put seismometers on each
other's territories and use these seismometers to monitor
each other's nuclear tests, the rather generous hundred and
fifty kiloton upper limit imposed on underground nuclear
testing by the Limited Nuclear Test Ban Treaty of 1963
could be tightened considerably-perhaps to ten kilotons or
even one kiloton. The problem is this: A monitoring nation
must assure itself that the host nation is not concealing tests
by tampering with the data from the monitor's observatories.
Conventional cryptographic authentication techniques can
solve this problem, but in the process create another. A host
nation wants to assure itself that the monitoring nation can
monitor only total yield and does not employ an instrument
package capable of detecting staging or other aspects of the
weapon not covered by the treaty. If the data from the remote
seismic observatory are encrypted, the host country cannot
tell what they contain.

Digital signatures provided a perfect solution. A digitally
signed message from a remote seismic observatory cannot
be altered by the host, but can be read. The host country can
assure itself that the observatory is not exceeding its author
ity by comparing the data transmitted with data from a
nearby observatory conforming to its own interpretation of
the treaty language.
The RSA system was the one best suited to signature

applications, so Sandia began building hardware to carry out
the RSA calculations. In 1979 it announced a board imple
mentation intended for the seismic monitoring application
106). This was later followed by work on both low- and
high-speed chips (89). 94).

Sandia was not the only hardware builder. Ron Rivest and
colleagues at MIT, ostensibly theoretical computer
scientists. learned to design hardware and produced a board
at approximately the same time as Sandia. The MIT board
would carry out an RSA encryption with a one hundred digit
modulus in about a twentieth of a second. It was adequate
"proof of concept" but too expensive for the commercial
applications Rivest had in mind.
No sooner was the board done that Rivest started studying

the recently popularized methods for designing large-scale
integrated circuits. The result was an experimental nMOS
chip that operated on approximately 500 bit numbers and
should have been capable of about three encryptions per
second 93). This chip was originally intended as a prototype
for commercial applications. As it happened, the chip was
never gotten to work correctly, and the appearance of a
commercially available RSA chip was to await the brilliant
work of Cylink corporation in the mid-1980s (31).
As the present decade dawned, public-key technology

began the transition from esoteric research to product devel
opment. Part of AT&T's response to a Carter Administration
initiative to improve the overall security of American
telecommunications, was to develop a specialized crypto
graphic device for protecting the Common Channel Inter
office Signaling (CCIS) on telephone trunks. The devices
were link encryptors that used exponential key exchange to
distribute DES keys (75). 16).

Although AT&T's system was widely used within its own
huge network, it was never made available as a commercial
product. At about the same time, however, Racal-Milgo
began producing the Datacryptor II, a link encryption device
that offered an RSA key exchange mode (87). One device
used exponential key exchange, the other RSA, but overall
function was quite similar. When the public-key option of
the Datacryptor is initialized, it manufactures a new RSA

10

15

25

30

35

45

50

55

65

28
key pair and communicates the public portion to the
Datacryptor at the other end of the line. The device that
receives this public key manufactures a DES key and sends
it to the first Datacryptor encrypted with RSA.
Unfortunately, the opportunity for sophisticated digital sig
nature based authentication that RSA makes possible was
missed.
Future Secure Voice System
As the early 1980s became the mid-1980s, public-key

cryptography finally achieved official, if nominally secret,
acceptance. In 1983, NSA began feasibility studies for a new
secure phone system. There was fewer than ten-thousand of
their then latest system the Secure Telephone Unit II or
STU-II and already the key distribution center for the
principal network was overloaded, with users often com
plaining of busy signals. At $12,000 or more apiece, ten
thousand STU-IIs may have been all the government could
afford, but it was hardly all the secure phones that were
needed. In its desire to protect far more than just explicitly
classified communications, NSA was dreaming of a million
phones, each able to talk to any of the others. They could not
have them all calling the key distribution center every day.
The system to be replaced employed electronic key dis

tribution that allowed the STU-II to bootstrap itself into
direct end-to-end encryption with a different key on every
call. When a STU-II made a secure call to a terminal with
which it did not share a key, it acquired one by calling a key
distribution center using a protocol similar to one described
earlier.

Although the STU-II seemed wonderful when first fielded
in the late seventies, it had some major shortcomings. Some
cacheing of keys was permitted, but calls to the KDC
entailed significant overhead. Worse. each network had to be
at a single clearance level. because there was no way for a
STU-II to inform the user of the clearance level of the phone
with which it was talking. These factors, as much as the high
price and large size, conspired against the feasibility of
building a really large STU-II network.
The STU-III is the size of a large conventional telephone

and, at about $3000 apiece, substantially cheaper than its
predecessor. It is equipped with a two-line display that, like
the display of the ISDN secure phone, provides information
to each party about the location, affiliation, and clearance of
the other. This allows one phone to be used for the protection
of information at various security levels. The phones are also
sufficiently tamper resistant that unlike earlier equipment,
the unkeyed instrument is unclassified. These elements will
permit the new systems to be made much more widely
available with projections of the number in use by the early
1990s running from half a million to three million 18). 43).
To make a secure call with a STU-III, the caller first

places an ordinary call to another STU-III, then inserts a
key-shaped device containing a cryptographic variable and
pushes a "go secure" button. After an approximately fifteen
second wait for cryptographic setup, each phone shows
information about the identity and clearance of the other
party on its display and the call can proceed.

In an unprecedented more. Walter Deeley, NSA's deputy
director for communications security, announced the STU
III or Future Secure Voice System in an exclusive interview
given to the New York Times (18. The objective of the new
system was primarily to provide secure voice and low-speed
data communications for the U.S. Defense Department and
its contractors. The interview did not say much about how it
was going to work, but gradually the word began to leakout.
The new system was using public key.
The new approach to key management was reported early

on 88 and one article 6 spoke of phones being “repro

Nintendo - Ancora Exh. 1003

5,724.425
29

grammed once a year by secure telephone link," a turn of
phrase strongly suggestive of a certificate passing protocol,
similar to that described earlier, that minimizes the need for
phones to talk to the key management center. Recent reports
have been more forthcoming, speaking of a key manage
ment system called FIREFLY that, 95 "evolved from
public key technology and is used to establish pair-wise
traffic encryption keys." Both this description and testimony
submitted to Congress by Lee Neuwirth of Cylink (78)
suggest a combination of key exchange and certificates
similar to that used in the ISDN secure phone and it is
plausible that FIREFLY too is based on exponentiation.

Three companies: AT&T, Motorola, and RCA are manu
facturing the instruments in interoperable versions, and GTE
is building the key management system. So far. contracts
have been issued for an initial 75,000 began in phones and
deliveries began in November 1987.
Current Commercial Products

Several companies dedicated to developing public-key
technology have been formed in the 1980s. All have been
established by academic cryptographers endeavoring to
exploit their discoveries commercially.
The first was RSA Data Security, founded by Rivest,

Shamir, and Adleman, the inventors of the RSA
cryptosystem, to exploit their patent on RSA and develop
products based on the new technology. RSA produces a
stand-alone software package called Mailsafe for encrypting
and signing electronic mail. It also makes the primitives of
this system available as a set of embeddable routines called
Bsafe that has been licensed to major software manufactur
ers 9.

Cylink Corporation of Sunnyvale, Calif., has chalked up
the most impressive engineering record in the public-key
field. Its first product was the CIDEC HS (32), (63), a
high-sped (1.544-Mbit) data encryptor for protecting DS1
telephone trunks. Like AT&T's CCIS encryptor, it uses
exponential key exchange to establish DES session keys
(77.

Cylink is also first to produce a commercially available
RSA chip (7), (31). The CY1024 is, despite its name, a 1028
bit exponential engine that can be cascaded to perform the
calculations for RSA encryptions on moduli more than
sixteen thousandbits long. A single CY1024 does a thousand
bit encryption in under half a second-both modulus size and
speed currently being sufficient for most applications.
The cryptography group at Waterloo University in

Ontario have brought the fruits of their labors to market
through a company called Cryptech. Their initial inroads
into the problem of extracting logarithms over finite fields
with 2" elements 10 made it necessary to employ larger
fields. This in turn inspired them to develop high-speed
exponentiation algorithms. The result is a system providing
both exponential key exchange and half megabit data
encryption with the same system 56.
IX. MULTIPLYING, FACTORING AND FINDING
PRIMES
The successes of the RSA system and of exponential key

exchange over prime fields have led to significant develop
ment in three areas: multiplying, factoring, and finding
prime numbers.

Factoring the modulus has remained the front runner
among attacks on the RSA system. As factoring has
improved, the modulus size required for security has more
than doubled, requiring the system's users to hunt for larger
and larger prime numbers in order to operate the system
securely. As the numbers grow larger, faster and faster
methods for doing modular arithmetic are required. The

10

5

20

25

30

35

45

50

55

65

30
result has been not only the development of a technical base
for public-key cryptography, but an inspiration and source of
support for number theory 61. 65).
Factoring

In addressing the question of how large the primes in the
RSA system should be, Rivest, Shamir, and Adleman's
original memo spoke of a number d such that: "determining
the prime factorization of a number n which is the product
of just two prime numbers of length d (in digits) is "com
putationally impossible'." When MIT/LCS/TM-82 first
appeared, it contained the statement "Choosing d=40 seems
to be satisfactory at present." In a second printing the
recommended value of d was changed to 50 and in a third
took a sharp leap to 100. This escalation is symbolic of the
direction of factoring in the late 1970s and early 1980s.

In 1975, the factoring of a 39 digit number 73 constituted
a landmark. The advent of the RSA system, however, was to
usher in a decade of rapid progress in this field. By the end
of that decade. numbers twice as long could be factored, if
not with ease, at least with hours of Cray-1 time 34). These
factorizations confirmed, by actual computer
implementation, the number theorists' predictions about
factoring speed.

Several factoring techniques of comparable performance
have become available in recent years 85. All factor, in
time, proportional to

Note
L(n) = e

a figure that has already been seen in connection with
discrete logarithms. The one that has been most widely
applied is called quadratic sieve factoring 34 and lends
itself well to machine implementation. One of factoring's
gurus, Marvin Wunderlich, gave a paper in 1983 (116) that
examined the way in which quadratic sieve factoring could
exploit parallel processing to factor a hundred digit number
in two months. In the same lecture, Wunderlich also
explained the importance of uniformity in factoring methods
applied in cryptanalysis. To be used in attacking RSA, a
factoring method must be uniform, at least over the class of
bicomposite numbers. If it is only applicable to numbers of
some particular form, as many methods used by number
theorists have been, the cryptographers will simply alter
their key production to avoid numbers of that form.
More recently, Carl Pomerance (85) has undertaken the

design of a modular machine employing custom chips and
specialized to factoring. The size of the numbers you can
factor is dependent on how much of such a machine you can
afford. He has begun building a $25,000 implementation that
he expects to factor 100 digit numbers in two weeks 96.
Ten million dollars worth of similar hardware would be able
to factor hundred and fifty digit numbers in a year, but
Pomerance's analysis does not stop there. Fixing one year as
a nominal upper limit on our patience with factoring any one
number, he is prepared to give a dollar estimate for factoring
a number of any size. For a two hundred digit number, often
considered unapproachable and a benchmark in judging
RSA systems, the figure is one hundred billion dollars. This
is a high price to be sure, but not beyond human grasp.
Prime Finding

Prime finding has followed a somewhat different course
from factoring. This is in part because there are probabilistic
techniques that identify primes with sufficient certainty to
satisfy all but perhaps the pickiest of RSA users and in part
because primality is not in itself a sufficient condition for
numbers to be acceptable as RSA factors.

Nintendo - Ancora Exh. 1003

5,724.425
31

Fermat's Little Theorem guarantees that if n is prime then
for all 0<b<n

b's 1(mod n)

and any number that exhibits this property for some b is said
to pass the pseudoprime test to base b. Composite numbers
that pass pseudoprime tests to all bases exist, but they are
rare and a number that passes several pseudoprime tests is
probably a prime.
The test can be refined by making use of the fact that if

n is an odd prime only the numbers 1 and -1 are square roots
of 1, whereas if n is the product of distinct odd primes, the
number of square roots of unity grows exponentially in the
number of factors. If the number n passes the pseudoprime
test to base b, it can be further examined to see if

g

b = 1 (mod n)

Tests of this kind are called strong pseudoprime tests to base
b and very few composite numbers that pass strong
pseudoprime tests to more than a few bases are known.

Although there has been extensive work in the past
decade on giving genuine proofs of primality 84), 2). 51),
the strong pseudoprime tests take care of the primality
aspect of choosing the factors of RSA moduli. Another
aspectarises from the fact that not all prime numbers are felt
to be equally good. In many RSA implementations, the
factors of the modulus are not random large primes p, but
large primes chosen for particular properties of the factors of
p-191), 52.
High-Speed Arithmetic
Because of the progress in factoring during the decade of

public-key's existence, the size of the numbers used in RSA
has grown steadily. In the early years, talk of hundred digit
moduli was common. One hundred digit numbers. 332 bits,
did not seem likely to be factored in the immediate future
and, with the available computing techniques, systems with
bigger moduli ran very slowly. Today, hundred digit num
bers seem only just out of reach and there is little discussion
of moduli smaller than 512 bits. Two hundred digits, 664
bits, is frequently mentioned, and Cylink has not only
chosen to make its chip a comfortable 1028 bits, but also to
allow up to sixteen chips to be used in cascade. If this
expansion has been pushed by advances in factoring, it has
been made possible by advances in arithmetic.
Most of the computation done both in encryption and

decryption and in the ancillary activity of manufacturing
keys is exponentiation and each exponentiation, in turn, is
made up of multiplications. Because, as discussed in the
section of exponential key exchange, numbers can be raised
to powers in a small number of operations by repeated
squaring, it is the speed of the underlying multiplication
operation that is crucial.

According to Rivest 94 multiplication on a fixed word
length processor takes time proportional to the square length
of the operands or O(k). If dedicated serial/parallel hard
ware is constructed for the purpose, this time can be reduced
to O(k). In this case, the number of gates required is also
proportional to the lengths of the operands, O(k). The fastest
implementations 15 run in time O(log k), but here the
hardware requirements grow sharply to O(k) gates.
X. DIRECTIONS IN PUBLIC-KEY RESEARCH

Public-key cryptography has followed a curious course.
In its first three years, three systems were invented. One was
broken; one has generally been considered impractical; and
the third reigns alone as the irreplaceable basis for a new

O

15

25

30

35

45

50

55

65

32
technology. Progress in producing new public-key crypto
systems is stymied as is the complementary problem of
proving the one system we have secure, or even of proving
it equivalent to factoring in a useful way.

Stymied though it may be in its central problems,
however, the theoretical side of public-key cryptography is
flourishing. This is perhaps because the public-key problem
changed the flavor of cryptography. It may be difficult to
produce good conventional cryptosystems, but the difficulty
is all below the surface. It is typically easier to construct a
transformation that appears to satisfy the requirements of
security than it is to show that a proposed system is no good.
The result is a long development cycle ill-suited to the give
and take of academic research. Systems that even appear to
exhibit the public-key property however, are difficult to find
and this sort of difficulty is something the theoretical com
puter scientists can get their teeth into. The early taste of
success that came with the development of RSA has inspired
the search for solutions to other seemingly paradoxical
problems and led to active exploration of a variety of new
cryptographic disciplines.

This is not to say that contemporary research is not
motivated by application. A constant caution in conventional
cryptography is that the strength of a cryptosystem in one
mode of operation does not guarantee its strength in another.
It is widely felt, for example, that a conventional block
cryptosystem such as DES is a suitable component with
which to implement other modes of operation, but no proofs
have been offered. This burdens anyone who chooses the
system as a building block with a separate certificational
examination of every configuration in which it is to be used.
One objective of research in public-key cryptography has
been to demonstrate the equivalence of many such second
ary cryptographic problems to those that define the strength
of the system. Substantial progress has been made in proving
that the strength of cryptographic protocols is equivalent to
the strength of the RSA system and that the protection
provided by RSA is uniform 4).

There is another sort of applied flavor to even the purest
of cryptographic research-a search for ways of transplant
ing our current social and business mechanisms to a world
in which communication is primarily telecommunication.
The digital signature was the first great success in this
direction, which can be characterized as asking: What can
we do with paper. pencil, coins, and handshakes that would
be hard to do without them. And, how can we do it without
them?

In 1977, I gave a talk on the problem of developing a
purely electronic analog of the registered mail receipt, in the
current topics session of the International Symposium on
Information Theory at Cornell. My message was
pessimistic, arguing for both the importance and the intrac
tability of the problem, but fortunately my pessimism was
premature. A year and a half later, the MIT group penned a
note entitled "Mental Poker" (99. It did not solve the
problem of receipts for registered mail, but did show how to
do something just as surprising: gamble over the telephone
in a way that prevented either party from cheating without
being discovered. This as it turned out was just the begin
ning.
To my delight, the problem of registered mail was redis

covered in Berkeley in 1982 as part of a larger category of
problems that could be solved by ping-pong protocols and
the emergence of this subject was one of the highlights of
Crypto '82 (20). Despite problems with protocols that were
either broken or impossibly expensive 55). progress has
been sufficient to provide hope that registered mail, contract
signing, and related problems will one day have practical
solutions.

Nintendo - Ancora Exh. 1003

5,724.425
33

In separate 1979 papers. G. R. Blakley at the University
of Texas and Adi Shamir at MIT (11). 100 opened yet
another direction of investigation: how secret information
can be divided among several people in such a way that any
k of them, but no fewer, can recover it. Although this field
of secret sharing, unlike that of ping-pong protocols
emerged full grown with probably correct and easily imple
mentable protocols, it has been the subject of continuing
examination (S. 26), 45. 5.

David Chaum, currently at the Center for Mathematics
and Computer Science in Amsterdam, has applied public
key technology to a particularly challenging set of problems
21, 22. In a society dominated by telecommunication and
computers, organizations ranging from credit bureaus to
government agencies can build up dossiers on private citi
zens by comparing notes on the credentials issued to the
citizens. This dossier building occurs without the citizens'
knowledge or consent and, at present, the only protection
against abuses of this power lies in legal regulation. Chaum
has developed technical ways of permitting an individual to
control the transfer of information about him from one
organization to another. Without action on the part of an
individual to whom credentials have been issued, no orga
nization is able to link the information it holds about the
individual with information in the databanks of any other
organization. Nonetheless, the systems guarantee that no
individual can forge organizational credentials. Chaum's
techniques address problems as diverse as preventing spies
from tracing messages through electronic mail networks
19). (24) and protecting the privacy of participants in
transactions with systems that recapture in electronic media
both the assurance and the anonymity of cash 21.
The work drawing most attention at present is probably

the field best known under the name of zero-knowledge
proofs (49), 50), though similar theories, based on different
assumptions about the capabilities of the participants, have
been developed independently 23, 13), 14). One of the
idea's originators. Silvio Micali at MIT, described it as “the
inverse of a digital signature." A zero-knowledge proof
permits Alice to demonstrate to Bob that she knows
something, but gives him no way of conveying this assur
ance to anybody else. In the original example, Alice con
vinced Bob that she knew how to color a map with three
colors, but gave him no information whatever about what the
coloring was.
The view that a zero-knowledge proof is the inverse of a

digital signature now seems ironic, because a form of
challenge and response authentication, applicable to the
signature problem, has become the best known outgrowth of
the field. In this system, the responder demonstrates to the
challenger his knowledge of a secret number, without
revealing any information about what the number is. Amos
Fiat and Adi Shamir have recently brought forth an identi
fication system of this sort, and announced a proof that
breaking it is equivalent to factoring 47.
A purist might respond to all this by saying that having

failed to solve the real problems in public-key cryptography,
cryptographers have turned aside to find other things about
which to write papers. It is a situation that has been seen
before in mathematics. At the end of the last century,
mathematical analysis ground to a halt against intractable
problems in Fourier Theory, differential equations, and com
plex analysis. What many mathematicians did with their
time while not solving the great problems was viewed with
scorn by critics who spoke of the development of point set
topology and abstract algebra as "soft mathematics." Only at
mid-century did it become clear what had happened. In the

10

15

20

25

30

35

45

50

55

65

34
abstractions a great hammer had been forged and through the
1950s and 1960s the classic problems began to fall under its
blows. Perhaps cryptography will be equally lucky,
XI. WHERE IS PUBLIC KEY GOING?

In just over ten years, public-key cryptography has gone
from a novel concept to a mainstay of cryptographic tech
nology. It is soon to be implemented in hundreds of thou
sands of secure telephones and efforts are under way to
apply the same mechanisms to data communications on a
similar scale (97. The outlook in the commercial world is
equally bright. As early as the fourth quarter of this year,
digital signatures may enter retail electronic funds transfer
technology in a British experiment with point of sale ter
minals (57). The demand for public key is exemplified by a
recent conference on Smart cards in Vienna, Austria 111,
where one question was heard over and over again: When
will we have an RSA card?
Now that it has achieved acceptance, public-key cryptog

raphy seems indispensable. In some ways, however, its
technological base is disturbingly narrow. With the excep
tion of the McEliece scheme and a cumbersome knapsack
system devised explicitly to resist the known attacks 25.
virtually all surviving public-key cryptosystems and most of
the more numerous signature systems employ exponentia
tion over products of primes. They are thus vulnerable to
breakthroughs in factoring or discrete logarithms. Key
exchange systems are slightly better off since they can use
the arithmetic of primes, prime products, or Galois fields
with 2" elements and are thus sensitive to progress on the
discrete logarithm problem only.
From the standpoint of conventional cryptography, with

its diversity of systems, the narrowness bespeaks a worri
some fragility. This worry, however, is mitigated by two
factors.
The operations on which public-key cryptography cur

rently depends-multiplying. exponentiating, and
factoring-are all fundamental arithmetic phenomena.
They have been the subject of intense mathematical
scrutiny for centuries and the increased attention that
has resulted from their use in public-key cryptosystems
has on balance enhanced rather than diminished our
confidence.

Our ability to carry out large arithmetic computations has
grown steadily and now permits us to implement our
systems with numbers sufficient in size to be vulnerable
only to a dramatic breakthrough in factoring,
logarithms, or root extraction.

It is even possible that RSA and exponential key exchange
will be with us indefinitely. The fundamental nature of
exponentiation makes both good candidates for eventual
proof of security and if complexity theory evolves to provide
convincing evidence of the strength of either, it will establish
a new paradigm for judging cryptographic mechanisms.
Even if new systems were faster and had smaller keys, the
current systems might never be superseded altogether.

