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PREFACE

This fourth edition has the same objective as the three prior editions,
namely, to provide a text and reference book that summarizes in easily

understandable terms those principles and techniques which are the

basic tools of the electronic and radio engineer. In keeping with current

trends, increased emphasis is placed on the general techniques of elec-

tronics, without regard to the extent of their use in radio systems. This

change is reflected in the new title, “ Electronic and Radio Engineering,”

which is more descriptive of the subject matter actually covered in the

present volume than is the previous title, “Radio Engineering.”

The keynote continues to be thorough coverage combined with a pres-

entation that allows the reader to study a particular topic without having

to read the entire book. The level of presentation, particularly the

mathematical level, remains unchanged. Thus the present volume is

designed to serve as a text and reference for the same clientele that found

the previous editions so useful.

To keep pace with a rapidly advancing technology, new material has

been added in practically every chapter. More than half the illustrations

are new, and all have been redrawn to conform to new graphic standards.

A new chapter dealing with microwave tubes makes available for the first

time an explanation in simple language of the basic mechanism of oper-

ation of traveling-wave tubes and backward-wave oscillators (carcino-

trons). In the treatment of wideband video and tuned amplifiers,

primary emphasis is placed on the rise time, overshoot, and sag, since
these characteristics are more indicative of the performance under actual

conditions than is the older approach in terms of amplitude and phase

behavior as a function of frequency. The material on nonlinear wave-

forms and pulse techniques has been greatly expanded to provide more

complete coverage of this important aspect of electronics. The chapter
on television has been thoroughly revised, and a compact and simple

explanationrs given of the system of color television now standard in the

United States. Increased attention is also placed on propagation
phenomena involving the troposphere.

Of particular importance is the chapter on Transistors and Related

Semiconductor Devices, one of the longest in the book. Here is pre-

sented a simple, straightforward explanation of the basic phenomena
occurring inside the transistor, and of how these phenomena is“ to the
terminal characteristics. This treatment is such that it can be under-

stood by undergraduate students; at the same time, it is sufliciently com.
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plate and fundamental to provide a firm foundation for further study of
this new and very important subject.

Special attention has been given to the needs of the teacher. Because

of the growth of electronics, it is no longer possible to cover every impor-
tant topic adequately in a one-year course. ”Electronic and Radio

Engineering” provides the instructor with an opportunity to select those

topics which he himself wishes to emphasize, and at the same time pro-
vides the student with a reference book of comprehensive. coverage and
continuing value. It will be observed that the book breaks down into

three distinct parts, namely, a group of chapters dealing with circuitst
(components, resonant circuits, transmission lines, waveguides, and f
cavity resonators); a group of chapters concerned with the fundamentals

of electronic engineering (vacuum tubes, transistors, amplifiers, oscil<

lators, modulators, detectors, nonlinear waveforms, etc.), which are the
heart of the book; and a concluding group of chapters concerned with

radio systems and radio engineering (antennas, propagation, transmitters,
receivers, television, radar, and radio aids to navigation). Thus an
instructor can, if he desires, concentrate on the material concerned with

fundamental electronics and regard the remaining subject matter as
available to the student, should he need to extend his knowledge at a
future date. 'Alternatively, the instructor can choose to cover a series

of selected topics, for example, waveguides, wideband systems, pulse
circuits, television, etc. Another possibility is to concentrate on the
material concerned primarily with radio systems. Many other combi-
nations, are, of course, possible.

An important feature for the teacher is the more than 1250 Problems

and Exercises. Many of these involve numerical calculations, but more
than half of them are thought questions that will require the student to
give further consideration to topics covered in the text. Such Exercises

can be used to extend and solidify the student’s knowledge; they are also
suggestive of questions suitable for use on examinations. The number of

Problems and Exercises is so large that the same problem need not be

assigned to a class more often than once every two or three years.
The collaborators listed. on the title page have made important con-

tributions to the preparation of this volume. Dr. Helliwell worked on the

sections dealing with ionospheric propagation, and Dr. Pettit is in large
measure responsible for the general character of the chapter dealing with

transistors and semiconductors. The treatment of traveling-wave tubes
and backward-wave oscillators is due to Dr. Watkins. William Rambo

prepared the background material used in revising the presentation on
radar. In addition, acknowledgment is made to Dr. B. H. Wadia,

Bruno Ludovici, and Arthur Vassilaides, graduate students at Stanford,
for assistance in preparing illustrations.

FREDERICK Euuons Tasman

Momentum Dynamics Corporation
Exhibit 1013

Page 004



Momentum Dynamics Corporation 
Exhibit 1013 

Page 005

CONTENTS

Preface....................v

CHAPTER 1. The Elements of a System of Radio Communication . . 1

CIRCUIT ELEMENTS AND CIRCUIT THEORY

,2. Circuit Elements. . . . . . . II

3 Properties of Circuits with Lunipecl Constants . . . . 44
4. Transmission Lines . . . . . . . . . 82

5 Waveguides and Cavity Resonators . . . . . . . 127

ELECTRONIC ENGINEERING FUNDAMENTALS

6. Fundamental Properties of Electron Tubes . . . . . 169

7. Electron Optics and Cathode-ray Tubes . . . . . . 228

8. Voltage Amplifiers for Audio Frequencies. . . . . . 252

9. Voltage Amplifiers for Video Frequencies . . 288

10. Amplifier Distortion, Power Amplifiers, and Amplifier Sys-
tems . . . . . . . . . . 319

11. Negative Feedback1nAmplifiers . . . . . . . . 374
12. Tuned Voltage Amplifiers . . . . . . . . . . 400

13. Tuned Power Amplifiers . . . . . . . . . . . 448
14. Vacuum-tube Oscillators . . . . . . . . . . 489

15. Amplitude Modulation . . . . . . . . . . . 523
16. Detectors and Mixers . . . . . . . . . . 547

17. Frequency Modulation . . . . . . . 586
18. Wave Shaping, Nonlinear Waves, and Pulse Techniques . 618
19. Microwave Tubes . . . . . . . . . . . 668

20. Power for Operating Vacuum Tubes . . . . . 702
21. Transistors and Related Semiconductor Devices. . . . 733

RADIO ENGINEERING AND RADIO SYSTEMS

22. Propagation of Radio Waves . . . . . . . , 803
23. Antennas. . . . . . 7 . 864

24. Radio Transmitters, Receivers, and Communication System 935
25. Television . . . . . . . . 977

26. Radar and Radio Aids to Navigation. . . . . . . 1015

Name Index; . . . . . . . . . . . . . . . . . .1057

Subjecllndez. . . . . . . . . . . . . . . . . .1061
vii

Momentum Dynamics Corporation
Exhibit 1013

Page 005



Momentum Dynamics Corporation 
Exhibit 1013 

Page 006

CHAPTER 1

THE ELEMENTS OF A SYSTEM

OF RADIO COMMUNICATION

1-1. Radio Waves. Electrical energy that has escaped into free space
exists in the form of electromagnetic waves. These waves, which are
commonly called radio waves, travel with the velocity of light and consist
of magnetic and electric fields that are at right angles to each other and
also at right angles to the direction of travel. If these electric and

magnetic fluxes could actually be seen, the wave would have the appear-

ance indicated in Fig. 1-1. One-halfflof the electrical energy contained

i Will:ii if
e
o

(a) FRONT V|EW (0) SIDE VIEW 0
THROUGH PLANE 00

FIG. l-l. Front and side views of a vertically polarized wave. The solid lines repre-
sent electric flux; the dotted lines and the circles indicate magnetic flux.

   
D
0

0 

in the wave exists in the form of electrostatic energy, while the remaining

half is in the form of magnetic energy. . .
The essential properties of a radio wave are the frequency, intensity,

direction of travel, and plane of polarization. The radio waves produced
by an alternating current will vary in intensity with the frequency of the
current and will therefore be alternately positive and negative as shown

in Fig. l-lb. The distance occupied by one complete cycle of such an
alternating wave is equal to the velocity of the wave divided ,by the num-
ber of cycles that are sent out each second and is called the wavelength.
The relation between wavelength A in meters and frequency f in cycles

per second is therefore

= 300,000,000
* f

The quantity 300,000,000 is the velocity of light in meters per second.
The frequency is ordinarily expressed in kilocycles, abbreviated kc, or in
megacycles, abbreviated Me. A low-frequency wave 18 seen from Eq.

(14)
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2 SYSTEM OF RADIO COMMUNICATION {Clan}.

(1-1) to have along wavelength, while a high frequency corresponds to a
short wavelength. _

The strength of a radio wave is measured in terms of the voltage stress
produced in space by the electric field of the wave, and it is usually
expressed in microvolts stress per meter. Since the.actual stress pro-
duced at any point by an alternating wave varies sinusordally from instant
to instant, it is customary to consider the intensity of such a wave to be
the effective value of the stress, which is 0.707 times the maximum stress

in the atmosphere during the cycle. The strength of the wave measured
in terms of microvolts per meter of stress in space is also exactly the same

voltage that the magnetic flux of the wave induces in a conductor 1 m
long when sweeping across this conductor with the velocity of light.

The minimum field strength required to give satisfactory reception of a

wave depends upon a number of factors, such as frequency, type of signal
involved, and amount of interference present. Under some conditions
radio waves having signal strengths as low as 0.1 pv per m are usable.
Occasionally signal strengths exceeding 1000 pv per m are required to
ensure entirely satisfactory reception at all times. In most cases the
weakest useful signal strength lies somewhere between these extremes.

A plane parallel to the mutually perpendicular lines of the electric and
electromagnetic flux is called the wavefront. The wave always travels

in a direction at right angles to the wavefront, but whether it goes forward
or backward depends upon the relative direction of the lines of magnetic

and electric flux. If the direction of either the magnetic or electric flux

is reversed, the direction of travel is reversed; but reversing both sets
of flux has no effect.

The direction of the electric lines of flux is called the direction of

polarization of the wave. If the electric flux lines are vertical, as shown
in Fig. l-l, the wave is vertically polarized; when the electric flux lines

are horizontal and the electromagnetic flux lines are vertical, the wave
is horizontally polarized.

Propagation of Radio Warn of Different Frequencies. As radio waves
travel away from their point of origin, they become attenuated or weak-
ened. This is due in part to the fact that the waves spread out.

In addition. however, énergy may be absorbed from the waves by the,
ground or by the ionized regions in the upper atmosphere termed the
ionosphere, and the waves may also be reflected or refracted by the iono-
sphere, or_by conditions within the lower atmosphere, or by the ground.
Theresulting situation is quite complex and dili‘ers greatly for radio waves
of different frequencies, as shown in Table 1-1, which summarizes the
behavxor of different classes of radio waves.

. 1-2. Radiation of Electrical Energy. Every electrical circuit carry-
ing alternating current radiates a certain amount of electrical energy in
the form of electromagnetic waves, but the amount of energy thus radi-
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Sac. 1-2] RADIATION OF ELECTRICAL ENERGY 3

ated is extremely small unless all the dimensions of the circuit approach
the order of magnitude of a wavelength. Thus, a power line carrying
(SO-cycle current with a 20ft spacing between conductors will radiate

practically no energy because a wavelength at 60 cycles is more than

3000 miles, and 20 ft is negligible in comparison. On the other hand, a
coil 20 ft in diameter and carrying a 2000-kc current will radiate a con-

siderable amount of energy because 20 ft is comparable with the l50-m

 

    

TABLE l-l
CLASSIFICATION OF RADIO WAVES

Frequency Wavelength . . .
Clue range range Propagation characteristics Typical uses

Very low lre- lo—BO kc 30.000—10.000 Low attenuation at all times Lona-distance point-
quency (VLF) m of day and 0! year; rharac- to-point communica-

teristics very reliable tion
Low lrequenry 30—300 kc 10,000 1000 Propagation at night similar Long-distance point-

(LF) m to VLF but sliuhtly lees to-point service. me»
reliable: daytime nbsorp- rine. navigational
tiun greater than VLF aids

Medium Ire- SOD—3000 kc 1000—100 m Attenuation low at night Broadcasting. marine
quency (MF) and high in daytime communication.

navigation. harbor
telephone. etc.

High frequency 3—30 Mc 100—10 m Transmission over nonsider- Moderate and long-
(HF) able distance depends distance cummunlelr

solely on the ionosphere. tion of all types
and so varies greatly with
time of day, season, and
inquency

Very high fre- 30—300 Mo 10-] rn SubstantiAlly straight—line Shorbdistsnce corn-
quency (VHF) propagation snalmnius to munication. televi~

that ol' lluht waves; un- sion. frequency mod-
eflccted by ionosphere ulation. radar. sir‘

plans navigation
Ultra-high {re- 300—3000 Mc 100-10 cm Same Short-distance com-

quency (UHFP munication. radar,
relay systems. televi-
sion. etc.

Super-high fre- 3000-30.000 10 1 cm Same Radar. radio relay.
quency (SHFP Mc navigation
 

' Frequencies higher than about 2000 Me are frequently referred to as microwave frequencies.

wavelength of this radio wave. From these considerations it is apparent
that the size of radiator required is inversely proportional to the fre-

quency. High-frequency waves can therefore be produced‘ by a small
radiator, while low-frequency waves require a large antenna system for
eflective radiation.

Every radiator has directional characteristics as a result of which it
sends out stronger waves in certain directions than inothers. Directional
characteristics of antennas are used to concentrate the radiation toward

the point to which it is desired to transmit, or to favor reception of energy
arriving from a particular direction.
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4 SYSTEM or RADIO COMMUNICATION [0342.1
and Control of Radio-frequency. Power: The radio-

d by a radio transmitter 13 practically always
tube oscillator or amplifier. Vacuum tubes can

for all frequencies from the very lowest

1-3. Generation

frequency power require
obtained from a vacuum-

convert d—c power into are energy
to 30 000 Me or even higher. Under most conditions the eficiency

l\i'ri’th which this transformation takes place is in the neighborhood of 50
per cent or higher. At frequencies up to well over 1000 Me, the amount of

___E::li:l__@C74_
(0'! YELEGRAPH CODE SIGNAL (d) SOUND VIBRATION

 
(D) RADIO WAVE AFTER MODULATION BY (4') RADIO WAVE AFTER MODULATION IV

TELERAPH CODE SIGNAL SOUND VIBRATION

I

IHHIHIHi Hill /35552'§5-
IIIIIIIIlIIIIIIIlIlIIIIIJ "mil“

(6)  
MODULATED VIAVES AFTER RECTIFICATION.SHOWING AVERAGE VALUES

Fm. l-2. Diagram showing how a signal may be transmitted by modulating the
amplitude of a radio wave, and how the original signal may be recovered from the
modulated wave by rectification. For the sake of clarity the radio frequency is shown
as being much lower than would usually be the case.

power that can be generated continuously by vacuum tubes is of the order
of kilowatts. '.

Modulation. If a radio wave is to convey a message, some feature of
the wave must be varied in accordance with the information to be trans-
mitted. One way to do this. termed amplitude modulation, consists in
yarymg the amplitude of the radiated wave. In radio telegraphy, this
involves turning the radio transmitter on and off in accordance with the
“‘5 and dashes 0‘ the telegraph code, as illustrated in Fig. 1.21». In
radio-telephone transmission by amplitude modulation the radio-fre-
quency wave is varied in accordance with the pressure of the sound wave
being transmitted, as shown in Fig. 1-2e. Similarly in picture trans-
““33.ion, the amplitude of the wave radiated at any one time is made
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Sac. 1—4) RECEPTION‘OF RADIO SIGNALS j . 5

proportional to the light intensity of the part of the picture that is being
transmitted at that instant. '

Intelligence may be transmitted by other means than by varying the
amplitude. For example, one may maintain the amplitude constantand
vary the frequency that is radiated in accordance with the intelligence,
thus obtaining frequency modulation. This results in a wave such as
shown in Fig. 1-3b, which is to be

compared with the corresponding
amplitude-modulated wave of Fig.
13a. Frequency modulation is

widely used in very high-frequency
communication systems.

1-4. Reception of Radio Signals.
In the reception of radio signals it
is first necessary to abstract energy

from the radio wave passing the
receiving point. Any antenna
capable of radiating electrical
energy is also able to absorb en-

 
lb) SAME INFORMATION mAusmrTEo av

ergy from a passing radio wave.
This occurs because the electro-

magnetic flux of the wave, in cutting
across the antenna conductor, in-
duces in the antenna a voltage that
varies with time in exactly the same

FREQUENCV' MODULATED WAVE

Fla. ]-3. Character of waves produced by
amplitude modulation and by frequency
modulation, where the modulation is
sinusoidal in both cases. For the sake
of clarity the radio frequency is shown
much lower than would usually be the

way as does the current flowing in cm‘
the antenna radiating the wave. This induced voltage, in association
with the current that it produces, represents energy that is absorbed from

the passing wave.

Since every wave passing the receiving antenna induces its own voltage
in the antenna conductor, it is necessary that the receiving equipment be

capable of separating the desired signal from the unwanted signals that

are also inducing voltages in the antenna. This separation is made on
the basis of the difference in frequency between transmitting stations and

is carried out by the use of resonant circuits which can be made to dis-
criminate very strongly in favor of a particular frequency. The ability to
discriminate between radio waves of different frequencies is called

selectivity and the process of adjusting circuits to resonance with the fre-
quency of a desired signal is spoken of as tuning.

Although intelligible radio signals have been received from radio trans-
mitters thousands of miles distant, using only the energy abstracted from

the radio wave by the receiving antenna, much more satisfactory recep-
tion can be obtained if the received energy is amplified. This amplifica-

tion may be applied to the radio-frequency currents before detection, in
Momentum Dynamics Corporation
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6 SYSTEM OF RADIO COMMUNICATION [Canal

which case it is called radio-frequency amplification; 01' it may be applied
to the rectified currents after detection, in which case it is called audio~

, amplification. The use of amplification makes possible the“295::ng reception of signals from waves that would otherWIse be too
:vaedk to give an audible response. The only satisfactory method of
amplifying radio signals that has been discovered is by the use of‘vacuum
tubes or transistors. Before vacuum tubes were discovered, radio recep-
tion had available only the energy abstracted from the radio wave by the- ' ' ntenna.

1.6333250: The process by which the message being transmitted is
reproduced from the modulated radio-frequency current present in the
receiver is called detection, or sometimes demodulation. With amplitude-
modulated waves, detection is accomplished by rectifying the radio-
frcquency currents to produce a current that varies in accordance with
the modulation of the received wave. Thus, when the modulated wave
shown at e of Fig. 1-2 is rectified, the resulting current, shown at f, is seen
to have an average value that varies in accordance with the amplitude of
the original signal. In the transmission of code signals by radio, the
rectified current reproduces the (lots and dashes of the telegraph code, as
shown at Fig. ]—2c, and could be used to operate a telegraph sounder.
When it is desired to receive the telegraph signals directly on a telephone
receiver, it is necessary to break up the dots and dashes at an audible rate
in order to give a note that can be heard, since otherwise the telephone
receiver would give forth a succession of unintelligible clicks.

The detection of a frequency-modulated wave involves two steps.
First, the wave is transmitted through a. circuit in which the relative
response depends upon the frequency. The wave that then emerges from
the circuit is amplitude-modulated, since as the frequency of the constant-
amplitude input wave changes, the output amplitude will follow the
variation of circuit transmission with frequency. The resulting amplitude-
modulated wave is then rectified.

1-5. Nature of a Modulated Wave. A sine wave conveys very little
information since it repeats over and over again. When a wave is modu-

can be deduced by writing down the equation of the wave and making a
mathematical analysis of the result. Thus, in the case of the simple
sine-wave amplitude modulation shown in Fig. 1-3a, the amplitude of the
radio-frequency oscillation is given by E = E, + mEo sin Zirf.t, in WhiCh
It.) represents the average amplitude, f. the frequency at which the ampli-
tude is varied, and m the ratio of amplitude variation from the average to
the average amplituder which is called the degree of modulation. The
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Sac. 1-5) NATURE OF A MODULATED WAVE 7

equation of the amplitude-modulated wave can be hence written as

e a Eo(1 + m sin 2rf.t) sin 21ft (1—2)

in which f is the frequency of the radio oscillation. Multiplying out the
right-th side of Eq. (1-2) gives

9 = E, sin 21ft + mEo sin 2113‘ sin 21ft

By expanding the last term into functions of the sum and difierence

angles by the usual trigonometric formula, the equation of a wave with
simple sine-wave amplitude modulation can be written in the form

e = Eu sin 21ft + 12%" cos 2w — f.)t — 232% cos 2.0 +1.): (1—3)

Equation (1-3) shows that the wave with sine-wave modulation consists

of three separate waves. The first of these, represented by the term
E0 sin 21ft, is called the carrier. Its amplitude is independent of the

presence or absence of modulation and is equal to the average amplitude

of the wave. The two other components are alike as far as magnitude is
concerned, but the frequency of one of them is less than that of the

carrier frequency by an amount equal to the modulation frequency, while

the frequency of the other is more than that of the carrier by the same
amount. These two components, called sideband frequencies, carry the
intelligence that is being transmitted by the modulated wave. The fre-
quency of the sideband components relative to the carrier frequency is

determined by the modulation frequency. The relative amplitude of the
sideband components is determined by the extent of the amplitude varia-

tions that are impressed upon the wave, i.e., by the degree of modulation.
When the modulation is more complex than the simple sine-wave

amplitude variation of Fig. 1-3a, the effect is to introduce additional side-

band components. Thus, if the wave of a radio—telephone transmitter is
amplitude-modulated by a complex sound wave containing pitches of 1000

and 1500 cycles, the modulated wave will contain one pair of 1000-cycle
sideband components and one pair of 1500-cycle sideband components.

The analysis of a frequency-modulated wave is somewhat more com-
plex but leads to an analogous result. The principal difference is that the
frequency-modulated wave not only contains the same 'sideband fre-
quencies as does the corresponding amplitude—modulated wave, but in
addition contains higher-order side bands. Thus, if a wave has its fre-
quency varied at a rate of 1000 times per second, the resulting modulated
wave will contain not only a pair of 1000-cycle sideband components,

but in addition a pair of 2000-cyc1e sideband components, possibly a pair
of 3000-cycle sideband components, etc. The amplitude of these various
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8 SYSTEM OF RADIO COMMUNICATION [Cum 1

sideband pairs will depend upon the extent and upon the rate of frequency
variation.

Significance of the Sidebands. The carrier and sideband frequencies are

not a mathematical fiction, but have a real existence, as is evidenced by
the fact that the various frequency components of a modulated wave can

be separated from each other by suitable filter circuits. The sideband

frequencies can be considered as being generated as a result of varying
the wave. They are present only when the wave is being varied, and
their magnitude and frequency are determined by the character of the
modulation.

It is apparent that the transmission of intelligence requires the use of a
band of frequencies rather than a single frequency. Speech and music of

the quality reproduced in standard broadcasting involve frequency com-
ponents from about 100 cycles up to 5000 cycles; when modulated upon a
carrier wave, the total bandwidth involved is therefore 10,000 cycles. If
this entire band is not transmitted equally well through space, and by the
circuits in both transmitter and receiver through which the modulated
wave must pass, then the sideband frequency components that are dil-

criminated against will not be reproduced in the receiving equipment with
proper amplitude, and a loss in quality will result. With telegraph
signalI, the required sideband is relatively narrow because the amplitude
of the signals is varied only a few times a second, but a definite frequency
band is still required. If some of the sideband components of the code
signal are not transmitted, the received dots and dashes tend to be
rounded off and run togethergand may become indistinguishable.

1-6. The Decibel. The decibel (abbreviated db) is a logarithmic unit
used in communication work to express power ratios. If the powers
being compared are P, and Pa, then

Decibels = 10 109.,“Pl

The sign associated with the number of decibels indicates which power is
greater; thus a negative sign means P, is less than P,.

The decibel has no other significance than that given in Eq. (1-4).
Thus, if decibels are used to express amplification, this simply means that
the presence of the amplification increases the power output by the num-
ber of decibels attributed to the amplification. Again, under many
conditions relative power is proportional to the square of the voltage E
(or current I, or field B, etc.). Under these conditions

Decibels = 2010gm % = 20 log”;! = 201050-23. etc. (1-5)I l I

These relations must be used with caution, however, as they hold only
when the resistance associated with E. (or I, or B,) is the same as asso-
ciated with E1 (or I, or 13;).

(1-4)
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su, 1-6] THE DECIBEL 9

TABLE 1~2

(0) POWER, VOLTAGE, AND CURRENT RATIOS FOR ASSIGNED
DECIBEL VALUES

 
Current md

 Db voltage ““0 Power 11th
Loss Gain Loss

0.0 - - - 0.316 10.00 0.100
0.2 1.02 0.977 .95 0.251 15.8 0.063
0.4 1.05 0.955 .91 0.200 25 1 0.040
0.6 1.07 0.933 .871 0.158 39.8 0.025
0.8 1.10 0.912 .832 0.126 63.1 0.016
1.0 1.12 0.891 .794 0.100 100.0 0.010

1.5 1.19 0.841 7 0.056 3.16 X 10' 3.16 X 10"
2.0 1.26 0.794 63 0.032 10‘ 10"
2.5 1.33 0.750 56 0.018 3.16 X 10' 3.16 X 10“
3.0 1.41 0.708 50 0.010 10‘ 10“
3.5 1.50 0.668 44 0.006 3.16 X 10‘ 3.16 X 10“
4.0 1.58 0.631 39 0.003 10‘ 10-‘

4.5 1.68 0.596 .82 35 1,0000.001 10‘ 10"
5 1.78 0.562 .16 316 3,1600.0003 10" 10"
6 2.00 0.501 .98 251 10,0000.0001 10' 10"
7 2.24 0.447 .01 31 6000.00003 10' 10"
8 2.51 0.398 .31 . 100,000 0.00001 10“ 10‘"l
9 2.82 0.355 .94 .126 120 1,ooo,oooo.000001 10“ 10‘"

(b) DECIBEL EQUIVALENT OF POWER, VOLTAGE, AND
CURRENT RATIOS

Db equivalent Db equivalent Db equivalent

R3110 Volta or “3110 Voltage or Ratio Vol 9 or
Power curl-5:11. owe! current. Power wit-gut

10" ~60.00 ~120.00 1.2 0.79 1.58 10 10.00 20.00
10'| -50.00 -100.00 1.4 1.46 2.92 12 10.79 21.58
10-‘ —-40.00 —80.00 1.6 2.04 4.08 14 11.46 22.02
0.001 —30.00 —60.00 1.8 2.55 5.10 16 12.04 24.08
0.003 -25.23 —50.46 2.0 3.01 6.02 18 12.55 25.10
0.005 -23.01 —-46.02 2.5 3.98 7.96 20 13.01 26.02

0.01 -20.00 -40.00 3.0 4.77 9.54 25 13.98 27.96
0.03 —15.23 -30.46 3.5 5.44 10.88 30 14.77 29.54
0.05 -13.01 —26.02 4.0 6.02 12.04 40 16.02 32.04
0.10 —10.00 -20.00 4.5 6.53 13.06 50 16.99 33.98
0.15 —8 24 -16.48 5.0 6.99 13.98 60 17.78 35.56
0.20 —6 99 -13.98 5.5 7.40 14 81 80 19 03 38.06

0.30 -5.23 —10.46 6.0 7.78 15.56 100 20.00 40.00
0.40 -3.98 -7.96 6.5 8.13 10.26 10I 30.00 60.1»
0.50 -3.01 —6.02 7.0 8.45 16.90 10‘ 40.00 80.00
0.60 —2.22 -4.44 7.5 8.75 17.50 10l 50.00 1111.00
0.80 —-0.97 —1.94 8.0 9.03 18.06 10' 60.00 120.00
1.00 0 00 0.00 9.0 9.54 19.08 ‘ 10" 70.00 140.00
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The practical value of the decibel arises from its logarithmic nature.
This permits the enormous ranges of power involved in communication
work to be expressed in terms of decibels without running into incon-
veniently large numbers, while at the same time permitting small ratios
to be conveniently expressed. Thus, 1 db represents a power ratio of

approximately 5:4, while 60 db represents a. ratio of 1,000,000:1. The
logarithmic character of the decibel also makes it possible to express the
ratio of input to output powers of a complicated circuit as the sum of the
decibel equivalent of the ratios of the input to output powers of the differ-
ent parts of the circuit that are in cascade.

Table 1-2 gives a convenient summary of decibel values.
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CH APTEB 2

CIRCUIT ELEMENTS

2-1. Inductance. A current flowing in an electrical circuit produces

magnetic flux that links with (i.e., encircles) the current. The effect of
this flux is expressed in terms of a property of the circuit called the
inductance.

Inductance can be defined as the flux linkages per ampere of current

producing the flux; i.e.,

Inductance L flux linkages_, __ v“ __‘____ I ‘_

in henrys current (ampercs) producing flux X 10- (2 I)

A flux linkage represents one flux line encircling the circuit current once.
Thus in Fig. 2—1 flux line an contributes eight flux linkages toward the
coil inductance because it circles the cur-

a A aa as 0 ~33» u as
rent flowing in the coil eight times. On
the other hand, flux line b of the same coil
contributes only one-half a flux linkage

“toward the coil inductance because this /
particular line encircles only one—half the
coil current.

Calculation of Inductance. The induct- Fm. 2_,_ Flux and current difl_
ance of an electrical circuit is computed by tribution in typical single-layer

assuming a convenient current flowing in 233;:‘1d(iiiiiilymuiuhuhggt“Ts;
the Circuit. The magnetic flux produced the density of shading.
by this current is then calculated, and the
total number of flux linkages that results is counted. The inductance in
hen rys is this total number of flux linkages multiplied by 10““ and divided
by the circuit current.

Formulas have been derived by this procedure that give the inductance

for all commonly used types of air—cored coils.I It is thus neither neces-
sary nor desirable to guess at the number of turns and coil dimensions
r8quired to obtain a desired inductance. For example, the inductance of
a single-layer solenoid, such as shown in Fig. 2-1, is given by the relation

Inductance in microhenrys = Fn‘d (2-2)

‘ A comprehensive collection of such formulas is given by F. E. Terman, ”Rndio
Engineers' Handbook," pp. 48-64, McGraw-Hill Book Company, Inc., New York.
1943.
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12 cmcur'r ELEMENTS (em. 2

where n a: number of turns

at = diameter of coil measured to center of wire

F constant. that depends only upon the ratio of length to diam-
‘ cter, given in Fig. 2-2

The quantity 1“ depends in a complicated way upon the ratio of coil

length to diameter, since the geometrical distribution of the flux produced
by the current. in the coil does not follow a simple mathematical law.

However, once the relationship represented by F has been determined,

ll

0040

   L

“3° --u--lll
---§qll   

 
 

03 04 b5 06 07 08 09 l0 l5 2
L_ELLGTLDIAMETER

Fm. 2-2. Values of constant I" for use in liq. (2-2), to obtain the inductance of single-lnyer solcnonls.

the value of I" can be computed once for all, and presented by a. curve,
such as Fig. 2—2, or by a table.

The inductance of all coils with air cores is proportional to the square of
the nurnbcr of turns if the dimensions such as length, diameter, depth of
Winding. ctc., are kept constant as the number of turns is altered. The
reason for this behavior lies in the fact that, if the coil dimensions are kept
constant, the amount of magnetic flux produced by a given coil current
and the number of times each flux line links with the coil current are both
proportional to the number of turns.

The inductance of all air-cored coils having the same number of turns
and the same shape is always proportional to the size (i.e., to a linear
dimension, such as length or radius) of the coil. Thus, if two coils have
the same number of turns, but one is twice as big as the other in every
dimension (such as diameter, length, width, and depth of winding), then
the larger coil will have twice the inductance of the smaller one. This
rule results from the fact that the cross section of the flux path! is propor-
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tional to the square of the linear dimension of the coil, while the length of
these paths varies directly as the linear dimension.

In calculating the inductance of coils with magnetic cores, the flux is
determined in accordance with the usual methods of making magnetic
circuit calculations, taking into account air gaps, leakage and fringing
flux, etc. It is also necessary to assume the proper value of permeability,
as discussed below.1 To the extent that the permeability of the core
material can be considered as constant, the inductance of a coil with a

magnetic core is proportional to the square of the number of turns and to
the first power of the size, just as in the air-cored case.

Inductance of a Connecting Wire. The inductance associated with a

connecting wire depends on the wire diameter, and can be minimized by
making the diameter large. This results from the fact that when the

wire diameter is small the length of the flux paths immediately outside of
the wire is less than if the diameter is large. As a result the small wire is
circled by more flux and hence has higher inductance.

An alternative means of achieving a low-inductance connection con-
sists in employing a conductor comprising two or more spaced wires con-
nected in parallel. if three wires are employed, they should be placed at
the corners of an equilateral triangle; in a four-wire system the individual

wires would be at the corners of a square, etc. Such arrangements give
the first approximation to a solid conductor of large diameter, and will
have less inductance the greater the diameter of the individual wires and

the greater the spacing between the wires connected in parallel.
Initial and Incremental Permeability: Incremental Inductancc. The

permeability of a magnetic material is defined as the ratio 8/11 of the flux
density to the magnetizing force, and depends upon the flux and the

material. The permeability at very low flux densities, termed the initial
permeability, is of particular importance in communication systems, where

the current is commonly very weak. The initial permeability of mag-
netic materials is nearly always much less than the permeability at some-

what higher flux densities.

Coils having magnetic cores are frequently used in communication work
under conditions where there is a large d-c magnetization upon which is

superimposed a small a—c magnetization. Under these conditions, one is
interested in the inductance that is offered to the superimposed alter-

nating current. This is called the incremental inductance, and the cor-
responding permeability of the magnetic material is ternied the incre-
mental permeability.

Incremental permeability, and hence incremental inductance, depend
upon the magnitude of both d-c and a-c magnetizations, and upon the
previous magnetic history of the core. When a core that has been

lsuch calculation! are discussed in “Components Handbook" (vol. 17, Radiation

Laboratory Series), chap. 4, McGraw-Hill Book Company, Inc., New York, 1949.
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16 CIRCUIT ELEMENTS (Cm. 2

quencies. The addition of cobalt to nickel-iron alloys introduces the
possibility of obtaining substantially constant permeability up to moder-
ate flux densities, combined with extremely low hysteresis loss at low flux
densities and almost zero residual induction and coercive force (see page

17). Such alloys are termed perminvars, and also possess in large

degree the high-permeability features of nickel-iron alloys such as
permalloy.

Iron-cobalt alloys containing from 36 to 50 per cent cobalt are charac-

terized by a saturation flux density appreciably higher than that of silicon
steel. Such alloys also have higher incremental

permeability at high d-c magnetizing forces than do

other magnetic materials.

Magnetic cores that are nonconducting have been

developed for use in radio-frequency coils.l They

are composed of mixtures of ferrites, and have a

resistivity so high that eddy-current losses are

negligible in solid cores even at frequencies higher

--——-——~—-- — than 1 Me. At the same time, such core material

22:37:15!" ”‘5’"r has a relatively high initial permeability, a value of
O'WHWNPMHFPFS 500 being typical. These nonconducting magnetic

FIG; 215. Tynical msg- cores are not suitable for use in power transformers,
“at” “mm “mm“ however, as they saturate at low flux densities.a permanent magnet.

2-2. Permanent Magnets.2 Permanent magnets

now find many uses as a result of the development in recent years of im-

proved permanent magnet materials. A typical system involving a

permanent magnet is illustrated in Fig. 2—5. Here P is the permanent

magnet, G is an air gap in which it is desired that the permanent magnet

produce magnetic flux, and D denotes soft-iron pole pieces of low magnetic

reluctance. In such an arrangement, the permanent magnet can be

thought of as being a generator of magnetomotive force that acts on an

external circuit (load) consisting of the magnetic circuit DGDGD that is

external to the permanent magnet.

Assume that the permanent magnet in the system of Fig. 2-5 is mag-

netized to saturation and that the magnetizing force is then removed.
The resulting situation that exists in the magnet corresponds to a point
somewhere on the part of the hysteresis loop lying in the upper left-hand
quadrant of Fig. 2-3. This section of the hysteresis curve, shown

enlarged in Fig. 2-6, is termed the demagnetization curve, and gives the
principal characteristics of the permanent magnet. The flux density B,
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in the magnet for zero magnetizing force'is termed the residual iudadieu,
while the demagnetizing force H which makes the flux densityin the
magnet zero is termed the coercive force.

For an operating condition of the magnet'in Fig. 2-6 corresponding to
point C’, the flux densityin the magnetis B’, and the total flux generated
by the permanent magnet1s B’A where A'1: the cross-sectional area of the

permanent magnet. Also for the same operating point C", each unit
length of the permanent magnet produces a magnetomotive force H’;
hence the total magnetomotive force

that is applied to the external circuit

(DGDG'D in Fig. 2-5) by the per-
manent magnet is H’l, where l is the
length of the permanent magnet.

The operating point C' accordingly
assumes a position on the demagneti-
zation curve such that H’l/B’A
equals the reluctance of the external

magnetic circuit.

Design Principles. The magnetic

energy developed by the permanent H H, H.
magnet in the external system M';AGNEf/ZING rant: H mar-menacr m
DGDGD in Fig. 2—5 is proportional to FIG. 2-6. Demagnetization and energy-

the product (B’A) (H'l) of magnetic product curves of a permanent magnet,showmg rmnor hysteresis loop
flux and magnetomotive force associ- ciated with stabilization.
ated with the external circuit. Thus

the magnetic energy available in the external circuit per unit volume of

the permanent magnet is proportional to the product BH of the
demagnetization curve, as plotted in Fig. 2-6.

It is now possible to state the principal design considerations of systems

involving permanent magnets. First, the permanent magnet should be

operated at a point on the demagnetization curve where the energy
product BH is at or near its maximum; this operating point is a charac-

teristic of the magnetic material involved, and defines a magnetomotive
force H’ per unit length and a flux density 3’ for the permanent magnet.
Next, the cross section A of the magnet is given a value such that, when

the flux density in the magnet has the value of B’, the total flux B'A will
have the value desired for the external magnetic circuit. 1 Finally, the

length l of the permanent magnet is made such that H’l will equal the
magnetomotive force required to develop the required flux B’A1n the

external magnetic circuit.
A permanent magnet operating at a point such as C’ in Fig. 2-6 will

have the flux density permanently changed when subjected to a transient
action that momentarily reduces the flux density below 8’. Thus assume
that a transient demagnetiaing current (or a momentary increase in
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reluctance) shifts the operating point from C” to Q. If this added effect
is now removed, the operating point does not return to 0”. Rather, it
moves to a new point 0”, corresponding to some new value of flux density
B" less than B’, but such that the ratio H’’l/B’'A still equals the reluc—
tance of the external magnetic circuit; when this reluctance is linear, as

when it arises from an air gap, then C” lies on a straight line joining C’

and the origin, as shown in Fig. 2-6. If the transient added force is ap-

plied a second time, the operating point will now return to Q, and upon
removal of the added force will go back to 0”, following the paths shown.

  

 
 

DEMAGNETIZAYION CURVES ENERGY ‘ PRODUCT CURVES

I AL/Wm I ~2 V/CfiLLDYI ‘\
s ALN/coz ---—._~
4. 35% cauusrtn ,0“ ‘~~~ 2
saw/cal: ‘ ~~‘ ‘\ I

‘\\ 3 \ /\ \\l
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Fm. 2-7. Demagnetization and energy-product curves of typical permanent magnetmaterials.

Thus a permanent magnet system can be stabilized against added effects

by initially subjecting the system to an added demagnetizing force All ;

this will reduce the energy that the magnet supports in the system exter-
nal to the magnet, but it prevents subsequent transient demagnetizing

effects from producing a permanent change in the system provided their
amplitudes do not exceed the demagnetizing force AH used in stabiliza-
tion.1 It will be noted that QC” is a minor hysteresis loop analogous
to the right-hand half of loop 1 in Fig. 2—3.

Permanent-magnet Materials.’ Many different types of permanent-
magnet materials have been developed; the characteristics of representa-

tive examples are illustrated in Fig. 2-7. The magnetic properties depend
Momentum Dynamics Corporation

Exhibit 1013

Page 021



Momentum Dynamics Corporation 
Exhibit 1013 

Page 022

Suez-3] MUTUAL INDUCTANCE 19

upon the composition and require proper cold working and heat-treat-
ment to be fully developed. Heat-treatment is sometimes carried out in

the presence of a strong magnetizing field; in this case the material when
used should be magnetized in the same direction as when heat-treated.

The choice between different materials for a particular application is
determined, not only by the energy product, but also by cost, by ease of
fabricating, by whether the magnet is to be used in an external system of
high or low reluctance, etc. In general, the better permanent—magnet
materials are very difficult to work. Thus the alnicos (aluminum-nickel-
iron alloys) are hard, weak, and brittle, and are commonly cast to approxi-
mate shape and then finished by grinding to exact size; they cannot be
machined, drilled, or tapped.

2—3. Mutual Inductance and Coefficient of Coupling. Mutual Induct-
ance. When two inductance coils are so placed in relation to each other

’I ’2 I: ’2

Lin I‘m
(dl lNOUCTlVELV (bl COUPLED EV COMMON IN' (cl COUPLED BY COMMON

COUPLED DUCTANCE (DIRECT COUPLING) CAPACITANCE

Fm. 2-8. Several simple methods of coupling two circuits.

 
that flux lines produced by current in one of the coils link with the toms
of the. other coil as shown in Fig. 2—8a, the two inductances are said to be

inductively coupled. The effects that this coupling produces can be
expressed in terms of a property called the mutual inductance, which is
defined by the relation

flux linkages in sec-ond (-oil

produced by current in firstwcoil—*_——< 7 —} 8 ‘ -
current in first coil X 10‘ (2 3)

[flux linkagesin first coilproduced by (uni-cut ,illfi‘fglll eoill X 104 (24)
current in second coil

inductanceMutual }M in henrys

Formulas (2-3) and (2-4) are equivalent and give the same. value of
mutual inductance. The flux linkages produced in the coil that has no

current in it are counted just as though there were a current in this coil, so
that the number of times a flux line would encircle an imaginary coil cur-

rent is the number of linkages contributed by this particular line. In add-

ing up the flux linkages it is important to note that difiercnt flux lines may
conceivably link with the same coil in opposite directions, in which case

CM!
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the total number of linkages is the difference between the sums of positive
and negative linkages. The mutual inductance may therefore be positive
or negative depending upon the direction of the linkages.

The problem of calculating mutual inductance is similar in all respects
to the problem of computing inductance, and formulas have been worked
out by which the mutual inductance can be calculated with good accuracy
in all the ordinary types of configurations.

When two coils of inductance L1 and L1, between which a mutual

inductance M exists, are connected in series, the equivalent inductance
of the combination is L1 + L; 1- 2M. The term 2M takes into account

the flux linkages in each coil due to the current in the other coil. These

mutual linkages may add to or subtract from the self-linkages, depending

upon the relative direction in which the current passes through the two
coils. Thus, when all linkages are in the same direction, the total
inductance of the series combination exceeds by 2M the sum of the.
individual inductanccs of the two coils.

('m'flwicnt of Coupling. The maximum value of mutual inductance
that can be obtained between two coils having inductances L1 and Lg is

Vii-171;. The ratio of the mutual inductance M that is actually present
to this maximum possible value of mutual inductance is called the cocfli-
cicnt of coupling, which can therefore be expressed by the relation

M

V LXL;

The coefficient of coupling ,is a convenient constant because it expresses

the extent to which the two inductances are coupled, independently of

the size of the inductances concerned. In air-cored coils a coupling

coefficient of 0.5 is considered high and is said to represent “close,”
coupling, while coefficients of only a few hundredths represent “loose”
coupling.

General Case of Coupled Circuits. Any two circuits so arranged that
energy can be transferred from one to the other are said to be coupled,
even though this transfer of energy takes place by some means such as a
capacitor, resistance, or inductance common to the two circuits rather
than by the aid of a mutual inductance. Examples of various methods of
coupling are shown in Fig. 2-8. Any two circuits that are coupled by a
common impedance have a coeficient of coupling that is equal to the ratio of
the wmmon impedance to the square root of the product of the total impedanccs

oath: same kind as the coupling impedance that are present in the two circuits.a is,

 

Coefficient of coupling = k = (2-5)

_ _ z,
‘ x/ZTZ. ‘2'“)

where Z.. is-the impedance common to the two circuits, and Z1 and Z, are
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the total impedances of the some kind in the two circuits. When applied
to case b in Fig. 2-8, where the coupling is furnished by the common
inductance L..., the total inductances of the two circuits are L; + L... and

L2 + L..., respectively, and Eq. (2-6) reduces to

L...

x/(L: + L..)(L2 + L...)

In Fig. 2-80 the coupling element is a common capacitance C", and the
coefficient of coupling is1

V0110:Coefficient of con lin for Fi . 2-8 = ——-——.:—.:._m_._=m.___
p g g c x/(c'm + com. + o.)

2—4. Skin Efiect in Coils and Conductors at Radio Frequencies. The
effective resistance offered by conductors to radio frequencies is consider-

ably more than the ohmic resistance
measured with direct currents. This is

because of an action known as skin cfl'cct,
which causes the current to be concen-

trated in certain parts of the conductor @ :55;ngand leaves the remainder of the cross

section to contribute little or nothing

toward carrying the current.
A simple example of skin effect, and

one that makes its nature clear, is

furnished by an isolated round wire.
When a current is flowing through such a CURHENT

conductor, the magnetic flux that results DENSITY
is in the form of concentric circles, as RADIAL Posmou

shown in Fig. 2-9. It is to be noted that FIG. _2-9. Isolated round conductor,

some of this flux exists within the con— 3135333233323.tfliitfiii‘fiogd
ductor and therefore hnks With, 1.e.,

encircles, current near the center of the conductor while not linking with

current flowing near the surface. The result is that the inductance of the
central part of the conductor is greater than the inductance of the part of
the conductor near the surface;this is because of the greater number of flux

Coefficient of coupling k for Fig. 2-8b (2—7)

  
(2-8)

MODEI?‘ TE
FREDUENC Y 

 
 

— HEHER FREQUENCY

1 Equation (2.7) is derived as follows: In Fig. 2-8c, the primary circuit has 0; and 0,.
in series and so has an equivalent capacitance of 01C". /(C; + C...) while the equivalent
capacitance of the secondary is similarly Cng/(Cg + 0...). The coupling reactance is
l/wC..., while the primary and secondary reactances are (C: + C'.)/wC,C'.. and
(C: + C...) /wC'.C'..., respectively. The coefficient of coupling is then

1/mC_..._ ___.
Cl +”(7n C! + Cm

(0016'... UCICm

k-

which reduces to Eq. (2-7).
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linkages existing in the central region. At radio frequencies, the react-
ance of this extra inductance is sufficiently great to affect seriously the flow

of current, most of which flows along the surface of the conductor where
the impedance is low, rather than near the center where the impedance is
high. The center part of the conductor, therefore, does not carry its
share of the current and the true or effective resistance is increased, since
in effect the useful cross section of the wire is very greatly reduced. The

types of current distribution obtained in typical cases of skin effect in a
round wire are shown in Fig. 2-9.

