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PREFACE

This fourth edition has the same objective as the three prior editions,
namely, to provide a text and reference book that summarizes in easily
understandable terms those principles and techniques which are the
basic tools of the electronic and radio engineer. In keeping with current
trends, increased emphasis is placed on the general techniques of elec-
tronics, without regard to the extent of their use in radio systems. This
change is reflected in the new title, ““Electronic and Radio Engineering,”
which is more descriptive of the subject matter actually covered in the
present volume than is the previous title, ““ Radio Engineering.”

The keynote continues to be thorough coverage combined with a pres-
entation that allows the reader to study a particular topic without having
to read the entire book. The level of presentation, particularly the
mathematical level, remains unchanged. Thus the present volume is
designed to serve as a text and reference for the same clientele that found
the previous editions so useful.

To keep pace with a rapidly advancing technology, new material has
been added in practically every chapter. More than half the illustrations
are new, and all have been redrawn to conform to new graphic standards.
A new chapter dealing with microwave tubes makes available for the first
time an explanation in simple language of the basic mechanism of oper-
ation of traveling-wave tubes and backward-wave oscillators (carcino-
trons). In the treatment of wideband video and tuned amplifiers,
primary emphasis is placed on the rise time, overshoot, and sag, since
these characteristics are more indicative of the performance under actual
conditions than is the older approach in terms of amplitude and phase
behavior as a function of frequency. The material on nonlinear wave-
forms and pulse techniques has been greatly expanded to provide more
complete coverage of this important aspect of electronics. The chapter
on television has been thoroughly revised, and a compact and simple
explanation is given of the system of color television now standard in the
United States. Increased attention is also placed on propagation
phenomena involving the troposphere

Of particular importance is the chapter on Transistors and Related
Semiconductor Devices, one of the longest in the book. Here is pre-
sented a simple, straightforward explanation of the basic phenomena
oceurring inside the transistor, and of how these phenomena lead to the
terminal characteristics. This treatment is such that it can be under-
stood by undergraduate students; at the same time, it is sufficiently com-
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vi PREFACE

plete and fundamental to provide a firm foundation for further study of
this new and very important subject.

Special attention has been given to the needs of the teacher. Because
of the growth of electronics, it is no longer possible to cover every impor-
tant topic adequately in a one-year course. ‘“Electronic and Radio
Engineering’’ provides the instructor with an opportunity to select those
topics which he himself wishes to emphasize, and at the same time pro-
vides the student with a reference book of comprehensive coverage and
continuing value. It will be observed that the book breaks down into
three distinct parts, namely, a group of chapters dealing with circuits.
(components, resonant circuits, transmission lines, waveguides, and:
cavity resonators); a group of chapters concerned with the fundamentals
of electronic engincering (vacuum tubes, transistors, amplifiers, oscil-
lators, modulators, detectors, nonlinear waveforms, etc.), which are the
heart of the book; and a concluding group of chapters concerned with
radio systems and radio engineering (antennas, propagation, transmitters,
receivers, television, radar, and radio aids to navigation). Thus an
instructor can, if he desires, concentrate on the material concerned with
fundamental electronics and regard the remaining subject matter as
available to the student, should he need to extend his knowledge at a
future date. °Alternatively, the instructor can choose to cover a series
of selected topics, for example, waveguides, wideband systems, pulse
circuits, television, etc. Another possibility is to concentrate on the
material eoncerned primarily with radio systems. Many other combi-
nations, are, of course, possible.

An important feature for the teacher is the more than 1250 Problems
and Exercises. Many of these involve numerical calculations, but more
than half of them are thought questions that will require the student to
give further consideration to topics covered in the text. Such Exercises
can be used to extend and solidify the student’s knowledge; they are also
suggestive of questions suitable for use on examinations. The number of
Problems and Exercises is so large that the same problem need not be
assigned to a class more often than once every two or three years.

The collaborators listed, on the title page have made important con-
tributions to the preparation of this volume. Dr. Helliwell worked on the
sections dealing with ionospheric propagation, and Dr. Pettit is in large
measure responsible for the general character of the chapter dealing with
transistors and semiconductors. The treatment of traveling-wave tubes
and backward-wave oscillators is due to Dr. Watkins. William Rambo
prepared the background material used in revising the presentation on
radar. In addition, acknowledgment is made to Dr. B. H. Wadia,
Bruno Ludovici, and Arthur Vassilaides, graduate students at Stanford,
for assistance in preparing illustrations.

Freperick EmMons TERMAN
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CHAPTER 1

THE ELEMENTS OF A SYSTEM
OF RADIO COMMUNICATION

1-1. Radio Waves. Electrical energy that has escaped into free space
exists in the form of electromagnetic waves. These waves, which are
commonly called radio waves, travel with the velocity of light and consist
of magnetic and electric fields that are at right angles to each other and
also at right angles to the direction of travel. If these electric and
magnetic fluxes could actually be seen, the wave would have the appear-
ance indicated in Fig. 1-1. One-half of the electrical energy contained

r— WAVELENGTH
°

(0) FRONT VIEW (D) SIDE VIEW
THROUGH PLANE 0g

F16. 1-1. Front and side views of a vertically polarized wave. The solid lines repre-
sent electric flux; the dotted lines and the circles indicate magnetic flux.

in the wave exists in the form of electrostatic energy, while the remaining
half is in the form of magnetic energy.

The essential properties of a radio wave are the frequency, intensity,
direction of travel, and plane of polarization. The radio waves produced
by an slternating current will vary in intensity with the frequency of the
current and will therefore be alternately positive and negative as shown
in Fig. 1-1b. The distance occupied by one complete cycle of such an
alternating wave is equal to the velocity of the wave divided by the num-
ber of cycles that are sent out each second and is called the wavelength.
The relation between wavelength A in meters and frequency f in cycles
per second is therefore

A= 300,000,000
S

The quantity 300,000,000 is the velocity of light in meters per second.

The ?requency is t;rdina.rily expressed in kilocycles, abbreviated ke, or in

megacycles, abbreviated Me. A low-frequency wave is seen from Eq.
Momentum Dynamics Corporation
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2 SYSTEM OF RADIO COMMUNICATION [Caar. 1

(1-1) to have a long wavelength, while a high frequency corresponds to a
avelength.

Shg‘rltxewst:engtﬁtof a radio wave is measured in terms of the v.olt.age stress
produced in space by the electric field of the wave, and it is usually
expressed in microvolts stress per meter. Since the.actual stress pro-
duced at any point by an alternating wave varies sinusoidally from instant
to instant, it is customary to consider the intensity of such a wave to be
the effective value of the stress, which is 0.707 times the maximum stress
in the atmosphere during the cycle. The strength of the wave measured
in terms of microvolts per meter of stress in space is also exactly the same
voltage that the magnetic flux of the wave induces in a conductor 1 m
long when sweeping across this conductor with the velocity of light.

The minimum field strength required to give satisfactory reception of a
wave depends upon a number of factors, such as frequency, type of signal
involved, and amount of interference present. Under some conditions
radio waves having signal strengths as low as 0.1 pv per m are usable.
Occasionally signal strengths exceeding 1000 pv per m are required to
ensure entirely satisfactory reception at all times. In most cases the
weakest useful signal strength lies somewhere between these extremes.

A plane parallel to the mutually perpendicular lines of the electric and
electromagnetic flux is called the wavefront. The wave always travels
in a direction at right angles to the wavefront, but whether it goes forward
or backward depends upon the relative direction of the lines of magnetic
and electric flux. If the direction of cither the magnetic or electric flux
is reversed, the direction pf travel is reversed; but reversing both sets
of flux has no effect.

The direction of the electric lines of flux is called the direction of
polarization of the wave. If the electric flux lines are vertical, as shown
in Fig. 1-1, the wave is vertically polarized; when the electric flux lines
are horizontal and the electromagnetic flux lines are vertical, the wave
is horizontally polarized.

Propagation of Radio Waves of Different Frequencies. As radio waves
travel away from their point of origin, they become attenuated or weak-
ened. This is due in past to the fact that the waves spread out.

In addition, however, energy may be absorbed from the waves by the
ground or by the ionized regions in the upper atmosphere termed the
ionosphere, and the waves may also be reflected or refracted by the iono-
sphere, or'by conditions within the lower atmosphere, or by the ground.
The ‘resultmg situation is quite complex and differs greatly for radio waves
of dxiferent frequencies, as shown in Table 1-1, which summarizes the
behavior of different classes of radio waves.

) 1-2, Radi.ation of Electrical Energy. Every electrical circuit carry-

ing alternating current radiates a certain amount of electrical energy in

the form of electromagnetic waves, but the amount of energy thus radi-
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Sec. 1-2] RADIATION OF ELECTRICAL ENERGY 3

ated is extremely small unless all the dimensions of the circuit approach
the order of magnitude of a wavelength. Thus, a power line carrying
60-cycle current with a 20-ft spacing between conductors will radiate
practically no energy because a wavelength at 60 cycles is more than
3000 miles, and 20 ft is negligible in comparison. On the other hand, a
coil 20 ft in diameter and carrying a 2000-kc current will radiate a con-
siderable amount of energy because 20 ft is comparable with the 150-m

TABLE 1-1
CLASSIFICATION OF RADIO WAVES

Clsse e o range Pr tion ch ti Typical uses
Very low fre- 10-30 ke 30,000-10,000| Low attenuation at all times | Long-distance point-
quency (VLF) m of day and of year; ch: to-point i
teristics very reliable tion
Low frequency 30-300 ke 10,000 1000 | Propagation at night similar| Long-distance point-
(LF) m . to VLF but slightly lesa | to-point service, ma~
reliable; daytime ahsorp-| rine, navigational
tion greater than VLF sids
Medium fre- 300-3000 k¢ | 1000-100 m | Attenuation low at night | Broadcasting, marine
quency (MF) and high in daytime communication,
navigation, harbor'
telephone, ete.
High frequency 3-30 Mc¢ 100-10 m T over id Moderate and long-
(HF) able dist depend 1 f
solely on the ionosphere, | tion of all types
and so varies greatly with
time of day, season, and
frequency
Very high fre- 30-300 Mc 10-1m Substantially straight-line | Short-distance com-
quency (VHF) propagati logous to i televi-
that of hght waves; un- sion, frequency mod-
i { d by i h lati radar, air-
plane navigation
Ultra-high fre- 300-3000 Mc | 100-10 cm Same Short-distance com-
quency (UHF)* munieation, radar,
relay systems, televi-
sion, ste.
Buper-high fre- 3000-30,000 |10 1 ¢em Same Radar, radio relay,
quency (SHF)* | Mec navigation

* Frequencies higher than about 2000 Mc ure frequently reforred to as microwave frequencies.

wavelength of this radio wave.

From these considerations it is apparent

that the size of radiator required is inversely proportional to the fre-
quency. High-frequency waves can therefore be produced by a small
radiator, while low-frequency waves require a large antenna system for
effective radiation.

Every radiator has directional characteristics as a result of which it
sends out stronger waves in certain directions than in.others. Directional
characteristics of antennas are used to concentrate the radiation toward
the point to which it is desired to transmit, or to favor reception of energy
arriving from a particular direction.
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s SYSTEM OF RADIO COMMUNICATION  [Casr.1

d Control of Radio-froquency_ Power.. The radio-
red by a radio transmitl.it;r is %ractlcall:' t;u;w:ay:
i .uum-tube oscillator or amplifier. Vacuum tu
obtmneddfron:):;z;l;:tz energy for all frequencies fx"o.m the very l?west
conver;o (-)(c)g Me, or even higher. Under most condm?ns the efficiency
ul')t,lt;owhi'ch this t:ransformation takes place is in the neighborhood of 50
::r centor higher. At frequencies up to well over 1000 Mc, the amount of

N\ pa
101 —

{01 TELEGRAPH CODE SIGNAL (d) SOUND VIBRATION

1-8. Generation and
frequency power requi

-\CAHHIER

AMPLITUDE

i |
| I’J_, LTI :“1’1 4”1 l’i l'ah
iy
]
(D) RADIO #{gﬁ:ﬁ;{&&ow:{loﬂ 8y (@) RADIO WAsV.fuzgfs:;Ru‘g?m‘ULlflm 8y

1
AVERAGE
VALUES

| L UL
I
(3] (T4

MODULATED WAVES AFTER RECTIFICATION,
SHOWING AVERAGE VALUES

Fio. 1-2. Diagram showing how a signal may be transmitted by modulating the
amplitude of a radio wave, and how the original signal may be recovered from the
modulated wave by rectification. For the sake of clarity the radio frequency is shown
as being much lower than would usually be the case.

power that can be generated continuously by vacuum tubes is of the order
of kilowatts. M

Modulation. If a radio wave is to convey a message, some feature of
the wav~ must be varied in accordance with the information to be trans-
mitted. One way to do this, termed amplitude modulation, consists in
}rarying the amplitude of the radiated wave. In radio telegraphy, this
involves turning the radio transmitter on and off in accordance with the
dots and dashes of the telegraph code, as illustrated in Fig. 1-2b. In
radio-telephone transmission by amplitude modulation the radio-fre-
quency wave Is varied in accordance with the pressure of the sound wave
being transmitted, as shown in Fig. 1-2¢. Similarly in picture trans-
mussion, the amplitude of the wave radiated a any one time is made

Momentum Dynamics Corporation
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Skc. 1-4] RECEPTION QF RADIO SIGNALS e S

proportional to the light intensity of the part of the picture that is being
transmitted at that instant. '

Intelligence may be transmitted by other means than by varying the
amplitude. For example, one may maintain the amplitude constant snd
vary the frequency that is radiated in accordance with the intelligence,
thus obtaining frequency modulation. This results in a wave such as

shown in Fig. 1-3b, which is to be
compared with the corresponding
amplitude-modulated wave of Fig.
1-3a. Frequency modulation is
widely used in very high-frequency
communication systems.

1-4. Reception of Radio Signals.
In the reception of radio signals it
is first necessary to abstract energy
from the radio wave passing the
receiving point. Any antenna
capable of radiating electrical
energy is also able to absorb en-
ergy from a passing radio wave.
This occurs because the electro-
magnetic flux of the wave, in cutting
across the antenna conductor, in-
duces in the antenna a voltage that
varies with time in exactly the same

111N

il
1

(@) AMPLITUDE - MODULATED WAVE

MLRIRIN )
AL VRN

(5) SAME INFORMATION TRANSMITTED BY
FREQUENCY - MODULATED WAVE
Fi1a. 1-3. Character of waves produced by
amplitude modulation and by frequency
modulation, where the modulation is
sinusoidal in both cases. For the sake
of clarity the radio frequency is shown
much lower than would usually be the

way as does the current flowingin “=*

the antenna radiating the wave. This induced voltage, in association
with the current that it produces, represents energy that is absorbed from
the passing wave.

Since every wave passing the receiving antenna induces its own voltage
in the antenna conductor, it is necessary that the receiving equipment be
capable of separating the desired signal from the unwanted signals that
are also inducing voltages in the antenna. This separation is made on
the basis of the difference in frequency between transmitting stations and
is carried out by the use of resonant circuits which can be made to dis-
criminate very strongly in favor of a particular frequency. The ability to
discriminate between radio waves of different frequenties is called
selectivity and the process of adjusting circuits to resonance with the fre-
quency of a desired signal is spoken of as tuning.

Although intelligible radio signals have been received from radio trans-
mitters thousands of miles distant, using only the energy abstracted from
the radio wave by the receiving antenna, much more satisfactory recep-
tion can be obtained if the received energy is ampilified. This amplifica-
tion may be applied to the radio-frequency cumnts before detection, in
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6 SYSTEM OF RADIO COMMUNICATION  [Cae. 1

hich case it s called radio-frequency amplification; or it may be applied
My stified currents after detection, in which case it is called audio-
fo the rect lification. The use of amplification makes possible the
fri?s‘:’::g'; I:;zeptiun of signals from waves that would otherwise be too
:;:ak to give an audible response. ’ljhe only §a.tisfactory method of
amplifying radio signals that has been discovered is by the use of.vacuum
tubes or transistors. Before vacuum tubes were dxscovere::l, radio recep-
tion had available only the energy abstracted from the radio wave by the

ivi tenna.

rec;i\t:;lfo:n The process by which the message being transmit'ted is
reproduced from the modulated radio-frequency current present in the
receiver is called delection, or sometimes demodulation. With amplitude-
modulated waves, detection is accomplished by rectifying the radio-
frequency currents to produce a current that varies in accordance with
the modulation of the reccived wave. Thus, when the modulated wave
shown at e of Fig. 1-2 is rectified, the resulting current, shown at f, is seen
to have an average value that varies in accordance with the amplitude of
the original signal. In the transmission of code signals by radio, the
rectified current reproduces the dots and dashes of the telegraph code, as
shown at Fig. 1-2¢, and could be used to operate a telegraph sounder.
When it is desired to receive the telegraph signals directly on a telephone
receiver, it is necessary to break up the dots and dashes at an audible rate
in order to give a note that can be heard, since otherwise the telephone
receiver would give forth a suceession of unintelligible clicks.

The detection of a frequency-modulated wave involves two steps.
First, the wave is transmitted through a circuit in which the relative
response depends upon the frequency. The wave that then emerges from
the circuit is amplity de-modulated, since as the frequency of the constant-
amplitude input wave changes, the output amplitude will follow the
variation of circuit transmission with frequency. The resulting amplitude-
modulated wave is then rectified.