Such proofs have yet to be found, however, and proposed
schemes are continually presented at the cryptographic
conferences (12), 114), 80). 30), 82). Approaches include
generalizing RSA to other rings and various attempts to
replace exponentials with polynomials, but in general they
have not fared well and some of their fates are discussed
elsewhere in this special section (E. F. Brickell and A. M.
Odlyzko "Cryptanalysis: A Survey of Recent Results"). So
far, the goal of improving on the performance of RSA
without decreasing its security has yet to be achieved.
An appealing idea that has been put forward by Stephen

Wolfram and studied by Papua Guam (54) is the use of

Nintendo - Ancora Exh. 1003

5,724.425
35

cellular automata. Guam's system is too new to have
received careful scrutiny and superficial examination sug
gests that it may suffer a weakness similar to one seen in
other cases 46. Even should this effort fail, however, the
cellular automaton approach is attractive. Cellular automata
differ from such widely accepted cryptographic mechanisms
as shift registers in that, even if they are invertible, it is not
possible to calculate the predecessor of an arbitrary state by
simply reversing the rule for finding the successor. This
makes them a viable vehicle for trap doors. Cellular
automata also lend themselves to study of the randomness
properties required of strong cryptographic systems 115.
What will be the outcome of such research? In an attempt

to foresee the future of cryptography in 1979, I wrote (39:
"Prospects for development of new and more efficient

public key cryptographic systems by the latter part of
the eighties are quite good. Public key cryptography is
more successful today than algebraic coding theory was
at the age of four. The major breakthroughs in that field
did not begin till the latter part of its first decade, but
then progressed rapidly. The similarity of the two fields
is reason for optimism that... public key cryptography
will follow a similar course.

Increasing use of the available public key systems in the
1980s will spread awareness of both their advantages
and the performance shortcomings of the early
examples. The research response to this awareness will
probably produce better public key systems in time for
use during the first half of the nineties."

My schedule was clearly too optimistic. If there are public
key cryptosystems with better performance or greater secu
rity waiting in the wings, they are proprietary systems that
have yet to make even their existence known. Other aspects
of the argument are closer to the mark, however. The use of
public-key cryptosystems has increased dramatically and
with it awareness of their advantages. Judicious use of
hybrid systems and improved arithmetic algorithms have
reduced the "performance shortcomings” to the status of a
nuisance in most applications and the biggest motivation for
seeking new systems today is probably the desire not to have
all our eggs in one basket. Unless the available systems
suffer a cryptanalytic disaster, moreover, the very success of
public-key cryptography will delay the introduction of new
ones until the equipment now going into the field becomes
outmoded for other reasons.

For a discipline just entering its teens, the position of
public-key cryptography should be seen not as a fragile, but
as a strong one.

REFERENCES

1) L. M. Adleman and R. L. Rivest, "How to break the
Lu-Lee (COMSAT) public key cryptosystem." MTT
Laboratory for Computer Science, Jul. 24, 1979.

(2) L. M. Adleman, C. Pomerance, and R. S. Rumley, "On
distinguishing prime numbers from composite numbers.”
Ann. Math., vol. 117. no. 2, pp. 173-206, 1983.

(3) A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design
and Analysis of Computer Algorithms. Reading, Mass.:
Addison-Wesley. 1974.

4. W. Alexi, B. Chor, O. Goldreich, and C. P. Schnor,
"RSA/Rabin bits are 4+1/(poly(log N)) secure,” in 25th
Annual IEEE Symp. on Foundations of Comp. Sci., pp.
449-457, 1984.

5 C. Asmuth and J. Blum, "A modular approach to key
safeguarding," IEEE Trans. Informat. Theory, vol. IT-29,
pp. 208-210, March 1983.

(6) "Contractors ready low-cost, secure telephone for 1987
service start." Aviat, Week Space Technol, pp. 114-115,
January 1986.

10

15

20

25

30

35

45

50

55

65

36
7. C. Barney, "Cypher chip makes key distribution a snap."
Electronics, Aug. 7, 1986.

8 J. Barron, Breaking the Ring. Boston, Mass.: Houghton
Mifflin, 1987.

(9) D. ben-Aaron, "Mailsafe signs, seals, and delivers files."
Information Week, pp. 19-22, Sep. 15, 1986.

10 I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A.
Vanstone. "Computing logarithms in finite fields of char
acteristic two." SIAM.J. Alg. Disc. Methods, vol. 5, no. 2,
pp. 276-285, June 1984.

11 G. R. Blakley, "Safeguarding cryptographic keys," in
National Computer Conf. pp. 313-317, 1979.

12 G. R. Blakley and D. Chaum. Eds. Advances in
Cryptology: Proceedings of Crypto '84. Berlin, Germany:
Springer-Verlag. 1985.

13] G. Brassard and C. Crépeau. "Non-transitive transfer of
confidence: A perfect Zero-knowledge interactive protocol
for SAT and beyond," in 27th Annual IEEE Symp. on the
Foundations of Comp. Sci., pp. 188-195, 1986.

14 G. Brassard, C. Crépeau, and D. Chaum, "Minimum
disclosure proofs of disclosure proofs of knowledge."
Center for Mathematics and Computer Science.
Amsterdam, Rep. PM-R8710, December 1987. (To
appear as an invited paper in J. Comput. Syst, Sci.)

15 E. F. Brickell, "A fast modular multiplication algorithm
with application to two key cryptography.” in Crypto '82
|20), pp. 51-60.

16 E. F. Brickell and G. J. Simmons, "A status report on
knapsack based public key cryptosystems." Congressus
Numerantium, vol.7. pp.3-72, 1983. The CCIS encryptor
is mentioned on pp. 4-5.

17 E. F. Brickell, "Breaking iteratedknapsacks." in Crypto
'8412, pp. 342-358.

18 D. Burnham, “NSA seeking 500,000 “secure'
telephones." The New York Times, Oct. 7, 1984.

19 D. L. Chaum, "Untraceable electronic mail, return
addresses, and digital pseudonyms." CACM. vol. 24, no.
2, pp. 84-88. February 1981.

20 D. Chaum, R. L. Rivest, and A. T. Sherman, Eds.
Advances in Cryptology, Proceedings of Crypto '82. New
York, N.Y.: Plenum, 1983.

(21) D. Chaum, "Security without identification: Transac
tion systems to make big brother obsolete." CACM, vol.
28, no. 10. pp. 1030-1044, October 1985.

22 D. Chaum and J. H. Evertse. "A secure and privacy
protecting protocol for transmitting personal information
between organizations," in Crypto '8680. pp. 118-167.

23 D. Chaum, "Demonstrating that a public predicate can
be satisfied without revealing any information about
how," in Crypto '8680. pp. 195-199.

(24) ----, "The dining cryptographers problem: Uncondi
tional sender untraceability." J. Cryptology, vol. 1, no. 1,
pp. 65–75, 1988.

(25) B. Chor and R. L. Rivest, "A knapsack type public-key
cryptosystem based on arithmetic in finite fields." in
Crypto '84 12, pp. 54-65.

26 B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch,
"Verifiable secret sharing and achieving simultaneity in
the presence of faults," in 26th Annual IEEE Symp. on the
Foundations of Comp. Sci., pp. 383-395, 1985.

27 Testimony of David Earl Clark at the trial of Jerry
Alfred Whitworth before Judge J. P. Vukasin, Jr., in the
U.S. District Court, Northern District of California, Mar.
25, 1986. Reported by V. Pella Balboni, pp. 111-1345.

28 D. Coppersmith, "Fast evaluation of logarithms in fields
of characteristic two." IEEE Trans. Informat. Theory, vol.
IT-30, pp. 587-594, 1984.

Nintendo - Ancora Exh. 1003

5,724.425
37

(29 D. Coppersmith, A. M. Odlyzko, and R. Schroeppel.
"Discrete logarithms in GF(p), "Algorithmica, vol 1, . pp.
1-16, 1986.

30 N. Cot and I. Ingemarsson. Eds. Advances in
Cryptology, Proceedings of EUROCRYPT '84. Berlin.
Germany: Springer-Verlag, 1985.

31 "Cidec-HS high speed DES encryption for digital
networks,” product description. Cylink Corporation,
Sunnyvale, Calif.

32) "Key management development package." product
description. Cylink Corporation. Sunnyvale, Calif.

(33) D. W. Davies and W. L. Price. "The applications of
digital signatures based on public key cryptosystems.”
National Physical Laboratory Rep. DNACS 39/80.
December 1980,

34 J. A. Davis, D. B. Holdridge, and G. J. Simmons.
"Status report on factoring (at the Sandia National
Laboratories)." in Euro-crypt 84(30), pp. 183-215.

(35 W. Diffie and M. E. Hellman. “Multiuser cryptographic
techniques," in Proc. Nat. Computer Conf. (New York,
N.Y.), pp. 109-112, Jun. 7-10, 1976.

36 -----, "New directions in cryptography." IEEE Trans
Informat. Theory, vol. IT-22, pp. 644-654, November
1976.

37 -----, "Exhaustive cryptanalysis of the NBS data
encryption standard." Computer, vol. 10, no. 6, pp. 74-84,
June 1977.

38 W. Diffie, "Conventional versus public key
cryptosystems," in 109, pp. 41-72. Rabin's system is
discussed on p. 70, the relative strength of conventional
and public-key distribution on pp. 64-66.

39) ----- ... "Cryptographic technology: Fifteen-year
forecast," in 109), pp. 301-327.

40 ----- , "Securing the DoD transmission control
protocol." in Crypto '85114), pp. 108-127.

(41) W. Diffie, L. Strawczynski, B. O'Higgins, and D. Steer,
"An ISDN secure telephone unit," in Proc. National
Communications Forum 1987, pp. 473–477.

42 E. Dolnick, "N. M. scientist cracks code, wins $1000, '
The Boston Globe, Nov. 6, 1984.

43 Electronic Industries Association, "Comsec and Com
pusec market study.” Jan. 14, 1987.

(44) Federal Register, "Encryption algorithm for computer
data protection.” vol. 40, no. 52, pp. 12134-12139, Mar.
17, 1975.

(45) P. Feldman, "A practical scheme for non-interactive
verifiable secret sharing.” in 28th Annual IEEE Symp. on
the Foundations of Comp. Sci., pp. 427-437, 1987.

(46) H. Fell and W. Diffie, "Analysis of a public key
approach based on polynomial substitution,” in Crypto
'85114). pp.108-127.

47 A. Fiat and A. Shamir, "How to prove yourself: Prac
tical solutions to identification and signature problems."
in Crypto '8680. pp. 186-212.

48) M. Gardner, "A new kind of cipher that would take
millions of years to break." Sci. Amer. pp. 120-124
(Mathematical Games), August 1977.

(49. O. Goldreich. S. Micali, and A. Wigderson, "Proofs that
yield nothing but their validity and a methodology of
cryptographic protocol design,” in 27th Annual IEEE
Conf. on the Foundations of Comp. Sci., pp. 174-187.
1986.

50 S. Goldwasser, S. Micali, and C. Rackoff, “Knowledge
complexity of interactive proofs," in 17th Symp. on the
Theory of Computing, pp. 291-304, 1985.

O

15

25

30

35

45

50

55

38
52) J. Gordon, "Strong primes are easy to find," in Euro
crypt 8430), pp. 215-223.

53-----, speech at the Zurich Seminar, 1984. In this lecture,
which has unfortunately never been published, Gordon
assembled the facts of Alice and Bob's precarious lives,
which had previously been available only as scattered
references in the literature.

54 P. Guam, “Cellular automaton public key
cryptosystem." Complex Systems. vol. 1. pp. 51-56, 1987.

55J. Hastad and A. Shamir, "The cryptographic security of
truncated linearly related variables." in 17th Symp. on
Theory of Computing, pp. 356-362,385.

(56) D. Helwig, "Coding chip devised in Waterloo." The
Globe and Mail, Jan. 1, 1987.

57. “National EFTPOS to use public key cryptography."
Information Security Monitor, vol. 2, no. 12, p. 1. Novem
ber 1987.

58) M. Ito, A. Saito, and T. Nishizeki, "Secret sharing
scheme realizing general access structure." in Globecom
'87, pp. 361-364, 1987.

(59 C. S. Kline and G. J. Popek. "Public key vs. conven
tional key encryption," in National Computer Conf.
1979.

60) D. Knuth, "Semi-numerical algorithms," in The Art of
Computer Programming, vol. 2, 2nd ed. Reading, Mass.:
Addison-Wesley, 1981, pp. 316-336.

61 N. Koblitz, A Course in Number Theory and Cryptog
raphy. New York, N.Y.: Springer-Verlag, 1987.

62) L. M. Kohnfelder, “Toward a practical public key
cryptosystem," Bachelors Thesis, MIT Dept. of Electrical
Engineering, May 1978.

I63) R. Kopeck, "T1 encryption plan protects data." PC
Week, Mar. 3, 1987.

64) J. Kowalchuk. B. P. Schanning, and S. Powers, "Com
munication privacy: Integration of public and secret key
cryptography,” in National Telecommunications Conf.
(Houston, Tex.), pp. 49.1.1-5, Nov. 30-Dec. 4, 1980.

(65) E. Kranakis, Primality and Cryptography. New York,
N.Y.: Wiley, 1986.

66) R. Lindsey, The Falcon and the Snowman. New York,
N.Y.: Simon and Schuster, 1979.

67. S. Lu and L. Lee, "A simple and effective public key
cryptosystem." Comsat Technical Rev. vol. 9, no. 1,
Spring 1979.

68 K. S. McCurley, "A key distribution system equivalent
to factoring." Department of Mathematics, University of
Southern California, Jun. 3, 1987.

69 R. J. McEliece, "A public key cryptosystem based on
algebraic coding theory," JPL DSN Progress Rep. 42-44.
pp. 114-116. January–February 1978.

70 R. Merkle, "Secure communication over insecure
channels." CACM, pp. 294-299, April 1978.

71) R.C. Merkle and M. E. Hellman, "Hiding information
and signatures in trap door knapsacks, " IEEE Trans.
Informat. Theory, vol. IT-24, pp. 525-30. September
1978.

72 R. Merkle, Letters to the Editor, Time Magazine, vol.
120, no. 20. p. 8, Nov. 15, 1982.

73) M.A. Morrison and J. Brillhart, "Amethod of factoring
and the factorization of F,” Math. Comp. vol. 29, pp.
18-205, 1975.

74) "Advanced techniques in network security." Motorola
Government Electronics Division, Scottsdale, Ariz., about
1977.

51 S. Goldwasser and J. Killian, "All primes can be 65 75 F. H. Myers. “A data link encryption system" in
quickly certified," in 18th Symp. on the Theory of
Computing, pp. 316-329, 1986.

National Telecommunications Conf. (Washington, D.C.),
pp. 4.5.1-4.5.8. Nov. 27-29, 1979.

Nintendo - Ancora Exh. 1003

5,724.425
39

76 R. M. Needham and M. D. Schroeder. “Using encryp
tion for authentication in large networks of computers."
CACM, vol. 21. pp. 993-999, December 1978.

77 L. Neuwirth, "A comparison of four key distribution
methods." Telecommunications, pp. 110-111, 114-115, 5
July 1986.

(78) "Statement of Lee Neuwirth of Cylink on HR145."
submitted to Congressional committees considering
HR145, February 1987.

79 A.M. Odlyzko, "Discrete logarithms in finite fields and
their cryptographic significance,” in Eurocrypt 8430).
pp. 225-314.

180 -----, Ed. Advances in Cryptology-CRYPTO '86.
Berlin, Germany: Springer-Verlag, 1987.

81) B. O'Higgins, W. Diffie, L. Strawczynski, and R. de
Hoog. "Encryption and ISDN-A natural fit,” in Interna- 15
tional Switching Symp. (Phoenix, Ariz.), pp. A11.4.1-7.
Mar. 16-20, 1987.

82) F. Pichler, Ed. Advances in Cryptology-Proceedings of
EUROCRYPT '85. Berlin, Germany: Springer-Verlag.
1986. 2O

83 S. C. Pohlig and M. E. Hellman, "An improved
algorithm for computing logarithms in GF(p) and its
cryptographic significance." IEEE Trans. Informat.
Theory, vol. IT-24, pp. 106-110. January 1978.

84 C. Pomerance, "Recent developments in primality 25
testing." The Mathematical Intelligence. vol. 3. no. 3, pp.
97-105, 1981.

85C. Pomerance, J. W. Smith, and R. Tuler. "A pipe-line
architecture for manufacturing large integers with the
quadratic sieve algorithm." to appear in a special issue on 30
cryptography of the SIAM J. Computing.

86. M. O. Rabin, "Digitalized signatures and public-key
functions as intractable as factorization." MTT Laboratory
for Computer Science, MIT/LCS/TR-212, January 1979.

87 "Datacryptor II, public key management option." 35
Racal-Milgo, Sunrise Fla., 1981.

88 "AT&T readying new spy-proof phone for big military
and civilian markets." The Report on AT&T, pp. 6-7. Jun.
2, 1986.

(89. R. F. Rieden, J. B. Snyder, R. J. Widman, and W. J. 40
Barnard, "A two-chip implementation of the RSA public
key encryption algorithm," in GOMAC (Government
Microcircuit Applications Conference). (Orlando, Fla.).
pp. 24-27, November 1982.

90) R. L. Rivest, A. Shamir, and L. Adleman, "On digital 45
signatures and public key cryptosystems." MIT Labora
tory for Computer Science, MIT/LCS/TR-212. January
1979.

91 ----- "A method for obtaining digital signatures and
public key cryptosystems." CACM. vol. 21, no. 2, pp. 50
120-126, February 1978.

(92 R. Rivest, personal communication with H. C. Williams
cited on p. 729 in 113).

93-----, "A description of a single-chip implementation of
the RSA cipher.” Lambda, vol 1. no. 3. pp. 14-18. Fall 55
1980.

94) -----, "RSA chips (past/present/future)," in Eurocrypt
'8430), pp. 159-165.

95 H. L. Rogers. "An overview of the caneware program."
paper 31, presented at the 3rd Annual Symp. on Physical/ 60
Electronic Security, Armed Forces Communications and
Electronics Association, Philadelphia Chapter, August
1987.

96) "Toward a new factoring record." Science News, p. 62,
Jan. 23, 1987. 65

97 "SDNS: A network on implementation," in 10th
National Computer Security Conf. (Baltimore, Md.), pp.

10

40
150-174. Sept. 21-24, 1987. Session containing six
papers on the Secure Data Network System.

98 A. Shamir, "A fast signature scheme." M.I.T. Labora
tory for Computer Science, Technical Memorandum,
MIT/LCS/TM-107, July 1978.

99 A. Shamir, R. L. Rivest, and L. M. Adleman, "Mental
poker." MIT Laboratory for Computer Science. Technical
Memorandum, MIT/LCS/TM-125. Jan. 29, 1979.

100 A. Shamir, "How to share a secret.” CACM, vol. 22.
no. 11. pp. 612-613, November 1979.

101 -----, "A polynomial time algorithm for breaking
Merkle-Hellman cryptosystems (extended abstract)."
Research announcement, preliminary draft. Applied
Mathematics. Weizmann Institute. Rehovot, Israel, Apr.
20, 1982. This paper appeared with a slightly different
title: "A polynomial time algorithm for breaking the basic
Merkle-Hellman cryptosystem (extended abstract)." in
Crypto '82 (20), pp. 279-288.

102 -----, "A polynomial time algorithm for breaking the
basic Merkle-Hellman cryptosystem." IEEE Trans. Infor
mat. Theory, vol. IT-30, no. 5, pp. 699-704, September
1984.

103 Z. Shmuely. "Composite Diffie-Hellman public-key
generating systems are hard to break." Computer Science
Department, Technion, Haifa, Israel, Technical Rep. 356,
February 1985.

104 R. Silver. "The computation of indices modulo P.”
Mitre Corporation, Working Paper WP-07062, p. 3. May
7, 1964.

105 G. J. Simmons and M. J. Norris. "Preliminary com
ments on the M.I.T. public key cryptosystem."
Cryptologia, vol. 1. pp. 406-414, October 1977.

106 G. J. Simmons. "Authentication without secrecy: A
secure communications problem uniquely solvable by
asymmetric encryption techniques." in IEEE EASCON
79 (Washington. DC), pp. 661-662. Oct. 9-11, 1979.

107 G.J. Simmons and M. J. Norris, “How to cipher faster
using redundant number systems.” Sandia National
Laboratories, SAND-80-1886. August 1980.

108 G. J. Simmons, "High speed arithmetic utilizing
redundant number systems," in National Telecommunica
tions Conf. (Houston,Tex.), pp. 49.3.1-2, Nov. 30-Dec.
4, 1980.

109) -----, Ed., Secure Communications and Asymmetric
Cryptosystems. AAAS Selected Symposium 69. Boulder,
CO: Westview Press, 1982.

110 - "Cryptology" in Encyclopaedia Britannica, 16th
Edition. Chicago, Ill.; Encyclopaedia Britannica, 1986,

pp. 913-924B.
111 Proceedings of Smart Card 2000, Vienna. Austria, Oct.
19-20, 1988.

112 M. V. Wilkes. Time-Sharing Computer Systems. New
York, N.Y.: American Elsevier, 1972,

113 H. C. Williams, "A modification of the RSA public
key cryptosystem," IEEE Trans. Informat. Theory, vol.
IT-26, no. 6, pp. 726-729, November 1980.

114) Eds. Advances in Cryptology-CRYPTO '85.
Berlin, Germany; Springer-Verlag, 1986.

115 S. Wolfram, “Cryptography with cellular automata.”
in Crypto '85114), pp. 429–432.

116 M. C. Wunderlich, "Recent advances in the design and
implementation of large integer factorization algorithms."
in 1983 Symp. on Security and Privacy, (Oakland, Calif.),
pp. 67-71. Apr. 25-27, 1983.

119) K. Yiu and K. Peterson, "A single-chip VLSI imple
mentation of the discrete exponential public key distri
bution system,” in GOMAC (Government Microcircuit

Nintendo - Ancora Exh. 1003

5,724.425
41

Applications Conference), (Orlando, Fla.), pp. 18-23.
November 1982.

Whitfield Diffie was born in Washington, DC. on Jun. 5,
1944. He received the B.S. degree in mathematics from the
Massachusetts Institute of Technology, Cambridge, Mass.,
in 1965.
While at Mitre Corporation from 1965 to 1969, he worked

with Carl Engelman in developing the Mathlab symbolic
mathematical manipulation system, later expanded at MIT
to become Macsyma. In 1969, he transferred to the Stanford
University Artificial Intelligence Laboratory to work with
John McCarthy on proof checking and proof of correctness
of programs. While there he also developed the compiler
adopted for the U.C. Irvine lisp system. In 1973. Diffie took
leave from Stanford and began his work on cryptography
while traveling around the U.S. He continued this work as a
graduate student under Martin Hellman at Stanford Univer
sity from 1975 through 1978. Since 1978. Diffie has been the
Manager of Secure Systems Research for Bell-Northern
Research. Mountain View, Calif. His most recent work has
been on key management protocols for telephones designed
to operate on the developing Integrated Services Digital
Network.

