
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7 Prepared using smrauth.cls [Version: 2003/05/07 v1.1]

Research

A reference architecture for

web browsers

Alan Grosskurth∗, † and Michael W. Godfrey‡

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

SUMMARY

A reference architecture for a domain captures the fundamental subsystems common
to systems of that domain, as well as the relationships between these subsystems. The
presence of a reference architecture can aid both during maintenance and at design
time: it can improve understanding of a given system, it can aid in analyzing trade-
offs between different design options, and it can serve as a template for designing new
systems and reengineering existing ones. In this paper, we examine the history of the
web browser domain and identify several underlying forces that have contributed to its
evolution. We develop a reference architecture for web browsers based on two well known
open source implementations, and we validate it against five additional implementations.
We analyze the maintenance implications of different strategies for code reuse, and we
identify several underlying evolutionary phenomena in the web browser domain; namely,
emergent domain boundaries, convergent evolution, and tension between open and closed
source development approaches.

key words: Software architecture, reference architecture, software evolution, component reuse, web

browser.

INTRODUCTION

A reference architecture[20] for a domain captures the fundamental subsystems and
relationships between them that are common to existing systems in the domain. It aids in the
understanding of these systems, some of which may not have their own specific architectural
documentation. It also serves as a template for creating new systems by identifying areas in
which reuse can occur, both at the design level and the implementation level. While reference
architectures exist for many mature software domains such as compilers and operating systems,
we are not aware of any reference architectures proposed for web browsers.

∗Correspondence to: Alan Grosskurth, David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
†E-mail: agrossku@uwaterloo.ca
‡E-mail: migod@uwaterloo.ca

Copyright c© 2006 John Wiley & Sons, Ltd.

Exhibit 1016
Page 01 of 19

f

Find authenticated court documents without watermarks at docketalarm.com.

phan_b
Text Box
Adobe Inc. v. Express Mobile, Inc.,IPR2021-XXXXXU.S. Pat. 9,471,287Exhibit 1016

https://www.docketalarm.com/

2 ALAN GROSSKURTH AND MICHAEL W. GODFREY

The web browser is perhaps the most widely used software application in history. It has
evolved significantly over the past fifteen years; today, web browsers run on diverse types
of hardware, from cell phones and tablet PCs to regular desktop computers. Web browsers
are used to conduct billions of dollars worth of Internet-enabled commerce each year. A
reference architecture for web browsers can help implementors to understand trade-offs when
designing new systems, and can assist maintainers in understanding legacy code. Comparing
the architecture of older systems with the reference architecture can provide insight into
evolutionary trends occurring in the domain.

In this paper, we present a reference architecture for web browsers that has been derived
from the source code of two existing open source systems and validate our findings against five
additional systems. We explain how the evolutionary history of the web browser domain has
influenced this reference architecture, and we identify underlying phenomena that can help to
explain current trends. Although we present these observations in the context of web browsers,
we believe many of our findings may represent more general evolutionary patterns which apply
to other domains. This paper is organized as follows: the next section provides an overview of
the web browser domain, outlining its history and evolution. We then describe the process and
tools we used to develop a reference architecture for web browsers based on the source code
of two existing open source systems. Next, we present this reference architecture and explain
how it represents the commonalities of the two systems from which it was derived. We then
provide validation for our reference architecture by showing how it maps onto the conceptual
architectures of five additional systems. Finally, we summarize our observations about the web
browser domain, discuss related work, and present conclusions.

THE WEB BROWSER DOMAIN

Overview

The World Wide Web (WWW) is a universal information space operating on top of the
Internet. Each resource on the web is identified by a unique Uniform Resource Identifier[16]
(URI). Resources can take many different forms, including documents, images, sound clips, or
video clips. Documents are typically written using HyperText Markup Language[14] (HTML),
which allows the author to embed hypertext links to other documents or different places in the
same document. Data is typically transmitted via HyperText Transfer Protocol[15] (HTTP),
a stateless and anonymous means of information exchange. A web browser is a program that
retrieves documents from remote servers and displays them on screen, either within the browser
window itself or by passing the document to an external helper application. It allows particular
resources to be requested explicitly by URI, or implicitly by following embedded hyperlinks.