Whcn skin cfi'cct is present, the currcnt is always rcdz'stributcd over the con-
ductor cross section in such a way as to make most of the current flow where it

is cncirclcd by the smallest number of

A flux lines. This general principle
Pu..." controls the distribution of current,

I. -.' irrespective of the shape of the con-
ductor involved. Thus, with a

‘ l' d d‘ conductor consisting of a thin flat
is;..?;:.°-i,.F‘;'t.;:“:,:: .:"::::;:.2 tr. sup, such as shown m m- 2-10.
quency, showing how skin effcct causes the current flows Primarily along
the current to concentrate at the edges the edges, where it, issurrounded by
of the strip. The current density is indi— the smallest amount of flux and ti)?cated by the density of the shading. ' i , , ’ _ '

true or effective resistance Will be

high because most of the strip carries very little current. This illustra-
tion makes clear that it is not the amount of conductor surface that de—

termines the resistance toaltcrnating current, but rather the way in which

the conductor material is arranged.
The ratio that the effective a—c resistance bears to the d-c resistance of a

conductor is commonly called the resistance ratio. It increases with fre-

quency, with conductivity of the conductor material, and with the size of

conductor. This results from the fact that a higher frequency causes the
extra inductance at the center of the conductor to have a higher reactance.
Similarly, a greater conductivity makes the reactance of the extra induct-

ance of more importance in determining the distribution of current, while

a greater cross section provides a larger central region. It is to be noted,
however, that a larger conductor always has less radio—frequency resist-
ance than a smaller one because, although the ratio of a-c to d—c resistance

is less favorable, this is more than made up by the greater amount of
conductor cross section present.

Skin It'fl'cct at High Frcquencics.‘ When the frequency is sufficiently
high, substantially all of the current in a conductor is confined to a region
very close to the surface. The current density then falls OH with depth
from the surface in accordance with the relation

‘ An excellent discussion of skin effect at very high frequencies is given by Harold A.
Wheeler, Formulas for the Skin Effect, Prov. IRE, vol. 30, p. 412, September, 1942.
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Current at depth___2
Cum‘Et—liemsurface= (2-9)

Here 2 and 5 are in the same units, and 5 is a quantity called the skin depth
that is given by the equation

= 5033 \blf (2-10)
where 5 = skin depth, cm

p = resistivity of conductor, ohms per centimeter cube .
f = frequency, cycles

14 = magnetic permeability of core material (permeability of air
equals unity), for low flux densities (that is, p. is the initial
permeability)

For copper at 20°C this reduces to
6.62

Skin depth of copper in em = 71.— (2-1 I)

At 1 Me the skin depth in copper is thus 0.0066 cm, or 0.0026 in. The
phase of the current at depth 2 lags the current at the surface by z/5
radians. At a depth from the surface corresponding to one skin depth,
the current density has dropped to 36.8 per cent of the value at the sur-

face, and the phase of the current lags the current at the surface by l
radian.

Equation (2-9) is valid whenever the. radius of curvature of the con-
ductor surface is at least several times the skin depth, provided the
effective thickness of the conductor is at the same time at least three or

four skin depths.

'ihe power loss associated with the curient flowing under any particular
portion of the conductoi surface1s the same as though this current were

uniformly distributed down to a depth 5. Thus, in an isolated round
wire, where the current is uniformly distributed over the surface, the
effective resistance at high frequencies is the d-c resistance of a hollow

cylindrical shell having the same outer diameter as the wire and possessing
a thickness 5. The d—c resistance of a st1ip of surface one skin depth

thick, one centimeter long, and one centimeter widels sometimes called
the surface resistivity; it1s the rcsistiv1ty thatis offered to the flow of CUI-
rent at very high frequencies.

Proximity 1'fleet—18km Effect in Coils. When two or more adjacent
conductors are carrying current as in a coil, the current distribution111
any one conductor is affected by the magnetic flux produced by the

adjacent conductor as well as by the magnetic flux produced by the cur-
rent in the conductor itself. This effect, termed proximity efi'ect, ordi-

narily causes the true or effective resistance to be greater than in the case

of simple skin effect and is particularly important in radio-frequency
inductance coils.
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The current distribution under conditions where proximity effect is
present follows the same law as for simple skin effect; 1.9., the current
density is greatest in those parts of the conductor encircled by the small-
est number of flux lines. This is illustratedin Fig- 2:1: where “19 approxi-
mate current density is illustrated by relative shading.

Lita Wire. The effective a—c resistance of a conductor can be made to
approach the d-c resistance at low and moderate radio frequencies by
forming the conductor from a number of strands of small enameled was
connected in parallel at their ends, but insulated throughout'the rest of
their length and thoroughly interwoven. If the stranding is properly
done, each wire will, on the average, link with the same number of flux
lines as every other wire, and the current will divide evenly among the
strands. If at the same time each strand is of small diameter, it will have

relatively little skin effect over its cross section, so all of the material is
equally effective in carrying the current. Such a stranded cable is called
a 1112 conductor.

Practical litz conductors are very effective at frequencies below about

1000 kc, but as the frequency becomes higher the benefits disappear.
This is because irregularities of stranding, and capacitance between
the strands, cause a failure to realize the ideal condition at very high
frequencies.

2-6. Capacitors and Dielectrics. A capacitor is formed wherever an
insulator (i.e., dielectric) separates two conductors between which a
difference of potential can exist.

Capacitor Losses and Their Representation. A perfect capacitor when
discharged gives up all the electrical energy that was supplied to it in
charging. Actual capacitors never realize this ideal perfectly but, rather,
dissipate some of the energy delivered to them. Most of the loss in
ordinary capacitors occurs in the dielectric, although at very high fre-
quencies skin effect also causes an appreciable loss to occur in the capac-

itor leads and electrodes. At very high voltages corona may occur and
contribute to the loss.

. The merit of a capacitor from the point of view of freedom from losses
is usually expressed in te'rins of the power factor of the capacitor.‘ The
power factor represents the fraction of the input volt-amperes that is dis-

1 The .nerit of a capacitor or of a dielectric can also be expressed in terms of the
angle by'which the current flowing into the capacitor fails to be 90° out Of PM Wit-h
the applied voltage. This angle is termed the phase angle of the capacitor. The
power factor is the sine of the phase angle. The tangent of the phase angle i5 termed
the dwcipatwn factor. The reciprocal of the dissipation factor is termed the capacitor
Q and is the ratio of the capacitor reactance to the equivalent series resists-nee. With
ordinary dielectrics, the phase angle is so small that thepower factor, the dissipation
factor, and the reciprocal of capacitor 0 are for all practical pm“ equal to each
other and to the phase angle expressed in radim Thus a, or factor of 0.01
represents a phase angle of 0.573“ and a capacitor Q of 100. W
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sipated in the capacitor. To the extent that the losses in the capacitor
are a result of dielectric losses, the power factor of the capacitor is also the
power factor of the dielectric and is practically independent of the capac-
itor capacitance, the applied voltage, the voltage rating, or the frequency
(unless polar effects are involved). Values of power factor of some
typical dielectrics are given in Table 2-1.

TABLE 2-1
CHARACTERISTICS OF TYPICAL DIELECTRICS AT RADIO

FREQUENCIES WITH NORMAL ROOM TEMPERATURE 

Material Dielectric Power factorconstant

Air......................................... 1.00 0.000
Mica. (electrical) ............................. 5—9 0 0001-00007
Glass (electrical) ............................. 4.5 7.00 0.002-0.016
Bakelite derivatives .......................... 4.5 7.5 0.02—0.09
Wood (without special preparation). . . .. . . . . . . . 3 —5 0.03—0 07
Mycalex ................................... 8 0.002
Steatite materials ............................ 6.1 0.002—0.004

Polystyrene .................................. 2.4—2 9 0.0002
Polyethelcne ................................. 2 '3 0.000!5-—0.0003
Rutile (titanium dioxide) ...................... 90-170 0.0006

Although the power factor of a capacitor is determined largely by the

type of dielectric used in the capacitor, it is also affected by the conditions
under which the dielectric operates. In par-

ticular, the power factor tends to become E”:
higher as the temperature is raised, and is C “’5 c P:

likewise adversely affected by high humidity T
and by the absorption of moisture. u» (c)

Equivalent SeriesandShuntResistance. The Fm. 2—11. Representation of
' .' ' ' .imuitm imperfect capacitor by 9.

action of a capautor m an electrical o perfect capacitor of same
taken into account by replacing the actual capwim‘me with series m
capacitor with a perfect capacitor associated sistanee, and by a perfect ca-
with a resistance. This resistance may be wit" “1‘ Shunt resist-

connected1n series, as in Fig. 2-11b, or in par— ance'
allel, as in Fig. 2—11c. The value of the series or shunt resistance is so
selected that the power factor of the perfect capacitor associated with the
resistance'is the same as the power factor of the actual capacitor. The
value of the series resistance R; can be computedin terms of the power

factor, capacitor capacitance C, and frequency fIn the usual way, and
when the power factoris low (i.e., when R;< < l/wC), then R1is given to
a high degree of accuracy by the equation

Series resistance = R1 = ”W (2.12)
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In the same way, the shunt resistance that can be used to represent the
actual losses of the capacitor is related to the power factor, capacitance,

and frequency to a high degree of accuracy by the equation

. 1

Shunt resistance — R2 — WWW

Polar and Nonpolar Dielectrics. Molecules of some dielectrics are

polar, while other dielectrics consist of molecules that are not polar. In
the case of polar molecules, the

WW“ ’FW‘W’W' ' dielectric constant under a—c con—
ditions is increased as a result of

the rotation of the polar molecules

under the influence of the applied

voltage. The extent to which this
polar action is effective depends,

‘REQUENCV however, upon the frequency and
the temperature. Thus, if the fre~

quency is made sufficiently high,
the polar molecules are not able to
follow the alternations of the ap-

plied field, and the dielectric con-
stant drops. Moreover, the fre-
quency at which this transition

Fro. 2-12. Variation of dielectric con- occurs is less the lower the tempera.
stant and power factor of a polaf' dielcc- ture. As a result, temperature and
tric as a. function of frequency, for two frequency affect the capacitance oftomperatl ircs. . . .

a capacrtor possessing a polar dic-
lectric in the manner shown in Fig. 2—12.

The power factor of a polar dielectric shows a pronounced peak when
under conditions where the dielectric constant corresponds to partial

polar action, as shown in Fig. 2-12. The power factor of a polar dielec-
tric hence becomes quite large at certain combinations of temperature and
frequency.

Nonpolar molecules do not exhibit these changes in dielectric constant

under temperature and frequency changes. The power factor of non-
polar dielm-trics likewise does not exhibit peaks of loss such as shown in
Fig. 2-12.

2-6. Capacitors for Electronics. In electronics the principal uses made

of capacitors are for tuning resonant circuits, for blocking d-c voltages
from parts of an electrical circuit while permitting alternating voltages

to pass through, for obtaining transients with specified time constants,

and for by-passiug or short-circuiting alternating voltages. By-pass
capacitors are frequently but not always subjected to a d—c potential.

A wide variety of dielectrics are used in capacitors designed for radio
Momentum Dynamics Corporation

Exhibit 1013

Page 029

(2-13)

DIELECTRGCCONSTANT 
NORMAL TEMPERMUHE

Low TEMPERATURE
,\

\7\
  

 
\

POWERFACTOR
FREQUENCY



Momentum Dynamics Corporation 
Exhibit 1013 

Page 030

ac.2—6l CAPACITORS FOR ELECTRONICS 27

work, and new types are continually finding important applications.
Among the types of importance are air; solid dielectrics such as mica,
plastic films, certain ceramics, and paper; and electrolytic films.

Capacitors with Air Dielectric. Air dielectric finds its principal use in
variable capacitors for tuning resonant circuits.

Although air is a perfect dielectric with zero power factor, air capacitors
have losses because of the insulating material used to mount the two sets

of plates, and also because of the skin-efiect resistance of the leads, plates,
rods, and washers, through which the capacitor current flows.

An air-dielectric capacitor can be represented by the equivalent elec-
trical network in Fig. 2-13a. Here 0' is the capacitance of the capacitor

L R L p

ECR: En: j:
(a) ACTUAL EQUIVALENT (bl EQUIVALENT CIRCUIT (C) EQUIVALENT CIRCUI‘I

CIRCUIT AT LOW FREQUENCIES AT HIGH FREQUENCIES

Fm. 2-13. Equivalent electrical circuits of a variable air condenser.

while It, is the equivalent shunt resistance introduced by the presence of

the solid dielectric. . The capacitor inductance L in Fig. 2-130. takes into
account the magnetic flux associated with the current flowing in the
capacitor; it is proportional to the physical dimensions of the capacitor.
The resistance R represents the series resistance of the leads, washers,

connecting rods, etc. It increases with frequency as a result of skin eliect
andis proportional to thesquare root of the frequency at high frequencies.

At low and moderate frequencies the effects of the inductance L and the
series resistance R are negligible, and the capacitor equivalent circuit

reduces to Fig. 2-131). At very high frequencies, on the other hand, the
power loss in It becomes very much larger than in R2, and the equivalent
circuit has the form shown in Fig. 2-13c.

At very high frequencies the reactance of the series inductance L is not
negligible compared with the reactance of the capacitor capacitance.

This causes the apparent capacitance of the capacitor as observed at the
terminals to be greater than the actual capacitance according to the
relation1

. C

Apparent capacitance {:er (2-14)

where w = 21r times frequency, and L and C are as shown in Fig. 2-13.

‘ This results from the fact that, neglecting losses,

welnpp -(fl16‘- EL)
Solving for the apparent capacitance 0.", gives Eq. (2-14).
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Capacitors with Solid Dielectrics. Solid dielectrics are used in most
fixed and in some adjustable capacitors. The dielectrics most commonly

employed include mica, paper, plastic films, and ceramics.
Mica is characterized by low electrical losses, stability, high leakage

resistance to d-c voltages, and high voltage strength. It is, however,

relatively expensive. Mica capacitors find their chief use in small fixed
capacitors for lay—passing radio-frequency currents or blocking off d-c
voltages, and in resonant circuits or in filters where a stable low-power-
factor capacitor is required.

In capacitors employing paper as the dielectric the electrodes are either
aluminum foil or are metal films evaporated directly on to the paper.

In either case, the assembly is rolled into a bundle which is then vacuum—
treated, impregnated with oil or wax, and sealed against moisture.

Paper capacitors are inexpensive in proportion to capacitance, and are
relatively compact in proportion to voltage rating. Such capacitors are

used primarily for by-pass and blocking purposes. The power factor of
paper capacitors is of the order of 0.5 per cent, and although the leakage

current when subjected to direct voltages is somewhat greater than that
of mica capacitors, it is not large.

Thin plastic films have been developed that are suitable for use as a

capacitor dielectric in place of paper. Capacitors of this type using
polystyrene dielectric have electrical qualities such as power factor,
dielectric absorption, and insulation resistance superior even to mice.
capacitors.

Ceramics based on titanium dioxide mixtures find extensive use as

dielectrics of small capacitors.‘ Dielectrics of this type are characterized
by a high dielectric constant, a low to very low power factor, and a very
high voltage rating. The temperature coefficient of such capacitors
depends upon the actual ceramic mixture used and can be made either

negative or positive as desired. Ceramic capacitors are used extensively
for blocking and by-pass purposes where small mica capacitors have
heretofore been employed, and have advantages of compactness and high
voltage ratings. Ceramic dielectric capacitors have also found a wide

field of usefulness in resonant circuits and other similar applications,
where a negative temperature coefficient provided by a ceramic capacitor
can be lined to compensate for the positive temperature coefficient of
associated coils and of capacitors of other types.

Capacitors with solid dielectric can be represented by the same equiv—

alent electrical circuit shown in Fig. 2~13 for air-dielectric capacitors.

The only difference is that all the capacitance C in this equivalent circuit
is now associated with solid dielectric. As a result, at low and moderate

frequencies the capacitor power factor almost exactly equals the power

1 A survey of such ceramics is given by B. H. Marks, Ceramic Dielectric Materials,
Electronics, vol. 2], p. 116, AugustI 1948.
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factor of the dielectric and is independent of the capacitance of the capac—
itor and also of the frequency except in so far as polar molecules affect the
behavior of the dielectric. At very high frequencies, the power factor
increases with increasing frequency as a result of the skin-effect losses in

leads and conductors. Also, the apparent capacitance at very high fre-
quencics drops off because of the series inductance, in accordance with
Eq. (2—14).

The voltage rating of capacitors with solid dielectrics is subject to two
basic limitations: (1) If the applied voltage exceeds the insulation strength
of the dielectric, the dielectric will spark throu h or at least deteriorate
rapidly. (2) The temperature of the capacitor'rgnust not be permitted to
rise excessively as a result of dielectric losses. This second limitation is

the ruling one for all except d-c voltages and for very low frequencies.
Inasmuch as the relationship between losses and temperature rise depends
upon the design of the capacitor with respect to such matters as heat

removal, it is not possible to give any general rules regarding voltage
ratings. It is to be noted, however, that the voltage rating will drop
rapidly as the frequency increases because of the increase in loss with
frcquency. Thus a particular low-loss air-cooled mica capacitor capable
of standing 10,000 volts at low-frequencies was found by test to‘have a
rating of 180 volts at a frequency of 10 Me. Special cooling methods,
such as the use of an air blast, will increase greatly the rating on a capaci—
tor, and water cooling is still more effective.

Electrolytic Capacitors. The electrolytic capacitor makes use of the
fact that certain metals, notably aluminum and tantalum, when placed in

a suitable solution and made the positive electrodes, form a thin insulating
surface film. This film is capable of withstanding considerable voltage
and has a high electrostatic capacitance per unit area. of film. It is the
rcsult of electrochemical action, and is formed by applying positive
voltage to the electrode. The thickness of the film, and hence also the
capacitance obtained per unit area of surface, depend largely upon the
voltage used in this forming process. Typical voltage ratings of electro-

lytic capacitors range from 25 up to about 500 volts. Constructions]

dctails vary but, typically, the electrodes are of etched aluminum foil,

thus giving maximum surface area. They are separated by paper or
gauze, saturated with an electrolyte that is commonly a fudgelike solid,

and the entire assembly is wound into a roll and mounted in a waxed
cardboard tube or box. ’

Electrolytic capacitors are widely used for filter and by—pass purposes

in situations where a superimposed d-c voltage is present. Compared
with capacitors of the solid dielectric type, electrolytic capacitors have a

very high power factor and appreciable leakage conductance to the

superimposed d-c potential; they also vary in capacitance and loss with
time, frequency, and temperature. However, for many purposes these
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features are unimportant and, in proportion to capacitance and voltage
rating, electrolytic capacitors are the least expensive and most compact
available. They are, however, subject to progressive deterioration with
time and so have limited life, and their dependability is appreciably less

than that of paper capacitors designed for the corresponding applications.l
2-7. Coils for Resonant Circuits. Coils intended for use in resonant

circuits must have very low losses and small distributed capacitance.
Both air—cored and magnetically cored coils are used for resonant circuits,
with the choice depending upon circumstances.

Methods of Expressing Coil Losses—Coil Q. The principal causes of
energy loss in air-cored coils are skin effect in the conductor, proximity
effect resulting from the interaction between nearby turns, dielectric
losses associated with the distributed capacitance of the coil, and eddy-
currcnt losses in shields and other neighboring metallic objects present

within range of the magnetic field of the coil. In the case of coils with
magnetic cores, the principal cause of energy loss is usually core loss,
although factors such as skin-effect resistance of the wire and also dielec-
tric loss are sometimes likewise of significance.

For purposes of circuit analysis the coil losses are commonly expressed

in terms of an equivalent resistance, which when placed in series with the
coil inductance will account for all the power losses actually observed.

The most convenient way to express the merit of the coil is, however, in
terms of the ratio of the reactance wL of the coil to this equivalent series

resistance R. This ratio approximates the reciprocal of the coil power
factor, and is usually referred to by the symbol Q; that is,

coil rcactance ‘ all_ .— . . — ———————. = _— r

equivalent series resistance It (2-10)
Q:
 

It is convenient to express the characteristics of a coil in terms of Q

because the Q in the operating range of the coil usually varies only

moderately with frequency; moreover, the value of Q corresponding to a
good coil is substantially the same irrespective of the frequency for which
the coil was designed. The tendency for the coil Q to remain constant

with frequency arises from the fact that, as the frequency increases, all
the losses also increase, so that the ratio 6: coil reactance to resistance

tends to be much more nearly constant with frequency than is either the
reactance or the resistance of the coil.

Distributed Capacitance of Coils. In a coil there are small capacitances
between adjacent turns, between turns that are not adjacent, between
terminal leads, between turns and ground, etc. Some of the different

capacitances that may exist in a typical air-cored coil are shown in Fig.

' By substituting tantalum for the less expensive aluminum foil electrodes, it is
possible to increase greatly the reliability: see M. Whitehead, Tantalum Electrolytic
Capacitors, Bell Lab. Record, vol. 28, p. 448, October, 1950.

Momentum Dynamics Corporation
Exhibit 1013

Page 033



Momentum Dynamics Corporation 
Exhibit 1013 

Page 034

Sec.2—7] COILS FOR RESONANT CIRCUITS 31

244. Each of the various capacitances associated with the coil stores a

quantity of electrostatic energy that is determined by the capacitance

involved and the fraction of the total coil voltage that appears across it.
The total effect that the numerous small coil capaci-

tances have can be represented to a high degree of

accuracy by assuming that they can be replaced by

a single capacitor of appropriate size shunted across 0*0*0£*0i0*0
the coil terminals. This equivalent capacitance is ‘

called. either the distributed capacitance or the self— Fia. 2-14. Some of the
capacitance of the cor]; It causes the cor! to show coil capm-itanceg that
parallel resonance effects under some conditions (see centribute t0 the die

Scc 3_2) tributed (iapatfltanlt'l‘I I ' . . . . _ of a singlc- ayer coi .
In multllayer corls the distributed capacitance

will be high unless arrangements are used that prevent turns from different
parts of the winding from being located close to each other. Thus, in the
two-layer winding shown in Fig. 2-15a, in which the turns are numbered in
order, the first and last turns are adjacent; the capacitance between the

turns at opposite ends of the wind-

ing then stores an undesirably large
amount of electrostatic energy.
This can be avoided by the use of the
bank winding, shown at b. Here the
adjacent turns represent parts of the
coil that are close together electri-

cally, while the ends of the winding,
which are far apart electrically, are

also far apart physically. Altema—
tive approaches consist in using
many layers with few turns per
layer, as in Fig. 2-l3c, or in spacing
the layers, as in Fig. 2-15d. The

common “universal" multilayer coil
represents a convenient mechanical

method of utilizing these principles to
achieve low distributed capacitance.

WSPACED LAYER The distributed capacitance of aWINDING . - -

Fin. 2-15. Several types of multilayer cf)” Eh“ ls to be used m a resonant
windings. circuit must be small. This is be-;

cause the distributed capacitance
limits the highest frequency to which the coil can be tuned, and also intro-
duces losses that become serious at the higher frequencies. These losses
are dielectric losses occurring in the coil form, in the wire insulation, and
in any other dielectric that may be in the electrostatic fields associated
with the coil.
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Air-cored Goals for Resonant Circuits. Air-cored coils are widely used
in radio receivers and almost universally used for the resonant circuits of
radio transmitters. Single-layer coils are generally employed for fre-

quencies above 500 to 1500 kc, while at lower frequencies multilayer coils
are typical, as they give the desired inductance compactly. Multilayer
coils, generally of the hank-wound type, also find some use at broadcast
frequencies (535 to 1600 kc).

In designing a single—layer coil, the highest Q in proportion to size is
obtained when the length of the winding is somewhat less than the diam-
eter of the coil.1 The number of turns required is then determined by

P' ‘“.!!=-IIIAIIIIII-_I,

IaII III
LEA/6TH ,0”
.mm III
SIZE OF WIRE 'NO 28 -NUMEE/P 0f ”I’M/5 ' 75

.m. III

1100 soo 300 I000 IZOO moo ISOO
Fscoueucv- KILOCVCLES

Fm. 2-lt‘). Variation of Q with frequency for a typical air-cored coil.

 
the exact ratio of length to diameter that is selected, by the diameter, and

by the inductance desired; when these factors are all settled, the optimum
wire size corresponds to a conductor diameter that. is between 0.5 and 0.75

times the distance between the centers of adjacent turns. If one com-
pares the Q of two coils having the same inductance and the same ratio of

length to diameter but difierent physical size, then the coil that is larger
will have the highest. Q provided it is wound with wire of optimum size.

The design of multilayer coils is more involved than that of single-layer
coils because of the increased number of variables. In general, best
results are obtained if the coil is relatively “loose,” i.e., if the copper
occupies only a small fraction of the actual winding cross section. Again,
as in the ease of single-layer coils, larger physical size will result in a
higher Q associated with a given inductance value, and also requires a
larger wire. '

The Q of a typical air-cored coil varies with frequency in the manner
illustrated in Fig. 2-16. With increasing frequency, the Q first rises
slowly with frequency, then goes through a broad maximum, and finally
drops at very high frequencies. The rise is due to the fact that the

A discussion of coil losses under idealized conditions in which dielectric effects are
neglected is given by G. W. O. Howe. The Q Factor of Single-layer Coils, Wireless Eng.,
vol 26, p. 179, June, 1949. An excellent discussion of coils for high frequencies is
given by l). Pollack, The Design of lnductances for Frequencies between 4 and 25
Megneycles, Trans. AIEE, vol. 56, p. “69, September, 1937.
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inductive reactance of a coil is proportional to frequency, whereas the

resistance due to skin efi'ect cannot increase faster than the square root of
the frequency; hence the ratio Q = wL/R tends to rise with increasing fre-
quency. If skin effect accounted for all the losses, the Q at very high
frequencies would be proportional to the square root of frequency. How-
ever, dielectric losses arising from the coil form, the cotton or enamel
insulation on the wire, etc., give rise to a resistance in series with the coil

that is proportional to the cube of the frequency. At very high fre-

quencies these dielectric losses become comparable to the skin-effect
losses, and cause the coil Q to drop off.

The best conductor to use in an air-cored coil depends upon the fre-

quency and coil design. In general, solid wire is used for frequencies
above 1500 kc. Litz wire will give lower losses than the corresponding
solid wire at frequencies below about 500 kc and will give some advantage
for small multilayer coils in the frequency range 500 to 1500 kc.

A value of Q in the range 50 to 200 is typical of a good fairly small air-
cored coil such as would be used for resonant circuits in a radio receiver.

A Q of 10 or 20 is considered to be quite low, while (.2 values in excess of

300 are high and can ordinarily be achieved only by the use of coils that
are physically large, such as are used in radio transmitters. These
numbers are applicable for coils of all frequency ranges and inductance
values.

Maquatic-cored Coils for Resonant Circuits. Coils with magnetic cores
find extensive use at radio frequencies. The principal problem involved

in using magnetic cores at radio frequencies is that of preventing eddy-
current losses in the core material from becoming excessive. The perme-

ability of magnetic materials does not drop off with frequency until the
frequency is of the order of 10“ cycles. The hysteresis loss is propor-
tional to the frequency, but since the coil reactance is likewise propor-

' tional to the frequency, the Q is not adversely affected by hysteresis loss
at radio frequencies. In contrast, the eddy-current loss for a given core
is proportional to the square of the frequency, whereas the reactance is

proportional only to the frequency. Thus when the frequency becomes

sufficiently high, eddy-current losses dominate the situation, and the coil
Q drops.

The eddy-current losses can be kept low at high frequencies by arrang-

ing the magnetic material in the form of very fine particles or dust, pro-
duced either by chemical or mechanical means. These particles are

coated with an insulating film, mixed with a suitable proportion of binder,
pressed to the desired shape, and baked. In this way one obtains a core

in which the individual magnetic particles are very finely subdivided, with
resulting low eddy-current losses; such an arrangement is often called a
“dust” or powder core. It is possible to make “dust” cores which have
low losses at frequencies as high as 150 Me.
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The details of the magnetic core depend upon the application for which
the coil is intended, and the frequency range over which the core is to

operate. At audio and the lower radio frequencies, the core material is
commonly made in the form of rings (toroidal core), so that a closed mag-

netic path may be obtained. Cores designed for use at these frequencies
usually have an effective initial permeability that is quite high, such as
75 to 125, corresponding to a core involving relatively coarse particles
combined with a minimum of insulating material and binder. At higher

frequencies, the usual practice is to employ a single-layer winding of fine
wire on a form that snugly fits an open core made in the form of a cylin-

drical slug with a large length/diameter

ratio, as in Fig. 2-17. Also, as the fre-

con: 440mm

LW quency is increased, the effective per-
WMM co“ mealnhty that it is practical to employ in

F10. 247' Coil with slug-typo a core becomes less because the size of
magnetic core arranged so that the the particles of magnetic material in the
inductmme can 1*" “Hit“! by "10"- core must be reduced, and the proportion
"'3 the 00"" of core material to binder and insulation

becomes proportionally lcss. 'l‘hus cores that are suitable for use in coils

operating at 100 Me have. typically, an effective permeability of only 2 to
4, while cores for use at frequencies around 1 Mc have pcrmcabilitics from
10 to 30.

The particular magnetic. material used likcwisc depends on frequency.
For audio and the lower radio frequencies molybdenum pcrmalloy is
common; at the higher radio frequencies it is customary to use iron or
magnetite, a natural iron oxide. '

An altemative means of obtaining a magnetic core with low cddy—
torrent losses is to employ a nonconducting magnetic material such as
mentioned on page 16. Such material is suitable for use up to fre-
quencies above 20 Mc; however, above some limiting frequency the"

dielectric and residual loss effects in the nonconducting magnetic material
may adversely affect the behavior. In frequency ranges for which they
are suitable, nonconducting magnetic cores result in coils having Q’s as

high as, or higher than. values typical of dust cores; at the same time a
nonconducting core posscsscs considerably greater permeability than can
be llr-l‘d in a dust core at the same frequency, and so has the advantage of
eompactncss.l

Magnetic cores are particularly desirable when it is necessary to obtain
a reasonable Q such as 25 to 100 in a very compact coil. They find exten-
sive use in radio receivers. When a magnetic-cored coil is used in a

resonant circuit, it is customary to employ a fixed tuning capacitance; the
resonant frequency is then adjusted by varying the position of the slug

 

 

‘ A discussion of the properties obtainable in coils employing nonconducting ferrite
cores is given by Strutt, loc. cit.
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core, as indicated in Fig. 2-17. Such permeability tuning, as it is called,
represents a means of tuning a resonant circuit that is often preferred to
the alternative arrangement consisting of a fixed air-cored coil and a
variable capacitance.

Radio—frequency Choke Coils. A radio-frequency choke coil is an

inductance designed to offer a high impedance to alternating currents
over the frequency range for which the coil is to be used. This result is

obtained by making the inductance of the coil high and the distributed

capacitance low, and by so proportioning that the inductance is in parallel
rE[Ml/[VAL 5 WIND/IVE
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FIG. 2-18. Typical examples of radio-frequency choke coils.

resonance with the distributed capacitance somewhere in the desired
operating range of frequencies.

A typical radio-frequency choke coil consists of one or more universal-

wound coils mounted on an insulating rod, or of a series of ”pics” wound
in deep narrow slots in a slotted bobbin. A long single-layer solenoid is

likewise sometimes used. Examples of radio—frequency choke coils are
shown in Fig. 2-18. ’

The performance obtainable from a radio—frequency choke can gen-
erally be improved by the proper use of slug-type magnetic cores, which
increase the inductance, and hence the impedance of the coil, without
materially affecting the distributed capacitance.

2-8. Shielding of Magnetic and Electrostatic Fields. Undcr many

conditions it is necessary to confine magnetic and electrostatic fields to a

restricted space. This result is accomplished by using a shield composed
of suitable material to enclose completely the space to be shielded.

The Shielding of Magnetic Plus at Radio Frequencies; Conducting Shields.

The most practical shield for magnetic flux at radio frequencies is made
of material having low electrical resistivity, such as copper or aluminum.

Magnetic flux in attempting to pass through such a shield induces voltages
in the shield which give rise to eddy currents. ’l‘hese eddy currents

oppose the action of the flux, and in large measure prevent its penetration
through the shield. In this way the flux is restricted to the interior of the
shield, as illustrated in Fig. 2~19c.

To be effective a conducting shield should have a thickness a that is at
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least several times the skin depth 6 as defined by Eq. (2-10). Under

these conditions, and assuming that the radius of curvature of the shield

is large compared with the skin depth, the ratio of the tangential com-
ponents of the magnetic field intensities existing on the two sides of the
shield is1

Ratio of magnetic fields = em (2-16)

Since the energy associated with a magnetic field is proportional to the

square of the field intensity, the attenuation in decibels of the tangential
component that is introduced by the conducting magnetic shield is

Shield attenuation = 8.69% db (2-17)

Joints which interfere With the eddy currents by adding resistance to

the eddy—current paths greatly reduce the effectiveness of a conducting
shield. However, a joint parallel to the lines of current flow does not
adversely affect the shielding unless it results in an open hole. This is
true even if there is failure to make contact, so that. the shield lacks con—

tinuity. These effects of joints are explained by the fact that the shield-
ing is produced by the eddy currents; if the eddy currents are not dis-

tu rbed, then the shielding resulting from action is not affected.
Power is dissipated in a conducting shield because the eddy currents

must flow through the resistance of the shield material. When the thick-

ness of the shield is considerably greater than the skin depth, the power
loss in the shield can be determined by making use of the fact that the

total magnitude I of the eddy currents in a strip of shield 1 cm wide is
related to the density B in lines per square centimeter of the tangential
component of flux that is adjacent to the surface of that part of the shield
according to the relation

103

I — "—1: (2‘18)

The current I flows along the surface of the shield in a direction that is at

right angles to the' flux lines adjacent to the shield. For purposes of
calculating power dissipation, this current can be considered as uniformly
distributed to a thickness of one skin depth; it therefore encounters a
resistance that is the surface resistivity of the material as calculated by

skin~efiect considerations (see page 23). Thus the total power loss in a
shield can be obtained by first determining by some means the distribution

of the tangential component of the magnetic flux adjacent to the surface
of the shield. The distribution of current over the surface of the shield is

next obtained with the aid of Eq. (2-18). The energy loss in each square

'The effect of a conducting shield on the component of magnetic field that is
normal to the shield follows a different law, see B. Boston, Screening at V.H.F., Wire-
less 5119., vol. 25, p. 22l, July, 1948.
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centimeter of shield surface is then determined by assuming that this cur-
rent flows through a d-c resistance corresponding to a conductor that is
one skin depth thick. The power consumed by a conducting shield is

derived from the source of energy producing the magnetic field.

®
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Fm. 2.19. Paths of electrostatic and magnetic-flux lines about the same coil with and;
without magnetic and nonmagnetic shields.

Shielding of D-C and Low—frequency Magnetic Fields; Magnetic Shields.

When shielding against unidirectional magnetic fields is required, a shield
composed of magnetic material is employed. Such a shield tends to
short-circuit the flux lines which attempt to extend through the shield, as

shown in Fig. 2-19c. The effectiveness of a magnetic shield is directly
proportional to the thickness of the shield, since the reluctance that the
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shield offers to magnetic flux is inversely proportional to thickness.

Joints or air gaps which add reluctance to the flux paths must be avoided.
The degree of shielding achieved by a given total thickness of material can
be increased by dividing the given thickness of magnetic material into two
or more concentric shields separated by air spaces.

Magnetic shields must have high initial permeability to be effective.
They are accordingly composed of high—permeability alloys such as
permalloy; steel or iron is not a satisfactory material because of its low

initial permeability. Since the desirable magnetic properties of perm-

alloy and similar materials are adversely affected by mechanical strains,
such as are introduced by drilling, punching, bending, etc., magnetic
shields must be properly heat—treated after fabrication, to relieve these
strains and develop the desirable magnetic properties.

Magnetic. shields can be used for shielding alternating fields as well as

(l-c fields. In particular, they find extensive use at audio and power fre-
quencies, particularly (it) cycles, where conducting shields would have to

be excessively thick to be effective. The shielding action of a magnetic
shield at these lower frequencies is achieved in part because of the short-

circuiting action of the magnetic material on magnetic flux and in part
because of eddy currents which cause the shield to act simultaneously
as a conducting shield.

Magnetic shields of high—permeability material are also more effective

at radio frequencies than are copper or aluminum shields. At these

higher frequencies they act as conducting shields, but because of their high
permeability have less skin depth. Thus the shielding obtained with a
given thickness of material is greater. However, conducting material
such as copper is less expensive per pound than magnetic material such as
permalloy, is easier to fabricate, and requires no heat-treatment. Hence

nonmagnetic conducting shields are generally used in preference to mag
netic shields for alternating fields when the frequency is high enough so
that the required degree of shielding can be obtained with a reasonable
thickness of conducting shield; the only practical exception is when a
comlucting shield employs a liner of nonconducting magnetic material,
as discussed below. .

Electrostatic Shielding. Electrostaticshielding is obtained by enclosing
the space to be shielded by a conducting surface. Accordingly, the mag-
netic and conducting shields for magnetic flux lilies discussed above also
serve as electrostatic shields. However, fairly effective electrostatic
shielding can be obtained by a metal mesh made of any good to fair elec-
trical conductor, which would be a rather poor shield for magnetic flux.

It is possible to shield electrostatic flux without simultaneously affect-
ing the magnetic field by surrounding the space to be shielded with a con-
ducting cage that is made in such a way as to provide no low-resistance
path for the flow of eddy currents, while at the same time ofl'ering a
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metallic terminal upon which electrostatic flux lines can terminate.

Thus, the secondary winding of a transformer may be shielded electro-

statically from the primary by a shield having an insulated gap located
in such a manner as to prevent the shield from becoming a short-circuited

turn. This is illustrated in Fig. 2-20. Another type of electrostatic
shield that does not affect the magnetic flux is illustrated below in con-
nection with Prob. 2-45.

Energy loss is associated with electrostatic shielding as a result of the

fact that the charging current induced in the shield produces currents
that must flow through the surface resistance of the shield. However,
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Fm. 2-20. Transformer with electrostatic shield between primary and secondary.

under most conditions these currents are quite small, so that the associ-
ated loss is generally insignificant. This is in contrast with shields
for alternating magnetic flux, where the shield losses are very often

substantial. .
Efied of Shielding on Coils.‘ The magnetic and electric fields associ-

ated with a coil are frequently confined by placing the coil in a shield can
composed of aluminum or copper. Such a shield increases the coil’s dis-

tributed capacitance and effective resistance, and reduces its inductance.
The distributed capacitance is increased as a result of the capacitance
between the shield and various parts of the coil (see Fig. 249(1). The

inductance is decreased because the conducting shield restricts the mag-
netic flux lines to the space within the shield; this decreases the cross sec-
tion of the magnetic circuit and thus reduces the flux linkages. The!

effective resistance of the coil is increased because the energy consumed
by the eddy currents flowing in the shield is supplied by the coil.

The degree of shielding obtained at radio frequencies by enclosing a coil
in a copper or aluminum container is very high, and if a reasonable clear—

1 The quantitative relations involved are discussed by Howe, op. cit.; A. G. Bugle,
The Effective Inductance and Resistance of Screened Coils, J. IEE (Wireless Sea),
vol. 15, p. 221, September, 1940.
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ance is provided between the shield and the coil, the properties of the coil
'are not seriously impaired. In general, the clearance between the shield
and the coil should everywhere be not less than the coil radius. Under
such conditions, the presence of the shield will not reduce the coil Q by
more than 20 per cent, while the reduction in inductance will be still less.

A shielded inductance that is very compact can be achieved by making

the conducting shield only slightly larger in diameter than the coil, and
then using a liner of noncondueting magnetic material to fill the space
between coil and shield, as shown in Fig. 2-19f. The high permeability

of the magnetic material provides a low—reluctance return path for the
magnetic flux outside the coil, with the result that the inductance obtained
is greater than when the coil is unshielded as in Fig. 2-19a. This makes

it practical to reduce the physical size required to obtain a given induct-
ance at a desired value of Q. In addition, the shielding is more efl'ective

than when only a conducting shield is used (Fig. 2-19c), because both

magnetic and conducting shielding is simultaneously obtained.

PROBLEMS AND EXERCISES

2-1. If the flux shown in Fig. 2-1 is produced by a current of 0.01 amp, estimate the
coil inductance. (Assume that Fig. 2-l gives a two-dimensional representation of the
actual flux lines present in the thrcc‘dimensional coil.)

2-2. A single-layer coil is to have an inductance of 220 ph and is to be wound on a
form having a diameter of 2 in. If the ratio of length to diameter is 1.5, determine
the distance between centers of adjacent turns of the winding.

2-3. A single-layer solenoids! coil having 60 turns on a winding 3 in. long and 3 in.
in diameter possesses an inductance of 187 ah. Without using Fig. 2-2, determine:

a. How many turns “ould be required to obtain the same inductance if the core
were 2 in. in diameter and 2 in. long.

b, How many turns would be required to obtain an inductance of 400 uh with a
winding 4 in. long and 4 in. in diameter.

2-4. a. On a hysteresis loop similar to that of Fig. 245, show a minor hysteresis
loop originating at point 1 on the main loop, but corresponding to a substantially
larger value of alternating magnetization.

in. Repeat for the same alternating magnetization as in (a), but with the d-c mag-
netization corresponding to point 3, instead of point 1.

2-5. The incremental inductance at low altérnating magnetization of a particular
iron-cored coil having 1000 turns is 10 hcnrys with no d-c saturation, and 4 hcnrys
when carrying a d-(- magnetizing current of 0.1 amp. When the number of turns is
reduced to 500. it is found that the inductance without d-c saturation is reduced to

2.5 lu-nrys. or exactly one-fourth of the previous value, whereas with a d—e magnetizing
current of 0.1 amp the incremental inductance is somewhat greater than one-fourth
of 4 henrys. Explain.

2-6. A coil uses a silicon—steel core composed of material having the characteristics
given in Fig. 2-4, and the core is assembled with negligible air gap. If the incremental
inductance is 5.4 honrys with no (i-(: magnetization and low alternating flux density,
what will be the incremental inductances with d-c magnetizations sufficient to produce
1, 2, and 3 ampere turns per cm?
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2.7. a. A permanent magnet that is required to produce a large amount of flux
in a low-reluctance magnetic circuit will be short and thick. Explain.

b. A permanent magnet that is required to produce a small amount of flux in a high-
reluctance circuit will be long and thin. Explain.

2-8. A permanent magnet of Alnico V is required to establish a flux density of
2000 lines per sq cm in an air gap 1.2 cm long and having an effective cross section of
20 sq em. Determine the length and cross section of the magnet required, assuming
stabilization is not necessary.

2-9. Explain why a permanent magnet stabilized as in Fig. 2-0 will have to be both
larger in cross section and longer than an unstahilized magnet in order to produce the
same flux in a given external circuit.

2—10. A particular permanent-magnet system employs a cylindrical magnet of
Alnico V having a diameter of 1.0 in. and a length of 0.6 in. If Alnico XII is used
instead. calculate the diameter and length required to give the same result. Assume
that the permanent-magnet. material is used under optimum conditions in both cases
and that stabilization is not required.

2-11. A primary coil having an inductance of 100 uh is connected in series with a
secondary coil of 2-H) ph, and the total inductance of the combination is measured as
146 ah. Determine (a) the mutual inductance, (b) thecoefiicient of coupling, and (e)
the induct once that. would he observed if the terminals of one of the coils were reversed.

2-12. Two circuits are to he coupled by a common capacitor using the circuit of
Fig. 2-8:: if the total capacitance required in the primary circuit is 150 flfll', while the
total capacitance required in the secondary circuit is lot) uni, determine the value of
the common capacitance (',,I in Fig. 2-80 to give a coefficient of coupling of 0.02.
[Note: In solving this problem do not attempt to use Eq. (2-8).]

2-13. In two circuits coupled as in Fig. 2-8h, L. = 0.05 henry, L, = 0.08 henry,
and k = 0.4. Determine (a) the required value of Lu, and (b) the total primary and
total secondary inductances.

2-14. Explain why two coils that have. their axes, respectively, parallel to, and at
right angles to, the line joining the coil centers will have zero mutual inductance.

2—15. Two single—layer air-cored coils are located coaxially end to end, as illustrated
in Fig. 2-811. It is found that, if a long cylindrical magnetic core is slipped inside of
these coils so that it is common to both coils. the mutual inductance is increased more

than is the self-inductance of the individual coils. Explain.
2-16. What efi'ect does the redistribution of current associated with skin eli'ect

have on the inductance? Explain.
2-17. a. Calculate the skin depth in copper for 1 kc, 1 Me, and 1000 Me, and

tabulate the results.

I). Repeat for aluminum.
2-18. Parts formed of brass, steel, etc.. are sometimes silver- or copper—plated to

reduce the effective resistance to radio frequencies. li copper plating is employed,
and the part is to be used in the frequency range 5 to 20 Me, recommend a minimum
thickness for this plating, and give the reasoning upon which this recommendation
is based.