Manuscript received Jan. 19, 1988; revised Mar. 25, 1988.
The author is with Bell-Northern Research, Mountain View,
Calif. 94039, USA.
IEEE Log Number 8821645.
0.018-9219/88/O500-0560S01.00 (c) 1988 IEEE.

APPENDIX B

Designs, Codes and Cryptography, 2, 107-125
(1992)

(C) 1992 Kluwer Academic Publishers

Manufactured in the Netherlands

AUTHENTCATION AND AUTHENTICATED
KEY EXCHANGES

WHTFIELD DIFFE*
Sun Microsystems, 2550 Garcia Avenue. Mountain View,

Calif. 94043
PAUL C. WAN OORSCHOT AND MICHAEL J. WTENER

Bell-Northern Research, P.O. Box 3511 Station C,
Ottawa, Ontario KY 4H7 Canada
Communicated by S. A. Vanstone
Received Nov. 22, 1991. Revised Mar. 6, 1992.

Abstract. We discuss two-party mutual authentication
protocols providing authenticated key exchange, focusing
on those using asymmetric techniques. A simple, efficient
protocol referred to as the station-to-station (STS) protocol
is introduced, examined in detail, and considered in relation
to existing protocols. The definition of a secure protocol is
considered, and desirable characteristics of secure protocols
are discussed.
1. Introduction
The goal of an authentication protocol is to provide the

communicating parties with some assurance that they know
each other's true identities. In an authenticated key
exchange, there is the additional goal that the two parties end
up sharing a common key known only to them. This secret
key can then be used for some time thereafter to provide
privacy, data integrity, or both. In this paper, we discuss the
security of public-key based authentication protocols, with
and without an associated key exchange. We restrict our

5

10

15

20

25

30

35

45

50

55

65

42
attention to two-party mutual authentication, rather than
multi-party and one-way authentication protocols. We
assume that individual underlying cryptographic mecha
nisms are not vulnerable, and restrict our attention to attacks
on protocols themselves. An enemy (attacker, intruder,
adversary) can see all exchanged messages. can delete, alter,
inject, and redirect messages, can initiate communications
with another party, and can reuse messages from past
communications.
Much work has been done in recent years involving

identification and authentication schemes using asymmetric
techniques. Identity-based schemes, as introduced by
Shamir (29. rely on the existence of a trusted central
authority, that holds secret information from which other
secrets are generated and distributed to individual users
when those users join the system. Günther 15 has proposed
an identity-based protocol providing authenticated key
establishment, making use of the ideas of Diffie-Hellman
key exchange (9) and the ElGamal signature scheme (11.
The authentication is indirect and does not offer perfect
forward secrecy (see Section 4), although the latter can be
provided at the cost of incorporating an extra exchange of
Diffie-Hellman exponentials. Okamoto and Tanaka (22
have proposed an identity-based authenticated key estab
lishment protocol based on exponential key exchange and
RSA. They offer versions which provide both indirect and
direct authentication, although the latter as presented,
employs timestamps (Section 4), and some of the fields in
the exchange may be unnecessary or redundant. Interactive
identification protocols which provide proof of identity and
make use of ideas involving Zero-knowledge have been
proposed by Fiat and Shamir (12), and more efficient pro
tocols have been subsequently proposed by Guillou and
Quisquater 14 and Schnorr (28. among others. These
identification protocols differ from authenticated key
exchanges in that the former do not provide keys for use in
subsequent communications (e.g., for data integrity or data
confidentiality).
As has been pointed out by many others, 5, 7, 13),

19, 20, the design of cryptographic protocols in general,
and authentication protocols in particular, is extremely error
prone. The literature is filled with protocols that have been
found to contain security flaws ranging from minor to fatal
in severity. Furthermore, aside from security issues, it is a
concern in practice that many of the published protocols
contain redundancies or are inefficient with respect to the
number of communications required, the number of cryp
tographic operations required (implying high computational
demands), or the number and types of fields required in the
communicated messages. This motivates the search for
authentication protocols that are simple, require a minimum
number of communications, a small number of fields in each
message or token, and a small number of cryptographic
operations. These considerations motivate the present work
on public-key based protocols. Similar considerations moti
vated Bird et al. SI in their work on symmetric authenti
cation protocols, which helped focus our attention on the
idea of matching protocol runs (see Section 3). Our work
extends the definition of a secure protocol to public-key
based protocols with optional key exchange.
We are concerned with both authentication and key

exchange. It is now well accepted that these topics should be
considered jointly rather than separately 2). A protocol
providing authentication without key exchange is suscep
tible to an enemy who waits until authentication is complete
and then takes over one end of the communications line.
Such an attack is not precluded by a key exchange that is

Nintendo - Ancora Exh. 1003

5,724.425
43

independent of authentication. Key exchange should be
linked to authentication so that a party has assurances that an
exchanged key (which might be used to facilitate privacy or
integrity and thus keep authenticity alive) is in fact shared
with the authenticated party, and not an imposter. For these
reasons, it is essential to keep key exchange in mind in the
design and analysis of authentication protocols.

In the remainder of this paper. we first provide some
background regarding attacks on protocols, in an effort to
motivate and give context to what follows. We then proceed
with a definition of a secure protocol, and discuss charac
teristics that we consider desirable in an authentication
protocol. We introduce a protocol referred to as the station
to-station protocol. examine it in detail, and justify its
features. Some related protocols are discussed, and the
proposed protocol is considered in relation to these. We
conclude with a summary of principles we feel are important
in the design of authentication protocols.
2. Notation and Motivation

Before discussing protocols in more detail, we first define
some notation. For historical reasons, we give the two
parties involved the names Alice and Bob.

{ } Braces indicate a hash function. x, y is the result
when a hash function is applied to x concatenated with y.

sa Alice's secret key for a signature scheme. s(x) is
Alice's signature on X. sax} is Alice's signature on the
hashed version of x.

pa Alice's public key for a signature scheme. If the
signature scheme is a public-key cryptosystem, then we
define pix} and p(x) to be Alice's public key encryption
function with and without hashing.

Cert Alice's certificate, containing Alice's name (and
possibly other information), her public key, and a trusted
authority T's signature over this information. Cert=(Alice.
pa. s. Alice, p. . . .). Certa binds the name Alice to
the public key p. If Alice sends her certificate to Bob and
provides evidence that she knows the secret keys corre
sponding to p, then she has provided evidence to Bob that
she is in fact Alice.
E() Encryption using a symmetric cryptosystem with

key K.
To illustrate an attack on a protocol and motivate what

follows, consider the following simple (but flawed)
challenge-response protocol where Alice and Bob sign each
other's random number challenges.
Insecure simple challenge-response

Alice Bob
RA

--Ge.
CertB, sp(RA), RB

Certa, sa(RB) - S. Ge.

Alice begins by sending the random challenge R to Bob.
Bob responds with his certificate. his signature on Ra and a
random challenge R. Alice uses Bob's public key in Cert
to verify Bob's signature, and then responds with her
certificate and signature on R. Finally, Bob verifies Alice's
signature.
An enemy Eve can impersonate Alice in a communication

with Bob by passing Bob's challenge along to Alice:

5

15

20

25

30

35

45

50

55

65

44

Alice Eve Bob

- >
S Certe, sp(RE), RB

Eve now needs Alice's help
to sign RB.

RB

CertA, SA(RB), RA C

Eve now has the required
signature, drops this call,
and continues the call
with Bob

Certa, sa(RB) G

Eve begins by initiating the protocol with Bob. When Bob
sends the challenge to Eve, Eve initiates another instance of
the protocol with Alice and gets Alice to sign Bob's chal
lenge. Eve can then complete the authentication with Bob
and successfully impersonate Alice. The main problem here
is that the challenged party has no influence over what he
will sign. (As a general rule, it is better if both parties have
some influence over the quantity signed.) The challenger can
abuse this protocol to get a signature on any quantity he
chooses.
We now turn our attention to secure protocols.

3. Definition of a Secure Protocol
A particular instantiation of an authentication protocol is

referred to as a run. Before presenting a definition of a secure
protocol, we first consider the properties of what we con
sider to be a successful run. In a successful run, two
communicating parties, Alice and Bob, exchange a number
of messages at the end of which they have assurances of
each other's identities and furthermore, optionally share a
secret key known only to them. For every completed run.
each party either accepts or rejects the other's identity and
optionally an exchanged key. In a successful run, the run is
completed and both parties accept.

Property 1 of a successful run: Both Alice and Bob accept
each other's identities. If the authentication involves key
exchange, then they both accept the exchanged key also.
The second property of a successful run concerns the

records of a protocol run (assuming the participants had each
recorded the exchange). To proceed we require definitions
regarding the use of the work match when applied to records
of a run (a slightly different definition is given by Bird et al.
5).
Matching Messages: We say that a message from one

record matches a message from another if one record lists
the message as incoming the other record lists the message
as outgoing, and all fields of the message relevant to
authentication are the same in both records.
The qualification relevant to authentication is necessary to

allow individual messages to match even if they are not
bit-wise identical. The motivation here is that if a message
contains unsigned fields that are cryptographically irrelevant
to authentication, then discrepancies in such fields alone
should not preclude a message from meeting the definition
of matching.

Matching Records of Runs: We say that two records of a
run match if their messages can be partitioned into sets of
matching messages (each set containing one message from
each record), the messages originated by one participant

Nintendo - Ancora Exh. 1003

5,724.425
45

appear in the same order in both records, and the messages
originated by the other participant appear in the same order
in both records. For simplicity, we do not consider protocols
in which messages need not arrive in the order in which they
Were sent.

Note that messages originated by distinct participants do
not have to be in the same order with respect to each other.
This allows the case where messages in transit cross. In such
a case, each participant will record his own message as
having been sent before the crossing message is received.

Property 2 of a successful run: If Alice and Bob have
recorded the exchange, then their records of the run will
match.
We now distinguish between a successful run and a secure

run. To consider a run successful by any reasonable
definition, the run must be considered secure in the intuitive
sense. On the other hand, it is possible for a run to be
unsuccessful even in the absence of security breaches (e.g.
if both legitimate parties reject for some reason). It is also
always possible that an enemy may delay a legitimate
message of a run indefinitely. Suppose that in a particular
run, Alice accepts Bob's identity, sends the last message of
the protocol to Bob, and then an enemy destroys this
message. Assuming Bob must receive this message before
accepting Alice's identity, Bob will not accept Alice's iden
tity. Intuitively, while this run is unsuccessful, there have
been no security breaches; at the time that Alice accepted
Bob's identity (before she sent the last message). Bob's
record of the partial run matched Alice's record. For our
purposes, such a denial of service attack in itself is not
considered a security breach; such problems often must be
dealt with by physical security and other techniques.
We are now in a position to define what it means for a run

of a (symmetric or asymmetric) mutual authentication pro
tocol to be insecure:
DEFINITION 1: A particular run of a protocol is an

insecure run if any party involved in the run, say Alice,
executes the protocol faithfully, accepts the identity of
another party, and either of the following conditions holds:
At the time that Alice accepts the other party's identity

(before she sends or receives a subsequent message),
the other party's record of the partial or full run does
not match Alice's record.

The exchanged key accepted by Alice is known to some
one other than the party whose identity Alice accepted.
(This condition does not apply to authentication with
out key exchange.)

Note that under this definition a conventional key
exchange protocol requiring a trusted third party (18 is not
SCC.

It should be clear that Alice's record, which must match
that of the other party in the above definition, is the actual
record she has at the point in time at which she has received
enough information to carry out any computations required
to reach the accept state: messages sent or received subse
quent to this are irrelevant.
The goal of the enemy is to cause a run to be insecure. The

goal of the designer of the protocol is to make the enemy's
task impossible (or computationally infeasible) in all
instances. Reversing Definition 1, we get a definition of a
secure (symmetric or asymmetric) mutual authentication
protocol:
DEFINITION 2: A secure protocol is a protocol for which

the following conditions hold in all cases where one party,
say Alice, executes the protocol faithfully and accepts the
identity of another party:
At the time that Alice accepts the other party's identity

(before she sends or receives a subsequent message),

10

5

20

25

35

45

50

55

65

46
the other party's record of the
matches Alice's record.

It is computationally infeasible for the exchanged key if
accepted by Alice to be recovered by anyone other than
Alice and possibly the party whose identity Alice
accepted. (This condition does not apply to authenti
cation without key exchange.)

By themselves, the above definitions are not particularly
helpful in deciding whether a given protocol is secure, in
that they do not lead to constructive procedures to either
verify or expose weaknesses of a protocol. Nonetheless,
these definitions can be applied directly in deciding whether
a given potential attack is a real attack. For example, in an
authentication with key exchange, suppose an enemy merely
intercepts Alice's and Bob's messages and then passes them
along unchanged. Intuitively, the enemy has not compro
mised the system in this case; the parties have accepted each
other's identities, have matching records of the run, and
exclusively share a secret key. Note that by Definition 1.
such a run is not insecure. In other cases a Supposed attack
may become quite convoluted, and it may not be obvious
that the attack amounts to just passing along messages.
Definition 1 can be used to distinguish such a pass-along
nonattack. In Section 5, this definition serves well in iden
tifying real attacks; in particular, the second condition,
which appears trivial, is essential.
While formal analysis techniques have been successfully

used to uncover weaknesses in some authentication proto
cols (see Section 6), proof of correctness is more difficult,
and depends heavily on proper modelling of goals and
assumptions. Another technique available for uncovering
weaknesses is that of exhaustive search with respect to
interleaving attacks S. Unfortunately, since there are as yet
no absolute proofs of correctness, confidence in a protocol
develops only over time as experts conduct a continuing
analysis of the protocol and fail to find flaws.
4. Desirable Protocol Characteristics

In addition to being secure, there are other desirable
characteristics for a protocol.

Perfect Forward Secrecy. An authenticated key exchange
protocol provides perfect forward secrecy if disclosure of
long-term secret keying material does not compromise the
secrecy of the exchanged keys from earlier runs. The prop
erty of perfect forward secrecy does not apply to authenti
cation without key exchange.

Direct Authentication. In some authenticated key
exchange protocols, authentication is not complete until
both parties prove knowledge of the shared secret key by
using it in subsequent communications. Such a protocol is
called indirect. When authentication is established by the
end of each protocol run, the protocol is direct. An indirect
protocol can be modified to be direct by adding an exchange
of known messages or messages with redundancy encrypted
with the exchanged key. For authentication without key
exchange, an indirect protocol provides no security because
neither party can accept the other's identity.
No Timestamps. While timestamps are convenient for

administrative and documentation purposes, it is desirable in
practice to avoid relying on their use for security in authen
tication protocols. Difficulties, precautions, and objections
to timestamps are well-documented in the literature 3. Sl
13). For convenience, we summarize the more notable
issues below.
To use timestamps for authentication, all parties must

maintain local clocks that are periodically synchronized in a
secure manner with a reliable source of time. Between
synchronizations with the reliable time source, local clocks

partial or full run

Nintendo - Ancora Exh. 1003

5,724.425
47

may drift. Two parties, Alice and Bob. must allow a time
window for timestamps to compensate for local clock drift
and the fact that messages take time to cross a network. Alice
will accept any timestamp from Bob that is within a window
around the time on Alice's local clock as long as Bob has not
used this particular time value before. Alice can either store
all time values used by all other parties that are within her
current window (which is impractical in some communica
tions environments) or she can store the latest time used by
each party and insist on strictly increasing time values from
each party. However, in the strictly increasing time values
case, if Bob uses a time t far into the future for some reason
(e.g., severe clock drift or improper synchronization with the
reliable time source), then Bob will not be able to commu
nicate with Alice until time t is within her window. To
prevent this problem. Alice would have to store time t and
not update her record of the latest time value used by Bob.
This could potentially lead to a choice among storing large
quantities of data, sacrificing communications availability,
or sacrificing security. Concerning communications
availability, if two parties' local clocks are too far out of
synchronization, then the parties cannot communicate. This
tends to make those concerned with communications avail
ability want wide time windows which increases storage
requirements. While timestamps are convenient from a
theoretical point of view, they present a number of practical
problems. Protocols based on random challenges do not
suffer from these difficulties.

Recently, formal analysis has been used in the verification
of authentication protocols 7. 13). Starting with a list of
initial formal beliefs, the objective is to logically derive the
stated protocol goal by consuming the list of protocol steps.
One of the basic assumptions on which such analysis is
typically based is that the parties involved have the ability to
check the freshness of timestamps. In fact, one of the main
results of the work by Gaarder and Snekkenes is the iden
tification of the security requirement that time clocks be
trustworthy in certain protocols. This means that in practice.
the security of timestamp-based protocols relies heavily on
the proper implementation of synchronized and secure time
clocks. Unfortunately, despite much discussion in the litera
ture regarding timestamp-based protocols (e.g., 8, 16),
when it comes to actually implementing such a protocol, the
significance of the security of time clocks is easily lost, and
furthermore, the costs associated with a proper implemen
tation can be significant.
5. Station-to-Station Protocol
We now introduce a simple, efficient authenticated key

exchange protocol called the station-to-station (STS) proto
col. The STS protocol has evolved over time; an early
version of this work was described at the 1987 International
Switching Symposium (21). We believe that it is secure
according to Definition 2 and has a number of other desir
able properties. In the remainder of this section, we describe
the protocol. discuss its properties. and justify its subtle
details by showing how variants of it are vulnerable.

5.1. Basic STS Protocol
The STS protocol consists of Diffie-Hellman key estab

lishment 9). followed by an exchange of authentication
signatures. In the basic version of the protocol, we assume
that the parameters used for the key establishment (i.e., the
specification of aparticular cyclic group and the correspond
ing primitive element o) are fixed and known to all users.
While we refer to the Diffie-Hellman operation as
exponentiation, implying that the underlying group is
multiplicative, the description applies equally well to addi
tive groups (e.g., the group of points of an elliptic curve over

10

15

25

30

35

45

50

55

65

48
a finite field). We also assume in this section that Alice
knows Bob's authentic public key, and vice versa; this
assumption is dropped in the following section.
The protocol begins with one party, Alice, creating a

random number x and sending the exponential of to the
other party, Bob (see diagram below). Bob creates a random
number y and uses Alice's exponential to compute the
exchange key K=o. Bob responds with the exponential O’
and a token consisting of his signature on the exponentials,
encrypted with K using a suitable symmetric encryption
algorithm E (i.e., E(so. O)). Alice computes K.
decrypts the token using K. and verifies Bob's signature
using Bob's public key. Alice sends to Bob her correspond
ing encrypted signature on the exponentials, E(sato, O’).
Finally, Bob similarly verifies Alice's encrypted signature
using K and Alice's public key. The security of the expo
nential key exchange relies on the apparent intractability of
the discrete logarithm problem 24).
Basic STS Protocol

Alice

-->
oy, Ex(so, ot) C S -
Ex(sao, ov) - A Ge.

Bob

It is possible to create a more symmetric version of this
protocol where the parties exchange exponentials first and
then exchange encrypted signatures in separate messages.
This would make it permissible for the exponential mes
sages to cross, and then the encrypted signature messages to
cross. In such a case, neither Alice nor Bob need know who
initiated the call. This is desirable, as situations exist in
practice (e.g., in both voice telephony and X.25 data
transfer) in which at certain implementation levels, it is not
known which party initiated a call. This explains why each
party forms his signature with his own exponential listed
first. If the exponentials were in the same order in both
signatures, then Alice and Bob would have to find a way to
agree on whose exponential should be listed first (such as by
basing the decision on which party initiated the call).
At this point, consider what assurances the STS protocol

provides to the participants. From Bob's point of view, as a
result of the Diffie-Hellman key exchange, he shares a key
known only to him and the other participant, who may or
may not be Alice. Our assumption in this section is that Bob
knows Alice's public key (this is achieved in the section
below through use of certificates). Because Alice has signed
the particular exponentials associated with this run, one of
which Bob himself has just created specifically for this run,
her signature is tied to this run of the protocol. By encrypting
her signature with K. Alice demonstrates to Bob that she was
the party who created x. This gives Bob assurance that the
party he carried the key exchange out with was, in fact,
Alice. Alice gets a similar set of assurances from Bob.
The STS protocol has the desirable characteristics dis

cussed in Section 4. Rather than using timestamps, chal
lenges are used. Because the parties demonstrate knowledge
of the exchanged key by encrypting their signatures, the
authentication is direct. The STS protocol also offers perfect
forward secrecy. The only long-term secret keying material
stored by users is their secret keys for the signature scheme.
If a secret key is compromised, the security of exchanged
keys from earlier runs is not affected because Diffie-Hellman
key exchange is used; Diffie-Hellman key exchange has no

Nintendo - Ancora Exh. 1003

5,724.425
49

long-term keying material. There are two other desirable
properties of the STS protocol. The first is that public key
techniques are used to make key management simpler and
more secure than is possible using conventional cryptogra
phy. If parties generate their own secret keys, these keys
need never be disclosed (to anyone, including any suppos
edly trusted party), even during initialization. The second is
that there is no need for communicating parties to contact a
central facility on a per-call basis. If certificates are used for
distributing public keys (see Section 5.2), once a party has
its own certificate and the trusted authority's public key, it
can exchange keys with, and authenticate other parties
without consulting a central facility. The protocol appears to
strike an elegant and difficult balance, being simple and
Secure without utilizing unnecessary or redundant elements,
To illustrate the need for the features of the STS protocol,

it is now demonstrated how the protocol is weakened when
the following modifications are made: removing the encryp
tion of the signatures, signing only one's own exponential.
signing only the other party's exponential, or uncoupling
authentication from key exchange.

Removing encryption on signatures. Consider a modified
STS protocol where the signatures on the exponentials are
not encrypted with the exchanged key K. Because the
exponentials are public information, any other party could
sign them as well. Suppose that in the last message of the
protocol, an enemy Eve substitutes her own signature on the
exponentials for Alice's signature. (If the parties exchange
public keys using certificates. Eve would have to substitute
her own certificate for Alice's certificate.) This may not
seem like a serious attack, as Eve does not know the
exchanged key. However, if Bob were a bank. Eve could get
credit for a deposit Alice might make, Interestingly, even
though Bob has been misled here. Alice is the party who may
be hurt.

Having informally discussed why the above run is
insecure, we now apply Definition 1. Bob executed the
protocol faithfully and accepted Eve's identity, but the
exchanged key is known to a different party, Alice. By
Definition 1, the run is insecure. Because an insecure run is
possible, the modified protocol is insecure.

