
Spotlight

Unraveling the
Web Services Web
An Introduction to SOAP,
WSDL, and UDDI

O ver the past few years, businesses have
interacted using ad hoc approaches that
take advantage of the basic Internet infra-

structure. Now, however, Web services are emerg-
ing to provide a systematic and extensible frame-
work for application-to-application interaction,
built on top of existing Web protocols and based
on open XML standards.

Say, for example, that you want to purchase a
vacation package using an online travel agent. To
locate the best prices on airline tickets, hotels, and
rental cars, the agency will have to poll multiple
companies, each of which likely uses different,
incompatible applications for pricing and reserva-
tions. Web services aim to simplify this process by
defining a standardized mechanism to describe,
locate, and communicate with online applications.
Essentially, each application becomes an accessible
Web service component that is described using open
standards. An online travel service could thus use
the same Web services framework to locate and
reserve your package elements, as well as to lease
Internet-based credit check and bank payment ser-
vices on a pay-per-use basis to expedite fund trans-
fers between you, the travel agency, and the vendors.

The Web services framework is divided into
three areas — communication protocols, service
descriptions, and service discovery — and specifi-
cations are being developed for each. In this arti-
cle, we look at the specifications that are current-
ly the most salient and stable in each area:

� the simple object access protocol (SOAP,
www.w3.org/2000/xp) which enables commu-
nication among Web services;

� the Web Services Description Language (WSDL,
www.w3.org/TR/wsdl.html), which provides a
formal, computer-readable description of Web
services; and

� the Universal Description, Discovery, and Inte-
gration (UDDI, www.uddi.org) directory, which
is a registry of Web services descriptions.

At this point, Web services technology is still
emerging, and researchers are still developing
important pieces, including quality of service
descriptions and interaction models. Because the
Web services framework is modular, however, you
can use just the parts of the stack you need. There-
fore, developers can take advantage of the avail-
able specifications and tooling now and incorpo-
rate more modules as the technology matures.

Communication: SOAP
Given the Web’s intrinsically distributed and het-
erogeneous nature, communication mechanisms
must be platform-independent, international, secure,
and as lightweight as possible. XML is now firmly
established as the lingua franca for information and
data encoding for platform independence and inter-
nationalization. Building a communication protocol
using XML is thus a natural answer for Web services.

Enter SOAP, which was initially created by
Microsoft and later developed in collaboration with
Developmentor, IBM, Lotus, and UserLand. SOAP
is an XML-based protocol for messaging and
remote procedure calls (RPCs). Rather than define
a new transport protocol, SOAP works on existing
transports, such as HTTP, SMTP, and MQSeries.

At its core, a SOAP message has a very simple

86 MARCH • APRIL 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Francisco Curbera, Matthew Duftler, Rania Khalaf,William Nagy,
Nirmal Mukhi, and Sanjiva Weerawarana • IBM T.J.Watson Research Center

Exhibit 1018
Page 01 of 08

f

Find authenticated court documents without watermarks at docketalarm.com.

phan_b
Text Box
Adobe Inc. v. Express Mobile, Inc.,
IPR2021-XXXXX, U.S. Pat. 9,471,287, Exhibit 1018

https://www.docketalarm.com/

structure: an XML element with two child ele-
ments, one of which contains the header and the
other the body. The header contents and body ele-
ments are themselves arbitrary XML. Figure 1
shows a SOAP envelope’s structure.

In addition to the basic message structure, the
SOAP specification defines a model that dictates
how recipients should process SOAP messages. The
message model also includes actors, which indi-
cate who should process the message. A message
can identify actors that indicate a series of inter-
mediaries that process the message parts meant for
them and pass on the rest.

Messaging Using SOAP
At the basic functionality level, you can use SOAP
as a simple messaging protocol. Throughout this
article, we’ll illustrate the Web services specifica-
tions using a simple example drawn again from the
travel services industry. Our traveler, Joe, is sched-
uled for an afternoon flight and wants to checkin
electronically. We’ll assume that Joe knows of a
service with an electronic CheckIn method and that
he knows the format for encoding the ticket. Given
this, he could simply create and send a SOAP mes-
sage to that service for processing.

Figure 2 shows such a SOAP message, carried by
HTTP. The HTTP headers are above the SOAP:Enve-
lope element. The POST header shows that the mes-
sage uses HTTP POST, which browsers also use to
submit forms. Following the POST header is an
optional SOAPAction header that indicates the mes-
sage’s intended purpose. If there were a response,
the HTTP response would be of type text/xml, as
declared in the Content-Type header, and could
contain a SOAP message with the response data.
Alternatively, the recipient could deliver the
response message later (asynchronously).