2-19. Inductances (and also shields) are sometimes plated to reduce corrosion and
improve appearance. The resistivity of the plating material suitable for this purpose
is usually much higher than the resistivity of the material that is plated. What
criterion must the thickness of the plating satisfy if the effective resistance of the
plated conductor is to approach closely the resistance obtained without plating?

2-20. A No. 14 copper wire (diameter 0.0641 in.) has a d-c resistance of 0.2525 ohm
per 100 it. Calculate its resistance at 10 Me, and at 3000 MeI and tabulate these
three values of resistance alongside of one another.
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2-21.. What diameter must a copper wire have if its resistance is not to exceed
3.0 ohms per 100 ft at 10 Me?

2-22. A conductor consisting of a thin-walled tube will have much less resistance at
very high frequencies than a solid wire of the. same d—c resistance. Explain.

2—28. In a conductor consisting of a tube of specified outside diameter, the resist-
ance at very high frequencies will be almost independent of wall thickness if this
thickness exceeds several skin depths, but will be roughly inversely proportional to
wall thickness when the thickness is small compared with the skin depth. Explain

these observations. . ' .
2-24. Determine what mathematical approximation is involved in each of the

following statements:
a. The phase. angle in radians is equal to the power factor.
b. The reciprocal of capacitor Q is equal to the power factor of the capacitor.
e. The dissipation factor is mpial to the phase angle.
2-25. On the basis of the information given in Fig. 2-12 and the associated discus-

sion, sketch curves analogous to Fig. 2-12 but showing qualitatively how the dielectric
constant and power factor would vary as a function of temperature for (a) a low
frequency, and (b) a high frequency.

2-26. (1. A mica capacitor with power factor 0.0005 has a capacitance of 0.001 pf.
Assuming skin-effect resistance to be negligible, what is the equivalent series resistance
of the capacitor at. frequencies of 1000, 100,000, and 10,000,000 cycles?

1). What is the equivalent shunt resistance for the same conditions?
2-27. A certain air capacitor employing myealcx insulation has a power factor of

0.0003 at 1000 cycles. What will its power factor be at this same frequency and same
capacitance if the mycalex insulation is replaced by polystyrene insulation of the
same geometrical configuration?

2-28. The power factor of a capacitor at very high frequencies is roughly propor-
tional to f“ where f is the frequency. What is the value of n?

2-29. Show that the. power factor of a given variable air capacitor at low frequencies
is independent of frequency but increases inversely with capacitance setting.

2-80. At very high frequencies, does an increase in frequency cause the power factor
of a variable air capacitance for a given capacitance setting to become greater, less, or
unchanged? Give an adequate justification for the answer chosen.

2-81. In a variable air capacitor the ratio of the power factor at a given high fre-
quency to the power factor at a given low frequency becomes greater as the capacitance
setting increases. Explain.

2-32. In a capacitor having a capacitance of 0.001 pf. the equivalent series induct-
ance of the leads, etc., is 0.1 ah. At what frequency does the apparent capacitance
differ from the true capacitance by 10 per cent?

2-88. A certain capacitor having air dielectric with bakelitc supports obtains 10 Mai
of its capacitance through the bakclite dielectric having a power factor of 4 per cent,
and the remainder of its capacitance from the air, which has no losses. What is the
equivalent series resistance and power factor at 10,000 kc when the total capacitance
is 100 ppf (90 ”if from air and 10 uuf from bakelitc)? Neglect skin-effect losses.

2-84. A particular mica capacitor having a capacitance of 0.001 uf has a power
factor of 0.0005 at a frequency of 1000 cycles, while at 10 Me the power factor has
risen to 0.001. From this information deduce the values of R. and It. applicable in
Fig. 2—13 at 10 Me.

2-35. The capacitor of Prob. 2-26 is able to stand a d-c potential of 5000 volts and is
capable of dissipating safely 3 watts of heat.

a. At what. frequency will heating begin to limit the voltage rating?
I). What is the voltage rating at frequencies of l, 1000, and 10,000 kc?
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2-36. Derive an equation giving the exact relation between the Q of a coil and the
coil power factor, and from this calculate the error in the approximate relation: power
factor — l/Q, when Q - 50.

2-87. Explain why the distributed capacitance of a coil is always increased by the
wax or other coating used for protection against moisture.

2-88. On the basis of proximity and skin effects, explain why it is reasonable to
expect that the maximum coil 0 would be obtained with a wire not so large as to leave
very little clearance between adjacent turns, and not so small as to make this clearance
become a large fraction of the spacing between centers of adjacent turns.

2-39. In a coil with a magnetic slug core as in Fig. 2-17, removing the core will
reduce the inductance less in a system using a core designed for 100 Me than in a
system using a core designed for 1 Mc. Explain.

2-40. A copper shield is required to reduce the magnetic flux density by 60 db.
What. shield thickness is required at (a) 1 kc, (b) 1 Me, and (c) 1000 Me?

2-41. Derive liq. (2-17) from Eq. (2-16).
2-42. A particular magnetic shield attenuates d-c magnetic fields by 20 db. What

\\ ill the attenuation be if the shield thickness is doubled?

2-48. A conducting magnetic shield is composed of permalloy having an initial
permeability of 15,000 and a resistivity of 17 uohms per cm cube. Calculate (a) the
thickness which this material must have to be 5 skin depths thick at 60 cycles, and
(h) the thickness which copper must have to achieve the. same degree of shielding.

2-44. Explain why magnetic material in powdered form. such as used in magnetic
cores for radio frequencies, is not suitable for use as a shield of alternating magnetic
fields.

2-46. A grid of wires such as shown in the aecom panying figure will provide electro-
static shielding without magnetic shielding provided the structure (shown dotted in

P3013. 2-45

the illustration) supporting the sides of the shield is an insulator. However, if the
material of the supporting structure is a conductor, then magnetic as well as electro-
static fields are shielded at least to some extent. Explain.

2-46. When a nonmagnetic shield can surrounds a solenoidal coil, it is observed that.
the shielding of the magnetic field is not affected appreciably by a joint in the shield
provided this joint is in a plane perpendicular to the axis of the coil, but the effective-

ness of the shield is very seriously reduced if the joint is in a plane that contains the,
axis of the coil. Explain.

2—41. If it is necessary that a magnetic shield for d-c fields have a joint, how should
this joint be oriented with respect to the direction of the magnetic flux that is being
shielded?
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CHAPTER 3

PROPERTIES OF CIRCUITS

WI'I‘II LUMPED CONSTANTS

3-1. Series Resonance. A circuit consisting of an inductance, capaci-

tance, and resistance all in series, as in Fig. 3-] , is called a series resonant
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Flu. 3-1. Magnitude and phase angle of
current in a series remnant circuit as a

funel ion of frequency for constant applied
voltage and different circuit Q’s.

or series tuned circuit. When a

constant voltage of varying fre-

quency is applied to such a circuit,

the current that flows depends

upon frequency in the manner

shown in Fig. 3-1. At low fre-

queucies, the capacitive reactance

of the circuit is large and the induc-
tive reactance is small. Most of

the voltage drop is then across the

capacitor, while the current is small

and leads the applied voltage by

nearly 90°. At high frequencies,

the inductive reactant-e is large and

the capacitive reactant-c low, result—

ing in a small current that lags

nearly 90° behind the applied volt-

age, and most of the voltage drop is
across the inductance. In between

these two extremes there is a fre-

quency , called the resonant frequency,

at'which the capacitive and inductive
rcactanccs are exactly equal and,

consequently, neutralize each other;

there is then only the resistance of the circuit to oppose the flow of cur-
rent. The current at the resonant frequency is accordingly equal to the

applied voltage divided by the circuit resistance, and is very large if the
resistance is low.

A resonance curve such as illustrated in Fig. 3—1 finds extensive use in

selective systems for separating a desired a-c. signal from signals of

other frequencies. For frequencies in the vicinity of resonance cor-

responding to a carrier wave and its sideband frequencies, the response is
44
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nearly uniform and is quite large. However, at frequencies differing

greatly from resonance the response is relatively small, with the result
that signals of such frequencies, i.e., the unwanted signals, are severely
discriminated against.

The characteristics of a series resonant circuit depend primarily upon

the ratio of inductive reactance all to circuit resistance R, i.e., upon
wL/R. This ratio is frequently denoted by the symbol Q and is called
the circuit Q.‘ Most of the loss in the usual resonant circuit is due to coil

resistance because the losses in a properly constructed capacitor are small
in comparison with those of a coil. The result is that the circuit Q

ordinarily approximates the Q of the coil alone, which was discussed in
See. 2-7.

The general effect of different circuit resistances, i.e., different values of
Q, is shown in Fig. 3~1. It is seen that, when the frequency differs

appreciably from the resonant frequency, the actual current is practically
independent of the circuit resistance and is very nearly the current that would
be obtained with no losses. 0n the other hand, the current at the resonant
frequency is determined solely by the resistance. The effect of increasing

the resistance of a series circuit is, accordingly, to flatten the resonance
curve by reducing the current at resonance without significantly affecting
the behavior at frequencies differing appreciably from resonance. This

broadens the top of the curve, giving a more nearly uniform current over

a band of frequencies near the resonant point, but does so by reducing
the ability of the circuit to discriminate between voltages of different
frequencies.

Analysis of Series Resonant Circuit. The elementary voltage, current,
and impedance relations of series resonant circuits are discussed in every

book on alternating currents. The basic quantitative relations are listed
below for convenient reference.

1
R t f - = = —~————-— 3-2

esonan requency f0 2,, V17 ( l
. 1

Z. — R +1 (wL — 07,) (3—311)
_._._.. -a.-___i

|z.1 = \/R= + (wL — J.) (3-312)(00

1 The circuit Q can also be defined as I

energy stored in circuit (34)energy dissipated in circuit
during one cycleQ-2r{

This relation follows from the fact that the energy stored in the inductance L when
the current I is maximum (i.e., when all the stored energy is in the inductance) is
IIL/2, where I is the peak current. At the same time, the energy lost per cycle in the
circuit resistance R is Pit/2f. where f is the frequency.
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 — 6'

tan a = 9L7?” ’ , (3-4)
E E= -.- = —- —.-———-—————-— 3-5

I z. R +leL — (l/wC)] ( )
E

Current at resonance = Io = 1?; (3-6)
Voltage across inductance = ijI (3-7a)

Voltage across capacitor = 3,3], I (3-7b)

where I'} = voltage applied to circuit
1 = current. flowing in circuit, amp

f = frequency, cycles
to = 21]

Q = wig/R
h’ = total series resistance of tuned circuit

L = inductance, henrys
C = capacitance, farads

Z. = impedance of series circuit

0 = phase angle of impedance
Subscript. n denotes values at resonant. frequency

At frequencies near resonance the voltages across the capacitor and the
inductance will both he very much greater than the applied voltage.
This is possible because at frequencies near resonance the voltages across

the capacitor and inductance are nearly 180° out of phase with each other
and so add. up to a value that is much smaller than either voltage alone.

At resonance, where the circuit current is E/R, Eqs. (3-7) show that
the voltage across the inductance (or capacitor) is then Q times the

applied voltage; i.e., there is a resonant rise of voltage in the circuit amount-
ing to Q times. Since a typical value of Q is of the order of 100, a series

resonant circuit will thus develop a high voltage even with small applied
potentials. At frequencies differing from resonance the voltage devel-

oped across the inductance (or capacitor) talls off. In the vicinity of
resonance the resulting curve of voltage as a. function of frequency has a
shape that for all practical purposes cari- be considered to he the same as
the Curresponding curve of current as a function of frequency (see Fig.
3-1). The reason for tins is that most of the resonance efi‘ects exist in a

very narrow frequency band, typically representing a frequency variation
of only a few per cent. Over this frequency range the term wL (or 1 /w(,')
in Eqs. (3-7) is so nearly constant that to a first approximation the volt-

age developed across the circuit can be considered to be proportional to
the circuit current.

Universal Resonance Curve. Equations (3-5) and (3-6) can also be
rearranged to express the ratio of current actually flowing to the current
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at resonance, in terms of the circuit Q and the fractional deviation of the

frequency from resonance. This leads to the universal resonance curve
of Fig. 3—2.1

In the universal resonance curve, the frequency is expressed in terms of
a parameter a that represents fo/Q cycles, as defined in Fig. 3-2. Thus
a = 1.0 when the cycles ofl' resonance equal fo/Q cycles, a --= 2 when the
number of cycles off resonance is 2fo/Q, etc.

The use of Fig. 3-2 in practical calculations can be illustrated by two
examples.

Example 1. It is desired to know how many cycles one must be ofi resonance to
reduce the current to one-half the value at resonance when the circuit has a Q of 125
and is resonant at. 1000 kc.

Reference to Fig. 3-2 shows that the response is reduced to 0.5 when a = 0.86.
llence,

Cycles off resonance = 2821225512!) = 6.88 he

The phase angle of the current as obtained from the curve is 60°.
Example 2. With the same circuit as in the preceding example, it is desired to

know what the response will be at a frequency 10,000 cycles below resonance.
To solve this problem it is first necessary to determine a.

a = 1%000 X 125 = 1.25

Reference to Fig. 3-2 shows that for a = 1.25 the response is reduced by a factor 0.37
and that the phase of the current is 68° leading.

The only assumption involved in the universal resonance curve is that
QIS assumed to be the same at the frequency being considered as at the

resonant frequency. When this is true, the universal resonance curve

‘ The equation of the universal resonance curve is obtained as follows: The ratio of
liq. (3-5) to Eq. (3p6) gives

Actual current Rn Ito

Current at resonance R +_j_[¢.§L — (l/w(.')] I? 11- lefiJT—n moi—C]

 

Now define the fractional deviation 6 of the frequency from resonance, according to
the relation

w = «0(1 + 6)

Substituting this expression for w and remembering that wall = l/moC, one obtains

Actualgrrrgnt _ R9-“__. 7'7___10‘«__
Current at resonance — (1_+_ 15)2 —- l (2+6)R'Hi 1+5 ']“""’= 1711”” 1+5 I

When Q is constant, the radio-frequency resistance is proportional to frequency so
that R/Ito = u/uo = (l + 5), which when substituted yields

Current at resonance 2 + 6 .

1 + a + ’m 1 +*3)
Actual current _1_ (3-8)

Figure 3—2 is then obtained by substituting a = Q5.
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involves no approximations whatsoever. Over the limited range of fre-
quencies near resonance represented in Fig. 3-2, the variation in Q in
practical cases is so small as to introduce negligible (ie., less than 1 per
cent) error from the use of the curve, when the value of Q existing at
resonance is used in determining the parameter a.
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F10. 3-2. Universal resonance curve for series resonant circuit. This curve can also
be applied to the parallel resonant circuit by considering the vertical scale to repre-
sent the ratio of actual parallel impedance to tlll' parallel i111pcdaucc at resonance.
When applied to parallel circuits, the angles shown in the figure as leading are lagging,
and vice versa.

 

The universal resonance curve is useful because it is independent of
the resonant frchu-nm' of the circuit and of the ratio of inductance to
capacitance, and because it is substantially independent of circuit Q. It

thus follows that all resonance curves have the same relative shape irrespective
of resonant frequency, Q, or ratio of inductance to capacitance of the circuit.

Working Rules for Estimating Sharpness of Resonance. Since the
curves for different values of Q are almost identical in Fig. 3-2, particu¢

larly in the neighborhood of the resonant frequency, it is possible to state
several easily remembered working rules that will enable one to estimate
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the sharpness of any resonance curve with an error of less than 1 per cent
when only the Q of the circuit is known.l These rules follow:

Rule 1. When the frequency of the applied voltage deviates from the
resonant frequency by an amount that is l/ZQ of the resonant frequency, the
current that flows is reduced to 70.7 per cent of the resonant current, and the

current is 45° out of phase with the applied voltage. Thus the frequency band
B over which the response is at least 70.7 per cent of that at resonance (i.e.,

within 3 db of resonance) is B = fo/Q, where f0 is the resonant frequency.
Rule 2. When the frequency of the applied voltage deviates from the

resonant frequency by an amount that is l/Q of the resonant frequency, the
current that flows is reduced to 44.7 per cent of the resonant current, and the

current is 63}? out of phase with the applied voltage.
Thus, in the circuit considered in the above examples, the current

would be reduced to 70.7 per cent of the value at resonance when the fre-

quency is 12650 of 1000 kc, or 4000 cycles off resonance, and to 44.7 per
cent of the resonant current for a frequency deviation of M25 of 1000 kc,
or 8000 cycles. Since the resonant rise of voltage in this circuit is
125 (= Q) times, the rise of voltage is very nearly 0.7 X 125 = 87.5 times

when the frequency is 4000 cycles off resonance, and is very close to
0.45 X 125 = 56.25 times at a frequency 8000 cycles from resonance.

Practical Calculation of Resonance Curves. The proper procedure for
calculating a resonance curve is to start by determining the current at

resonance, using Eq. (3-6). The working rules can then be applied to
obtain the response at frequencies 1/2Q and l/Q on either side of reso-
nance. This gives a picture of the sharpness of resonance and is sufficient
for many purposes. However, if additional points in the vicinity of reso-

nance are needed, they can be calculated with the aid of Fig. 3—2. '
At frequencies too far off resonance to come within the range of the uni-

versal resonance curve, the magnitude of the current can be determined

with an accuracy sufficient for nearly all practical purposes by neglecting
the resistance R in Eq. (3-5). The phase angle of the current under

these conditions is obtained from Eq. (3-4).
The above procedure for calculating resonance curves is much superior

to making calculations based directly upon Eq. (3-5). The use of the
universal resonance curve in the vicinity of the resonant frequency not
only reduces the amount of labor involved but also greatly improves the
accuracy under ordinary conditions. This is because resonant circuit

formulas such as Eq. (3—5) contain a term (wL -- wiC) which involves the
difierence of two quantities which near resonance are nearly equal in

magnitude. In order to obtain this difference without more than 1 per

I An error of l per cent is nearly always permissible in calculations of radio-frequency
circuits. This is because the effective circuit constants at radio frequencies are very
seldom known to an accuracy that involves an error of less than 1 per cent.
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cent error, five-place logarithms must ordinarily be employed. Slide-rule
caiculations are never permissible. Neglecting the resistance at fre-

quencies too far off resonance to come within the range covered by the
universal resonance curve enormously reduces the labor involved in

calculating magnitudes, and introduces an error of less than 1 per cent of
the magnitude at resonance. This accuracy is ample for all ordinary
purposes, and the error is undetectable when resonance curves are

. plotted.

LWHWE 0 3-2.. Parallel Resonance. .A par-
IZEHOLOSSESI allel circuit consrstmg of an induct-

ance branch in parallel with a capac—
itance branch offers an impedance of
the character shown in Fig. 3-3.
Such a circuit is termed a parallel
resonant or parallel tuned circuit.

When a voltage is applied to such
a system, then at very low fre-

quencies, the inductive branch draws
a large lagging current while the
leading current of the capacitive
branch is small, resulting in a large

lagging line or circuit current and a

low lagging circuit impedance. At
high frequencies, the inductance has

LEAD l a high reactance compared with the
W recouac7-— caps’citanec, resulting in a large lead-

Fm. 3-3. Magnitude and phase angle of ing “nemlrreutmld 3- correspondingly
impedance of a parallel circuit as afune- 10w circuit impedance that is leading
m" (“mlm'npy for d'm'rmt “m"t 015' in phase. In between these two
extremes, there is a frequency at which the lagging current taken by the

inductive branch and the leading current entering the capacitance branch
are eqlml; being 180° out of phase, they then neutralize and leave only a
small resultant inphase current flowing in the line. The impedance of the

parallel circuit will then be a, very high resistance, as is brought out in
Fig. 3-3.‘ -

A comparison of Figs. 3-1 and 3-3 shows that the impedance curve of a
parallel circuit is similar in character to the current curve of a series

circuit. In particular, increasing the resistance of a parallel resonant
lIn obtaining a parallel resonance curve experimentally by measurements of

applied voltage and line current, extreme care must be taken to ensure that the applied
voltage contains no harmonics. This is necessary because at resonance the circuit
impedance is extremely high to the fundamental component of the applied voltage
and very low to the harmonic components, with the result that even a small harmonic-
veltage component will cause line currents that mask the small fundamental
component.
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circuit lowers and flattens the peak of the resonance curve, just as in the
analogous series resonance case. This similarity is considered below in

greater detail.
The relationship between the line and branch currents in a parallel

circuit is illustrated in Fig. 3-4. It will be noted that, unlike the line or
circuit current, which shows a resonance effect, the currents in the indi-
vidual branches of a parallel circuit vary only slightly in the vicinity of
resonance and are relatively large. At resonance the two branch cur-
rents have similar magnitudes, and
being almost (but not quite) out of

phase they add up to a very small
resultant current, thus giving a

high circuit impedance. As the
frequency departs from resonance
the two branch currents become

slightly unequal in magnitude; this

causes the line current to increase géfgg'zgww RESONANCE ié'fglibc‘éww
as shown, which means lowered FREouEucv

('ll‘('llll; impedance. It is character. Fm. 3-4. ‘Rclationship of line and branch

istic of parallel . resonant circuits ffizrtfifilfl,:fpgfillgngimum ""6"" m
that for frequencies near resonance

the current flowing in the branches, commonly referred to as the circulat-
ing current, is much larger than the line current, i.e., than the current
supplied to the circuit.

The fundamental relations of a parallel resonant circuit are derived in

every introddctory book on a—c circuit theory, and are listed below for
convenient reference. '

I
rem

Iwacké'flr! : ’c' cunntur IN"Art I CAPACIYANCE
I
l
I
I
l
I
l
I

 
 

  I "c
Eon

_z,z_,, _ are
 

 

) ‘ ' ' II = r = _ — -
I alalkl Impedance Z Z. + Z], Z. (3 9)

Line current = % (3-10)
Inductive branch current = fl = E -—- (3—11)

Z], R], + ij

, . . __ E _ E _
(‘apautivc branch current — 7-; — E: _——(J/mC) (3-12)

where E = voltage applied to circuit
Zc = Re — (j/wC') = impedance of capacitive branch
Z, = R], + ij = impedance of inductive branch
Z. = Zc + Z. = series impedance of circuit

Z = impedance of circuit when connected in parallel
R. = R: + R1. = total series resistance of circuit

to = 21!’ times frequency
Q = wL/R. = circuit Q
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These equations are fundamental to every parallel circuit, irrespective of
the circuit Q, the frequency, or the division of resistance between the
branches.

Quantitative Relations in Parallel Resonant Circuits with Moderate or

High Q, and the Use of Universal Resonance Curve. When the Q of a
parallel resonant circuit is not too low (e.g., of the order of 10 or more),
the quantitative relations become quite simple. To begin with, it is then

permissible to assume that the circuit has maximum impedance and unity

power factor at the same frequency, which is also the frequency at which
the same circuit is in series resonance as given by Eq. (3—2). In contrast,
when the circuit Q is low, this is not necessarily the case, as discussed
below.

Whcn the circuit Q is not too low, the exact expressions of Eqa. (3—9)
and (3-10) can be simplified, without intrmlucing appreciable error, by
ncglccting the resistance components of thc impedances ZL and la in

the numerator of Eq. (3-9). When this is doncl
 

 

2

Parallel impedance = Z = (23”) (3-13)1‘.

At. rcsonancc Z. = Ru, and this becomes

Parallel impcdancc at rcsonancc = (91%)- : (LO0L)Q (3-14)

In these equations on. is the value of w at resonance. It will be noted from

Eq. (3-14) that at rcsmumcc the impcrlancc of a parallel circuit is a resist-

ance that is Q times the rt‘tll'tttnt't’ of one of'lhc bram'hcs.2 It can, thcrcforc,
be said that the parallel arrangcmcnt of inductive and capacit ivc branches
causes a resonant rise of impcdancc of Q times the impedance that would

be obtained from either branch alonc. It is thus apparent. that very.
high impedanccs can be developed by parallel resonance. This is one of
the most important properties of parallel resonance.

Under conditions where the circuit (,1 is not too low, the resonance
curve of the parallel impedance of a circuit can he considered to have the
same shape as the resonance curve of the series current in a circuit consisting

‘ This transformation is carried out as folldws: If the rcsistanctI components in tho
numerator of Eq. (342) are ncglcctcd, the product ZLZ.‘ becomes ull/uC :- L/('.
One can now eliminate tho capacitance C in this cxprcssion by multiplying both
numerator and denominator by us and then noting that l/woC = web. That is,

L wnL

ZLZC a 2? a 0:00

' It also follows from Eq. (3-14) and Eqs. (3-10) to (3-12) that at resonance the
branch currents are Q times as large as the line current, provided the resistance com-
ponents in Eqs. (3-11) and (3-12) are small compared with the associated reactive
components.

- (woL)'

Momentum Dynamics Corporation
Exhibit 1013

Page 055



Momentum Dynamics Corporation 
Exhibit 1013 

Page 056

$50.34] PARALLEL RESONANCE 53

of the same inductance, capacitance, and resistances connected in a series
instead of a parallel arrangement. This follows from the fact that a com~

parison of Eqs. (3-5) and (3-13) shows that both the parallel impedance
and the series current are equal to a constant divided by Z.. Conse~

quently, the universal resonance curve and the working rules that were applied
for estimating the sharpness of resonance of the series circuit also apply to
the case of parallel resonance when the circuit Q is moderate or high. The

only difference is that the signs of the phase angles are now reversed, the

phase of the parallel impedance being leading at frequencies higher than
resonance and lagging at frequencies below resonance.

The proper procedure for calculating the impedance of a parallel
rcsonant circuit of moderate or high Q is therefore similar to that used

sir T as; 23%L
I an,:/Z,c/’

(a) EQUIVALENT FORMS (0) PARALLEL CIRCUIT (c) SHUNT-.FED
0F PARALLEL CIRCUITS WITH BOTH SERIES AND PARALLEL CIRCUIT

SHUNT RESISTANCES

Flu. 3-5. Forms of parallcl resonant circuits involving a shunt resistance and shuntfced.

with a series resonant circuit. The first step is to determine the resonant

frequency and the impedance at resonance, using Eqs. (3-2) and (3-14).
Next, the working rules are applied to obtain the 70.7 and the 44.7 per

cent points on either side of resonance. This gives the general picture of

the sharpness of resonance and is sufficient for many purposes. If a more
complete curve is desired in the vicinity of resonance, one may make use

of the universal resonance curve of Fig. 3-2. Finally, at frequencies so
far off resonance as to be outside the range of the universal resonance

curve, one may determine the magnitude of the impedance by using
Eq. (3-13), but neglecting the circuit resistance R when making the

calculation. The power-factor angle of the impedance thus obtained is

the negative of the corresponding angle for series resonance, as given by
Eq. (3-4).

Parallel Resonant Circuits with Shunt Itesistanccs and with Parallel Feed.

The two types of parallel resonant circuits shown in Fig. 3—5a are equiv-
alent to each other provided the resistances R1 and R2 are properly,

related, and provided also that the circuit Q is not too low. To determine
the relationship that must exist between R; and R2, one notes that R, can

be thought of as being associated with capacitance C’ as its equivalent
series resistance, while It: can be regarded as an equivalent shunt resist-

ance of the same capacitance 0. Assuming that the circuit Q is not too
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low [i.e., that (l/wC)/R1> >1, and that Rz/(l/wC)>>1], then from

Eqs. (2-12) and (2-13) one has :

31R, = (5% (3-15)
Although the relationship between R; and R2 is seen by Eq. (3-15) to

depend on frequency, it is common practice to determine the relation
between R, and R, at resonance, and then to assume that the values at

resonance also hold for all frequencies in the vicinity of resonance. This

approximation is equivalent to assuming that the right-hand term of
Eq. (3-15) is constant at the value it has at resonance.‘ Since no changes
by only a small percentage in the limited frequency range around reso—
nance, this assumption is not far from the truth, and the error it intro-
duces is quite small.

The parallel resonant circuit of Fig. 3-5b can be transformed to the
circuits of Fig. 3-5a by converting R; to an equivalent series resistance R,

or transforming R; to an equivalent shunt resistance R2. By use of Eqs.
(2-12) and (2-!3). respectively, this leads to the following rclatiOns

between the circuits of a and b in Fig. 3—5 for the resonant frequency:

 

Total effective _ _ , $90112series resistance] _ R1 _ R1 + R; (3‘18“)
Shunt resistance _ _ EAL)!equivalent to It’ll - R" _ R', ‘ (3-18!»

Total effective R I?- __ = _ «1.2 _
shunt resrstance — R, Ru. + R; (3 180)
including 16’ and Ii.q

The above analysis is of practical importance for two reasons. In the

first place, it shows that to a high approximation, the effect produced by
shunting a resistance across a parallel resonant circuit is merely to lower
the effective Q of the circuit. The resonant frequency is unchanged, how-
ever, and the impedance curve still has the shape of a resonance curve as

given by the universal resonance curve. In the second place, the analysis
provides a simple means of determining the quantitative effect that a
shunt resistance produces on the properties of a resonant circuit.

Still another form of parallel resonant circuit that is frequently encoun-
tered is shown in Fig. 3-50, where a resistance R is connected in series with

' At resonance, one can write ML a l/woC, where (no is the value of u at the resonant
frequency. Under these conditions the following useful relations apply to Fig. 35::

RIRI - (an)2 (3-15)

Q of circuit a ‘21: _ R,at resonance} R1 :14 (3-17“)
Parallel ‘m d

M resendnci: mm} - mm - R. (3-17!»
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the parallel circuit. The behavior of arrangements of this type is
analyzed in Sec. 3-7.

Parallel Circuits with Low Q. The entire discussion of parallel reso-
nance given above except for Eqs. (3-9) to (3—12) assumes that the Q of the

parallel circuit is at least reasonably high (i.c., of the order of 10 or more).
In the general case when the circuit Q is low, the curve of circuit imped-
an as as a function of frequency still has a shape that resembles a resonance

curve unless the circuit Q approaches or is less than unity. However, the

maximum impedance no longer necessarily occurs at the frequency of
series resonance, and the condition of unity power factor does not neces-

sarily occur either at the frequency of series resonance or when the imped-

ancc is a maximum. The actual behavior for any given Q depends upon
the division of resistance between the

inductive and capacitive branches, as
illustrated in Fig. 3-6 for typical cases.

An important consideration in the
use of low-Q resonant circuits occurs
when such a circuit is tuned to reso-

nance with a given frequency by vary-

ing either the inductance or capaci-
tam-e of the circuit. If, for example,

the tuning is accomplished by varying
the capacitance, then, if all the circuit
losses are in the inductive branch, the
capacitance setting that makes the

circuit impedance maximum also cor-

responds to unii y power factor. If,
however, part or all of the circuitresist—
once is in the capacitive branch, then

RES/S TANCE
IN INDUC ”VF

 
 

 
 IA-RES/5 r4NCE, m came/nu:M41101
 

  UMPEDANCE
 

(LAG)

(LEAD)mass 
the capacitance setting that makes
the circuit impedance maximum at an
assigned frequency does not corre-

FIG. 3-6. Typical chnrm‘teristics of
parallel resonance circuits having
low Q.

spend to the capacitance setting for which the circuit power factor is

unity. This is illustrated in Fig. 3-6. Similarly, if the tuning is accom-

plished by varying the inductance, then the situation is reversed, and
maximum impedance and unity-power-factor conditions coincide only if
all the circuit losses are concentrated in the capacitive branch. These

properties of parallel resonant circuits with low Q are often of considerable
importance in connection with the resonant circuits of Class C amplifiers
such as used in radio transmitters. _

Components of Parallel Impedance. The parallel impedance as calcu-
lated by Eq. (3-9) or (3-13) can be thought of as equivalent to a resistance

in series with a reactance, as shown in Fig. 3-7a. When the circuit Q is

sufficiently high for Eq. (3-13) to apply, then these resistance and react-
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ance components will be found to vary with frequency. in the manner
shown in Fig. 3-7b, which is a universal curve derivable directly from the
universal resonance curve of the parallel circuit. It Wll.l be noted that

the resistance component has a shape superficially similar to that of a
resonance curve, but differs in that it has steeper sides. In particular,

[OI/WALK!”
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(b) UNIVERSAL cunvr or IMPEDANCE'COMPONENTS

Fm. 35-7. Representation of parallel impedance in terms of equivalent series resistance
and reactunce components> together with universal curve giving these components as
a function of frequency in a parallel resonant circuit having a relatigely high Q.

the resistance drops to 50 per cent of the resonant impedance at fre-
quencies corresponding to the 70.7 per cent points of the impedance curve
(i.e., when the number of cycles ofl' resonance equals the resonant fre-
quency divided by 2Q). It will also be noted that the reactance curves
are characterized by maxima and minima which occur at the 70.7 per
cent points of the resonance curve and which have peak amplitudes that
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are exactly 50 per cent of the impedance at resonance as given by Eq.
(3-14). -

An application of these concepts is supplied by the case of a coil having
distributed capacitance. With respect to its terminals, such a coil is

represented by the left-hand circuit of Fig. 3-7a, and accordingly behaves
as shown in Fig. 3-7b. Below the frequency at which the distributed

capacitance is resonant with the inductance, the system is equivalent to a
resistance in series with an inductive reactance. The apparent induct-

ance represented by this equivalent reactance depends on frequency, how-
ever, rising with frequency until just before resonance is reached, and
then dropping rapidly. The apparent inductance becomes zero at the

parallel resonant frequency, while for higher frequencies the coil has a

capacitive rcactance and is therefore equivalent to a small capacitor. The

)7, RP R, 9—,] RP as

(a) UNYUNED SECONDARY l0) TUNED SECONDARY (c) TUNED PRIMARY AND
TUNED SECONDARY

FIG. 3-8. Various types of inductively coupled circuits commonly encountered in
electronics.

apparent resistance of the coil increases rapidly with the frequency until
a maximum is reached at the resonant frequency, beyond which the

resistance rapidly diminishes. These effects are all direct consequences
of the properties of parallel resonant circuits, and can be readily deduced
by an examination of Fig. 3-7 or of Eqs. (3-13) and (3-14). The behavior

of an inductance coil with self-capacitance can accordingly be calculated
just as one would determine the characteristics of any other parallel
circuit.

3-3. Inductively Coupled Circuits; Theory. When mutual inductance
exists between coils that are in separate circuits, these circuits are said to
be inductively coupled. The effect of the mutual inductance is to make
possible the transfer of energy from one circuit to the other by trans-

former action. That is, an alternating current flowing in one circuit
produces magnetic flux which induces a voltage in the coupled circuit.

This results in induced currents and a transfer of energy from the first or
primary circuit to the coupled or secondary circuit. Several examples of;
inductively coupled circuits commonly encountered in electronics are

shown in Fig. 3-8.
The behavior of inductively coupled circuits is somewhat complicated,

but it can be readily calculated with the aid of the following rules:

Rule 1. As far as the primary circuit is concerned, the effect that the
presence of the coupled secondary circuit has is exactly as though an imped-
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once (wM)’/Z. had been added in series with the primary,1 where M a:
mutual inductance, w = 21f, and Z. = series impedance of secondary
circuit when considered by its'elf. The equivalent impedance (wM)’/Z.
which the presence of the secondary adds to the primary circuit is called
the couplcd (or reflected) impedance and, since Z. is a vector quantity
having both magnitude and phase, the coupled impedance is also a vector
quantity, having resistance and reactance components.

Rule 2. The voltage induced in the secondary circuit by a primary current

of 1,, has a magnitude of wMI, and lags behind the current that produces
it by 90°. In complex quantity notation the induced voltage is-jwMI,.

Rule 3. The secondary current is exactly the same current that would flow

if the induced voltage were applied in series with the secondary and if the

primary were absent.2 The secondary current therefore has a magnitude
wMI,./Z., and in complex quantity representation is given by —jwMI,/Z,.

These three rules hold for all frequencies and all types of primary and
secondary circuits, both tuned and untuned. The procedure to follow
in computing the behavior of a coupled circuit is (l) to determine the

primary current with the aid of Rule 1; (2) to compute the voltage
induced in the secondary, knowing the primary current and using Rule 2;
and (3) to calculate the secondary current from the induced voltage by
means of Rule 3. The following set of formulas will enable these opera-
tions to he carried out systematically:

1 This can be demonstrated by writing down the circuit equations for the primary
and secondary. These equations are

E - I,Z, +jwMI.
Induced voltage = -—-jwMI,, == LZ.

where Z, is the series impedance of the primary and E is the voltage applied to the
primary. Solving this pair of equations to eliminate I. gives

 

a = I. [2. + (”2“? (3-19)I

This relation shows that the effective primary impedance with secondary present is
Z, + (wIII)’/Z., of which the second term represents the coupled impedance arising
from the presence of the secondary. _

’ Some readers may wonder why it is that, although the secondary circuit couples
an impedance into the primary, the primary is not considered as coupling an imped-
ance into the secondary. The explanation for this is as follows: The effect that the
secondary really has upon the primary circuit is to induce a hack voltage in the primary
proportional to the secondary current. This back voltage represents a voltage drop
occurring in the primary circuit and is the same voltage drop that results when the
primary current is assumed to flow through the hypothetical coupled impedance.
The impedance that the secondary couples into the primary is hence a means of taking
into account the voltage that the secondary current induces into the primary. The
voltage that is induced in the secondary circuit by the primary current is taken into
account by Rule 3, so that no coupled impedance need be postulated as present in the
secondary to take into account the effect of the primary.
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Impedance coupled into primary] = (mM)I (3-20)circuit by secondary .

. . . (0111)”
Equwalent primary impedance = Z, + Z (3.21)

E l
Primary current— I, —Z, + (wMP/Z. (3—22)

Voltage inducedin secondary = -]wMI, (3-23)
--JwMI,, —jwME

Secondary current = -—-———-Z. = Z__,Z.+ (wM)’ (3-24)

In these equations Z,, is the series impedance of the primary considered as
though the secondary were removed, E is the applied voltage, and the

remaining notation is as previously
I!

used. The primary and secondary

impedances Z,, and Z., respectively,

are vector quantities, so that Eqs. ‘” “
(3-16) to (3-20) are all vector
equations. my more cmcun

Inductively Coupled Circuit as a

Transformer. The inductively LEAKAGE/Immune:
coupled circuit is a transformer, u-n-mp/ \,,_m,,‘..
and the theory of the inductively
coupled circuit that is given above
is the general theory of trans-

formers. The method commonly 
used to analyze the behavior of comm mar/mm

60-cycle power transformers, which ”" WI“:

“”0le the use Of leakage induct- to) 5m: cmcun snow" as rnnusronutn
ance, magnetizing current, and tum Fm. 3-9. Inductively coupled circui‘
ratio, is a special form of the represented as a transformer with

general theory that is convenient ““1"“! ““dleakafie inductances-
when the coupling coefficient k between the primary and secondary wind-
ings approaches unity. However, when the coupling coefficient Is is

small, then the use of Eqs. (3-20) to (3-24) is preferable.
The equivalent transformer circuit represented by two coils coupled

together with mutual inductance M is shown in Fig. 3-9. Here the total

primary inductance L, is broken up into a leakage inductance L’ and a
coupled inductance LL, while the secondary is likewise broken up into

leakage inductance L" and a coupled inductance LZ'. Each leakage
inductance is considered as having no coupling whatsoever to the other

Winding, while the coupled inductances L; and L;' are taken as having a
coefficient of coupling equal to unity. The values of these inductance
components in terms of the coefficient of coupling and the primary,

secondary, and mutual inductances are given in the figure. In the
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representation of Fig. 3-9b, turn ratio has practical significance only when
the coefficient of coupling k approaches unity; when the coefiicient of

coupling is small, as for example, 0.01, then the primary and secondary
inductances are practically entirely leakage inductances. Under these
conditions the voltage induced in the secondary may be much smaller
than the voltage applied to the primary terminals, even when the second-
ary winding has many more turns than does the primary.

3-4. Analysis of Some Simple Inductively Coupled Circuits. In this
and the next section, the types of coupled circuits most commonly
encountered in electronics work will be analyzed by the principles given
above.

In studying the behavior of a coupled circuit the first step is always to
examine the nature of the coupled impedance (wM)’/Z.. When the

coupled impedance is small, then the primary current is very nearly the
same as though no secondary were present, and the effects produced in
the secondary circuit by the primary current will likewise be small. The

coupled impedance will be low if the mutual inductance M is very small

(i.e., if there is small coupling), or if the secondary impedance is very high,
for example, if the secondary is open—circuited. In contrast, consider the
case when the coupled impedance (wMV/Z, is large, either because of

large M or small Z,, or both. The voltage and current relations that
exist in the primary circuit are then affected to a considerable extent by

the presence of the coupled secondary, and a very considerable transfer of
energy to the secondary occurs.

When determining the effect produced by the coupled impedance, it is

important to note that this impedance has the same phase angle as does
the secondary impedance 2., but with the exception that the sign of the
phase angle is reversed. Thus, if the secondary impedance is inductive
and has an angle of 30°, the impedance coupled in series with the primary

circuit by the action of the secondary has a capacitive phase angle of 30°.
The physical significance of this change in sign of the phase angle becomes
apparent from the examples considered below. A particularly important

case occurs when the secondary impedance Z, is a pure resistance; under
these conditions the coupled impedance will also be a resistance.

The energy consumed by the secondary circuit is the energy represented
by the primary current flowing through the resistance component of the
coupled impedance.

Coupled Circuit with an Untuned Secondary Consisting of 0. Resistance
and Inductance. This arrangement is illustrated in fig. 3-8a, and is the
type of coupled circuit that results when a resistance is connected across

the terminals of the secondary inductance, or, alternatively, is the case
where the secondary load is a resistance and an inductance in series.

Such a secondary consists of an inductance L. in series with a resistance
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R.. The coupled impedance is accordingly

Coupled impedance gig—)3 Rfilazifl (3-25)
Multiplying both numerator and denominator by R. —- ij. gives

. R. w.L

Coupled impedance =m(wM)’ — j R2 +flab—J" (will)! (3-26)

Examination of Eq. (3-26) shows that the coupled impedance introduced

into the primary circuit by a resistance-inductance secondary consists of
a resistance in series with a capacitive reactance. The sheet of the
coupled resistance is to increase the efiective resistance that appears

between the primary terminals. The effect of the coupled capacitive
reactance is to neutralize a portion of the primary inductance, thereby

reducing the equivalent inductance that is observed between the terminals
of the primary coil. The physical explanation of the fact that an induc-

tive secondary produces a capacitive coupled reactance is that such a
secondary causes some of the inductive reactance already possessed by

the primary to be neutralized. This is done electrically by postulating

a capacitive reactance of suitable magnitude in series with the primary.l
A special case of considerable importance is that for which the resist-

ance R. of the secondary circuit in Fig. 3-80, is negligible compared with
the inductive reactance of the secondary. This situation will arise when

the secondary coil is short-circuited, or when the secondary load is a low-
loss inductance. To the extent that the resistance of the secondary

circuit can be neglected, the coupled resistance introduced into the

primary by the presence of such a secondary is zero; the only effect-pro-
duced by the presence of the secondary is then to reduce the eti‘ective

inductance that exists between the primary terminals. The percentage
reduction in the equivalent primary inductance in such a situation

depends only upon the coefficient of coupling between the primary and

secondary circuits. If lc = 1.0, the primary inductance is completely
neutralized.”

A shield surrounding a coil, or a piece of metal such as a panel located
in the magnetic field of a coil, represents a coupled secondary circuit that

consists of an inductance in series with a resistance. Such an arrange—

’ Although the coupled impedance is capacitive and so neutralizes part of the
primary inductance, it is impossible to obtain a resultant capacitive reactance in the’
primary circuit by very large coupling since, with the maximum coupling that can
possibly exist (I: - 1), it will be found that the coupled capacitive reactanee can never
be greater than the value that will just neutralise all the inductive rcactance of the
primary.

' For other values of In, it can be shown by manipulating Eqs. (3-21) and (3-26) that
the equivalent primary inductance is L,(l -— k‘).
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ment can, accordingly, be analyzed as above. Thus the effect of a shield
or metal panel on a coil is to reduce the equivalent inductance and to
increase the apparent resistance observed at the coil terminals; these

effects, moreover, become greater the larger the coupling, i.e., the smaller
the spacing between the primary coil and the metal secondary. It is also
to be noted that if the secondary resistance is low, as will be the case if
the shield or metal panel is made of a good conductor such as copper or
aluminum, then the principal effect produced by the presence of the metal
near the coil is to reduce the equivalent inductance of the coil; under
these circumstances the increase in equivalent coil resistance is only
nominal. It will be noted that these conclusions derived from the view-

point of coupled circuits are all consistent with the qualitative conclusions
stated in Sec. 28, relative to the effect that shielding has on the properties
of a coil.