Although HTML itself is a relatively simple language for encoding web pages, other
technologies may be used to improve the visual appearance and user experience. Cascading
Style Sheets[3] (CSS) allow authors to add layout and style information to web pages without
complicating the original structural markup. JavaScript, now standardized as ECMAScript[4],
is a host environment for performing client-side computations. Scripting code is embedded
within HTML documents, and the corresponding displayed page is the result of evaluating

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 02 of 19

Exhibit 1016

Page 02 of 19

2 ALAN GROSSKURTH AND MICHAEL W. GODFREY =

The web browser is perhaps the most widely used software application in history. It has

evolved significantly over the past fifteen years; today, web browsers run on diverse types

of hardware, from cell phones and tablet PCs to regular desktop computers. Web browsers

are used to conduct billions of dollars worth of Internet-enabled commerce each year. A

reference architecture for web browsers can help implementors to understand trade-offs when

designing new systems, and can assist maintainers in understanding legacy code. Comparing

the architecture of older systems with the reference architecture can provide insight into

evolutionary trends occurring in the domain.

In this paper, we present a reference architecture for web browsers that has been derived

from the source code of two existing open source systems and validate our findings against five

additional systems. We explain how the evolutionary history of the web browser domain has

influenced this reference architecture, and we identify underlying phenomena that can help to

explain current trends. Although we present these observations in the context of web browsers,

we believe many of our findings may represent more general evolutionary patterns which apply

to other domains. This paper is organized as follows: the next section provides an overview of

the web browser domain, outlining its history and evolution. We then describe the process and

tools we used to develop a reference architecture for web browsers based on the source code

of two existing open source systems. Next, we present this reference architecture and explain

how it represents the commonalities of the two systems from which it was derived. We then

provide validation for our reference architecture by showing how it maps onto the conceptual

architectures of five additional systems. Finally, we summarize our observations about the web

browser domain, discuss related work, and present conclusions.

THE WEB BROWSER DOMAIN

Overview

The World Wide Web (WWW) is a universal information space operating on top of the

Internet. Each resource on the web is identified by a unique Uniform Resource Identifier[16]

(URI). Resources can take many different forms, including documents, images, sound clips, or

video clips. Documents are typically written using HyperText Markup Language[14] (HTML),
which allows the author to embed hypertext links to other documents or different places in the

same document. Data is typically transmitted via HyperText Transfer Protocol[15] (HTTP),
a stateless and anonymous means of information exchange. A web browser is a program that

retrieves documents from remote servers and displays them on screen, either within the browser

window itself or by passing the document to an external helper application. It allows particular

resources to be requested explicitly by URI, or implicitly by following embedded hyperlinks.

Although HTML itself is a relatively simple language for encoding web pages, other

technologies may be used to improve the visual appearance and user experience. Cascading

Style Sheets[3] (CSS) allow authors to add layout and style information to web pages without

complicating the original structural markup. JavaScript, now standardized as ECMAScript [4],
is a host environment for performing client-side computations. Scripting code is embedded

within HTML documents, and the corresponding displayed page is the result of evaluating

Copyright © 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Ecol; Res. Pmct. 2006; 00:1—7
Prepared using smrauth.cls

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A REFERENCE ARCHITECTURE FOR WEB BROWSERS 3

the JavaScript code and applying it to the static HTML constructs. Examples of JavaScript
applications include changing element focus, altering page and image loading behaviour, and
interpreting mouse actions. Finally, there are some types of content that the web browser
cannot display directly, such as Macromedia Flash animations and Java applets. Plugins,
small programs that connect with the browser, are used to embed these types of content in
web pages.

In addition to retrieving and displaying documents, web browsers typically provide the user
with other useful features. For example, most browsers keep track of recently visited web
pages and provide a mechanism for “bookmarking” pages of interest. They may also store
commonly entered form values as well as usernames and passwords. Finally, browsers often
provide accessibility features to accommodate users with disabilities such as blindness and low
vision, hearing loss, and motor impairments.