Note that the message in Figure 2 has no SOAP
headers; the body simply contains an XML repre-
sentation of an e-ticket with the person’s name
and flight details. Any realistic B2B scenario
would, of course, have many headers indicating
further information, including the sender’s cre-
dentials and correlation information.

Remote Procedure Calls Using SOAP
To use SOAP for RPCs, you must define an RPC
protocol, including:

� how typed values can be transported back and
forth between the SOAP representation (XML)
and the application’s representation (such as a
Java class for a ticket), and

� where the various RPC parts are carried (object
identity, operation name, and parameters).

The W3C’s XML schema specification (www.
w3.org/XML/Schema) provides a standard lan-
guage for defining the document structure and the
XML structures’ data types. That is, given a type
like integer or a complex type, such as a record
with two fields (say, an integer and a string), XML
schema offers a standard way to write the type in
XML. To enable transmission of the typed values,
SOAP assumes a type system based on the one in
XML schema and defines its canonical encoding
in XML. Using this encoding style, you can pro-
duce an XML encoding for any type of structured
data. RPC arguments and responses are also rep-

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 87

Web Services

<SOAP:Envelope xmlns:SOAP=
“http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP:Header>
<!— content of header goes here —>

</SOAP:Header>
<SOAP:Body>

<!— content of body goes here —>
</SOAP:Body>

</SOAP:Envelope>

Figure 1. Structure of a SOAP message.The envelope features child
elements that contain the message header and body elements.

POST /travelservice
SOAPAction: “http://www.acme-travel.com/checkin”
Content-Type: text/xml; charset=“utf-8”
Content-Length: nnnn

<SOAP:Envelope xmlns:SOAP=
“http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP:Body>
<et:eTicket xmlns:et=

“http://www.acme-travel.com/eticket/schema”>
<et:passengerName first=“Joe” last=“Smith”/>
<et:flightInfo airlineName=“AA”

flightNumber=“1111”
departureDate=“2002-01-01”
departureTime=“1905”/>

</et:eTicket>
</SOAP:Body>

</SOAP:Envelope>

Figure 2. SOAP message containing an e-ticket.The SOAPAction
header indicates the message’s purpose. In a real-world scenario,
the message would contain additional information, including the
sender’s credentials.

Exhibit 1018
Page 02 of 08

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

resented using this encoding.
Now, let’s say Joe wants to know whether his

flight has been delayed. He knows that the service
has a function, GetFlightInfo, which takes two
arguments — a string containing the airline name
and an integer with the flight number — and returns
a structured value (a record) with two fields — the
gate number and flight status. In this case, Joe can
get flight status by sending the service an HTTP POST
carrying a SOAP envelope like the one in Figure 3.

In this SOAP envelope, the call to GetFlight-
Info is an XML element with attributes that
include information about the encoding (note the
references to XML schema). The element’s children
are the method call’s arguments: airlineName and
flightNumber. Their types are defined in the type
attributes, where xsd refers to the XML schema
definitions. When the SOAP implementation
receives the message, it converts the XML text for
UL and 506 into the appropriate string and integer
based on the service’s implementation. It then calls
the GetFlightInfo method with those arguments.

Figure 4 shows the response to this request. In
this case, the response contains a structured value
with the subvalues for gate number and flight sta-
tus. Luckily, Joe’s flight is on time.

SOAP implementations exist for several pro-
gramming languages, including C, Java, and Perl,

which automatically generate and process the
SOAP messages. Assuming the messages conform
to SOAP specifications, they can thus be exchanged
by services implemented in different languages.

Description:WSDL
Speaking a universal language is not very useful
unless you can maintain the basic conversations
that let you achieve your goals. For Web services,
SOAP offers basic communication, but it does not
tell us what messages must be exchanged to suc-
cessfully interact with a service. That role is filled
by WSDL, an XML format developed by IBM and
Microsoft to describe Web services as collections
of communication end points that can exchange
certain messages. In other words, a WSDL docu-
ment describes a Web service’s interface and pro-
vides users with a point of contact.

In this section, our examples are fragments of a
WSDL document that describes a Web service that
can process the two types of interactions in our
SOAP examples. The first interaction, GetFlightIn-
fo, is accessed using the SOAP RPC model; it takes
an airline name and a flight number and returns a
complex (or structured) type with flight information.
The second, CheckIn, uses pure SOAP messaging; it
expects to receive an XML representation of an elec-
tronic ticket, and returns no information.