Signing only one's own exponential. Consider the variant
of the STS protocol where each party signs only his own
exponential (i.e., Alice's encrypted signature is E(so})
and Bob's is E(so?}). We know of no general attack that
applies to this case, but there is an attack that applies when
the signature scheme is RSA26), the hash function is the
identity function, and Diffie-Hellman key exchange is car
ried out over GF(p). In this case. Eve can impersonate Alice
in a run with Bob by using x=0 as the exponent in the key
exchange. Eve's exponential is o'-1, and the exchanged key
is K=O'=1. Eve requires the following encrypted signature

Ex(sako') = E(sa1})
= E(sA(1)) because the hash function is

the identify function
E(1) because signing in RSA in

exponentiation and
1 = 1 for allz

Eve can compute E1(1), and hence can impersonate Alice.
Although this attack applies only to a specific case, it
illustrates a more general problem in signing only one's own
exponential: if Eve can obtain a quantity for which she can
acquire or compute the discrete logarithm, and can acquire
or compute Alice's signature on the quantity, then Eve can

10

15

25

35

45

50

55

65

SO
use (and reuse) this quantity as an exponential to imperson
ate Alice. By introducing the second exponential into the
data to be signed an adversary is forced to solve a different
instance of the problem in real time each time impersonation
is attempted.

Signing only the other party's exponential. Consider the
variant of the STS protocol where each party signs only the
other party's exponential (i.e., Alice's encrypted signature is
E(sako') and Bob's is E(so})). Again, we know of no
general attack which applies to this case, but there are some
COCCS.

In principle, it is imprudent to sign arbitrary text supplied
by a potential adversary. In the case at hand, in order for an
adversary to recover the signature, he would have to know
the key K. To compute K, the adversary would need to know
the discrete logarithm of the quantity being signed. While an
adversary would not in general know the logarithm of a
particular fixed quantity he might desire signed, it is trivial
to produce such quantities by preselecting logarithms, and it
would appear undesirable to allow an adversary the freedom
to acquire signatures on any quantities whose logarithms are
known.

In Section 5.3, it is shown that the STS protocol can be
reduced to an authentication-only protocol by replacing
exponentials with random numbers and removing the
encryption on the signatures. If each party were to sign only
the other party's exponential, then the authentication-only
variant would be subject to the attack on the simple
challenge-response outlined in Section 2. Similarly, signing
only one’s own exponential does not result in a protocol
which reduces to a secure authentication-only variation.

Note that even should it turn out that signing both
exponentials does not provide more security than simply
signing a single exponential, the only added cost in doing the
former is additional hashing, which in general is relatively
minor. No additional operations involving the signature
scheme, symmetric cryptosystem operations, or data trans
mission are introduced by signing both exponentials rather
than one only.

Uncoupling authentication from key exchange. If the STS
protocol is modified so that authentication is uncoupled from
key exchange by having the parties sign some quantity that
is independent of the exponentials, the resulting protocol is
subject to the classical intruder-in-the-middle attack (e.g.,
27) on Diffie-Hellman key exchange:

Alice Eve Bob

Ka = ory K= ory

Eve substitutes her own exponentials for Alice's and
Bob's exponentials. This results in Alice and Bob calculat
ing two different keys, both of which can be calculated by
Eve. Eve shares key K with Alice, and key K with Bob.
During the authentication phase of the run, Eve can pass
Alice's encrypted messages to Bob and vice versa by
decrypting the messages with one key and re-encrypting
with the other. After authentication. Eve is free to passively
eavesdrop or to inject her own messages. By Definition 1.
this modified protocol is insecure because while Alice
executed the protocol faithfully and accepted Bob's identity,
the exchanged key is shared with a different party. Eve.
There is a similar problem from Bob's point of view,

Nintendo - Ancora Exh. 1003

5,724.425
51

5.2. STS Protocol in Practice
We now describe the use of the STS protocol in practice,

for the specific case where the key exchange is carried out
in the multiplicative group of a finite field. For clarity, we
focus on prime fields GF(p). Two parameters are required
then for Diffie-Hellman key exchange: a primitive element
e in GF(p), and a suitable prime p. The prime p should be
chosen to preclude Pohlig-Hellman type attacks (25). In
light of recent work on the discrete logarithm problem (24)
for prime fields; 23 for fields of characteristic two), it is
prudent to use a distinct field for each user (i.e., for GF(p).
a distinct prime p. chosen by the user himself). The best
known attacks on Diffie-Hellman key exchange over finite
fields are the index-calculus techniques involving a massive
pre-computation which yields a database specific to a par
ticular field. The database then allows computation of indi
vidual logarithms in that field relatively quickly. If a single
field is used for an entire network, a single database allows
the compromise of all key exchanges-providing great
incentive to attempt to construct the database.
To facilitate the distribution of users' public keys and

user-specific Diffie-Hellman parameters, certificates may be
used. In addition to these items, a certificate should contain
the user's name and the signature of the trusted authority
over these data items. The reason for the inclusion of the (O.
p) pair in the certificate is explained below. The STS
protocol is then as follows. To avoid cluttering the formulae
the mod p reductions have been omitted.
STS Protocol in practice:

Alice Bob

- Ponop-e-
cy. Certe, Ex(spot, c)

C PSP -
Certa, Er(sac, cy}) - - G

Certa F (Alice, pa, O, p, s, Alice, pa (, p})

The differences here are as follows. Alice sends her
Diffie-Hellman parameters along in the first message; Bob
uses these instead of fixed network-wide parameters. Upon
receiving the third message, Bob verifies that the Diffie
Hellman parameters sent in the first message agree with
those actually in Alice's certificate. In the second message,
Bob sends Alice his certificate, from which Alice can extract
his authentic public key; Alice verifies authenticity by
checking the signature of the trusted authority on Bob's
certificate. Similarly, in the third message, Alice sends Bob
her certificate, allowing Bob to extract her authenticated
public key, after similarly verifying the trusted authority's
signature on her certificate. Note that Bob does not need
Alice's certificate until the third message, and in fact may
not wish to receive it earlier, since this may require having
to allocate storage to save the certificate until needed upon
receipt of the third message. A further reason for Alice to
delay sending her certificate until the third message is to
allow both Alice and Bob the option to encrypt their cer
tificates with the exchanged key. Although certificates are, in
theory, public information, it may be desirable in some
applications to prevent an eavesdropper from seeing them in
order to prevent a passive eavesdropper from learning Alice
and Bob's identities.

Note that knowledge of the other party's public key is not
required to construct and send or to receive and process the
first message. If the public key were required at this stage,
then introducing certificates would necessitate an additional
preliminary message to make the certificate available earlier.

10

15

20

25

30

35

45

50

55

65

52
As discussed in Section 5.1, it may be desirable in some

cases to allow both parties to send the initial message
simultaneously. In this case. some method must be used to
establish one of the parties as the dominant party (i.e., the
party whose C. p pair will be used). The nondominant party
would then continue the protocol with the second message.
An example of a simple method would be to choose the
party with the larger prime p to be dominant.

It is now shown that the protocol is weakened if Diffie
Hellman parameters are not included in certificates.
Removing Diffie-Hellman parameters from certificates.

Without Diffie-Hellman parameters in certificates, the
enemy. Eve, has the freedom to modify or and p in Alice's
first message. Let Alice's exponential be t-(or mod p).
Suppose that Eve changes C. to be 1 and p to be t-1 (see
diagram below). Then Bob's exponential is 1 mod (t–1) =1.
and Bob calculates the exchanged key to be t?’ mod (t-1)=1.
Alice calculates the exchanged key to be 1 mod p=1.
Because Eve does not modify the exchanged exponentials
and Alice and Bob calculate the same exchanged key, Alice
and Bob will accept each other's encrypted signatures.

Eve

o, p, to 1, t-1, t

1, CertB, E1(sp1, t)
C - A -

Certa, E1(salt, 1}) G

Alice Bob

Eve knows the exchanged key and after authentication,
she is free to both eavesdrop and inject her own messages.
Note that Alice and Bob accepted each other's identities, but
their records of the run do not match, and the exchanged key
is known to a third party; the modified protocol is thus
insecure by our definitions, as well as intuitively.

While it may appear that the above-described substitution
is trivial and easily detected by special checks, the potential
for compromise remains. More sophisticated or disguised
related attacks appear possible, including the possible use of
Pohlig-Hellman-weak primes. The fundamental concern is
that in order to rely on the believed intractability of the
Diffie-Hellman problem, it must be ensured that suitable
Diffie-Hellman parameters are in fact used.

5.3. Authentication-Only Version of STS Protocol
It is possible to turn the STS protocol into an

authentication-only protocol by replacing the exponentials
with random numbers and removing the encryption on
signatures:
Authentication-only STS Protocol

Alice Bob
Ra

- - G
Certs, R, Sp(RB, RA

C -
Certa, Sak Ra, R - T-Se

This simplified protocol is essentially the same as the
three-way authentication protocol currently proposed by
ISO 1). This is discussed further in the following section.
6. Discussion of Other Protocols
From the intruder-in-the-middle attack on unauthenti

cated Diffie-Hellman key exchange to spoofs in the spirit of

Nintendo - Ancora Exh. 1003

5,724.425
53

the well-known "grandmaster postal-chess" problem."
attacks on authentication protocols are numerous and well
documented in the literature. Burrows, Abadi and Needham
analyzed eight protocols and found six to contain
redundancies, and four to contain flaws 7, Table 1, includ
ing both redundancies and flaws in the CCITTX.509 mutual
authentication protocols (30). To get a flavor of the concerns
we have with many of the currently proposed protocols, we
briefly discuss two of the four protocols analyzed by Bur
rows et al.; Kerberos, and one of the X.509 protocols. We
also discuss a related ISO protocol.

Kerberos protocol. The popular Kerberos protocol (18.
based on symmetric cryptosystems, has several features
which make it somewhat undesirable in various applica
tions. These include the use of timestamps (discussed
earlier), the requirement of an on-line authentication server,
and redundancies in the protocol itself. These and further
issues are discussed by Bellowin and Merritt (3).

Three-pass CCITT X.509 authentication protocol. The
CCITTX.509 recommendation 30 is a very widely known
internationally standardized authentication protocol based
on public-key cryptography. The one and two-pass X.509
protocols require timestamps, while timestamps are redun
dant in the three-pass protocol; the specification allows that
the timestamp field may be zero in this latter case (making
the three-pass protocol practical, although it would be pref
erable if no field at all had to be allocated for timestamps).
Some concerns regarding the protocol are now summarized.
The final message of this protocol is Alice's signature on
both Bob's challenge and Bob's identity: s {R Bob}.
This allows Bob to obtain the signature of Alice on a
quantity over which Bob has control. This is undesirable,
although it is not clear how to use this to mount a direct
attack. A second concern involves the suggested use of the
optional encrypted data field in the protocol to accomplish
key exchange; this use does not guarantee perfect forward
secrecy. A further issue with the use of this field is that there
is no guarantee that the sender of the encrypted data actually
knows the encrypted data itself, and in fact an adversary can
pass off another party's encrypted data as his own (7), (13).
A third concern 17 is the restriction that the signature
system used must be capable of both signing and encrypting
data, which rules out many candidate signature schemes
including the proposed NIST Digital Signature Algorithm
10.
ISO three-way protocol. As noted in Section 5.3, the

authentication-only version of the STS protocol is essen
tially the same as the three-way protocol currently proposed
by ISO 1). The differences are that the ISO protocol allows
redundant copies of the random numbers, optional fields for
the identity of the intended recipient of a message, and
optional fields for arbitrary text. Due to limitations of
authentication-only protocols as discussed earlier, in most
applications it is expected that the key establishment func
tionality of the ISO protocol (provided by the optional text
fields both within and outside the signed portion of each
message) will be employed. Recalling the concern noted
above in X.509, care must be taken in the use of these fields;
furthermore, note that their use to transfer encrypted session
keys does not guarantee perfect forward secrecy.

Attack on a specific authentication protocol. To augment
the literature documenting attacks on specific protocols, and
to further emphasize how easily flaws can be introduced and
overlooked, we now consider the following (flawed) varia
tion of the ISO authentication exchange. In fact, this varia
tion was a preliminary version of the protocol. Here, Alice
is allowed to use a new random number RA in place of R

10

15

20

25

35

45

50

55

65

54
in the third message; R is then also sent along as an
additional cleartext field in the third message. In this modi
fied protocol, an enemy Eve can authenticate herself as Alice
to an unsuspecting party Bob as follows (see diagram
below). Eve call Bob, pretending to be Alice, sending a
challenge to Bob; Eve responds to Bob's counter-challenge
by calling Alice and getting her to respond correctly to the
challenge; Eve then drops the call with Alice and passes the
correct response along to Bob, thus completing the authen
tication from Bob's point of view. Note that the attack is
successful even if the identity of the intended recipient of
each message is incorporated within the signed portion of
each authentication token, as is optionally permissible in the
formal definition of the related ISO protocol. To emphasize
this, these principals' identities are included, and annotated
with asterisks, in the attack detailed below. For simplicity.
certificates are not shown.

Regarding other attacks documented in the literature, we
note that Bird et al. (5), Section 4) detail on attack on a
specific protocol. This is a specific case of the general class
of refection attacks in which a challenger is tricked into
providing answers to his own questions 19).

Alice Eve Bob

Choose Ra,
Send message to Bob
pretending to be Alice

-->
RB, Alice, spRB, RA, Alice'

C -
Use RB.

Send message to Alice
pretending to be Bob.

C-T-
Ra, Bob', saRA, RB, Bob - -G

Ra, Bob', saRA, RB Bob" - Se
Eve drops the call with Alice.

Now Bob believes that Eve is Alice.
The attack has succeeded.

7. Concluding Remarks
Below are some general principles that appear prudent to

follow in the design of authentication protocols. While many
of these have been previously observed, we find it conve
nient to collect them here.

1. Authentication and key exchange must be linked. If
authentication and key exchange are independent, then an
attacker could allow two parties to carry out authentication
unhindered, and could take over one party's role in key
exchange. This would allow the attacker to impersonate a
valid party after authentication and key exchange are com
pleted.

2. Asymmetry in a protocol is desirable. Symmetries in a
protocol should be used with caution, due to both the
possibility of reflection attacks, and attacks in which
responses from one party can be reused within a protocol. As
an obvious illustrative example, the authentication responses
of each of two parties should not be identical.

3. Messages within a particular protocol run should be
logically linked or chained in some manner, to prevent the
reuse of previous messages or the introduction of messages

Nintendo - Ancora Exh. 1003

5,724.425
55

from a parallel run. The objective here is to preclude replay
attacks and interleaving attacks. Messages should also be
linked to the current time frame (e.g. through incorporation
of recently generated random numbers). The specific attack
detailed in Section 6 is possible due to a lack of such
chaining of messages; similarly, the middleperson attack
discussed by Gengio et al. 4 is possible in protocols which
fail to address this principle.

4. A party carrying out a cryptographic operation (serving
as a signature) should be able to incorporate into the data
being operated on a reasonable amount of data which he
himself randomly selects. In other words, a protocol should
not require a party to carry out a cryptographic operation on
inputs which may be entirely under the control of an
adversary. This "add your own salt” principle is aimed at
preventing an adversary from obtaining responses to specific
questions he himself may not be able to answer. This should
also prevent so-called chosen-ciphertext attacks (L6, p. 27).
Related to this principle, we note the following principle
paraphrased from Moore 20, section II:

5. Valid signatures should result from the transformation
of a message from a message space that is a sparse subset of
the domain of the signature function. For example, requiring
redundancy, or some other expectation, in the data to be
signed, may thwart attacks whereby an adversary attempts to
forge new signatures by combining previously obtained
valid signatures. For the STS protocol, the hash function
selected to hash the exponentials should produce a result
smaller than the maximum size of input allowed to the
signature process, to allow redundancy to be added to the
hash result before signing.
The proposed station-to-station protocol satisfies the

above principles, as well as the desirable properties noted in
Section 4 (perfect forward secrecy, direct authentication, no
requirement of timestamps). Its compatibility with the
emerging ISO authentication protocol, and its ability to
provide key establishment within this framwork, add to its
appeal. Furthermore, the station-to-station protocol uses the
minimum number of messages required for a random
number-based challenge-response mutual authentication
(three), and requires only one signature generation, one
signature verification, and two encryption operations by
each party (with an additional signature verification if cer
tificates are used on a per-run basis to bind a user's identity
and public key).
Any appropriate signature scheme may be used in the STS

protocol. including the Digital Signature Algorithm (DSA)
recently proposed by NIST (10). For reasons of practical
efficiency, an obvious candidate signature scheme is RSA
26). Similarly, any appropriate symmetric encryption algo
rithm may be used. In some applications it may be desirable
to avoid the use of an encryption algorithm. One method to
consider for avoiding the need the need for an encryption
algorithm E is as follows: replace the encrypted signature
by a signature plus a message authentication code (MAC)
over the signature; i.e., replace E(s), where S=seto, or
(as in Section 5.1), by (s. M(s)), where M is a MAC with
key K. The receiving party would then verify both the
signature and the MAC over the signature. While allowing
one to avoid the requirement of an encrypt/decrypt capabil
ity (which e.g., both Kerberos and the X.509 protocols
require), a disadvantage of this approach is the additional
data transfer it entails.
Acknowledgments
The authors would like to thank their colleagues for their

support and ideas related to the protocols in question, and in
particular discussions with Carlisle Adams and Warwick
Ford.

5

10

15

20

25

30

35

45

50

55

65

56
Notes

* This work was done while Whitfield Diffie was with
Northern Telecom, Mountain View, Calif.

1. A novice who engages in two simultaneous chess
games with two distinct grandmasters, playing white pieces
in one game and black in the other, can take his opponents'
moves in each game and use them in the other to guarantee
himself either two draws or a win and a loss, and thereby
unfairly have his chess rating improved.

2. In an early version of X.509, the final message was
simply sR}; the recommendation has since been for
mally updated.

3. Note that use of RSA (26 in the obvious manner to
achieve key exchange similarly does not guarantee perfect
forward secrecy.

References

1. Information Technology-Security Techniques. Entity
Authentication Mechanisms-Part 3: Entity Authentica
tion Using a Public-Key Algorithm (CD9798-3), Novem
ber 1991 (ISO/IEC JTC1/SC27 Committee Draft #4).

2. Bauspiess, F. and Knobloch, H.-J. 1990. How to keep
authenticity alive in a computer network. Advances in
Cryptology-Eurocript 89, (J. J. Quisquater and J.
Vandewalle, eds.) Lecture Notes in Computer Science
434; 38-46, Berlin/New York: Springer-Verlag.

3. Bellowin, S. M. and Merritt, M. 1990. Limitations of the
Kerberos authentication system. ACM Computer Commu
nication Review 20 (5):119-132.

4. Bengio, S. Brassard, G. Desmedt. Y. G., Coutier, C.,
Quisquater, J.-J. 1991. Secure implementation of identi
fication system. J. Cryptology 4 (3):175-183.

5. Bird, R. Gopal, I. Herzberg, A. Janson. P. Kutten, S.
Molva, R., and Yung, M. Forthcoming. Systematic design
of two-party authentication protocols. Advances in
Cryptology-Crypto '91. Berlin/New York: Springer
Verlag.

6. Brassard. G. 1988. Modern Cryptology, Lecture Notes in
Computer Science 325. Berlin/New York: Springer Ver
lag.

7. Burrows, M., Abadi. M., and Needham, R. 1990. A logic
of authentication. ACM Transactions on Computer Sci
ences 8 (1):18-36.

8. Denning. D. E. and Sacco. G.M. 1981. Timestamps in key
distribution protocols. Comm, ACM 24 (8):533-536.

9. Diffie, W. and Hellman. M. E. 1976. New directions in
cryptography. IEEE Trans. Info. Theory IT-22
(6):644-654.

10. (proposed U.S. FIPS) Digital Signature Standard (DSS).
announced in Federal Register. vol. 56, no. 169 (Aug. 30.
1991), 42980-42982.

11. ElGamal, T. 1988. A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Trans. Info. Theory IT-31 (4):469-472.

12. Fiat, A. and Shamir. A. 1987. How to prove yourself:
practical solutions to identification and signature prob
lems. Advances in Cryptology-Crypto 86 (A. Odlyzko,
ec.). Lecture Notes in Computer Science 263:196-194,
Berlin/New York: Springer-Verlag.

13. Gaarder, K. and Snekkenes. E. 1991. Applying a formal
analysis technique to CCITT X.509 strong two-way
authentication protocol. J. Cryptology 3 (2):81-98.

14. Guillou, L. C.and Quisquater. J.-J. 1988. A practical
Zero-knowledge protocol fitted to security microprocess
ing minimizing both transaction and memory. Advances
in Cryptology-Eurocrypt '88. (C. G. Günther, (ed.).
Lecture Notes in Computer Science 330:123-128, Berlin/
New York: Springer-Verlag.

Nintendo - Ancora Exh. 1003

5,724.425
57

15. Gunther, C. G. 1990. An identity-based key-exchange
protocol. Advances in Cryptology-Eurocrypt 89. (J.-J.
Quisquater and J. Vanewalle, eds.). Lecture Notes in
Computer Science 434:29-37, Berlin/New York:Springer
Verlag.

16. Haber, S. and Stornetta, W. S. 1991. How to time-stamp
a digital document. J. Cryptology 3 (2):99-111.

17. I'Anson, C. and Michell, C. 1990. Security defects in
CCITT Recommendation X.509. The Directory Authen
tication Framework. Computer Communication Review
20 (2):30-34.

18. Kohl, J. and Neuman, B. C. 1991. The Kerberos network
authentication service. MIT Project Athena Version 5.

19. Mitchell, C. 1989. Limitations of challenge-response
entity authentication. Electronic Letters 25 (17):195-196.

20. Moore, J. H. 1988. Protocol failures in cryptosystems.
Proc. of the IEEE 76 (5):594-602.

21. O'Higgins, B. Diffie, W. Strawczynski, L. and de Hoog,
R. 1987. Encryption and ISDN-A Natural fit. In Proc.
1987 International Switching Symposium, Pheonix Ariz.
pp. A1141-7.

22. Okamoto, E. and Tanaka, K. 1989. Key distribution
system based on identification information. IEEE J.
Selected Areas in Comm. 7 (4):481-485.

23. Odlyzko, A. M. 1985. Discrete logarithms in finite fields
and their cryptographic significance. Advances in
Cryptology-Eurocrypt 84. (T. Beth, N. Cot and I.
Ingemarsson, eds.), Lecture Notes in Computer Science
209:224-314, Berlin/New York: Springer-Verlag.

24. LaMacchia, B. A. and Odlyzko, A. M. 1991. Computa
tion of discrete logarithms in prime fields. Designs, Codes
and Cryptography I (1):47-62.

25. Pohlig. S. C. and Hellman, M. 1978. An improved
algorithm for computing logarithms over GF(p) and its
cryptographic significance. IEEE Transactions on infor
nation. Theory T-24:106-110.

26. Rivest. R. L., Shamir, A. and Adleman. L. 1978. A
method for obtaining digital signatures and public-key
cryptosystems. Comm. ACM 21:120-126.