History and evolution

Although key concepts can be traced back to systems envisioned by Vannevar Bush in the
1940s and Ted Nelson in the 1960s, the WWW was first described in a proposal written by
Tim Berners-Lee in 1990 at the European Nuclear Research Center (CERN)[13]. By 1991, he
had written the first web browser, which was graphical and also served as an HTML editor.
Around the same time, researchers at the University of Kansas had independently begun
work on a text-only hypertext browser called Lynx; they adapted Lynx to support the web
in 1993. In the same year, the National Center for Supercomputing Applications (NCSA)
released a graphical web browser called Mosaic, which allowed users to view images directly
interspersed with text. As the commercial potential of the web began to grow, NCSA founded
an offshoot company called Spyglass to commercialize its technologies and Mosaic’s co-author
left to co-found his own company, Netscape. In 1994, Berners-Lee founded the World Wide
Web Consortium (W3C) to guide the evolution of the web and promote interoperability among
web technologies. In 1995, Microsoft released Internet Explorer (IE), based on code licensed
from Spyglass, igniting a period of intense competition with Netscape known as the “browser
wars.” Microsoft eventually dominated the market, and Netscape released its browser as open
source under the name Mozilla in 1998. Figure 1 shows a timeline of the various releases of
several prominent web browsers.

Since 1998, a large number of Mozilla variations have appeared, reusing the browser core
but offering alternative design decisions for user-level features. Firefox is a standalone browser
with a streamlined user interface, eliminating Mozilla’s integrated mail, news, and chat clients.
Galeon is a browser for the GNOME desktop environment[5] that integrates with other
GNOME applications and technologies. The open source Konqueror browser has also been
reused: Apple has integrated its core subsystems into its OS X web browser, Safari, and Apple’s
modifications have in turn been reused by other browsers. Internet Explorer’s closed source
engine has also seen reuse: Maxthon, Avant, and NetCaptor each provide additional features to
IE such as tabbed browsing and ad-blocking. Although each browser engine typically produces
a similar result, there can be differences as to how web pages look and behave; Netscape 8,
based on Firefox, allows the user to switch between IE-based rendering and Mozilla-based
rendering on the fly.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 03 of 19

Exhibit 1016

Page 03 of 19

= A REFERENCE ARCHITECTURE FOR WEB BROWSERS 3

the JavaScript code and applying it to the static HTML constructs. Examples of JavaScript

applications include changing element focus, altering page and image loading behaviour, and

interpreting mouse actions. Finally, there are some types of content that the web browser

cannot display directly, such as Macromedia Flash animations and Java applets. Plugins,

small programs that connect with the browser, are used to embed these types of content in

web pages.

In addition to retrieving and displaying documents, web browsers typically provide the user

with other useful features. For example, most browsers keep track of recently visited web

pages and provide a mechanism for “bookmarking” pages of interest. They may also store

commonly entered form values as well as usernames and passwords. Finally, browsers often

provide accessibility features to accommodate users with disabilities such as blindness and low

vision, hearing loss, and motor impairments.

History and evolution

Although key concepts can be traced back to systems envisioned by Vannevar Bush in the

1940s and Ted Nelson in the 1960s, the WWW was first described in a proposal written by

Tim Berners-Lee in 1990 at the European Nuclear Research Center (CERN)[13]. By 1991, he
had written the first web browser, which was graphical and also served as an HTML editor.

Around the same time, researchers at the University of Kansas had independently begun

work on a text-only hypertext browser called Lynx; they adapted Lynx to support the web

in 1993. In the same year, the National Center for Supercomputing Applications (NCSA)
released a graphical web browser called Mosaic, which allowed users to view images directly

interspersed with text. As the commercial potential of the web began to grow, NCSA founded

an offshoot company called Spyglass to commercialize its technologies and Mosaic’s co-author

left to co-found his own company, Netscape. In 1994, Berners-Lee founded the World Wide

Web Consortium (W3C) to guide the evolution of the web and promote interoperability among

web technologies. In 1995, Microsoft released Internet Explorer (IE), based on code licensed
from Spyglass, igniting a period of intense competition with Netscape known as the “browser

wars.” Microsoft eventually dominated the market, and Netscape released its browser as open

source under the name Mozilla in 1998. Figure 1 shows a timeline of the various releases of

several prominent web browsers.