1-6. N_aturf of a Modulated Wave. A sine wave conveys very little

but is_s instead a mixture of several waves of slightly different frequencies
superi~iposed upon each other, The actual nature of a modulated wave
can be deduced by writing down the equation of the wave and making a
mathematical afialysis of the result. Thus, in the case of the simple
sine-wave amplitude modulation shown in Fig. 1-3a, the amplitude of the
r?.dlo-frequency oscillation is given by E = Ey + mE, sin 2xf.t, in which
E, Tepresents the average amplitude, f, the frequency at which the ampli-
tude is varied, and the ratio of amplitude variation from the average to
the average a.mplitude{, which is called the degree of modulation. The
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Sl;;c. 1-5) NATURE OF A MODULATED WAVE 7
equation of the amplitude-modulated wave can be hence written as

e = Eo(1 + m sin 2xf,t) sin 2xft (1-2)

in which f is the frequency of the radio oscillation. Multiplying out the
right-hand side of Eq. (1-2) gives

¢ = Eqsin 2xft + mE, sin 2xf.{ sin 2xft

By expanding the last term into functions of the sum and difference
angles by the usual trigonometric formula, the equation of a wave with
simple sine-wave amplitude modulation can be written in the form
e = E, sin 2xft + 1"—2%005270 - fJt — Ln-zE—"cos 2Z(f + £t (1-3)
Equation (1-3) shows that the wave with sine-wave modulation consists
of three separate waves. The first of these, represented by the term
E,sin 2xft, is called the carrier. Its amplitude is independent of the
presence or absence of modulation and is equal to the average amplitude
of the wave. The two other components are alike as far as magnitude is
concerned, but the frequency of one of them is less than that of the
carrier frequency by an amount equal to the modulation frequency, while
the frequency of the other is more than that of the carrier by the same
amount. These two components, called sideband frequencies, carry the
intelligence that is being transmitted by the modulated wave. The fre-
quency of the sideband components relative to the carrier frequency is
determined by the modulation frequency. The relative amplitude of the
sideband components is determined by the extent of the amplitude varia-
tions that are impressed upon the wave, i.e., by the degree of modulation.
When the modulation is more complex than the simple sine-wave
amplitude variation of Fig. 1-3a, the effect is to introduce additional side-
band components. Thus, if the wave of a radio-telephone transmitter is
amplitude-modulated by a complex sound wave containing pitches of 1000
and 1500 cycles, the modulated wave will contain one pair of 1000-cycle
sideband components and one pair of 1500-cycle sideband components.
The analysis of a frequency-modulated wave is somewhat more com-
plex but leads to an analogous result. The principal difference is that the
frequency-modulated wave not only contains the same sideband fre-
quencies as does the corresponding amplitude-modulated wave, but in
addition contains higher-order side bands. Thus, if a wave has its fre-
quency varied at a rate of 1000 times per second, the resulting modulated
wave will contain not only a pair of 1000-cycle sideband components,
but in addition a pair of 2000-cycle sideband components, possibly a pair
of 3000-cycle sideband components, etc. The amplitude of these various
Momentum Dynamics Corporation
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8 SYSTEM OF RADIO COMMUNICATION [Crar. 1

sideband pairs will depend upon the extent and upon the rate of frequency
variation.

Significance of the Sidebands. The carrier and sideband frequencies are
not & mathematical fiction, but have a real existence, as is evidenced by
the fact that the various frequency components of a modulated wave can
be separated from each other by suitable filter circuits. The sideband
frequencies can be considered as being generated as a result of varying
the wave. They are present only when the wave is being varied, and
their magnitude and frequency are determined by the character of the
modulation.

It is apparent that the transmission of intelligence requires the use of a
band of frequencies rather than a single frequency. Speech and music of
the quality reproduced in standard broadcasting involve frequency com-
ponents from about 100 cycles up to 5000 cycles; when modulated upon a
carrier wave, the total bandwidth involved is therefore 10,000 cycles. If
this entire band is not transmitted equally well through space, and by the
circuits in both transmitter and receiver through which the modulated
wave must pass, thien the sideband frequency components that are dis-
criminated against will not be reproduced in the receiving equipment with
proper amplitude, and a loss in quality will result. With telegraph
signals, the required sideband is relatively narrow because the amplitude
of the signals is varied only a few times a second, but a definite frequency
band is still required. If some of the sideband components of the code
signal are not transmitted, the received dots and dashes tend to be
rounded off and run together,-and may become indistinguishable.

1-8. The Decibel. The decibel (abbreviated db) is a logarithmic unit
used in communication work to express power ratios. If the powers
being compared are P, and P, then

Decibels = 10 loguo 5! (1-4)
The sign associated with the number of decibels indicates which power is
greater; thus a negative sign means P, is less than P,

The decibel has no other significance than that given in Eq. (1-4).
Thus, if decibels are used to express amplification, this simply means that
the presence of the amplification increases the power output by the num-
ber of decibels attributed to the amplification. Again, under many
conditions relative power is proportional to the square of the voltage E
(or current I, or field B, etc.). Under these conditions

Decibels = 20 logso % -2 logm% = 20 logxo g—:, ete.  (1-5)

These relations must be used with caution, however, as they hold only
when the resistance associated with E, (or I or B,) is the same as asso-
ciated with E, (or I, or B,).
Momentum Dynamics Corporation
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Sec. 1-6] THE DECIBEL 9

TABLE 1-2
(a) POWER, VOLTAGE, AND CURRENT RATIOS FOR ASSIGNED
DECIBEL VALUES

Current Current and
d voll P ti i
r:gotase 'ower ratio Db voltage ratio Power ratio
Gain | Loss | Gain Gain Loss Gain Loss
0.0 {1.00(1.000| 1.00 10 3.16 10.316 10.00 0.100
0.2 [1.02]0.977|1.05 12 3.98 10.251 15.8 0.063
0.4 |1.05|0.955/1.10 14 5.01 |0.200 25 1 0.040
0.6 |1.07|0.933[{1.15 16 6.31 10.158 39.8 0.025
0.8 {1.10(0.912({1.20 18 7.94 [0.126 63.1 0.016
1.0 [1.12/0.891|1.26 20 10.00 10.100 100.0 0.010
1.5 |1.19/0.841)1.41 25 17.8 |0.056 3.16 X 10*|3.16 X 10—
2.0 11.2610.794{1.58 30| 31.6 [0.032 10* 10—
2.5 11.33/0.750{1.78 36| 56.2 0.018 [3.16 X 10*|3.16 X 10—+
3.0 |1.41/0.708{2.00 40 | 100.0 [0.010 104 104
3.5 |1.50(0.668{2.24 45 | 177.8 [0.006 3.16 X 10| 3.16 X 10~*
4.0 [1.58]0.631|2.51 50 | 318 0.003 108 10-%
4.5 |1.68]0.596| 2.82 60 1,000(0.001 10¢ 10-¢
5 1.7810.562{3.16 70 3,160(0. 107 10—
6 2.00[0.501| 3.98 80 10,000(0. 0001 100 10—
7 2.2410.447|5.01 90 31,600(0.00003 10° 10—
8 2.51)0.398/6.31 100 | 100,000(0.00001 1010 10-10
9 2.8210.355| 7.94 120 |1,000,000(0.000001 101 10-18
(b) DECIBEL EQUIVALENT OF POWER, VOLTAGE, AND
CURRENT RATIOS
Db equivalent Db equivalent Db equivalent
Ratio Voltage or | Ratio Voltage or | Ratio Voltage or
Power current Power current Power current
10-¢ |-60.00| —120.00| 1.2 | 0.79 1.58 10 | 10.00 20.00
10-* |—~50.00 ~100.00 | 1.4 | 1.46 2.92 12 | 10.79 21.58
10-¢ |—-40.00{ —80.00| 1.6 | 2.04 4.08 14 | 11.46 22.92
0.001 {-30.00f —60.00| 1.8 | 2.55 5.10 16 | 12.04 24.08
0.003 | —25.23| —50.46 | 2.0 | 3.01 6.02 18 | 12.55 25.10
0.005|—23.01] -—46.02| 2.5 | 3.98 7.96 20 | 13.01 26.02
0.01 |—20.00f —40.00 | 3.0 | 4.77 9.54 25 | 13.98 27.96
0.03 {—15.23{ —30.46 ] 3.5 | 5.44 10.88 30 | 14.77 29.54
0.06 |-13.01] —26.02] 4.0 | 6.02 12.04 40 | 16.02 32.04
0.10 |-10.00, —20.00} 4.5 | 6.53 13.06 50 | 16.99 33.98
0.15 | —8.24)] -—16.48]| 5.0 | 6.99 13.98 60 | 17.78 35.56
0.20 | —6.99| —13.98) 5.6 | 7.40 14.81 80 | 19.03 38.08
0.30 | —5.23] —10.46| 6.0 | 7.78 15.56 100 | 20.00 40.00
0.40 | —3.98f -7.96] 6.5 | 8.13 16.26 10% | 30.00 60.00
0560 | -3.01f -—6.02| 7.0 | 8.45 16.90 10¢ | 40.00 80.00
060 | —2.22) —-4.44)| 7.5 | 8.75 17.50 108 | 50.00 | 100.00
0.80 { —0.97] -—1.94] 8.0 | 9.03 18.06 10¢ [ 60.00 | 120.00
1.00 0.00 0.00| 9.0 | 9.54 19.08 107 | 70.00 | 140.00

Momentum Dynamics Corporation
Exhibit 1013
Page 014



10 SYSTEM OF RADIO COMMUNICATION [Crar. 1

The practical value of the decibel arises from its logarithmic nature.
This permits the enormous ranges of power involved in communication
work to be expressed in terms of decibels without running into incon-
veniently large numbers, while at the same time permitting small ratios
to be conveniently expressed. Thus, 1 db represents a power ratio of
approximately 5:4, while 60 db represents a ratio of 1,000,000:1. The
logarithmic character of the decibel also makes it possible to express the
ratio of input to output powers of a complicated circuit as the sum of the
decibel equivalent of the ratios of the input to output powers of the differ-
ent parts of the circuit that are in cascade.

Table 1-2 gives a convenient summary of decibel values.

Momentum Dynamics Corporation
Exhibit 1013
Page 015



CHAPTER 2

CIRCUIT ELEMENTS

2-1, Inductance. A current flowing in an electrical circuit produces
magnetic flux that links with (i.e., encircles) the current. The effect of
this flux is expressed in terms of a property of the circuit called the
winductance.

Inductance can be defined as the flux linkages per ampere of current
producing the flux; i.e.,

Inductance L flux linkages

- - - — —_— e e am 8 0
in henrys current (amperes) producing flux X107 (2-1)

A flux linkage represents one flux line encireling the circuit current once.
Thus in Fig. 2-1 flux line aa contributes eight flux linkages toward the

coil inductance because it circles the cur-
Cl(.{!’hﬂ‘! (N

rent flowing in the coil eight times. On
the other hand, flux line b of the same coil
N———

contributes only one-half a flux linkage :

]
particular line encircles only one-half the ﬂw <
coil current.

Calculation of Inductance. The induct-  jyi. 2-1. Flux und current dis-
ance of an electrical circuit is computed by  tribution in typical single-layer
assurr'xing a convenient cu.rrent flowing in ::l’"“’:;;"d d ;:;;‘;‘“‘l:“l“m;‘szd'r“;;
the circuit. The magnetic flux produced he density of shading.
by this current is then calculated, and the
total number of flux linkages that results is counted. The inductance in
henrys is this total number of flux linkages multiplied by 10-8 and divided
by the circuit current.

Formulas have been derived by this procedure that give the inductance
for all commonly used types of air-cored coils.’ It is thus neither neces-
sary nor desirable to guoss at the number of turns and coil dimensions
required to obtain a desired inductance. For example, the inductance of
a single-layer solenoid, such as shown in Fig. 2-1, is given by the relation

Inductance in microhenrys = Fn*d (2-2)

! A comprehensive collection of such formulas is given by F. E. Terman, “Radio
Engineers’ Handbook,” pp. 48-64, McGraw-Hill Book Company, Inc., New York,
1943.

_toward the coil inductance because this

11
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12 CIRCUIT ELEMENTS [Crar. 2

where n = number of turns

d = diameter of coil measured to center of wire

F = constant that depends only upon the ratio of length to diam-

eter, given in Fig. 2-2

The quantity F depends in a complicated way upon the ratio of coil
length to diameter, since the geometrical distribution of the flux produced
by the current in the coil does not follow a simple mathematical law.
However, once the relationship represented by F has been determined,

0040

0030

0.020

0

0015

0010
0009 —

0008
0007
03 04 U5 06 07 0809 10 8 20 30
LENGTH
‘ DIAMETER
F1a. 2-2. Values of constant ¥ for uge in Ey. (2-2), to obtain the inductance of single-
layer solenoids.

N,

the value of ¥ can he computed once for all, and presented by a curve,
such as Fig. 2-2, or by a table.

The inductance of all coils with air cores is proportional to the square of
the number of turns if the dimensions such as length, diameter, depth of
winding, cte., are kept constant as the number of turns is altered. The
reason for this behavior lies in the fact that, if the coil dimensions are kept
constant, the amount of magnetic flux produced by a given coil current
and the number of times each flux line links with the coil current are both
proportiu.al to the number of turns,

The inductance of all air-cored coils having the same number of turns
atnd the same shape is always proportional to the size (i.e., to a linear
dimension, such as length or radius) of the coil. Thus, if two coils have
t!)e same number of turns, but one is twice as big as the other in every
dimension (such as diameter, length, width, and depth of winding), then
the larger coil will have twice the inductance of the smaller one. This
rule results from the fact that the cross section of the flux paths is propor-

Momentum Dynamics Corporation
Exhibit 1013
Page 017



Sec. 2-1} INDUCTANCE 13

tional to the square of the linear dimension of the coil, while the length of
these paths varies directly as the linear dimension.

In calculating the inductance of coils with magnetic cores, the flux is
determined in accordance with the usual methods of making magnetic
circuit calculations, taking into account air gaps, leakage and fringing
flux, ete. It is also necessary to assume the proper value of permeability,
as discussed below.! To the extent that the permeability of the core
material can be considered as constant, the inductance of a coil with a
magnetic core is proportional to the square of the number of turns and to
the first power of the size, just as in the air-cored case.

Inductance of a Connecting Wire. The inductance associated with a
connecting wire depends on the wire diameter, and can be minimized by
making the diameter large. This results from the fact that when the
wire diameter is small the length of the flux paths immediately outside of
the wire is less than if the diameter is large. As a result the small wire is
circled by more flux and hence has higher inductance.

An alternative means of achieving a low-inductance connection con-
sists in employing a conductor comprising two or more spaced wires con-
nected in parallel.  If three wires are employed, they should be placed at
the corners of an equilateral triangle; in a four-wire system the individual
wires would be at the corners of a square, etc. Such arrangements give
the first approximation to a solid conductor of large diameter, and will
have less inductance the greater the diameter of the individual wires and
the greater the spacing between the wires connected in parallel.

Initial and Incremental Permeability; Incremental Inductance. The
permeability of a magnetic material is defined as the ratio B/II of the flux
density to the magnetizing force, and depends upon the flux and the
material. The permeability at very low flux densitics, termed the initial
permeability, is of particular importance in communication systems, where
the current is commonly very weak. The initial permeability of mag-
netic materials is nearly always much less than the permeability at some-
what higher flux densities.

Coils having magnetic cores are frequently used in communication work
under conditions where there is a large d-c magnetization upon which is
superimposed a small a-¢c magnetization. Under these conditions, one is
interested in the inductance that is offered to the superimposed alter-
nating current. This is called the incremental inductance, and the cor-
responding permeability of the magnetic material is ternfed the incre-
mental permeability.

Incremental permeability, and hence incremental inductance, depend
upon the magnitude of both d-c and a-¢ magnetizations, and upon the
previous magnetic history of the core. When a core that has been

1 Such calculations are discussed in ‘Components Handbook’' (vol. 17, Radiation
Laboratory Series), chap. 4, McGraw-Hill Book Company, Inc., New York, 1949.
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16 CIRCUIT ELEMENTS [Caae. 2

quencies. The addition of cobalt to nickel-iron alloys introduces the
possibility of obtaining substantially constant permeability up to moder-
ate flux densities, combined with extremely low hysteresis loss at low flux
densities and almost zero residual induction and coercive force (see page
17). Such alloys are termed perminvars, and also possess in large
degree the high-permeability features of nickel-iron alloys such as
permalloy.

Iron-cobalt alloys containing from 36 to 50 per cent cobalt are charac-
terized by a saturation flux density appreciably higher than that of silicon
steel. Such alloys also have higher incremental
P permeability at high d-c magnetizing forces than do
other magnetic materials,

Magnetic cores that are nonconducting have been
developed for use in radio-frequency coils.! They
are composed of mixtures of ferrites, and have a
resistivity so high that eddy-current losses are

0 negligible in solid cores even at frequencies higher
——-——— —1 than 1 Mc. At the same time, such core material
P1 RERMANENT MAGNET  hag g, relatively high initial permesbility, a value of
0- sorT Row PoLE PiEces 500 being typical. These nonconducting magnetic
Fia.2-5. Typical mag-  cores are not suitable for use in power transformers,
metic circuit involving  p,wever gg they saturate at low flux densities.

a permanent magnet.

2-2. Permanent Magnets.? Permanentmagnets
now find many uses as a result of the development in recent years of im-
proved permanent magnet materials. A typical system involving a
permanent magnet is illustrated in Fig. 2-5. Here P is the permanent
magnet, G is an air gap in which it is desired that the permanent magnet
produce magnetic flux, and D denotes soft-iron pole pieces of low magnetic
reluctance. In such an arrangement, the permanent magnet can be
thought of as being a generator of magnetomotive force that acts on an
external circuit (load) consisting of the magnetic circuit DGDGD that is
external to the permanent magnet.

Assume that the permanent magnet in the system of Fig. 2-5 is mag-
netized to saturation and that the magnetizing force is then removed.
The resulting situation that exists in the magnet corresponds to a point
somewhere on the part of the hysteresis loop lying in the upper left-hand
quadrant of Fig. 2-3. This section of the hysteresis curve, shown
enlarged in Fig. 2-6, is termed the demagnetization curve, and gives the
principal characteristics of the permanent magnet. The flux density B,
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Szc. 2-2] 17

in the magnet for zero magnetizing force is termed the residual induction,
while the demagnetmng force H, which makes the flux density in the
magnet zero is termed the coercive force.

For an operating condition of the magnet in Fig. 2-8 corresponding to
point ', the flux density in the magnet is B’, and the total flux generated
by the permanent magnet is B’A where A is the cross-sectional area of the
permanent magnet. Alse for the same operating point C”, each unit
length of the permanent magnet produces a magnetomotive force H';
hence the total magnetomotive force
that is applied to the external circuit
(DG@D@ED in Fig. 2-5) by the per-
manent magnet is H'l, where [ is the
length of the permanent magnet.
The operating point C’ accordingly
assumes a position on the demagneti-
zation curve such that H'I/B’A
equals the reluctance of the external
magnetic circuit.

Design Principles. The magnetic
energy developed by the permanent

PERMANENT MAGNETS

FLUX DENSITY -B
N,

magnet in the external system
DGD@ED in Fig. 2-5 is proportional to
the product (B’A) (H'l) of magnetic
flux and magnetomotive force associ-

DEMAGNETIZING FORCE H  ENERGY -PRODUCT BH
Fia. 2-8. Demagnetization and energy-
product curves of a permanent magnet,
showing minor hysteresis loop
ciated with stabilization.

ated with the external circuit. Thus

the magnetic energy available in the external circuit per unit volume of
the permanent magnet is proportional to the product BH of the
demagnetization curve, as plotted in Fig. 2-6.

It is now possible to state the principal design considerations of systems
involving permanent magnets. First, the permanent magnet should be
operated at a point on the demagnetization curve where the energy
product BH is at or near its maximum; this operating point is a charac-
teristic of the magnetic material involved, and defines a magnetomotive
force H’ per unit length and a flux density B’ for the permanent magnet.
Next, the cross section A of the magnet is given a value such that, when
the flux density in the magnet has the value of B’, the total flux B'A will
have the value desired for the external magnetic circuit. - Finally, the
length ! of the permanent magnet is made such that H'l will equal the
magnetomotive force required to develep the required flux B’A in the
external magnetic circuit.