27. Rivest, R. L. and Shamir. A. 1984. How to expose an
eavesdropper. Comm. ACM 27 (4):383-395.

28. Schnorr, C.P. 1990, 1991. Efficient signature generation
by smart cards. J. Cryptology 4 (3):161-174; see also:
Efficient identification and signatures for smart cards.
Advances in Cryptology-Crypto 89, (G. Brassard, ed.),
Lecture Notes in Computer Science 435:239-251, Berlin/
New York: Springer-Verlag.

29. Shamir, A. 1985. Identity-based cryptosystems and sig
nature schemes. Advances in Cryptology-Crypto 84. (G.
R. Blakley and D. Chaum, ed.). Lecture Notes in Com
puter Science 196:47-53, Berlin/New York: Springer
Verlag.

30, CCITT Blue Book Recommendation X.509, The
Director-Authentication Framework, 1988. Geneva,
March 1988; amended by resolution of Defect 9594/016
(IQ 1991). Also ISO 9594-8.
I claim:
1. A computer-readable medium storing a data structure

for secure distribution of software from a distributor to a
recipient, said data structure comprising:

(a) a cryptographically secured representation of said
software, said cryptographically secured representation
having been secured by a first encryption key;

(b) a cryptographic certification, by a certifier, of a first
decryption key corresponding to said first encryption
key; and

(c) an identifier of said distributor; said cryptographically
secured representation, cryptographic certification and

5

O

5

25

30

35

40

45

50

55

65

58
identifier collectively defining a software passport
which enables said recipient thereof (i) to cryptographi
cally verify said first decryption key using a second,
preexisting decryption key unrelated to said distributor
and obtained by said recipient without specific knowl
edge of said certifier, and (ii) to cryptographically
verify said software using said verified first decryption
key.

2. The computer-readable medium of claim 1 wherein
said software passport includes said first decryption key.

3. The computer-readable medium of claim 2 wherein
said software includes a binary representation of a computer
program.

4. The computer-readable medium of claim 3 wherein
said software passport includes a validity date of said
computer program.

5. The computer-readable medium of claim 2 wherein
said first decryption key and said first encryption key are a
public-private cryptographic key pair.

6. The computer-readable medium of claim 5 wherein
said cryptographically secured representation includes a
message digest of at least a portion of said software, said
message digest having been encrypted with said first encryp
tion key,

7. The computer-readable medium of claim 2 wherein
said cryptographic certification is secured by a second
encryption key corresponding to said second decryption key,
and wherein said second keys are a private-public crypto
graphic key pair.

8. The computer-readable medium of claim 2 wherein
said cryptographic certification includes a message digest of
said first decryption key, said message digest having been
encrypted with said second encryption key.

9.The computer-readable medium of claim 2 wherein said
software has been encrypted.

10. The computer-readable medium of claim 9 wherein
said software is subject to intellectual property protection.

11. The computer-readable medium of claim 9 wherein
said sofaware is subject to an access fee.

12. The computer-readable medium of claim 2 wherein
said cryptographic certification includes said identifier.

13. The computer-readable medium of claim 2 wherein
said identifier includes information about said software.

14. The computer-readable medium of claim 2 wherein
said cryptographic certification includes a validity date
thereof.

15. The computer-readable medium of claim 1 wherein
said cryptographic certification represents an assurance of a
skill of said distributor by said certifier.

16. The computer-readable medium of claim 15 wherein
said first decryption key and said first encryption key are a
public-private cryptographic key pair.

17. The computer-readable medium of claim 16 wherein
said cryptographically secured representation includes a
message digest of at least a portion of said software, said
message digest having been encrypted with said first encryp
tion key.

18. The computer-readable medium of claim 15 wherein
said cryptographic certification is secured by a second
encryption key corresponding to said second decryption key.
and wherein said second keys are a private-public crypto
graphic key pair.

19. The computer-readable medium of claim 18 wherein
said cryptographic certification includes a message digest of
said first decryption key, said message digest having been
encrypted with said second encryption key.

20. The computer-readable medium of claim 15 wherein
said software has been encrypted.

Nintendo - Ancora Exh. 1003

5,724.425
59

21. The computer-readable medium of claim 1 wherein
said second decryption key is stored at a computing platform
of said recipient, and where said certifier is a provider of
least a portion of said computing platform.

22. The computer-readable medium of claim 21 wherein
said second decryption key is a public key of said platform
provider and where said first decryption key and said first
encryption key are a public-private cryptographic key pair.

23. A method for secure software distribution from a
distributor to a recipient comprising the steps of:

(a) receiving, at a recipient's location, a plurality of
elements including:
(i) software;
(ii) a cryptographically secured representation of said

software, said cryptographically secured representa
tion having been secured by a first encryption key;

(iii) an identifier of said distributor; and
(iv) a cryptographic certification, by a certifier, of a first

decryption key corresponding to said first encryption
key;

said received elements defining a software passport includ
ing at least elements (ii), (iii) and (iv); and

(b) cryptographically verifying said first decryption key
using a second, preexisting decryption key unrelated to
said distributor and obtained by said recipient without
specific knowledge of said certifier; and

(c) cryptographically verifying said software using said
verified first decryption key.

24. The method of claim 23 where said software passport
includes said first decryption key.

25. The method of claim 24 where said software includes
a binary representation of a computer program.

26. The method of claim 25 where said software passport
includes a validity date of said computer program, and
where said step of verifying said software includes checking
said validity date.

27. The method of claim 25 where said step of verifying
said software includes checking for the presence of said
cryptographically secured representation.

28. The method of claim 27 where said step of verifying
said software includes:

(a) decrypting said cryptographically secured representa
tion using said first decryption key to yield a first
message digest of at least a portion of said software;

(b) computing a second message digest on said at least a
portion of said received software; and

(c) comparing said first and second message digests.
29. The method of claim 25 where said step of verifying

said software includes checking for the presence of said
cryptographic certification.

30. The method of claim 29 where said step of verifying
said software includes:

(a) decrypting said cryptographic certification using said
second decryption key to yield a first message digest of
said first decryption key;

(b) computing a second message digest on said received
first decryption key; and comparing said first and
second message digests.

31. The method of claim 25 where said binary represen
tation of said computer program has been encrypted.

32. The method of claim31 where said computer program
is subject to intellectual property protection.

33. The method of claim32 where said computer program
is subject to an access fee.

34. The method of claim 24 where said identifier is
included in said cryptographic certification.

10

15

20

25

30

35

45

50

55

60

65

60
35. The method of claim 24 where said identifier includes

information about said software.
36. The method of claim 24 where said software passport

is received over a network.
37. The method of claim 24 where said cryptographic

certification includes a validity date thereof.
38. The method of claim 24 where said second decryption

key is stored at a computing platform of said recipient, and
where said certifier is a provider of at least a portion of said
computing platform.

39. The method of claim38 where said second decryption
key is a public key of said platform provider and where said
first decryption key and said first encryption key are a
public-private cryptographic key pair.

40. The method of claim 23 where said cryptographic
certification represents an assurance of a skill of said dis
tributor by said certifier.

41. The method of claim 40 where said step of verifying
said software includes checking for the presence of said
cryptographically secured representation.

42. The method of claim 41 where said step of verifying
said software includes:

(a) decrypting said cryptographically secured representa
tion using said first decryption key to yield a first
message digest of at least a portion of said software;

(b) computing a second message digest on said at least a
portion of said received software; and

(c) comparing said first and second message digests.
43. The method of claim 40 where said step of verifying

said software includes checking for the presence of said
cryptographic certification.

44. The method of claim 43 where said step of verifying
said software includes:

(a) decrypting said cryptographic certification using said
second decryption key to yield a first message digest of
said first decryption key;

(b) computing a second message digest on said received
first decryption key; and

(c) comparing said first and second message digests.
45. The method of claim 40 where said binary represen

tation of said computer program has been encrypted.
46. A method for licensing of a software distributor by a

certifier, comprising the steps of:
(a) receiving, at a certifier's location, an identifier of said

distributor;
(b) verifying a qualification of said distributor against a

predetermined licensing criterion; and
(c) performing a first cryptographic operation on said

identifier to produce a cryptographic certification of
said distributor;

(d) said cryptographic certification enabling crypto
graphic verification by a recipient thereof using a
preexisting decryption unrelated to said distributor, and
obtained by said recipient without specific knowledge
of said certifier.

47. The method of claim 46 where said identifier includes
a public key associated with said distributor.

48. The method of claim 47 where said step of performing
said first cryptographic operation includes:

(a) computing a message digest on said public key; and
(b) encrypting said message digest with an encryption key

corresponding to said preexisting decryption key.
49. The method of claim 47 where: (a) said preexisting

decryption key is pre-stored at a computing platform of a
recipient of said certification and (b) said certifier is a
provider of at least a portion of said platform.

Nintendo - Ancora Exh. 1003

5,724.425
61

50. A method for secure software distribution from a
distributor to a recipient, comprising the steps of:

(a) identifying software that is to be distributed to a
recipient;

(b) using a first encryption key to perform a first crypto
graphic operation on said software to form a crypto
graphically secured representation of said software;

(c) obtaining, from a certifier, a cryptographic certifica
tion of a first decryption key

corresponding to said first encryption key; and
(d) generating a software passport for said recipient, said

software passport including at least said cryptographi
cally secured representation. said cryptographic
certification, and an identifier of said distributor; where
said software passport enables said recipient thereof (i)
to cryptographically verify said first decryption key
using a second, preexisting decryption key unrelated to
said distributor and obtained without specific knowl
edge of said certifier, and (ii) to cryptographically
verify said software using said verified first decryption
key.

51. The method of claim 50 where said software passport
includes said first decryption key.

52. The method of claim 51 where said software includes
a binary representation of a compute program.

53. The method of claim 52 where said software passport
further includes a validity date of said computer program.

54. The method of claim 51 where said first decryption
key and said first encryption key are a public-private cryp
tographic key pair.

55. The method of claim 54 where said step of using a first
encryption key to perform a first cryptographic operation
includes:

(a) computing a message digest of at least a portion of said
software; and

(b) encrypting said message digest with said first crypto
graphic key.

56. The method of claim 51 where said cryptographic
certification is secured by a second encryption key corre
sponding to said second decryption key, and where said
second keys are a private-public cryptographic key pair.

57. The method of claim 56 where said cryptographic
certification includes a message digest of said first decryp
tion key, said message digest having been encrypted with a
second encryption key.

58, The method of claim 51 where said software has been
encrypted.

O

15

20

35

45

62
59. The method of claim 58 where said software is subject

to intellectual property protection.
60. The method of claim 58 where said software is subject

to an access fee.
61. The method of claim 51 where said step of obtaining

said cryptographic certification includes receiving said iden
tifier.

62. The method of claim 51 where said identifier includes
information about said software.

63. The method of claim 51 where said software passport
is received over a network.

64. The method of claim 51 where said cryptographic
certification includes a validity date thereof.

65. The method of claim 51 where said second decryption
key is stored at a computing platform of said recipient, and
where said certifier is a provider of at least a portion of said
computing platform.

66. The method of claim 65 where said second decryption
key is a public key of said platform provider and where said
first decryption key and said first encryption key are a
public-private cryptographic key pair.

67. The method of claim 50 where said cryptographic
certification represents an assurance of a skill of said dis
tributor by said certifier.

68. The method of claim 67 where said first decryption
key and said first encryption key are a public-private cryp
tographic key pair.

69. The method of claim 68 where said step of using a first
encryption key to perform a first cryptographic operation
includes:

(a) computing a message digest on at least a portion of
said software; and

(b) encrypting said message digest with said first encryp
tion key.

70. The method of claim 67 where said cryptographic
certification is secured by a second encryption key corre
sponding to said second decryption key, and where said
second keys are a public-private cryptographic pair.

71. The method of claim 70 where said cryptographic
certification includes a message digest of said first decryp
tion key, said message digest having been encrypted with
said second encryption key.

72. The method of claim 67 where said software has been
encrypted.

Nintendo - Ancora Exh. 1003

APPENDIX B-8

Nintendo - Ancora Exh. 1003

USOO6138236A

United States Patent (19) 11 Patent Number: 6,138,236
Mirov et al. (45) Date of Patent: *Oct. 24, 2000

54 METHOD AND APPARATUS FOR 5,481,612 1/1996 Campana et al. 380/25
FIRMWARE AUTHENTICATION 5.535,409 7/1996 Larvoire et al. 395/800

5,537,540 7/1996 Miller et al. 395/183.14
75 Inventors: Russell Norman Mirov, Los Altos; 5,586,327 12/1996 Bealkowski et al. 395/652

Gregory Charles Onufer, Sunnyvale, 5,621,796 4/1997 Davis et al. 380/24
both of Calif. 5,633,930 5/1997 Davis et al. 380/24

rr. A 5,643,086 7/1997 Alcornet al. 380/25 X
73 ASSignee: Sun Microsystems Inc., Palo Alto, 5,768,382 6/1998 Schneier et al. 380/23

* Notice: This patent issued on a continued pros Primary Examiner-Dieu-Minh T. Le ti lication filed under 37 CFR ecul1On applical Ion Illed under Attorney, Agent, or Firm-Park & Vaughan LLP 1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C. 57 ABSTRACT
154(a)(2).

An apparatus for firmware authentication and methods of
21 Appl. No.: 08/674,026 operating the same result in Software upgradability to firm
22 Filed: Jul. 1, 1996 ware without compromising the integrity of the firmware.

The apparatus for firmware authentication of a boot PROM
51 Int. Cl." G06F 11/30; H04L 9/00 comprises a Software programmable data Section having a
52 U.S. Cl. ... 713/200; 713/202 plurality of micro-code. An authentication Section having a
58 Field of Search 713/200, 201, hash generator configured to generate a data hash in

713/202, 155, 161, 180; 380/282, 281 response to the plurality of micro-code programmed in the
56) References Cited Software programmable data Section to authorize execution

of the plurality of micro-code of the data Section.
U.S. PATENT DOCUMENTS

5,448,045 9/1995 Clark 235/382 17 Claims, 4 Drawing Sheets

PUBLIC KEY 56 SIGNATURE

DECRYPTOR 54 57

HASH GENERATOR

UNSECURED 53

COMPARATOR MICRO-CODE
52 58

SECURED MICRO
CODE
51

45 55

Nintendo - Ancora Exh. 1003

U.S. Patent Oct. 24, 2000 Sheet 1 of 4 6,138,236

9

Nintendo - Ancora Exh. 1003

U.S. Patent Oct. 24, 2000 Sheet 2 of 4 6,138,236

18

PUBLIC KEY 56 SIGNATURE

DECRYPTOR 54 57

HASH GENERATOR

53 UNSECURED
COMPARATOR MICRO-CODE

52 58

SECURED MICRO
CODE
51

FIG. 2

Nintendo - Ancora Exh. 1003

U.S. Patent Oct. 24, 2000 Sheet 3 of 4

CALCULATE VERIFICATION
HASH FROMMICRO-CODE

62

OBTAIN PRIVATE KEY
64

ENCRYPT WITH PRIVATE KEY
AND VERIFICATION HASHTO

OBTAIN SIGNATURE
66

SAVE SIGNATURE
68

FIG. 3

6,138,236

Nintendo - Ancora Exh. 1003

U.S. Patent

ALERT USER, PROVIDE
RECOVERY OPTIONS

78

NO

Oct. 24, 2000 Sheet 4 of 4

GENERATE DATA HASH
FROM PROGRAMMED

UNSECURED MICRO-CODE
72

DECRYPT VERIFICATION
HASH WITH PUBLIC KEY

AND SIGNATURE
73

COMPARE VERIFICATION
HASH WITH DATA HASH

74

IF
VERIFICATION

HASH MATCHES DATA
HASH
75

FIG. 4

YES

EXECUTE MICRO-CODE OF
PROGRAMMABLE SECTION

77

6,138,236

Nintendo - Ancora Exh. 1003

6,138,236
1

METHOD AND APPARATUS FOR
FIRMWARE AUTHENTICATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to authentication of pro
grammed micro-code and more particularly to confirm the
integrity of programmable micro-code written in a memory
device.

2. Description of the Related Arts
Computer Systems during initial power up rely on a

Sequence of instructional routines which build on each
previously executed instructional routine until the computer
System is initialized. Micro-code, also referred to as firm
ware or boot code, is the first level of the instructional
routines that are executed when the computer System is
initially powered up. The micro-code Stored in non-volatile
memory devices Such as a memory IC (integrated circuit)
directs the computer System to certain boot blockS located
on a disk drive. As these boot blocks on the disk drive are
executed, Successively larger blocks of boot data are loaded
until finally the operating System, Such as an Unix or
Microsoft Windows of the computer system is loaded.

The micro-code for the initial boot up instructions of a
computer system is typically stored in a boot ROM (read
only memory) or boot PROM (programmable read only
memory). An example of a PROM is a flash PROM, often
referred to as flash memory. Needs arise when the micro
code for the initial boot up instructions requires updating.
Those computer systems having ROMs require new ROMs.
Replacing old ROMs with newly supplied ROMs is expen
Sive. Furthermore, the computer System has to be disas
Sembled to gain access to replace the ROMs.

In computer systems with boot PROMs that employ flash
technology, updating new micro-code entails accessing the
flash PROM using software and programming the flash
PROM with new micro-code. However, because the micro
code contained in the boot PROM is the first code that is
executed, reasons to limit programming access to the flash
PROM include: 1) inadvertent programming can cause the
computer System become completely inactive; 2) Security
Sensitive environments require that the micro-code be
tamper-proof to prevent Security risks. Thus, Safeguards are
currently in place to prevent modification of the boot
PROM.

These safeguards include using boot ROMs to store the
micro-code or Setting hardwire jumperS that prevent Soft
ware modification of boot PROMs. In order to modify the
micro-code, boot ROMs must be replaced with new boot
ROMs containing the updated micro-code. In the case of
boot PROMs, user intervention is required to manually
Switch the jumpers of the boot PROMs to enable program
ming access to the boot PROMs for the new micro-code. In
either case, user intervention is required to physically open
the computer System and make the necessary changes. The
changes range from the replacement of old boot ROMs with
new boot ROMs to changing jumper Settings of the flash
boot PROM to enable and disable programming of the flash
boot PROM. Thus, the safeguards require additional time
and effort from the users to implement modifications to the
micro-code. The process of providing upgrades to the micro
code programming is cumberSome and time-consuming.

Therefore, it is desirable to provide an apparatus for
authenticating firmware programmed in a boot PROM and
methods of operating the same that enable programming

15

25

35

40

45

50

55

60

65

2
access to the boot PROM without compromising the authen
ticity of the firmware that overcome the disadvantages of
disassembling the computer System.

SUMMARY OF THE INVENTION

The present invention provides an apparatus for firmware
authentication and methods for operating the same which
result in Software upgradability to firmware without com
promising the integrity of the firmware. The novel applica
tion for authentication offirmware is based on cryptography.
Thus, according to one aspect of the invention, a boot
PROM (programmable read only memory) having program
ming instructions for initiating a computer System is pro
Vided. A Software programmable data Section has a plurality
of micro-code. An authentication Section having a hash
generator generates a data hash in response to the plurality
of micro-code programmed in the Software programmable
data Section to authorize execution of the plurality of micro
code of the data Section.

According to another aspect of the invention, the Software
programmable data Section includes a predetermined digital
Signature, and the authentication Section includes a prede
termined public key and a decryptor which provides an
Verification hash in response to the predetermined Signature
and the public key. The authentication Section also includes
a comparator which compares the data hash with the Veri
fication hash to authenticate the plurality of micro-code of
the Software programmable data Section. If the data hash and
the verification hash do not match, a message alerts the user
of the mismatch indicating that the micro-code is not authen
ticated.

According to another aspect of the invention, the authen
tication Section includes a plurality of trusted micro-code
which initiates execution of the plurality of micro-code of
the Software programmable data Section in response to
proper authentication of the data hash. The proper authen
tication of the data hash by the authentication Section of the
plurality of trusted micro-code affords the plurality of micro
code programmed in the Software programmable data Sec
tion to a level of trusted code. Thus, the trusted code of the
Software programmable data Section can be used to authen
ticate another Set of downstream code that is executed
during the boot up Sequence for the computer System.

According to yet another aspect of the invention, the
Software programmable data Section includes a flash
memory which enables Software reprogramming of the
plurality of micro-code. Other programmable Storage medi
ums are also usable for the Storage of the micro-code. The
authentication section includes a ROM (read only memory)
that provides a base line for trusted code.
An apparatus and method for firmware authentication are

provided by authenticating the Software programmable data
Section of the boot PROM with a trusted ROM Section of the
boot PROM. The ability to provide software programma
bility of the boot PROM affords ease in upgradability that
Saves time, effort, and energy. Upgrading with newer Ver
sions of the boot PROM affords Support for new functions
and eliminates bugs and other inconsistencies that can
plague older versions of the boot PROM. Thus, the newer
boot PROMs provide for a smoother and more efficient
operating computer System.

Other aspects and advantages of the present invention can
be seen upon review of the figures, the detailed description,
and the claims which follow.

Nintendo - Ancora Exh. 1003

6,138,236
3

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 illustrates a system level block diagram of a
computer System;

FIG. 2 illustrates a block diagram of a flash PROM of the
computer System in accordance with the present invention;

FIG. 3 illustrates a flow diagram for generating a signa
ture in accordance with the present invention; and

FIG. 4 illustrates a flow diagram for authenticating unse
cured microcode of the programmable Section of the flash
PROM.

DETAILED DESCRIPTION OF THE
INVENTION

The invention will be described with respect to the
Figures in which FIG. 1 generally shows a simplified
computer system 10. The computer system 10 includes a
CPU (central processing unit) 12, display 14, hard disk 16
and a flash PROM (programmable read-only memory) 18.
The computer System 10 is for illustrative purposes as many
variations to the architecture of the computer System 10 are
available and known in the art. CPU bus 22 couples the CPU
12 to data bus 13. The CPU 12 includes a memory 15 which
stores instructions and data for processing by the CPU 12.
Disk drive bus 26 couples the disk drive 16 to the data bus
13. The disk drive 16 provides non-volatile data storage for
the computer system 10. Data transfers occur between the
CPU 12 and the disk drive 12 as the data is processed by
CPU 12. Display bus 24 couples the display 14 to the data
bus 13. The display 14 receives output data for display. The
display 14 includes a keyboard 17 coupled to the display via
cable 19. The keyboard 17 provides an user interface to
computer system 10. PROM bus 28 couples the flash PROM
18 to data bus 13. The flash PROM 18 includes initialization
instructions for the computer system 10.

During Start-up of the computer System 10, micro-code
instructions stored in the flash PROM 18 are executed. The
micro-code instructions include boot code that directs
execution of particular boot blocks of the hard disk 16. Once
the instructions contained in the boot blocks of the hard disk
16 are executed and loaded into the memory 15, higher level
instructions and code are executed and loaded into memory
15 such as operating systems for Windows 95, Unix, or
Macintosh based computers. The higher level instructions
and code may be executed from a network Server. Thus, in
an alternative embodiment, computer System 10 is one of a
number of computer Systems coupled to a network.