A complete WSDL service description provides
two pieces of information: an application-level
service description, or abstract interface, and the
specific protocol-dependent details that users must
follow to access the service at concrete service end
points. This separation accounts for the fact that
similar application-level service functionality is
often deployed at different end points with slight-
ly different access protocol details. Separating the
description of these two aspects helps WDSL rep-
resent common functionality between seemingly
different end points.

Abstract Description
WSDL defines a service’s abstract description in
terms of messages exchanged in a service interac-
tion. There are three main components of this
abstract interface: the vocabulary, the message,
and the interaction. Agreement on a vocabulary is
the foundation of any type of communication.
WSDL uses external type systems to provide data-
type definitions for the information exchange.
Although WSDL can support any type system,
most services use XSD. Figure 5 shows two data
types defined in XSD (string and int), and two
data types defined in external schema (Flight

88 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

POST /travelservice
SOAPAction: “http://www.acme-travel.com/flightinfo”
Content-Type: text/xml; charset=“utf-8”
Content-Length: nnnn

<SOAP:Envelope xmlns:SOAP=
“http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP:Body>
<m:GetFlightInfo
xmlns:m=“http://www.acme-travel.com/flightinfo”
SOAP:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsi=

“http://www.w3.org/2001/XMLSchema-instance”>
<airlineName xsi:type=“xsd:string”>UL
</airlineName>

<flightNumber xsi:type=“xsd:int”>506
</flightNumber>

</m:GetFlightInfo>
</SOAP:Body>

</SOAP:Envelope>

Figure 3. SOAP RPC call.To find out if his flight is on time, Joe
sends a string containing the airline’s name and an integer with
the flight number.

Exhibit 1018
Page 03 of 08

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

InfoType and Ticket). WSDL can import such
external XSD definitions using an “import” ele-
ment specifying their location.

WSDL defines message elements as aggrega-
tions of parts, each of which is described by XSD
types or elements from a predefined vocabulary.
Messages provide an abstract, typed data defini-
tion sent to and from the services. The example in
Figure 5 shows the three messages that might
appear during a Web services interaction. The mes-
sage, GetFlightInfoInput, has two parts: airli-
neName, which is an XSD string, and flightNum-
ber, which is an XSD integer. The other two
messages, GetFlightInfoOutput and CheckInIn-
put have only one part each. The operation and
portType elements combine messages to define
interactions. Each operation represents a message
exchange pattern that the Web service supports,
giving users access to a certain basic piece of ser-
vice functionality. An operation is simply a com-
bination of messages labeled as input, output, or
fault to indicate what part a particular message
plays in the interaction.

A portType is a collection of operations that are
collectively supported by an end point. In our
example, AirportServicePortType describes two
operations: a single request-response operation,
GetFlightInfo, which expects the GetFlight
InfoInput message as input and returns a Get-
FlightInfoOutput message as the response; and
a one-way operation, CheckIn, which just takes
the CheckInInput message as input.

Concrete Binding Information
So far, all of the elements that we have discussed
describe the service’s application-level functionality.
To complete the description of client–service inter-
action, we need three more pieces of information:

� what communication protocol to use (such as
SOAP over HTTP),

� how to accomplish individual service interac-
tions over this protocol, and

� where to terminate communication (the net-
work address).

WSDL’s binding element provides the “what” and
“how” parts of this information, including the com-
munication protocol and data format specification
for a complete portType. In short, the binding ele-
ment tells how a given interaction occurs over the
specified protocol. Figure 6 (next page) shows a
fragment from our example. The binding describes
how to use SOAP to access the travelservice ser-

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 89

Web Services

HTTP/1.1 200 OK
Content-Type: text/xml; charset=“utf-8”
Content-Length: nnnn

<SOAP:Envelope xmlns:SOAP=
“http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP:Body>
<m:GetFlightInfoResponse

xmlns:m=“http://www.acme-travel.com/flightinfo”
SOAP:encodingStyle=
“http://schemas.xmlsoap.org/soap/encoding/”

xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsi=
“http://www.w3.org/2001/XMLSchema-instance”>

<flightInfo>
<gate xsi:type=“xsd:int”>10</gate>
<status xsi:type=“xsd:string”>ON TIME</status>

</flightInfo>
</m:GetFlightInfoResponse>

</SOAP:Body>
</SOAP:Envelope>

Figure 4. SOAP RPC response.The travel service responds to Joe’s
request with a structured value containing subvalues for gate number
and flight status.