Since 1998, a large number of Mozilla variations have appeared, reusing the browser core

but offering alternative design decisions for user-level features. Firefox is a standalone browser

with a streamlined user interface, eliminating Mozilla’s integrated mail, news, and chat clients.

Galeon is a browser for the GNOME desktop environment[5] that integrates with other
GNOME applications and technologies. The open source Konqueror browser has also been

reused: Apple has integrated its core subsystems into its OS X web browser, Safari, and Apple’s

modifications have in turn been reused by other browsers. Internet Explorer’s closed source

engine has also seen reuse: Maxthon, Avant, and NetCaptor each provide additional features to

IE such as tabbed browsing and ad-blocking. Although each browser engine typically produces

a similar result, there can be differences as to how web pages look and behave; Netscape 8,

based on Firefox, allows the user to switch between IE-based rendering and Mozilla—based

rendering on the fly.

Copyright © 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Ecol; Res. Pmct. 2006; 00:1—7
Prepared using smrauth.cls

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 ALAN GROSSKURTH AND MICHAEL W. GODFREY

Lynx

Hybrid

Closed−source

Open−source

Legend

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

W
3C

 fo
un

de
d

1.0 2.0 2.4 2.85

6.05.55.04.03.02.01.0

1.0 2.0 3.0

1.0 2.0 3.0 4.0 4.5

M18

6.0

1.0 1.7

8.0

Internet Explorer

Mosaic

Netscape

Mozilla

Galeon

1998−03−31

1.0

1.0

1.2

0.5

Safari
0.8 1.0

3.02.01.0
Konqueror

0.4
Epiphany

Firefox

7.0

3.02.1
Opera

7.06.05.04.0

20
06

1.5

8.0

Nokia S60 Browser

2.0

1.2

1.0 1.8

Figure 1. Web browser timeline

rawlink

Program
facts

Object
code

Source
code

bfxBuild

Linked
program

facts

liftfileaddcontain

File level
program

facts

addschema

Facts with

osition

decomp−
Predefined
landscape
schema

Hierarchichal
subsystem

decomposition

Software
landscape

Conceptual

Architecture

Concrete

Architecture

Adjustments

lsedit

Legend

Tool

jgrok script

Data flow

Human interaction

Figure 2. Extraction process for concrete architecture

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 04 of 19

Exhibit 1016

Page 04 of 19

4 ALAN GROSSKURTH AND MICHAEL W. GODFREY

2.1 3.0 4.0 5.0 6.0 7.0 8.0
Opera H O. O O 0

Nokia 560 Browser (P-

Legend Safari 0.81.0 1.2
O Open—source :1.0 2.0 3.0
. owed—50“” Konqueror O—O—O’—
0 Hybrid 0.4 1 .o 1.8

Epiphany ()—O—O—
1 .0 1 2 2.0

g Galeon Q—q—O
E 11
5 Firefox0—0—0—
3 1998—03—31 M18 .1.o.-‘ 1.7 -

Mozilla 9 Q ' 70' 0'1.02.0 30.40 4.5 6.01

NetscglpeTED—OI

O—O—p—

Mosaic1
. 2.0 3.0 4.0 5.0 5.5 6.0

Internet Explo:rer O O O O 0“
1.0 2.0 ' 2.4 2.85

Lynx IN m V In (D I\ Q at o ‘- N m V In (Dat at at at at at at at o o o o o o 0at at at at at at at at o o o o o o o.- .- .- .- .- .- .- ‘- N N N N N N N