In a network, the computer System 10 may not include the
disk drive 16, as data transferS are through a network Server.
The network server includes wired network connections, RF
(radio frequency) network connections, and IR (infrared)
network connections. Other computer Systems include hand
held systems such as PDAS (Personal Data Assistants) and
computer Systems that include micro-code to initialize the
computer System.

FIG. 2 illustrates a block diagram of the flash PROM 18.
The flash PROM 18 is divided into two main sections: a
authentication section 45 and a programmable section 55.
The authentication section 45 is a ROM (read-only
memory). The micro-code instructions contained in the
authentication Section 45 are read-only. The micro-code
instructions contained in the programmable Section 55 are
re-writable. For example, the programmable section 55
includes a flash memory that is Software programmable with
new micro-code.

The authentication Section 45 authenticates the program
mable section 55 to verify that the micro-code instructions

15

25

35

40

45

50

55

60

65

4
which boot the computer system 10 are trusted because the
programmable Section 55 is Software programmable. The
authentication Section 45 includes a plurality of Secure
micro-code 51, a comparator 52, a hash generator 53, a
decryptor 54 and a public key 56. The unsecured section 55
includes a digital Signature 57 and a plurality of unsecured
micro-code 58.

During initialization of the computer system 10, the
Secure micro-code 51 of the authentication section 45
executes and directs the hash generator 53 to generate a data
hash of the unsecured micro-code 58 programmed in the
programmable section 55 of the flash PROM 18. The secure
micro-code 51 also directs the decryptor 54 to calculate a
verification hash. The decryptor applies the public key 56 of
the authentication section 45 and the digital signature 57 of
the programmable Section 55 and calculates the Verification
hash.
Once the verification hash and the data hash are

generated, the micro-code 51 directs the comparator 52 to
compare the verification hash with the data hash. If the
Verification hash matches the data hash, the unsecured
micro-code 55 is properly verified and permitted to execute.
If the comparison of the verification hash and the data hash
fails, the unsecured micro-code 58 is corrupted or had been
altered without proper authorization.

Public-key cryptography Verifies that the digital Signature
57 and the public key 56 decrypts to a verification hash
which matches the data hash of the micro-code programmed
in the programmable section 55 of the flash PROM 18. The
data hash generator 53 generates the data hash. A digital
signature 57 of the programmable section 55 is provided
when the programmable Section 55 is programmed. During
authorized programming of the programmable Section 55, an
initial hash from the authorized programming micro-code is
generated. Next, a proper digital Signature 57 is encrypted
from a Secret key and the initial hash of the authorized
programming micro-code 58 using public key cryptography
techniques. The proper digital Signature 57 and the autho
rized programming micro-code 58 are written to the pro
grammable section 55.
The authentication Section 45 of the flash PROM 18 is

initially programmed with the Secure micro-code 51, the
comparator 52, the hash generator 53, the decryptor 54, and
the public key 56. Whenever the computer system 10 is
initialized, the authentication section 45 verifies that the data
hash of the unsecured micro-code 58 matches the verifica
tion hash to ensure the integrity of the unsecured micro-code
58 and authenticate that the unsecured micro-code 58 had
not been altered. As the unsecured micro-code 58 of the
programmable section 55 is authenticated, the trust level of
the unsecured micro-code 58 is raised to a level of trusted.
Thus, the authenticated micro-code 58 can be used to
authenticate other initialization code down Stream in the
Start-up Sequence of the computer System 10.

FIG. 3 shows a flow diagram for generating a digital
signature 57 for the micro-code 58. The diagram begins with
generation of the verification hash from the micro-code 58
in Step 62. Next, the private key is obtained for the genera
tion of a verification hash from the micro-code 58 in step 64.
In Step 66, the verification hash is encrypted using public
key cryptography techniques and the private key to obtain
the digital signature 57. Finally, in step 68, the digital
signature 57 is programmed with the micro-code 58 to the
programmable section 55 of the flash PROM 18.

FIG. 4 shows a flow diagram for authenticating the
unsecured micro-code 58 of the programmable section 55.

Nintendo - Ancora Exh. 1003

6,138,236
S

The diagram begins with generation of the data hash from
the unsecured micro-code 58 contained in the programmable
section 55 in step 72. In step 73, the verification hash is
decrypted with the public key 56 contained in the authen
tication section 45 and the digital signature 57 contained in
the programmable section 55. Step 74 provides a compari
Son of the verification hash with the data hash. In decision
step 75, if the verification hash matches the data hash then
step 77 authorizes the execution of the micro-code 58
contained in the programmable Section 55. If in decision Step
75, the verification hash does not match the data hash; step
78 provides a message to the user that an error occurred
during authentication of the programmable Section 55 and
offers a recovery solution for the user to obtain valid
micro-code.

A flash PROM18 having an authentication section 45 and
a programmable Section 55 affords ease in updating the flash
PROM 18 with new micro-code without compromising
Security. Implementing public-key cryptography having a
private key and a public key to Verify the programmable
Section 55 with the authentication section 45 assures that the
programmable Section of the micro-code is proper and
authentic. The integrity of the unsecured micro-code 58 of
the programmable section 55 is also verified when the
verification hash matches the data hash. As the trust level of
the unsecured micro-code 58 is raised to a level of trusted,
other boot data Such as the boot blocks of the disk drive 16
used for initializing the computer System 10 can be similarly
authenticated using the now trusted micro-code 58 of the
programmable Section 55. Thus, a propagation of a Series of
Security checks during the boot-up Sequence can be imple
mented to ensure that each Sequence executeS properly
authenticated boot code
While the foregoing detailed description has described

Several embodiments of the apparatus and methods of firm
ware authentication in accordance with this invention, it is
to be understood that the above description is illustrative
only and not limiting of the disclosed invention. Obviously,
many modifications and variations will be apparent to the
practitioners skilled in this art. Accordingly, the apparatus
and methods of firmware authentication has been provided
which authenticates the programmable Section of a flash
PROM with a read-only section of the flash PROM by
application of public-key cryptography. By affording a pro
grammable section of the flash PROM to be software
programmable, updates to the firmware are accomplished
without compromising the integrity of the firmware. No
longer are System operators required to disassemble com
puter Systems to perform updates to System Start-up firm
WC.

What is claimed is:
1. A boot PROM (programmable read only memory)

having programming instructions for initializing a computer
system containing the boot PROM, the boot PROM com
prising:

a Software programmable data Section having a plurality
of micro-code configured to initialize the computer
System; and

an authentication Section having a hash generator config
ured to generate a data hash of the plurality of micro
code programmed in the Software programmable data
Section, wherein the authentication Section authenti
cates the plurality of micro-code with the data hash to
authorize execution of the plurality of micro-code.

2. The boot PROM according to claim 1, wherein:
the Software programmable data Section includes a pre

determined Signature; and

15

25

35

40

45

50

55

60

65

6
the authentication Section includes a predetermined public

key and a decryptor configured to provide a verification
hash from the predetermined signature and the public
key.

3. The boot PROM according to claim 2, wherein the
authentication Section includes a comparator configured to
compare the data hash with the verification hash to authen
ticate the plurality of micro-code of the Software program
mable data Section.

4. The boot PROM according to claim 2, wherein the
predetermined signature includes an encryption of a private
key and an initial hash of a plurality of initial micro-code
programmed to the Software programmable data Section.

5. The boot PROM according to claim 1, wherein the
authentication Section includes a plurality of trusted micro
code configured to initiate execution of the plurality of
micro-code of the Software programmable data Section in
response to proper authentication of the plurality of micro
code.

6. The boot PROM according to claim 5, wherein the
proper authentication of the micro-code programmed in the
Software programmable data Section by the authentication
Section raises the plurality of micro-code to a level of trusted
code.

7. The boot PROM according to claim 1, wherein the
Software programmable data Section includes a flash
memory configured to enable Software reprogramming of
the plurality of micro-code.

8. The boot PROM according to claim 1, wherein the
authentication section includes a ROM (read only memory).

9. A method of operating a boot PROM (programmable
read only memory) having programming instructions for
initializing a computer System comprising the Steps:

generating a data hash from a plurality of micro-code
programmed in a Software programmable data Section
of the boot PROM; and

authenticating the plurality of micro-code of the Software
programmable data Section in an authentication Section
of the boot PROM to authorize execution of the plu
rality of micro-code to initialize the computer System.

10. The method of operating a boot PROM according to
claim 9, wherein:

the Software programmable data Section includes a pre
determined Signatures, and

the Step of authenticating includes generating a verifica
tion hash from the predetermined signature and a public
key Stored in the authentication Section of the boot
PROM.

11. The method of operating a boot PROM according to
claim 10, wherein the Step of authenticating includes com
paring the data hash with the verification hash to authenti
cate the plurality of micro-code of the Software program
mable data Section.

12. The method of operating a boot PROM according to
claim 10 further comprising the Step of encrypting with a
private key an initial hash of a plurality of initial micro-code
programmed to the Software programmable data Section to
provide the predetermined signature.

13. The method of operating a boot PROM according to
claim 9, wherein the authentication Section includes a plu
rality of trusted micro-code, further comprising the Step of:

propagating a level of trust to the plurality of micro-code
of the Software programmable data Section in response
to proper authentication of the plurality of micro-code.

14. The method of operating a boot PROM according to
claim 9, wherein the Software programmable data Section
includes a flash memory, further comprising the Step of:

Nintendo - Ancora Exh. 1003

6,138,236
7

reprogramming the plurality of micro-code in the Soft
ware programmable data Section.

15. The method of operating a boot PROM according to
claim 9 wherein the authentication section includes a ROM
(read only memory).

16. A memory module for initializing a computer System,
comprising:

a programmable Section configured to Store:
a set of initialization instructions which, when executed
by a processor, initialize a computer System in which
the memory module and processor are installed; and

a digital Signature of Said set of initialization
instructions, wherein Said digital Signature is gener
ated by encrypting a verification hash of Said Set of
initialization instructions with a private encryption/
decryption key; and

a read-only Section configured to Store:
a public encryption/decryption key corresponding to

the private encryption/decryption key;
a decryptor configured to decrypt Said digital Signature

with Said public encryption/decryption key to repro
duce Said verification hash;

a hash generator configured to generate a test hash from
Said Set of initialization instructions,

a comparator configured to compare said test hash and
Said verification hash; and

a set of trusted micro-code configured to execute before
the computer System is operable by a user;

5

15

25

8
wherein, upon execution of Said trusted micro-code, Said

initialization instructions are executed if Said test hash
matches Said verification hash.

17. A method of initializing a computer system with
authenticatable initialization instructions, comprising:

executing a set of trusted micro-code Stored in a read-only
portion of a memory module installed in the computer
System before the computer System is operable by a
uSer,

generating a test hash from a Set of initialization instruc
tions Stored in a programmable portion of Said memory
module;

retrieving a digital Signature from Said reprogrammable
portion of Said memory module,

decrypting Said digital Signature with a public key Stored
in Said read-only portion of Said memory module to
retrieve a verification hash of an initial Set of initial
ization instructions Stored in Said programmable por
tion of Said memory module,

comparing Said test hash and Said verification hash; and
if Said test hash and Said verification hash match, execut

ing Said Set of initialization instructions to initialize the
computer System.

Nintendo - Ancora Exh. 1003

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO : 6,138,236
DATED October 24, 2000

INVENTOR(S): Mirov et al.

It is certified that errors appear in the above-identified patent and that said
Letters Patent is hereby corrected as shown below:

In claim 10 (at column 6, line 44), replace "signatures" with --signature--.

Signed and Sealed this
Eighth Day of May, 2001

Zaaé, f-34
NCHOLAS P, GOOC

Attesting Officer Acting Director of the United States Patent and Trademark Office

Nintendo - Ancora Exh. 1003

APPENDIX B-9

Nintendo - Ancora Exh. 1003

United States Patent (19)
Chess et al.

54 SYSTEM AND METHOD FOR PROTECTING
INTEGRITY OF ALTERABLE ROM USNG
DIGITAL SIGNATURES

(75) Inventors: David M. Chess, Mohegan Lake;
Gregory Bret Sorkin; Steve Richard
White, both of New York, all of N.Y.

73) Assignee: International Business Machines
Corporation, Armonk, N.Y.

(21) Appl. No.: 656,626
22 Filed: May 31, 1996
(51) Int. Cl. G06F 12/14: G06F 12/16;

G06F 11/30
52 U.S. Cl. 711/164: 711/102: 711/103;

395/183.12; 395/183.14; 395/183.21; 395/652;
395/633

(58) Field of Search 711/102, 163.
711/103, 164; 395/651-653, 186, 188.01,

183.09. 183.12, 183.14, 183.21

(56) References Cited

U.S. PATENT DOCUMENTS

5,327,531 7/1994 Bealkowski et al. 395/82.04
5,379.342 1/1995 Arnold et al. 380/2
5,396.558 3/1995 Ishiguro et al. 380/25
5,522,076 5/1996 Dewa et al. 395/652
5,579,522 11/1996 Christeson et al. 395/652

APPLICATION CALLS FUNCTION STORED IN
UNALTERABLE RDM, PASSING IN DESIRED NEW

CONTENTS OF A TERABLE RIM

III
USOO58O2592A

11 Patent Number: 5,802,592
45 Date of Patent: Sep. 1, 1998

5,634,079 5/1997 Buxton 395/892

FOREIGN PATENT DOCUMENTS

0.515760 Al 12/1992 European Pat. Off. .
0.588 339 A2 3/1994 European Pat. Off..

OTHER PUBLICATIONS

Aarons et al. Security strategies: hardware protection for
PCs, PC Magazine, v6, p. 104(12), Apr. 28, 1987.
Rosch, Internal Security: The Growing Mass of Stored PC
Data Makes Protecting Ita Modern Necessity, PC Week, v2.
n18, pp. 89-91. May 7, 1985.
Clarket al... BITS: A smartcard protected operating system,
Communications of the ACM. v37, n11, pp. 66-70, Nov.
1994.

Primary Examiner-Eddie P. Chan
Assistant Examiner-Reginald G. Bragdon
Attorney, Agent, or Firm-Perman & Green, LLP
57 ABSTRACT

A system and method for verifying the integrity of a com
puter system's BIOS programs stored in alterable read only
memory (such as FLASH ROM), and preventing malicious
alteration thereof. The system and method regularly check
the contents of the alterable read only memory using a
digital signature encrypted by means of an asymmetrical key
cryptosystem.

28 Claims, 3 Drawing Sheets

APPLICATION
CDE

302

STR IN

ENCHASHCORRECT"

RETURN
RRR

COMPUTE HASH OF CODE AND CRITICAL DAA
PORTIONS OF DESIRED NEW CONTENT'S HASHACTUAL

READ ENCRYPTED FORM OF CRRCT HASH FROM
SPECIAL PLACE IN DESIRED NEW CONTENTS

'ENCHASHCRRCT?

USE KEY IN UNALTERABLE ROM T DECRYPT
STORE IN HASHCORRECT"

HASHACTUAL
ASHCORRECT

CALL HARDWARE 312- - - - - -

ROM-UPDATE FUNCIN

UNA-TERABLE RM

UPDATE ALTERABLE ROM

304

306

308

CODE IN
30 UNALTERABLE

RM

316

FUNCTION
IN HARDWARE

318

Nintendo - Ancora Exh. 1003

5,802,592 Sheet 1 of 3 Sep. 1, 1998 U.S. Patent

Nintendo - Ancora Exh. 1003

U.S. Patent Sep. 1, 1998 Sheet 2 of 3 5,802,592

FG.2

218

2O2

SPECIAL
KEY HELD

YES MINIMAL
BIOS

DOWN SHELL

COMPUTE HASH OF CODE PORTION AND
CRITICAL DATA POTIONS OF ALTERABLE ROM

STORE IN HASHACTUAL"

READ ENCRYPTED FORM OF CORRECT
HASH FROM SPECIAL PLACE IN

ALTERABLE ROM, STORE IN ENCHASHCORREDT"

USE KEY IN UNALTERABLE ROM TO
DECRYPT ENCHASHCORRECT', STORE

RESULT IN HASHCORRECT"

YES HASHACTUAL
HASHCORRECT

TD STARTUP
CODE IN

ALTERABLE PRINT WARNING
ROM

212 WAIT FOR KEY PRESS

Nintendo - Ancora Exh. 1003

U.S. Patent Sep. 1, 1998 Sheet 3 of 3 5,802,592

FG.3
APPLICATION CALLS FUNCTION STORED IN APPLICATION

UNALTERABLE ROM, PASSING IN DESIRED NEW CODE
CONTENTS OF ALTERABLE ROM 3O2

COMPUTE HASH OF CODE AND CRITICAL DATA
PORTIONS OF DESIRED NEW CONTENTS HASHACTUAL

READ ENCRYPTED FORM OF CORRECT HASH FROM 306
SPECIAL PACE IN DESIRED NEW CONTENTS

STORE IN ENCHASHCORRECT"

USE KEY IN UNALTERABLE ROM TO DECRYPT 308
'ENCHASHCORRECT STORE IN HASHCORRECT '

314 CODE IN
31 O UNALTERABLE

RETURN HASHACTUAL = ROM
ERROR ASHCORRECT

CALL HARD WARE - - - - - -
ROM-UPDATE FUNCTION

316

CALLED BY FUNCTION
UNALTERABLE ROM IN HARDWARE

YES

UPDATE ALTERABLE ROM 318

Nintendo - Ancora Exh. 1003

5,802,592
1

SYSTEM AND METHOD FOR PROTECTING
INTEGRITY OF ALTERABLE ROM USENG

DGITALSGNATURES

FIELD OF THE INVENTION

The invention relates to the protection of the integrity of
computer system basic input-output systems.

BACKGROUND OF THE INVENTION

Modern general-purpose computers contain programs
stored in non-volatile read-only memory (ROM) which are
used to "bootstrap" the system when power is turned on, and
to provide basic low-level access to the hardware. These
programs generally perform various tests for proper func
tioning of the system hardware at power-on and then locate,
load and transfer control to the operating system bootstrap
code. They also provide a standard interface (sometimes
called the basic Input/Output System, or BIOS) to the
functions of the hardware.

While such system ROMs were originally of the perma
nently "burned-in" variety, which can be changed only by
physically replacing a microchip, advances in technology
have recently made it possible to utilize alterable, or
"FLASH" ROM instead. The advantage of alterable ROM is
that its contents can be altered by software, making ROM
updates significantly simpler. As alterable ROM technology
advances, and as systems become more complex, requiring
more frequent ROM updates, the use of FLASH for this
purpose is quickly becoming more common.

While software-alterable ROM has definite advantages, it
also has dangers; since the ROM is the basic software that
controls the startup and low-level operation of the system, if
it becomes corrupted (accidently or maliciously), the integ
rity of the system as a whole can be compromised, and it can
be very difficult either to detect the corruption or to repair it.
There are well-known methods of verifying the integrity

of the contents of ROMs (FLASH and otherwise) by per
forming a simple checksum, to ensure that, to a very high
probability, no accidental changes have been made to the
contents of the ROM. The techniques used to do this
verification are typically a simple additive checksum or a
cyclic redundancy check: these techniques are designed to
be simple and fast, while having a high probability of
detecting typical accidental or defect-caused changes to
ROM. They are, however, easily "invertible"; that is, given
the current contents of ROM and the current value of the
checksum, an attacker desiring to make intentional changes
to the ROM without modifying the checksum would be able
to do so with little difficulty.
A further feature of many current systems is that they

allow the user to access the built-in programs stored in ROM
for examining and altering system configuration settings.
This typically is accomplished by starting the system from
a special diskette, or pressing a combination of keys during
system setup. But the configuration programs, and the
programs that decide whether or not to pass control to them,
are themselves alterable ROM (on machines that have
alterable ROM), and therefore could become corrupted.

SUMMARY OF THE INVENTION

- The current invention functions in a component of a
computing system containing alterable ROM to verify that
the alterable ROM has not been changed, or that a proposed
update to the alterable ROM is legitimate. This verification
is performed by use of a digital signature, the signature

O

5

20

25

30

35

45

50

55

65

2
having the characteristic that it is not easily invertible: even
an attacker with full knowledge of the code used to verify
the digital signature, and with the ability to alter the current
contents of the ROM and the current signature, would have
to perform a prohibitive amount of computation to generate
a new content/signature pair that would pass the test.
The manufacturer, on the other hand, by virtue of having

access to a secret piece of data (for example, the private key
in an asymmetrical-key cryptosystem), is able to produce
signatures for new versions of the contents of alterable ROM
very easily.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a system in accordance with the invention.
FIG. 2 is a flow diagram describing a method for checking

the integrity of an alterable ROM, in accordance with one
aspect of the invention.

FIG. 3 is a flow diagram describing a method for updating
or restoring the contents of an alterable ROM in accordance
with a further aspect of the invention.

DETALED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

FIG. 1 is a block diagram of a system in accordance with
the present invention.
The system includes a CPU 100 with optional cache

memory 102, a permanent storage device 104, such as a hard
disk drive, random access memory 106, an input device such
as keyboard 108, and an output device, such as display 110.
The system components are connected via bus 112.
The system further comprises an unalterable ROM 114,

which stores various programs used to bootstrap the system
at startup and provide basic low level system hardware
access. Also provided is an alterable ROM 116, such as a
FLASH ROM, which stores additional bootstrapping and
hardware access programs. The programs in the ROMs 114
and 116 together constitute first and second portions of a
general bootstrap program.

Also provided in accordance with the invention is an
alterable ROM corruption detect and repair means 118. The
means 118 can be implemented as software running in
unalterable ROM 114. Means 118 operates as described with
respect to FIGS. 2 and 3 to detect unauthorized modifica
tions to the alterable ROM 116, and also either to restore the
alterable ROM to its uncorrupted state, or to make autho
rized changes to the alterable ROM. Means 118 can either
constitute part of unalterable ROM 114, or reside in a
separate hardware or software location in the system.