Coupled Circuits with Untuncd Primary and Tuned Secondary. A
circuit of this type is shown in Fig. 3-8b. Here one has

MM)” __ (wM)2
Coupled impedance = Z. _. 737W (3-27)

An examination of this expression shows that, in the limited frequency
range in which the principal resonance effects take place when the second-

ary Q is not too low, the numerator is substantially constant, whereas the
denominator represents the series impedance of the secondary circuit.
This is, therefore, an equation of the same general type as Eq. (3-13) for
parallel resonance. The coupled impedance produced by a tuned secondary

circuit consequently varies with frequency dccording to the same general law
as does the parallel impedance of the secondary circuit (see Fig. 3—3). The
absolute magnitude of the curve, however, depends upon the mutual
inductance. This arrangement thus provides a means whereby the

impedance of a parallel resonant circuit can be transformed in magnitude.
Comparison of 'Eqs. (3-13) and (3—27) shows that the transformed imped-

ance appearing in the primary circuit is (M/L.)2 times the actual parallel

impedance of the resonant secondary circuit.
A special case of the circuit of Fig. 3-81) that is of particular importance

occurs when the primary resistance R, is the plate resistance of a vacuum
tube. One then has the equivalent circuit of the transformer-coupled
tuned radio-frequency amplifier. In this instance one is interested in the
curve showing the variation of the secondary current (or of the voltage

developed across the secondary capacitor C.)' as the frequency is varied

‘ The voltage across the secondary capacitor C. is equal to the product of the
secondary current and the rcactance l/wC, of this capacitor. In the limited frequency
range represented by the vicinity around resonance or changes very little in com-
parison with the variation of the secondary current. Hence, to a first approxima-
tion the voltage developed across the capacitor can he considered as being equal to
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about resonances. When R, > > wL,, the curve of secondary current
(or of voltage across the secondary capacitor) varies with frequency
according to a resonance curve having the same resonant frequency as
the secondary circuit, but possessing a slightly lower Q. When the

reactance wL, of the primary inductance is not negligible compared with
the primary resistance R,, the curve of secondary current as a function of

frequency still has the shape of a resonant curve. However, the fre-
quency at which the secondary current (or voltage across the secondary
capacitor) is maximum is now np a,

slightly higher than the resonant

frequency of the secondary. A r L, L5 6’
typical example of this is shown by
the dotted curve of Fig. 3-10. The ”
analysis that leads to these conclu-

sions is presented in Sec. 3-7.
3-5. Behavior of Systems In-

volving Resonant Primary and
Resonant Secondary Circuits.
Primary and Secondary Circuits

Resonant at the Same Frequency and
Having Q’s That Are Equal and Nat
Too Law. When two resonant cir-

  

 
SECONDARVCURNENY

FREQUENCY

Fm. 3-10. Variation of secondary current
cuits having equal Q’s that are not
too low are tuned to the same fre-

quency and coupled together, the

resulting behavior depends very

largely upon the degree of coupling,
as seen from Fig. 3-11.1 When

as a function of frequency in a coupled
system in which the secondary is a
resonant circuit and the primary is
untuned, showing that the secondary
circuit follows a resonance curve, which,
however, has a lower Q than that of the
secondary circuit taken alone.

the coeflicient of coupling is small, the curve of primary current as a
function of frequency is substantially the series resonance curve of the
primary circuit considered alone. The secondary current is small and
varies with frequency in such a way as to be much more peaked than the
resonance curve of the secondary circuit considered as an isolated circuit.
As the coefficient of coupling is increased somewhat, the curve of primary
current becomes broader, as a result of a reduction in the primary current

at resonance and an increase in the primary current at frequencies

the product of the secondary current and a constant. In the immediate vicinity of
resonance the curve of voltage across this secondary capacitor therefore has very
nearly the same shape as does the curve of secondary current.

‘ The phase shift is not shown in Fig. 3-11, but varies :t 180° about the phase at the
resonant frequency. Thus the total shift in phase between input voltage and output
current as the frequency varies through resonance is 360' This is in contrast with
systems having only one tuned circuit; the total phase shift then varies over the
range 1:90", or a total of 180°.

\
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slightly of? resonance. At the same time the secondary-current peak
becomes higher and the curve of secondary current somewhat broader.

These trends continue as the coeflicient of coupling is increased until

the coupling is such that the refistance which the secondary circuit
couples into the primary at resonance is equal to the primary resistance.
This is called the critical coupling and causes the secondary current to

KIQMJ

no.0!
K1001! 

 
Kv’DU/ F05 CRITI-
CAL car/PL mm “'9'”

 
PRIMARYCURRENT

SECONDARVCURREM? 
FREQUENCY

Fm. 3-11. Curves showing variation of primary and secondary currents with fre-
quency for different coefficients of coupling when the primary and the secondary are
separately tuned to the same frequenc .

have the maximum value it can attain: The curve of secondary current
is then somewhat broader than is the resonance curve of the second-
ary circuit considered alone, and has a relatively flat top. The primary
current now has two peaks, being greater at frequencies just off resonance
than at the resonant frequency.

As the coefficient of coupling is increased beyond the critical value, the
double humps in the primary current become more prominent and the
peaks spread farther apart. The curve of secondary current now also
begins to display double humps, with the peaks becoming more pro-
nounced and spreading farther apart as the coupling increases. The
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value of the primary current at the peaks becomes smaller the greater the

coupling, but in the secondary circuit not only do the two peaks have
substantially the same height, but this height is also independent of the
coefficient of coupling provided only that the coupling is not less than the
critical value. The reason for the above behavior centers around the

way in which the coupled impedance (wMP/Z. varies with frequency.
Consider first the total primary-circuit impedance. This consists of the

actual self—impedance of the primary plus whatever impedance the

secondary circuit couples into the primary. The type of coupled imped-
ance produced by a tuned secondary has already been discussed; it is
substantially a parallel resonance curve having a shape corresponding to

the Q of the secondary circuit and an amplitude determined by the mutual
inductance. The coupled impedance is hence maximum at resonance and

is then a resistance. At frequencies below resonance the coupled imped—
ance is inductive and at frequencies above resonance it is capacitive,
as shown in Fig. 3-7.

When this coupled impedance is added to the self-impedance of the

primary circuit, the effect at resonance is to increase the effective primary
resistance above the value that would exist in the absence of the second-

ary. This causes the primary current at resonance to be reduced in all
cases by the presence of the secondary. At frequencies somewhat below
resonance the coupled impedance is largely inductive whereas the primary
self-impedance is largely capacitive. The coupled inductive reactance
then neutralizes some of the primary capacitive reactance, lowering the

primary circuit impedance and increasing the primary current. The
situation is somewhat similar for frequencies above resonance except that
now the coupled reactance is capacitive and neutralizes some of the
inductive reactance which the primary circuit otherwise has at frequencies

above resonance. Consequently, the net effect of the coupled impedance
is to lower the primary current at the resonant frequency and to raise the

current at frequencies somewhat ofi' resonance. The magnitude of this
effect depends upon the coefficient of coupling, being small when the

coupling is small. However, when the coupling is of the order of magni-
tude of the critical value or greater, the coupled impedance becomes
suflicient to be the major factor in determining the impedance of the

primary circuit. In particular, at resonance the primary current tends
to be relatively small because of the very large coupled resistance, while
there is a frequency on each side of resonance at which the coupled react;
ance exactly neutralizes the primary reactance, giving zero reactance for

the total primary circuit impedance and causing the flow of a large
primary current. This is the cause of the double-humped curves of
primary current for high couplings, such as shown in Fig. 3-11.

The curve of secondary current is determined by the secondary imped-
ance, and by the voltage induced in the secondary by the primary current.
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The induced voltage varies with frequency in almost exactly the same

way as does the primary current, since the magnitude of the induced
voltage is wMI,; and in the limited frequency range in which the reso—
nance effects take place, or changes very little. As a result of this, the

curve of secondary current has a shape that is almost exactly the product

of the shape of the curve of primary current and the shape of the reso-
nance curve of the secondary circuit. Since the latter curve is sharply

peaked, the secondary current is much more peaked than the primary
current, as is clearly evident in Fig. 3-11.

At low coefficients of coupling, the curve of secondary current is par-
ticularly sharp, being substantially the product of the resonance curves of

the primary and secondary circuits. As the coupling increases, the
primary-current curve becomes broader, thereby making the secondary

curve less sharp. At the same time, the amplitude of the secondary-
current peak increases because of the increased coupling. When the

coefficient of coupling reaches the critical value, the secondary current

has the maximum value it can attain. Under these conditions the dip in
primary current in the vicinity of resonance has a curvature that is
exactly opposite from the curvature of the resonance curve of the second-

ary circuit. The result is that the curve of secondary current now has a

very flat top in the "immediate vicinity of resonance. As the coupling is

increased beyond the critical value, the secondary—current peak splits into
two peaks, both of which have amplitudes substantially the same as the

secondaryocurrent peak at critical coupling. The separation between
these peaks increases with coupling and is substantially the same as the

separation of the peaks of primary current when the peaks are pronounced.

The voltage developed across the secondary capacitor is equal to the
reactanee of this capacitor times the secondary current; thus it can
readily be calculated once the current curve is known. For most pur-

poses, it is sufficient to assume that the curve of voltage developed across
the capacitor has the same shape as the curve of secondary current. One
is interested primarily in the behavior about resonance, and the capacitor

reactanee changes very little in the limited frequency range consequently
involved when the circuit Q’s are not too low.

The exact shapes of curves such as those of Fig. 3-11 can be calculated

with the aid of Eqs. (3-20) to (3-24). Such computations are, however,
complicated and tedious. The usual practical procedure is accordingly to

determine (1) the response at resonance, (2) the frequencies at which the
peaks of secondary response occur when this response curve has double

humps, (3) the heights of these two peaks, and (4) the response at one or
two other frequencies so chosen as to simplify the calculations. In this

way, it is possible, with a minimum of work, to obtain a good semiquanti-
tative picture of the behavior. The following nomenclature in addition
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to that of Fig. 3-11 will be used in the discussion of the quantitative
relations:

E, = voltage across secondary capacitor

E = voltage applied in series with primary
k = actual coefficient of coupling

16., = critical coefficient of coupling

Q, = Q of primary circuit
= Q of secondary circuit

At resonance, the series impedances of the primary and secondary cir-

cuits are resistances, and the response in the secondary is given by the
relation 1.2

Voltage across secondaryl
capacitor at resonance _ = _, = _‘. k (3-28)

Voltage applied in series] E VL, k’ + (l/Q,Q,)with primary

The secondary response has its maximum value when the coefficient of

coupling has a value kc such that '
1

Ian =
v0,0.

This value of coupling is called the critical coeflicient of coupling and is

the condition where the resistance that the secondary circuit couples into

the primary circuit at resonance is equal to the resistance of the primary
circuit, i.e., when (wM)’/R. =

When the coefficient of coupling equals the critical value and if Q, =_ Q.,
then the curve of secondary current (or voltage) as a function of frequency

has the maximum flatness that is possible in the vicinity of resonance.

The shape of this curve is shown in Fig. 3-12, together with the resonance

 
(3—29)

1 This follows from Eq. (3-24) by substituting

Z. = 1%., Z, = RP, E. — I./ij. - -ij.!.
to give

fl = —jwM
E RpR. + (”MP

Dividing both numerator and denominator by m'LPL. gives

-‘(M/ V_______L_nLJ)‘ ‘YMIfl-LL’

lt_z,_ R_._ +_
57; SL. LTL.

Equation (3-28) is then obtained by substituting M'/L,L. - k' and dropping the
nunus sign.

' It is to be noted that Eqs. (3-28) and ($29) are not limited to the case where
Q» ‘ 0., although the rest of the discussion in this section does assume Q, - 0..
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curve of a simple tuned circuit having the same Q as the primary or
secondary. It will be noted that the coupled circuit case has a band-
width between the 70.7 per cent response points thatis V— times as great
as for the single tuned circuit. The shapes of the two curves differ

greatly, the coupled system being flatter in the center and much deeper on
the sides.

When the coefficient of coupling exceeds the critical value, then for

Q, = (3., double humps will always occur in the secondary response

L‘—ti
Ea.inwa:
u
2a»It._Iun: 

RELATIVE FREQUENCY

Fm. 3-12. Relative response of a bandpass system provided by two identical circuits

critically coupled, together with the resonance curve of a single circuit such as usedin the bandpass system.

curve. If the coefficient of coupling is at least several times the critical

value these bumps are quite pronounced and occur at frequencies that
differ from the resonant frequency fo by approximately ikfo/Z cycles.l

When the peaks of secondary response are not pronounced, i.e., when the
actual coefficient of coupling does not greatly exceed the critical value,

then these peaks are somewhat closer together than indicated by this
simple relation [see Eq. (3-30) and Fig. 3-16].

When the circuit Q’s are equal and not too low, the peaks of the second-

ary current for k > It, will have almost exactly the same height as the
resonant peak of secondary current at critical coupling. This relation

holds irrespective of the exact location on these peaks provided only that

xAn analysis that does not contain these restrictions leads to the more precise
relation

Frequency at peak of secondary}voltageW v = (
Resonant i' uency of tuned a y,
circuits ”q \h a: k [1 -— 15—2k,(%_' + 3—9]
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the coefiicient of coupling involved is small compared with unityl and
that the Q’s are not too low.

When double peaks occur in the secondary response curve, additional
information on the shape of the response curve can be easily obtained by
taking advantage of the fact, illustrated in Fig. 3-13, that the response

equals or exceeds the response at resonance over a frequency band that is
V? times the width of the frequency hand between coupling peaks, as
calculated from Eq. (3—30).

At frequencies that are sufficiently high or low relative to the resonant

frequency to lie well on the sides of the re-. r
sponse curve, one can neglect the resistances of A *1
the primary and secondary circuits when cal-
culating the magnitude of the secondary re- VEAI
sponse. This greatly simplifies calculations

while introducing relatively little error in
magnitudes.

The Efi'ects Produced by Unequal Q’s. The . ‘ ”5°55“? _

behavior of two coupled circuits resonant at Eggnifidgmfi‘zfi'sim
the same frequency is modified in several between secondary peaks,
respects when Q, s5 0.. The secondary re- existina when tWO circuits
sponse at resonance is still given by Eq. (3-28), ”mm“ at the “m" m'. . , quency are coupled together.
and 1s max1mum when the coefficient of cou-

pling has the critical value as defined by Eq. (3-29). However, double
peaks do not now appear until the coupling is somewhat greater than the
critical value. and the magnitude of the response at the secondary peaks
when they do 'appear is less than the response with critical coupling.

Coupled Resonant Circuits Tuned to Slightly Difi‘crcnt Frequencies. Con—
sider the case of two circuits resonant at slightly different frequencies and

coupled together. When Q, = Q., the response curve of secondary cur-
rent (or voltage) has almost exactly the same shape as would be obtained
if the circuits were both tuned to the same frequency and the coefficient
of coupling wore increased to a value k... such that

2

k... = k2 + (TAO) (3.31)
where k is the actual coefficient of coupling, A is the difference between the

resonant frequencies of the primary and secondary circuits, and fa is the

frequency midway between the primary and secondary resonant fre—,
quencies. Hence detuning primary and secondary circuits slightly has

1 If the coefficient of coupling is not small compared with unity, then the relative
heights of the individual peaks of voltage developed across the secondary capacitor
will he very nearly inversely proportional to the square of the ratio of the frequencies
at which the respective peaks occur. Under these conditions the low-frequency peak
will be slightly higher than the high-frequency peak, although the average height of
the two peaks will still approximate the response with critical coupling.
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approximately the same effect on the shape of the secondary-current curve as
increasing the cacflictent of coupling when there is no detumng.

In the more general case of detuning where the circuit Q’s are not the
same, the secondary—response curve is no longer symmetrical about the
mean resonance frequency.

Shunt-fed and Shunt-loaded Coupled Circuits. In all the examples of
coupled resonant circuits considered so far, the input voltage has been
applied in series with the primary circuit. In many practical circum-
stances, however, the excitation is applied to the system as illustrated in

[DU/WI. ENI' RESISTANCE-

 

IX I_;.2 :4? R
n : [7” q”, : we I ' pl I

l \ |c 1 'E p I ‘9 EQUIVALENT | ‘PI sang: yo; m: l

' re) :
I .._

ix . ":59 Ixw) CIRCUIT WITH PARALLEL EXCITATION (b) EQUIVALENT SERIES CIRCUIT
(Assummo R »,;é.— 1

FIG. 3-14. Two coupled resonant circuits in which the primary circuit is excited by
shunt feed.

Fig. 3-140. This arrangement is analogous to the shunt-fed parallel
resonant circuit discussed in connection with Fig. 3-5c.

The shunt-fed arrangement of Fig. 3—14a can be reduced to the equiv-
alent series—fed arrangement of Fig. 3-14b by means of Thévenin’s
theorem, as explained in Sec. 3-7. Examination of the circuit of Fig.
3-141) shows that in a limited frequency range such as represented by the
region about resonance, the equivalent voltage acting in series with the
circuit is substantially constant. However, there is now an added resist»

ance R; in the primary circuit that is equal to the equivalent series
resistance that would be obtained by assuming that the resistance R is a
shunt resistance for the primary capacitance C,. The rest of the system
is unchanged.

The principal effect of exciting a system of coupled circuits by parallel
instead of series feed is accordingly to introduce some added resistance in
the primary that lowers the efiective'value of 0,. This effect will be
slight in the usual case where the resistance R is very large compared with
the reactance l/wC, of the capacitor 0,. Under these conditions, shunt
feed and series feed accordingly give essentially the same shaped curves of
secondary response as a function of frequency.

In systems involving two coupled resonant circuits, resistances are often
placed in shunt with the primary and secondary resonant circuits for the
purpose of adjusting the effective Q's of the primary and secondary cir-
cuits to desired values. Such resistances are sometimes placed across
both primary and secondary circuits, while in other cases they are used
only across the primary, or only across the secondary. An example
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where a resistance R is shunted across the secondary capacitor is shown in

Fig. 3-15. In each case, a resistance in shunt with a particular resonant
circuit of a coupled system has the same effect on that resonant circuit as

it does when this resonant circuit is isolated, instead of being part of a
coupled system. Hence a shunt resistance can be replaced by an equiv-

alent series resistance, such as R: in Fig. 3-15. The effect of a shunting
resistance is accordingly to lower the effective Q of the resonant circuit

with which it is associated, as discussed in connection with Fig. 3-5.
Bandpass Action in Two Coupled Resonant Circuits. When two

resonant circuits having Q, = Q. are tuned to the same frequency and

i“

ks' .
n, n, ma csl'

W .,

l0) CIRCUIT WITH SHUNT l0) FDUIVALENT CIRCUITRESISTANCE LOADING

Flo. 3-15. Two coupled resonant circuits in which a shunt resistance loading is used
to control secondary Q.

 

 

coupled together with critical coupling, the response characteristic of the
secondary circuit is as shown in Fig. 3-12. As compared with the
response of a simple resonant circuit with the same 70.7 per cent points,
the response of the coupled system is found to be much flatter on top,
and much steeper on the sides. Such an arrangement is often termed

a bandpass filter because to a first approximation it responds equally well
to a band of frequencies centered on the common resonant frequency,-and
rather sharply discriminates against frequencies outside of this band.
Such bandpass characteristics are particularly desirable when handling
modulated waves, because by proper adjustment of the bandwidth of the
filter, the response can be made practically the same to the carrier and to
all of the important sideband frequencies contained in the wave. In con-
trast with this, an ordinary resonant circuit has a response that is rounded

on top, as shown dotted in Fig. 3-12, and so discriminates against the
higher sideband frequencies in favor of the lower sideband frequencies
and the carrier.

The bandpass characteristic that is best for most purposes corresponds

to a coefficient of coupling equal to the critical value. For this case, still,
assuming Q, = Q., the design equations giving the required values of k
and Q to realize a given bandwidth B are1

B 1
Ic=k=—~-— Q=Q.=-_ (3-32)

‘ V5f. " k.
‘ With unequal circuit Q's the formulas will be slightly different for equivalent

results, since the curve with flattest wp now corresponds to a coefficient of coupling
greater than the critical value.
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where B =- the bandwidth between the 70.7 per cent response points,

cycles

1'. = center frequency of passband (i.e., resonant frequency of
tuned circuits)

k. = critical coefficient of coupling

Effect of Varying Q in Coupled Systems Tuned to the Same Frequency.
(Coefieient of Coupling Constant). Additional insight into the character-

istics of coupled circuits can be

gained by considering whathappens

to the secondary response curve as
the Q’s of the primary and second-

ary circuits are changed, while
keeping the coefficient of coupling
constant. The effects observed are

illustrated in Fig. 3-16 for a par-
ticular case. This example brings
out clearly the fact that as the
peaks of the response become less

pronounced, they tend to move
toward each other, and that at fre-
quencies appreciably off resonance,
the response differs only negligibly
from the response calculated on the
assumption of infinite Q (zero cir-
cuit loss).F , . .

‘ REOUENCVILINEAR SCALE) 3‘6. Generalized Coupled Cir"I'ra. 3-16. Curves of secondary response . ,
when two circuits resonant at the same cmts- Energy can be traHSferred

frequency are coupled together, showing from one circuit to another by 8.
22.23.2223; tfz‘ifietétififf‘ti an; variety of cousins nth... . in
unchanged. addition to the inductive coupling

just considered. Thus, in Fig.
3-1711 the coupling consists of an inductance L... common to the two cir-

cuits; in Fig. 3-]7b the coupling is provided by a capacitance 0'... common

to the two circuits, and in Fig. 3—17e by a capacitance C"... that connects the
two circuits involved. Also, an infinite variety of more complicated
coupling systems can be built up from the basic elements of mutual
inductance, common inductance, common capacitance, and connecting
capacitance. Simple examples of such combined couplings are shown in
Fig. 3-17d and e.

The behavior of all these coupled circuits follows the same general
character as that discussed for inductive coupling. Thus, the secondary
circuit can be considered as producing an equivalent coupled impedance

in the primary circuit while the primary circuit can be consideredas induc-
ing in the secondary a voltage that gives rise to the secondary current.
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The simplest method of analyzing these various forms of coupled
circuits is to take advantage of the fact that all of them can be reduced to

the simple coupled circuit of Fig. 3-17f, provided suitable values are
assigned to Z,, Z., and M. The rules that determine the values of these

quantities in the simple equivalent circuit are as follows:
1. The equivalent primary impedance Z; of the equivalent circuit is

the impedance that is measured across the primary terminals of the
actual circuit when the secondary circuit has been opened.

2. The secondary impedance Z. of the equivalent circuit is the imped—
ance that is measured by opening the secondary of the actual circuit and

  
la) DIRECT INDUCTIVE COUPlING (bl CAPACITIVE COUPLING lc) CAPACITIVE CWPLING

  
Id) COMBINED INDUCTIVE AND (a) COMBINED INDUCTIVE AND (f) EQUIVALENT CIRCUIT

CAPACITIVE COUPLING CAPACITIVE COUPLING

Fm. 3-17. Examples of methods whereby circuits may be coupled.

determining the impedance between these open points when the primary

is open-cirmritgid. .
3. The equivalent mutual inductance M is determined by assuming a

current I, flowing into the primary circuit. The voltage which then

appears across an open circuit in the secondary is equal to —jwMI,.
In making use of the equivalent circuit of Fig. 3—17f, it is to be remem—

bored that the values of Z," Z., and M may all vary with frequency, so
that it is generally necessary to determine a new equivalent circuit for
each frequency at which calculations are to be made.

After the actual coupled circuit has been reduced by the above pro-

i-edure to its equivalent form shown in Fig. 3-l4f, one can then apply the
formulas that have already been derived for inductively coupled circuits,

using the appropriate values M, Z., Z, as determined for the equivalent
circuit. This procedure has the advantage of using the same funda—
mental formulas to handle all types of coupling and makes it possible to

carry on the analysis in the same manner for all cases. The method is
particularly convenient in the handling of complex coupling networks
such as illustrated in Fig. 3-l7d and e.

The quantity M that appears in the equivalent circuit represents the

effective coupling that is present between the primary and secondary
Momentum Dynamics Corporation
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circuits. It is not necessarily a real mutual inductance of the inductive

type, but rather a sort of mathematical fiction that gives the equivalent
effect of whatever coupling is really present. If the actual coupling is
capacitive, the numerical value of M will be found to be negative; if the
coupling is of a complex type representing both resistive and reactive
coupling, the numerical value of M will be found to have both real and

imaginary parts. This need introduce no uncertainty, however, since
the proper procedure is to take the value of M as it comes and substitute

it with its appropriate sign and phase angle whenever M appears in the
expressions previously derived for inductively coupled circuits.

When this analysis is applied to capacitively coupled circuits, such as
those illustrated in Fig. 3-18, the results are essentially the same as for

/ ‘mLARGE CONDENSER

SMALL CONDENSER
\

l I ‘15.5 PH].

l0) (0)

Flu. 3-18. Two methods of capacitively coupling two resonant circuits.

  
inductive coupling. Thus, when primary and secondary are both tuned
to the same frequency, the secondary-current characteristic has two

humps if the coupling is large, i.e., if capacitor C... is small or (1;, large,
while there is only one peak of secondary current when the coupling is
small, i.e., when capacitor C... is large.

)ircuits having combined electromagnetic and electrostatic coupling,
such as those at d and c of Fig. 3-17, behave as ordinary coupled circuits

except that the coefficient of coupling varies with frequency. Thus, in
the case of circuit d, the circuit is capacitively coupled at low frequencies
and inductively coupled at high frequencies because the coupling com-
bination of C... in series with L... has capacitive and inductive reactance

under these respective conditions. .In between, at the resonant fre-

quency of L... and C..., there is no coupling and k = 0. The arrangement
shown at c acts similarly as a circuit with a coefficient of coupling that
varies with frequency. Circuits having combined electrostatic and
electromagnetic coupling find application where it is desired to obtain a

coefficient of coupling that varies with frequency, as is commonly the
case in tuned amplifiers and antenna-coupling circuits of radio receivers.

3-7. Thévenin’s Theorem. According to Thévcm‘n’s theorem, any linear
notworlr. containing one or more sources of voltage and having two terminals
behaves, in so far as a load impedance connected across these terminals is

concerned, as though the network and its generators were equivalent to a simple

generator having an internal impedance Z and a generated voltage E, where E
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is the voltage that appears across the terminals when no load impedance is
wnnected and Z is the impedance that is measured between the terminals when
all sources of voltage in the network are short-circm'ted.1-I

This theorem means that any network and its generators, represented

schematically by the block in Fig. 3-19a, can be replaced by the equiv-
alent circuit shown in Fig. 3-19b. The only limitation to the validity of
Thévenin’s theorem encountered in ordinary practice is that the circuit

elements of the network must be linear; i.e., the voltage developed must
always be proportional to current.

I J- 5/?

new mm [HID : gm" 2% %mu E
(a) ACTUAL ARRANGEMENT (b) EOUIVALENT ARRANGEMENT (c) EQUIVALENT ARRANGEMENT(BY NORTON'S THEOREM)

Fro. 3-19. Diagrams illustrating how Thévenin’s and Norton’s theorems can be
used to simplify a complicated network containing generators.

Thévenin’s theorem ofl'ens a very powerful means of simplifying net-

works, particularly when a load impedance is connected across the output
terminals of a complicated network. Two examples will be used to

illustrate this. First, consider the circuit of Fig. 3-10, which is redrawn
in Fig. 3-20a. If one takes the secondary capacitor C, as the load

impedance and applies Thévenin’s theorem to the network to the left of
02, the result is Fig. 3—20b, in which the equivalent generator voltage is

the voltage induced in the secondary inductance L2 when the secondary
is open-circuited, and the equivalent generator impedance consists of
the inductance L2 and the resistance R; in series with the impedance

which is coupled into L, by a secondary circuit consisting of L1 shunted by
the resistance R1. The coupled impedance produced by such a secondary
circuit has been previously considered; it is equivalent to adding capaci-
tive reactance and resistance in series. The resistance causes the effective

Q of the secondary-response curve to be reduced, while the series capaci-

1 When the sources of energy in the network are constant-current generators instead
of constant-voltage generators, the internal- impedance Z is the impedance observed
between the terminals when all constant-current generators are open-eircuited. This
is due to the fact that a constant-current generator is equivalent to an infinite voltage
source having an infinite internal impedance, so that short-circuiting the ultimate
source of voltage of the constant-current generator still leaves an infinite impedance in
the circuit.

' An alternative circuit that is also equivalent to Fig. 3—19a is given in Fig. 3—19c.
Here the network with it‘s generators is replaced by a constant current I that is
delivered to a system consisting of the source impedance Z in shunt with which is the
load impedance, where I is the output current of the network when the output termi-
nals are short-circuited, and is I - E/Z. The equivalence of the arrangements at a
and c in Fig. 3-19 is sometimes referred to as Norton’s theorem.
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tive reactance tends to raise the apparent resonant frequency by an

amount that becomes greater the higher the ratio le/Rl. This accounts
for the behavior of the curves of Fig. 3-10.

The second example is furnished by Fig. 3-l4a. This circuit may be

simplified by considering that the load is represented by the circuit to the
right of the line 22:, the generator being the voltage E acting in series with
the resistance R and the capacitance 0,. Such a generator can be
reduced immediately by Thévenin’s theorem to the form shown to the

left of the line are in Fig. 3-l-ib. Here it is to be noted that the equivalent

generator resistance R; is the series resistance equivalent to a shunt
resistance R associated with the capacitance 0,, as given by Eqs. (2-12)
and (2-13).

”I COUPLED IMPEDMVCE t! ”2
man"

”I C: fl, ,1 wL, ct

 

5 54215,.R, ‘ijI

to) ACTUAL cmcrn‘r (In EOUIVALENT SECONDARY CIRCUIT

Fm. 3-20. Application of Thévenin’s theorem to simplify and explain the behavior
of the system of Fig. 3-10, (consisting of a tuned secondary and untuned primary
circuit coupled together.

3—8. Impedance Matching. A load connected across the output termi-
nals of a network, such as represented schematically by Fig. 3-19a, can be
matched to the source of power in either of two ways. When the load

impedance has the same magnitude and.phase angle as the equivalent
generator impedance Z defined by Thévenin’s theorem (see Fig. 3-19b),
the load is said to be matched to the generator or source of power on an
image—impedance basis. The term “image” arises from the fact that the
impedances on the two sides of the output terminals are images of each

other. When the load impedance is not identical with the generator
impedance and it is desired to obtain impedance matching on an image
basis, it is then necessary to transform the load to the correct impedance
to match the generator. This transformation can be accomplished with
the aid of an appropriate network of reactances or, in simple cases, by
means of a transformer.

Alternatively, a load impedance may be matched to a source of power
in such a way as to make the power delivered to the load a maximum.1
This is accomplished by making the load impedance the conjugate of the
generator impedance as defined by Thévenin’s theorem. That is, the

load impedance must have the'same magnitude as the generator imped-

ance, but the phase angle of the load is the negative of the phase angle of
the generator impedance. This method of matching is shown schemat-

' The power delivered to the load under these conditions is termed the available
power of the power source.

Momentum Dynamics Corporation
Exhibit 1013

Page 079



Momentum Dynamics Corporation 
Exhibit 1013 

Page 080

Can. 3] PROBLEMS AND EXERCISES 77

ically in Fig. 3-21. It will be noted that the reactive component of the

load is then in series resonance with the reactive component of the gen-
erator impedance; i.e., the load reactance is the correct value to "tune

out” the generator reactance. The resistance components of the load

and generator impedances are then matched on an image-impedance
basis. Such impedance matching to obtain maximum power delivered to
the load is a common operation in communication circuits. It is carried
out by transforming the equivalent series resistance of the load to a value

equal to the resistance component

of the generator impedance by the 1'55””
use of suitable networks and trans- [me-mm

formers, and then adding reactance n‘ m, 
to the load as required to resonate
with the generator reactance. 'mvrmron wPEDA/vc:

It will be noted that, when the “0- 3'21-_L°“d impedance m'fWhed ‘9generator in such a way as to give main-
generator impedance is resistive, mum power in the load.
the conditions corresponding to
matching on an image-impedance basis are identical with those corre-

sponding to matching for maximum power output delivered to the load.
Otherwise, the two conditions are not the same, and matching on an

image-impedance basis then does not result in maximum possible power
being delivered to the load, although it is often still used to maintain
appropriate impedance relations in a system of netwurks.

PROBLEMS AND EXERCISES

8-1. The coil of Fig. 2—16 is tuned to resonance at 1000 kc by a capacitor having a
power factor of 0.00]. What is the circuit Q?

34. In Prob. 13-], what tuning capacitance is required?
3-3. A variable capacitor having a maximum capacitance of 350 mini and a mininium

capacitance of 20 uni is used for tuning in a broadcast receiver. The coil and asso-
ciated wiring have a distributed capacitance of 20 mil.

a. What size inductance coil is required to make the lowest frequency 530 kc?
b. Calculate the exact tuning range with the coil selected.
3-4. A series circuit is resonant at 800 kc and has an inductance of ”‘10 uh and a

circuit 0 of 75. Calculate and plot the magnitude of the current that flows when
I volt is applied to the circuit, carrying the curves out to 40 kc on each side of reso-
nance. In making these calculations use the working rules and the universal reso-
nance curve in the range near resonance and neglect the circuit resistance when
calculating points too far off resonance to be within the range of the universal reso-nnnce curve.

8-5. In l‘roh. 3-4 calculate the exact response at 40 kc above resonance. taking into
account the circuit resistance, and compare the results with those obtained when the
circuit resistance is neglected.

8-6. Assume that a series resonant circuit employs the coil of Fig. 2-16, and that
the timing capacitor has negligible losses.

(1. Calculate and plot from 500 to 1500 kc the width of the frequency band for
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which the mood circuit response is at least 70.7 per cent of the response at resonance,

: 'o of resonant fmqufinGY- ,as; aging; the ”sum obtained in (a) with respect to the reception of broadcast
signals having sideband frequencies extending up to 5000 cycles on 'each side of the
carrier frequency. Consider both the uniformity pf response to the different sideband
frequencies, and the ability of the circuit to discriminate agunst undesired signals 0‘iencies.

Midi-infra series circuit that is resonant at 1 150 kc it is'found that when the frequency
differs from resonance by 15 kc the current drops to 0.53 of the current at resonance,
for the same applied voltage. From this information determine the Q of the circuit.3-8. A voltage of constant but unknown value is applied to a series circuit resonant

at the frequency of this voltage. The circuit current is observed to be Io. A known
resistance It, is then added to the circuit, and it is found that, with the same applied
voltage as before, the current is now reduced to I.. Derive a formula for the circuit
resistance in terms of lo, I i, and 113..

3-9. In variable capacitors used to tune the resonant circuits of radio receivers,
it is customary to shape the plates so that the capacitance varies more slowly with
angle of rotation at small capacitance settings than at high capacitance settings.
Explain why this makes the resonant frequency more nearly linear with respect to the
angle of rotation than if semicircular plates were employed.

3—10. What is the highest efl‘ective Q that a tuned circuit may have when it must
respond to a band of frequencies 10,000 cycles wide (5000-cycle sideband frequencies)
with a response always at least 70.7 per cent of the response at resonance, assuming
carrier frequencies of 50, 500, 5000, and 50,000 kc?

8-11. a. A tuned circuit having an inductance of 150 ah and a Q of 70 is adjusted
to resonance at 1100 he. If the circuit is connected for parallel resonance, calculate
and plot the magnitude of the parallel impedance as a function of frequency out to
60 kc on each side of resonance. Use the working rules and the universal resonance
curve in the region about resonance, and neglect the circuit resistance when calculating
the impedance at frequencies too far off resonance to be within range of the universalresonance curve.

b. Repeat (a) for a. circuit Q of 40, and pldt the results on the same axes as theresults of (a).

8-12. Calculate and plot as a function of frequency the parallel impedance at
resonance when the coil of Fig. 216 is tuned with a capacitor of negligible losses and
when the resonant frequency is varied from 500 to 1500 kc.

3-18. A tuned circuit is required to have a parallel impedance of 6000 ohms and a
Q of 12. If the resonant frequency is 300 kc determine the inductance, capacitance,
and resistance that the circuit must have.

8-14. Using the same tuned circuit as in Prob. 3-4, but connected for parallel
resonance, calculate and plot curves as a function of frequency from 760 to 840 he for
(a) magnitude and phase angle of parallel impedance; (b) line current, and current in
each hraneh, when the applied potential is 10 volts (assume that all the circuit resist-
anre is in the inductive branch); and (c) reactance and resistance components of theimpedance of (a).

311? The coil of Fig. 2-16 is tuned to resonance at 1000 kc with a capacitor having
“flfillzlble losses. Transform this circuit to the form shown in the right-hand part ofFig. 3-5a by determining R2.

3:15- Th? f-imfit 0‘ F18. 2-16 is tuned to resonance at 1000 kc with a capacitor
1|“an negllgible losses, and is then shunted by a resistance R; of 100,000 ohms.

_a. Determine the equivalent shunt resistance R: fol- such an arrangement (see
6. Calculate the Q of this system.
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8-17. It a parallel resonant circuit is shunted by a resistance It; and if the parallel
resonant impedance of the unshunted circuit is Ito, prove that the shunt resistance It;
reduces the equivalent Q of the circuit by the factor [11/ (It; + It").

3-18. In a low-Q parallel circuit in which the losses are all in the inductive branch.
prove that, when the capacitance is varied, the capacitance that makes the parallel
circuit impedance have unity power factor for a given frequency also makes this
impedance have maximum magnitude at this same frequency.

8-19. A particular coil has an inductance of 180 uh at 1 kc and an apparent induct-
ance of 200 ah at 1400 kc. Determine the distributed capacitance of the coil.

3-20. Primary and secondary coils have inductances of 75 and 300 ph. respectively.
and 1 volt is applied to the primary circuit. Assuming the resistances of the coils
are negligible, calculate the voltage induced in the secondary as a function of coeffi—
cient of coupling from k - 0 to la =- 1.0.

8-21. Draw an equivalent transformer circuit for the coils of Prob. 3-20, for the
case where the mutual inductance is 50 ab.

3-22. (1. Explain the effect of a short-circuited turn upon the inductance and 0
observed at the terminals of a coil, using coupled-circuit theory.

b. Indicate qualitatively the differences that would be expected if the short-circuited
turn were the end turn of a single-layer solenoid, as in Fig. 2-1, as against being a
turn near the center.

3-28. Two identical coils each having Q = 100 and an inductance of 200 ph are
coupled together with a mutual inductance of 50 uh. 1f the secondary coil is short-
circuited, calculate (a) the coupled resistance and coupled rcactnncc at a frequency of
600 kc, (b) the total resistance and reactancc of the primary circuit, and (c) the effec-
tive Q of the primary circuit including effect of the coupled impedance.

3-24. Describe a procedure for experimentally determining the coefficient of
coupling between a coil and its shield can, assuming that the shield has negligible
resistance.

3-25. Derive the formula in the second footnote on page ('11 for the equivalent
primary-circuit inductance in the presence of an inductive secondary with zero losses.

8-26. An air-cored coil is placed near a brass panel. Describe in a qualitative
way the effect that copper plating this panel will have on the inductance and Q
observed at the noil terminals.

3-27. The coil of Fig. 2-16 is coupled to a primary coil with a mutual inductance of
50 uh. If the secondary coil is tuned to resonance by means of a capacitor having
negligible loss, calculate and plot the coupled impedance at the resonant frequency
of the secondary as this resonant frequency is varied from 500 to 1500 kc.

3-28. The coil of Fig. 2-16 is coupled to a primary circuit having an inductance of
75 uh, and is tuned to resonance at 1000 kc with a capacitor having negligible losses.
Calculate the impedance coupled into the primary circuit at 1000 kc as a function of
coefficient of coupling from k = 0 to k = 1.0.

3-29. In the circuit of Fig. 3-8b, what general efl‘cct is produced on the phase and
magnitude of the coupled impedance at the resonant frequency of the secondary by
shunting the secondary capacitor C. by a resistance R2?

3-30. Explain why in Fin. 3-1] a flat-topped secondary-circuit curve (like k = 0.01)
can be obtained only if the primary-current curve has pronounced double peaks.

3-31. Derive Eq. (3-20) from Eq. (3-28). ’
3-32. Two identical circuits resonant at 1000 kc, having Q = 80 and inductances of

140 ph, are coupled together.
(1. Calculate the critical coefficient of coupling.
b. Calculate and plot the secondary current at the resonant frequency for 1 volt

applied to the primary, as the mutual inductance is varied from zero to twice the
critical value.
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8-33. The coupling between the circuits of Prob. 3:32.is adiusted to malts the
coefficient of coupling have a value 0.03. and 1 volt is applied 1n series with the primary.

a What will be the approximate frequencies at which the secondary-current peaks

will occur? . d ?b. What will be the approximate height of these peaks of secon ary current
Assume the two peaks have equal heights.

c. What will be the secondary current at the resonant frequency?
d. Ovcr what frequency range will the secondary response equal or exceed the

secondary response at resonance? .
9. With the information obtained above, sketch the approximate shape of the

secondary—current curve as a function of frequency. .
8-84. The circuits of Prob. 3—32 are coupled with a coefficient of coupling of 0.].

Determine the frequencies at which the secondary-current peaks occur, and give the
approximate ratio of voltages across the secondary at frequencies corresponding to

the low- and high-frequency peaks. .
3-85. The two circuits of Prob. 3-32 are coupled with a mutual inductance of

2.3 ”has a 0.02).

a. Calculate and plot the resistance and reactance components of the coupled
impedance out to 40 kc on each side of resonance.

0. Calculate and plot the resistance and reactance components of the primary
circuit when the secondary is removed.

1:. Add (a) and (b) to obtain the curve of total primary-circuit resistance and
rcartuncc, and convert the results into curves giving the magnitude and phase of the
total primary impedance in the prcscnce of the secondary.

3-86. If, in l‘roh. 3—35, the mutual inductance had a value of I ah, then to what
frequencies would it be necessary to tune the primary and secondary circuits in order
to obtain the same shape of secondary-response curve as is actually obtained for
the conditions given in Prob. 3-35?

3—37. In a shunt-iced circuit such as illustrated in Fig. 3-14, the tuned circuits are
the same as in l’roh, 3-32, and the shunt—feed resistance It is 100,000 ohms. What is
the equivalent primary Q under these conditions?

3-38. The two resonant circuits in Fig. 3-15 are the same as in Prob. 3-32. What
value must II’ have to make the effective Q of the secondary equal to 40?

8-39. A particular bandpass filter is to be used to handle a wave in which the highest
modulation frequency is 4000 cycles. The carrier frequency of the wave is 456 kc.
if the primary and secondary inductances are both 2 mh and if it is desired just
barely to avoid double humps in the response curve, specify the proper coefficient of
coupling and the proper circuit Q’s, assuming equal primary and secondary Q’s.

3-40. Two idvntical tuned circuits are used in a shunt-feed bandpass arrangement.
The circuits are resonant at 450 kc, have inductances of 2.0 mh. and Q's of 80. Th"
shunt—iced I‘I‘Hlbfallt'l‘ has a. value of 300.000 ohms. A bandwidth between 70.7
pcr cent rcspousc points of 30 kc is desired.

a. Calculate required values of circuit Q's, assuming Q, = 0..
b. Determine the resistance that must be shunted across the secondary capacitor

to make the effective 0 of the secondary circuit have the required value.

. 8-41. According to Fig. 3-16 the response at resonance will increase as the Q is
increased while leavmg the coefficient of coupling unchanged.

a. Demonstrate that this result is predich by Eq. (3-28).
b. Determine the ratio of response at resonance for zero circuit losses to the teapot!”

for I: - 0.0] when the circuit losses make I: - 0.01 correspond to critical coupling-
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8-42. Calculate the coefficient of coupling in the circuit of Fig. 3-185 when
0, -c. ~100auf,andCI_-1.5nuf.

8-43. Signals in the frequency range of 550 to 1500 kc are to he handled by means
of a bandpass filter. If the circuits are assumed to have Q - 100 over this frequency
range, and if the adjustment is such that k - 0.01 at 1000 kc, discuss how the width
and shape of the passband will vary with resonant frequency when the tuning is
obtained by varying the primary and secondary capacitors simultaneously and when
the coupling is (a) inductive as shown at Fig. 2-8b, and (b) capacitive as shown at
Fig. 2-8c. Assume that the circuit elements that provide the coupling do not change
as the capacitors are varied. Illustrate the discussion with the aid of sketches showing
in a general way the relative character of the response curves to he expected at 550,
1000, and 1500 kc for each type of coupling.

8-“. Explain how the magnitudes of the Thévcnin-theorem equivalent voltage
and impedance for a complex network can be determined experimentally from an
open- and short-circuit test at the output terminals of the network, using only a
voltmeter and an ammcter.

3-45. In Fig. 3-20 (also Fig. 3-10) the secondary circuit has an inductance of 150 uh,
and is resonant at 1000 kc. If R; =- 10,000, L1 =- 150 ah, and M - 100 uh, calculate
the frequency at which the peak of secondary response occurs.

3-46. A primary circuit has an inductance of l mh and a resistance of 150 ohms
connected in series. A secondary coil is coupled to the primary coil and delivers
power to a load consisting of the secondary coil, a resistance of 50 ohms, and a tuning
capacitance, all in series. If the impedance that the secondary circuit couples into
the primary circuit is considered to be the load impedance of the primary circuit,
determine the mutual inductance required between the two circuits and the reactanee
that the secondary circuit must have it' the load is to match the generator on a maxi-
mum-power basis.

3-47. (1. In order to demonstrate impedance matching for maximum-power transfer,
write the equation of power P delivered to a rheostat as a function of its resistance R
when connected to a d-c generator of internal resistance It. and open-circuit voltage E..
Show that this equation has a maximum for R - R..

b. Plot a graph of the equation of (a), showing P/Pm. versus R/R., where P is the
actual power when the load resistance is R, and Pm... is the power when It '= R.. By
how many decibels is the power reduced for the following cases of mismatch:
(l) R - 0.512. and (2) R = 212.?
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CHAPTER 4

TRANSMISSION LINES

4-1. Voltage and Current Relations on Radio-frequency Transmission
Lines in Terms of Traveling Waves.1 Transmission lines find many
uses in radio work. They are employed, not only to transmit energy, but
also as resonant circuits at very high frequencies, as measuring devices at

high frequencies, as aids to obtain

impedance matching, etc.

Basic Transmission-line Equations.

Consider the voltage and current rela-

tions that exist in a. very short length
dl of the transmission line shown in

‘ , , _ “7‘” E”? Fig. 4-1. In this short distance the

5:?"filzirg‘flxm'sfim' “"0' Show“ voltage between the wires changes an
‘ amount (M as a result of the voltage

drop produced by the line current 1 flowing through the resistance R dl

and rem-tanee job (ll of the length dl. Likewise, the current changes a

small amount dl in the length as a result of- the flow of current between

the wires through the capacitance (7 (It and conductance (1’ dl caused by the
voltage that exists between these wires. Referring to Fig. 4-1, one can

accordingly write the equations

 

(113’ = I X (impedance of length dl)
= [(11 + jar/J) dl

d] = E X (admittance of length «11)
= E(G + ij) dt'

‘ This material on transmission lines is,a review and summary of those concepts and
relations that are. most widely used in radio work. It presupposes at least a little
previous familiarity with the subject, and therefore should not be regarded as a self-
supporting presentation of transmission-line theory. The reader desiring to gain a

comprehensive understanding of transmission lines, or desiring the derivation of the
equations made use of here, should consult one of the several excellent textbooks that

are available on the subject, for example, H. H. Skilling, “Electric Transmission
kroes,’ Mchw-Hill Book Company, Inc., New York, 1951; Walter C. Johnson,

Transmission Lines and Networks,” MeGraw-Hill Book Company, Inc., New York,
1950. More limited treatments of transmission lines, typically of chapter length;
are tobe foundin most textbooks on communication engineering; these are adequate
as an introduction to the material presented here.