A permanent magnet operating at a pomt such as C’ in Fig. 2-6 will
have the flux density permanently changed when subjected to a transient
action that momentarily reduces the flux density below B’. Thus assume
that a transient demagnetizing current (or a momentary increase in
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18 CIRCUIT ELEMENTS [Caae. 2

reluctance) shifts the operating point from C’ to Q. If this added effect
is now removed, the operating point does not return to C’. Rather, it
moves to & new point C”/, corresponding to some new value of flux density
B’ less than B’, but such that the ratio H"l/B"A still equals the reluc-
tance of the external magnetic circuit; when this reluctance is linear, as
when it arises from an air gap, then C” lies on a straight line joining C’
and the origin, as shown in Fig. 2-6. If the transient added force is ap-
plied a second time, the operating point will now return to Q, and upon
removal of the added force will go back to C”, following the paths shown.

DEMAGNETIZATION CURVES ENERGY - PRODUCT CURVES

1 ALNICO X
2@ VICALLOY I
J ALnvicom
4. 36% COBALT STEEL
5. ALNICO 12

”

1000 800 600 400 200 -] 1 2 3 4 L]
DEMAGNETIZING FORCE (H) IN OERSTEDS BH PRODUCT X10°®

F1a. 2-7. Demagnetization and energy-product curves of typical permanent magnet
materials.

Thus a permanent magnet system can be stabilized against added effects
by initially subjecting the system to an added demagnetizing force AH ;
this will reduce the energy that the magnet supports in the system exter-
nal to the magnet, but it prevents subsequent transient demagnetizing
effects from producing a permanent change in the system provided their
amplitudes do not exceed the demagnetizing force AH used in stabiliza-
tion.! It will be noted that QC" is a minor hysteresis loop analogous
to the right-hand half of loop 1 in Fig. 2-3.

Permanent-magnet Materials.2 Many different types of permanent-
magnet materials have been developed; the characteristics of representa-
tive examples are illustrated in Fig. 2-7. The magnetic properties depend
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Sec. 2-3) MUTUAL INDUCTANCE 19

upon the composition and require proper cold working and heat-treat-
ment to be fully developed. Heat-treatment is sometimes carried out in
the presence of a strong magnetizing field ; in this case the material when
used should be magnetized in the same direction as when heat-treated.

The choice between different materials for a particular application is
determined, not only by the energy product, but also by cost, by ease of
fabricating, by whether the magnet is to be used in an external system of
high or low reluctance, etc. In general, the better permanent-magnet
materials are very difficult to work. Thus the alnicos (aluminum-nickel-
iron alloys) are hard, weak, and brittle, and are commonly cast to approxi-
mate shape and then finished by grinding to exact size; they cannot be
machined, drilled, or tapped.

2-3. Mutual Inductance and Coefficient of Coupling. Mutual Induct-
ance. When two inductance coils are so placed in relation to each other

] 2 ’l s
— Pl — ——
L I (3= 45
Lm >Cm
(@) INDUCTIVELY (5) COUPLED BY COMMON IN- (¢) COUPLED BY COMMON

COUPLED DUCTANCE (DIRECT COUPLING) CAPACITANCE
Fra. 2-8. Several simple methods of coupling two cireuits.

that flux lines produced by current in one of the coils link with the turns
of the other coil as shown in Fig. 2-8a, the two inductances are said to be
inductively coupled. The effects that this coupling produces can be
expressed in terms of a property called the mutual inductance, which is
defined by the relation

‘ﬂux linkages in second coil }

produced by current, in first coil s (o
current in first coil X 10 (2-3)

|ﬂux linkages in first coil }

produced by current in second coil _—
current in second coil X 1070 (24)

inductance
M in henrys

Mutual }

Formulas (2-3) and (2-4) are equivalent and give the same value of
mutual inductance. The flux linkages produced in the coil that has no
current in it are counted just as though there were a current in this coil, so
that the number of times a flux line would encircle an imaginary coil cur-
rent is the number of linkages contributed by this particular line. In add-
ing up the flux linkages it is important to note that differcnt flux lines may
coneeivably link with the same coil in opposite directions, in which case

a4
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20 CIRCUIT ELEMENTS [Caar. 2

the total number of linkages is the difference between the sums of positive
and negative linkages. The mutual inductance may therefore be positive
or negative depending upon the direction of the lmkages

The problem of calculating mutual inductance is similar in all respects
to the problem of computing inductance, and formulas have been worked
out by which the mutual inductance can be calculated with good accuracy
in all the ordinary types of configurations.

When two coils of inductance L, and L., between which a mutual
inductance M exists, are connected in series, the equivalent inductance
of the combination is Ly + L2 + 2M. The term 2M takes into account
the Aux linkages in each coil due to the current in the other coil. These
mutual linkages may add to or subtract from the self-linkages, depending
upon the relative direction in which the current passes through the two
coils. Thus, when all linkages are in the same direction, the total
inductance of the secries combination exceeds by 2M the sum of the
individual inductanees of the two coils.

Cocflicient of Coupling. The maximum value of mutual inductance
that can be obtained between two coils having inductances L; and L, is
V/Inl;.  The ratio of the mutual inductance M that is actually present
to this maximum possible value of mutual inductance is called the coeffi-
cient of coupling, which can therefore be expressed by the relation

M
V/Li\L;

The coefficient of coupling.is a convenient constant because it expresses
the extent to which the two inductances are coupled, independently of
the size of the inductances concerned. In air-cored coils a coupling
coefficient of 0.5 is considered high and is said to represent “close’”
coupling, while coefficients of only a few hundredths represent ‘‘loose”
coupling.

General Case of Coupled Circuits. Any two circuits 8o arranged that
energy can be transferred from one to the other are said to be coupled,
even though this transfer of energy takes place hy some means such as a
capacitor, resistance, or mductance common to the two circuits rather
than by the aid of a mutual inductance. Examples of various methods of
coupling are shown in Fig. 2-8. _Any two circuits that are coupled by a
common impedance have a coefficient of coupling that is equal to the ratio of
the common impedance fo the square root of the product of the total impedances

?I{ }fh: same kind as the coupling impedance that are present in the two circuits.
at s,

Coefficient of coupling = k = (2-5)

Z
k=-22 2-6
VZ.Z, o
where Z,, is-the impedance common to the two circuits, and Z; and Z; are

Momentum Dynamics Corporation
Exhibit 1013
Page 023



Skc. 2-4] SKIN EFFECT 21

the total impedances of the same kind in the two circuits. When applied
to case b in Fig. 2-8, where the coupling is furnished by the common
inductance L, the total inductances of the two eircuits are Ly + L., and
Lz 4+ Lm, respectively, and Eq. (2-6) reduces to

Ln
\/(Ll + Lm) (Lt + Lu)

In Fig. 2-8¢ the coupling element is a common capacitance Cn, and the
coefficient of coupling is!

Coefficient of coupling k for Fig. 2-8b 2-7)

Coeflicient of coupling for Fig. 2-8¢ = S VA oo
V(Ca + C1)(Cm + Cy)

2-4. Skin Effect in Coils and Conductors at Radio Frequencies. The
effective resistance offered by conductors to radio frequencies is consider-
ably more than the ohmic resistance
measured with direct currents. This is
hecause of an action known as skin effect,

which causes the current to be concen-
trated in certain parts of the conductor @ MAGNETIC

(2-8)

and leaves the remainder of the cross L
section to contribute little or nothing
toward carrying the current.

A simple example of skin effect, and
one that makes its nature clear, is

I
]
1
i 1 1 ] MODERATE
furnished by an mol?‘ted round wire. | FREQUENCY
When a current is flowing through such a  cuerenr f\ 1
. DENSITY !
conductor, the magnetic flux that results ~HGHER FREOUENCY
is in the form of concentric circles, as RADIAL POSITION

shown in Fig. 2-9. Itisto benoted that Fia.2-9. Isolated round conductor,
some of this flux exists within .the con- :‘l‘;wt';‘gi;:ﬁm: t.ﬂgi:tgill:\lx‘t?o::d
ductor and therefore links with, i.e.,

encircles, current near the center of the conductor while not linking with
current flowing near the surface. The result is that the inductance of the
central part of the conductor is greater than the inductance of the part of
the conductor near the surface;this is because of the greater number of flux

1 Equation (2-7) is derived as follows: In Fig. 2-8¢, the primary circuit has C1and Cm
in series and so has an equivalent capacitance of C,Cn/(Ci + Cm) while the equivalent
capacitance of the secondary is similarly C:Cm/(Cz 4+ Cm). The coupling reactance is
1/wC., while the primary and secondary reactances are (C: + Cm)/wCiCm and
(C: + Cm)/wC3Cm, respectively. The coefficient of coupling is then

VaCn
\ ,Cx + Cm C2 + Cw
wCiCm  wCsCm
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29 CIRCUIT ELEMENTS [CHar. 2

linkages existing in the central region. At radio frequencies, the react-
ance of this extra inductance is sufficiently great to affect seriously the flow
of current, most of which flows along the surface of the conductor where
the impedance is low, rather than near the center where the impedance is
high. The center part of the conductor, therefore, does not carry its
share of the current and the true or effective resistance is increased, since
in effect the useful cross section of the wire is very greatly reduced. The
types of current distribution obtained in typical cases of skin effect in a
round wire are shown in Fig. 2-9.

When skin effect is present, the current is always redistributed over the con-
ductor cross section in such a way as to make most of the current flow where it
18 encircled by the smallest number of
flux lines. This general principle
controls the distribution of current,
irrespective of the shape of the con-
ductor involved. Thus, with a
conductor consisting of a thin flat

Fic. 2-10. Flux lines and current dis-
tribution in a thin strip at radio fre-
quency, showing how skin effect causes
the current to concentrate at the cdges
of the strip. The current density is indi-
cated by the density of the shading.

strip, such as shown in Fig. 2-10,
the current flows primarily along
the edges, where it is surrounded by
the smallest amount of flux, and the

true or effective resistance will he
high because most of the strip carries very little current. This illustra-
tion makes clear that it is not the amount of conductor surface that de-
termines the resistance toalternating current, but rather the way in which
the conductor material is arranged.

The ratio that the effective a-c resistance bears to the d-c resistance of a
conductor is commonly called the resistance ratio. It increases with fre-
quency, with conductivity of the conductor material, and with the size of
conductor. This results from the fact that a higher frequency causes the
extra inductance at the center of the conductor to have a higher reactance.
Similarly, a greater conductivity makes the reactance of the extra induct-
ance of more importance in determining the distribution of current, while
a greater cross section provides a larger central region. It is to be noted,
however, that a larger conductor always has less radio-frequency resist-
ance than a smaller one because, although the ratio of a-¢ to d-c resistance
is less f4vorable, this is more than made up by the greater amount of
conductor cross section present.

Skin Effect at High Frequencies.® When the frequency is sufficiently
high, substantially all of the current in a conductor is confined to a region

very close to the surface. The current density then falls off with depth
from the surface in accordance with the relation

! An excellent discussion of skin effect at very high frequencies is given by Harold A.
Wheeler, Formulas for the Skin Effect, Proc. IRE, vol. 30, p. 412, September, 1942,
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Sec. 2-4] SKIN EFFECT 23

Current at depthz
Current at the surface

(2-9)

Here z and & are in the same units, and 8 is a quantity called the skin depth
that is given by the equation

= 5033 \/n ; (2-10)

where § = skin depth, em
p = resistivity of conductor, ohms per centimeter cube »
f = frequency, cycles
g = magnetic permeability of core material (permeability of air
equals unity), for low flux densities (that is, x is the initial
permeability)
For copper at 20°C this reduces to

6.62
Skin depth of copper in em = -\77 2-11)

At 1 Mc the skin depth in copper is thus 0.0066 cm, or 0.0026 in. The
phase of the current at depth z lags the current at the surface by z/5
radians. At a depth from the surface corresponding to one skin depth,
the current density has dropped to 36.8 per cent of the value at the sur-
face, and the phase of the current lags the current at the surface by |
radian.

Equation (2-9) is valid whenever the radius of curvature of the con-
ductor surface is at least several times the skin depth, provided the
cffective thickness of the conductor is at the same time at least three or
fonr skin depths.

The power loss associated with the current flowing under any particular
portion of the conductor surface is the same as though this current were
uniformly distributed down to a depth 8. Thus, in an isolated round
wire, where the current is uniformly distributed over the surface, the
effective resistance at high frequencies is the d-¢ resistance of a hollow
cylindrical shell having the same outer diameter as the wire and possessing
a thickness 5. The d-c resistance of a strip of surface one skin depth
bhick, one centimeter loug, and one centimeter wide is sometimes called
thc surface resistivity; it is the resistivity that is offered to the flow of cur-
rent at very high frequencies.

Proximity ﬁﬁect——bkm Effect in Coils. 'When two or more adjacent
conductors are carrymg current as in a coil, the current distribution in
any one conductor is affected by the magnetic flux produced by the
adjacent conductor as well as by the magnetic flux produced by the cur-
rent in the conductor itself. This effect, termed prozimily effect, ordi-
narily causes the true or effective resistance to be greater than in the case
of simple skin effect and is particularly important in radio-frequency
inductance coils.
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The cu
present foll

rrent distribution under conditions where proximity effect is
ows the same law as for simple skin eﬁe?t; i.e., the current
density is greatest in those parts of the conductor encircled by the small-
est, number of flux lines. This is illustrated in Fig. 2-1, where the approxi-
mate current density is illustrated by relative shading.

Litz Wire. 'The effective a-c resistance of a conductor can be made to
approach the d-c resistance at low and moderate radio frequencies by
forming the conductor from & number of strands of small enameled wire
connected in parallel at their ends, but insulated througlfout.ﬂm rest of
their length and thoroughly interwoven. If the stranding is properly
done, each wire will, on the average, link with the same number of flux
lines as every other wire, and the current will divide evenly among the
strands. If at the same time each strand is of small diameter, it will have
relatively little skin effect over its cross section, so all of the material is
equally effective in carrying the current. Such a stranded cable is called
a litz conductor.

Practical litz conductors are very effective at frequencies below about
1000 ke, but as the frequency becomes higher the benefits disappear.
This is because irregularities of stranding, and capacitance between
the strands, cause a failure to realize the ideal condition at very high
frequencies.

2-5. Capacitors and Dielectrics. A capacitor is formed wherever an
insulator (i.e., dielectric) separates two conductors between which a
difference of potential can exist.

Capacitor Losses and Their Representation. A perfect capacitor when
discharged gives up all the electrical energy that was supplied to it in
charging. Actual capacitors never realize this ideal perfectly but, rather,
dissipate some of the energy delivered to them. Most of the loss in
ordinary capacitors occurs in the dielectric, although at very high fre-
quencies skin effect also causes an appreciable loss to occur in the capac-
itor leads and electrodes. At very high voltages corona may occur and
contribute to the loss.

. The merit of a capacitor from the point of view of freedom from losses
13 usually expressed in térms of the power factor of the capacitor.! The
power factor represents the fraction of the input volt-amperes that is dis-

! The .uerit of a capacitor or of a dielectric can also be expressed in terms of the
angle by which the current flowing into the eapacitor fails to be 90° out of phase with
the applied voltage. This angle is termed the phase angle of the capacitor. The
power ta..ct.m" s the sine of the phase angle. The tangent of the phase angle is termed
the dissipation factor. 'The reciprocal of the dissipation factor i termed the capasitor
Qandis the ratio of the capacitor reactance to the equivalent series resistance. With
;)rdmu‘y dlclectncs., the phase angle is 50 small that the power factor, the dissipation

actor, and the reciprocal of capacitor Q are for all practical purposes equal to each

othermdtothephaaemgleexprenedinmdim Th power
us a8 factor of 0.01
represents & phase angle of 0.573° and a capacitor Q of 100,
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Sec. 2-5 CAPACITORS AND DIELECTRICS 25

sipated in the capacitor. To the extent that the losses in the capacitor
are a result of dielectric losses, the power factor of the capacitor is also the
power factor of the dielectric and is practically independent of the capac-
itor capacitance, the applied voltage, the voltage rating, or the frequency
(unless polar effects are involved). Values of power factor of some
typical dielectrics are given in Table 2-1.

TABLE 2-1

CHARACTERISTICS OF TYPICAL DIELECTRICS AT RADIO
FREQUENCIES WITH NORMAL ROOM TEMPERATURE

Material Dielectric Power factor
constant

Alr. i e i et e 1.00 0.000
Mica (electrical)..........ooiveiiiiia., 5-9 0 0001-0.0007
Glass (electrical)...........ooviiienininn.. .. 4.5 7.00 0.002-0.016
Bakelite derivatives.......................... 4.57.5 0.02-0.09
Wood (without special preparation)....... 3-5 0.03-0 07
Myecalex. ...t o 8 0.002
Steatite materials. ................ ... ... L 6.1 0.002-0.004
Polystyrene.............cccoiiiiiinniniann... 2.4-2.9 0.0002
Polyethelene. ..., 2.3 0.00015-0.0003
Rutile (titanium dioxide)...................... 90-170 0.0006

Although the power factor of a capacitor is determined largely by the
type of dielectric used in the capacitor, it is also affected by the conditions
under which the dielectric operates. In par-
ticular, the power factor tends to become 2R
higher as the temperature is raised, and is §¢ c Rz
likewise adversely affected by high humidity T
and by the absorption of moisture. 0 te)

Equivalent Series and Shunt Resistance. The Fic. 2-11. Representation of
action of a capacitor in an electrical circuit 15 imperfect capacitor by a
. . perfect capacitor of same
taken into account by replacing the actual o citunce with series re-
capacitor with a perfect capacitor associated sistance, and by a perfect ca-
with a resistance. This resistance may be pacitor ith shunt resist-
connected in series, as in Fig. 2-11b, or in par- *"°*
allel, as in Fig. 2-11c. The value of the scries or shunt resistance is so
selected that the power factor of the perfect capacitor associated with the
resistance is the same as the power factor of the actual capacitor. The
value of the series resistance E; can be computed in terms of the power
factor, capacitor capacitance C, and frequency f in the qsual way, and
when the power factor is low (i.e., when B1 < <1 /wC), then R, is given to
a high degree of accuracy by the equation

Series resistance = By = E’%‘M (2-12)
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In the same way, the shunt resistance that can be used to represent the
actual losses of the capacitor is related to the power factor, capacitance,
and frequency to a high degree of accuracy by the equation

. 1
Shunt resistance = 2y = @xfC) (power factor)

Polar and Nonpolar Diclectrics. Molecules of some dielectrics are
polar, while other dielectrics consist of molecules that are not polar. In
the case of polar molecules, the

(2-13)

] NORMAL TEMPERATURE : dielectric constant under a-¢ con-
5 < ‘K— ditions is increased as a result of
z ~ .
8 Sl > the rotation of the polar molecules
g cow remeenarone T under the influence of the applied
8 voltage. The extent to which this
H polar action is effective depends,
FREQUENCY however, upon the frequency and
the temperature. Thus, if the fre-
x| 1ow n_”:'z:"f::[ TEMPERATURE quency is made sufficiently high,
£ ~ the polar molecules are not able to
g o\ follow the alternations of the ap-
] / \ plied field, and the dielectric con-
g P See D stant drops. Moreover, the fre-

quency at which this transition
FREQUENCY .
Fie. 2-12. Variation of diclectric con- 0CCUTS1S less the lower the tempera-
stant and power factor of a polat diclec-  ture.  As a result, temperature and
tric as a function of frequency, for two frequency affect the capacitance of
temperatures. a capacitor possessing a polar die-
lectric in the manner shown in Fig. 2-12.