In one embodiment of the invention, a system bootstrap
routine is stored in unalterable ROM 114, the routine
performing, when called, a signature computation on the
current contents of the alterable ROM 116 and the current
signature (stored in ROM 114 or elsewhere), and then passes
control to the bootstrap code in the ROM 116 only if the
signature is validated. Defect-caused or malicious changes
to the FLASH ROM would therefore prevent the system
from starting up correctly at the next power-on. The system
could also be configured so that an attempt to update ROM
116 will cause an immediate restart from unalterable ROM
114, immediately revealing a corrupted update. More com
plex implementations involve a secure-update module that
guarantees (for example by monitoring instruction fetches
using methods known to the art) that ROM 116 updates
could be done only by code running from the ROM 116
itself, and each version of the alterable ROM could contain

Nintendo - Ancora Exh. 1003

5,802,592
3

signature-checking code, and reject any attempted update
that did not meet a signature test.
A means for correcting alterable ROM 116, in the event

that it becomes corrupted, is also provided in accordance
with the invention. The first programs to run when the
system is started are entirely in unalterable ROMS; the first
thing these programs do is check for a signal from the user
that the alterable ROM 116 should be bypassed. If the signal
is present, the first programs transfer control to other
programs, also stored in unalterable ROM, that allow the
user to examine and optionally replace the contents of the
alterable ROM 116; in doing this, they do not run any code
from the alterable ROM. and they will work correctly even
if the alterable ROM has become corrupted. If the signal
from the user is not found, control passes to the normal
system startup programs stored in alterable ROM 116.

In one implementation of this invention. the unalterable
ROM 114 is placed at the top of the memory space of a
PC-compatible system, such as the one shown in FIG. 1.
When the system is first started, control passes to a small
program in the unalterable ROM. This program checks to
see if both control keys are being held down; if they are not,
it passes control to the normal system-startup entry point
stored in the alterable ROM 116, which is located just below
the unalterable ROM in the memory space. If the special key
combination is being pressed, the program loads the first
sector from the diskette in the A: drive, using a minimal
diskette-input routine built into the unalterable ROM, and
then passes control to it. The program on the diskette can
then use the minimal unalterable diskette-input routine to
read in the rest of itself, and then perform whatever user
interaction is necessary to examine, verify, and if necessary,
replace the contents of the alterable ROM.

In other possible implementations, the unalterable ROM
could itself contain all the programming needed to interact
with the user to examine and replace the contents of the
alterable ROM. Many other signals from the user are also
possible besides a specific key-combination; the unalterable
ROM could checkfor a certain byte at a certain offset in the
first sector of the diskette in the A: drive, or for the presence
of a certain signal in the serial or parallel input port on the
system, or for the position of a special switch added to the
system for this purpose.
Another possible implementation would involve a section

of protected code that would verify the alterable ROM at
intervals during normal operation of the computer, by put
ting the code in a non-interceptable service routine that
would get called whenever a timer-tic occurred, or whenever
a disk was accessed (for instance), and warn the user if the
signature check failed.

In any implementation of this invention, the code doing
the signature calculation could ignore any desired part of the
alterable ROM being checked, to allow for the saving of
variable data in the alterable ROM (only code parts, and data
parts that should not be subject to unauthorized update, need
be checked.)

In all these cases, the manufacturer of the system would
be able to provide correctly-signed alterable ROM updates
(by virtue of holding the secret half of the asymmetric
keypair used to generate and check digital signatures), but
anyone else attempting to install an alterable ROM update
would be unable to correctly do so without prohibitive
amounts of computation (the exact amount of computation
needed, and the speed of the signature check itself, would
depend on the digital signature algorithm chosen, many of
which are in the art).

10

15

25

30

35

45

50

55

65

4
A vulnerability of some implementations of this invention

is that if the secret key of a key-pair is ever divulged, an
attacker would be able to make unauthorized alterable ROM
modifications on machines which use that key-pair for
verification. To minimize the impact of this, a manufacturer
could use a different key-pair for different subsets of the
systems protected: depending on the needs of the specific
situation, each machine model, or each submodel, could use
a different key-pair. For greater security, at a cost of some
convenience, the subsets could be made as small as desired.
For instance, if the keypair were changed every few thou
sand machines manufactured, the publication of one secret
key would expose only a few thousand machines to unau
thorized modification; on the other hand, in order to install
a legitimate update, the user would first have to determine
which subset his machine's serial number corresponds to,
and obtain the update tailored for that subset. In the extreme
case, a different key-pair could be used for each machine:
this involves more effort and more bookkeeping, but if one
secret key is divulged, only one machine is compromised
(only that single machine may have its alterable ROM
contents altered without detection).
To protect against exposure of a private key, it might also

be desirable to have a mechanism for updating the public
key used for verification. For instance, a system might be
designed so that, if it were determined that the private key
protecting it has been exposed, a new public key could be
installed by a special update process or by physically
replacing a chip.
The methods by which the foregoing functions of the

system are accomplished are described in detail with respect
to FIGS. 2 and 3.

During the initial setup of the machines at the
manufacturer, the manufacturing process includes the fol
lowing steps:
For each group of some number of machines (for

example, 40,000), a new public keylprivate key pair is
selected for use in an asymmetric cryptosystem, such as
RSA. The private key is stored securely at the
manufacturer, and the public key is burned into the
unalterable ROM 114.

After loading the initial contents of the alterable ROM
116, the manufacturer computes a cryptographic hash
(such as MD5) of the code portions and critical data
portions of the contents, encrypts the hash value using
the private key, and stores the encrypted value as a
signature at a fixed location in the alterable ROM.

The reason for using the asymmetric cryptosystem in
addition to the cryptographic hash is that then anyone
possessing the public key can verify a ROM?hash pair,
but only the manufacturer, possessing the private key,
can generate a valid pair.

Referring to FIG. 2, when a protected system is booted,
either from power-up or any other form of system reset,
control passes to code in the non-alterable ROM. That code
performs the following steps (use of the "Escape" key in the
following steps is, of course, just one example of a possible
means for triggering a boot to the Minimal BIOS);

If the Escape key on the keyboard is being held down
(step 202), immediately transfer control to the Minimal
BIOS, stored in unalterable ROM 114 (the minimal
BIOS is a program or set of programs residing in the
unalterable ROM, and is described below), without
executing any programs in the alterable ROM 218.
Otherwise, continue.

Compute a cryptographic hash of the code portions and
critical data portions of the contents of the alterable

Nintendo - Ancora Exh. 1003

5,802,592
5

ROM, using the same algorithm (e.g., MD5) that was
used at initial alterable ROM load time (step 204), and
store the result as "HashActual".

Retrieve the encrypted form of the original hash value
from the alterable ROM and store it as
"EncHashCorrect"(step 206), and decrypt it using the
public key stored in unalterable ROM. to obtain the
original stored hash value (step 208). Store the
decrypted result as "HashCorrect".

Compare the two hash values HashActual and HashCor
rect (step 210). If they match, pass control to the
alterable ROM startup routine (step 212).

If the two hash values do not match, print a warning
message on the display (step 214), wait for a keypress
(step 216), and transfer control to the Minimal BIOS in
the unalterable ROM (step 218).

When the manufacturer wants to create an update to the
bootstrap programs and data in the alterable ROM, it gen
erates an update file for each of the different private keys. To
create the update file for a program protected by a given
private key, the manufacturer:

Retrieves the private key for that program from secure
storage.

Computes the cryptographic hash of the code portions and
critical data portions of the alterable ROM contents,
encrypts the result with the private key, and stores the
encrypted value at the reserved offset in the alterable
ROM image (i.e., a software image of the alterable
ROM's contents).

Referring now to FIG. 3, when it is desired to update the
contents of the alterable ROM using the FLASH ROM
image, it calls a special BIOS function in the unalterable
ROM (step 302), which performs the following steps:
Compute a cryptographic hash of the code portions and

critical data portions of the requested new contents of
the alterable ROM and store as “HashActual", using
the same algorithm as used in the previous steps (e.g.,
MD5) (step 304).

Retrieve the encrypted form of the stored hash value (i.e.,
the encrypted signature) from the appropriate place in
the requested new contents of the alterable ROM, store
it as "EnchashCorrect"(step 306), and decrypt it using
the public key stored in unalterable ROM to obtain the
correct stored hash value (signature) (step 308). Store
as "HashCorrect".

Compare HashActual and HashCorrect (step 310). If they
match, execute the proper instructions to tell the hard
ware to update the contents of the alterable ROM (step
318). The hardware, using methods known to the art,
will only carry out the request if it came from the
correct place in the unalterable ROM (step 316).

If the two hash values do not match (step 310) hardware
detects that the update request did not come from the
proper place in the unalterable ROM (step 316), the
update fails, and the alterable ROM is unchanged. The
BIOS, or even the lower-level hardware, could provide
the user with a visual or audible warning when this
occurs (step 314).

The Minimal BIOS referred to above can, for example,
carry out the following functions (at no time does it execute
any code from the alterable ROM):

Perform minimal functional tests of some parts of the
System, including the diskette drive, display, and key
board.

Interact with the user via the display and keyboard,
allowing the user to perform a small set of functions,
including:

10

15

20

25

30

35

45

50

55

65

6
Getting help on the Minimal BIOS functions,
Performing a alterable ROM update from an image file

on diskette (using the alterable ROM update process
described above),

Loading a more complete shell program from diskette,
and passing control to it,

Passing control directly to the alterable ROM, even
though it may have failed the integrity check,

Rebooting the system normally.
While the invention has been described in particular with

respect to preferred embodiments, it will be recognized by
those skilled in the art that modifications to the described
embodiments can be effected without departing from the
spirit and scope of the invention.
We claim:
1. A system, comprising:
a processor;
a storage device storing an operating system program for

execution on the processor;
an alterable read only memory for storing data; and
a corruption detection device for detecting unauthorized

changes to data in the alterable read only memory, the
corruption detection device reading a signature,
encrypted with a private key, that represents a non
corrupted version of data in the alterable read only
memory, and further reading, from a secure memory
location, a public key for decrypting the signature, the
corruption detection device operating to compare the
decrypted using public key, signature to a computed
signature for detecting an occurrence of an unautho
rized change to the data in the alterable read only
memory.

2. The system of claim 1, further comprising: an unalter
able read only memory for storing the public key and for
storing a first portion of a bootstrap program for controlling
the system during a system initialization and subsequently
transferring control of the system to the operating system.

3. The system of claim 2, wherein the data stored in the
alterable read only memory comprises a second portion of
the bootstrap program.

4. The system of claim 3, further comprising means for
validly altering the second portion of the bootstrap program.

5. The system of claim 4, wherein the means for validly
altering comprises means for:

computing a hash of data constituting a proposed alter
ation:

reading an encrypted form of a signature representing the
data constituting the proposed alteration;

decrypting the signature representing the data constituting
the proposed alteration using the public key;

comparing the hash and the decrypted signature and if
they match, writing the data constituting the proposed
alteration to the second portion of the bootstrap pro
gram.

6. The system of claim 5, wherein the means for validly
altering comprises a computer program stored in the unal
terable read only memory.

7. The system of claim3, wherein the corruption detection
device comprises means, responsive to a triggering event,
for:

computing a hash of the second portion of the bootstrap
program;

reading the encrypted form of the signature and the public
key from their storage locations;

decrypting the encrypted form of the signature using the
public key; and

Nintendo - Ancora Exh. 1003

5,802,592
7

comparing the decrypted signature with the hash.
8. The system of claim 7, further comprising means, if the

decrypted signature matches the hash, for transferring con
trol from the first portion of the bootstrapping program to the
second portion of the bootstrapping program.

9. The system of claim 8, wherein the triggering event is
a power-up of the system.

10. The system of claim 8, wherein the triggering event is
the actuation of a system reset switch.

11. The system of claim 8, wherein the triggering event is
the actuation of a combination of keys on a keyboard
coupled to the processor.

12. The system of claim 1, wherein the alterable read only
memory is a FLASH ROM.

13. The system of claim 1, further comprising means for
actuating the corruption detection device periodically while
the system is in operation.

14. The system of claim 1, further comprising means for
replacing the public key with a new authorized public key.

15. A method, comprising the steps of:
storing data in an alterable read only memory of a

computer system;
storing in a first memory location in the system an

encrypted signature representing a valid copy of the
data in the alterable read only memory;

storing in a second memory location in the system a
public key to the encrypted signature;

in response to a triggering event, computing a current
signature for the data stored in the alterable read only
memory, decrypting the signature representing the
valid copy using the public key, and comparing the
decrypted signature and the current signature to deter
mine the validity of the data stored in the alterable read
only memory.

16. The method of claim 15, wherein the alterable read
only memory is a FLASH ROM.

17. The method of claim 15. wherein the triggering event
is a power up of the computer system.

18.The method of claim 15, wherein the triggering event
is the actuation of a system reset switch.

19. The method of claim 15, wherein the triggering event
is the actuation of a combination of keys on a keyboard
coupled to the system.

20. The method of claim 15, further comprising a step of
storing a first portion of a system bootstrapping program in
an unalterable read only memory; and wherein the data
stored in the alterable read only memory comprises a second
portion of the system bootstrapping code.

21. The method of claim 20, wherein the steps of com
puting a current signature, decrypting the signature and
comparing the decrypted signature and the current signature
are performed while the system is under the control of the
first portion of the system bootstrapping program.

5

O

5

25

35

45

50

8
22. The method of claim 21, further comprising, if the

data in the alterable read only memory are valid, passing
control of the system from the first portion of the bootstrap
ping program to the second portion of the bootstrapping
program.

23. The method of claim 20, further comprising a step of
replacing data in the alterable read only memory with valid
replacement data.

24. The method of claim 23, further comprising a step of
determining whether a group of candidate replacement data
is valid replacement data by:

computing a hash of the data constituting the candidate
replacement data;

decrypting an encrypted signature representing the data
constituting the candidate replacement data;

comparing the hash and the decrypted signature, and if
they match, designating the candidate replacement data
as valid replacement data.

25. The method of claim 20, wherein the first and second
memory locations are in the unalterable read only memory.

26. The method of claim 15, wherein the triggering event
is executed periodically during operation of the system.

27. A method for operating a data processing system,
comprising steps of:

partitioning a bootstrap program between an unalterable
read only memory device and an alterable memory
device;

storing, in the alterable memory device. private key
encrypted validity data representing a portion of the
bootstrap program stored in the alterable memory
device;

storing, in the unalterable read only memory device, a
public key for decrypting the private key encrypted
validity data;

in response to a triggering event, executing a portion of
the bootstrap program stored in the unalterable read
only memory device, the executed portion of the boot
strap program first computing validity data for at least
some of the content of the alterable memory device,
then using the stored public key to decrypt the private
key encrypted validity data, and then comparing the
decrypted validity data to the computed validity data;
and

transferring control of the bootstrap program from the
portion stored in the unalterable read only memory
device to the portion stored in the alterable memory
device only if the result of the comparison indicates
that no unauthorized modifications have been made to
the content of the alterable memory device.

28. A method as in claim 27, wherein the alterable
memory device is a FLASH ROM.

e k is k >

Nintendo - Ancora Exh. 1003

APPENDIX B-10

Nintendo - Ancora Exh. 1003

USOO583.5594A

United States Patent (19) 11 Patent Number: 5,835,594
Albrecht et al. (45) Date of Patent: Nov. 10, 1998

54 METHODS AND APPARATUS FOR 5,377,264 12/1994 Lee et al. 380/4
PREVENTING UNAUTHORIZED WRITE 5,421,006 5/1995 Jablon et al. 380/4
ACCESS TO A PROTECTED NON-VOLATLE 5,465.299 11/1995 Matsumoto et al. ... 380/23
STORAGE 5,479,509 12/1995 Ugon ... 380/23

OTHER PUBLICATIONS
75 Inventors: Mark Albrecht, Banks; Frank

Wildgrube, Hillsboro, both of Oreg. PCT International Search Report for International Applica
tion No. PCT/US97/01965, dated Jun. 9, 1997.

73 Assignee: Intel Corporation, Santa Clara, Calif.
Primary Examiner Thomas H. Tarcza
ASSistant Examiner-Carmen D. White

21 Appl. No.: 598,803 Attorney, Agent, or Firm Blakely, Sokoloff, Taylor &
22 Filed: Feb. 9, 1996 Zafman

(51) Int. Cl." .. H04L 9/00 57 ABSTRACT
52 U.S. Cl. .. 380/23; 25/4 An electronic Signature is generated in a predetermined
58 Field of Search son,soi is manner and attached to a transferable unit of write data, to

s facilitate authenticating the write data before allowing the
56) References Cited write data to be written into a protected non-volatile Storage.

The write data is authenticated using a collection of Secured
U.S. PATENT DOCUMENTS authentication functions. Additionally, the actual writing of

4.278,837 7/1981 Best 178/2.2.09 the authenticated write data into the protected non-volatile CSI. -

5,022,077 6/1991 Bealkowski et al... 5, storage is performed by a secured copy utility.
5,144,659 9/1992 Jones 380/4
5,289,540 2/1994 Jones ... 380/4 23 Claims, 7 Drawing Sheets

100 110

106

Non-Volatile Ms.g
Storage Function Authentication
Write (Production Reference Digest
Data Copy)

Encrytion
Function Signature

Nintendo - Ancora Exh. 1003

5,835,594 Sheet 1 of 7 Nov. 10, 1998 U.S. Patent

(Ádoo

90 I

Nintendo - Ancora Exh. 1003

5,835,594 U.S. Patent

OZI

9 LI

ZII00I

Nintendo - Ancora Exh. 1003

5,835,594 Sheet 3 of 7 Nov. 10, 1998 U.S. Patent

r– – – – – – – = = == - - - - -q8ZZ

JOSS3OOI I

Nintendo - Ancora Exh. 1003

Nintendo - Ancora Exh. 1003

5,835,594Sheet 4 of 7Nov. 10, 1998U.S. Patent

SOOTAIOSALIN/PRYJoppueH]IWS

VL

uostieduios4se8Iq

ZLZ

Aayyoyqng

OLZ897

9LE

ysa3iqlasessayy

99¢

Adoz-ysepy

9

Huy

C9T

SOId

09¢

pansiq

AYNYsepsy

c

wiayshSosesuryeradg
Nintendo - Ancora Exh. 1003

U.S. Patent Nov. 10, 1998 Sheet 5 of 7 5,835,594

3.3V

From SMIi
SMI Trigger To Processor

278

From
GP I/O ENFW#
Ports

FLASHWEiE
To Flash Memory

MEMWii

From
Memory
Controller

Figure 5

Nintendo - Ancora Exh. 1003

U.S. Patent Nov. 10, 1998 Sheet 6 of 7 5,835,594

System Management Mode (Prior Art)

Switch in
SMM Memory

288
Restore State

Save State of of Processor
Processor

290
Switch Out

Execute SMM Memory
SMI Handler

a- - - - - - -

Figure 6

Nintendo - Ancora Exh. 1003

U.S. Patent Nov. 10, 1998 Sheet 7 of 7 5,835,594

302 Setup Physical
Address Pointers to
the Data and Buffers

Generate a Software 304
SM

306

SMM
Validate Write Data

308

No

Yes

312
310 Set GP I/O

Set Error Flags E.

Copy Authenticated 314

Write Data into
Flash

Clear GPI/O
Write Enable

316

318

Return to Caller

Figure 7

Nintendo - Ancora Exh. 1003

5,835,594
1

METHODS AND APPARATUS FOR
PREVENTING UNAUTHORIZED WRITE

ACCESS TO A PROTECTED NON-VOLATILE
STORAGE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computer
Systems. More specifically, the present invention relates to
data Security on computer Systems.

2. Background Information
Existing methods of preventing unauthorized write acceSS

to nonvolatile Storage Such as FLASH memory typically rely
on “Secret” access methods to a write enable circuit. These
"Secret” access methods to the write enable circuit can be
reverse-engineered through the use of Standard debugging
hardware. Once reverse engineered, a person will be able to
produce code that can write to the “protected” non-volatile
Storage at will. If the code is used in a malicious manner, it
can be used to introduce viruses into the “protected” non
Volatile Storage or even destroy the content of the non
Volatile Storage.

Thus, it is desirable to have a more robust approach to
preventing unauthorized access to non-volatile Storage, in
particular, an approach that does not rely on the acceSS
method not being known. As will be described in more detail
below, the present invention achieves these and other desir
able results.

SUMMARY OF THE INVENTION

In accordance to the present invention, an electronic
Signature is generated in a predetermined manner and
attached to a transferable unit of write data, to facilitate
authenticating the write data before allowing the write data
to be written into a protected non-volatile Storage. The write
data is authenticated using a collection of Secured authen
tication functions. Additionally, the actual writing of the
authenticated write data into the protected non-volatile Stor
age is performed by a Secured copy utility.
The electronic Signature is functionally dependent on the

content of the write data, and the predetermined manner of
generating the electronic Signature is reproducible during
write time. In one embodiment, the electronic Signature is
generated by the creator of the write data, by generating a
digest based on the content of the write data using a message
digest function, and then encrypting the generated digest
with a Secret private key using an encryption function.

The collection of Secured authentication functions include
a Secured corresponding copy of the message digest
function, and a Secured complementary decryption function.
During operation, the Secured decryption function reconsti
tutes the original digest by decrypting the electronic Signa
ture with a Secured complementary public key, while the
Secured copy of the message digest function generates
another digest based on the content of the write data to be
authenticated. The two digests are compared using a Secured
comparison function. If the two digests pass the comparison,
the Secured copy utility is invoked to copy the authenticated
write data into the protected non-volatile Storage, otherwise,
the write data are rejected.

In one embodiment, the authentication functions are
Secured by copying them into a normally unavailable System
management memory during System initialization. The
authentication functions are invoked using a System man
agement interrupt (SMI), which when asserted, automati

15

25

35

40

45

50

55

60

65

2
cally maps the System management memory into the normal
System memory space. A non-volatile memory write Security
circuitry is provided to qualify a memory write Signal
provided to the protected non-volatile Storage, and to gen
erate the SMI whenever a write to the protected non-volatile
Storage is requested.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will be described by way of exem
plary embodiments, but not limitations, illustrated in the
accompanying drawings in which like references denote
Similar elements, and in which:

FIGS. 1-2 illustrate the essential elements of the present
invention, and their interrelationships with each other;

FIG. 3 illustrates an exemplary computer System incor
porated with the teachings of the present invention on
Securing the authentication functions,

FIG. 4 illustrates the system BIOS, and for one
embodiment, the operating System of the exemplary com
puter System in further detail;

FIG. 5 illustrates the FLASH security circuitry of FIG. 3
in further detail;

FIG. 6 illustrates execution flow of the exemplary com
puter System under a System management mode; and

FIG. 7 illustrates one embodiment of the execution flow
for writing into FLASH memory.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, for purposes of explanation,
Specific numbers, materials and configurations are set forth
in order to provide a thorough understanding of the present
invention. However, it will be apparent to one skilled in the
art that the present invention may be practiced without the
Specific details. In other instances, well known features are
omitted or simplified in order not to obscure the present
invention. Furthermore, for ease of understanding, certain
method steps are delineated as Separate Steps, however, these
Separately delineated Steps should not be construed as nec
essarily order dependent in their performance.