82
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Rearranging, dE
a = (R + ij)I = 21 (4.1a)

fig == (6' + ij’)E = YE (4.11;)

where E = voltage across line at distance I from receiving end

I = current in line at distance 1 from receiving end
1 = distance measured from load end of line

1?, = resistance per unit length, ohms

L = inductance per unit length, henrys
C = capacitance per unit length, farads
G = conductance per unit length, mhos

Z = (R + ij) = line series impedance per unit length, ohms
Y = (G' + ij’) = line shunt admittance per unit length, mhos

w/2-ir = frequency, cycles

Simultaneous solution of Eq. (4-1) gives1
2

gal—:3 = ZYE (4—2a)
!

‘57,],— = ZYI (4.21;)
Equations (4-2a) and (4—26) are not independent of each other, since they
are related through Eqs. (4-1a) or (4-1b).

Equations (4-2a) and (4-2b) are the standard differential equations of
wave propagation and have solutions of the form

E = lilo/7:“ + Eat—VT“ (4.3a)
I = Lev"! + lat—ml - (4-3b)

where E, E1, 1;, and Ia are constants of integration whose values are

determined by the boundary conditions, i.e., by the load impedance and
the magnitude of the voltage applied to the system. Although four
constants appear in Eqs. (4—3), actually only two of them are independent
since it can be readily shown that2

 

E1 _ E1
1 = TZ—f? — Z0 (4-40.)

_ "E3 = "Ea
I” " «277 ‘27 “'4'”

‘ These results are obtained by difierentiating Eq. (4-1a), and then substituting
l‘lq. (4—lb) to eliminate the resulting d1Ml. This gives

d'E (1!

Equation (4—2b) is obtained in an analogous manner.
' These relations are obtained by substituting Eq. (4-3a) in Eq. (ti-la), and then

comparing the result with Eq. (4-3b).
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Here

(4-5)

The final solution of the differential Eqs. (4—1a) and (It-lb) of the trans-
mission line can accordingly be written as

E [vim/571+ L's-«’2?! = E’ + E” (4—6a)

“l. 9/er {'71. . "/2“ = I’ + I” (4-6b)
\/Z/ Y \/Z/Y

In these equations Zc = VZ/Y is termed the characteristic impedance
of the line. In the case of radio-frequency lines, 2.. can nearly always
be assumed to be a pure resistance, as discussed on page 88.

The quantity VZ Y is called the propagation constant of the line. It is
a complex quantity, having a real part or called the attemtcation constant
and an imaginary part B termed the phase constant. That is

x/ZY’ = a +J'B (4-7)

4-2. Interpretation of Transmission—line Equations in Terms of
Traveling Waves. The voltage and current existing on a transmission
line as given by Eqs. (4-6) can be conveniently expressed as the sum of

the voltages and currents of two waves. One of these waves can be
regarded as traveling toward the receiving or load end of the line, and is
called the incident wave because it is incident upon the load. The second
wave can be thought of as traveling from the load toward the generator
end of the line; it is termed the reflected wave, and is generated at the load
by reflection of the incident wave.’ These two waves are identical in
nature except for consequences arising from their different directions oftravel.

The Incident Wave. The incident wave consists of the voltage com-
ponent E' of Eq. (-i-(ia) associated with the current component I’ of Eq.
(4-61)). For such a wave it follows that everywhere on the line'7!

7‘7 = [to (4-8)

 

The magnitude IE’l of the incident wave becomes larger as the distance
I from the loud increases, according to the relation

W: = Ina-em = lExle'“ (4'9)
In this equation El is the vector value of the voltage of the incident wave
at the load end of the line, and a is the attenuation constant,1 as defined

1 The unit of a in liq. (4-9) is the nepcr. In discussing attenuation of lines, values
of a (or of at) arc, however, frequently described In decibels. The relation betweenncpcrs and decibels is

Attenuation in decibels = 8.6860: (4'90)
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by Eq. (4-7). The quantity al, the total attenuation of the line, is com—
monly called simply the line attenuation.

The phase of the incident wave advances fl radians per unit distance

from the load, where )3 is the phase constant as defined by Eq. (4-7).
Hence the phase position of the incident wave at a distance I from the
load leads the phase position at the load by Bl radians.

The incident wave on the transmission line can therefore be described

as a voltage accompanied by a current that is everywhere in phase with,

___a__.i.__i_____i__.i__i::iFm —J
amtmran 5; Er 5: 5d 5c 50 En 5';

”T—l—‘l—“T—‘j—‘T—T—j
(a) TRANSMISSION LINE

  
ID) VOLTAGE 0F INCIDENT WAVE (t‘l VOLTAGE 0F REFLECTED WAVE

 
7 r 7 e 7 a H c a a(d) VOLTAGE DISTRIBUTIONS FOR UNITY REFLECTION‘AT LOAD

Fm. 4-2. Diagrams illustrating behavior of the voltage of the incident and reflected
waves on a transmission line. The case shown assumes that the reflection coefficient
at the load is unity, and that the line attenuation is only moderate. The clock dia-
grams show magnitude and phase of the voltage at increasing values of distance
from the load.

and proportional to, the voltage, with the voltage and hence current
decreasing exponentially in magnitude and dropping back uniformly in

phase as the load is approached. Such a distribution is illustrated in
Fig. 4-2, and can be represented by the equations

E’ = E‘e(a+ifl)l (4-100)I

I’ = 2E: = I}; etc-+13): (4-10b)
The incident Wave is said to travel toward the load because it gets

smaller as the load is approached and because its phase at a distance from

the generator corresponds to the phase that existed at the generator at an
earlier time proportional to distance. These are properties of a wave

propagating away from a source. The velocity of propagation, called
the phase velocity, is discussed below in connection with Eq. (4-19b).
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The Reflected Wave. The reflected wave is identical with the incident,
wave except that it is traveling toward the generator. The reflected
wave thus consists of the component voltage E’’ of Eq. (4-6a) associated
with a current component 1” such that everywhere on the km

E"

777

This differs from Eq. (4-8) only by the negative sign, which arises from
the fact that the current in the reflected wave travels toward the gen-
erator, whereas the current in the incident wave travels toward the load.

The magnitude lEaI of the reflected wave becomes smaller as the ‘wave
travels away from the receiver (i.e., as 1 increases) according to the
relation

= —-Z0 (4-11)

l Eul = IE:E“"""”'| = |E'.le"' (4—12)

Here E, is the vector value of the reflected wave at the load. Equation

(4-12) is similar to Eq. (4-9) except for the negative sign in the exponent;
this denotes a decrease in magnitude with increasing distance 1 from the
receiver.

The phase of the reflected wave drops back 5 radians for each unit of
distance that the wave travels toward the generator. Thus the reflected
wave at a distance I from the load lags the phase position at the load by
Bl radians.

As a result of these properties, the reflected wave on the transmission
line can he described as a voltage accompanied by a current proportional
to the voltage and flowing away from the load, with the voltage, and hence

current, decreasing exponentially in magnitude and dropping back uni-
formly in phase as the distance from the load increases. Such a dis-

tribution is illustrated in Fig. 4-2, and can be represented by the equations

Eu = Earn-Han (4-130)

I" = __ E: = __ E” 02+”)! 4-1317)Zo “2—0 F (

Relation of Incident and Reflected Waves—Reflection Coeficient. The
reflected wave is generated at the load as a result of reflection of the inci-

dent wave by the load impedance. This reflection is of such a character
as simultaneouv’y to meet the following conditions: (1) The voltage and
current of the incident wave at the load must satisfy Eq. (4-8); (2) the
voltage and current of the reflected wave at the load must satisfy Eq.
(4-11); (3) the load voltage EL is the sum of the voltages of the incident
and reflected waves at the load, that is, EL ? E; + E,; (4) the load cur-
rent I1. is the sum of the currents of the incident and reflected waves at the
103d» that is: In = I: + 1:; and 5 the vectorr '
load impedance Z5. ( ) atio EL/Ir. must equal the
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The vector ratio Ez/Ej, of the voltage of the reflected wave to the

voltage of the incident wave at the load is termed the reflection coefiicient
of the load. Simultaneous solution of the above five relations leads to the

result E /'. . _, ___'_3_(Z:.Zn)-1
Reflection coeflieient — p - E1 — “(ZL/Zo)+ 1 (4-14)

The reflection coefficient has both magnitude and phase, and so is a vector
quantity. Although Eq. (4-14) is expressed in terms of the situation at
the load, the ratio E”/E’ of the voltages of the reflected and incident
waves at a distance l from the load can be termed the reflection coefficient

at the point 1. It will be noted that when a = 0 (i.e., zero losses on the

line), the reflection coefiicient everywhere has the same magnitude, and

equals the reflection coeflicient of the load. However, when a 7! 0, then
the reflected wave becomes smaller and the incident wave larger with
increasing distance from the load, causing lpl to decrease correspondingly.
The quantitative relation is

Inol = hale—“(“4” (4—15)

where lpal and Ipy' are the magnitudes of the reflection coefficients at dis-
tances L. and lb, respectively, from the load.

The relation between the load voltage and current and the voltages of
the incident and reflected waves at the load can be deduced from the

above tive required conditions. It is

 

  

,_ 1,. _ EL+ILzoL1—1+p—( 2 ) (vi-16a)
E —— I Z -

E2 = [7131 = {Ti—"p- EL = ( L _§__L 0) (4.-16b)
The corresponding currents are given by Eqs. (4-8) and (4-11).

Line Voltage and Current. The actual voltage and current existing on
a transmission line are the sum of the voltages and currents, respectively,

of the incident and reflected waves, as given by Eqs. (4-6), with the

values for E1 and E2 defined as in Eqs. (4-16).l Although the equations
of the transmission line appear complicated, the character of the voltage

and current distributions that they lead to under different conditions can

be readily understood with the aid of the typical examples considered in
Sec. 4-4.

4-3. Transmission-line Constants. The electrical properties’ of a

transmission line are determined by the inductance L, capacitance C,

1This result can also be written in an equivalent form in terms of hyperbolic
functions:

E - El, cosh (a +jfl)l + 11.20 sinh (a +jfl)l (4-17a)

I - IL cosh (or +15): + 1%: sinh (a +jfl)l (4—175)
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series resistance It, and shunt conductance G, per unit length of line.
The inductance and capacitance can be calculated by the usual formulas
for transmission lines, except that at radio frequenmes there are negligible
magnetic-flux linkages inside the conductor as a result of skin effect; this
means that one should omit the small term in the low-frequency induct-
ance formulas that does not involve the dimensions. The series resist-
ance of radio—frequency lines is controlled by skin effect, and so is propor-
tional to the square root of the frequency. The shunt conductance is
determined by the dielectric loss. With air insulation the shunt con-
ductance is therefore negligible, but with solid dielectric such as used in
twisted-pair and coaxial cables, the shunt conductance will be propor-
tional to the product of frequency, power factor, and dielectric constant.

The electrical properties of the transmission line enter into the equa-
tions of the line through the characteristic impedance Zn and the propaga-

tion constant V77 as defined by Eqs. (4-5) and (4—7). At radio fre-

quencies it is nearly always permissible to assume that wL > > R, and
«:0 > > 0'. To the extent that this is true, one can rewrite Eqs. (4-5) and

(4—7) as follows.

J21; (4—18a)
_ R 0.2.» _

a - m 2 (4 18b)
5 = 0’ VLC (4-180)

The characteristic impedance 20 is the ratio of voltage to current in an
individual wave [see Eqs. (4-8) and'(4-l 1)]; it is also the impedance of a

line that is infinitely long or the impedance of a finite length of line when
2,. = Z0. It will be noted that at radio frequencies the characteristic

impedance is a resistance that is independent of frequency. Typical
values for the characteristic impedance are of the order of 200 to 800

ohms for two-wire lines with air insulation, and 20 to 100 ohms for
coaxial cables.

The attenuation constant of radio-frequency lines as given by Eq. (4—7)
increases with frequency; this follows from Eq. (4-18b), and the fact that
at high frequencies the series resistance and shunt conductance are pro-
portional to the square root and the first power of frequency, respectively.
With air insulatien the conductance G’ is negligible, and the attenuation is
due almoet entirely to the skin-effect resistance of the conductors. How—

ever, in lines possessing solid dielectric. such as twisted-pair and many
coaxial cables, the situation is more involved. Conductor resistance loss

is then responsible for most of the attenuation at low frequencies, while
the dielectric loss is the cause of most of the attenuation when the fre-
quency is sufficiently high.

The phase constant B of a radio-frequency line is seen from Eq. (4-186)
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to be proportional to frequency, and to the square root of the product LC
of the line inductance and capacitance, but is independent of line resist-
ance or conductance. The use of dielectric insulation, as is common in
coaxial cables, increases the capacitance of the line, and thereby makes
5 larger in proportion to V]? where k is the dielectric constant of the
insulation.

Wavelength and Phase Velocity. The distance A that a wave must travel
along the line in order for the total phase shift to be 2:- radians is defined
as the wavelength A of the line. Thus, since 5)» = 2m,

x = 21 (4—1941)fl

In the case of radio-frequency lines with air dielectric, A approximates the
free-space wavelength of a radio wave of the same frequency. In the
case of cables with solid dielectric having a dielectric constant It, the
wavelength is very closely the free—space wavelength divided by «It.

A wavelength x at a frequency f corresponds to a velocity v, =- 3%.
This is termed the phase velocity of the line, i.e.,

Phase velocity = n = 2% (4.1912)
In radio-frequency lines having air dielectric, the phase velocity approxi—
mates very closely the velocity of light. In lines with solid-dielectric
insulation, the phase velocity is the velocity of light divided by the square
root of the dielectric constant of the insulation.

4—4. Examples of Voltage and Current Distributions on Transmission
Lines. The various ways in which the voltage and current may be dis-
tributed along a transmission line can be understood by considering in
detail a number of special cases. In the discussion of these examples to
follow, it is assumed that the attenuation constant a is small; this is done
in order to simplify the phenomena involved. The modifications intro-
duced when the attenuation constant is not small are discussed in Sec. 4—5.

Tmnmissz'on Line with Open—circuited Load. When the load immd-
ance is infinite, Eq. (4-14) shows that the coefficient of reflection will be

1/_0. Under these conditions the incident and reflected waves will have

equal magnitudes at the load, and the reflection will be such that the
voltages of the incident and reflected waves have the same phase. As a
result, the voltages of the two waves add arithmetically so that at the load
E1 = E: = E's/2. Under these conditions it follows from Eqs. (4-8)
and (4—11) that the currents of the two waves are equal in magnitude but
opposite in phase; they thus add up to zero load current, as must be the
case if the load is open-circuited.

Consider now how these two waves behave as the distance I from the

load increases. The incident wave advances in phase fl radians per unit
length, while the reflected wave lags correspondingly; at the same time
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magnitudes do not change greatly when the attenuation constant a is
small. The vector sum of the voltages of the two waves is then less than
the arithmetic sum, as illustrated in Fig. 4-3a, forl = Vs. The tend-

ency continues until the distance to the load becomes exactly a quarter
wavelength, i.e., until 13! = 1r/2. The incident wave has then advanced

90° from its phase position at the load, while the reflected wave has
dropped back a similar amount. The line voltage at this pomt is thus the

arithmetic difierence of the voltages of the two waves, as shown in Fig.
4-3a, for l = V4, and it will be quite small if the attenuation is small.

The resultant voltage will not be zero, however, because some attenuation

will always be present, and this causes the incident wave to be larger and
the reflected wave smaller at the quarter-wave length point than at the
load, where the amplitudes are exactly the same.

As the distance to the load increases to a value greater than a quarter
wavelength, the phase of the incident wave continues to advance, while
that of the reflected wave continues to lag. As a consequence, the volt-
ages of the two waves depart increasingly from the condition of phase
opposition existing at the quarter-wavelength point, and give a resultant
value that becomes larger with increasing distance. This tendency con-
tinues until the distance from the load is a half wavelength (that is,
61 = 1r); at this point the phases of the two waves have respectively
advanced, and retarded, by 180°. The result is that the voltages now
have the same relative phase relation with respect to each other as
existed at the load, and so add arithmetically as at the load to give a large
resultant line voltage. At greater distances than a half wavelength the
cycle starts to repeat, as illustrated in Figs. 4—341 and 4-411.

The voltage distribution on the open-eircuited transmission line that
results from this process is shown in Figs. 4—3a and 4-411. It is charac-
terized by voltage maxima at points that are even multiples of a quarter
wavelength distant from the load, and by deep voltage minima at points
that are odd multiples of a quarter wavelength from the load.

The current distribution associated with this voltage is also illustrated
in Fig. 4-4a. The current distribution has minima where the voltage
has maxima, and vice versa. This arises from the fact that the current
of the reflected wave has the opposite phase from the reflected voltage
[see Eq. (4—11)]. As a result. the currents in the two waves add where

:15:voltages sub! ract, and subtract to give a minimum where the voltages
It will be noted that the variations in both the voltage and current dis-

tributions repeat their general character each half wavelength. This is
characteristic of all distributions on transmission lines.

Transmission Line with Short-circuited Load. When the load end of
the line is short-circuited, that is, Z, = 0, reference to Eq. (4-14) shows
that the reflection coefficient has the value -—1.0/0° = 1.0/ 180°. As in
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FIG. 4-3. Vector diagrams showing manner in which the incident and-reflected waves
combined to produce a voltage distribution on the transmission hne. The cases
shown correspond to a reflection in which the phase of the \{oltage 18 unchanged by
reflection; it is also assumed that the attenuation of the line 13 quite small.
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amplitude of the incident wave.

TRANSMISSION LINES [Glam 4

uited case, the reflected wave has an amplitude equal to the
However, the reflection now takes place

with reversal in phase of the voltage, and without change in phase of the
current. Th

:r‘T\ -! ifT‘li'aI, I & I
In) OPEN-CIRCUITED LOAD LOAD
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lb) LOAD IMPEDANCE-3t, LOAD

(E) LOAD IMPEDANCE-la
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Ere._H. Types of voltage and current
distributions produced on a transmis-
sion line by different load impedances.
It is assumed that the transmission line
has low attenuation, and a characteris-
tic impedance that is resistive.

e result is that the current in each individual wave at the
load is half of the load current, while

the voltages in the two waves add up
at the load to a resultant of zero volt-

age, as obviously is required across a
short circuit.

If one now examines the situation

as the distance from the load in-

creases, the incident wave advances
in phase while the reflected wave lags
correspondingly, exactly as in the
case of the open—circuited load.
However, since it is now the currents
that add at the load end of the line

and the voltages that subtract, one
obtains the distribution of voltage
and current illustrated in Fig. 4.41:.

This differs from the corresponding
distributions of the open-circuited

load case only in that voltage and
current are interchanged. That is,
with the short-circuited load the

voltage on the line goes through
minima at distances from the load

that are even multiples of a quarter

wavelength, and through maxima at
distances that are odd multiples of a

quarter wavelength. As before, the
positions of the current maxima cor-
respond to the voltage minima, and
vice versa.

Characteristic Impedance Load.
When the load impedance is equal to the characteristic impedance, the
reflection coefficient is zero; i.e., there is no reflected wave. Under these
conditions the voltage and current both increase exponentially with
increasing distance from the load, as illustrated in Fig. 4—46.

. The physical significance of the situation where the reflection coefiicient
15 zero (16-. when Zr. = Z0) is that the vector ratio of the voltage to cur—
rent required by the load is exactly the same as that present in the inci-
dent wave. The load is therefore able to absorb completely the incident
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wave. With any other value of load impedance this is not possible, and a
reflected wave is then produced.

Intermediate Values of Load Impedance. When the load impedance is

a resistance greater than the characteristic impedance, the reflected
wave produced at the load is smaller than the incident wave, but has the
same phase angle as in the open-circuited case.x As a result, the voltage

and current distributions go through successive maxima and minima at
exactly the same places as for the open-circuited load. However, since
the reflected wave is smaller than the incident wave, the minima are not

as deep in proportion to the load voltage; this is illustrated in Fig. 4-41).
Vector diagrams showing how the voltages of the incident and reflected
waves add to give the line voltage in this case are shown in Fig. 4-31»; a

comparison with the corresponding diagrams of Fig. 4-3a shows in detail
why and how the situation is modified when the reflected wave is smaller
than the incident wave.

When the load impedance is a resistance that is smaller in magnitude

than the characteristic impedance of the line, then the reflected wave is
smaller than the incident wave, and has the same phase relation with
respect to the incident wave as in the short-circuited load case. Under

these conditions, the voltage and current distributions possess maxima

and minima at exactly the same points as for the short-circuited load, but
the maxima are not as large and the minima are less deep. This is
illustrated in Fig. 4—4d.

Reactive Loads. Next consider the case where the load impedance is a
pure reactance. Study of Eq. (4-14) shows that if the characteristic

impedance can be assumed to be a resistance, the reflection coefficient for
Zn reactive'1s unity irrespective of the magnitude of the load reactance;
however the phase angle of the reflection coeflicient will depend upon the
ratio of the load reactance to characteristic impedance. The conse-

quences of this situation are illustrated in Fig. 44f and 9. With a reac-
tive load impedance, the voltage and current distributions vary in the
same way, and to the same extent, as with the open-circuited (or short-

circuited) load case. However, a reactive load impedance causes the

minima of these curves to be displaced with respect to the position of the
minima for an open—circuited line.

If one takes the open-circuit distribution as a reference, then acapaci-

tive load causes the first minimum in the voltage distribution to occur

closer to the receiver than a quarter wavelength, as illustrated in Fig. 4749.
This comes about because for capacitive loads the phase angle of the

lForthcreflectionooeficientiu)haveaphaseangleofexaoidyOOI'180°,itisnwes-
urythatthebsdimpedancehavethesfinephueangleuthechnsctefisficimped—
anee. hthscauofrsdio—frequencytrmsmissbnfinsgthismeansahadthatforau
practical purposes is resistive.
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reflection coefficient is negative, i.e., the reflected wave at the load lags
behind the incident wave. Thus with a capacitive load the distance from
the load at which the reflected wave lags 180° behind the incident wave is
less than a quarter wavelength. In contrast, an inductive load causes
the first voltage minimum to occur at a distance from the load that is
greater than a quarter wavelength, as illustrated in Fig. 4—4f. This

results from the fact that the phase
angle of the reflection coefficient is

360- positive in this case. With both in-
ductive and capacitive loads, the dis-

.ao- placement of the minima from their

PHASE

PMS! 0" “’0‘" K open-circuited position is greater the
WW lower the load reactance. It is alsoLOAD

msunc: ”on Low to be noted that the effect of a reac-
Ml PHASE 0F “"5 WU“: tive load is merely to displace the

position of the minima; the distance
between the adjacent minima still

 
36°. remains a half wavelength, just as in

the open— and short—circuited eases.

PM” a, ”’0' Load impedance-s that have both
WWW" "V5 resistive and reactive components

LOAD will result in voltage and current dis-
tributions in which the variation in

amplitude along the line is less than
90‘ LAG in the Open- and short-circuited cases
‘0' because the reflection coefficient is

0" less than unity, as in Fig. 4-4b and d.
‘0‘ However, at the same time the

mfg” LE“ maxima and minima areshifted along
. , the line in the same direction asFm. 4-5. Phase relations on a transmis— . .

sion line for two typical conditions. In when the load 18 purely mactlve'
thesecxrves, the voltage of the incident Phase Relations in Voltage and
wave at the load is used as the reference Current Distributions. The phase ofphase, and the line attenuation is . . .
assumed m be mm". the voltage and current in an indi-

vidual wave drops back 13 radians per
unit length in the direction in which the wave travels. Thus, when the
load impedance equals the characteristic impedance so that only the inci-
dent wave is present, the line voltage and current advance in phase at the
uniform rate of B radians per unit length as one goes from the load to the
generator. The total phase shift is 2-: radians per wavelength under
these conditions.

When the load impedance does not equal the characteristic impedance,
the phase relations are complicated by the presence of the reflected wave.
The phase of the resulting line voltage (or current) then oscillates about
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the phase of the voltage (or current) of the incident wave, as illustrated in
Fig. 4-5. The phase shift under these conditions tends to be concen—
trated in regions where the voltage (or current) goes through a minimum;

this is increasingly the case as the reflected wave approaches equality
with the incident wave. However, irrespective of the relative amplitudes
of the incident and reflected waves, the phase of both voltage and current

will advance exactly 1r radians (180°) when the distance toward the gen-
erator decreases by a half wavelength. Although in the absence of a
reflected wave the variation in phase is at a uniform rate within this dis-

tance, this is not the case when a reflected wave is present.
4-5. The Efiect of Attenuation on Voltage and Current Distribution-—

Lossless Lines. The voltage and current distributions illustrated in

  
 

 

 

 
  

 
 

AL'IUAI. must a» t
m: LINE 1‘~ I§

————————— T gsum/run: or '5Mic/06‘1” WAVE uin“ z

—-—7ms: or INCIDENT WAVE ----- 3n
JCTUAL PHASE 0F
VOLTAGE of! THE UNE

«— DISTANCE FROM LOAD

F10. 4-6. Variation of voltage amplitude and phase with distance along a transmission
line having such high attenuation that toward the generator end the reflected wave
is attenuated at a very small size.

Fig. 44 assume that the total attenuation al of the line is small compared

with unity. Under these conditions the amplitude of the incident, and
also of the reflected wave, changes only slightly in traveling the entire
length of the line.

When the attenuation of the line is relatively large the incident wave

then increases rapidly in amplitude as one goes toward the generator.

Similarly the reflected wave decreases rapidly in size as it recedes from the
load. The resulting behavior is as illustrated in Fig. 4-6; at a consider-
able distance from the load the reflected wave becomes so small theft the

voltage and current begin to approximate the values that would exist
for the case Z1, = Z0, irrespective of the actual value of the load imped-

ance. The progressive change in the ratio of reflected to incident waves
that is caused by attenuation produces corresponding effects on the phase
behavior. These are also illustrated in Fig. 4-6, which shows that the
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actual phase departs less and less from the phase of the incident wave as

the reflected wave becomes smaller. .
Transmission Lines with Zero Lassen. The behavror of an idealized

transmission line with zero losses is important because under many
circumstances, and for many purposes, it is permissible to neglect the

losses associated with practical
'\ x" radio-frequency transmission lines.

amA When the resistance and con-
ductance of a transmission line are4-DISTANCE FROM LOAD LCM .
zero, the attenuation constant a is

likewise zero, and the incident and
reflected waves on the transmission

line suffer no change in amplitude
as they travel from one end of the

line to the other. The voltage and
current distributions that result are

m mass m” then similar to those of Fig. 4-4,
except that all the maxima (and
minima) are of the same height.

3:; When the reflection coeficient of
o. the load is unity, corresponding to
LEA] an open— or short-circuited or reac-

90' tive load, the curves giving the dis-
m ”WE" mm mm tribution of voltage and current on

the loss-free line are sections of half

sine waves that go to zero at the

m / >< ; minima, as shown in Fig. 4-7a. In
\ 7 E \i this case the phase of the voltageI

I0) “MINDS

 

 

(or current) jumps 180° at each

’ minimum, as indicated in Fig. 4-71).
" The distribution curves of the loss-

(dl MAGNIYUDE AND PHASE SHOWN less line are hence commonly drawn
SIHULTANEOUSLV . .

Fro. 4-7. Voltage, current, and phm as shown in Fig. 4-7d, which simul-
relations gm an open-circuited transmis- taneously indicates bothmgnitude
sion me avmg sero losses. and phase by using negative ampli-
tudes to indicate the polarity revershl associated with a 180° phase shift.

Since the waves on a lossless line do not change in amplitude as they
travel along the line, the reflection coefficient in such a system is every-
where constant and equal to the reflection coefficient at the load, as given
by Eq. (4-14). Similarly, the standing—wave ratio (see below) is every-
where the same on a lossless line.

4-8. Standing-wave Ratio. The character of the voltage (or current)
distribution on a transmission line can be conveniently described in terms
of the ratio of the maximum amplitude to minimum amplitude possessed
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by the distribution. This quantity is termed the standing-«cave ratio
(often abbreviated SWR) ; thus in Fig. 4-8, 1

Standing-wave ratio = S s %'L‘ (4-20)_ an

Alternatively, the standing-wave ratio may be defined in terms of

maximum and minimum current; for any particular line the standing-
wave ratio at a given region on the line will be the same whether defined
in terms of the voltage or current distribution.

5l
E RELATIVE

”V" AMPLITUDE

Emu. Emu.

J 5min 1 5min.t t
Posmon ALouo LINE LOAD

FIG. 4-8. Diagram illustrating nomenclature used in defining the standing-wave ratio.

In terms of the amplitudes HM and IEgl of the incident and reflected
waves respectively, the standing-wave ratio can be written

”N + [E l
S Err—7m “'2"

The standing-wave ratio is seen from Eq. (4-21) to be a measure of the
amplitude ratio of the reflected to incident waves. Thus a standing-wave

ratio of unity denotes the absence of a reflected wave, while a very high
standing-wave ratio indicates that the reflected wave is almost as large

as the incident wave. Theoretically, for the case of zero attenuation, the
standing-wave ratio will be infinite when the load is either open- or short-

circuited, or is a lossless reactance.

The standing-wave ratio S is one means of expressing the magnitude
of the reflection coefficient; the exact relation between the two is

S (Ii-22¢)

-- l

Inl 2—5 (4-22!»
This relationship is illustrated graphically in Fig. 4—9.

The importance of the standing-wave ratio arises from the fact that it

can be very easily measured experimentally. Moreover, the standing-

‘ This definition of standing-wave ratio is sometimes called voltage standing-wave
ratio (VSWR) to distinguish it from the standing-wave ratio expressed as a power
ratio, which is (Em/5.1.)!
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wave ratio indicates directly the extent to which reflected waves enist on
a system. In addition, standing-wave measurements provrde an impor-
tant means of measuring impedance, as discussed in Sec. 4-9.

9a

REFLECTEDwave meioznrwave 9o h0!
M‘ O N 

5t ST‘NDING'WAVE RATIO (VOLYAGE OR CURRENT)

Fm. 4-9. The relationship between standing-wave ratio and magnitude M of reflection
cocfl‘icient.

4-7. Impedance and Power—factor Relations in Transmission Lines.
The expression ”transmission-line impedance” applied to a point on a
transmission line signifies the vector ratio of line voltage to line current at

that particular point. This is the impedance that would be obtained if
the transmission line were cut at the point in question, and the impedance
looking toward the load were measured on a bridge.

When the load impedance equals the characteristic impedance, only the

incident wave is present, and the line impedance is everywhere equal to
the characteristic impedance. The line impedance is also equal to the
characteristic impedance under conditions where the total attenuation

al to the load is so great that the reflected wave is of negligible amplitude
compared with the incident wave. Under these conditions the impedance
of the transmission line is independent of conditions at the load.

When a reflected wave is present, the impedance will be alternately
greater and lower than the characteristic impedance, as illustrated in
Fig. 4—10. Since the line current is always a minimum when the voltage
is maximum, and vice versa, the impedance maxima and minima coincide

with the voltage maxima and minima, respectively. The magnitude of
the line impedance therefore varies cyclically with a periodicity of a half
wavelength. If the line losses are low and the reflection coefficient of the

load is not too close to unity, the line impedance repeats almost exactly
in successive hail-wave intervals, as illustrated in Fig. 4-10a. However,
when the reflection coefficient at the load approaches unity (large stand-
ing-wave ratio), then the line attenuation, even if small, will cause the
peaks of impedance to diminish in amplitude at progressively larger dis-
tances to the load, as in Fig. 4—10b.

' The power factor of the line impedance varies according to the stand-
ing-wave situation. When the load impedance equals the characteristic
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impedance, there is no reflected wave and the power-factor angle of the
line is zero, corresponding to a resistive impedance. However, when a
reflected wave is present, the power-factor angle is zero only at the points
on the line where the voltage goes through a maximum or a minimum.

At other points the power-factor angle will alternate between leading and

lagging at intervals of a quarter wavelength, as shown in Figs. 4-10 and
4-56. When the line is short—circuited at the receiver (Fig. 4-10b), or if

 INC/DENT WAVE

A. 31/4 112 N4 A. 31/! N2 M4 LOAD
DISTANCE FROM LOAD DISTANCE FROM LOAD
VOLTAGE DISTRIBUTION VOLTAGE DISTRIBUTION

onus onus  
 

7L mm 112 m LoAD a. 31/4 41/2 M4 LOADLINE IMPEDANCE LINE IMPEDANCE
90'

LAG LAG
se' 0'A IN! M2 7m
0- LEAD

. 90'so POWER-FACTOR ANGLE or LINE IMPEDANCE
POWER-FACTOR ANGLE or LINE IMPEDANCE LEAD

Ia) MODERATE STANDING-WAVE mm (D) LAReE STANDING'WAVE RATIO (LOAD SHORT
CIRCUITEDl

FIG. 4-10. Magnitude and power factor of line impedance with increasing distance
from the load, for load impedances that are, respectively, a resistance less than the
characteristic impedance, and a short circuit. These diagrams assume that the attenu-
ation of the line is small.

the load is a resistance less than the characteristic impedance so that the

voltage distribution is of the short-circuit type (Fig. 4-10a), the power
factor is inductive (lagging) for lengths corresponding to less than the dis-
tance to the first voltage maximum, and thereafter alternates between

capacitive and inductive at intervals of a quarter wavelength. Similarly,
with an open-circuited receiver, or with a resistance load greater than the
characteristic impedance so that the voltage distribution is of the open-
circuit type (Fig. 4-5), the power factor is capacitive for lengths less than
the distance to the first voltage minimum. Thereafter, the power factor
alternates between capacitive and inductive at intervals of a quarter
wavelength, exactly as in the short-circuited case.

If one considers the impedance at the generator end of a transmission
Momentum Dynamics Corporation
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' en h under conditions where the frequency of measurement
:nSergfivialygihcreased, the impedance will vary in magnitude With fre-
quency in much the same manner as With increasmg length. Thus, with
a short-circuited load, the line impedance Will go through successive
maxima at frequencies that make the hne length correspond toena-
quarter, three-quarters, five-quarters, etc., of a wavelength, and Will go
through minima at frequencies that correspond to hue lengths measured
in wavelengths that are an even number of quarter wavelengths. This is

illustrated in Fig. 4-11. . . ' .
The extent to which the power factor of the line impedance varies With

changes in length, or changes in frequency, depends upon the standing-
wave ratio at the point on the line where the power factor is observed.

: LOSSES'\ [I 25”
HIGH"'0DE

iLlfllSO‘ -

PHASE 
(LEAD) 90'

Ml

Fro. 4-11. Effect of variation in frequency oh the magnitude and phase of the sending-
end impedance of a short-circuited transmission line of fixed length.

If the standing-wave ratio is large, and the line losses low (solid curve in
Fig. 4-11), the power-factor angle will approach 90° except in the immedi-

ate vicinity of the voltage maxima and minima. Then the power-factor
angle suddenly shifts between nearly +90° and nearly —90°, as illus-
trated in Fig. 4-11b and Fig. 4-5c. In fact, in the case of a short-circuited

or open-circuited ideal line of zero losses, the power-factor angle is exactly
90° everywhere except at the voltage maxima and minima, as illustrated
in Fig. 4-7c, and by the dotted line'in Fig. 4-1111. On the other hand, if
the standing—wave ratio is small or moderate, the maximum range over
which the power-factor angle varies about unity power factor will be cor-
respondingly less than 90° (see Figs. 4-5:: and 4-10a).

4-8. Transmission-line Charts—the Smith Chart. The various prop-
erties of a transmission line can be presented graphically in an almost end-
less variety of charts. The most useful graphical representations, how-
ever, are those which give the impedance relations that exist along I 1088-
less line for different load conditions.
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The Smith chart shown in Fig. 4-12 is the most widely used trans-
mission-line chart of this class.1 This diagram is based on two sets of

orthogonal circles. One set represents the ratio R/Zo, where R is the
resistance component of the line impedance, and Z0 is the characteristic

impedance (which for a lossless line is a resistance). The second set of

circles represents the ratio jX/Zo, where X is the reactive component of
the line impedance. These coordinates are so chosen by means of a con-

formal transformation that conditions on the lossless line corresponding
to a given standing-wave ratio (or what is the same thing, a given magni-
tude of the load reflection coefficient) lie on a circle having its origin at the
center of the chart.

The standing-wave ratio S corresponding to any particular circle is
equal to the value of R/Zo at which the circle crosses the horizontal axis

on the right-hand side of the chart center (see Prob. 4-25). This same
circle intersects the horizontal axis to the left of the center at a value of

R/Zo such that US == R/Zo. Intersections with the horizontal axis that
are on the left of the chart center represent voltage minima; intersections
with the horizontal axis on the right of the center correspond to voltage
maxima. .

Moving around a given standing-wave circle is equivalent to traveling
along a lossless transmission line on which the standing-wave ratio cor-

responds to the circle involved; thus the successive values of impedance
indicated by a given circle correspond to the line impedances at successive
points along the lossless line. Distance on the actual transmission line is
directly proportional to the angle of rotation around the standing-wave

circle, with one complete revolution corresponding to exactly a half wave-
length on the transmission line. Thus in Fig. 4-12 the distance between
points on the line where the impedance conditions are represented by
P and Q on the chart is 0.05 wavelength, because P and Q lie on the same
circle, and radial lines GPA and 003 drawn from the center of the chart

are displaced by 0.05). on the outer scale; this corresponds to 36° angular
displacement, 01‘ 36/720 = 0.05 wavelength.2 Travel around the circle
in a clockwise direction is toward the generator, whereas travel in a

counterclockwise direction is toward the load; this fact is marked on the
periphery of the chart.

The impedance at any point on a transmission line for a given load

1 P. H. Smith, Transmission Line Calculator, Electronics, vol. 12, p. 29, January,
1939; P. H. Smith, An Improved Transmission Line Calculator, Electronics, vol. 17,
p. 130, January, 1944. Graph paper and a plastic calculator are commercially avail-
able. A paper covering the theoretical foundations of the Smith chart, and its rela-
tion to the so-called rectangular chart, is H. L. Krauss, Transmission Line Charts,
Elec. Eng" vol. 68, p. 767, September, 1949.

' Distances greater than a half wavelength are handled by going around the stand-
ing-wave circle as many times as required. Thus the distance GA to 08 actually
represents 0.05). + 111/2, where n can be any interger, including zero.
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' ' ' ' im dance, is represented by a point

candlilonl'oclii‘gdfhlfihzhsemimharze Thus P in Fig. 4-12 corresponds to
fhgtifngedance Zo(0.98 + 10.7), and lies on the circle centered at O that
corresponds to a standing-wave ratio of 2 (because the crrche thli‘fngh
P intersects the R/Zo axis on the right of the chart at R/Zo == ). di te
line were terminated with a load havmg an impedance correspon ng o

 
I db STEPS

Fm. 4-12. The Smith chart.

P, then the standing-wave ratio that would exist on the line would be

2.0; the impedance at other points along the line could be obtained by
traveling clockwise around the circle passing through P by an amount
indicated by the calibration on the periphery of the chart. For example,
at a distance 0.05) toward the generator from P, the line impedance is
Zn(1.56 + 10.7), corresponding to point Q, while 0.27% distant from P,

the impedance corresponds to Q’ and is Zo(0.6 —- 10.38). Again, if the
load impedance corresponded to the value Q, the standing-wave ratio
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would still be 2, but the impedance at 0' would now be the line impedance
at a distance 0.22% from the receiver, since 0’ is 0.22% around the circle
in a clockwise direction from Q.

The Smith chart thus shows very simply and directly the standing-wave
ratio corresponding to a given load impedance. It also shows the line

impedance at any desired point, given the standing-wave ratio and the
impedance at any other point on the line, for example, the load imped-
ance. From the standing—wave ratio, one can obtain the magnitude of

I"aII;A
III-A ”I.A A

  

  

 
  STANDING-WAVERATIOATGENERATOREND

STANDING-WAVE RATIO AT LOAD END

Fm. 4-13. Relationship between standing-wave ratios at two points on a trans-
mission line, for different values of line attenuation between these points.

the reflection coefficient from Eq. (4-22b) or Fig. 4-9. The phase angle
of the reflection coefficient is given on the chart periphery. Thus for

point P one has p = 0.33/72°. The Smith chart can also be used to

determine impedance from data obtained from standing-wave measure-
ments; this is discussed in Sec. 4-9.

Efi'ect of Line Attenuation. The Smith chart assumes that the line
attenuation is zero. Under these conditions the standing-wave ratio is

everywhere constant, and the chart implies that this is the case. When
attenuation is present it is, however, still possible to use the Smith chart
by using Fig. 4—13 to correct for the change in standing—wave ratio with
position.1 The method of doing this is made clear by the following
example. I

 

Example. Assume that the conditions existing at some point on the line correspond
to P in Fig. 4-12 ; this may be the generator end of the line although it is not so limited.
It is then desired to know the line impedance at a point 0.23h closer to the load when

1 The curves in Fig. 4-13 are obtained by combining Eqs. (4-15), (4-2241), (4-2211),
and (4-9a).
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e length of 0.23). is known to be 3.0 db rather than

acre. The first step is to ignore the line attenuation and travel counterclockwise
around the circle passing through P for a distance corresponding to 0.23).. This
brings one to point 0’, which corresponds to the hue impedance that would must. at
the desired point if the line had no attenuation. HoweverrFig. 4-13 shows that a line
attenuation of 3 db causes a standing-wave ratio of 2.0 at the generator end of the
section of line to correspond to a standing-wave ratio of 5.0 at the load _end. A circle,
shown dotted in Fig. 4-12, is then drawn corresponding to this standing-wave ratio.
The intersection of this circle with the radial line 00’ then defines a point Q" on the
chart that corresponds to the desired impedance, taking into account the line attenua-
tion ;1 this impedance is Z. (0.26 - j0.52).

4-9. Impedance Measurements Using Standing-wave Ratlos.’ The
impedance at very high frequencies is commonly determined with the aid
of standing waves. This is done by using the unknown impedance as the
load impedance of a line having low losses. The resulting standing-wave
ratio is then observed experimentally and, in addition, the distance from
the receiver to the first voltage minimum is observed. From this

information one can, with the aid of a Smith chart, readily determine the
unknown impedance.

Example 1. Suppose that a standing-wave ratio of 2.0 is observed and that the
first voltage minimum is 0.08). from the load. One would then enter the Smith
chart at the point P’, which corresponds to a voltage minimum for a standing-wave
ratio that is 2.0, and would then travel along this circle of constant standing-wave ratio
toward the load a distance 0.08). thus arriving at point 0’. The coordinates of this
point are 0.6 -- j0.38, and multiplying these numbers by the value of Zn {or the
transmission line gives the impedance of the terminating load, which is the impedance
to be determined.

Example 2. Assume that once again the standing-wave ratio is observed to be 2.0,
but that it is now inconvenient to measure the actual distance from the load to the
first voltage minimum. The procedure then consists in first connecting the unknown
impedance across the end of the line and observing the position of some convenient
voltage minimum. Next, the unknown impedance is replaced by a short circuit, and
the position of the first voltage minimum on the load side of the original minimum is
observed. Assume that this minimum is 0.35). toward the load from the original
minimum. It is then permissible to regard this new minimum as the equivalent posi-
tion of the load. This follows from the fact that on a lossless line impedances repeat
exactly each half wavelength. Therefore one enters the Smith chart at point P’,
which corresponds to the voltage minimum with the load connected, and travels 0.35)
tmsard the load along the circle for S as 2.0. This leads to point P, which has the
coordinates 0.98 +j0.7; these numbers multiplied by Z. then give the unknown

lSmith charts are sometimes provided with an auxiliary decibel scale that can be
used to determine rho efiect of the attenuation on the radius of the standing-wave
circle. Such a scale is shown in Fig. 4—12, and is calibrated so that each unit on the
auxiliary scale represents the change in circle radius associated with 1 db attenuation.
’l‘hus starting with a standing~wavc circle of radius 00‘ in Fig. 4-12, the circle passing
through Q” is drawn with a radius that is 3.0 units different on the decibel scale than
00’ as shown, because the line attenuation is 3.0 db.

' An extensive summarizing discussion of this subject is given by F. E. Terman and
J. M. Pettit, “Electronic Measurements,” pp. 135—152, McGraw—Hill Book Com-
pany, Inc., New York, 1952.

the total attenuation lor the lin
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impedance. An alternative procedure would be to note that if the reference point is
taken as the minimum with the unknown connected at the load. then when the line is
short circuited, the first minimum on the generator side of this reference point is
0.5 — 0.35 - 0.15). heard the generator. Entering the chart at P’ as before, one
could theretore prmeed 9.15). toward the generator (i.e., a distance -0.15l toward
the load). This also brings one to point P.

Equipment for Experimental Determination of Standingmve Ratio for

Impedance Measurements. The standing-wave ratio on a. transmission
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Fm. 4-14. Details of a slotted-line type of standing-wave detector for a coaxial line.

line can be observed by exploring along the length of the line with a pickup

arrangement that will indicate the strength of either the electric field (line

voltage) or the magnetic field (line current), in the vicinity of the line. A
typical example of such a standing-wave detector that is suitable for coaxial

systems is illustrated in Fig. 4-14. This arrangement consists of a section
of coaxial line having air insulation and a longitudinal slot in the outer

conductor, as shown. Mounted on this slotted section is a traveling
carriage carrying a probe that projects through the slot toward the center
conductor, as shown. To this probe there is connected some form of
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power— or voltage-indicating device, often .a simple detector. An oscil-
lator is connected to one end of the slotted line, whlle the other end Is con-
nected to the unknown impedance or, alternatively, to the input of the
transmission line that is to have its standing-wave ratio observed. The
standing-wave pattern is then obtained by movmg the carriage (and
hence the probe position) and observing the resultmg variations In the
probe output. .