The power factor of a polar dielectric shows a pronounced peak when
under conditions where the diclectric constant corresponds to partial
polar action, as shown in Fig. 2-12. The power factor of a polar dielec-
tric hence becomes quite large st certain combinations of temperature and
frequency.

Nonpolar molecules do not exhibit these changes in diclectric constant
under temperature and frequency changes. The power factor of non-
polar diel+ctries likewise does not exhibit peaks of loss such as shown in
Fig. 2-12.

2-6. Capacitors for Electronics. In electronics the principal uses made
of capacitors are for tuning resonant circuits, for blocking d-¢ voltages
from parts of an electrical circuit while permitting alternating voltages
to pass through, for obtaining transients with specified time constants,
and for by-passing or short-circuiting alternating voltages. By-pass
capacitors are frequently but not always subjected to a d-c potential.

A wide variety of diclectrics are used in capacitors designed for radio
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work, and new types are continually finding important applications.
Among the types of importance are air; solid dielectrics such as mica,
plastic films, certain ceramics, and paper; and electrolytic films.

Capacitors with Air Dielectric. Air dielectric finds its principal use in
variable capacitors for tuning resonant circuits.

Although air is a perfect dielectric with zero power factor, air capacitors
have losses because of the insulating material used to mount the two sets
of plates, and also because of the skin-effect resistance of the leads, plates,
rods, and washers, through which the capacitor current flows.

An air-diclectric capacitor can be represented by the equivalent elec-
trical network in Fig. 2-13a. Here (' is the capacitance of the capacitor

¢ " 3 ®
—YN M X !
‘. q’
e 2w ¢ 2 ¢

b3 °
> »

(@) ACTUAL EQUIVALENT (6) EQUIVALENT CIRCUIT  (C) EQUIVALENT CIRCUIT

CIRCUIT AT LOW FREQUENCIES AT HIGH FREQUENCIES

Fia. 2-13. Equivalent eleetrieal circuits of a variable air condenser.

while R, is the equivalent shunt resistance introduced by the presence of
the solid dielectric. . The capacitor inductance L in Fig. 2-13a takes into
account the magnetic flux associated with the current flowing in the
capacitor; it is proportional to the physical dimensions of the capacitor.
The resistance R represents the serics resistance of the leads, washers,
connecting rods, ete. It increases with frequency as a result of skin effect
and is proportional to the square root of the frequency at high frequencies.

At low and moderate frequencies the effects of the inductance L and the
series resistance R are negligible, and the capacitor equivalent circuit
reduces to Fig. 2-13b. At very high frequencies, on the other hand, the
power loss in R becomes very much larger than in R, and the equivalent
circuit has the form shown in Fig. 2-13c.

At very high frequencies the reactance of the series inductance L is not
negligible compared with the reactance of the capacitor capacitance.
This causes the apparent capacitance of the capacitor as observed at the
terminals to be greater than the actual capacitance according to the
relation?

. C
Apparent capacitance TRy (2-14)

where » = 2x times frequency, and L and C are as shown in Fig. 2-13.

' This results from the fact that, neglecting losses,

Reactance at terminals = ! (:1(—, - mL)

=
Wl app

Solving for the apparent capacitance C,,, gives Eq. (2-14).
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Capacitors with Solid Dielectrics. Solid dielectrics are used in most
fixed and in some adjustable capacitors. The dielectrics most commonly
employed include mica, paper, plastic films, and ceramics.

Mica is characterized by low electrical losses, stability, high leakage
resistance to d-c¢ voltages, and high voltage strength. It is, however,
relatively expensive. Mica capacitors find their chicef use in small fixed
capacitors for by-passing radio-frequency currents or blocking off d-c
voltages, and in resonant circuits or in filters where a stable low-power-
factor capacitor is required.

In capacitors employing paper as the dielectric the electrodes are either
aluminum foil or are metal films evaporated directly on to the paper.
In either case, the assembly is rolled into a bundle which is then vacuum-
treated, impregnated with oil or wax, and sealed against moisture.
Paper capacitors are inexpensive in proportion to capacitance, and are
relatively compact in proportion to voltage rating. Such capacitors are
used primarily for by-pass and blocking purposes. The power factor of
paper capacitors is of the order of 0.5 per cent, and although the leakage
current when subjected to direct voltages is somewhat greater than that
of mica capacitors, it is not large.

Thin plastic films have been developed that are suitable for use as a
capacitor diclectric in place of paper. Capacitors of this type using
polystyrene dielectric have electrical qualities such as power factor,
dielectric absorption, and insulation resistance superior even to mica
capacitors.

Ceramics based on titanium dioxide mixtures find extensive use as
dielectrics of small capacitors.! Dielectrics of this type are characterized
by a high dielectric constant, a low to very low power factor, and a very
high voltage rating. The temperature coefficient of such capacitors
depends upon the actual ceramic mixture used and can be made either
negative or positive as desired. Ceramic capacitors are used extensively
for blocking and by-pass purposes where small mica capacitors have
heretofore been employed, and have advantages of compactness and high
voltage ratings. Ceramic dielectric capacitors have also found a wide
field of usefulness in resonant circuits and other similar applications,
where a negative temperature coefficient provided by a ceramic capacitor
can be used to compensate for the positive temperature coefficient of
associated coils and of capacitors of other types.

Capacitors with solid dielectric can be represented by the same equiv-
alent electrical circuit shown in Fig. 2-13 for air-dielectric capacitors.
The only difference is that all the capacitance C in this equivalent circuit
is now associated with solid dielectric. As a result, at low and moderate
frequencies the capacitor power factor almost exactly equals the power

1 A survey of such ceramics is given by B. H. Marks, Ceramic Dielectric Materials,
Electronies, vol. 21, p. 116, August, 1948,
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factor of the dielectric and is independent of the capacitance of the capac-
itor and also of the frequency except in so far as polar molecules affect the
behavior of the dielectric. At very high frequencies, the power factor
increases with increasing frequency as a result of the skin-effect losses in
leads and conductors. Also, the apparent capacitance at very high fre-
quencies drops off because of the series inductance, in accordance with
Eq. (2-14).

The voltage rating of capacitors with solid diclectrics is subject to two
basic limitations: (1) If the applied voltage exceeds the insulation strength
of the dielectric, the dielectric will spark through or at least deteriorate
rapidly. (2) The temperature of the ca.pacitor'g'nust not be permitted to
rise excessively as a result of dielectric losses. This second limitation is
the ruling one for all except d-c¢ voltages and for very low frequencies.
Inasmuch as the relationship between losses and temperature rise depends
upon the design of the capacitor with respect to such matters as heat
removal, it is not possible to give any general rules regarding voltage
ratings. It is to be noted, however, that the voltage rating will drop
rapidly as the frequency increases because of the increase in loss with
frequency. Thus a particular low-loss air-cooled mica capacitor capable
of standing 10,000 volts at low-frequencies was found by test to have a
rating of 180 volts at a frequency of 10 Mc. Special cooling methods,
such as the usc of an air blast, will increase greatly the rating on a capaci-
tor, and water cooling is still more effective.

Electrolytic Capacitors. The electrolytic capacitor makes use of the
fact that certain metals, notably aluminum and tantalum, when placed in
astitable solution and made the positive electrodes, form a thin insulating
surface film. This film is capable of withstanding considerable voltage
and has a high electrostatic capacitance per unit area of film. It is the
result of electrochemical action, and is formed by applying positive
voltage to the electrode. The thickness of the film, and hence also the
capacitance obtained per unit area of surface, depend largely upon the
voltage used in this forming proeess. Typical voltage ratings of electro-
Iytie capacitors range from 25 up to about 500 volts. Constructional
details vary but, typically, the electrodes are of etched aluminum foil,
thus giving maximum surface area. They are separated by paper or
gauze, suturated with an electrolyte that is commonly a fudgelike solid,
and the cntire assembly is wound into a roll and mounted in & waxed
cardboard tube or box. ’

Electrolytic capacitors are widely used for filter and by-pass purposes
in situations where a superimposed d-c voltage is present. Compared
with capacitors of the solid dielectric type, clectrolytic capacitors have a
very high power factor and appreciable leakage conductance to the
superimposed d-c¢ potential; they also vary in capacitance and loss with
time, frequency, and temperature. However, for many purposes these
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features are unimportant and, in proportion to capacitance and voltage
rating, electrolytic capacitors are the least expensive and most compact
available. They are, however, subject to progressive deterioration with
time and so have limited life, and their dependability is appreciably less
than that of paper capacitors designed for the corresponding applications.!

2-7. Coils for Resonant Circuits. Coils intended for use in resonant
circuits must have very low losses and small distributed capacitance.
Both air-cored and magnetically cored coils are used for resonant circuits,
with the choice depending upon circumstances.

Methods of Expressing Coil Losses—Coil Q. ‘The principal causes of
energy loss in air-cored coils are skin effect in the conductor, proximity
effect resulting from the interaction between nearby turns, dielectric
losses associated with the distributed capacitance of the coil, and eddy-
current losses in shields and other neighboring metallic objects present
within range of the magnetic field of the coil. In the case of coils with
magnetic cores, the principal cause of energy loss is usually core loss,
although factors such as skin-effect resistance of the wire and also dielec-
tric loss arc sometimes likewise of significance.

For purposes of circuit analysis the coil losses are commonly expressed
in terms of an equivalent resistance, which when placed in series with the
coil inductance will account for all the power losses actually observed.
The most convenient way to express the merit of the coil is, however, in
terms of the ratio of the reactance wl. of the coil to this equivalent series
resistance 1. This ratio approximates the reciprocal of the coil power
factor, and is usually referred to by the symbol Q; that is,

coil reactance .ol
equivalent series resistance R

Q=

(2-15)

It is convenient to express the characteristies of a coil in terms of Q
because the Q in the operating range of the coil usually varies only
moderately with frequency; moreover, the value of Q corresponding to a
good coil is substantially the same irrespective of the frequency for which
the coil was designed. The tendency for the coil Q to remain constant
with frequency arises from the fact that, as the frequency increases, all
the losses also increase, so that the ratio of coil reactance to resistance
tends to be much more nearly constant with frequency than is either the
reactance or the resistance of the coil.

Distributed Capacitance of Coils. In a coil there are small capacitances
between adjacent turns, between turns that are not adjacent, between
terminal leads, between turns and ground, etc. Some of the different
capacitances that may exist in a typical air-cored coil are shown in Fig.

! By substituting tantalum for the less expensive aluminum foil electrodes, it is

possible to increase greatly the reliability: see M. Whitehead, Tantalum Electrolytic
Capacitors, Bell Lab. Record, vol. 28, p. 448, October, 1950.
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2-14. Each of the various capacitances associated with the coil stores a
quantity of electrostatic energy that is determined by the capacitance
involved and the fraction of the total coil voltage that appears across it.
The total effect that the numerous small coil capaci-
tances have can be represented to a high degree of
accuracy by assuming that they can be replaced by
a single capacitor of appropriate size shunted across
the coil terminals. This equivalent capacitanceis .
called' either the distril')ut.?d capacitance or the self- F;o. 2.14. Some of the
capacitance of the coil; it causes the coil to show coil capacitances that
parallel resonance effects under some conditions (see contribute to the dis-
Sec. 3-2). tributed  capacitance
. . .. . of a single-layer coil.
In multilayer coils the distributed capacitance
will be high unless arrangements are used that prevent turns from different
parts of the winding from being located close to each other. Thus, in the
two-layer winding shown in Fig. 2-15a, in which the turns are numbered in
order, the first and last turns are adjacent; the capacitance between the
turns at opposite ends of the wind-
ing then stores an undesirably large
amount of electrostatic energy.
This can be avoided by the use of the
bank winding,shown atb. Here the
adjacent turns represent parts of the
coil that are close together electri-
cally, while the ends of the winding,
which are far apart electrically, are
loeoe also far apart physically. Alterna-
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D00 OGN many layers with few turns per
layer, as in Fig. 2-13¢, or in spacing

the layers, as in Fig. 2-15d. The
common ““universal”’ multilayer coil
represents & convenient mechanical
method of utilizing these principlesto
achieve low distributed capacitance.
(o) SPACED LAYER The distributed capacitance of a

coil that is to be used in a resonant
circuit must be small. This is be-
cause the distributed capacitance
limits the highest frequency to which the coil can be tuned, and also intro-
duces losses that become serious at the higher frequencies. These losses
are diclectric losses occurring in the coil form, in the wire insulation, and
in any other dielectric that may be in the electrostatic fields associated
with the coil.
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Fia. 2-15. Several types of multilayer
windings.
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Air-cored Coils for Resonant Circuits. Air-cored coils are widely used
in radio receivers and almost universally used for the resonant circuits of
radio transmitters. Single-layer coils are generally employed for fre-
quencies above 500 to 1500 ke, while at lower frequencies multilayet.' coils
are typical, as they give the desired inductance compactly. Multilayer
coils, generally of the bank-wound type, also find some use at broadcast
frequencies (535 to 1600 ke).

In designing a single-layer coil, the highest @ in proportion to size is
obtained when the length of the winding is somewhat less than the diam-
eter of the coil.! The number of turns required is then determined by

150
_—
P
o d DIAMETER = 1.875"
v 100 LENGTH.
Sl DiaheTER 9%
SIZE OF WIRE ~NO 28
s0 NUMBER OF TURNS - 75
L+ 185uh
T
A [T T

400 600 800 1000 1200 1400 1600
FREQUENCY - KILOCYCLES

F1a. 2-16. Variation of Q with frequency for a typical air-cored coil.

the exact ratio of length to diameter that is selected, by the diameter, and
by the inductance desired; when these factors are all settled, the optimum
wire size corresponds to a conductor diameter that is between 0.5 and 0.75
times the distance between the centers of adjacent turns. If one com-
pares the Q of two coils having the same inductance and the same ratio of
length to diameter but different physical size, then the coil that is larger
will have the highest Q provided it is wound with wire of optimum size.

The design of multilayer coils is more involved than that of single-layer
coils because of the increased number of variables. In general, best
results are obtained if the coil is relatively “loose,” i.e., if the copper
occupies only a small fraction of the actual winding cross section. Again,
as in the case of single-layer coils, larger physical size will result in a
higher Q associated with a given inductance value, and also requires a
larger wire. '

The @ of a typical air-cored coil varies with frequency in the manner
illustrated in Fig. 2-16. With increasing frequency, the @ first rises
slowly with frequency, then goes through a broad maximum, and finally
drops at very high frequencies. The rise is due to the fact that the

A discussion of coil losses under idealized conditions in which dielectric effects are
neglected is given by G. W. Q. Howe, The Q Factor of Single-layer Coils, Wireless Eng.,
v?l 26, p. 179, June, 1849. An excellent discussion of coils for high frequencies is
given by D. Pollack, The Design of Inductances for Frequencies between 4 and 25
Megneycles, Trans. AIKE, vol. 56, p. 1169, September, 1937.
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inductive reactance of a coil is proportional to frequency, whereas the
resistance due to skin effect cannot increase faster than the square root of
the frequency; hence the ratio @ = wL/R tends to rise with increasing fre-
quency. If skin effect accounted for all the losses, the Q at very high
frequencies would be proportional to the square root of frequency. How-
ever, dielectric losses arising from the coil form, the cotton or enamel
insulation on the wire, etc., give rise to a resistance in series with the coil
that is proportional to the cube of the frequency. At very high fre-
quencies these dielectric losses become comparable to the skin-effect
losses, and cause the coil Q to drop off.

The best conductor to use in an air-cored coil depends upon the fre-
quency and coil design. In general, solid wire is used for frequencies
above 1500 ke. Litz wire will give lower losses than the corresponding
solid wire at frequencies below about 500 ke and will give some advantage
for small multilayer coils in the frequency range 500 to 1500 kc.

A value of @ in the range 50 to 200 is vypical of a good fairly small air-
cored coil such as would be used for resonant circuits in a radio receiver.
A Q of 10 or 20 is considered to be quite low, while @ values in excess of
300 are high and can ordinarily be achieved only by the use of coils that
are physically large, such as are used in radio transmitters. These
numbers are applicable for coils of all frequency ranges and inductance
values.

Magnetic-cored Coils for Resonant Circuils. Coils with magnetic cores
find extensive use at radio frequencies. The principal problem involved
in using magnetic cores at radio frequencies is that of preventing eddy-
current losses in the core material from becoming excessive. The perme-
ability of magnetic materials does not drop off with frequency until the
frequency is of the order of 10!t ¢ycles. The hysteresis loss is propor-
tional to the frequency, but since the coil reactance is likewise propor-

* tional to the frequency, the Q is not adversely affected by hysteresis loss
at radio frequencies. In contrast, the eddy-current loss for a given core
is proportional to the square of the frequency, whereas the reactance is
proportional only to the frequency. Thus when the frequency becomes
sufficiently high, eddy-current losses dominate the situation, and the coil
Q drops.

The eddy-current losses can be kept low at high frequencies by arrang-
ing the magnetic material in the form of very fine particles or dust, pro-
duced either by chemical or mechanical means. These particles are
coated with an insulating film, mixed with a suitable proportion of binder,
pressed to the desired shape, and baked. In this way one obtains a core
in which the individual magnetic particles are very finely subdivided, with
resulting low eddy-current losses; such an arrangement is often called a
“dust” or powder core. It is possible to make “dust’’ cores which have
low losses at frequencies as high as 150 Mec.
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The details of the magnetic core depend upon the application for which
the coil is intended, and the frequency range over which the core is to
operate. At audio and the lower radio frequencies, the core material is
commonly made in the form of rings (toroidal core), so that a closed mag-
netic path may be obtained. Cores designed for use at these frequencies
usually have an effective initial permeability that is quite high, such as
75 to 125, corresponding to a core involving relatively coarse particles
combined with a minimum of insulating material and binder. At higher
frequencies, the usual practice is to employ a single-layer winding of fine
wire on a form that snugly fits an open core made in the form of a eylin-

CORE MOVEABLE drical slug with a large length/diameter
L — ratio, as in Fig. 2-17. Also, as the fre-

quency is increased, the effective per-

o meability that it is practical to employ in

Fia. 217. Coil with slugtype & COT¢ becomes less be.ca.use tlge t{ize of

magnetic core arranged so that the  the particles of magnetic material in the

inductance can be varied by mov-  ¢ore must be reduced, and the proportion

ing the core. of core material to binder and insulation

becomes proportionally less.  Thus cores that are suitable for use in coils

operating at 100 Me¢ have, typically, an effective permeability of only 2 to

4, while cores for use at frequencies around 1 Me have permeabilities from
10 to 30.