Referring now to FIGS. 1 and 2, two block diagrams
illustrating the essential elements of the present invention,
and their interrelationships to each other are shown. AS
illustrated, a transferable unit of non-volatile Storage write
data 100 is provided with an electronic signature 102 to
facilitate authenticating write data 100 prior to allowing
write data 100 to be written into a non-volatile storage.
Preferably, electronic signature 102 is “attached” to write
data 100. Examples of a transferable unit include a file, or a
block, whereas examples of non-volatile Storage include
FLASH memory or erasable programmable read-only
memory (EPROM). Examples of write data is system basic
input/output Service (BIOS) updates, Such as additions,
deletions and modifications. For many applications, it is
expected that electronic Signature 102 is generated and
“attached to write data 100 at the time write data 100 is
created.

For the illustrated embodiment, electronic signature 102
is generated by encrypting a reference digest 104 with a
secret private key 106 using an encryption function 108. The
reference digest 104 is generated using a message digest
function 110. In other words, the content of reference digest
104 is functionally dependent on the content of write data
100. Accordingly, the content of electronic signature 102 is
also functionally dependent on the content of write data 100.

Nintendo - Ancora Exh. 1003

5,835,594
3

At Write time, a Secured corresponding copy of message
digest function 112 generates a “new” digest 114 in real
time. At the same time, a Secured complementary decryption
function 116 reconstitutes original reference digest 104 by
decrypting electronic Signature 102 using Secured comple
mentary public key 118. The two digests 104 and 114 are
provided to a Secured comparison function 120 to determine
if they are identical. The two digests 104 and 114 are
identical if write data 100 is authentic, since both digests 104
and 114 are functionally dependent on the contents of write
data 100, generated by copies of the same message digest
function 110 and 112, and the encryption were decrypted in
a complementary manner. If the two digests 104 and 114
compared Successfully, a Secured copy function 122 is
notified to perform the actual writing into the protected
non-volatile Storage, otherwise the write data is rejected.

Encryption and decryption functions 108 and 116 may
implement any one of a number of private/public key
encryption/decryption techniques known in the art.
Similarly, message digest function 110/112 may also imple
ment any one of a number of message digest techniques
known in the art. For further information on private/public
key encryption/decryption techniques, see e.g. Hellman et
al., Public Key Cryptographic Apparatus and Method, U.S.
Pat. No. 4,218,582, and Rivest et al., Cryptographic Com
munications System and Method, U.S. Pat. No. 4,405,829;
and for further information on message digest, See e.g.
Method for Identifying Subscribers and for Generating and
Verifying Electronic Signatures in a Data Exchange System,
U.S. Pat. No. 4,995,082, and Rivest, The MD5 Message
Digest Algorithm, Request For Comment (RFC) 1321, April
1992.

Creation of electronic Signature 102 and associating it
with write data 100 as described above, may be practiced in
any number of computer Systems known in the art, provided
they are equipped to Store and execute message digest
function 110 and encryption function 108. It is anticipated
that for most applications, creation of electronic Signature
102 will be practiced on the same computer system where
write data 100 is created. For example, for the above
mentioned System BIOS update application, it is anticipated
that the system BIOS updates and electronic signature 102
will be generated and associated at the same time and on the
Same computer System.

FIG. 3 illustrates an exemplary computer system 200
incorporated with the teachings of the present invention on
authenticating write data before allowing the write data to be
written into a protected non-volatile Storage. Exemplary
computer System 200 includes processor 212, processor bus
214, cache memory 216, memory controller 218, and a
plurality of other memory units 220-224 coupled to each
other as shown. Other memory units 220-224 include main
memory 220, System management memory 222, and
FLASH memory 224. In accordance to the present
invention, exemplary computer System 200 includes in
particular FLASH security circuitry 226. Additionally, com
puter system 200 includes bridge circuits 228a–228b, high
performance and Standard (input/output) I/O buses
230a-230b, general purpose I/O (GPIO) ports 232, hard and
diskette storages 234-236, keyboard and cursor control
device 238, and display 240, coupled to each other and the
above enumerated elements as shown.

For the illustrated embodiment, buses 214, 230a and 230b
are disposed on motherboard 242. Elements 212, 216-226,
228a–228b and 232 are either removably interconnected to
motherboard 242 via sockets (not shown) or “soldered” onto
motherboard 242, whereas elements 234-238 are coupled to
motherboard 42 through cables and connectors (not shown).

15

25

35

40

45

50

55

60

65

4
Processor 212 performs the conventional function of

executing code. Processor 212 is equipped to execute code
in multiple modes including a System management mode
(SMM). Processor 212 is also equipped to respond to a wide
variety of interrupts including a System management inter
rupt (SMI), which places processor 212 in SMM. Memory
controller 218 and volatile memory units 216, 220 and 222
perform the conventional functions of controlling memory
access, and providing execution time Storage respectively. In
particular, for each write access to memory, memory con
troller 218 generates a MEMW# signal for the addressed
memory unit. Memory controller 218 normally does not
map System management memory 222 as part of the normal
System memory Space. System management memory 222 is
mapped into the System memory Space, when processor 212
enters SMM. Furthermore, except for system initialization,
processor mode transition, and execution in SMM, System
management memory 222 is write disabled.
FLASH memory 224 performs its conventional function

of providing non-volatile Storage respectively. In particular,
FLASH memory 224 stores system BIOS. During system
initialization, the bulk of the system BIOS that are not
Security Sensitive are loaded into main memory 220,
whereas the remaining System BIOS (including in particular
the write data authentication functions) that are Security
Sensitive are loaded into System management memory 224.
Flash security circuit 226 protects FLASH memory 224
from unauthorized write accesses, by keeping FLASH
memory 224 write disabled, and generating an SMI to
invoke the secured system BIOS write data authentication
functions in System management memory 222 to authenti
cate the write data, whenever it enables FLASH memory
224 for a write access. General purpose I/O ports 232 also
perform their conventional functions for providing I/O ports
to a variety of peripherals. In particular, one of the I/O ports
is used to notify FLASH security circuit 226 of a write
request to FLASH memory 224. The write request is
denoted by writing to a corresponding register of the I/O port
using a Standard I/O instruction of exemplary computer
system 200.

Hard disk storage 234 also performs the conventional
function of providing non-volatile Storage. In particular,
hard disk Storage 234 Stores operating System of exemplary
computer System 200. During System initialization, operat
ing System is loaded into main memory 220. All other
elements perform their conventional function known in the
art. Except for the particularized functions and/or
requirements, all enumerated elements are intended to rep
resent a broad category of these elements found in computer
Systems.

FIG. 4 illustrates system BIOS and operating system of
exemplary computer system 200 in further detail. As shown,
system BIOS 260 includes init function 262, FLASH copy
utility 264, message digest function 266, decryption func
tion 268, public key 270, digest comparison function 272,
SMI handler 274 and read/write service 276, whereas, for
Some embodiments, operating system 250 includes FLASH
utility 252.

Init function 262 initializes system BIOS 260 during
System initialization, including loading FLASH copy utility
264, message digest function 266, decryption function 268,
public key 270, digest comparison function 272, and SMI
handler 274 into System management memory 222. AS
described earlier, System management memory 222 is nor
mally not mapped into System management Space, unless a
SMI is triggered placing processor 212 in SMM, and system
management memory 222 is write disabled except for

Nintendo - Ancora Exh. 1003

5,835,594
S

initialization, processor mode transition, and execution in
SMM. Accordingly, these system BIOS functions are
Secured from malicious modification.

SMI handler 274 services SMIs, invoking other functions
(including the write data authentication functions) as
necessary, depending on the cause of a particular SMI. AS
will be described in more detail below, SMI handler 274 is
given control upon entry into SMM. As described earlier,
message digest 266 generates a digest in real time for the
write data of a FLASH write request, in accordance to the
content of the write data, and decryption function 268
decrypts the electronic Signature “attached” to the write data
of the FLASH write request using public key 270, to
reconstitute the FLASH write data's original digest. Digest
comparison function 272 compares the two digests, and
finally FLASH copy utility 264 performs the actual writing
of the authenticated data into FLASH memory 224. Message
digest function 266, decryption function 268, digest com
parison function 272, and FLASH copy utility 264 are
invoked in due course by SMI handler 274 upon determining
that a SMI is triggered by FLASH security circuitry 226.

Read/Write services 276 provides read and write services
to I/O devices. Read/Write services 276 are among the bulk
of the BIOS functions that are loaded into main memory 220
during System start up.

For some embodiments, FLASH utility 252 is included to
perform various FLASH related functions including in par
ticular copying of FLASH write data from an external
Source medium to a buffer in main memory 220, and then
copying the FLASH write data from the buffer into FLASH
memory 224 by way of read/write services 276, which
invokes message digest function 266, decryption function
268, etc., to validate the FLASH write data, and if validated,
FLASH copy utility 264 to perform the actual writing, to be
described more fully below. Examples of Such FLASH write
data are System BIOS additions, deletions, and modifications
described earlier, and an example of an external Source
medium is a diskette.

FIG. 5 illustrates FLASH security circuit 226 in further
detail. As shown, FLASH security circuit 226 includes first
and second drivers 278 and 280. The input (ENFW#) of first
driver 278 is provided by one of the I/O ports of GPIO ports
232, whereas the output of first driver 278 is coupled to a
Signal line coupling a SMI trigger mechanism to processor
212. Thus, whenever, GPIO ports 232 sets ENFW# active to
enable write access, in response to a FLASH write request,
first driver 278 causes a SMI to be triggered for processor
212.

The inputs (ENFW# and MEMW#) of second driver 280
are provided by the Same I/O port of general purpose I/O
ports 232 and memory controller 218 respectively, whereas
the output (FLASHWE#) of second driver 280 is provided
to FLASH memory 224. FLASHWE# is tri-stated.
FLASHWEff becomes active, when both MEMW# and
ENFW# are active. In other words, the write signal
(MEMW#) from memory controller 218 is qualified by
ENFW#, which at the same time through first driver 278
would cause a SMI to be triggered. Thus, the secured
authentication functions Stored in System management
memory 222 would be invoked to authenticate the write data
before allowing them to be written into FLASH memory
224.

FIG. 6 illustrates execution flow of the exemplary com
puter system in SMM. As shown, upon detection of an SMI,
processor 212 directs memory controller 218 to Switch in
and map System management memory 222 as part of the

15

25

35

40

45

50

55

60

65

6
System memory Space, and in response, memory controller
218 performs the requested Switching and mapping
accordingly, Step 282. Next, processor 212 Saves the pro
ceSSor State into System management memory 222, Step 284.
Upon Saving the processor State, processor 212 transfers
execution control to pre-stored SMI handler 274, step 286.
SMI handler 274 then determines the cause of the SMI

and Services the SMI accordingly, invoking other routines
Such as the authentication functions as necessary. Upon
servicing the SMI, SMI handler 274 executes a Resume
instruction to transfer execution control back to the inter
rupted programs. In response, processor 212 restores the
Saved processor State from System management memory
222, step 288. Furthermore, processor 212 directs memory
controller 218 to unmap System management memory 222
from the System memory Space and Switch out System
management memory 222. In response, memory controller
218 performs the requested unmapping and Switching
accordingly, step 2.90.
As a result, the SMI is serviced in a manner that is

transparent to the executing operating System, Subsystems as
well as applications. In other words, an SMI is a transparent
System Service interrupt.

FIG. 7 illustrates one embodiment of the execution flow
for writing data into FLASH memory 224. As shown, in
response to a write request from an application, Such as
FLASH utility 252 described earlier, read/write services 276
Set up the physical address pointers to the write data, Step
302. Next, for the illustrated embodiment, read/write Ser
vices 276 generate a software SMI to enter SMM and to
provide the SMI handler with the physical address pointers
of the write data, step 304. A software SMI is used and
preferred at this point in time as opposed to the designated
GPIO port 232 because FLASH memory would remain
disabled during the authentication process.
Upon entry into SMM, as described earlier, SMI handler

274 is given control. Upon ascertaining the reason for the
SMI, SMI handler 274 invokes message digest 266 and
decryption function 268 to authenticate the write data iden
tified by the physical address pointers, step 306. If the write
data fails the authentication process, step 308, SMI handler
274 sets the appropriate error flags, step 310, clears the
designated GPIO port, step 316, and exits SMM. Upon given
control again, read/write Services 276 returns to the caller,
after performing the necessary “clean ups”.
On the other hand, if at step 308, the write data passes the

authentication process, SMI handler 274 enables write to
FLASH memory 224, by setting the designated GPIO port
232, step 312. Once enabled, the authenticated write data are
copied into FLASH memory 224, step 314. After all authen
ticated write data have been copied, as described earlier,
SMI handler 274 clears the designated GPIO port 232, and
exits SMM. Upon given control again, read/write Services
276 returns to the caller, after performing the necessary
“clean ups”.
AS described earlier, when SMI handler 274 enables write

to FLASH memory 224 by way of the designated GPIO port,
in addition to enabling FLASH memory 224 for write, a SMI
is triggered. However, since this “new” SMI is triggered
while the system is in SMM, the “new” SMI is discarded.
The reason why the “new” SMI is triggered is because for
the illustrated embodiment, the designated GPIO port 232
may be set outside SMM. The “automatic' SMI will ensure
that the write data will be authenticated in the event that
happens, preventing any possibility of bypassing the authen
tication process.

Nintendo - Ancora Exh. 1003

5,835,594
7

Thus, methods and apparatus for preventing unauthorized
access to a protected non-volatile memory have been
described. While the method and apparatus of the present
invention has been described in terms of the above illus
trated embodiments, those skilled in the art will recognize
that the invention is not limited to the embodiments
described. The present invention can be practiced with
modification and alteration within the Spirit and Scope of the
appended claims. The description is thus to be regarded as
illustrative instead of restrictive on the present invention.
What is claimed is:
1. In a computer System comprising a non-volatile Storage

having Stored therein data content, a computer implemented
method for protecting the non-volatile Storage from unau
thorized write access that would result in unauthorized
modification of the Stored data content, the method com
prising the Steps of

a) pre-storing a plurality of associated authentication
functions in the non-volatile Storage, reading the plu
rality of associated authentication functions from the
non-volatile Storage during computer System
initialization, and Securing the plurality of associated
authentication functions on the computer System, the
asSociated authentication functions operative to authen
ticate write data of a write access to the non-volatile
Storage using an electronic Signature the content of
which being functionally dependent on the content of
the write data; and

b) Selectively invoking the associated authentication func
tions to authenticate the write data of Subsequent write
accesses to the non-volatile Storage during operation,
allowing only authenticated write data to be written
into the non-volatile Storage.

2. The computer implemented method as Set forth in claim
1, wherein step (a) comprises Securing the authentication
functions in a Secured portion of memory of the computer
System.

3. The computer implemented method as set forth in claim
1, wherein the associated authentication functions of step (a)
are implemented as a plurality of System basic input/output
services (BIOS) of the computer system; and wherein step
(a) comprises Securing the associated authentication func
tions by copying the plurality of System BIOS implementing
the associated authentication functions into System manage
ment memory of the computer System during System
initialization, wherein the System management memory is
not mapped into a normal System memory Space of the
computer System unless the computer System is executing in
a System management mode, and wherein the System man
agement memory is write protected except for System ini
tialization and System execution mode transition.

4. The computer implemented method as Set forth in claim
1, wherein the associated electronic Signature is generated
by encrypting a first digest with a Secret private key, the first
digest being generated based on the content of the write data
of the write access; and step (b) comprises

(b. 1) providing read accessibility to the Secured associ
ated authentication functions,

(b.2) invoking a secured decryption function of the
Secured associated authentication functions reconsti
tute the first digest by decrypting the associated elec
tronic Signature using a Secured public key comple
mentary to the Secret private key,

(b.3) invoking a Secured message digest function of the
Secured associated authentication functions to generate
a Second digest based on the content of the write data
of the write access, and

5

15

25

35

40

45

50

55

60

65

8
(b.4) invoking a Secured digest comparison function of

the Secured associated authentication functions to
determine if the write data of the write acceSS is
authentic by comparing the first and Second digests.

5. The computer implemented method as set forth in claim
4, wherein step (b) further comprises step (b.5) conditionally
invoking a Secured copy utility of the Secured associated
authentication functions to copy the write data into the
protected non-volatile Storage if the first and Second digests
compared Successfully in Step (b.4).

6. A computer System comprising:
(a) a non-volatile storage having Stored therein data

content,
(b) a plurality of authentication functions associated with

the data content and Stored in the non-volatile Storage,
operative to authenticate write data of a write access to
the non-volatile Storage during operation, the associ
ated authentication functions operative to authenticate
the write data using an electronic Signature which is
functionally dependent on the content of the write data;

(c) a Secured memory unit operative to store and Secure
the plurality of associated authentication functions read
from the non-volatile Storage during System initializa
tion of the computer System; and

(d) a processor coupled to the non-volatile storage and the
Secured memory unit operative to Selectively invoke
the associated authentication functions during opera
tion of the computer System to authenticate the write
data of Subsequent write accesses to the non-volatile
Storage, protecting the non-volatile Storage from unau
thorized write access that would result in unauthorized
modification of the Stored data content.

7. The computer system as set forth in claim 6, wherein
the plurality of authentication functions include

a decryption function for reconstituting a first digest by
decrypting the electronic Signature with a public key,
the electronic Signature being generated by encrypting
the first digest with a Secret private key in a comple
mentary manner,

a message digest function for generating a Second digest
based on the content of the write data of the write
access in the same manner the first digest was
generated, and

a digest comparison function for determining whether the
write data of the write access is authentic by comparing
the first and Second digests.

8. The computer system as set forth in claim 7, wherein
the decryption function, the message digest function and the
digest comparison function are implemented as a plurality of
system basic input/output services (BIOS) of the computer
System, which are copied into the Secured memory unit
during System initialization, wherein the Secured memory
unit is not mapped into a normal System memory Space of
the computer System unless the processor is executing in
System management mode, and wherein the Secured
memory unit is write protected except for System initializa
tion and processor execution mode transition.

9. The computer system as set forth in claim 8, wherein
the non-volatile Storage is a FLASH memory Storage unit

for storing system BIOS;
the decryption function, the message digest function, the

digest encryption function and the public key are
pre-stored in the FLASH memory storage unit;

the computer System further includes main memory
coupled to the processor; and

Nintendo - Ancora Exh. 1003

5,835,594
9

the write data of the write access are system BIOS updates
Staged in a buffer in the main memory.

10. The computer system as set forth in claim 9, wherein
the computer System further includes a memory controller

coupled to the processor, the main memory, the Secured
memory unit and the FLASH memory for controlling
memory acceSS,

a FLASH security circuit coupled to the memory control
ler and the FLASH memory for qualifying a write
Signal provided by the memory controller to the
FLASH memory for the write access, and for generat
ing an interrupt to place the processor in the System
management mode.

11. The computer system as set forth in claim 10, wherein
the computer System further includes an I/O port coupled

to the processor and the FLASH security circuit for
notifying the FLASH security circuit of the write
CCCSS.

12. The computer system as set forth in claim 7, wherein
the plurality of authentication functions further include a
copy function for conditionally copying the write data of the
write acceSS into the non-volatile Storage if the digest
comparison function Successfully compares the first and
Second digests.

13. A computer System motherboard comprising:
(a) a non-volatile memory Storage unit; and
(b) system basic input/output services (BIOS) including a

plurality of associated authentication functions Stored
in the non-volatile memory Storage unit, wherein the
plurality of associated authentication functions are read
from the non-volatile Storage and retained in Secured
memory upon initialization of a computer System inte
grated with the computer System motherboard, the
plurality of associated authentication functions opera
tive to authenticate write accesses to update the System
BIOS using an electronic Signature associated with the
system BIOS updates, the content of the electronic
Signature being functionally dependent on the content
of the system BIOS updates.

14. The computer system motherboard as set forth in
claim 13, wherein the computer system motherboard further
includes

(c) main memory for staging the System BIOS updates in
a buffer.

15. The computer system motherboard as set forth in
claim 14, wherein the computer system motherboard further
includes

(d) System management memory for storing and Securing
the plurality of associated authentication functions dur
ing operation of the computer System, the plurality of
asSociated authentication functions being copied into
the System management memory during System
initialization, wherein the System management memory
is not mapped into a normal System memory Space of
the computer System unless the computer System is
executing in a System management mode, and wherein
the System management memory is write protected
except for System initialization and System execution
mode transition.

16. The computer system motherboard as set forth in
claim 15, wherein the computer system motherboard further
comprises

(e) a processor coupled to the non-volatile memory Stor
age and the System management memory for invoking
the authentication functions during operation of the

15

25

35

40

45

50

55

60

65

10
computer System in System management mode to
authenticate the system BIOS updates, and to allow
only authenticated system BIOS updates to be written
from the buffer of main memory into the non-volatile
memory Storage unit.

17. The computer system motherboard as set forth in
claim 16, wherein the computer system motherboard further
comprises:

(f) a memory controller coupled to the processor, the main
memory, the System management memory and the
non-volatile memory Storage unit for controlling
memory acceSS,

(g) a non-volatile memory access Security circuit coupled
to the memory controller and the non-volatile memory
Storage unit for qualifying a write Signal provided by
the memory controller to the non-volatile memory
Storage unit for a write access initiated to write the
system BIOS updates into the non-volatile memory
Storage unit, and for generating an interrupt to place the
computer System in the System management mode.

18. The computer system motherboard as set forth in
claim 17, wherein the computer system motherboard further
includes an I/O port coupled to the processor and the
non-volatile memory access Security circuit for notifying the
nonvolatile memory Security circuit of the write access.

19. The computer system motherboard as set forth in
claim 13, wherein the plurality of authentication functions
include

a decryption function for reconstituting a first digest by
decrypting the electronic Signature with a public key,
the electronic Signature being generated by encrypting
the first digest with a Secret private key in a comple
mentary manner,

a message digest function for generating a Second digest
based on the content of the system BIOS updates in the
Same manner the first digest was generated, and

a digest comparison function for determining whether the
System BIOS updates are authentic by comparing the
first and Second digests.

20. The computer system as set forth in claim 19, wherein
the plurality of authentication functions further include a
copy function for conditionally copying the system BIOS
updates into the non-volatile memory Storage unit if the
digest comparison function Successfully compares the first
and Second digests.

21. The computer implemented method of claim 4,
wherein unsecuring the Secured associated authentication
functions (b.1) comprises issuing a system management
interrupt (SMI) placing the computer system into SMM,
wherein the System management memory is mapped to the
normal memory space from which the associated authenti
cation functions are Selectively invoked to authenticate
received data.

22. The computer System of claim 6, wherein the proces
Sor enterS System management mode upon the receipt of a
System management interrupt (SMI), whereafter, the pro
cessor Selectively invokes the associated authentication
functions to authenticate received data.

23. The computer system motherboard of claim 15,
wherein the computer System enterS System management
mode upon receipt of a System management interrupt (SMI),
whereafter, the computer System Selectively invokes the
asSociated authentication functions to authenticate received
data.

Nintendo - Ancora Exh. 1003