<message name=“GetFlightInfoInput”>
<part name=“airlineName” type=“xsd:string”/>
<part name=“flightNumber” type=“xsd:int”/>

</message>

<message name=“GetFlightInfoOutput”>
<part name=“flightInfo” type=“fixsd:FlightInfoType”/>

</message>

<message name=“CheckInInput”>
<part name=“body” element=“eticketxsd:Ticket”/>

</message>

<portType name=“AirportServicePortType”>
<operation name=“GetFlightInfo”>
<input message=“tns:GetFlightInfoInput”/>
<output message=“tns:GetFlightInfoOutput”/>

</operation>
<operation name=“CheckIn”>
<input message=“tns:CheckInInput”/>

</operation>
</portType>

Figure 5.WSDL abstract description.This fragment shows the string
and int data types,which are defined in XSD,and two other data
types defined in external schema:FlightInfoType and
Ticket,which we assume were imported earlier in the WSDL file.

Exhibit 1018
Page 04 of 08

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

vice. In particular, the WSDL document shows that

� GetFlightInfo will be a SOAP-RPC-style
interaction, in which all message exchanges use
standard SOAP encoding, and

� CheckIn is a pure messaging interaction (“doc-
ument-oriented,” in WSDL terms) in which the
SOAP message’s body contains the encoded
message with no additional type encoding; that
is, it uses XSD to literally describe the trans-
mitted XML.

All that remains now is to define “where” to access

this combination of abstract interface and proto-
col and data marshalling details (the binding). A
port element describes a single end point as a
combination of a binding and a network address.
Consequently, a service element groups a set of
related ports. In our travel service example, a sin-
gle port describes an end point that processes
SOAP requests for the travelservice service.

Using WSDL
For users and developers, WSDL provides a for-
malized description of client–service interaction.
During development, developers use WSDL as the
input to a proxy generator that produces client
code according to the service requirements. WSDL
can also be used as input to a dynamic invocation
proxy, which can then generate the correct service
requests at runtime. The result in both cases is to
relieve the user and developer of the need to
remember or understand all the details of service
access. For example, travel service users need only
obtain the WSDL description and use it as input to
the tooling and runtime infrastructure to exchange
the correct SOAP message types with the service.

Discovery: UDDI
The Universal Description, Discovery, and Integra-
tion specifications offer users a unified and system-
atic way to find service providers through a cen-
tralized registry of services that is roughly
equivalent to an automated online “phone directo-
ry” of Web services. The browser-accessible UDDI
Business Registry (UBR) became available shortly
after the specification went public. Several individ-
ual companies and industry groups are also start-
ing to use “private” UDDI directories to integrate
and streamline access to their internal services.

UDDI provides two basic specifications that
define a service registry’s structure and operation:

� a definition of the information to provide about
each service, and how to encode it; and

� a query and update API for the registry that
describes how this information can be accessed
and updated.

Registry access is accomplished using a standard
SOAP API for both querying and updating. Here
we focus on the first aspect, which provides a good
idea of how the registry operates.

Organizing Structure
UDDI encodes three types of information about
Web services:

90 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

<binding name=“AirportServiceSoapBinding”
type=“tns:AirportServicePortType”>

<soap:binding transport=
“http://schemas.xmlsoap.org/soap/http”/>

<operation name=“GetFlightInfo”>
<soap:operation style=“rpc”

soapAction=“http://acme-travel/flightinfo”/>
<input>
<soap:body use=“encoded”

namespace=“http://acme-travel.com/flightinfo”
encodingStyle=
“http://schemas.xmlsoap.org/soap/encoding/”/>

</input>
<output>
<soap:body use=“encoded”

namespace=“http://acme-travel.com/flightinfo”
encodingStyle=
“http://schemas.xmlsoap.org/soap/encoding/”/>

</output>
</operation>
<operation name=“CheckIn”>
<soap:operation style=“document”

soapAction=“http://acme-travel.com/checkin”/>
<input>
<soap:body use=“literal”/>

</input>
</operation>

</binding>

<service name=“travelservice”>
<port name=“travelservicePort”

binding=“tns:AirportServiceSoapBinding”>
<soap:address location=

“http://acmetravel.com/travelservice”/>
</port>

</service>

Figure 6.WSDL’s concrete binding information. As this fragment
shows,GetFlightInfo is a SOAP RPC interaction and
CheckIn is a pure messaging interaction that uses XSD to
describe the transmitted XML.

Exhibit 1018
Page 05 of 08

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