The particular magnetic material used likewise depends on frequency.
For audio and the lower radio frequencies molybdenum permalloy is
common; at the higher radio frequencies it is customary to use iron or
magnetite, a natural iron oxide. .

An alternative means of obtaining a magnetic core with low eddy-
current losses is to employ a nonconducting magnetic material such as
mentioned on page 16. Such material is suitable for use up to fre-
quencies ahove 20 Me; however, above some limiting frequency the
dielectric and residual loss effects in the nonconducting magnetic material
may adversely affect the behavior. In frequency ranges for which they
are suitable, nonconducting magnetic cores result in coils having Q’s as
high as, or higher than, values typical of dust cores; at the same time a
nonconducting core possesses considerably greater permeability than can
be ured in a dust core at the same frequency, and so has the advantage of
compactness.!

Muagnetic cores are particularly desirable when it is necessary to obtain
a reasonable @ such as 25 to 100 in a very compact coil. They find exten-
sive use in radio receivers. When a magnetic-cored coil is used in a
resonant cireuit, it is customary to employ a fixed tuning capacitance; the
resonant frequency is then adjusted by varying the position of the slug

! A discussion of the properties obtainable in coils employing nonconducting ferrite
cores is given by Strutt, loc. cil.
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core, as indicated in Fig. 2-17. Such permeability tuning, as it is called,
represents & means of tuning a resonant circuit that is often preferred to
the alternative arrangement consisting of a fixed air-cored coil and a
variable capacitance.

Radio-frequency Choke Coils. A radio-frequency choke coil is an
inductance designed to offer a high impedance to alternating currents
over the frequency range for which the coil is to be used. This result is
obtained by making the inductance of the coil high and the distributed
capacitance low, and by so proportioning that the inductance is in parallel
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INSULATING
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Fi1a. 2-18. Typical examples of radio-frequency choke coils.

resonance with the distributed capacitance somewhere in the desired
operating range of frequencies.

A typical radio-frequency choke coil consists of one or more universal-
wound coils mounted on an insulating rod, or of a series of “pies”’ wound
in deep narrow slots in a slotted bobbin. A long single-layer solenoid is
likewise sometimes used. Examples of radio-frequency choke coils are
shown in Fig. 2-18. )

The performance obtainable from a radio-frequency choke can gen-
erally be improved by the proper use of slug-type magnetic cores, which
increase the inductance, and hence the impedance of the coil, without
materially affecting the distributed capacitance.

2-8. Shielding of Magnetic and Electrostatic Fields. Under many
conditions it is necessary to confine magnetic and electrostatic fields to a
restricted space. This result is accomplished by using a shield composed
of suitable material to enclose completely the space to be shielded.

The Shielding of Magnetic Flux at Radio Frequencies; Conducting Shields.
The most practical shield for magnetic flux at radio frequencies is made
of material having low electrical resistivity, such as copper or aluminum.
Magnetic flux in attempting to pass through such a shield induces voltages
in the shield which give rise to eddy currents. These eddy currents
oppose the action of the flux, and in large measure prevent its penetration
through the shield. In this way the flux is restricted to the interior of the
shield, as illustrated in Fig. 2-19c.

To be effective a conducting shield should have a thickness a that is at
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least several times the skin depth § as defined by Eq. (2-10). Under
these conditions, and assuming that the radius of curvature of the shield
is large compared with the skin depth, the ratio of the tangential com-
ponents of the magnetic field intensities existing on the two sides of the
shield is!

Ratio of magnetic fields = ¢4 (2-16)

Since the energy associated with a magnetic ficld is proportional to the
square of the field intensity, the attenuation in decibels of the tangential
component that is introduced by the conducting magnetic shield is

Shield attenuation = 8.69% db (2-17)

Joints which interfere with the eddy currents by adding resistance to
the eddy-current paths greatly reduce the effectiveness of a conducting
shield. However, a joint parallel to the lines of current flow does not
adversely affect the shielding unless it results in an open hole. This is
true even if there is failure to make contact, so that the shield lacks con-
tinuity. These effects of joints are explained by the fact that the shield-
ing is produced by the eddy currents; if the eddy currents are not dis-
turbed, then the shiclding resulting from action is not affected.

Power is dissipated in a conducting shield because the eddy currents
must flow through the resistance of the shield material. When the thick-
ness of the shield is considerably greater than the skin depth, the power
loss in the shield can be determined by making use of the fact that the
total magnitude I of the eddy currents in a strip of shield 1 em wide is
reluted to the density B in lines per square centimeter of the tangential
component of flux that is adjacent to the surface of that part of the shield
according to the relation

10B

I= F (2‘18)
The current I flows along the surface of the shield in a direction that is at
right angles to the’ flux lines adjacent to the shield. For purposes of
calculating power dissipation, this current can be considered as uniformly
distributed to a thickness of one skin depth; it therefore encounters a
resistance that is the surface resistivity of the material as calculated by
skin-effect considerations (see page 23). Thus the total power loss in a
shield can be obtained by first determining by some means the distribution
of the tangential component of the magnetic flux adjacent to the surface
of the shield. The distribution of current over the surface of the shield is
next obtained with the aid of Eq. (2-18). The energy loss in each square

! The effect of a conducting shield on the component of magnetic field that is
normnal to the shield follows a different law, sce B, Boston, Screening at V.H.F., Wire-
less Eng., vol. 25, p. 221, July, 1948,
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centimeter of shield surface is then determined by assuming that this cur-
rent flows through a d-c resistance corresponding to a conductor that is
one skin depth thick. The power consumed by a conducting shield is
derived from the source of energy producing the magnetic field.
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Fia. 2-19. Paths of electrostatic and magnetic-flux lines about the same coil with and
without magnetic and nonmagnetic shields.

Shielding of D-C and Low-frequency Magnetic Ficlds; Magnetic Shields.
When shielding against unidirectional magnetic fields is required, a shield
composed of magnetic material is employed. Such a shield tends to
short-circuit the flux lines which attempt to extend through the shield, as
shown in Fig. 2-19¢. The effectiveness of a magnetic shield is directly
proportional to the thickness of the shield, since the reluctance that the
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shield offers to magnetic flux is inversely proportional to thickness.
Joints or air gaps which add reluctance to the flux paths must be av.oided.
The degree of shielding achicved by a given total thickness of rx}aterlal can
be increased by dividing the given thickness of magnetic material into two
or more concentric shiclds separated by air spaces. '

Magnetic shields must have high initial permeability to be effective.
They are accordingly composed of high-permeability alloys such as
permalloy; steel or iron is not a satisfactory material because of its low
initial permeability. Since the desirable magnetic properties of perm-
alloy and similar materials are adversely affected by mechanical strains,
such as are introduced by drilling, punching, bending, etc., magnetic
shiclds must be properly heat-treated after fabrication, to relieve these
strains and develop the desirable magnetic properties.

Magnetic shiclds can be used for shielding alternating fields as well as
d-¢ fields.  In particular, they find extensive use at audio and power fre-
quencies, particularly 60 cycles, where conducting shields would have to
be excessively thick to be cffective. The shielding action of a magnetic
shield at these lower frequencies is achieved in part because of the short-
cireuiting action of the magnetic material on maguetic flux and in part
because of eddy currents which cause the shield to act simultancously
as a condueting shicld.

Magnetic shiclds of high-permeability material are also more effective
at radio frequencies than are copper or aluminum shields. At these
higher frequencies they act as conducting shields, but beeause of their high
permeability have less skin depth. Thug the shiclding obtained with a
given thickness of material is greater. However, conducting material
such as copper is less expensive per pound than magnetic material such as
permalloy, is casier to fabricate, and requires no heat-treatment. Hence
nonmagnetic conducting shields are gencrally used in preference to mag-
netie shields for alternating ficlds when the frequency is high enough so
that the required degree of shielding can be obtained with a reasonable
thickness of conducting shield; the only practical exception is when a
conducting shield employs a liner of nonconducting magnetic material,
as diseussed below, .

Electrostatic Shiclding. Flectrostatic shielding is obtained by enclosing
the space to be shielded by a conducting surface. Accordingly, the mag-
netic and conducting shiclds for magnetic flux lines discussed above also
serve as electrostatic shiclds. However, fairly effective electrostatic
sh.iolding can he obtained by a metal mesh made of any good to fair elec-
trical conductor, which would be a rather poot shield for magnetic flux.
. It is possible to shield clectrostatic flux without simultaneously affect-
ing t_hﬂ magnetic field by surrounding the space to be shiclded with a con-
ducting cage that is made in such a way as to provide no low-resistance
path for the flow of eddy currents, while at the same time offering a
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metallic terminal upon which electrostatic flux lines can terminate.
Thus, the secondary winding of a transformer may be shielded electro-
statically from the primary by a shield having an insulated gap located
in such & manner as to prevent the shield from becoming a short-circuited
turn. This is illustrated in Fig. 2-20. Another ‘type of electrostatic
shield that does not affect the magnetic flux is illustrated below in con-
nection with Prob. 2-45.

Energy loss is associated with electrostatic shielding as a result of the
fact that the charging current induced in the shield produces currents
that must flow through the surface resistance of the shield. However,

CONNECTION BETWEEN INSULATED JOINT
SECONDARIES —— N SHIELD |
[ seconDARY | TERMINALS —
1 e A SECONDARY
ELECTROSTATIC
,\ SHIELD
™~ PRIMARY —]

CORE

F1a. 2-20. Transformer with electrostatic shicld between primary and secondary.

under most conditions these currents are quite small, so that the associ-
ated loss is generally insignificant. This is in contrast with shields
for alternating magnetic flux, where the shield losses are very often
substantial. )

Effect of Shielding on Coils.! The magnetic and electric fields associ-
ated with a coil are frequently confined by placing the coil in a shield can
composed of aluminum or copper. Such a shield increases the coil’s dis-
tributed capacitance and effective resistance, and reduces its inductance.
The distributed capacitance is increased as a result of the capacitance
between the shield and various parts of the coil (see Fig. 2-19d). The
inductance is decreased because the conducting shield restricts the mag-
netic flux lines to the space within the shield; this decreases the cross sec-
tion of the magnetic circuit and thus reduces the flux linkages. The -
effective resistance of the coil is increased because the energy consumed
by the eddy currents flowing in the shield is supplied by the coil.

The degree of shielding obtained at radio frequencies by enclosing a coil
in & copper or aluminum container is very high, and if a reasonable clear-

1The quantitative relations involved are discussed by Howe, op. cit.; A. G. Bogle,

The Effective Inductance and Resistance of Screened Coils, J. IEE (Wireless Soc.),
vol. 15, p. 221, September, 1940.
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ance is provided between the shield and the coil, the properties of the coil
tare not seriously impaired. In general, the clearance between the shield
and the coil should everywhere be not less than the coil radius. Under
such conditions, the presence of the shield will not reduce the coil Q by
more than 20 per cent, while the reduction in inductance will be still less.

A shiclded inductance that is very compact can be achieved by making
the conducting shield only slightly larger in diameter than the coil, and
then using a liner of nonconducting magnetic material to fill the space
between coil and shield, as shown in Fig. 2-19f. The high permeability
of the magnetic material provides a low-reluctance return path for the
magnetic flux outside the coil, with the result that the inductance obtained
is greater than when the coil is unshielded as in Fig. 2-19a. This makes
it practical to reduce the physical size required to obtain a given induct-
ance at a desired value of Q. In addition, the shielding is more effective
than when only a conducting shield is used (Fig. 2-19¢), because both
magnetic and conducting shielding is simultaneously obtained.

PROBLEMS AND EXERCISES

2-1. If the flux shown in Fig. 2-1 is produced by a current of 0.01 amp, estimate the
coil inductance. (Assume that Fig. 2-1 gives a two-dimensional representation of the
actual flux lines present in the three-dimensional coil.)

2-2. A single-layer coil is to have an inductance of 220 xh and is to be wound on a
form having a diameter of 2 in. If the ratio of length to diameter is 1.5, determine
the distance hetween centers of adjacent turne of the winding.

2-3. A single-layer solenoidal coil having 60 turns on a winding 3 in. long and 3 in.
in diameter possesses an inductance of 187 xh.  Without using Fig. 2-2, determine:

a. How many turns would be required to obtain the same inductance if the core
were 2 in. in diameter and 2 in, long.

b. low many turns would be required to obtain an inductance of 400 uh with a
winding 4 in. long and 4 in. in diameter.

2-4. a. On a hysteresis loop similar to that of Fig, 2-3, show a minor hysteresis
loop originating at point 1 on the main loop, but corresponding to a substantially
larger value of alternating magnetization,

b. Repeat for the same alternating magnetization as in (a), but with the d-c mag-
netization corresponding to point 3, instead of point 1.

2-6. The incremental inductance at low altérnating magnetization of a particular
iron-cered coil having 1000 turns is 10 henrys with no d-c saturation, and 4 henrys
when carrying a d-¢ magnetizing current of 0.1 amp. When the number of turns is
reduced to 500, it is found that the inductance without d-c saturation is reduced to
2.5 henrys, or exactly one-fourth of the previous value, whereas with a d-¢ magunetizing
current of 0.1 amp the incremental inductance is somewhat greater than one-fourth
of 4 henrys. Explain,

2-8. A coil uses a silicon-steel core composed of material having the characteristics
given in Fig. 2-4, and the core is assembled with negligible air gap. If the incremental
inductance is 5.4 henrys with no d-¢ magnetization and low alternating flux density,
what will be the ineremental inductances with d-c magnetizations sufficient to produce
1, 2, and 3 ampere turns per cm?
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2-7. a. A permanent magnet that is required to produce a large amount of flux
in a low-reluctance magnetic circuit will be short and thick. Explain.

b. A permanent magnet that is required to produce a small amount of flux in s high-
reluctance cirenit will be long and thin, Explain.

2-8. A permanent magnet of Alnico V is required to establish a flux density of
2000 lines per sq em in an air gap 1.2 em long and having an effective cross section of
20 sq em. Determine the length and cross section of the magnet required, assuming
stabilization is not necessary.

2-9. Explain why a permanent magnet stabilized as in Fig. 2-6 will have to be hoth
larger in cross scction and longer than an unstabilized magnet in order to produce the
same flux in a given external circuit,

2-10. A particular permanent-magnet system employs a cylindrical magnet of
Alnico V having a diameter of 1.0 in. and a length of 0.6 in, If Alnico XII is used
instead, calculate the diameter and length required to give the same result.  Assume
that the permanent-magnet material is used under optimum conditions in both cases
and that stabilization is not required.

2-11. A primary coil having an inductance of 100 gh is connected in series with a
secondary coil of 240 uh, and the total inductance of the combination is measured as
146 ph. Determine (a) the mutual inductance, (b) the coefficient of coupling, and (c)
the inductance that would he observed if the terminals of one of the coils were reversed.

2-12. Two circuits are to he coupled by a common capacitor using the circuit of
Fig. 2-8c.  If the total capacitance required in the primnary circuit is 150 uuf, while the
total capacitance required in the secondary circuit is 100 uuf, determine the value of
the common capacitance (", in Fig. 2-8¢ to give a cocfficient of coupling of 0.02.
{Note: In solving this problemn do not attempt to use Eq. (2-8).]

2-18. In two circuits coupled as in Fig, 2-8h, L, = 0.05 henry, L; = 0.08 henry,
and k = 0.4. Determine (a) the required value of Ln, and () the total primary and
total secondary inductances,

2-14. Explain why two coils that have their axes, respectively, parallel to, and at
right angles to, the line joining the coil centers will have zero mutual inductance,

2-1B6. Two single-layer air-cored coils are located coaxially end to end, as illustrated
in Fig. 2-8a. It is found that, if a long cylindrical magnetic core is slipped inside of
these eoils so that it is common to both coils, the mutual induetance is increased more
than is the self-inductance of the individual coils. Iixplain.

2-16. What effeet. does the redistribution of current associated with skin effect
have on the inductance?  Faplain.

2-17. a. Calculate the skin depth in coppor for 1 ke, 1 Me, and 1000 Me, and
tabulate the results.

b. Repeat for aluminum.

2-18. Parts formed of brass, steel, etc., are sometimes silver- or copper-plated to
reduce the effective resistance to radio frequencies.  1f copper plating is employed,
and the part is to be used in the frequencey range 5 to 20 Me, recommnend a minimum
thickness for this plating, and give the reasoning upon which this recommendation
is based.

2-19. Inductances (and also shiclds) are sometimes plated to reduce corrosion and
improve appearance. The resistivity of the plating material suitable for this purpose
is usually much higher than the resistivity of the material that is plated. What
criterion must the thickness of the plating satisfy if the effective resistance of the
plated conductor is to approach closcly the resistance obtained without plating?

2-20. A No. 14 copper wire (diameter 0.0641 in.) has a d-¢ resistance of 0.2525 ohm
per 100 ft. Calculate its resistance at 10 Mc, and at 3000 Mc, and tabulate these
three values of resistance alongside of one another.
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2-81. What diameter must a copper wire huve if its resistance is not to exceed
3.0 ohms per 100 ft at 10 Me? .

2-82. A conductor consisting of a thin-walled tube will have much less resistance at
very high frequencies than a solid wire of the same d-c resistance. Explain.

2-28. In a conductor consisting of a tube of specified outside diameter, the resist-
ance at very high frequencies will be almost independent of wall thickness if this
thickness exceeds several skin depths, but will be roughly inversely proportional to
wall thickness when the thickness is small compared with the skin depth. Explain
these observations.

2-24. Determine what mathematieal approximation is involved in ecach of the
following statements:

a. The phase angle in radians is equal to the power factor.

b. The reciproeal of capacitor Q is equal to the power factor of the capacitor.

¢. The dissipation factor is equal to the phase angle.

2-26. On the basis of the information given in Fig. 2-12 and the associated discus-
sion, sketeh curves analogous to Fig. 2-12 but showing qualitatively how the diclectric
constant and power factor would vary as a function of temperature for (a) a low
frequency, and (b) a high frequency.