4-10. Transmission Lines as Resonant Circuits and as Circuit Ele-
ments.‘ A transmission line can be used to perform the functions of a
resonant circuit. Thus, if the line is short-circuited at the load, then at

frequencies in the vicinity of a frequency for which the line length is an
odd number of quarter wavelengths long, the impedance will be high and
will vary with frequency in the vicinity of resonance (i.e., frequency cor-
responding to quarter wavelength) in exactly the same manner as does the
impedance of an ordinary parallel resonant circuit. It is therefore possi-
ble to describe resonance on a transmission line in terms of the impedance

at resonance and the equivalent Q of the resonance curve.2

At very high frequencies, the parallel impedance at resonance and the
obtainable circuit Q are far higher than can be realized with lumped

circuits. In high-frequency lines having air insulation the losses all arise
from skin effect in the conductors, and one has with copper conductors

For concentric Harm“

Q = 0.0839 x/fbH (4-23a)

z. = 11.11 WM (+231))

For two-wirc lincs (neglecting radiation losses):

Q = 0.0887 \/_f b.) (4.244;)

. = 2.3;??be (4.2...)
‘ For further information, including particularly a derivation of the basic relations,

see F. E. 'l‘ermau. Resonant Lines in Radio Circuits, Elec. Eng., vol. 53, p. 1046,
July, 1934. In this paper it was demonstrated for the first time that the resonance

curve of a transmission line has the same shape as the resonance curve of a circuit
with coil and capacitor, and so can be described by specifying a Q.

’ The Q in such a situation can be defined in terms of the detuning required to reduce
the response to 70.7 per cent of the response at resonance, in accordance with Rule 1
on p. 49; alternatively, one may employ Eq. (3-1).

' Examination of Fig. 4-15 shows that in an air-insulated coaxial line of given outer
radius b, Qwill be maximum when the inner conductor has a size such that We - 3.6,
corresponding to Zn - 77 ohms. These are also the proportions for minimum power
loss In a transmission line operated with Z], = Z“. However, the maximum power
that can be transmitted without exceeding a given voltage gradient occurs when
5/0 - 1-65. giving Zo - 30 ohms.
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where Q - circuit Q defined from the resonance curve so that Q -

jo/2Af, where fo is the resonant frequency and AI is the
number of cycles off resonance at which the response is
70.7 per cent of the response at resonance

Z. = sending end or input impedance
1' == frequency, cycles

1) = inner radius of outer conductor of a concentric line, or spac-
ing of wire centers in two-wire line, cm

a = outer radius of inner conductor in concentric line, or wire
radius in two-wire line, cm

n = number of quarter wavelengths in the line

F, G, H, J = constants determined by b/a and given in Fig. 4-15
Substitution of reasonable values in these equations leads to surprising

results. Thus, at a wavelength of 150 cm (200 Me), a concentric line

with copper conductors and air m _._g»,, m":
insulation in which b/a = 3.6 and 0-9 —"-',"‘ m“ ‘

 
with a diameter of outer conductor °° —‘-

of 5 cm (2 in.) possesses a Q of ap- 2;
proximately 3000; when the line 05
length is a quarter wavelength long 0,, =,

(approximately 15 _ in.), the re- aa — -
sonant impedance is over 250,000 °2= '

ohms. Because of favorable prop- °-' _ Eigiii
erties such as these, together with 0:0 20 so no 20 so to
the fact that the physical size of a '%
resonant line is relatively large in Fro. 4-15. Factors 1“, G, H, and J for use

proportion to wavelength as com- in Eq" (4‘23) and (4‘24)-
pared with a coil-and-capacitor combination, resonant transmission lines
find extensive use as resonant circuits at the higher radio frequencies,

particularly at frequencies of the order of 100 Mc and greater.

A behavior corresponding to that of a series resonant circuit can be
obtained from a transmission line that is an odd number of quarter wave-

lengths long and open-circuited at the receiver. Under these conditions,

the voltage at the load is much higher than the applied voltage, as is
apparent from Fig. 4-4. Furthermore, at frequencies near resonance the

voltage stepup varies with frequency in exactly the same manner as does
a resonance curve, and has an equivalent Q given by Eq. (4-2311) or

(4—240) as the case may be. The voltage step-up ratio is, however,
Q X 4/111, instead of Q as in the case of the ordinary series resonant
circuit.

Transmission lines can be used to provide low—loss inductances or

capacitances by employing the proper combination of length, frequency,
and termination. Thus a line short-circuited at the load will offer an

inductive reactance when less than a quarter wavelength long, and a
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capacitive reactance when between a quarter and a half wavelength long,
With an open-circuited load, conditions for inductive and capacitive
reactances are interchanged. . .

4-11. Impedance Matching in Transmission Lines.1 Energy is trans-
mitted most efficiently by a transmission line when no reflected wave is
present.’ However, only under exceptional cases will the load impedance

be a resistance that is exactly equal
to the characteristic impedance of
the line. Thus, to obtain trans-

mission of energy with maximum
efficiency, it is necessary to provide
means for matching the actual load

 
m 3“ WE impedance to the characteristic im-

,, pedance of the line. Again, it is

l often desired that the line im-
pedance be independent of the dis—

m, tance to the load. Likewise in
Iblvouaer DISTRIBUTION wrru smo ousconnrcreo making many types of measure-

ments in systems involving trans-
mission lines, it is frequently de-

sirable, and in some cases very
necessary, that there be no reflected STUD ”MECVED HERE .

| ,0,” wave present.
in VOL-race msmaumn mm srus reopanu At the lower radio frequencies ano STED

"" load can be matched to the charac-
Fm. 4-16. Impedance matching by . . . .
means of a short-circuitcd stub line. tenstlc impedance 0f 3 [me by “3'
Although the arrangement shown is a sociating with the load a network
two-wire system, coaxial lines may be of reactances that tunes out the

employed' load reactance and simultaneously
transforms the resulting resistance to a value equal to the characteristic
impedance of the line. This is discussed further in Sec. 4-12.

At very high and microwave frequencies, impedance matching is

normally achieved with the aid of transmission-line techniques. The
stub line arrangement of Fig. 4-16 is a common example. Here a short

‘ For additional information of a design character see T. E. Moreno, “Microwave

mamiasim Data,” pp. 103-110, McGraw-Hill Book Company, Inc.. New York,
' When the characteristic impedance is a refinance, as is always the case at high

frequencies, one can consider that the incident wave delivers energy to the load and
that the reflected wave carries energy from the load back toward the generator. If
the load impedance does not equal the characteristic impedance, i.e., if the load is not
matched to the line, then some of the incident energy is reflected by the load and
travels a round trip over the line, dissipating power in the line without delivering
energy to the load. Thus the ratio of energy lost in the line to power diflipfld in
the load is increased by reflection.
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section of short-circuited transmission line is connected in shunt with the

transmission line. The distance I; from the load, and the length a of the

stub, are so chosen that the reflected" wave produced by the shunting
impedance of the shunt line is equal
in magnitude and opposite in phase
to the reflected wave existing on
the line at this point as a result of
the reflection from the load imped-
ance Z1.. Thus, although a re-

flected wave is present in the length
11 because of reflection from Z;,
there is no reflected wave on the

generator side of the stub line as a
result of the cancellation of the two
reflected waves.‘

The practical design of a stub-
line system of this type can be
readily carried out with the aid of

Fig. 4-17, which gives the length a
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Z‘STANDING ISNIE RATIO
FIG. 4-17. Design information giving the
length and position required for a short-
circuited stub in order to obtain imped-
ance matching. If desired, the stub line
may be made any convenient multiple
of a half wavelength greater than a.

of the stub2 and its position b with
respect to a voltage minimum of the standing-wave pattern existing in the
absence of the stub. A stub line used in this way will enable any load im-
pedance to be matched to the characteristic impedance of a transmission

line provided only that the load is not an open-circuit, short-circuit, or
pure reactance.
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FIG. 4-18. Double-stub impedance-matching system.

Another arrangement often used to match a load to a transmission line

is the two-stub system of Fig. 4-18. Here two spaced stubs whose lengths
are individually controllable are shunted across the line near the load as

‘ Another way of expressing this situation is to say that the stub position and length
are so selected that the input impedance of line I, shunted by the input impedance of
stub line a will equal the characteristic impedance 2..

' The stub length can actually be made any convenient number of half wavelengths
Plus the value a given by Fig. 4-17.
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shown. This arrangement has the advantage that trial-and-error adjust-
ment of the impedance-matching system can he made Without-the neces-
sity of providing a connection that can he slid along the transmission hits.
The arrangement is thus particularly suitable for coaxral transmission
lines, as it avoids the mechanical problems involved in movmg the post.
tion of a shunting stub along a coaxial line. The disadvantage of the
two-stub system is that the range of load impedances that can be matched

to the transmission line is limited. Thus, in the typical case where the

spacing between stubs is made an eighth wavelength, an impedance
5 must-rm: swcs
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Fro. 4-19. Double-slug system for impedance matching in a concentric-line system.

match can he obtained only if the conductance component of the imped-
ance at the stub nearest the load and looking toward the load is less than
2/Zo.‘

The impedance-matching systems of Fig. 4—19 are termed two-slug
tuners, and make use of two spaced elements that can be either dielectrics,
as at a, or metal sleeves that reduce the clearance between inner and
outer conductors, as at b. These arrangements operate by introducing is
reflected wave that is adjusted to produce a reflection equal in magnitude
and opposite in phase to the reflected wave produced by the load imped-
ance. The phase of the reflection'introduced in this way is controlled by
moving the slugs along the line while maintaining the spacing 1; between
them constant. l‘he magnitude of the reflected wave can be controlled
with little effect on the phase by moving the two slugs equal amounts in
opposite directions (i.e., by changing I: while keeping the slugs sym-
metrical with respect to reference line b). Like the two-stub arrange-

‘_When this requirement is not satisfied, an impedance match can still be obtained
by increasing the distance 1. from the double-stub tuner to the load by a quarter
wavelength. This is because of the impedance-transforming action of a quarter-
wave line, as discussed in connection with Eq. (4-31).
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ment, slug tuners are limited in the range of load impedances that can be
matched to a given line.

When the load impedance is resistive, or when it can easily be made
resistive by tuning, the impedance-matching problem is considerably
simplified. It is than merely necessary to transform the resistance actu-

ally present to a resistance that is equal to the characteristic impedance of
the line. Transmission-line techniques that can be used to achieve this

result, in addition to those discussed above, include the use of a quarter-
wave transformer and a tapered section, as discussed in connection with

Figs. 4-27 and 4-28, respectively.

Nonreflecting Termination: for Ultra-high—frequerwy and Microwave
Transmission Lines.” In some circumstances, particularly in measure-
ment work, it is necessary to terminate a transmission line so that the

reflected wave is as small as possible. In many cases this condition must
be realized for a substantial band of frequencies. The problem of
achieving a nonreflecting load contrasts with the case where one starts

with an assigned load impedance that is to absorb the power and desires
to match this load as well as possible to the transmission line.

A simple and effective means of obtaining a nonreflecting load imped-
ance is to connect the end of the transmission line involved to a length of
transmission line having high loss but the same characteristic impedance
as the line being terminated. This arrangement is illustrated in Fig.
4-20a. An incident wave reaching such a termination will proceed into
the lossy line and will be completely absorbed if the attenuation of the
lossy line is sufficient. For example, if the attenuation of this line is

20 db, then even if the reflection coefficient at the end of the lossy line is
unity, the reflected wave emerging from the junction of the two lines

will be 40 db weaker than the incident wave, corresponding to a reflection
roeflicient of 0.01, or a standing-wave ratio of 1.02.

Lossy lines must be especially designed so that the total attenuation

required can be achieved in a reasonable length. Flexible cable is com-
mercially available for these applications in which the attenuation has

been intentionally made very high by the use of insulation having high

radio-frequency losses, and by employing resistance wire for the center
conductor of the cable. In lines having air insulation, high attenuation

can be obtained in coaxial systems by plating a high-resistivity coating on
the center conductor of the coaxial line to give high skin—effect losses; in

the case of two-wire open-air lines it is customary to obtain a high
attenuation by using resistance wire or iron wire for the conductors.

‘ For further information on this subject see I“. E. Terman and J. M. Pettit, "Elec-
tronic Measurements,” sec. 14-7, McGraw—Hill Book Company, Inc., New York,
1952.

3 Emphasis is placed here on the higher frequencies. At short-wave and lower
frequencies lumped resistance terminations are entirely satisfactory.
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An alternative type of nonreflecting termination that is particularly
suitable for coaxial systems with air insulation makes use of a tapered
section of lossy dielectric arranged as illustrated in Fig. 4-201). The
taper provides a gradual transition between the nonattenuatmg and the
attenuating regions, so that no reflection is produced in spite of the fact
that the dielectric changes the characteristics of the line. The lossy
dielectric can be some type of plastic loaded with conducting material.

Nonreflecting terminations of this type have the advantage that the total

length of the termination is relatively small compared with the length of

..................   
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Fm. 4-20. Nonrefleeting terminations for coaxial transmission lines, suitable for use
at very high frequencies.

a lossy cable required to achieve a similar result. This difference arises

from the fact that the taper makes it possible to work up to a very much
higher attenuation per unit length without reflection than can be obtained

in a uniform structure such as a lossy cable.
4-12. Artificial Lines. An artificial line is a four-terminal network

composed of resistance, inductance, and capacitance elements. In so far

as the terminals are concerned, such a network can be considered as being
the equivalent of some transmission line when symmetrical about the
mid-point, or a combination of a transmission line and a transformer when
unsymmetrical.‘ '.

It can be demonstrated that any four-terminal network can have its
properties at any one frequency represented, in so far as the terminals are
concerned, by three independent constants. From this it follows that the

mast general artificial lines possible can be represented at any one fre-
quency by three independent impedances. These can be arranged either
in the form of a T or a r, as in Figs. 4-2la and 4-21b.‘ The L network

1 The unsymmetrical case is also equivalent to a tapered transmission line.
‘Itwillbenoted thattheTandrclnbedrawnuYand Aman'ementsofimped-

noes, respectively.
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shown in Fig. 4-22 is a special case of the more general three-element
network in which one of the impedance arms has become either zero or
infinity.

The characteristics of a four-terminal artificial line can be expressed,
from the transmission-line point of view, in terms of a propagation

  
(a) r sscnon (b) 11 sscnon

Fro. 4-21. General T and :- networks.

constant at +13 that has exactly the same significance as in ordinary
transmission-line theory (see Secs. 4-1 and 4-2), together with two charac-

teristic impedances (or resistances), one associated with one pair of
terminals and the other with the other set of

terminals. When the network is symmetrical

about its mid-point, i.e., when 24 = Z; for the
1r network, or Z; = Z2 for the T network, these
two characteristic impedances are identical.‘
However, when the network is unsymmetrical, - -

the two characteristic impedances differ, and FW- 4'22- Genenl L “0“
the transmission line, in addition to introduc- work“
ing a certain attenuation and phase shift, also introduces a transformation
of the characteristic impedance. The artificial line is then equivalent

to a line plus a transformer or, what is the same thing, to a tapered line.
as discussed below in connection with Fig. 4-27.

Artificial lines find extensive use in radio work for impedance matching

 

‘ The relations between the impedances of such a symmetrical artificial line and the
constants Zn and a + jB of the equivalent transmission line are:

For symmetrical T section of Fig. 4~21a (21 - 2:):

z. - x/zn + 22.2. (4-25a)

cosh (a +jfl) - 1 + g: (4-255)

For symmetrical :- udion of Fig. 4-216 (24 - Zn):

" — 2.2. (4-26»

cosh ((1 +13) - 1 + % (mob)

Corresponding formulas for unsymmetrical artificial lines (that is, Z: ’4 Z: and
24 36 Z.) are given by F. E. Terman, “Radio Engineers’ Handbook," 1). 908,
McGraw-Hill Book Company, Inc., New York, 1943.
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and for introducing phase shifts. Networks for these purposes are com-
posed of reactive elements having the smallest possible resrstance and
conductance in order that the artificial line wrll consume little or no
energy. In this way it is possible to realize an artificial. line which has
almOst zero attenuation and which simultaneously has resistive values for

the characteristic impedanccs. The only effect that the presence of such
an artificial line has on a traveling wave, other than the transformation in

impedance level that may be present, is the introduction of a phase shift
of B radians in the wave involved.‘ -

Design of T and 1r Reactive Networks2 The design of an ideal network

composed of reactive impedances with zero losses to give assigned values
It; and 1?, of characteristic impedance and to introduce a desired phase
shift 6 can be carried out with the aid of the following relations:

For 7' section:

_ «R! cqsfl - VR1R2
 

:5]
ll

 

sin 6

. , — it?
22 = — .7 111“” :in B“ ‘ 2 (4-27)

- 4/3172
‘7 sinfl

For 1r section:

_ “13.1% Silt" __
‘ JR, coss — «its;

Z, = j__fi.1fl2.sfll._§._ (4'28)

Zc = j ‘\/R1Rz sin 5

The rcactances obtained from these equations are inductive or capacitive
according to whether their sign is + or —, respectively. R1 and R2 are
the two values of characteristic impedance associated with the network.
The angle B in Eqs. (4-27) and (428) is the angle by which the phase of
the wave reaching the output terminals of the network lags behind the
phase that the corresponding wave had at the input terminals; 3. negative
value of [S is possible and indicates that passage of the wave through the
network advances the phase. It is to be noted that this phase shift is the
same irrespective of the direction in which the wave travels through the
network. A single reactive T or 1r section is capable of transforming the
impedance level from any assigned resistance R, to any other resistance

2It is customary to discuss the behavior of an artificial line in terms of the incident
and reflected waves that would exist on the equivalent transmission line. Although
these wave trains cannot exist physically on the artificial line, the behavior, in so far
as the terminals are concerned, is exactly as though they were present.

* For further information on design details see F. E. Terman. “Radio Engineers'
Handbook." pp. 210—215. McGraw—Hill Book Company, Inc... New York, 1943.
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12,, without restriction on the values of these resistances, and is capable
of introducing phase shifts of any desired value between 0 and i 180°.

In case the load (or for that matter the generator) has a reactive

impedance component, this reactance can be used to supply part of the
reactance required by the network. For example, if a load impedance
3,, +jX1, is connected to the right-hand terminals of the '1‘ network of

Fig. 4-21a, then one would consider X1, to be part of the impedance Z:
of the impedance-matching network. In the same way, if the load is

regarded as a resistance shunted by a reactance, then the shunting
reactance can be used to supply part of the shunt impedance Za of the r
section of Fig. 4—21b.

L Reactive Networks. An L network composed of reactive impedances
is able to transform from one arbitrarily assigned characteristic impedance

to a second arbitrarily assigned characteristic impedance. However,
since the L network contains only two circuit elements, the phase shift B

introduced by the L section is determined by the ratio of these two imped-
ances. The design equations of a reactive L network in terms of the

characteristic impedances R1 and R2 at the two pairs of terminals are,
assuming the configuration of Fig. 4-22, and that R; > R2,

Zr = if VR2(R1 — Ra)

Z; = 5Fer ~-—-‘ (4-29)

One may employ either the two top signs, or the two bottom_signs. The
phase shift ,3 corresponding to the characteristic impedances R1 and R, is

(4-30)

4-13. Directional Couplers.‘ A directional coupler is a device that
couples a secondary system only to a wave traveling in a particular direc-
tion on a primary line, and ignores entirely the wave traveling in the
opposite direction.

Loop-type Directional Coupler. A number of types of directional
couplers have been devised. One example is illustrated in Fig. 4-2341.
This is a coaxial arrangement in which the secondary system consists of
lines A and B interconnected by coupling loop D that projects into the

primary line in such a manner as to be subjected to the simultaneous
influence of the electric and magnetic fields produced by the waves
traveling on the primary line.

The operation of this arrangement will now be explained. Assume
that a wave is traveling on the primary line toward the right. The

' For a further discussion, together with an extensive list of references on the subject,
see Tel-man and Pettit, op. cit, p. 57.
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electric field of this wave induces a charge on the loop D that produces
a wave in part A of the secondary system, and also a wave in part B
The equivalent circuit that describes this action is illustrated in Fig.
4-23b; it consists of a voltage E; that is applied to coaxral systems Ann-d
B in parallel through series capacitance Ci, producmg currents as indi—
cated by the arrows. At the same time loop D links With the magnetic
flux from the wave in the primary line, and therefore has a voltage E,
induced in series with it, as illustrated by the equivalent circuit of Fig.

4-23b. This series voltage gives
rise to an additional wave in A and

likewise a second wave in part B.

These magnetically induced waves
are characterized by currents that

flow in the directions indicated by
the arrows.

The two waves in section A pro-
duced by magnetic and electro-
static coupling, respectively, are of
the same polarity and so add, while
the two waves produced in section
B are of opposite polarity and so
tend to cancel each other. It is

accordingly apparent that if the

m z,TERM/IVA TIW

 
ELECHWC‘ MAE/VET/C
fol/PL Ill/6 COUPL [NE

(0) EQUIVALENT cmcun’s

Fm. 4-23. Loop type of directional
coupler for coaxial line, together with
equivalent circuits that take into ac-
count the efl'ects produced by the electric

electric and magnetic couplings are
so proportioned that the waves in-
duced by the magnetic effect have
the same amplitudes as the waves

and magnetic fields on the primary line. induced by the electric coupling
then complete cancellation takes place in section B. When this is the

case, then a wave traveling to the right in the primary line will induce

only one resultant wave in the secondary system, namely, a wave that
travels in the direction of A. No wave is induced that travels in
direction B.

The relative magnitude of electric and magnetic couplings in Fig. 2—2301
can be readily controlled by the design of the coupling loop D. The elec-
tric coupling depends on the amount of electric field that terminates on

the loop, and so is determined by the length of the loop and by the width
(or diameter) oi its conductor. Similarly, the magnetic coupling is
determined by the amount of magnetic flux that links with the loop, and
so is determined by the area enclosed between the loop and the outer con-
ductor and by the orientation of the plane of the loop with respect to the
axis of the line.

Assuming that the coupling arrangement in Fig. 4-23 has been designed
so that a wave traveling to the right on the primary system produces no
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induced wave in part B, then consider the effect of a wave traveling to
the left in the primary system. The component waves induced in A and

B by the electric and magnetic fields in the primary coaxial line will again
be equal to each other, since their relative magnitudes are not afiected

by the direction of travel of the primary wave. However, the polarity of
the waves produced by magnetic coupling will now be reversed with

respect to the polarity of the induced waves resulting from electric
coupling. Accordingly, the two waves induced in A new cancel each
other, while the two waves induced in B add. Consequently, a wave
traveling to the left in the primary line produces no effect in section A,
but does produce an induced wave traveling to the right in section B.

By terminating B of the secondary system in its characteristic impedance,
this induced wave is absorbed. The final result is that any wave travel-

ing to the left in section A is determined only by the wave traveling to
the right in the primary system, and is independent of the presence or
absence of a wave traveling to the left in the primary system. Thus one
has achieved a directional coupling

system. ff;§””“" '
It is to be noted that to obtain

the directional action it is abso-

lutely necessary that B be ter-

minated in its characteristic ______________________________________
impedance. If the impedance ter- cauPu/va stars

minating B produces a reflection, mm" “NE ”’0’” ”'0 ”MW" ,
the resulting reflected wave will Em 444' Example 9‘ tyo'hde dim-tional coupler for coaxral line.
return along line B, pass through

the coupling loop, and enter A. The actual wave traveling to the left in
A will then be the resultant of the desired effect produced by” the wave
traveling to the right in the primary line and an undesired effect propor-

tional to the product of the amplitude of the wave traveling to the left in
the primary system and the reflection coefficient at the termination of B.

Two-hole Coupler. A quite different type of directional coupling sys-
tem is shown in Fig. 4-24. This is known as a two-hole coupler, and

consists of primary and secondary systems which are coupled either elec-

trically or magnetically at two points separated by an odd multiple of a
quarter wavelength. It is essential that the coupling at each of these

two points be either primarily electric or primarily magnetic. This

result can be achieved by using probes (for electric coupling), loops (for
magnetic coupling), or suitably shaped and oriented slots that favor

either one or the other type of coupling.l In the two-hole coupler a wave
traveling to the right in the primary system gives rise to a wave that also

 

‘ Details relating to the use of slots as a means of coupling are discussed on p. 133.
The narrow axially oriented slots in Fig. 4-24 provide coupling that is predominately
electrostatic.
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travels to the right in the secondary system, but not to a. wave traveling
to the left; similarly, a wave traveling to the left in the primary system
gives rise to a wave traveling to the left In the secondary system, but not
to a wave traveling to the right. This result comes about because
although each hole induces waves that travel in the secondary system in
both directions away from the coupling point, the induced waves traveling
in the favored direction away from the two holes add in phase, while
those in the reverse direction cancel exactly if they are of equal amplitude,
provided the holes are an odd multiple of a quarter wavelength apart.

Directivity and Coupling in Directional Couplers. In an ideal direc-
tional coupler, the secondary system will respond only to a wave traveling
in the favored direction on the primary line. In actual directional

couplers, mechanical imperfections, frequency difl'ering from the design
value, second-order effects, etc., will ordinarily result in a small output
being produced by a wave traveling in the backward direction. The ratio
of the responses to waves traveling in the two directions on the primary
is called the directiuity of the coupling system, and is commonly expressed

in decibels. Thus a directivity of 30 db means that the undesired induced
wave is 30 db weaker (representing only one-thousandth as much power)
than the desired induced wave when equal waves travel in opposite direc-

tions on the primary line.
The ratio of power induced in the secondary system by a wave traveling

in the desired direction on the primary line to the power of this wave on

the primary line is called the cou-

._ :10- ph'ng of thedirectionalcoupler. The
i coupling is ordinarily expressed in

IRREGIIILMI" 'decibels, and represents the attenua-
: tion introduced by the coupling

a system.
4-14. Miscellaneous Aspects of

Transmission Lines. Transmission-

line I rregularitiec—Discontinuity

Fm. 4-25. Diagram illustrating standin ICapacitance. When -a .wave'travel-
waves produced on the generator aid: mg along 8' transmissmn hue en-
of an irregularity in the case of a trans- counters an “dated discontinuity, it

missign line terminated with a load: is partially reflected; Le” while a,
35:53:: equal to the “hunter‘s” portion of the wave continues to

travel down the line, another portion
of the wave is reflected backwards. Thus, in a transmission line ter~
minated with a load equal to the characteristic impedance, an irregularity
at some point on the line as shown in Fig. 4-25 will cause standing waves
to exist on the generator side of the irregularity, as indicated.

Irregularities may be introduced in many ways. Typical causes are
sharp bends, insulating supports, joints possessing resistance, coupled
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circuits, and extraneous objects that affect the electric or magnetic field,
such as probes, dielectric or metal bodies, etc.

A type of irregularity that is particularly important at very high fre-

quencies results from the distortion of the electric and magnetic fields
associated with a change in line geometry. Consider, for example, a
coaxial line in which the characteristic impedance changes abruptly as a
result of a change in diameter of the outer conductor, as illustrated in

Fig. 4-26a. It can be shown1 that the distortion of the electric and mag-
netic fields in the vicinity of the

junction is equivalent to shunting a —_—l_______||[’22
capacitance across the junction, as 1’

shown in Fig. 4-266, in addition to :HEEMIH:
whatever effects are caused by the' ' ' ' (a) ACTUAL SITUATION. SHOWING ELEcrmc

Chajng? 1.“ characteristic lltlpedallctf. FIELD IN REGION OF DISCONTINUITY
This ‘ discontinuity capacitance is l
ordinarily only a few tenths of a z z. - 0——+— ——""|micromicrofarad; however, at ultra- i‘m - '

high frequencies and higher fre- I/[c’fffcfl/W/i’ég
quencies its reactauce becomes low (0) EQUIVALENT ELECTRICAL SITUATION,

 

enough to 8.56013 the bEhEViOI' suowmc DISCONTINUITV cnpncmmc:'. . . run TAKES mro ACCOUNT DISTORTION
significantly. or “gem; new

A discontinuity capacitance is Fm. 4-26. Transmission line with dis-
ordinarily present whenever a geo- continuity in the characteristic imped-

- , , _ - ancc, showing distortion of the electric
mama] “ha"ge “mm “W 1" field that results, and how this is taken
Figs. 4‘16 and 4'18; the change i" into account by postulating a discon-
geometry at the points where the tinuity capacitance at the point of
. . - irregularity in addition to the discon-
stubs are connected to the lines has tinuity in characteristic impedance.
an effect equivalent to a small
capacitance connected in shunt across the coaxial line at the junction

point. This shunting capacitance is in addition to the shunting action
of the stub.

Tapered Transmission Lines.’ A length of transmission line in which
the characteristic impedance varies gradually and continuously from one
value to another is said to be tapered. A traveling wave passing through
such a section will have its ratio of voltage to current transformed in
accordance with the ratio of the characteristic impedances involved.

The requirement for a satisfactory taper is that the change in charac-
teristic impedance per wavelength must not be too large; otherwise the

‘See J. R. Whinnery, H. W. Jamieeon, and T. E. Robbins, Coaxial Line Discon-
tinuities, Proc. IRE, vol. 32, p. 695, November, 1944.

’ For further information see Wilbur N. Christensen, The Exponential Transmission
Line Employing Straight Conductors, Prac. IRE, vol. 35. p. 576, June, 1947; Charles
1'3. Burrows, Exponential Transmission Line, Bell System Tech. J., vol. 17, p. 555,
(intober, 1938; Harold A. Wheeler, Transmission Line with Exponential Taper,
Proc. IRE, vol. 27, p. 65, January, 1939; Moreno, op. at, pp. 53—55.
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tapered section will introduce a reflection. That is, if the change in
characteristic impedance per wavelength is excessive, then the tapered
section acts as a“ lumped irregularity rather than producing merely a
gradual transformation. .

From these considerations it follows that a tapered section of tram.
mission line acts as a perfect impedance transformer at the higher fre-

quencies. However, as the frequency is lowered, such a section finally
fails to be satisfactory as an impedance transformer, because the distance

represented by a wavelength, and hence the change in characteristic
impedance per wavelength, becomes greater. Thus as the frequency is

reduced the taper introduces an in-

creasingly large reflection. The prac-
tical lower-frequency limit of useful-

ness of a tapered section that thereby

results corresponds to the frequency
(alcOAXIAL rnrsszn SECTION for which the characteristic imped-

ance changes by a factor between

Nabout 1.3 and 4.0 per wavelength,’0 t II
M

 

with the exact value depending upon
the standing-wave ratio that can be

Ik—mwm SECTIOV-yi tolerated.
lb) TWO-WIRE TAPERED SECTION . .

pm 4.27. Tapered line. A hne can be tapered by varying
the spacing of the conductors in the

case of a two—wire line, or by varying the diameter of the inner (or outer)
conductor in the case of a concentric line. The ideal type of taper is one

in which the characteristic impedance changes uniformly with length, so
that the higher derivatives of the rate of change of characteristic imped-

ance with length are minimized. However, nearly as satisfactory
results are obtained by the much more practical arrangement shown in
Fig. 4-27, in which the spacing varies linearly with distance. Such

straight-line tapers are accordingly used in ordinary practice.
Quarter- and Half-wave Transformers. Sections of transmission lines

that are exactly a quarter wavelength or a half wavelength long have
unique impedance-transforming properties that are frequently made use

of in radio work. Thus consider the situation illustrated in Fig. 4—28.
When the length l of the line is exactly an odd number of quarter wave-
lengths, then to the extent that the losses in l can be neglected, the imped-
ance looking into the system is

Z. =—Z_o, (4-31)

where 2.. is the characteristic impedance of the line I. When the load

impedance Z1. is- a resistance, the effect of the line is thus to transform
this resistance into another resistance Z. that is inversely proportional to

Momentum Dynamics Corporation
Exhibit 1013

Page 123



Momentum Dynamics Corporation 
Exhibit 1013 

Page 124

Saul-141 MISCELLANEOUS ASPECTS OF LINES 121

the resistance 21.. Again, when Z; is a capacitive reactance,then the
impedance-transforming action of the line causes Z. to be an inductive

reactance having a magnitude inversely proportional to the capacitive
reactance of Z].-

In an arrangement such as illustrated in Fig. 4-28, the ratio of imped-
ance transformation obtained can be varied by adjusting the character-
istic impedance Z0 of the connecting transmission line l. In the case of a

two-wire line, this is readily accomplished by varying the spacing between
the conductors that form the line.

With coaxial lines, one can change [*— 1 ——--1
the diameter of the inner conduc- ,€_:'— "'—“"_ "'_ lz‘I
tor, or can move the inner conduc- < UN: mmcmucmlsm '—'
tor so that it is eccentric with re- WPFD‘WE 'Zo

spect to the outer conductor. FIG- 443- Transmiflion line 88 an finned-
When the transmission line of ”we “m'hm‘cr'

Fig. 4-28 is exactly a whole number of half wavelengths long, then

Z. = Z1, (4-32)

This relation holds irrespective of the characteristic impedance of the line
provided only that the line losses can be neglected. The half-wave line is

thus a one-to-one impedance transformer. A typical practical applica-
tion of such an arrangement is to provide a short circuit across an inacces-

sible pair of terminals. This can be achieved by connecting a transmis-

sion line to these terminals and then placing

{II-5g“ a short circuit across the line at an accessible
"A “My“, point that is exactly a whole number of half

“”55 wavelengths away from the terminals across
which it is desired that a short circuit exist.

Higher-order Modes. When the spacing be-
tween the two wires of a transmission line

Fm. 4-29. First higher mode exceeds a half wavelength, or when the cir-
inacoaxial transmissionline. cumference of a coaxial line exceeds a wave-

length, it is possible for energy to propagate

down the transmission line by using configurations of electric and mag-
netic fields that difier from the field arrangements ordinarily associated
with transmission lines. These special configurations are termed higher-
order modes. The first such higher-order mode that can exist on a coaxial

transmission line is illustrated in Fig. 4-29. Fields of this particular type

will propagate freely provided that the arithmetic mean circumference
eKceeds the wavelength A’ in the cable, i.e., when

N<21r~b+a (4-33)

 

 

Where a and b are the radii of the inner and outer conductors, respectively.
Modes of still higher order are also possible on two-wire lines.
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' de of the higher mode (or modes), compared with theamTpilizu332ilia‘he normal mode, is determined by the extent to which the
method of applying voltage to the cable produces a field configuration
corresponding to the higher mode (or modes). however, even if a higher
mode is produced at the terminals of a transmission hue, the mode W111
not propagate along the line unless the wavelength is less than the cutoff
value given by relations such as Eq. (4—3:?) This can happen in ordi-
nary cables and lines only at the higher microwave frequencies. .

Loaded Lines. A loaded line is an ordinary transmission line to which

lumped elements, usually capacitancee or inductances, are added at

W -—-l(-—-l(—-i(-—-
MI SERI. INDUCTANCE LOIDING (bl SERIES CAPACITANCE LOADING

“'I SHUNT INDUCTANCE LOADING ldl SHUNT CAPACITANCE LOADING

\

///////////////)\%//////////////// 
m UNOERCUT BEADS

Fm. 4-30. Examples of loaded transmission lines.

regular intervals, as illustrated in Fig. 4-30. When these lumped loading
impedances are spaced unifomly at distances that do not appreciably
exceed a quarter wavelength, they act almost 'exactly as though their
impedances were uniformly distributed. However, if the frequency is so
high that the spacing appreciably exceeds a quarter wavelength, then the
loading impedances act as irregularities that tend to prevent transmission.

Momentum Dynamics Corporation
Exhibit 1013

Page 125



Momentum Dynamics Corporation 
Exhibit 1013 

Page 126

Can.“ PROBLEMS AND EXERCISES 123

ance, and series capacitive loading reduces it, while shunt loading similarly
increases the equivalent line capacitance if capacitive, and reduces it if
inductive.

An important case of loading is provided by the beads sometimes used
to support the center conductor of a concentric cable having air insulation.
These beads introduce localized additions to the line capacitance and so

represent shunt capacitive loading, as illustrated in Fig. 4-30d. This has

the effect of increasing the effective line capacitance and thereby lowering
the characteristic impedance and the velocity of phase propagation, as
well as fixing an upper frequency beyond which the line does not behave
properly. In order to overcome these effects, the beads are sometimes
undercut, as in Fig. 4-30c. Here the reduction in diameter of the center
conductor is so chosen as to make up for the increased dielectric constant

of the space occupied by the head, as well as the discontinuity capacitance
introduced by the head. In this way the characteristic impedance of the
section containing the bead can be made the same as that of the portion

of the line having only air insulation.

PROBLEMS AND EXERCISES

4-1. Assume that Fig. 4-1 is modified so that the length l is measured from the
generator or sending end of the line instead of from the load end as in Fig. 4-1. Set
up the difl'erential equations of the line in terms of this notation, and obtain a solution
to the transmission line analogous to Eqs. (4-6), but in terms of the amplitudes 3;, E1,
1;, and I4 of the individual waves at the generator end of the line.

4-2. Redraw Fig. 4-21), c, and d for (a) an attenuation that is considerably greater
than in Fig. 4-2, and (b) sero attenuation.

H. In a transmission line 100 ft long terminated so that only the incident wave is
present; the power at the load end of the line is 1.2 db less than at the generator end.
What is the value of a per foot?

4-4. Derive Eq. (4-14).
‘4. In a transmission line in which Za - 50 ohms, calculate and plot the reflection

ooeficient as a function of load resistance for load resistances ranging from 0 to
250 ohms.

6-6. In a transmission line in which Zn - 50 ohms and which has a reactive load,
calculate and plot the magnitude and phase angle of the reflection coefficient as a
function of load remtance in the range from —j100 ohms to +j100 ohms.

PI. Derive Eq. (4-15). In doing this, start by assuming that the incident wave at
point a is E., and then expre- the magnitudes of the various waves at a and b in

terms of E. and Ip.[.
4-8. Derive Eq. (4-16a).
#9. a. The line conductance will be negligible in a transminion line with air

dielectric. Under these conditions the attenuation constant a of a radio-frequency
line is proportional to the square root of the frequency. Explain.

b. In a coaxial transmission line with solid dielectric, the dielectric loses sat
extremely high frequencies will he very much greater than the losses resulting from
the line resistance. Under these conditions, how does the attenuation constant a
vary with frequency?
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Msm‘ ' n line with air dielectric is 20 m long. What is the line

miter?“ W31:3“, and what is the value of a at frequencies of 10 and mo leer
‘41. Show vector diagram and curves for the current distributions that go With

the voltage distributions in Fig. 4-3;: and b. On the resulting curves show the voltage' 'butions of Fi . 4-3 I) dotted ines.

dark. Draw ounzres andyvector diagrams similar to those of Fig. 4-31), except forthe case p I (LE/180°.

4-18. CalculatIth-e exact distance from the load in wavelengths at which the first
voltage maximum occurs in Fig. 4—4] when Zsl/Za - 10.5.

4-“. Sketch the voltage distribution on a low-loss transmission line in the manner
shown in Fig. 4-4, but for the case where ZL/Z. - 2.0122.

4-18. Sketch curves of voltage and current distribution on a low-loss transmission
line analogous to the curves of Fig. 4-4, but for the following load impedance condi.
tions. (Note: In each case calculate location and relative amplitude of minima and
maxima accurately. and show these minima and maxima in correct positions and in
correct magnitudes in the sketch, carrying the curves for a distance oi slightly more
than one wavelength from the load end of the line.)

a. Reflection eoefl‘icient at load - o.2/_0°.
6. Reflection coeflicient st load - 0.8_/_0_".
c. Reflection coeflicient at load - neg.
d. Reflection coefficient at load - 1.0/ -45°.

4-10. Derive a formula giving the distance from the load to the first minimum of
voltage in terms of the phase shift it per unit length of line and the phase angle 6 of theooeflicient of reflection of the load.

#Izadsltzdtch curves analogous to those of Fig. 4-5, except applying to a short-circui .

4-13. Sketch curves analogous to those of Fig. 4-6, except assume that the attenuan
tion of the line is approximately twice as great as in Fig. 4-6. For purposes of com-
parison, sketch the solid curves from Fig. 4-6 on the same axes.

4-10. Derive Eq. (4-22a) starting with Eq. (4-21).
4-20. Calculate and plot the standing-wave ratio as a function of 21/2. for resistive

loads, for valuu of this ratio ranging from 0.1 to 10.0.
4-21. Prove that resistive loads of R; and R. will produce the same standing-waveratio provided R1R: - Zo'.

4-22. Sketch curves similar to those of Fig. 440a and 6, except applying to cases
where the load is (a) a resistance greater than the characteristic impedance, and (b) anopen circuit, respectively.

. 4-”. In a transmission line having negligible losses, derive formulas giving, respec—
trvely, the maximum impedance and the minimum impedance that can occur any—
where on the transmission line in terms of magnitude of the reflection coefficient of the
load and the characteristic impedance of the line.
- 4-24. .Sketch curves similar to those of Fig. 4-101: except applying to a transmission

line havmg considerably greater attenuation.

4-35. When the load impedance of a transmission line is a resistance 12]., prove that
S - RL/Z. when Rx. > 20, s. d likewise that S - Za/RL when RI. < Z...
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6-11. AnimingthatthelineomebJ-Mhunegligiblelcqulotthemsgmmde
andphaseofthelineimpedanceasafimctionoidistancefromthelcaduptcadis-
tance slightly greater than one wavelength. Make use of the Smith chart to deteh
mine the resistive and reactive components of the impedance.

4-”- Animpedanceofiib +1750hmsisconnectedacrosstheloadendofatrsns-
mission line having a characteristic impedance of 00 ohms.

a. With the aid of the Smith chart, and assuming that the line has negligible losses,
determine the standing-wave ratio produced on the line, and also the input impedance
of the line when the line length 'm 1.8)..

b. If the total attenuation of the line'Is 1.4 db, determine the standing-wave ratio
and the line impedance at the generator end of the line.

c. Tabulato the results from (a) and (b) side by side, and explainin physical terms
how attenuation accounts for the difierences observed.

‘40. With the aid of the Smith chart determine the magnitude and the phase
angle of an impedance which, when placed at the receiving end of a transmission line
having the characteristic impedance R. - 75 ohms, would account for an observed
standing-wave ratio of 1.65 with a voltage distribution such that the voltage minima
with a short-circuited load are 0.2). closer to the load than the voltage minima pro-
duced by the impedance to be measured.

4-80. Same as Prob. 4-29, except that S - 2.10, and the minima with a short-
circuited load are 0.10). closer to the generator than the minima produced by the
impedance to be determined.

4-81. A concentric transmission line having copper conductors and air insulation
is short-circuited at the receiving end and is to he in quarter-wavelength resonance
at a frequency of 100 Mo. Determine (a) the smallest diameter of the outer concentric
line for which a Q of 5000 can be obtained, and (b) the sending-end impedance of the
line in a.

4-82. A resonant quarter-wave coaxial transmission line 25 cm long has b - 1 cm
and b/o - 3.6. Determine the resonant frequency, Q, and standing-end impedance.

4-88. A load impedance is connected to a transmission line and. is found to produce
a standing-wave ratio of 2.0. The first voltage minimum occurs at a distance of
0.4- wavelength from the load. Design a stub-line impedance-matching system for
this situation. "

4-84. A load impedance of 70/30° is connected to a concentric transmission line
having a characteristic impedance of 50 ohms. Calculate the resulting standing-wave
ratio and the location of the voltage minima. From this information specify the
length and position of a stub line that will match the load to the transmission line.

l-SI. Assume that the double-slug tuner of Fig. 4-19!) is adjusted to give an imped-
ance match. Will this impedance match be destroyed if the right-hand slug is then
displaced a half wavelength to the right, while leaving the position of the other slug
unchanged? Explain.

4-80. A short-circuited lossy line is used to terminate a transmimion line. How
much total attenuation must the lossy line have if the standing-wave ratio on the
terminated line is not to exceed 8 - 1.10? Assume the lossy line is open-circuited.

4-81. Design a reactive '1‘ network that at 1000 he will match a load impedance of
100 ohms to a line having a characteristic impedance of 50 ohms, and introduce a
phase shift of 30‘ leading in the load current.

4-88. Design a reactive T network that will match a load impedance of 100 + 1'60
ohms to a 50-ohm line, and introduce a phase shift of 30' leading in the load curren

4-”. Explain how the directional coupler of Fig. 4-23 can be arranged so that
wave in the secondary section B is proportional to the wave traveling to the left on
the primary line and is not afiected by the primary wave traveling to the right.

‘40. Explain how one could measure the magnitude of the reflection coefioient
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paratus including (a) a directional coupler of the type illustrated ina line b a _ . .
gig. 4-23, Endpaz) two instruments suitable for measunng voltage on transmission
lines. .

441. In the directional coupler system of Fig. 4-23, assume that the left-hand
side of the secondary system (i.e., line A) is terminated by a load equal to the chum.
'teristic impedance but that the right-hand is not. Under these copditions prove
that the intensity of the secondary wave traveling to the right In B is proportmnal
w the strength of the primary wave traveling to the left, irrespective of the presence
or absence of a primary wave traveling toward the right, but that the secondary
wave traveling to the left in A is dependent on both the primary wave traveling to the
left and the primary wave traveling to the right.

4-42. Give a detailed explanation of why the two-hole directional coupler of Fig.
4-24 theoretically can give ideal directional coupler action only when the hole spacing
is exactly nA/4, where n is odd. Include a justification for the fact that increasing the
spacing by a half wavelength makes no difl'erence.

448. A two-hole coupler such as illustrated in Fig. 4—24 is operated at a frequency
5 per cent higher than the value that makes the hole spacing exactly V4. What is
the directivity in decibels caused by this incorrect operating frequency?

4-“. Sketch a curve similar to that of Fig. 4-25, except for an irregularity that is a
series resistance equal in magnitude to the characteristic impedance. Be careful to
show the correct standing-wave ratio on the generator side of the irregularity, as
well as the correct location of the minima with respect to the irregularity, and also
show the voltage drop in the series resistance.