Figure 1. Web browser timeline

Source Object Program
code code facts
_>

Predefined Facts with

landscape decomp—-
schema

osition

Software

Linked
File level program
program factsfacts

.Hierarchichal
subs stem

landscape jdecomgosition. —————————— — — — — — — 1I |

: Concrete I I Conceptual 'I . |
: Architecture I ' ArchItecture I

¢ Adjustments $

lsedit % K

Figure 2. Extraction process for co

© jgrol: script
—> Data flow

<—> Human interaction
ncrete architecture

Copyright © 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Ecol; Res. Pmct. 2006; 00:1—7
Prepared using smrauth.cls

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A REFERENCE ARCHITECTURE FOR WEB BROWSERS 5

Browser Engine

Rendering Engine

Networking
JavaScript
Interpreter

XML
Parser

D
ata P

ersistence
Display Backend

User Interface

Figure 3. Reference architecture for web browsers

DERIVING A REFERENCE ARCHITECTURE

Using the source code and available documentation for two mature web browser
implementations, we derived a reference architecture for the web browser domain. We used
a process similar to that described by Hassan and Holt[26]. For each browser, a conceptual
architecture was proposed based on domain knowledge and available documentation. The
concrete architecture of each system was then extracted from its source code using the
QLDX[8] reverse engineering toolkit, and this concrete architecture was then used to refine
the conceptual architecture. A reference architecture was then proposed based on the common
structure of these refined architectures, and it was validated against five other browser
implementations.

A REFERENCE ARCHITECTURE FOR WEB BROWSERS

The reference architecture we derived is shown in Figure 3. It comprises eight major subsystems
plus the dependencies between them:

1. The User Interface subsystem is the layer between the user and the Browser Engine. It
provides features such as toolbars, visual page-load progress, smart download handling,
preferences, and printing. It may be integrated with the desktop environment to provide
browser session management or communication with other desktop applications.

2. The Browser Engine subsystem is an embeddable component that provides a high-level
interface to the Rendering Engine. It loads a given URI and supports primitive browsing
actions such as forward, back, and reload. It provides hooks for viewing various aspects
of the browsing session such as current page load progress and JavaScript alerts. It also
allows the querying and manipulation of Rendering Engine settings.

3. The Rendering Engine subsystem produces a visual representation for a given URI.
It is capable of displaying HTML and Extensible Markup Language (XML) documents,

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 05 of 19

Exhibit 1016

Page 05 of 19

A REFERENCE ARCHITECTURE FOR WEB BROWSERS 5

r User Interface

\ lJavaScript\ I XML
4

.Networkan I r Interpreter ' ' Parser\ / \ I \

Figure 3. Reference architecture for web browsers

DERIVING A REFERENCE ARCHITECTURE

Using the source code and available documentation for two mature web browser

implementations, we derived a reference architecture for the web browser domain. We used

a process similar to that described by Hassan and Holt [26]. For each browser, a conceptual
architecture was proposed based on domain knowledge and available documentation. The

concrete architecture of each system was then extracted from its source code using the

QLDX[8] reverse engineering toolkit, and this concrete architecture was then used to refine
the conceptual architecture. A reference architecture was then proposed based on the common

structure of these refined architectures, and it was validated against five other browser

implementations.

A REFERENCE ARCHITECTURE FOR WEB BROWSERS

The reference architecture we derived is shown in Figure 3. It comprises eight major subsystems

plus the dependencies between them:

1. The User Interface subsystem is the layer between the user and the Browser Engine. It

provides features such as toolbars, visual page-load progress, smart download handling,

preferences, and printing. It may be integrated with the desktop environment to provide

browser session management or communication with other desktop applications.

2. The Browser Engine subsystem is an embeddable component that provides a high-level

interface to the Rendering Engine. It loads a given URI and supports primitive browsing

actions such as forward, back, and reload. It provides hooks for viewing various aspects

of the browsing session such as current page load progress and JavaScript alerts. It also

allows the querying and manipulation of Rendering Engine settings.

3. The Rendering Engine subsystem produces a visual representation for a given URI.

It is capable of displaying HTML and Extensible Markup Language (XML) documents,

Copyright © 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Ecol; Res. Pract. 2006; 00:1—7
Prepared using smrauth.cls

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