2-26. ¢. A mica capacitor with power factor 0.0005 has a capacitance of 0.001 uf.
Assuming skin-effect resistance to be negligible, what is the equivalent series resistance
of the enpacitor at frequencies of 1000, 100,000, and 10,000,000 eycles?

b. What is the equivalent shunt resistance for the same conditions?

2-27. A certain air capacitor employing myealex insulation has & power factor of
0.0003 at 1000 cycles. What will its power factor be at this same frequency and same
capacitance if the mycalex insulation is replaced by polystyrene insulation of the
same geometrical configuration?

2-28. The power factor of a capacitor at very high frequencies is roughly propor-
tional to f» where f is the frequency. What is the value of n?

2-29. Show that the power factor of a given variable air capacitor at low frequencies
is independent of frequency but increases inversely with capacitance setting.

2-80. At very high frequencies, does an increage in frequency cause the power factor
of a variable air capacitance for a given capacitance setting to become greater, less, or
unchanged? Give an adequate justification for the answer chosen.

2-81. In a variable air capacitor the ratio of the power factor at a given high fre-
quency to the power factor at a given low frequency becomes greater as the capacitance
setting increases.  Explain.

2-32. In a capacitor having a capacitance of 0.001 uf, the equivalent series induet-
ance of the leads, ete., is 0.1 gh. At what frequency does the apparent capacitance
differ from the true capacitance by 10 per cent?

2-33. A certain capacitor having air diclectric with bakelite supports obtains 10 uuf
of its capacitance through the bakelite diclectric having a power factor of 4 per cent,
and the remainder of its capacitance from the air, which has no losses. What is the
equivalent series resistance and power factor at 10,000 ke when the total capacitance
i8 100 upf (90 puf from air and 10 uuf from bakelite)? Neglect skin-effect losses.

2-34. A particular mica capacitor having a capacitance of 0.001 uf has a power
factor of 0.0005 at a frequency of 1000 cycles, while at 10 Mc the power factor has
risen to 0.001. From this infcrmation deduce the values of R and R: applicable in
¥ig. 2-13 at 10 Me.

2-85. The capacitor of Prob. 2-26 is able to stand a d-c potential of 5000 volts and is
capable of dissipating safely 3 watts of heat.

a. At what frequency will heating hegin to limit the voltage rating?

b. What is the voltage rating at frequencies of 1, 1000, and 10,000 ke?
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2-36. Derive an equation giving the cxact relation between the Q of a coil and the
cail power factor, and from this calculate the error in the approximate relation: power
factor = 1/Q, when Q = 50.

2-37. Explain why the distributed capacitance of a coil is always increased by the
wax or other coating used for protection against moisture,

2-88. On the basis of proximity and skin effects, explain why it is reasonable to
expect that the maximum coil Q would be obtained with a wire not so large as to leave
very little clearance between adjacent turns, and not so small as to make this clearance
hecome a large fraction of the spacing between centers of adjacent turns,

2-89. In a coil with a magnetic slug core as in Fig. 2-17, removing the core will
reduce the inductance less in a system using a core designed for 100 Mec than in a
system using a core designed for 1 Mc. Explain,

2-40. A copper shield is required to reduce the magnetic flux density by 60 db.
What shicld thickness is required at (e) 1 ke, (b) 1 Mc, and (c) 1000 Me?

2-41. Derive Eq. (2-17) from Eq. (2-16).

2-42. A particular magnetic shield attenuates d-c magnetic fields by 20 db. What
will the attenuation be if the shield thickness is doubled?

2-43. A conducting magnetic shield is composed of permalloy having an initial
permeability of 15,000 and a resistivity of 17 ygohms per em cube, Caleulate (a) the
thickness which this material must have to be 5 skin depths thick at 60 cycles, and
(b) the thickness which copper must have to achicve the same degree of shielding,

2-44. Lxplain why magnetic material in powdered form, such as used in magnetic
cores for radio frequencics, is not suitable for use as a shield of alternating magnetic
fields.

2-46. A grid of wires such as shown in the accompanying figure will provide electro-
static shielding without magnetic shielding provided the structure (shown dotted in

Pros. 2-45

the illustration) supporting the sides of the shicld is an insulator. However, if the
material of the supporting structure is & conductor, then magnetic as well as electro-
static ficlds are shielded at least to some extent. Explain.

2-468. When a nonmagnetic shicld can surrounds a solenoidal coil, it is observed that
the shielding of the magnetic field is not affected appreciably by a joint in the shield
provided this joint is in a plane perpendicular to the axis of the coil, but the effective-
ness of the shield is very seriously reduced if the joint is in a plane that contains the,
axis of the coil. Explain.

2-47. If it is necessary that a magnetic shield for d-c fields have a joint, how should
this joint be oriented with respect to the direction of the magnetic flux that is being
shielded?
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CHAPTER 3

PROPERTIES OF CIRCUITS
WITII LUMPED CONSTANTS

3-1. Series Resonance. A circuit consisting of an inductance, capaci-
tance, and resistance all in series, as in Fig. 3-1, is called a series resonant
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T16. 3-1. Magnitude and phase angle of
current in a series resonant cireuit as a
function of frequency for constant applied
voltage and different circuit Q's.

or series tuned circuit. When a
constant voltage of varying fre-
quency is applied to such a circuit,
the current that flows depends
upon frequency in the manner
shown in Fig. 3-1. At low fre-
quencies, the capacitive reactance
of the circuit is large and the induc-
tive reactance is small. Most of
the voltage drop is then across the
capacitor, while the current is small
and leads the applied voltage by
nearly 90°. At high frequencies,
the inductive reactance is large and
the capacitive reactance low, result-
ing in a small current that lags
nearly 90° behind the applied volt-
age, and most of the voltage drop is
across the inductance. In between
these two extremes there is a fre-
quency, called theresonant frequency,
at which the capacitive and inductive
reaclances are ecxactly equal and,
consequently, neutralize each other;

there is then only the resistance of the rircuit to oppose the flow of cur-

rent.

The current at the resonant frequency is accordingly equal to the

applied voltage divided by the circuit resistance, and is very large if the

resistance is low.

A resonance curve such as illustrated in Fig. 3-1 finds extensive use in
selective systems for separating a desired a-c signal from signals of
other frequencies. For frequencies in the vicinity of resonance cor-
responding to a carrier wave and its sideband frequencies, the response is
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nearly uniform and is quite large. However, at frequencies differing
greatly from resonance the response is relatively small, with the result
that signals of such frequencies, i.e., the unwanted signals, are scverely
discriminated against.

The characteristics of a series resonant circuit depend primarily upon
the ratio of inductive reactance wl to circuit resistance R, i.e., upon
wL/R. This ratio is frequently denoted by the symbol Q and is called
the circuit .! Most of the loss in the usual resonant circuit is due to coil
resistance because the losses in a properly constructed capacitor are small
in comparison with those of a coil. The result is that the circuit Q
ordinarily approximates the @ of the coil alone, which was discussed in
Sec. 2-7.

The general effect of different circuit resistances, i.e., different values of
@), is shown in Fig. 3-1. It is seen that, when the frequency differs
appreciably from the resonant frequency, the actual current is practically
independent of the circuit resistance and is very nearly the current that would
be obtained with no losses. On the other hand, the current at the resonant
frequency is determined solely by the resistance. The effect of increasing
the resistance of a series circuit is, accordingly, to flatten the resonance
curve by reducing the current at resonance without significantly affecting
the behavior at frequencies differing appreciably from resonance. This
broadens the top of the curve, giving a more nearly uniform current over
a band of frequencies near the resonant point, but does so by reducing
the ability of the circuit to discriminate between voltages of different
frequencies.

Analysis of Series Resonant Circuit. The elementary voltage, current,
and impedance relations of series resonant circuits are discussed in every
book on alternating currents. The basic quantitative relations are listed
helow for convenient reference.

Resonant frequency = fo = m 3-2)
Z, =R+ j(wL - %,) (3-3a)
2
12| = \/R’ + (wL - _'.) (3-3b)
wC,
1 The circuit Q can also be defined as ,
Q=2 energy stored in circuit @1)

{energy dissipated in circuit
during one cycle
This relation follows from the fact that the energy stored in the inductance L when
the current I is maximum (i.e., when all the stored energy is in the inductance) is
I'L/2, where I is the peak current. At the same time, the energy lost per cycle in the
circuit resistance R is J*R/2f, where f is the frequency.
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tan 6 = ‘3@:_7%11‘1‘.’_) ' (3-49)

E E
I'=7 =g ¥l —a/cn &%
Clurrent at resonance = Io = RE—; (3-6)
Voltage across inductance = jwlI (3-7a)
Voltage across capacitor = ‘—:-(], 1 (3-7b)

where I/ = voltage applied to circuit
I = current flowing in circuit, amp
J = frequency, cycles
w = 2xf
Q (ﬂl// R
K = total series resistance of tuned circuit
L
C
Z'

I

]

= inductance, henrys
= capacitance, farads
= impedance of series circuit
6 = phase angle of impedance
Subscript 4 denotes values at resonant frequency
At frequencies near resonance the voltages across the capacitor and the
inductance will both be very much greater than the applied voltage.
This is possible because at frequencies near resonance the voltages across
the capacitor and inductance are nearly 180° out of phase with each other
and so add up to a value that is much smaller than either voltage alone.
At resonance, where the circuit current is E/R, Eqgs. (3-7) show that
the voltage across the inductance (or capacitor) is then @ times the
applied voltage; i.e., there is a resonant rise of voltage tn the circuit amount-
ing lo Q times. Since a typical value of Q is of the order of 100, a series
resonant circuit will thus develop a high voltage even with small applied
potentials. At frequencies differing from resonance the voltage devel-
oped across the inductance (or capacitor) falls off. In the vicinity of
resonance the resulting curve of voltage as a function of frequency has a
shape that for all practical purposes can. be considered to be the same as
the c.rresponding curve of current as a function of frequency (see Fig.
3-1). The reason for tias is that most of the resonance effects exist in a
very narrow frequency band, typically representing a frequency variation
of only a few per cent. Over this frequency range the term wl (or 1/w(’)
in Eqs. (3-7) is so nearly constant that to a first approximation the volt-
age developed across the circuit can be considered to be proportional to
the circuit current.
Universal Resonance Curve. Equations (3-5) and (3-6) can also be
rearranged to express the ratio of current actually flowing to the current
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Exhibit 1013
Page 049



Sec. 3-1] SERIES RESONANCE 47

at resonance, in terms of the circuit Q and the fractional deviation of the
frequency from resonance. This leads to the universal resonance curve
of Fig. 3-2.1

In the universal resonance curve, the frequency is expressed in terms of
a parameter a that represents fo/Q cycles, as defined in Fig. 3-2. Thus
a = 1.0 when the cycles off resonance equal fo/Q cycles, a = 2 when the
number of cycles off resonance is 2fo/Q, etc.

The use of Fig. 3-2 in practical calculations can be illustrated by two
examples.

Example 1. It is desired to know how many cycles one must be off resonance to
reduce the current to one-half the value at resonance when the circuit has a Q of 125
and is resonant at 1000 ke.

Reference to Fig. 3-2 shows that the response is reduced to 0.5 when a = 0.86.
Hence,

0.86 X 1000

—“—1—55 = 6.88 ke

Cycles off resonance =

The phase angle of the current as obtained from the curve is 60°.

Example 2. With the same circuit as in the preceding example, it is desired to
know what the response will be at a frequency 10,000 eyeles below resonance.

To solve this problem it is first necessary to determine a.

a=1%ppp X 125 = 1.25

Reference to Fig. 3-2 shows that for a = 1.25 the response is reduced by a factor 0.37
and that the phase of the current is 68° leading.

The only assumption involved in the universal resonance curve is that
Q is assumed to be the same at the frequency being considered as at the
resonant frequency. When this is irue, the universal resonance curve

f The equation of the universal resonance curve is obtained as follows: The ratio of
Eq. (3-5) to Lq. (3-6) gives

Actual current Ry Ro

Current at resonance ~ R + jlol — (1/wC)] ~ R + jl(w.C = 1)/wC)

Now define the fractional deviation & of the frequency from resonance, according to
the relation

w = wo(l + 3)
Substituting this expression for w and remembering that wol. = 1/weC, one obtains
Actual current  _ R, . 1
Current at resonance ¢! + 6)’ - l 2+ 6)
R+j eI EL 1’+Q“1+a ,

When @ is constant, the radio-frequency resistance is proportional to frequency so
that R/Re = w/we = (1 + &), which when substituted yiolds

Actual current (3-9)
Current at resonance 12 2+3 .
4o+ 1¥3

Figure 3-2 is then obtained by substituting a = Q6.
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¢nvolves no approzimations whatsoever. Over the limited range of fre-
quencies near resonance represented in Fig. 3-2, the variation in Q in
practical cases is so small as to introduce negligible (i.e., less than 1 per
cent) error from the usc of the curve, when the value of Q existing at
resonance is used in determining the parameter a.
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F1a. 3-2. Universal resonance curve for series resonant circuit. This curve can also
be applied to the parallel resonant circuit by considering the vertical scale to repre-
sent the ratio of actual parallel impedance to the parallel impedance at resonance.
When applied to parallel circuits, the angles shown in the figure as leading are lagging,
and vice versa.

The universal resonance curve is useful because it is independent of
the resonant frequency of the circuit and of the ratio of inductance to
capacitance, and because it is substantially independent of circuit Q. It
thus follows that all resonance curves have the same relative shape irrespective
of resonant frequency, Q, or ratio of induclance to capacitance of the ctrcuil.

Working Rules for Estimating Sharpness of Resonance. Since the
curves for different values of Q are almost identical in Fig. 3-2, particu-
larly in the neighborhood of the resonant frequency, it is possible to state
several easily remembered working rules that will enable one to estimate
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the sharpness of any resonance curve with an error of less than 1 per cent
when only the @ of the circuit is known.! These rules follow:

Rule 1. When the frequency of the applied voltage deviates from the
resonant frequency by an amount that vs 1/2Q of the resonant frequency, the
current that flows is reduced to 70.7 per cent of the resonant current, and the
current 18 45° out of phase with the applied voltage. Thus the frequency band
B over which the responsc i3 af least 70.7 per cent of that at resonance (i.e.,
within 3 db of resonance) is B = fo/Q, where fo is the resonant frequency.

Rule 2. When the frequency of the applied vollage deviates from the
resonant frequency by an amount that is 1/Q of the resonant frequency, the
current that flows is reduced to 44.7 per cent of the resonant current, and the
current is 63%4° out of phase with the applied voliage.

Thus, in the circuit considered in the above examples, the current
would be reduced to 70.7 per cent of the value at resonance when the fre-
quency is Y450 of 1000 ke, or 4000 cycles off resonance, and to 44.7 per
cent of the resonant current for a frequency deviation of 1{25 of 1000 ke,
or 8000 cycles. Since the resonant rise of voltage in this circuit is
125 (=Q) times, the rise of voltage is very nearly 0.7 X 125 = 87.5 times
when the frequency is 4000 cycles off resonance, and is very close to
0.45 X 125 = 56.25 times at a frequency 8000 cycles from resonance.

Practical Calculation of Resonance Curves. The proper procedure for
calculating a resonance curve is to start by determining the current at
resonance, using Eq. (3-6). The working rules can then be applied to
obtain the response at frequencies 1/2Q and 1/Q on either side of reso-
nance. This gives a picture of the sharpness of resonance and is sufficient
for many purposes. However, if additional points in the vicinity of reso-
nance are needed, they can be calculated with the aid of Fig. 3-2.°

At frequencies too far off resonance to come within the range of the uni-
versal resonance curve, the magnitude of the current can be determined
with an accuracy sufficient for nearly all practical purposes by neglecting
the resistance R in Eq. (3-5). The phase angle of the current under
these conditions is obtained from Eq. (3-4).

The above procedure for calculating resonance curves is much superior
to making calculations based directly upgn Eq. (3-5). The use of the
universal resonance curve in the vicinity of the resonant frequency not
only reduces the amount of labor involved but also greatly improves the
accuracy under ordinary conditions. This is because resonant circuit
formulas such as Eq. (3-5) contain a term (wL - w—l(f) which involves the
difference of two quantities which near resonance are nearly equal in
magnitude. In order to obtain this difference without more than 1 per

! An error of 1 per cent is nearly always permissible in caleulations of radio-frequency
circuits. This is because the effective circuit constants at radio frequencies are very
seldom known to an accuracy that involves an error of less than 1 per cent.
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cent error, five-place logarithms must ordinarily be employed. Slide-rule
calculations are never permissible. Neglecting the resistance at fre-
quencies too far off resonance to come within the range covered by the
universal resonance curve enormously reduces the labor involved in
calculating magnitudes, and introduces an error of less than 1 per cent of
the magnitude at resonance. This accuracy is ample for all ordinary
purposes, and the error is undetectable when resonance curves are
. plotted.
L—-”V”"” e 0 8-2. Parallel Resonance. A par-
| (2€rocosses)  allel circuit consisting of an induct-
ance branch in parallel with a capac-
itance branch offers an impedance of
the character shown in Fig. 3-3.
Such a circuit is termed a parallel
resonant or parallel tuned circuit.
When a voltage is applied to such
a system, then at very low fre-
quencies, the inductive branch draws
a large lagging current while the
leading current of the capacitive

Lae. SN branch is small, resulting in a large
::”::: lagging line or cireuit current and a

w ©° low lagging circuit impedance. At
] high frequencies, the inductance has

LEAD Il a high reactance compared with the
ol FREQUENCY capacitance, resulting in a large lead-

Fi. 3-3. Magnitude and phase nngle of  ing line current and a correspondingly
il.npcdnme of a pnrullt:l circuit asafune-  Jow cireuit impedance that is leading
tion of frequencey for different cireuit Q's. in phase. In between these two
extremes, there is a frequency at which the lagging current taken by the
inductive branch and the leading current entering the capacitance branch
are equal; being 180° out of phase, they then neutralize and leave only a
small resultant inphase current flowing in the line. The impedance of the
parallel circuit will then be a, very hl&h resistance, as is brought out in
Fig. 3-3.1
A comparison of Figs. 3-1 and 3-3 shows that the impedance curve of a
parallel circuit is similar in character to the current curve of a series
circuit. In particular, increasing the resistance of a parallel resonant
'In obtaining a parallel resonance curve experimentally by measurements of
applied voltage and line current, extreme care must be taken to ensure that the applied
voltage contains no harmonics. This is necessary because at resonance the circuit
impedance is extremely high to the fundamental component of the applied voltage
and very low to the harmonic components, with the result that even 1 small harmonic-
voltage component will cause line currents that mask the small fundamental
component,
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circuit lowers and flattens the peak of the resonance curve, just as in the
analogous series resonance case. This similarity is considered below in
greater detail.