4-45. In Fig. 4-25, the irregularity consists of a shunt discontinuity capacitance of
0.2 mi. Determine the standing-wave ratio on the generator side of the irregularity
at 100 and 10,000 Me, muming that the characteristic impedance of the line is
50 ohms.

4-48. Two coaxial lines having characteristic impedances of 50 and 100 ohms,
respectively, are to be joined by a tapered section. If it is desired that the reflections
introduced by the tapered section be kept very small in the frequency range 2000 to
11,000 Mc, determine the minimum length of tapered section that can be used.

(-41. A load resistance of 300 ohms is to be matched to a two-wire transmission

line having a characteristic impedance of 600 ohms by means of a quarter-wave
matching line. What characteristic impedance must the matching line have?

(-48. From the behavior of incident and reflected waves, demonstrate the correct-
ness of Eq. (4—32).

5-49. In a particular coaxial transmission line, b/a - 3.6 and b - 1 cm. What
is the shortest wavelength that can be transmitted on the line without danger of a
higher-order mode being generated?

4-50. Explain with the aid of Eq. (4-18c) why the difierent types of loading illus-
trated in Fig. 4-304: to d have the effects on phase velocity summarised on page 122.
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CHAPTER 5

WAVEGUIDES AND CAVITY RESONATORS

5-1. Waveguides—General Considerations.” A hollow conducting

tube used to transmit electromagnetic waves is termed a waveguide. At

ultra-high and microwave frequencies, waveguides provide a practical

alternative to transmission lines for the transmission of electrical energy.

Any configuration of electric and magnetic fields that exists inside a

waveguide must be a solution of Maxwell’s equations. In addition, these

fields must satisfy the boundary conditions imposed by the walls of the

guide. To the extent that the walls are perfect conductors there can

therefore be no tangential component of electric field at the walls. Many

different field configurations can be found that meet these requirements.

Each such configuration is termed a mode.

A critical examination of the various possible field configurations or

modes that can exist in a waveguide reveals that they all belong to one

or the other of two fundamental types. In one type, the electric field is

everywhere transverse to the axis of the guide, and has no component

‘ The practical ponibilities of waveguides as transmission systems for very high-
frequency waves was discovered independently and almost simultaneously by W. L.
Barrow and G. C. Southworth. Fundamental papers on the subject include: W. L.
Barrow, Transmission of Electromagnetic Waves in Hollow Tubes of Metal, Pro'c.
IRE, vol. 24, p. 1298, October, 1936; G. C. Southworth, Hyper-frequency Wave
Guides—General Considerations and Experimental Results, Bell System Tech. J.,
vol. 15, p. 284, April, 1936; L. J. Chu and W. L. Barrow, Electromagnetic Waves of
Hollow Metal Tubes of Rectangular Cross Section, Proc. IRE, vol. 26, p. 1520,
December, 1938.

i The discussion given here of waveguides is intended to provide a description of
their more important characteristics, together with formulas for calculating quantita-
tively their principal characteristics. The rigorous derivation of the quantitative
relations existing in waveguides is a specialized subject that would take more space
than is available in a book of this type. The reader who wishes to study the tech-
niques by which waveguide equations are derived is referred to Rama and Whinnery,
“Field and Waves of Modern Radio," John Wiley dc Sons, Inc., New York, 1944;
H. H. Shilling, “Fundamentals of Electric Waves,” John Wiley & Sons, Inc., New
York, 1948. An excellent discussion of the physical phenomena involved in wave-

guides is given hy H. G. Booker, The Elements of Wave Propagation Using ti?
Impedance Concept, J. IEE, vol. 94, part III, p. 171, May, 1947. Useful summary
information on waveguide techniques is given by M. H. L. Prece, Waveguides, J. IEE,
vol. 93, part IIIA, no. 1, p. 33, 1946; T. E. Moreno, "Microwave Transmission Data,”
McGraw-Hill Book Company, Inc., New York, 1948.

127
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' ' tion of the ide axis; the associated magnetic field
SLWlizrvevégeihfiif: componenfliln the direction of the axis. ' Modes of
this type are termed transverse electric or T.E modes (also sometimes called
11 modes). In the other type of distribution, 'the Situation With respect
to the fields is reversed, the magnetic field being everywhere transverse
to the guide axis while at some places the electnc field has components in
the axial direction. Modes of this type are termed transverse magnelw or
TM modes (also sometimes called E modes).1 The different modesof each
class are designated by double subscripts, such asTEm, asexplamed below.

The behavior of a waveguide is similar in many respects to the behavior
of a transmission line. Thus waves traveling along a guide have a phase

velocity, and are attenuated. When a wave reaches the end of a guide it
is reflected unless the load impedance is carefully adjusted to absorb the

wave; also an irregularity in a waveguide produces reflection just as does
an irregularity in a transmission line. Again, reflected waves can be
eliminated by the use of an impedance-matching system, exactly as with a
transmission line. Finally, when both incident and reflected waves are

simultaneously present in a waveguide, the result is a standing-wave pat-
tern, such as illustrated in Fig. 4—4, that can be characterized by defining
a standing—wave ratio.

In some other respects waveguides and transmission lines are unlike
in their behavior. The most striking difl'erence is that a particular mode
will propagate down a waveguide with low attenuation only if the wave-

length of the waves is less than some critical value determined by the
dimensions and the geometry of the guide. If the wavelength is greater

than this critical cutoff value, the waves in the waveguide die out very

rapidly in amplitude even when the walls ofathe guide are of material
having infinite conductivity. Different modes have difierent values of

cutofl' wavelength; the particular mode for which the cutoff wavelength is
greatest is termed the dominant mode.

5-2. Rectangular Waveguides. The most frequently used type of
waveguide has a rectangular cross section, as illustrated in Fig. 5-1. In
such a guide, the preferred mode of operation is the dominant mode.

Field Configuration of the Dominant Mode in a Rectangular Waveguide.
At wavelengths less than the cutoff value, the electric and magnetic fields
representing the dominant mode in a rectangular waveguide have the
character illustrated in Fig. 5-2. Here the electric field is transverse to

the guide axis, and extends between the two walls that are closest together,
i.e., between the top and bottom of Fig. 5-1. The intensity of this elec-

-1 Following this system of designation, the field configuration normally associated
wrth a coaxial hne 1s sometimes called the TEM mode, because both the electric and
magnetic fields are transverse to the axis of the line. The higher-order coaxial mode
illustrated in Fig. 4-29 is a TE mode, since the electric field is everywhere transverseto the line.
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trio fieldis maximum at the center of the guide, and drops off sinusoidally
to sero’intensity at the edges, as shown. The magnetic field is in the

San. 5-2]

form of loops which lie in planes that

are at right angles to the electric field,

i.e., planes parallel to the top and bot-
tom of the guide in Fig. 5-1. The

magnetic field is the same in all of these

planes, irrespective of the position of
the plane along the y axis.

This field configuration travels along
the waveguide axis (in the z direction in

Fig. 5-1).1 As it travels a distance 1
down the guide, the amplitude will be
reduced by the factor F“ as a result of

energy losses in the walls of the guide,

I
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Fm. 5-1. Rectangular waveguide,
illustrating notation.

and the wave will drop back in phase at radians, just as in the analogous
transmission-line case, where a and p are termed the attenuation constant

and phase constant respectively.
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Fro. 5-2. Field configuration of the dominant or TE". mode in a rectangular waveguide.

The field configuration representing the dominant mode illustrated in

Fig. 5-2 is seen to be a transverse electric mode and is designated as the

IThus Fig. 5-2 can be regarded as representing a snapshot of the fields as they
exist at some particular moment. As this field configuration travels down the guide,
the fields at any given point vary sinusoidally in amplitude. Thus, although the
fields at position so in Fig. 5-2 have sero intensity, a quarter cycle later the fields will
have moved a distance MM, and the amplitude at to will then be the same lathe
amplitude shown for position v in Fig. 5-2.
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TE“ mode. The subscript 1 means that the field distribution in the
direction of the long side of the waveguide (z direction in Fig. 5-1) con.
tains one-half cycle of variation. The subscript 0 indicates that there is
no variation in either the electric or magnetic field strength in the direc—
tion of the short side (y axis) of the guide. .

The equations giving the fields at frequencies above cutoff for the
dominant mode in a rectangular waveguide filled with air are as follows:

E. = E. = B, = 0

E, = A iasingsin (wt -- $2)7

B. = —A cos? cos (wt —- 5:) (5-1)
2 = EEu(I)

where E = electric field intensity, abvolts per cm
B = magnetic field intensity, gauss

w/21r = frequency
t = time

A = an arbitrary constant of amplitude

The quantities a, :c, y, and e have meanings indicated in Fig. 5-1. Sub-
scripts :c, y, and 2 indicate components in these respective directions.
Finally 5, the phase constant, has the value given by Eq. (5-4) below.

Cutafi’ Wavelength in a. Rectangular Waveguide. Field configurations
such as those illustrated in Fig. 5-2 can exist and propagate down a. guide
only when the frequency is such that the free—space wavelength is greater
than a certain critical value termed the cutofi wavelength, commonly
denoted as l... For the dominant mode in rectangular waveguide, the
cutoli wavelength is exactly twice the width a of the guide. That is

Cutoff wavelength based
on free—space conditions — A” _ 2a (5-2)

If the frequency is less than the cutoff value, so that the free-space wave-
length is greater than )a, then the waves attenuate rapidly with distance
down the guide, as discussed in Sec. 5-8, instead of propagating freely.

The fact that a waveguide must have a dimension approaching a wave-
length in order for the fields to propagate limits the practical use of
waveguides to extremely high frequencies. For example, to transmit
300 Me the guide width must exceed 20 in.

Each mode that can exist in a waveguide has its own cutofl’ wavelength
The dominant mode is by definition the particular mode having the
largest possible cutoff wavelength (lowest cutofi frequency). Accord-
ingly, there is usually a frequency range between the dominant and the
next higher mode in which only the dominant mode will propagate
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freely. By so proportioning a waveguide that the frequency to be trans-
mitted lies in this range, all higher modes are suppressed after traveling a
short distance down the guide; thereafter the only fields present in the

guide will be those of a single pure mode, the dominant mode. In the ease
of a rectangular guide so proportioned that a = 21;, such single-mode

operation occurs for free-space wavelengths lying between 2a and a.
This matter is discussed further on page 138.

4.0

-§'
.2

GUIDEIAVELEMTH FREE-SPACEWAVELENGTH VELOCITY(FLIGHTVELOCITYmGUI“ 
ACTUAL WAVELENGTH I AWAVELENGTH AT CUT-OFF L‘-

Fra. 5-3. Variation of phase velocity and wavelength in waveguides as a function of
ratio of actual wavelength to the cutofi wavelength.

Guide Wavelength, Phase Constant, Group and Phase Velocity. The axial

length A, corresponding to one cycle of variation of the field configuration
in the axial direction (see Fig. 5-2) is termed the guide wavelength. It is
related to the free-space wavelength A and the cutofi wavelength a.
according to the equation

. h

Guide wavelength at X,= Vi——.___-_(VM' (5-3)

Results calculated from Eq. (5-3) are plotted in Fig. 5-3. It will be noted
that the guide wavelength exceeds the wavelength in free space, with the

ratio of the two becoming increasingly large as the cutofi wavelength is
approached.

The guide wavelength A, also represents the distance that a wave

travels down the guide when undergoing a phase shift of 21' radians.

Accordingly, the phase constant 5, representing the phase shift per unit
distance traveled by the wave, has the value

beet-(er- «w
Momentum Dynamics Corporation

Exhibit 1013

Page 134

 



Momentum Dynamics Corporation 
Exhibit 1013 

Page 135

132 wsvseuxnss AND CAVITY RESONATORS [Cums

where c is the velocity of light. It will be noted that the phase constant
has the same significance in waveguides as in transmission .

fl The quantity 0, = ft, is the distance the wave travels in 1' cycles (1.9,,
one second) and so has the dimension of a velocity. Tel-med the phase
velocity,‘ it is related to the velocity of light c by the equation

A l

T, ' \/l — (h/hg)’ (5'5)

This relation is plotted in Fig. 5-3. It is seen from Eq. (5-5).that the
velocity of phase propagation always exceeds the velocity of hght. In

Phase velocity; = 2!
Velocity of light a

 
Fro. 5-4. Top view of TE“ field in a rectangular waveguide, showing the effect upon

the guide wavelength h, of reducing the guide dimension a.

particular, as the frequency is lowered so that it approaches the cutofi
value, the phase velocity increases and becomes indefinite at cutoff.

Similarly, as the guide width is reduced so that the cutoff wavelength is
made to approach the free-space wavelength, the phase velocity and h,
increase and 3 decreases. This behavior arises from the fact that, as the
width of the guide is reduced while keeping the frequency constant, the
field configuration required to satisfy Maxwell’s equations is affected in
the manner shown in Fig. 5-4; specifically, compressing the flux sidewise
by narrowing the guide is compensated for by an axial expansion that
increases the guide wavelength and hence the phase velocity.

Currents in Waveguide Walls. The fields inside a waveguide induce
currents that flow on the inner surface of the walls and that can be con-

sidered to be associated with the magnetic flux adjacent to the wall. The

I The phase velocity is an apparent velocity deduced from the rate of phase chanle
with position along the axis. The actual velocity with which a pulse of energy travels
I! termed the group velocity u", and is related to c, and c by the equation 0"!" - 0'-
Thus the group velocity is less than the velocity of light to the extent that the phase
velocity is greater. This matter is discussed further on p. 142.
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relationship between flux density at the surface d the wall and the cur-
rent flowing in the wall is given by Eq. (2-18). The direction in Which

the entrant flows at any point in the wall is at right angles to the direction
of the adjacent magnetic flux. The resulting lines of instantaneous cur-
rent flow in the walls of a rectangular guide for the dominant mode are

illustrated in Fig. 5-5. In the sides of the guide the current everywhere
flows yertically, since the magnetic flux in contact with the side walls lies

in planes parallel to the top and bottom sides of the guide. In the top
and bottom of the guide there are a transverse component of current pro-

portional to the axial component B. of magnetic field, and an axially
flowing current component proportional at any point to the transverse

magnetic field B..

 
Fro. 5-5. Paths of current flow in the walls of a rectangular waveguide when propagat-
ing the dominant mode, showing slots transverse and parallel to the lines of current
flow.

The current in the guide walls penetrates in accordance with the laws
of skin efi'ect, as"given in Eq. (2-9). The depth of penetration is accord-

ingly inversely proportional to the square root of the frequency. At the
very high frequencies at which waveguides are used, this penetration is

very small, and the walls provide practically perfect shielding.
Coupling and Leakage through Slate and Holes in Waveguide Walla. A

hole or joint or slot in the waveguide wall introduces the possibility that
energy will leak from the guide to outer space. When this happens, the

fields inside the guide are affected, thereby introducing an irregularity

with resulting reflection. The coupling thus introduced by a hole in the
guide wall may be either to the electric or magnetic fields inside the guide.
Electric coupling occurs when electrostatic flux lines that would normally
terminate on the guide wall are able to pass through the hole into outside
space. Magnetic coupling results when the hole or slot interferes with

the current flowing in the guide wall. With either type of coupling, both
electric and magnetic fields will be present outside the guide. Thus elec-

tric flux leaking through the hole will induce currents on the outer surface
of the guide that produce a magnetic field. Again, when magnetic flux
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ough a hole, the associated interference with the'flow of currents
filmetfvill produces a voltage across the hole that gives use to onech
field that will extend outside of the guide.

The nature and magnitude of the coupling in any particular case
depend upon the size, shape, and orientation of the coupling hole, and
upon the thickness of the guide wall. The factors involved can be
understood by considering the effects produced by long narrow Islets
oriented in various ways, as illustrated in Fig: 55. Thus slot 1, which is
transverse to the magnetic field inside the gmde and so produces a mini-
mum of interference with currents in the guide wall, introduces little or
no magnetic coupling. It will, however, permit electric coupling 1f the
slot width is great enough in proportion to the wall thickness to permit a
reasonable number of electric flux lines to pass through the slot. How-

ever, if the slot is in the nature of a joint representing two surfacesfitted
together, or is very narrow, then the electric coupling Will be negligible.
Similarly, long, narrow slot 4 produces little magnetic coupling because
it is transverse to the magnetic flux and therefore interferes only negligibly
with the flow of current in the guide wall; neither does it produce electric

coupling because thereis no electric field terminating on the side wall.
Such a slot will therefore have negligible effect even if it is quite long.

In contrast, slot 5, while causing no electric coupling, introduces a sub-
stantial amount of magnetic coupling to outside space through the fact
that its long dimension is parallel to the magnetic field in the guide; this
slot is hence oriented in such a manner as to permit easy escape of mag—
netic flux lines and 'to interfere to a maximum extent with the wall cur-

rents. This coupling is fully effective even if the slot is quite narrow,
since it is necessary only that the slot interrupt the flow of current in the

wall. Slots 2 and 3 in Fig. 5-5 also give rise to’magnetic coupling, because
they interfere with the flow of current in the guide wall. In the case of
slot 2, the amount of magnetic coupling will be greater the farther the
slot is to the side of the center line of the guide. Slots 3 and 2 will also
simultaneously introduce electric coupling to the extent that the slot is

wide enough in relation to the wall thickness to permit the passage of
electric flux. In the case of slot 2, the electric coupling becomes less the
farther the slot is from the center line, because the intensity of the elec—
tric field terminating on the top and bottom sides of the guide becomes
less as the side walls are approached. '

Atteneiatimi. The propagation of energy down a waveguide is accom-
panied by a certain amount of attenuation as a result of the energy dis-
sipated by the current induced in the walls of the guide. Tl: magnitude
of this current at any point is determined by the intensity of the magnetic
field adjacent to_ the wall at that point, as explained above. The resis-
twrty that the induced currents encounter is determined by the skin
effect of the wall as discussed in Sec. 2-4, and is proportional to the square
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root of the frequency and the square root of the resistivity of the material
of which the wallis composed. ‘ '

The/total energy loss in a waveguide can be calculated by summing up
the PR loss in the top, bottom, and two sides of the guide for each unit

area over a length corresponding to a half wavelength. This is done for;
the magnetic field distribution actually present, as calculated by Eqs.

(5-1), assuming the field at any one point varies sinusoidally with time;
under these circumstances the rms value of the field (and current) deter-
mines the time average of the power

loss occurring at the point.l

The energy loss is conveniently ex- I"?
pressed in decibels attenuation per 4;,
unit length. With rectangular guides
the loss has the general behavior illus-

trated in Fig. 5-6. It Will be noted

that for each mode there is a particu- .

lar frequency for which the attenua- § § g g § §
n' c_>‘ ’ 3' 8'

 
tion is a minimum. This is a result N- 8
0f two opposing tendencies. Thus “3 sasousucv. MEGACYCLES
the frequency is lowered the skin FIG. 5-6. Attenuation of different

depth becomes greater, causing the mode! in a Wiculur rectangular

effective resistivity of the walls to :35?" “Wide ”5 i “W” °f_ quency.
decrease. At the same tlme, as the

frequency approaches the cutofi value for the mode in question, the group
velocity decreases. This causes the magnetic fields adjacent to the walls
to become rapidly stronger for a given rate of energy flow down the guide.

5-3. Higher Modes in Rectangular Waveguides. The dominant mode

is only one of an! infinite series of field configurations that can exist in a
waveguide. Fields for several of the higher-order modes that are possible
in a rectangular waveguide are illustrated in Fig. 5—7.2 In addition to
TE modes, these include TM types, in which the magnetic flux lines lie in

planes that are at right angles to the axis of the guide.
These various modes are designated by double subscripts, such as

TE“), TE”, TE“, TE..." TM“, TM”, and TM...“ In this system of
nomenclature the first subscript denotes the numberof half-period varia-

tions of the electric (or magnetic) field in the transverse plane in the direc-
tion of the long side of the rectangle (along the 1: axis in Fig. 5-1); the

second subscript denotes the number of half-period variations of the same
field in the direction of the short side of the rectangle (along the y axis in

Fig. 5—1). ,

‘ Formulas for the attenuation of difierent modes in rectangular waveguides are
given by Moreno, op. cit, chap. 8; they are also to be found in most handbooks.

' Equations for the fields of the various higher modes are to be found in many
reference books; for example, see Moreno, op. cit, p. 115.
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ode has its own outofi‘ wavelength, guide wavelength, plumcongregtmand phase and group velocities. Equations (5~3) to (5-5) pvmg
relations’between these quantities apply to the higher-order modes as well
as to the dominant mode [except for the right-hand form of Eq. (5-4)].
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Flu. 5-7. Field configurations in the transverse plane for the first four higher modes in arectangular waveguide.

The cutoff wavelength in the general case is given by the relation
 _ 2a

*" ‘ «(17m-(1W ‘5'“)

Here a and b have the significance shown in Fig. 5-1, and m and n are,
respectively, the first and second subscripts describing the mode. Equa-
tion (5-1), giving the cutoff wavelength of the dominant mode, is a special
case of Eq. (5-5), in which m = 1 and n = 0. Results from Eq. (5-6) are
tabulated in Table 5-1 for a few of the lowest-order modes for rectangular

TABLE 5-1

CUTOFF WAVELENGTHS IN WAVEGUIDES 

 
 

 Rectangular guide Square guide Circular guide
  

  
  

  
     

a :- 2b a = b radius - r

Mode Cutofl Mode Cutoff. Mode (3qu
wavelength wavelength wavelength

TE" 2“ TE" 2“ TE" 3.427
TE" e '1‘on 241 TM“ 2. 611'
TE" 0 TE" 1. 411 TE“ 2 .067
TE" 0.89“ TM” 1.4a TE“ 1.647
TM“ 0.890 TE]. a TM" 1. Mr
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guides that are square (a/b = 1), and for the shape a/b 2: 2 that is cus-
tomarily used. .

Generation of Diferent Waveguide Modes. Any actual configuration of

electric and magnetic fields existing in a waveguide can be regarded as

being the result of a series of modes that are superimposed upon one
another. If the magnitude, phase, and position along the axis of each
individual mode is properly chosen, then the sum of the fields of the

individual modes can be made to equal any actual electric and magnetic
fields that can be present. Modes in waveguides are thus analogous to
the harmonics of a periodic wave, since a periodic wave of arbitrary shape

, sum/r new I‘- d
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Fm. 5-8. Launching of TE"; wave in a waveguide excited by a coaxial line.

can always be considered as being represented by the sum of a series 'of
properly chosen harmonic components.

The magnitude of each component mode associated with a given con-
figuration of fields is determined by the character of the field distribution
involved. For example, consider the arrangement illustrated in Fig. 5-8,
where a concentric line delivers energy to a waveguide as a result of the

electric and magnetic fields produced in the waveguide by the extension
cf of the center coaxial conductor that extends from the bottom to the
top of the guide. Current in ef generates a magnetic field in the guide,
which lies in planes parallel to the top and bottom sides of the guide. At
the same time, the voltage drop along cf, and the consequent difference in
voltage thereby produced between the top and bottom of the guide, result
in electric fields being produced as shown. This configuration suggests
the TE“. mode. in that the magnetic field lies in planes parallel to the top

and bottom of the guide, while the electric field is vertical and is maximum
midway between the sides of the guide. Thus the TE". is the largest
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single component in the field configuration of Fig. 5-8. The dlfierenag
between the field configuration of this mode and the actual field presents;
then accounted for by the presence of a successxon of higher-order modes,

each of which is of smaller amplitude than the TE", component. These
higher-order modes will be primarily TE types, since exarmnatlon of Fig.
5~8 indicates that, except to a very minor extent, the electric field 15
everywhere almost exactly transverse to the guide axu. Again, Since

the coupling element ef is located midway between .the sides, the system
is symmetrical with respect to the center of the guide; this means that,
for this particular situation, no mode can be present that is unsymmetrical
about the guide center; i.e., modes such as the TE“ or TE” cannot exrst.

X

ll—’

ll
X

SIDE VIEW SECTION THROUGH X)!

Pro. 5-9. Rectangular waveguide with vertical stub posts extending into the guidefrom the top and bottom sides.

While the modes initially present in a. waveguide are determined by the
field configuration used to excite the guide, new modes are generated
whenever the field is distorted. For example, consider the situation in
Fig. 5—9, where an obstacle in the form of a pair of metal posts is present
in the guide, and assume that 8. TE“, mode is traveling down the guide.
The posts distort both the electric and magnetic fields, which, therefore,
in the vicinity of the posts can no longer have the configuration cor-
responding to a pure TE“, mode. The resulting distorted configuration
can. however, he represented by a TE“, mode of different amplitude from
that which would be present in the absence of the posts, plus super-
imposed higher—order modes.

It is thus seen that an irregularity transforms a portion of an original
mode into new modes. This is true irrespective of the exact nature of the
irregularity, which, for example, can be a bend. a twist, a constructional
irregularity, eta, instead of a post. Also any arrangement for absorbing
energy from the waveguide (i.e., a load termination) can in general be
expected to distort the field and generate new modes unless special care
is taken to avoid this result.

Suppression of Unwanted Modes. An attempt is usually made to
operate waveguides so that only a single pure mode is present. In this
way coupling systems and terminations can be designed on the basis of it
definitely known type of field pattern. In most cases, the dominant mode
is preferred because the guide then has the smallest possible dimension,
and the undesired modes can be very simply elimlnated.
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A dominant made, free of higher-order modes, can be obtained by

taking advantage of the fact that the dominant mode has the lowest cut-
off frequency of all possible modes. Thus, by proportioning the guide so
that it is large enough to transmit the dominant mode while too small to

permit propagation of any other mode, the higher-order modes do not
travel down the guide, but rather are confined to the region where they

are generated.
In rectangular guides, mode suppression of this character is most efiee-

tive when the guide is so proportioned that a/b = 2 in Fig. 5-]. With

these proportions, there is a two-to-one frequency range over which only
the dominant mode propagates (see Table 5—1, page 136). In contrast, if

the guide were made square, the TE.“ mode would have the same cutoff
wavelength as the TE” mode, and there would be no frequency range
over which only a single mode could propagate. Because of considera-

tions such as this, rectangular guides are practically always proportioned
so that a/b = 2, as this ratio gives the best mode separation of all possible

proportions.
Modes which are beyond cutoff, and so cannot propagate, are some-

times termed evanescent modes. They represent localized field distribu-
tions, i.e., induction fields, that introduce reactive effects but do not
carry energy away from the point of origin as does the dominant mode.

For example, if the waveguide in Fig. 5-9 is so proportioned that only the
dominant mode can propagate, the end result of the field distortion intro-

duced by the post will be equivalent to introducing an irregularity in the
waveguide that causes a portion of the dominant wave to be reflected as
though from a reactive load. In addition, there will be induction fields

in the immediate vicinity of the irregularity that represent reactive

energy obtained, from the incident dominant mode. However, if in
Fig. 5-9 the waveguide were made sufficiently large to permit some of the
higher-order modes produced by the post to propagate in the guide, these
modes would then travel away from the post, carrying energy with them

that was derived from the incident dominant mode. The remaining
modes, of such high order as to be unable to propagate, would still be
evanescent modes, and would give rise to reactive effects.

Another method of suppressing undesired modes consists in modifying
the guide in such a manner that fields of undesired modes are interfered

with, while fields of the desired mode are not affected. An example of
such a mode filter is illustrated in Fig. 5-10. Here the metal vanes do not
affect the fields of the TE... modes, but do interfere with both the electric
and magnetic fields of any TM or TE,,.. mode that might be present.

Thus such an arrangement is an effective means of suppressing the trans-
verse magnetic mode in a rectangular waveguide.

An obvious means of mode suppression is to arrange matters so that as

far as possible the undesired modes are never generated. This means
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‘ ' the we ide in such a manner that the initial field configura-ti‘ogtzgembles mowed mode as much as. possible, and then a .
irregularities, including terminations, that Introduce drstortlons 1n the
field pattern. For example, a means of launching the waves in the guide
that produces only transverse vertical electric fields that do not vary in

strength in the vertical direction will not generate any TM mode, or any
of the TE... series of modes. Fur-

ther, if the launching system is also
symmetrical with respect to the
center of the long side of the rec-
tangular guide, the only modes

present will be of the TE... type,
where m is odd.

5-4. Physical Picture of Prop-
”m V‘NES- agatlon in Rectangular Wave—

Fxo. 5-10. Simple mode filter. guides. It is possible to explain
many of the properties of waveguide propagation by means of a simple
physical picture. To do so, start by considering two parallel conducting
planes; these planes will later define the top and bottom walls of a
rectangular waveguide. A plane radio wave such as illustrated in Fig.
l-l will propagate freely in the space between these surfaces provided
the electric field is vertical. Such a wave travels with the velocity of
light, and its electric and magnetic fields are everywhere in time phase.
Some of the details involved are portrayed in Fig. 5-11. This wave can

  
 
f/IIIIII/IlllllllllllIIIIIIIIIIl/IIIIIIIIIII

‘,[III/Ilflls'rtltlll/trltlllltaIllllllll

\\  

 
 
 

‘\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\
 

 

  
(a) FRONT VIEW, (wav: APPROACH-

ING OBSERVER) (bl SIDE VIEW

Fm. 5-11. Electric and magnetic fields of a plane radio wave that is propagating
between two parallel conducting planes.

also be represented by successive crests spaced a wavelength apart, as
illustrated in Fig. 5-120, where a is the direction of travel of the wave with
respect to some reference axis. A second similar wave, differing in that
the direction of travel with respect to the same reference axis is —0, is
illustrated in Fig. 5-12b.

If now both waves are simultaneously present in the space between the
conducting planes, one obtains the situation pictured in Fig. 5-120. A
close examination of Fig. 5-121: shows that if the two waves have equal
amplitudes, then in vertical planes indicated by the heavy dotted lines,
cc and d, the electric fields of the two waves are equal and opposite and
so cancel. The transverse components of the magnetic fields likewise
cancel at cc and dd, causing t e resultant magnetic field at these planes to
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be parallel to lines cc and dd. Vertical conducting sheets can accordingly
be placed along bb and cc without affecting either magnetic or electric
fieldsiiiany respect. These vertical
conducting surfaces, together with
the conducting horizontal planes,
define a rectangular waveguide with
conducting walls. The fields inside
this guide satisfy the boundary con-
ditions imposed by the walls, and
also satisfy Maxwell’s equations in

the space inside the guide. The re-
sultant field configuration obtained

by adding the fields of these two
plane waves that travel at angles 0
and —0, respectively, is the TE“.
mode; this is illustrated by the dotted
lines in Fig. 5-120, which show the
resultant magnetic flux and are seen

to correspond to the magnetic-flux
distribution given in Fig. 5-2.

Study of Fig. 5—120 shows that it
is -now possible to consider that the
fields inside the waveguide are the
result of a pair of electromagnetic
waves that travel back and forth

between the sides of the guide,
following a zigzag path as illustrated
in Fig. 5-12d. "Each time such a
wave strikes the conducting side
wall, it is reflected with reversal of

the electric field, with an angle of re-
flection equal to the angle of inci-
dence, as illustrated.

The guide wavelength A, for the
situation in Fig. 5-120 is the distance
along the axis between points in the
guide where the positive crests
coincide. It will be noted that the

 F05!77V!
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FIG. 5-12. Steps involved in building up
a physical picture of propagation in a
rectangular waveguide.

guide wavelength A, exceeds the free-space wavelength A of the plane wave
by an amount that will increase as 0 becomes larger. Various relations

follow from the geometry of Fig. 4412c; thus

cos 0 - % (5-70)

tan a if? - 3'7; (5.71;)
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Combining to eliminate 0 gives
A

”' = VT“—(mar *‘ (M)

This is equivalent to Eq. (5-3) when it is noted that A. = 2a.
Examination of the geometry of Fig. 5-126 reveals that, if the distance

betWeen successive crests is increased (i.e., free-space wavelength A

increased), then if the electric fields are to cancel along planes cc and dd, it
is necessary that 0 be increased. As the free-space wavelength approaches
closer and closer to the cutoff wavelength, 9 thus becomes increasingly

large, and the zigzag path of the waves becomes increasingly transverse,
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Fm. 5-13. Paths followed by a wave
traveling back and forth between the
sides of a waveguide for values of free-
space wavelengths differing from the cut-
off wavelength by various amounts.

as illustrated in Fig. 5-13.
The fact that the guide wave-

length ), in Fig. 5-126 exceeds the
free-space wavelength causes the
phase velocity in the rectangular
guide to exceed the velocity of

light. At the same time, the in-
dividual waves themselves advance

more slowly down the guide than
the velocity of light, since the indi—

vidual waves travel by a zigzag
path. This rate at which the

waves progress down the guide is
the group velocity and corresponds
to the rate at which a pulse of
energy would travel. As the free-

space wavelength approaches more
closely the cutoff wavelength of the
guide (i.e., as A —> 2a), the phase

velocity becomes progressively larger and thegroup velocity progressively
less. In the limit, at the cutoii' wavelength, the waves travel back and

forth between the sides of the guide at right angles to the axis (0 = 90°).
Under these conditions nothing at all travels down the guide, so the group
velocity is zero, while the phase velocity is infinite.l

This picture that has been developed of wave propagation in a rectan-
gular guide can be readily extended to take into account the higher-order
modes. For example, in Fig. 5-12c, it is apparent that there are also
other vertical planes in which the electric fields of the two component
waves cancel exactly; one such plane is indicated by ea in Fig. 5-140. If

1 An excellent discussion of the significance of group and phase velocities is given
by J. A. Stratton, ”Electromagnetic Theory." pp. 330—340, McGraw-Hill Book
Company, Inc; New York, 1941; also see H. H. Skilling, “Electric Transmission
fines,” pp. 369—373, McGraw-Hill Book Company, Inc., New York, 1951.
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now vertical conducting sheets are placed at cc and ac instead of ac and

dd, one again has formed a rectangular waveguide inside of which are
fields (illustrated in Fig. 5-141) and c) that satisfy all of the required con-
ditions; this particular configuration is the TEM mode.
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Fm. 5-14. Physical picture showing how the TE“ mode arises in a rectangular
waveguide.

5-5. Circular Waveguides. It might be thought that waveguides
with circular cross sections would be preferred to guides with rectangular

cross sections, just as circular pipes are commonly used for carrying water
and fluids in preference to rectangular pipes. However; circular wave-
guides have the disadvantage that there is only a very narrow range
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Fm. 5-15. Field configuration of the dominant TE“ mode, and of the first few higher-
order modes in a. circular waveguide.

between the cutoff wavelength of the dominant mode and the cutofi

wavelength of the next higher mode. Thus the frequency range over
which pure mode operation is assured is relatively limited. Also, because
of its circular symmetry, the circular guide possesses no characteristic that
positively prevents the plane of polarization of the wave from rotating
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about the guide axis as the wave travels. As a result, circular wave-

guides are used only under special circumstances, for example, where it is
necessary to introduce a rotating joint into a waveguide system.

Field configurations for the more important circular modes are illus-

trated in Fig. 5-15. As with rectangular guides, these modes may be
classified as transverse electric (TE) or transverse magnetic (TM),
according to whether it is the elec—
tric or magnetic lines of force that
lie in planes perpendicular to the
axis of the guide. The diflerent

modes are designated by a double

subscript system analogous to that
for rectangular guides.l

The wavelength corresponding to
cutofi' for a particular mode in a
circular guide is proportional to the
diameter of the waveguide, with
the exact relationship being given
by the equation

YENUATION,dbPERFT 
FREQUENCY, MEGACYCLES

» 2" FIG. 5-16. Attenuation as a function of= = _ frequency of the dominant and first
Cutoff wavelength A” It higher-order mode in a particular circu-

(5.9) lar waveguide with copper walls.

where r is the guide radius and It is a constant that depends on the order
of the mode.2 Results of Eq. (5-9) for the first few modes are tabulated
in Table 5—1.

The TE“ circular mode (see Fig. 5-15) has the longest cutofi‘ wave-

length, and is accordingly the dominant circular mode. The next higher
circular mode is the TM“ mode, for which the cutoff wavelength is 0.76

times that of the dominant mode. The corresponding ratio is 0.5 for the
first two modes in a rectangular guide with a/b =2 2. Thus the ratio of

frequencies over which only the dominant mode will propagate is over

50 per cent greater for the rectangular guide than for the circular guide.
The guide wavelength A, in a circular guide is greater than the wave-

length A in free space, just as in the rectangular guide. In fact, Eq. (5-3)
applies to circular as well as to rectangular guides. The velocity of phase

propagation is A,/)\ times the velocity of light in all cases.
A wave traveling down a circular guide is attenuated as a result of

1 For example, in the TM.... mode, the magnetic field is circular, and m is the number
of cylinders, including the boundary of the guide, to which the electric vector is
normal. Rules for determining the subscripts for the various possible cases are given
in “Standards on Radio Wave Propagation—Definitions of Terms Related to Guided
Waves," Institute of Radio Engineers, New York, 1945.

' For TE... waves, u is the mth root of the equation J:(z) - 0, and for TM.. waves,
it is the mth root of the relation J.(z) - 0.
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power dissipated in the walls by the induced wall currents, exactly. as in
the case of a rectangular guide. Curves of attenuation as a function of
frequency are given in Fig. 5—16 for the first two modes in a particular
guide. These are similar in character to the corresponding curves of
Fig. 5-6 for the rectangular guide, in that the attenuation passes through
a minimum at a frequency that is moderately greater than the cutoff

frequency.1 . _
5—6. Reflected and Incident Waves, Field Distributions, and Stand-

ing-wave Ratio in Waveguides. As indicated previously, the field con-
figuration in the waveguide behaves in the same way as a. wave on a trans-
mission linc. That is, the electric and magnetic fields associated with a

particular mode, such as the ’l‘Em mode, travel down the guide at the
phase velocity. At the end of the guide, or at an irregularity, a reflection
is produced that creates a similar field configuration traveling in the
opposite direction. As in the analogous transmission line case, the reflec-
tion coefficient at a point can be defined as the ratio of the reflected to
incident wave at that point in the guide.

The superposition of incident and reflected waves in a waveguide gives
rise to amplitude distributions along the guide that are of exactly the
same character as the voltage and current distributions encountered in
transmission lines (illustrated in Fig. 4-4) provided one interprets the

electric and magnetic fields of the guide as being equivalent, respectively,
to the voltage and current of the transmission line. Thus a short-
circuited receiver (zero voltage or zero electric field at the receiving end of
the system) gives a distribution in which the resultant electric field is

maximum at distances from the load corresponding to an odd number of
quarter wavelengths based on A," the guide wavelength. At the same

time, the resultant magnetic field is maximumht the load, and at distances
from the receiver corresponding to an even number of quarter wave-
lengths. Rcsistivc loads of the incorrect value to absorb the incident

were completely will give partial reflections, but with the maxima and
minima in the distribution occurring at the same places as in the cor-

responding open- and short—circuited cases. On the other hand, load
impedanccs that have a reactive component will have the minima dis-
placed, exactly as in the case of the transmission line.

The extent to which a reflected wave is present in a waveguide can be
conveniently expressed in terms of a standing-wave ratio. As applied
to a waveguide, the standing-wave ratio has the same significance and

‘ An exception to this otherwise general behavior is the TE." mode, sometimes called
the “smoke ring" mode, in which the attenuation decreases steadily with increasing
frequency and becomes zero at infinite frequency. This result comes about through
the fact that in this mode the magnetic field adjacent to the walls of the guide becomes
progressively weaker as the ratio of free-space to cutoff wavelengths becomes less.
In the limit. at infinite frequency, this magnetic field becomes zero, resulting in zerocurrent induced in the walls.
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usefulness as in the analogous transmission-line situation, provided

that one remembers that the magnetic and electric fields in the guide
correspond respectively to current and voltage in the transmission
line.

Any irregularity in a waveguide will give rise to reflections and hence

will establish standing waves, just as does a load impedance that is not
matched to the waveguide. Thus bends, twists, joints, probes, mechan-
ical imperfections, pieces of dielectric, etc., all give rise to reflections, the

magnitude of which can be expressed in terms of the resulting standing-
wave ratio.1

Transmission-line Equivalent of a Waveguide System. In dealing with a
waveguide system possessing an irregularity, it is commonly convenient

to regard the arrangement as though it were a transmission line possessing
a corresponding irregularity. The characteristic impedance of this equiv-
alent transmission line can be taken as the waveguide impedance defined
in whatever manner is most convenient (see below). The impedance of

the transmission-line irregularity2 (and also the load impedance) is then
assigned the value such that in relation to the characteristic impedance
the resulting reflection coefficient associated with the transmission-line
irregularity will be the same as the reflection coefficient actually produced
in the waveguide by the irregularity. The standing-wave situation exist-
ing on the equivalent transmission line is then the same in every respect
as is actually present on the waveguide; an example is given on page 149.

5-7. Impedance Relations in Waveguides. Waveguide Impedance. In

a transmission line, one can define a characteristic impedance that is

determined by the geometry of the line and which holds for all frequencies.
In contrast, there are several different ways in which a “characteristic

impedance” cari' be defined for a waveguide, and each of these definitions
gives a different numerical result. In addition, the waveguide impedance

for a given guide will be a function of frequency irrespective of how
defined.

One commonly used approach is to define the impedance associated
with a waveguide as the ratio of the transverse components of the electric

to magnetic field strength. This is termed the wave impedance; for a
guide with air dielectric it is given by the formulas

For TE waves:

Wave impedance = 3771;} ohms (5-10)

1The quantitative effects produced by bends, twists, etc., are summarized by
N. Elson, Rectangular Waveguide Systems, Wireless Eng., vol. 24, p. 44, February.
1947; also see Moreno, op. cit, pp. 162-169.

’ In many cases an irregularity is more satisfactorily represented by a simple T or 1
network, or a simple resonant circuit, than by a single circuit element. Examples of
such cases are given in Figs. 5-19c and 5-28.
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("or ’I'M waves: A
Wave impedance = 377 3‘— ohms (5-11)I

Here A and k, are the free-space and guide wavelengths, respectively.
The wave impedance has the desirable feature that it 18 independent of
the physical proportions or shape of the guide, or of the transmission
mode, except in so far as these afl'ect the guide wavelength M. The con-
cept of wave impedance is particularly useful in the study of waveguide

discontinuities and loads. .
Another approach is to define the impedance of a waveguide as the

ratio of the maximum value of the transverse voltage developed across the
guide to the total longitudinal current flowing in the guide walls for a

traveling wave when no reflected wave is present. On this basis, the
waveguide impedance Z, for the 'l‘Em mode in an air-filled rectangular
guide is

‘l'

Zn = 377% (5.12)lOl QIB‘

This definition of waveguide impedance is useful in the design of systems
for coupling waveguides to coaxial lines, such as illustrated in Fig. 5-8.
It must be used with some caution, however, because in contrast with
transmission lines, the fields of a guide are not uniformly distributed over
the cross section.

Impcdancc Matching in Waveguides. Reflected waves are generally to
be avoided in waveguides for exactly the same reasons that they are
avoided in transmission lines. One method of achieving this result in a.
waveguide is to arrange matters so that the load impedance that is used
will completely absorb the incident fields exactly as they arrive, so that
there is nothing left over to be reflected; this corresponds to characteristic
impedance termination in a transmission line. A second approach to the
problem is to create a reflected wave near the load that is equal in magni-
tude but opposite in phase from the wave reflected by the load; in this
way the two reflected waves cancel each other. Most commonly both
methods of impedance matching are used simultaneously. That is, the
system is initially so arranged that the load provides as good an imped-
ance match as is possible to obtain with reasonable effort, and then what
reflected wave still remains is eliminated ‘by the use of an impedance-
matching system that introduces a neutralizing reflection.

Numerous waveguide arrangements have been devised for introducing
a controllable reflection. Some of these are analogous to the impedance-
matching arrangements employed in transmission lines (described in
Sec. 4-11), while others are unique to waveguides.

The waveguide analogue of the stub line of Fig. 4-16 is the stub guide
or T section illustrated in Fig. 5-17. Two possibilities are to be dis—
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tinguished.‘ At a the reactance at the input of the stub guide is effec-
tively in series with the equivalent transmission line of the guide, while
with the stub as in b, the reactance introduced by the stub is.in shunt in

the equivalent transmission line circuit of the guide. This is shown
schematically at c and d, respectively. The magnitude of the reflection
introduced by such a stub guide is controlled by the position of the short-
circuiting plunger in the stub guide. The phase of the reflected wave

produced by the stub is determined by the position of the stub in relation

  SHORT/NE
PL ”NEE”

PLWEER

(1) SERIES 1' (D) SHUNT T

sears/vet 0F REACTANCE 0F
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Flo. 5-17. Waveguides provided with tuning stubs in arrangements analogous to that
of Fig. 4-18, together with equivalent transmission-line circuits.

to a minimum of the standing-wave pattern existing in the absence of the
stub. .Thus, to eliminate a reflected wave using a single stub, it is neces-
sary to be able to vary not only the effective length of the stub, but also

its distance to the load. This latter requirement makes a single stub
arrangement unsatisfactory in systems that must be adjusted by trial
and error, since there is no simple way that the position of the stub can
be continuously varied. When trial-and-error adjustment is required,
one can, however, employ two waveguide stubs spaced approximately

nh,/8, where n is odd, to give the waveguide equivalent of the two-stub
tuner of Fig. 4-18.

An alternative to the waveguide stub is an adjustable screw or probe

‘ The arrangements at a and b are often referred to as E and H stubs, respectively,
because the axis of the stub is parallel to the E lines and H plane, respectively, in the
main guide.
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that projects into the waveguide in a direction parallel to the electric
field, as illustrated in Fig. 5-18. Such an arrangement has the Paine
effect as shunting a capacitive load across the equwalent tranaimssion
line of the waveguide, with the susceptance of this capacitive load increas.
ing with penetration into the guide up to the point where the equivalent
penetration is a quarter of a wavelength. 1 Thus the extent to which such

a probe (or screw) projects into the
waveguide determines the magni—
tude of the compensating reflection,

while the position of the probe with
respect to the standing—wave pat-
tern that is to be eliminated de—

termines the phasing of the reflected
wave. When it is necessary that

Fin. 5-18._Adjustablc screw (or probe) the axial position of the probe or
for producing an adjustable reflection for , ,
impedance-matching purposes. screw be adJustable experimentally,

this can be achieved by providing

the guide with a longitudinal slot located in the middle of the broad side,
as shown dotted in Fig. 5-18. As pointed out in connection with Fig. 5-5,
such a slot (labeled 1 in this figure) produces a minimum of interference
with the fields inside the guide, and has little tendency to radiate energy.
Where it is desirable to avoid the use of a slot, one can instead employ
two spaced probes in an arrangement analogous to that of Fig. 4-18.