The relationship between the line and branch currents in a parallel
circuit is illustrated in Fig. 3-4. It will be noted that, unlike the line or
circuit current, which shows a resonance effect, the currents in the indi-
vidual branches of a parallel circuit vary only slightly in the vicinity of
resonance and are relatively large. At resonance the two branch cur-
rents have similar magnitudes, and bcu
being almost (but not quite) out of Mog‘z‘;,xcw ; Iow SUREENT
phase they add up to a very small >|-<
resultant current, thus giving a
high circuit impedance. As the
frequency departs from resonance
the two branch currents become +LINE

ety
slightly unequal in magnitude; this w

causes the line current to increase sueirir sriow  resonance SLIGHTLY. ABOVE
A RESONANCE E SONANCE

as shown, which means lowered FREQUENCY
circuit impedance. It ischaracter- Fiu. 3-4. Relationship of line and branch
s ) O currents in a parallel resonant circuit in
istic of parallel _resonant circuits "o of resonance,
that for frequencies near resonance
the current flowing in the branches, commonly referred to as the circulat-
ing current, is much larger than the line current, i.e., than the current
supplied to the circuit.

The fundamental relations of a parallel resonant circuit are derived in
every introductory book on a-c circuit theory, and are listed below for
convenient reference.

. , Lt _ Ly

& \ " = = ——— -
Parallel impedance = Z Z.¥2, " 7. 3-9)
Line current = % (3-10)
Inductive branch current = E_ _E (3-11)

’ ZL RL + JO}L

‘apaciti h o _E__ _E_ 1

Capacitive branch current = Z. = = G/wC) (3-12)

where £ = voltage applied to circuit

Z. = R, — (j/wC) = impedance of capacitive branch
Z. = R. + joL = impedance of inductive branch

Z, = Z. + Z. = series impedance of circuit

Z = impedance of circuit when connected in parallel
R. = R. + R. = total series resistance of circuit

w = 2x times frequency

Q = wL/R, = circuit Q

II
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These equations are fundamental to every parallel circuit, irrespective of
the circuit Q, the frequency, or the division of resistance between the
branches.

Quantitative Relations in Parallel Resonant Circuils with Moderale or
High Q, and the Use of Universal Resonance Curve. When the @ of a
parallel resonant circuit is not too low (e.g., of the order of 10 or more),
the quantitative relations become quite simple. To begin with, it is then
permissible to assume that the circuit has maximum impedance and unity
power factor at the same frequency, which is also the frequency at which
the same circuit is in series resonance as given by Fq. (3-2). In contrast,
when the circuit @ is low, this is not necessarily the case, as discussed
below.

When the circuit Q is not too low, the exact expressions of Eqs. (3-9)
and (3-10) can be simplified, without introducing appreciable error, hy
neglecting the resistance components of the impedances Z, and Z¢ in
the numerator of Eq. (3-9). When this is done!
(W()IJ)z
s

Parallel impedance = Z = (3-13)

At resonance Z, = K,, and this becomes

2
Parallel impedance at resonance = (9;\,11)— = (wl)Q (3-14)

In these equations wy is the value of © at resonance. It will be noted from
Eq. (3-14) that at resonance the impedance of a parallel circuit is a resist-
ance that is Q) times the reactance of one of the branches.® 11 can, therefore,
be said that the parallel arrangement of inductive and capacitive branches
causes a resonant rise of impedance of § times the impedance that would
be obtained from cither branch alone. 1t is thus apparent that very,
high impedances can be developed by parallel resonance.  This is one of
the most important properties of parallel resonance.

Under conditions where the circuit § is not too low, the resonance
curve of the parallel impedance of a circuit can be considered to have the
same shape as the resonance curve of the series current in a circuit consisting

! This transformation is carricd out ns follaws: If the resistance components in the
numerator of liq. (3-12) are neglected, the product Z.Ze becomes wl./wC = L/(.
One can now eliminate the capacitance C in this expression by multiplying both
numerator and denominator by wo and then noting that 1/weC = wel. That 18,

L wol
Z1Zc = C=al ™ (wol)?

3 It also follows from Eq. (3-14) and Eqs. (3-10) to (3-12) that at resonance the
branch currents are Q times as large as the line current, provided the resistance com-
ponents in Eqs. (3-11) and (3-12) are small compared with the associated reactive
components,
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of the same inductance, capacitance, and resistances connected in a series
instead of a parallel arrangement. This follows from the fact that a com-
parison of Eqs. (3-5) and (3-13) shows that both the parallel impedance
and the series current are equal to a constant divided by Z,. Conse-
quently, the universal resonance curve and the working rules that were applied
for estimating the sharpness of resonance of the series circuit also apply to
the case of parallel resonance when the circust Q is moderale or high. The
only difference is that the signs of the phase angles are now reversed, the
phase of the parallel impedance being leading at frequencies higher than
resonance and lagging at frequencies below resonance.

The proper procedure for calculating the impedance of a parallel
resonant circuit of moderate or high @ is therefore similar to that used

R R,
4 I '
E} BT €§ % J
'
L ﬁ/”z"%f&‘/: Ry
(@) EQUIVALENT FORMS (6) PARALLEL CIRCUIT (c) SHUNT-FED

OF PARALLEL CIRCUITS WITH BOTH SERIES AND PARALLEL CIRCUIT
SHUNT RESISTANCES

Fii. 3-5. Forms of parallel resonant circuits involving a shunt resistance and shunt
feed.

with a series resonant circuit. The first step is to determine the resonant
frequency and the impedance at resonance, using Eqgs. (3-2) and (3-14).
Next, the working rules are applied to obtain the 70.7 and the 44.7 per
cent points on either side of resonance. This gives the general picture of
the sharpness of resonance and is sufficient for many purposes.  If a more
complete curve is desired in the vicinity of resonance, one may make use
of the universal resonance curve of Fig. 3-2. Finally, at frequencies so
far off resonance as to be outside the range of the universal resonance
curve, one may determine the magnitude of the impedance by using
Eq. (3-13), but neglecting the circuit resistance B when making the
calculation. The power-factor angle of the impedance thus obtained is
the negative of the corresponding angle for series resonance, as given by
Eq. (3-4).

Parallel Resonant Circuits with Shunt Resistances and with Parallel Feed.
The two types of parallel resonant circuits shown in Fig. 3-5a are equiv-
alent to each other provided the resistances R, and R are properly,
related, and provided also that the circuit Q is not toolow. To determine
the relationship that must exist between R, and R., one notes that R, can
be thought of as being associated with capacitance C as its equivalent
series resistance, while R, can be regarded as an equivalent shunt resist-
ance of the same capacitance C. Assuming that the circuit @ is not too
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low [i.e.,, that (1/wC)/Ry>>1, and that Rs/(1/wC)>>1], then from
Egs. (2-12) and (2-13) one has

RiR: = (Z,IZ)’ (3-15)

Although the relationship between R; and R; is seen by Eq. (3-15) to
depend on frequency, it is common practice to determine the relation
bhetween R, and I, at resonance, and then to assume that the valucs at
resonance also hold for all frequencies in the vicinity of resonance. This
approximation is equivalent to assuming that the right-hand term of
Eq. (3-15) is constant at the value it has at resonance.! Since w changes
by only a small percentage in the limited frequency range around reso-
nance, this assumption is not far from the truth, and the error it intro-
duces is quite small.

The parallel resonant circuit of Fig. 3-5b can be transformed to the
circuits of Fig. 3-5a by converting R, to an equivalent series resistance R,
or transforming R to an equivalent shunt resistance ;. By use of Eqgs.
(2-12) and (2-13), respectively, this leads to the following rclations
between the circuits of a and b in Fig. 3-5 for the resonant frequency:

2
=m-m+@ Gy
Shunt resistance|{ _ _ (woll)?

equivalent to R’,) = R = TR, (3-185)
Total effective
shunt resistance = Re =
including R’ and R.,

Total effective
serics resistance

_ Renl?2
R., + R,

(3-18¢)

The above analysis is of practical importance for two reasons. In the
first place, it shows that to a high approximation, the effect produced by
shunting a resistance across a parallel resonant circuit is merely to lower
the effective Q of the circuit. The resonant frequency is unchanged, how-
ever, and the impedance curve still has the shape of a resonance curve as
given by the universal resonance curve. In the second place, the analysis
provides a simple means of determinipg the quantitative effect that a
shunt resistance produces on the properties of a resonant circuit.

Still another form of parallel resonant circuit that is frequently encoun-
tered is shown in Fig. 3-5¢, where a resistance R is connected in series with

1 At resonance, one can write wol = 1/woC, where wo is the value of w at the resonant
frequency. Under these conditions the following useful relations apply to Fig. 3-5a:

RiR: = (woL)? (3-16)
Q of circuit o wl Ry
at resonance} R,  wil (3-170)
o} 4 = B @1
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the parallel circuit. The behavior of arrangements of this type is
analyzed in Sec. 3-7.

Parallel Circuits with Low Q. The entire discussion of parallel reso-
nance given above except for Egs. (3-9) to (3-12) assumes that the Q of the
parallel circuit is at least reasonably high (i.e., of the order of 10 or more).
In the general case when the circuit @ is low, the curve of circuit imped-
ance as a function of frequency still has a shape that resembles a resonance
curve unless the circuit Q approaches or is less than unity. However, the
maximum impedance no longer necessarily occurs at the frequency of
series resonance, and the condition of unity power factor does not neces-
sarily oceur cither at the frequency of series resonance or when the imped-
ance is a maximum. The actual behavior for any given @ depends upon
the division of resistance between the RESISTANCE
inductive and capacitive branches, as aneay TvE
illustrated in Fig. 3-6 for typical cases.

An important considcration in the
use of low-@Q resonant circuits oceurs
when such a circuit is tuned to reso- I\W/"

22
A RESISTANCE
7 N CAPACITIVE
BRANCH ~

IMPEDANCE

\ A

POWER
nance with a given frequency by vary- FacToR
ing either the inductance or capaci-
tance of the circuit. If, for example,
the tuning is accomplished by varying
the capacitance, then, if all the circuit
losses are in the inductive branch, the
capacitance setting that makes the
circuit impedance maximum also cor-
responds to uniiy power factor. If,
however, part or all of the circuit resist-
ance is in the capacitive branch, then
the capacitance setting that makes Fic. 3-6. Typical characteristics of
the circuit impedance maximum at an parallel resonance circuits having
assigned frequency does not corre- low Q.
spond to the capacitance setting for which the circuit power factor is
unity. This is illustrated in Fig. 3-6. Similarly, if the tuning is accom-
plished by varying the inductance, then the situation is reversed, and
maximum impedance and unity-power-factor conditions coincide only if
all the circuit losses are concentrated in the capacitive branch. These
properties of parallel resonant circuits with low Q are often of considerable
importance in connection with the resonant circuits of Class C amplifiers
such as used in radio transmitters. .

Components of Parallel Impedance. The parallel impedance as calcu-
lated by Eq. (3-9) or (3-13) can be thought of as equivalent to a resistance
in series with a reactance, as shown in Fig. 3-7a. When the circuit Q is
sufficiently high for Eq. (3-13) to apply, then these resistance and react-
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56 CIRCUITS WITH LUMPED CONSTANTS [CHap. 3

ance components will be found to vary with frtequency' in the manner
shown in Fig. 3-7b, which is a universal curve derivable t':hrectly from the
universal resonance curve of the parallel circuit. It will be noted that
the resistance component has a shape superficially similar to that of a
resonance curve, but differs in that it has stecper sides. In particular,

EQUIVALENT
RESISTANGE
courvaLenr
2> z—» REACTANCE
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F1a. 5-7. Representation of parallel impedance in terms of equivalent series resistance
and reactance components, together with universal curve giving these components as
a function of frequency in a parallel resonant circuit having a relatigely high Q.

the resistance drops to 50 per cent of the resonant impedance at fre-
quencies corresponding to the 70.7 per cent points of the impedance curve
(i.e., when the number of cycles off resonance equals the resonant fre-
quency divided by 2Q). It will also be noted that the reactance curves
are characterized by maxima and minima which oecur at the 70.7 per
cent points of the resonance curve and which have peak amplitudes that
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are exactly 50 per cent of the impedance at resonance as given by Eq.
(3-14). .

An application of these concepts is supplled by the case of a coil having
distributed capacitance. With respect to its terminals, such a coil is
represented by the left-hand circuit of Fig. 3-7a, and accordingly behaves
as shown in Fig. 3-7b. Below the frequency at which the distributed
capacitance is resonant with the inductance, the system is equivalent to a
resistance in series with an inductive reactance. The apparent induct-
ance represented by this equivalent reactance depends on frequency, how-
ever, rising with frequency until just before resonance is reached, and
then dropping rapidly. The apparent inductance becomes zero at the
parallel resonant frequency, while for higher frequencics the coil has a
capacitive reactance and is therefore equivalent to a small capacitor. The

R £ Rs c£| A R
lpggﬁs Lpgétg T]' Cs lp gELS T]' Cs

(@) UNTUNED SECONDARY () TUNED SECONDARY (¢) TUNED PRIMARY AND
TUNED SECONDARY

Fig. 3-8. Various types of inductively coupled circuits commonly encountered in
clectronics,

apparent resistance of the coil increases rapidly with the frequency until
a maximum is reached at the resonant frequency, beyond which the
resistance rapidly diminishes. These effects are all direct consequences
of the properties of parallel resonant circuits, and can be readily deduced
by an examination of Fig. 3-7 or of Egs. (3-13) and (3-14). The behavior
of an inductance coil with self-capacitance can accordingly be calculated
just as one would determine the characteristics of any other parallel
circuit.

3-3. Inductively Coupled Circuits; Theory. When mutual inductance
exists between coils that are in separate circuits, these circuits are said to
be inductively coupled. The effect of the mutual inductance is to make
possible the transfer of energy from one circuit to the other by trans-
former action. That is, an alternating current flowing in one circuit
produces magnetic flux which induces a voltage in the coupled circuit.
This results in induced currents and a transfer of energy from the first or
primary circuit to the coupled or secondary circuit. Several examples of
inductively coupled circuits commonly encountered in electronics are
shown in Fig. 3-8.

The behavior of inductively coupled circuits is somewhat complicated,
but it can be readily calculated with the aid of the following rules:

Rule 1. As far as the primary circuit 18 concerned, the effect that the
presence of the coupled secondary circuit has is exacily as though an tmped-
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ance (wM)?/Z, had been added in series with the primary,! where M =
mutual inductance, w = 21rf, and Z, = series impedance of secondary
circuit when considered by itdelf. The equivalent impedance (wM)?/Z,
which the presence of the secondary adds to the primary circuit is called
the coupled (or reflected) impedance and, since Z, is a vector quantity
having both magnitude and phase, the coupled impedance is also a vector
quantity, having resistance and reactance components.

Rule 2. The voltage induced in the secondary circuit by a primary current
of 1, has a magnitude of wM1I, and lags behind the current that produces
it by 90°. In complex quantity notation the induced voltage vs—joMI,.

Rule 3. The secondary current is exactly the same current that would flow
if the induced voltage were applied in series with the secondary and if the
primary were absent.? The secondary current therefore has a magnitude
wM1,/Z,, and in complex quantity representation is given by —joM1I,/Z,.

These three rules hold for all frequencies and all types of primary and
secondary circuits, both tuned and untuned. The procedure to follow
in computing the behavior of a coupled circuit is (1) to determine the
primary current with the aid of Rule 1; (2) to compute the voltage
induced in the secondary, knowing the primary current and using Rule 2;
and (3) to calculate the secondary current from the induced voltage by
means of Rule 3. The following set of formulas will enable these opera-
tions to be carried out systematically:

1This can be demonstrated by writing down the circuit equations for the primary
and secondary. These equations are

E = 1,2, + juMI,
Induced voltage = —jwMI, = I1,Z,

where Z, is the series impedance of the primary and E is the voltage applied to the
primary. Solving this pair of equations to eliminate I, gives

E=1, [z, 4 M )'] (3-19)

This relation shows that the effective primary impedance with seccondary present is
Zy + (wM)?/Z,, of which the second term represents the coupled impedance arising
from the prescnce of the secondary.
2 Some readers may wonder why it is that, although the secondary circuit couples
an iinpedance into the primary, the primary is not considered as coupling an imped-
ance into the secondary. The explanation for this is as follows: The effect that the
secondary really has upon the primary circuit is to induce a back voltage in the primary
proportional to the secondary current. This back voltage represents a voltage drop
occurring in the primary circuit and is the same voltage drop that results when the
primary current is assumed to flow through the hypothetical coupled impedance.
The impedance that the secondary couples into the primary is hence a means of taking
into account the voltage that the secondary current induces into the primary. The
voltage that is induced in the secondary circuit by the primary current is taken into
account by Rule 3, so that no coupled impedance need be postulated as present in the
secondary to take into account the effect of the primary.
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. . .
Impedance coupled into pnmaryl _ (wM) (3-20)

circuit by secondary 3

. . . (wM)?
Equivalent primary impedance = Z, + (3-21)
. E ‘
Primary current = I, = 2, ¥ wM)¥/Z, (3-22)
Voltage induced in secondary = —jwMI, (3-23)
—joMI,  —joME

Secondary current = 7. = ZZ. T (M) (3-24)

In these equations Z, is the series impedance of the primary considered as
though the secondary were removed, E is the applied voltage, and the

remaining notation is as previously N

used. The primary and secondary

impedances Z, and Z,, respectively,

are vector quantities, so that Eqs. to ts

(3-16) to (3-20) are all vector

equations. (0} ACTUAL CIRCUIT
Inductively Coupled Circuit as a

Transformer. The inductively LEARAGE INDUCTANCE

coupled circuit is a transformer, Lt ks

and the theory of the inductively 'u'o%m LTI

coupled circuit that is given above ,

is the general theory of trans- Letkep hegere”

formers. The method commonly

used to anglyze the behavior of COUPLED INDUCTANCE

60-cycle power transformers, which Mok ipls

involves the use of leakage induct- (5) SAME CIRCUIT SHOWN AS TRANSFORMER

anqe,m.agnetizing.current, andturn g, 3.9, Inductively coupled circui*
ratio, is a special form of the represented as a transformer with

general theory that is convenient ¢oupled and leakage inductances.

when the coupling coefficient k between the primary and secondary wind-
ings approaches unity. However, when the coupling coefficient k is
small, then the use of Eqgs. (3-20) to (3-24) is preferable.

The equivalent transformer circuit represented by two coils coupled
together with mutual inductance M is shown in Fig. 3-9. Here the total
primary inductance L, is broken up into a leakage inductance L’ and a
coupled inductance L., while the secondary is likewise broken up into
leakage inductance L” and a coupled inductance L.. Each leakage
inductance is considered as having no coupling whatsoever to the other
winding, while the coupled inductances L, and L.’ are taken as having a
coefficient of coupling equal to unity. The values of these inductance
components in terms of the coefficient of coupling and the primary,
secondary, and mutual inductances are given in the figure. In the
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representation of Fig. 3-9b, turn ratio has practical significance only when
the coefficient of coupling k approaches unity; when the coefficient of
coupling is small, as for example, 0.01, then the primary and secondary
inductances are practically entirely leakage inductances. Under these
conditions the voltage induced in the secondary may be much smaller
than the voltage applied to the primary terminals, even when the second-
ary winding has many more turns than does the primary.