E E
ME TAL 08573461 5‘

41-34NewsI

“ll INDUCTIVE WINDOW (bl CAPACITIVE WINDOW (Ci POST (INDUCTIVE)

Fin. 5-19.. Examples of obstacles used in waveguides to introduce reflection, together
With equivalent transmission-line systems.

 

    
    
 

Another impedance-matching system consists of a thin metallic barrier,
or “ window,” placed at right angles to the axis of the guide, as illustrated
in Fig. 5-19. The arrangements at a and b introduce, respectively, induc-
tive and capacitive shunts in the equivalent transmission-line circuit of
the waveguide as shown, the magnitudes of which depend upon the size

‘ When the equivalent penetration is exactly a quarter wavelength, the probe
becomes resonant. The system then acts as though a series resonant circuit of low
resistance was connected in shunt with the waveguide; time at exact resonance the
probe acts as a shunt of very low resistance.
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of the opening. A conducting cylindrical post going from top to bottom
of a rectangular waveguide, as at c, produces an inductive shunt suscept-

ancel having a magnitude determined by the size of the waveguide, the
diameter of the post, and the post position in the transverse plane. Still

another type of obstacle is illustrated in Fig. 5-9. Reflections introduced
by obstacles such as illustrated in Fig. 5-19 cannot be conveniently

adjusted experimentally. These arrangements are of practical use, how-
ever, in systems where a reflected
wave of known and unvarying - use 0
character is to be neutralized.a use a .

Impedance Matching with Resist-
ive Loads. There is the theoretical

possibility of matching a resistance '°" “5‘” snonrézlgcwrsa
load directly to the waveguide in

such a manner as to avoid a re- _flected wave; this eliminates the

need of introducing a compensating k—mlg/l __,i
reflection. Thus consider the situ— SIDE VIEW ln-add/

ation illustrated in Fig, 5—20, case a, FIG. 5-20. Resistance load connected
where the load consists of a. resist- between top and bottom sides of wave-
ance RI. connected between the top gum.
and bottom planes of the guide midway between the sides, and an odd
multiple of a quarter of a guide wavelength away from a short circuit.’
If the load resistance RI, is now equal to the waveguide impedance Z. as

defined by Eq. (5-12), then the incident wave will be absorbed without
reflection. If the resistance R; that is to be used difiors from the value

called for by Eq. (5—12), one can change the guide impedance as required

1Actually the equivalent circuit will be a simple shunt inductance only when the
diameter of the post is not more than a few per cent of the guide width. With thicker
posts, the equivalent circuit includes series capacitances in addition to the shunt
inductance, as shown dotted in Fig. 5-195. These capacitances become larger (i.e.,
have lower reactanec) the smaller the post diameter and have negligible reactance in
the case of very thin posts The T network shown in Fig. 5-19: will accurately
represent the behavior of even a very thick post over a wide range of frequencies
when the inductance and capacitances of the equivalent section are properly chosen.
Similarly, if the strips forming the windows at a and b are not thin, the obstacle is
represented more accurately by a T network than by a single shunting reactance.

‘ Quantitative analysis of the structures shown in Fig. 5-19, and also of other forms
of obstacles, is given in “Waveguide Handbook" (vol. 10, Radiation Laboratory
Series, chap. 5, McGraw-Hill Book Company, Inc., New York, 1951; also see Moreno,
op. cit, chap. 9.

' The short circuit placed an odd multiple of a quarter of a guide wavelength distant
from the load is necessary because if the guide is continued indefinitely beyond the
resistance, then R]. would not merely as a shunt irregularity in the guide. Alter-
natively, if the guide simply ended at the point where the resistance was connected,
then part of the energy of the incident wave would be radiated from the open end of
the guide rather than being dissipated in the resistance.
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by varying the height b of the guide, using a gradual taper as illustrated
in Fig. 5-2la to avoid introducing a reflection. A variation consists in
tapering only the center portion of the guide to form a ridge, as in Fig.
5-211». .

An alternative arrangement, suitable for use when the load resistance
is less than the guide impedance,
consists in placing RI. ofi center as
indicated by case b of Fig. 5-20.
This subjects R1. to less voltage

__I than case a, and so gives an im-51mm SECTION In— . .
n, pedance-transformmg action.1 A

la), GUIDE WITH TAPERED HEIGHT Similar efiect is also Obtained by
making the distance from Rx. to the
short circuit differ from an odd

multiple of a quarter wavelength.
In actual practice, arrangements

of the type illustrated in Fig. 5-20

usually introduce a discontinuity
m cum: wn’u unease moss ‘mac: capacitance. When this isthecase,

F19. 5-21. Waveguides terminated with no adjustment of the resistance
”mum“ Md; match will eliminate completely the
reflected wave; to achieve such a result some additional impedance-
matching adjustment, such as obtainable with a probe or a stub guide,
must also be used.

Nonreflech'ng Loads. In systems involving waveguides it is often neces-
sary, particularly in measurement work, to provide a termination that

 

  

 “~~--~

”In”

[ESIDE VIEW END VIEW  
Ia) LOSSY vanzs m LOSSY WEDGE or DIELECTRIC on POLYIRON

Fla. 5-22. Examples of nonreflecting terminations for waveguides.

will completely absorb any wave going down the guide, irrespective of the
exact frequency of this wave, and without ahy adjustment being required.

This result is most conveniently achieved by absorbing the wave in a
lossy section tapered so gradually as to introduce no reflection. Exmples
of such sections are illustrated in Fig. 5-22; these involve lossy vanes, or
wedges of lossy dielectric or iron dust core material, tapered on the enter-

' The oil-center connection causes the resistive impedance that the 'd‘ . gut e presents
to the coaxial line to be less than Eq. (5-12) by the factor eos' (re/a), where a: is the
distance ofi' center and a is the guide width.
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ing edge, and having a suficient length to absorb an entering wave almost
completely.‘

5-8. Waveguide Behavior at Wavelengths Greater than Cutofi.’

When a waveguide is excited at a wavelength greater than cutofi, the
behavior is entirely diflerent from the behavior at wavelengths less than

cutoff. In particular, the electric and magnetic fields now decay expo-
nentially with distance ata very much more rapid rate than is accounted

for by energy losses in the walls. The rate of this attenuation, moreover,
depends only on the ratio AA. of the free-space wavelength to the cutofi
wavelength; unlike waves shorter than the cutoff wavelength the attenuav
tion is independent of the material of the guide walls. The exact law of
attenuation can be derived by application of the fundamental field equa-
tions, and is

Attenuation in __ 54.6 A, 'db per unit length} I a " T \il ‘ (f) (5-13a)
When the actual wavelength is much greater than cutofi (x > > M), then

a, a _-_ (5-13b)

TABLE 5-2
ATTENUATION FORMULAS FOR. CUTOFF A'I'l'ENUATORS

Attenuation, db

Mode per unit length v.1“ 0‘ M

Circular waveguides of radius r

 
 

 

 

Rectangular guide of width a and height b

 
TE"

TE“ and TM“

 

‘ For further discussion of nonreflecting terminations for waveguides see F. E.
Terman ahd J. M. Pettit, ”Electronic Measurements,” p. 639, McGrsw-Hill Book
Company, Inc., New York, 1952.

‘ The original paper on this subject was by Daniel E. Harnett and Nelson P. Case
The Design and Testing of Multirange Receivers, Free. IBE, vol. 2%, p. 578, June. 1935.
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Here A is the free~space wavelength and "o is the _cutofi wavelength,
measured in the same units of length used in expressing the attenuation.
Equations (5-13) apply to all "10‘1“ 0f propagation in all t5?“ 0f wave-
guides. The resulting relation between the rate of attenuation “and the
guide dimensions is given in Table 5-2 for cases of particular interest,

Frequency enters into the expres-
sion for attenuation only through the
term MA in Eq. (5-13a). When this
is small, the attenuation is substan-

tially independent of frequency.‘ As
the wavelength approaches the cutofl'
value, the rate of attenuation will

diminish in accordance with Eq.
(5-13a). This is illustrated in Fig.
5-23. As cutolf is very closely ap-
proached, a rapid transition takes
place, as shown, and when the wave-

length is less than cutoff, the attenua-
'°“_ ‘ tion assumes the comparatively low

scrum. WAVELENGTH _ _)._ value associated with wall losses.

“VE'ZENGTH f” FUN” "‘ Waveguides operated at wave-
fr‘ififitxztlié‘tifi$23323, lengths greater than cutofi. termed
in the vicinity of cutoff. waveguide attenuators, are oftenused as

attenuators in signal generators. The

usual arrangement for this purpose, illustrated in Fig. 5-24, involves
exciting the guide, which may be either circular or rectangular, with a
coil, the axis of which is at right angles to the axis of the guide. The
pickup system then consists of a similar coil with its axis parallel to the

RELATIVE“Tswana!m40PERcm 
OUTPUT  [XCITM can PICKUP can.

Fm. 5—24. Schematic diagram of typical waveguide attenuator.

axis of the exciting coil. Such an arrangement uses the TE“. mode in the
rectangular case, and the TE“ mode when the guide is circular.’ The

lThis neglects the variation with frequency oi the depth of current penetration
into the wall. To obtain maximum accuracy when using Eqs. (5-13), the efi’ective
internal dimensions of the waveguide should be taken as extending into the walls a
distance equal to one-fourth the skin depth as given by Eq. (2-10). Since this skin
depth varies with frequency, the value to be assigned A. will likewise vary with fre-
quency, increasing slightly as the frequency is reduced, and hence introducing a small
additional cause of variation of attenuation per unit length.

' These are the dominant modes and are employed because they attenuate more
slowly‘ with distance than do higher-order modes. Hence when the dominant mode
5' initially mixed to some extent with higher-order modes, then the mode becomes
more-aw pure as one goes down the guide away from the exciting coil.
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output of such an attenuator is varied by adjusting the distance between
the pickup coil and the exciting coil. The change in output produced by
a known displacement of the pickup coil can be calculated from the

waveguide dimensions, using Table 5-2 or Eqs. (5-13). The waveguide
operated at wavelengths greater than cutoff hence provides a simple and
reliable way of introducing known changes in the output.1

5-9. Miscellaneous Aspects and Properties of Waveguides. Coupling
betwecm Coastal Lines and Waveguides. Numerous arrangements have
been devised for coupling a coaxial transmission line to a waveguide so
that pOWer may flow from one transmission system
into the other. A typical example’ is illustrated in

Fig. 5-8. As viewed by the coaxial transmission line,
the waveguide in this arrangement behaves like a

resistance equal to the waveguide impedance as defined

by Eq. (5-12). In addition, there is a reactive effect
associated with the coupling as a result of the induct-
ance of the length of conductor extending across the . .. guide-to-coaxml-
waveguide, and also as a result of evanescent modes line coupling a”
present at the junction. In order to obtain an im- tem based upon a

pedance match between a coaxial line and waveguide midi" the rout}?!
such that power will pass from one system to the other gzxfitfi: t e
without producing a reflected wave, it is therefore
necessary not only to match the characteristic impedance of the coaxial

line properly to the waveguide impedance, but in addition a compensat-

ing reactance must beintroduced at the coupling point. A simple method
of producing the required neutralizing effect consists in adjusting the dis-

tance c in Fig. 5-8a so that the shunt reactance observed by the coaxial
line, when looking toward the short-circuited end of the waveguide, is
equal and opposite to the shunt reactance associated with the coupling
system.‘

A very difi‘erent approach to the problem of coupling a waveguide to a
coaxial line is illustrated in Fig. 5-25. Here a transverse slot in the outer
conductor of the coaxial line allows magnetic flux to leak from the line

into the waveguide. At the same time, the slot interrupts the flow of
current in the outer conductor of the coaxial line, thereby creating a

voltage difference across the slot that produces an electric field between
the top and bottom sides of the waveguide. In this way a wave on the

'A more extensive discussion of waveguide attenuators is given by Terman and
Pettit, op. cit, p. 656.

'The detailed design of systems of this type is given by Seymour B. Cohn, The
Design of Simple Broad-band Waveguide-to-coaxial-line Junctions, Pros. IRE, vol. 35.
p. 920, September, 1947.

' The resistance that the waveguide offers the coaxial line can, when desired, be
reduced by placing the coupling point 03' center, i.e., by making distance d in Fig.
Wlesstbanhalftheguidewidth.

COAX/AL UWE
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' line introduces electric and magnetic fields into the waveguide
:hfilzlorrespond roughly to the fields of the dominant mode. Con-
versely, a dominant mode traveling down the waveguide WIll exerts a
w ve on the coaxial s stem.

aWaveguide Binomial Couplers. It is possible to devise directional-
coupling systems involving waveguides that are analogous to the trans-
mission-line directional-coupling arrangements discussed on page 115.
The waveguide equivalent of the two-hole directional coupler of Fig. 4-24
is illustrated in Fig. 5-26. Directional coupling between a waveguide
and a coaxial system is also possible. Thus, if the primary line in Fig.

4-23 is replaced by a waveguide,
one obtains directional coupling
between a waveguide primary and
a coaxial secondary system.

Magic T. The waveguide ar-
rangement illustrated in Fig. 5-2711,
termed a magic T, possesses many

of the qualities of a bridge. Thus
if the two side outlets C and D have

Fm. 5-26. Two-hole directional coupler .
for waveguide analogous to the two-hole the same length ”1d are “MM
coaxial line coupler of Fig. 4—24. The identically, then power deliveredto

“"9: “0* Fennel “hum 8““? “i“ the system at A divides atthe junc-
Efiiioi'aii’iplm‘ that Mmmuy tion and flows equally‘to C' and D,

with no output whatsoever being

obtained at B'; similarly, power supplied at B divides between C' and D
and none of it appears at A. On the other hand, if power is delivered to
the system at A and the terminations at C and D are not identical, then
there will be an output at B proportional to the difference between the
waves reflected at C and D.

This behavior can be explained as follows: A wave of the dominant
mode traveling down A cannot turn the corner into B, because the
orientation of the electric field in A is such that in turning into B the
electric field would necessarily have to be parallel to the long dimension
of the guide. For this field configuration, guide B will have a cutofi
wavelength less than the wavelength of the wave arriving from A, pr0-
vided the proportions and absolute dimensions of the system are properly

chosen. The waves arriving from A can, however, divide and travel in
directions 0 and D, it merely being necessary for the electric flux to tum

comers into similar guides. Equal reflections from C’ and D, upon reach-
ing the junction of the magic T, will divide between A and B. The pol“-
tions entering A from C’ and D are in phase and so combine to give stand-
ing waves in A. However, the portions of these reflected waves that

attempt to enter B do so as a result of the electric vector turning a corner
as illustrated in Fig. 5-27b, and it will be noted that the reflections from 0
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and D when entering B are of opposite polarity and so tend to cancel.
This cancellation is complete if the reflected waves from 0 and D are

identical upon arrival at the junction, in which case there is no trans-

mission to B. However, if the reflected waves produced at C and D are
not identical in magnitude and phase as they arrive at the junction, then
there will be a resulting component entering B that is proportional to the
vector difference of the two waves.”

The Resonant Obstacles in Waveguides.‘ When certain types of obstruc-
tions are placed in waveguides, a resonant efl‘ect is introduced that is

equivalent to shunting the equivalent transmission line of the guide with
either a series or shunt resonant circuit, as the case may be. The quarter-

 
ibl BEHAVIOR OF REFLECTIONS

l0) MAGIC 'l' CONFIGURAW FRO“ C AND D

Fro. 5-27. Magic-T arrangement.

wave resonant post discussed in connection with Fig. 5—18 is an example,

and is equivalent to a series resonant system connected across the guide.
Another example is provided by a rectangular window in a rectangular
waveguide, illustrated in Fig. 5-28a, which acts as a parallel resonant

shunt. In contrast, an obstacle having the configuration shown in Fig.
5-28b acts as a series resonant shunt, the resonance occurring at a ,fre-

quency determined largely by the peripheral length of the obstructing
rectangular ring. Many other forms of resonant obstacles are also
possible.

Obstructions that behave as shunting series-resonant systems will
transmit energy rather freely at all frequencies except those in the
immediate vicinity of the series resonant frequency, where the shunting
impedance is so low as to reflect nearly all of the energy. In contrast,

‘ This explanation monies that the discontinuity capacitanees existing at the
common junction of the magicpT configuration have been neutralised by the introduc-
tion of appropriate inductive irregularities, such as a window of the type illustrated
in Fig. 5-19o.

' Another waveguide arrangement, known as the hybrid ring, has propertiessimilar I
to those of the magic T, and can be regarded as an alternative arrangement. Various
forms of the hybrid ring are described by W. A. Tyrell, Hybrid Circuits for Micro-
waves, Proc. IRE, vol. 35, p. 1294, November, 1947.

' Further material on this subject, particularly design information, h given by
Moreno, op. cit, pp. 150-157; also see “Waveguide Handbook,” op. cit, chap. 5.
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an obstacle that acts as a parallel resonant shunt will have no efl'ect on

the transmission at the resonant frequency of the obstacle, but.at all
frequencies differing appreciably from the resonant frequency It Will
introduce a low shunting reactance that permits very little energy to be

transmitted past the obstacle. .
Ridged Waveguides.‘ Under some circumstances there is an advantage

in providing a rectangular waveguide with a ridge analogous to the ridge

shown in Fig. 5-21b except not tapered. This increases the cutoff wave-
length, and widens the frequency range over which only the dominant

mode will propagate. Thus a ridged structure has advantages when
physical compactness is important, and when the guide is to be used over

 
It" RETANGULAR WINDOW AND (M RECTANGULAR RING AND
EQUIVALENT TRANSMISSION'LINI EQUIVALENT TRANSMISSION-HIECIRCUIT CIRCUIT

Fro. 5-28. Typical resonant obstacles, together with their equivalent transmission—linecircuits.

an unusually wide frequency range. At the same time, the attenuation
of the ridged structure per unit length is greater than for the correspond-
ing rectangular guide. The impedance of the ridged structure analogous
to the impedance defined in Eq. (5-12) is less than in a rectangular guide;
this is sometimes an advantage when matching impedances (see Fig.
5—2110, or when coupling a coaxial line to a waveguide.

Comparison of Waveguides and Coaxial Transmission Lines. Wave-
guides find their principal use in the transmission of power at wave-
lengths of the order of 10 cm or less, under conditions where low attenua-
tion or high power-carrying capacity is important. The power losses in
a waveguide will be of the order of one-third as great as in a comparable
coaxial line having air dielectric with supporting insulators, and the
superiority is many times greater as compared with the best flexible
cable. The power-carrying capacity of a waveguide as limited by flash-
over is likewise from three to ten times as great as that of a standard
coaxial line having air dielectric with supporting insulators, and may be
of the order of thousands of times as great as that of a flexible cable with
solid dielectric.

lFor further details see Seymour B. Oohn, Properties of Ridge Wave Guide, Prue.
IRE, vol. 35, p. 783, August, l947.
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A waveguide must have a size that is a reasonable fraction of a wave-

length. This is an advantage at very short wavelengths, such as 1 cm,
where coaxial lines with proportions that avoid higher modes are pro-
hibitively small. However, at wavelengths much greater than 10 cm,

the waveguide becomes undesirably large and so then finds use only in
special applications. Other things being equal, waveguides also have the
advantage in mechanical simplicity over coaxial lines with air insulation
and dielectric support.

5-10. Cavity Resonators.1 Any space enclosed by conducting walls

possesses a resonant frequency for each particular type of field configura-
tion that can exist in the space. Resonators of this type, commonly
called cavity resonators, find extensive use as resonant circuits at extremely
high frequencies. Their behavior is analogous to that of coil-and-capaci-
tor combinations, but for microwave frequencies cavity resonators have

the advantages of reasonable dimensions, simplicity, remarkably high Q,
and very high shunt impedance.

Cavity resonators can take many forms, since any enclosed surface,
irrespective of how irregular its outline, forms a cavity resonator. The
simplest cavity resonator is a length of circular or rectangular waveguide

short-circuited at each end to form a cylinder or rectangular prism,

respectively. A spherical cavity is also of interest from a theoretical
point of view, although not very useful in a practical way. Cavities such
as illustrated in the lower half of Fig. 5-29, in which the opposite sides

are brought close together to form a reentrant structure, are of importance
when an electron beam is passed through the cavity, as in klystron tubes.2
In such arrangements, the electric field is very strong in the gap formed
by the reentrant sections, thus permitting effective interaction with elec-

trons passing "across this gap.
Cavity resonators can also be derived from coaxial lines. For eminple,

a line short-circuited at each end, as in Fig. 5—30a, is resonant whenever

the length is a multiple of a half wavelength. Alternatively, it is possible

to arrange a coaxial transmission line, as illustrated in Fig. 5-30b; this
can be regarded as a line short-circuited at one end and open at the other
end except for the localized capacitance between the center conductor and

1 Resonant cavities were introduced to radio by W. W. Hansen, A Type of Electrical
Resonator, J. Appl. Phys, vol. 9, p. 654, October, 1938. Useful information on
properties of cavities is given by Moreno, op. 611., pp. 210—241; Terman and Pettit,
op. cit, pp. 204-210; I. G. Wilson, C. W. Schramm, and J. P. Kinzer, High Q Resonant
Cavities for Microwave Testing, Bell System Tech. J., vol. 25, p. 408, July, 1946;
J. P. Kinzer and I. G. Wilson, Some Results on Cylindrical Cavity Resonators, Bell,
System Tech. J., vol. 26, p. 410, July, 1947; End Plate and Side Wall Currents in
Circular Cylinder Cavity Resonator, and, vol. 26, p. 31, January, 1947.

' Properties of such resonators are given by T. E. Moreno, up. «1.; also see W. W.
Hansen and R. D. Richtmyer, On Resonators Suitable for Klystron Oscillators,
J. Appl Phys. vol. 10, p. 189, March, 1939.

Momentum Dynamics Corporation
Exhibit 1013

Page 162



Momentum Dynamics Corporation 
Exhibit 1013 

Page 163

150' WAVEGUIDES AND CAVITY RESONATORS [Clans
‘ ' . It is also possibleth ductm surface that closes the end of the line

tear-:gz‘rd the Eavity of Fig. 5-30b as a reentrant cavxty analogous to M
of Fi . 5.29f.l . . _ .

Mfdea in Cavities. As in waveguides, 1t 18 posslble for many different
t of field configurations, or modes, to exist in a cavity. . Associated
\zilt’liseach such mode is a resonant frequency that is determined by the
particular field configuration involved and by the cav1ty dimensions.

1

e723" ' ‘r
El. some _.

FIELD h j 1'

59 IE‘ E - I if : E I 5‘, a
II I h 1 FM 5M1: PRISM at l
m SPHERE an CYLINDER m PRISM

MENEWC ELEM/C FIELD
FIELD

  
 

‘ acorn/c FIELD

FLUX .‘I‘;'£ .1
AMOXIAM YE DISTIP/507mA z,

I | or use”:no FLwr dis.4 N1 é Am mucuuur
TYPE (fl REENTRANT TYPE DOR-lfl REENTRANT TYPE RESPONDING TO THE

UPPER HALF OF (0)

F10. 5-29. Examples of cavity resonators. All these resonators except the prism are
shown as cross sections of figures of revolution. The field distributions shown for
certain of the resonators correspond to the distributions with the dominant mode of
operation. .

 

Thus each cavity resonator powesses an infinite number of resonant fre-
quencies. As in the case of the waveguide, the lowest resonant frequency

associated with a particular cavity is termed the dominant mode, while
the remaining resonant frequencies are referred to as higher-order modes.

The cavity modes can in many cases be associated with waveguide
modes. Thus in the case of the rectangular prism of Fig. 5~29c, a TE or
TM wave traveling in the 1 direction will be in resonance whenever the
frequency is such as to make the cavity length l a multiple of half of a

guide wavelength for the mode in question: An analogous situation also

‘ Resonant lines of this typi‘ are sometimes termed hybrid lines, since as the center
conductor is shortened in length compared with the length of the outer conductor
(we a and d of Fig. 530), the behavior. including field configurations, is intermediate
between that of a resonant line and that of a cylindrical cavity. The properties of
coaxial cavity resonators are discussed by W. L. Barrow and W. W. Masher, Natural
Oscillations of Electrical Cavity Resonators, Pros. IRE, vol. 28, p. 184, April, 1940:
also see W. W. Hansen, On the Resonant Frequency of Closed Concentric Is'nss,
J. April. Hiya, vol. 10, p. 38, January, 1939.
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exists with cylindrical cavities. However, in the case of the cylindrical
cavity, it happens that the dominant mode corresponds to the field con.

figuration illustrated in Fig. 5-291), for which there is no waveguide
counterpart. In contrast, the dominant mode for the rectangular prism
corresponds to the TE“, waveguide mode traveling along the axis that is
longest when measured in guide wavelengths. ‘ In reentrant cavities, the
dominant mode corresponds to a field configuration of the type illustrated

in Fig. 5-29c; here the electric field is most intense in the gap.
Modes in a cavity are classified as transverse electric (TE) or transverse

magnetic (TM) modes, corresponding as far as possible to the analogous
waveguide modes. The particular mode of any such class is then com-

monly designated by three subscripts. Thus the field configuration

as

mm {ill}
(at (5| {3| (dl (ll

FIG. 5-30. Transition from concentric line to cylindrical cavity, showing electric fields
for various intermediate or hybrid cases.

lllflllll
=2_/

=g
at
fé       

shown in Fig. 5-29b is the TMm mode. Here TM denotes that the mag-
netic field lies in planes transverse to the axis of the cylinder, while the

first and third subscripts denote, respectively, that the variation of the
magnetic field is zero with radial direction and with position along the

axis, and the second subscript indicates that there is one-half cycle of
variation in the field along a radial line passing from one edge of the

cylinder to the other edge. Again, the field configuration indicated in
Fig. 5-290 is the TEm mode, meaning that the electric field is transverse
to an axis in the l direction and that the variation of the electric field is

one-half cycle, zero, and one-half cycle in the a, b, and 1 directions,
respectively.

A cavity resonator possesses many more modes than does the corre-

sponding waveguide. For example, in the rectangular prism of Fig.
5-29c, there are an infinite number of TEm,I modes for each of the three
axes of the prism. Thus a triple infinity of modes exists in the rectan-

gular prism corresponding to the single infinity of TE” waveguide modes.

As a result, at frequencies appreciably greater than that corresponding
to resonance at the dominant mode, it is found that the resonant fre-

quencies of cavities will be extremely closely spaced. This results in an
impossible situation if one wishes to obtain pure mode operation; at the

same time, it is an advantage if one desires to make it as easy as possible
for the cavity to resonate with an arbitrary exciting imq'uency.
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Resonant Frequency of Cavity Resonators. A resonant frequency of a,
cavity resonator corresponds to a possible solution of Maxwell’s equations
for the electric and magnetic fields within the resonator. The resonant

frequencies (or wavelengths) can be calculated mathematically for
geometrical shapes such as spheres, cylinders, and rectangular prisms and
some idealized forms of reentrant sections. Formulas for the resonant

wavelength of the dominant mode are given in Table 5-3 for spheres,
cylinders, and square prisms. In the case of prisms it will be noted that

the length 1 corresponds to. A,/2 for the corresponding TE“ waveguide
mode.l .

The resonant wavelength is proportional in all cases to the size of the

resonator; i.e., if all dimensions are doubled, the wavelength correspond-
ing to resonance will likewise be doubled. This fact simplifies the con-
struction of resonators of shapes that cannot be calculated. To obtain a
resonator operating exactly at a desired frequency, one first constructs a
resonator of convenient size and of the desired proportions and measures
the resulting resonant wavelength. The ratio of the desired resonant
wavelength to this wavelength gives a scale factor that is applied to every
dimension of the test model to obtain the dimensions of the desiredresonator.

The resonant frequency of a cavity resonator can be changed by alter-
ing the mechanical dimensions, by coupling reactance into the resonator,
or by means of a copper paddle. Small changes in mechanical dimen-
sions can be achieved by flexing walls, while large changes require some
type of sliding member. Reactance can be coupled into the resonator
through a coupling loop in the manner discussed below, thus affecting
the resonant frequency. A copper paddle placed inside the resonator will
affect the normal distribution of flux and te'nd to alter the resonant fre-
quency by an amount that can be controlled by the orientation of the
paddle.

Q of Cavity Resonators. The Q of a cavity resonator has the same sig-
nificance as for an ordinary resonant circuit. It can be defined on the
basis that when the response has dropped to 70.7 per cent of the response
at resonance, the cycles off resonance are the resonant frequency divided
by 2Q (see Rule 1, page 49). In the case of cavity resonators, it is also
sometimes convenient to base the definition of Q upon Eq. (3-1), namely,

‘encrgy stored
Q = 2* energy 10am
 

(5—14)

The energy stored is proportional to the square of the magnetic flux
density integrated throughout the volume of the resonator, while the
energy lost per cycle in the walls is proportional to the skin depth and to
the square of the magnetic flux density integrated over the surface of the

. I Design data for reentrant cavities of the type illustrated in Fig. 5-294! and I are
given by Moreno, op. cit, pp. 23am.
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cavity. Thus, to obtain high Q, the resonator should have a large ratio
of volume to surface area, since it is the volume that stores energy and it
is the surface area that dissipates energy. As a consequence, resonators
such as spheres, cylinders, and prisms can in general be expected to have

higher Q’s than corresponding resonators with pronounced reentrant
sections.

 

TABLE 5-3
PROPERTIES OF CAVITY RESONATORS FOR DOMINANT MODE

Type of cavity Sphere Cylinder Square prism

Figure illustrating notation. . . . 5-29a 5-29!) 5-29c
Wavelength M at resonance. . . . 2.28r 2.611 1.41“

’2 .__1__ fl ___1__ M
Q ........................... 0.318 a 0'3831+(r/h) a 0.3531 +(a/2b) ‘

Shunt impedance across AA at h 1 b. lo

resonance ................. 104.4' 72;i—_._—(’/—h‘)‘—a' ”OE—10””)?
All dimensions are in centimeters.

6 - skin depth as defined by Eq. (2-10)
- 6.62/x/f cm for copper, where f is in cycles

Quantitative analysis leads to the formulas given in Table 5-3 for the Q
of the dominant mode of spheres, cylinders, and square prisms. Some
typical values of Q obtainable in practical cavity resonators are given in
Table 5-4. It will be noted that the values are extremely high compared
with those encountered in ordinary resonant circuits (e.g., Fig. 2-16).
This is true even in the case of the reentrant cavity.

. TABLE 54
PROPERTIES or TYPICAL CAVITY RESONATORS
WHEN OPERATING IN THE DOMINANT MODE
 

 

 

Resonant
wave-

length M.0111
 

  
 
 

 Dimensions,Resonator cm
 

 
  
  
  
 

Sphere ................... 11.4 9.7 X 10'
Cylinder ................. 13.0 9.1 X 10'
Square prism (cube) . 14.1 7.8 X 10'
Reentrant (Fig. 5-29!) 12.8 0.17 X 10'

(approx.) .

 
The Q of resonators of the same proportions but of difi'erent size will be

Proportional to the square root of the resonant wavelength. This arises
from the fact that, whereas the ratio of volume to wall surface is propor-
tional to a resonant wavelength, the skin depth (and hence the energy
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dissipation per unit of surface) is proportional to the square root of the
h.

wagflfilzigtlmpcdanee of Cavity Resonators. The' shunt impedance of a
cavity resonator between two surfaces, such as those intersected by the
axis AA in Fig. 5—29, can be defined as the square of the line integral of
voltage along a path such as AA divided by the powenloss in the resona-
tor when excited to give the voltage used in the hue integration. This

impedance corresponds to the parallel resonant impedance of a. tuned
circuit, and at resonance becomes a resistance termed the shunt resistance

of the resonator. . .
The shunt resistance obtained With spheres, cylmders, and square

prisms operating in the dominant mode can be calculated from the
formulas given in Table 5—3. Values of shunt resistance for the dominant
mode in several typical cases are given in Table 5—4, and are seen to be

very large compared with the shunt resistances obtainable with ordinary
resonant circuits. It is further to be noted that although the shunt

resistance of the reentrant cavity is much less than that of the other

cavities, this impedance is developed across such a short distance that the
impedance per unit length is of the same order of magnitude as the
maximum value obtainable with other geometries.

5-11. Coupling to Cavity Resonators. To make use of a cavity
resonator it must be coupled in some manner to a transmission line or

CAI/[Tr - awry

E: iii--
W- L

g ' commPROBE
(a! csvmr WITH (bl EQUIVALENT (cl CAVITY wma
COUPLING Loor cmcun’ or (a) COUPLING PROBE

Flu. 53L Loop and probe coupling to cavity resonator.

waveguide. One means of accomplishing this is to employ a small loop so
oriented as to link with magnetic flux lines existing in the desired mode of
operation, as illustrated in Fig. 5—31a. A current passed through such a

loop will then excite oscillations of this mode' conversely, oscillations
existing in the resonator will induce a voltage in the coupling loop. The
combination of the coupling loop and cavity resonator is equivalent to the
inductively coupled system of Fig. 5—31b. In such a system, the ratio of
the impedance that the cavity couples into the loop to the shunt resistance
of the cavity resonator is equal to the square of the ratio of the coupled
flux to the total magnetic flux lying to one side of the cylinder axis.1 The

| When the plane of the coupling loop is at right angles to the direction of the flux
lines, the loop area is in the most favorable position for enclosing magnetic flux; then
if the loop is located at a position where the magnetic flux density approximates the
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magnitude of the magnetic coupling can be readily controlled by the
orientation of the loop, and its location with respect to the magnetic field.
Thus the coupling is reduced to zero when the plane of the loop is rotated
so that it is parallel to the magnetic flux. Also the coupling will be low if
the loop is placed at a point of low magnetic flux density; thus a loop near

the vertical axis, as shown dotted in Fig. 5-31a, will have little coupling to
the dominant mode.

Coupling to a cavity can also be achieved by means of a probe as
illustrated in Fig. 5—31c. Here the electric flux of the desired mode

terminates on the probe, inducing a current in it; conversely a voltage
applied to the probe produces electric fields inside the cavity that excite
oscillations. This is thus a form of capacitive coupling, the magnitude of
which is determined (1) by the surface that the probeexposes tothe electric

field of oscillations of the desired mode and (2) by the intensity of the
electric field at the position of the probe. Thus maximum coupling is
obtained in a cylindrical cavity operating in the TMMO mode when the

probe is located on the axis as shown; the coupling to this mode will be
zero if the probe projects into the cavity from the side wall instead of the
end (dotted probe in Fig. 5-31c).

Still another method of coupling to a cavity is by means of a hole or slot.

The principles involved in this situation are the same as in the correspond-
ing waveguide case, and are discussed in detail on page 133.

PROBLEMS AND EXERCISES

5-1. Sketch fields corresponding to the side view in Fig. 5-2, for three successive
values of time each differing by one-quarter of a cycle. Show the three cases one
above the other."

5-2. Sketch field distributions similar to those of Fig. 5-2, for x - 1.5a, being'
careful to show a, and a to scale.

5-8. A particular rectangular waveguide has a width of 2 in. and a height of l in.
What is the lowest frequency wave that will be transmitted by this waveguide?

5-4. Calculate and plot the ratio of phase shift per unit length in a rectangular
waveguide (dominant mode) to the phase shift per unit length in a coaxial trans-
mission line having air dielectric, as the dimension «1 of the waveguide is varied from
0.55). to A.

5-5. A wave having a frequency of 10,000 Mc travels down a rectangular guide for
which dimension n - 2 cm. Calculate the value of fl per cm, and compare the result
with the value of a that would be obtained at the same frequency on an air-filled
coaxial line.

5-8. What is the ratio v,/c at a frequency such that the guide width a is exactly
x,/2?

avenge flux density in the cavity, one has to a rough approximation:

1mm“ area of loop shunt impedanceinto loopoe coupled }- (halfof cross-sectional) ( of cavity ) (5-15)areaof cavity
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5-7. Draw curves similar to those of Fig. 5-4, but for a - 0.55). and a - 0.7;“
ful to show a and x to scale. '

Beau—:91“ a waveguide opci-ating at a wavelength of 3 cm, calculate the dept.h m the
copper walls at which the current density is reduced to 0.0001 of the density at the
' rf l' the walls. _ .
[hie-grlinaii: waveguide of Fig. 5-5, discuss how the distribution of the current
flowing in the' walls will change at times differing by (a) one-half cycle, and (b) one-
uarter cycle. .

q 5-10. In Fig. 5-5. what would he the consequences of making holes l and 4 round
instead of rectangular, assuming that the area of the hole is the same in each case? .

5-11. In Fig. 5-5, what effects are. produced on the electric coupling by making
slot 1 half as long and twice as wide, thus keeping the area of the opening unchanged?

6-12. An incident TE“, wave of 5000 Me travels down the guide of Fig. (>6. How
far must it go before the amplitude is reduced to 70.7 per cent of the initial amplitude?

5-13. A rectangular waveguide has dimensions 2.5 by 5 cm. Determine M, fl, and
phase velocity at a wavelength of 4.5 cm for the dominant mode and the first higher-
order mode, and tabulate results side by side.

5-14. What am the lowest frequencies for which the waveguide of Prob. 5-13 will
transmit (a) the dominant mode, and (b) the first higher-order mode?

5-15. A rectangular waveguide is 2 by 3 cm. What are the cutoff wavelengths for
the dominant and the first two higher-order modes?

6-16. What higher-order modes will tend to be excited in a waveguide by the
coaxial line exciting systems illustrated in the attached figure?

 
[VOTE ARROWS MID/GATE RELATIVE POLAR/TYI

(a) (b) (C)
Pnoa. 5-16

3-17. Suggest an arrangement involving a coaxial line terminating in a loop for
exciting the TM” mode in a rectangular waveguide.

5-18. In a rectangular guide in which a. a 4 cm, calculate and plot cutoff wave-
length as a function of Me for b/a - 0 to b/a =- 1, for TEm, TEoi, TE”, TE”, and
TM“ modefl.

5-19. Which of the following modes will be unaffected by the posts of Fig. 5-9
(assuming the posts are located midway between the vertical sides): TE“, TE“,
TE". TM“, TM"? .

5-20. Draw a diagram similar to Fig. 5-12, but assume 0 - 70°. Be sure to mark
the distances representing x and M. Compare the ratio x,/).. with the ratio for Fig.
5-12, and show that the remit is consistent with Fig. 5-3.

5-21. Explain how Fig. 5-14 is consistent with the fact, deduced from Eq. (5-6).
that with a given guide, the cutofl' wavelength for the TE" mode will always be
exactly twice the cutoff wavelength for the TE“ mode.

5-22. Sketch curves for the TE“ mode, analogous to those given in the right-hand
part of Fig. 5-15a, for a frequency of 3000 Me in a circular waveguide when the
diameter of the guide is (a) 6.3 cm, and (b) 8 cm. Draw the curves to full-scale size.
and be careful to show x, correctly.
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5-28. In a circular waveguide in which the radius is 1.5 in. (r - 8.8 cm) calculate
the value of fl and the phase velocity for the dominant mode at a wavelength of 10 cm.

5—“. One has available in a wall a circular hole of 2 in. diameter through which a
waveguide is to he passed. If it is desired to obtain the longest po-ible cutoff wave-
length, what are the relative merits of the following guides: (a) circular; (b) rectangu-
lar, a - b; (e) rectangular, b/a - 0.5; and (d) rectangular, b/a—r 0?

5-85. A long, narrow longitudinal slot is to be cut in the wall of a circular wave-
guide. Assuming the fields in the guide are as shown in Fig. 5-16a, where should this
slot be located on the circumference of the guide if it is desired that the slot provide
(a) coupling to the electric field, but not to the magnetic field inside the guide, and
(b) magnetic coupling but no electric coupling?

5-26. Plot the voltage (i.e., electric field) distribution of the standing-wave pattern
as a function of position from 0 to 20 cm from the receiver for a rectangular waveguide
carrying a wave having a free-space wavelength of 10 em, when the receiving end of
the waveguide is short-circuited and the waveguide dimensions are 6 by 3 cm. Show
the position of the minima and maxima accurately. Neglect attenuation.

5-27. The rectangular waveguide illustrated in Fig. 5-6 carries a TE". wave of
5000 Me. If the standing-wave ratio produced at the load end of the waveguide is 2,
what will be the standing—wave ratio 100 ft from the load end of the line?

15-28. In a 6 by 3 cm rectangular guide, calculate and plot the waveguide impedance
Zo, as a function of frequency, from cutoff to twice the cutofi' frequency.

5-29. How should a longitudinal vane projecting radially inward from the side
of a circular waveguide carrying the TE“ mode be arranged to serve as (a) a mode
filter, and (b) as an impedance-matching device?

5-30. Explain why in Fig. 5-18 a probe projecting into the guide from the side,
with its axis horinontal, will be of no assistance in impedance matching for the TE"
mode, but would be useful in the case of TE“, TE“, and TM u modes.

5-81. The power transmitted down a rectangular waveguide is to be delivered
to a 50 ohm load resistance that is connected between the top and bottom sides of the
guide, and matched by a tapered section, as in Fig. 5-2141. If the guide on the input
side of the taper is 2.5 by 1.25 in. and the frequency is 3000 Me, then what is the
required height on the load side of the taper?

5-82. The 50-ohm load in Prob. 5-31 is matched to the guide by being placed 03
center, as in case b in Fig. 5-20, instead of by tapering the guide. How far to theside
of the center line should the load resistance be placed?

5-”. In a particular rectangular waveguide attenuator based upon the TE... mode,
it is desired that the attenuation be exactly 10 db per in. Determine the width that
the waveguide must have, assuming that the wavelength is many times the waveguide
width.

5-“. In a circular waveguide attenuator, it is found that at a particular distance
from the source of excitation there is an undesired TE." mode present which is 30 db
weaker than the desired TE“ mode. If the fields are now examined at a position
where the attenuation to the TE" mode is increased by 48db, how strong is the
undesired TE” mode output compared with the TE" output?

5-85. a. Repeat Prob. 5-34, but assume that the modes are interchanged; i.e., assume
that initially the TEM mode (which is now the desired mode) is 30 db stronger than
the TE“ mode.

b. Explain why in this case the attentuation in decibels per inch will be difierent
for large values of attenuation as compared with small values of attenuation.

5-30. In a circular waveguide attenuator using the TE“ mode, what will be the
effect of rotating the pickup coil 90° about the axis of the guide?

8-87. A coaxial line is to be coupled to a waveguide in the manner illustrated in
Fig. 5-8. If a good impedance match is desired, show that the guide cannot have the
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proportion o/b - 2.0 ifthe characteritic impedance of the coaxial line hill the rang.

to 100 ms. . .506-88. Ifoihe slot in Fig. 5—25 were replaced by a round hole aligned with the may
axis of the guide, what mode would be excited in the waveguide by energy in the

coaxial linef .
5-”. Suggest a means by which a coaxial line could be coupled to a circular wave.

guide in such a manner as to excite the TE“ mode.

6-40. Describe an experimental means which could be used to measure the ter.
minating impedance actually existing on a waveguide without removrng this unknown
terminating impedance from its guide, and involving a magic-'1‘ junction and a cab.
brated adjustable terminating impedance.

5-41. A waveguide system possesses an obstacle, the exact nature of which is not
known, although the position of the obstacle is. Explain how, by the aid of standing-
wave measurements, one can determine whether the obstacle is inductive, capacitive,
series resonant, or shunt resonant.

5-42. Sketch curves showing qualitatively how the electric and magnetic fields are
distributed in a cylindrical cavity resonator operating in the TE“ waveguide made,
under conditions where the cavity is a half guide-wavelength long.

5-48. Derive the formula given in Table 5-3 for the wavelength of a square prism
type of cavity from the properties of the TE” mode in a rectangular waveguide.
“L In a cavity that is a rectangular prism operating in the TE” waveguide

mode, it is found that the resonant frequency is independent of the dimension b in
Fig. 5-290. Explain how this is consistent with waveguide theory.

5-65. Derive a formula for the resonant frequency of a cylindrical cavity formed by
a section of length h of the guide shown in Fig. 5-1542, short-circuited at both ends, and
operating in the TB“ waveguide mode in such a manner that one-half cycle of field
variation occurs in the h direction.

5-46. Show that, when a cylindrical cavity is operated in the waveguide TE“ mode,
the resonant frequency depends on both the radius and length of the cavity.

547. A particular cavity with copper walls is found to have a Q of 10,000. The
walls are then plated with a material having a resistivity seven times that of copper.
What value will the Q then have, assuming that the plating is relatively thick?

5-46. A cylindrical cavity has a radius of 2 in'. and is 6 in. long. Calculate the
resoth frequency for the mode illustrated in Fig. 5-29!) (the dominant mode), the
circuit Q, and the shunt impedance, assuming copper walls. Tabulate the results.

5-40. A sphere, cylinder, and square prism (cube) are all so proportioned as to
have the same resonant wavelength of 12.8 cm. Calculate Q, shunt impedance, and
shunt impedance per unit length of shunt path, for each case. Tabulate the results,
and include in the table the corresponding results from Table 5-4 for the reentrant
cavity of Fig. 5-29]. Also give in the tabulation the largest linear dimension ll.e.,
diameter, or length of side) for each resonator.

5-50. A coupling loop 1 cm in diameter is inserted in the cylindrical cavity reso-
nator of Table 5-4, as in Fig. 5-31a. Calculate the approximate value of the imped-
ance that the resonator will couple into this loop at remnance, considering the reso-
nator as a secondary, and the loop as a primary.

5-51. o. Describe how to locate a probe so as to couple to the TEm cavity modeillustrated in Fig. 5-29c.

b. How could a loop be arranged to couple to the same mode? Give both the
location of the loop and the required orientation of its plane.
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