8-4. Analysis of Some Simple Inductively Coupled Circuits. In this
and the next section, the types of coupled circuits most commonly
encountered in electronics work will be analyzed by the principles given
above.

In studying the behavior of a coupled circuit the first step is always to
examine the nature of the coupled impedance (wM)*/Z,. When the
coupled impedance is small, then the primary current is very nearly the
same as though no secondary were present, and the effects produced in
the secondary circuit by the primary current will likewise be small. The
coupled impedance will be low if the mutual inductance M is very small
(i.e., if there is small coupling), or if the secondary impedance is very high,
for example, if the secondary is open-circuited. In contrast, consider the
case when the coupled impedance (wM)2/Z, is large, either because of
large M or small Z,, or both. The voltage and current relations that
exist in the primary circuit are then affected to a considerable extent by
the presence of the coupled secondary, and a very considerable transfer of
energy to the secondary occurs.

When determining the effect produced by the coupled impedance, it is
important to note that this impedance has the same phase angle as does
the secondary impedance Z,, but with the exception that the sign of the
phase angle is reversed. Thus, if the secondary impedance is inductive
and has an angle of 30°, the impedance coupled in series with the primary
circuit by the action of the secondary has a capacitive phase angle of 30°.
The physical significance of this change in sign of the phase angle becomes
apparent from the examples considered below. A particularly important
case occurs when the secondary impedance Z, is a pure resistance; under
these conditions the coupled impedance will also be a resistance.

The energy consumed by the secondary circuit is the energy represented
by the primary current flowing through the resistance component of the
coupled impedance.

Coupled Circuit with an Untuned Secondary Consisting of a Resistance
and Inductance. This arrangement is illustrated in Fig. 3-8a, and is the
type of coupled circuit that results when a resistance is connected across
the terminals of the secondary inductance, or, alternatively, is the case
where the secondary load is a resistance and an inductance in series.
Such a secondary consists of an inductance L, in series with a resistance
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R,. The coupled impedance is accordingly
M) (M)

Z, R, + juL,
Multiplying both numerator and denominator by R, — jwL, gives

Coupled impedance = 'RT*"f_waT* (wM)? —j-R-;;i"’%E)—, (wM)* (3-26)

Coupled impedance (3-25)

Examination of Eq. (3-26) shows that the coupled impedance introduced
into the primary circuit by a resistance-inductance secondary consists of
a resistance in series with a capacitive reactance. The effect of the
coupled resistance is to increase the effective resistance that appears
between the primary terminals. The effect of the coupled capacitive
reactance is to neutralize a portion of the primary inductance, thereby
reducing the equivalent inductance that is observed between the terminals
of the primary coil. The physical explanation of the fact that an induc-
tive secondary produces a capacitive coupled reactance is that such a
secondary causes some of the inductive reactance already possessed by
the primary to be neutralized. This is done electrically by postulating
a capacitive reactance of suitable magnitude in series with the primary.!

A special case of considerable importance is that for which the resist-
ance R, of the secondary circuit in Fig. 3-8a is negligible compared with
the inductive reactance of the secondary. This situation will arise when
the secondary coil is short-circuited, or when the secondary load is a low-
loss inductance. To the extent that the resistance of the secondary
circuit can be neglected, the coupled resistance introduced into the
primary by the presence of such a secondary is zero; the only effect-pro-
duced by the presence of the secondary is then to reduce the eflective
inductance that exists between the primary terminals. The percentage
reduction in the equivalent primary inductance in such a situation
depends only upon the coefficient of coupling between the primary and
secondary circuits. If k = 1.0, the primary inductance is completely
neutralized.?

A shield surrounding a coil, or a piece of metal such as a panel located
in the magnetic field of a coil, represents a coupled secondary circuit that
consists of an inductance in series with a resistance. Such an arrange-

1 Although the coupled impedance is capacitive and so neutralizes part of the
primary inductance, it is impossible to obtain a resultant capacitive reactance in the’
primary circuit by very large coupling since, with the maximum coupling that can
possibly exist (k = 1), it will be found that the coupled capacitive reactance can never
be greater than the value that will just neutralize all the inductive reactance of the
primary.

? For other values of k, it can be shown by manipulating Eqgs. (3-21) and (3-26) that
the equivalent primary inductance is L,y(1 — &*).
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ment can, accordingly, be analyzed as above. Thus the effect of a shield
or metal panel on a coil is to reduce the equivalent inductance and to
increase the apparent resistance observed at the coil terminals; these
effects, morcover, become greater the larger the coupling, i.e., the smaller
the spacing between the primary coil and the metal secondary. It is also
to be noted that if the secondary resistance is low, as will be the case if
the shield or metal panel is made of a good conductor such as copper or
aluminum, then the principal effect produced by the presence of the metal
near the coil is to reduce the equivalent inductance of the coil; under
these circumstances the increase in equivalent coil resistance is only
nominal. It will be noted that these conclusions derived from the view-
point of coupled circuits are all consistent with the qualitative conclusions
stated in Scc. 2-8, relative to the effect that shielding has on the properties
of a coil.

Coupled Circuils with Unluned Primary and Tuned Secondary. A
circuit of this type is shown in Fig. 3-8b. Here one has

. _ (o) (wM)?
Coupled impedance = “Z. = B ¥ 7L, = (/at)]

(3-27)

An examination of this expression shows that, in the limited frequency
range in which the principal resonance effects take place when the second-
ary Q is not too low, the numerator is substantially constant, whereas the
denominator represents the series impedance of the secondary circuit.
This is, therefore, an equation of the same general type as Eq. (3-13) for
parallel resonance. The coupled impedance produced by a tuned secondary
circust consequently varies with frequency ticcording to the same generallaw
as does the parallel impedance of the secondary circuit (see Fig. 3-3). The
absolute magnitude of the curve, however, depends upon the mutual
inductance. This arrangement thus provides a means whereby the
impedance of a parallel resonant circuit can be transformed in magnitude.
Comparison of Eqs. (3-13) and (3-27) shows that the transformed imped-
ance appearing in the primary eircuit is (M /L,)? times the actual parallel
impedance of the resonant secondary cirecuit.

A special case of the circuit of Fig. 3-8b that is of particular importance
occurs when the primary resistance R, i§ the plate resistance of a vacuum
tube. Onec then has the equivalent circuit of the transformer-coupled
tuned radio-frcequency amplifier. In this instance one is interested in the
curve showing the variation of the secondary current (or of the voltage
developed across the secondary capacitor C,)! as the frequency is varied

! The voltage across the secondary capacitor C, is equal to the product of the
secondary current and the reactance 1/wC, of this capacitor. In the limited frequency
range represented by the vicinity around resonance « changes very little in com-
parison with the variation of the sccondary current. Hence, to a first approxima-
tion the voltage developed across the capacitor can be considered as being equal to
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about resonances. When R, > > wL,, the curve of secondary current
(or of voltage across the secondary capacitor) varies with frequency
according to a resonance curve having the same resonant frequency as
the secondary circuit, but possessing a slightly lower Q. When the
reactance wl, of the primary inductance is not negligible compared with
the primary resistance R,, the curve of secondary current as a function of
frequency still has the shape of a resonant curve. However, the fre-
quency at which the secondary current (or voltage across the secondary
capacitor) i8 maximum is now fp s

slightly higher than the resonant [.c
frequency of the secondary. A E o p QB
typical example of this is shown by E éﬁj{
the dotted curve of Fig. 3-10. The "
analysis that leads to these conclu-~
sions is presented in Sec. 3-7.

3-6. Behavior of Systems In-
volving Resonant Primary and
Resonant Secondary Circuits. L
Primary and Secondary Circuits Lorwte =R ~
Resonant at the Same Frequency and
Having Q’s That Are Equal and Not

SECONDARY CURRENT

Too Low. When two resonant cir-
cuits having equal Q’s that are not
too low are tuned to the same fre-
quency and coupled together, the
resulting behavior depends very
largely upon the degree of coupling,
as seen from Fig. 3-11.1 When

FREQUENCY

Fig. 3-10. Variation of secondary current
as 8 function of frequency in a coupled
system in which the secondary is a
resonant circuit and the primary is
untuned, showing that the secondary
circuit follows a resonance curve, which,
however, has a lower @ than that of the
secondary circuit taken alone.

the coefficient of coupling is small, the curve of primary current as a
function of frequency is substantially the series resonance curve of the
primary circuit considered alone. The secondary current is small and
varies with frequency in such a way as to be much more peaked than the
resonance curve of the secondary circuit considered as an isolated circuit.
As the coefficient of coupling is increased somewhat, the curve of primary
current becomes broader, as a result of a reduction in the primary current
at resonance and an increase in the primary current at frequencies

the product of the secondary current and a constant. In the immediate vicinity of,
resonance the curve of voltage across this secondary capacitor therefore has very
nearly the same shape as does the curve of secondary current.

1 The phase shift is not shown in Fig. 3-11, but varies 1 180° about the phase at the
resonant frequency. Thus the total shift in phase between input voltage and output
current as the frequency varies through resonance is 360° This is in contrast with
systems having only one tuned circuit; the total phase shift then varies over the
range +90° or a total of 180°.
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slightly off resonance. At the same time the secondary-current peak
becomes higher and the curve of secondary current somewhat broader.

These trends continue as the coefficient of coupling is increased until
the coupling is such that the resistance which the secondary circuit
couples into the primary at resonance is equal to the primary resistance.
This is called the eritical coupling and causes the secondary current to

_r_cf o m fs X 20005
£ Lp s T
N x=0.01

@+ 05 = 100
K=00! FOR CRITI-
CAL COUPLING

PRIMARY CURRENT

SECONDARY CURRENT

FREQUENCY
Fi1a. 3-11. Curves showing variation of primary and secondary currents with fre-
quency for different coefficients of coupling when the primary and the secondary are
separately tuned to the same frequency.

have the maximum value it can attain, The curve of secondary current
is then somewhat broader than is the resonance curve of the second-
ary circuit considered slone, and has a relatively flat top. The primary
current now has two peaks, being greater at frequencies just off resonance
than at the resonant frequency.

As the coefficient of coupling is increased beyond the critical value, the
double humps in the primary current become more prominent and the
peaks spread farther apart. The curve of secondary current now also
begins to display double humps, with the peaks becoming more pro-
nounced and spreading farther apart as the coupling increases. The
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value of the primary current at the peaks becomes smaller the greater the
coupling, but in the secondary tircuit not only do the two peaks have
substantially the same height, but this height is also independent of the
coefficient of coupling provided only that the coupling is not less than the
critical value. The reason for the above behavior centers around the
way in which the coupled impedance (wM)?/Z, varies with frequency.
(‘onsider first the total primary-circuit impedance. This consists of the
actual self-impedance of the primary plus whatever impedance the
secondary circuit couples into the primary. The type of coupled imped-
ance produced by a tuned secondary has already been discussed; it is
substantially a parallel resonance curve having a shape corresponding to
the @ of the secondary circuit and an amplitude determined by the mutual
inductance. The coupled impedance is hence maximum at resonance and
is then a resistance. At frequencies below resonance the coupled imped-
ance is inductive and at frequencies above resonance it is capacitive,
as shown in Fig. 3-7.

When this coupled impedance is added to the self-impedance of the
primary circuit, the effect at resonance is to increase the effective primary
resistance above the value that would exist in the absence of the second-
ary. This causes the primary current at resonance to be reduced in all
cases by the presence of the secondary. At frequencies somewhat below
resonance the coupled impedance is largely inductive whereas the primary
self-impedance is largely capacitive. The coupled inductive reactance
then neutralizes some of the primary capacitive reactance, lowering the
primary circuit impedance and increasing the primary current. The
situation is somewhat similar for frequencies above resonance except that
now the coupled reactance is capacitive and neutralizes some of the
inductive reactance which the primary circuit otherwise has at frequencies
above resonance. Consequently, the net effect of the coupled impedance
is to lower the primary current at the resonant frequency and to raise the
current at frequencies somewhat off resonance. The magnitude of this
effect depends upon the coefficient of coupling, being small when the
coupling is small. However, when the coupling is of the order of magni-
tude of the critical value or greater, the coupled impedance becomes
sufficient to be the major factor in determining the impedance of the
primary circuit. In particular, at resonance the primary current tends
to be relatively small because of the very large coupled resistance, while
there is a frequency on each side of resonance at which the coupled react-,
ance exactly neutralizes the primary reactance, giving zero reactance for
the total primary circuit impedance and causing the flow of a large
primary current. This is the cause of the double-humped curves of
primary current for high couplings, such as shown in Fig. 3-11.

The curve of secondary current is determined by the secondary imped-
ance, and by the voltage induced in the secondary by the primary current.
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The induced voltage varies with frequency in almost exactly the same
way as does the primary current, since the magnitude of the induced
voltage is wMI,; and in the limited frequency range in which the reso-
nance effects take place, w changes very little. As a result of this, the
curve of secondary current has a shape that is almost exactly the product
of the shape of the curve of primary current and the shape of the reso-
nance curve of the secondary circuit. Since the latter curve is sharply
peaked, the secondary current is much more peaked than the primary
current, as is clearly evident in Fig. 3-11.

At low coefficients of coupling, the curve of secondary current is par-
ticularly sharp, being substantially the product of the resonance curves of
the primary and secondary circuits. As the coupling increases, the
primary-current curve becomes broader, thereby making the secondary
curve less sharp. At the same time, the amplitude of the seqondary-
current peak increases because of the increased coupling. When the
coefficient of coupling renches the critical value, the secondary current
has the maximum value it can attain. Under these conditions the dip in
primary current in the vicinity of resonance has a curvatiure that is
exactly opposite from the curvature of the resonance curve of the second-
ary circuit. The result is that the curve of secondary current now has a
very flat top in the immediate vicinity of resonance. As the coupling is
increased beyond the critical value, the secondary-current peak splits into
two peaks, both of which have amplitudes substantially the same as the
secondary-current peak at critical coupling. The separation between
these peaks increases with coupling and is substantially the same as the
separation of the peaks of primary current when the peaks are pronounced.

The voltage developed across the secondary capacitor is equal to the
reactance of this capacitor times the secondary current; thus it can
readily be calculated once the current curve is known. For most pur-
poses, it is sufficient to assume that the curve of voltage developed across
the capacitor has the same shape as the curve of secondary current. One
is interested primarily in the behavior about resonance, and the capacitor
reactance changes very little in the limited frequency range consequently
involved when the circuit @’s are not too low.

The exact shapes of curves such as thtse of Fig. 3-11 can be calculated
with the aid of Egs. (3-20) to (3-24). Such computations are, however,
complicated and tedious. The usual practical procedure is accordingly to
determine (1) the response at resonance, (2) the frequencies at which the
peaks of secondary response occur when this response curve has double
humps, (3) the heights of these two peaks, and (4) the response at one or
two other frequencies so chosen as to simplify the calculations. In this
way, it is possible, with a minimum of work, to obtain a good semiquanti-
tative picture of the behavior. The following nomenclature in addition
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to that of Fig. 3-11 will be used in the discussion of the quantitative
relations:

E. = voltage across secondary capacitor
E = voltage applied in series with primary
k = actual coefficient of coupling
k. = critical coefficient of coupling
@, = Q of primary circuit
= Q of secondary circuit

At resonance, the series impedances of the primary and secondary cir-
cuits are resistances, and the response in the secondary is given by the
relation-?

Voltage across secondary}

capacitor at resonance | _ E. _ \/TJ__T k (3-28)
Voltage applied in series E L, k? + (1/Q.Q.)

with primary

The secondary response has its maximum value when the coefficient of
coupling has a value k. such that

by = —t

VQpn

This value of coupling is called the critical coeffictent of coupling and is
the condition where the resistance that the secondary circuit couples into
the primary circuit at resonance is equal to the resistance of the primary
circuit, i.e., when (wM)?*/R, = R,.

When the coefficient of coupling equals the eritical value and if Q, = @,,
then the curve of secondary current (or voltage) as a function of frequency
has the maximum flatness that is possible in the vicinity of resonance.
The shape of this curve is shown in Fig. 3-12, together with the resonamnce

1 This follows from Eq. {3-24) by substituting
Zs =Ry Z, = Ry, E. = I,/juCy = —juL.l,

(3-29)

to give

Ee —JWM .

T = Bl (b (el
Dividing both numerator and denominator by wL,L, gives

- —(M/VL]L )x/L.'/'L.
E R, R. . d
oLy wi., L,L.

Equation (3-28) is then obtained by substituting M*/L,L, = k* and dropping the
minus sign.

* It is to be noted that Eqs. (3-28) and (3-29) are not limited to the case where
Q5 = Q,, although the rest of the discussion in this section does assume @, = Qu.
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curve of a simple tuned circuit having the same Q as the primary or
secondary. Tt will be noted that the coupled circuit case has a band-
width between the 70.7 per cent response points that is 4/2 times as great
as for the single tuned circuit. The shapes of the two curves differ
greatly, the coupled system being flatter in the center and much deeper on
the sides.

When the coefficient of coupling exceeds the critical value, then for
@, = Q., double humps will always occur in the secondary response
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F16. 3-12. Relative response of a bandpass system provided by two identical circuits
critically coupled, together with the resonance curve of a single circuit such as used
in the bandpass system. '

curve. If the coefficient of coupling is at least several times the critical
value these humps are quite pronounced and occur at frequencies that
differ from the resonant frequency fo by approximately +kfo/2 cycles.!
When the peaks of secondary response are not pronounced, i.e., when the
actual coefficient of coupling does not greatly exceed the critical value,
then these peaks are somewhat closer together than indicated by this
simple relation [see Eq. (3-30) and Fig. 3-16].

When the circuit Q’s are equal and not too low, the peaks of the second-
ary current for k > k. will have almost exactly the same height as the
resonant peak of secondary current at critical coupling. This relation
holds irrespective of the exact location on these peaks provided only that

! An analysis that does not contain these restrictions leads to the more precise
relation

Frequency at peak of secondsry}
ta,

voltage —
TResonant frequency of tuned 2 (Q, . ON\T% (3-30)
circuits } 1ek[1-22(%+8)]
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the coefficient of coupling involved is small compared with unity® and
that the Q's are not too low.

When double peaks occur in the secondary response curve, additional
information on the shape of the response curve can be easily obtained by
taking advantage of the fact, illustrated in Fig. 3-13, that the response
equals or exceeds the response at resonance over a frequency band that is
+/2 times the width of the frequency band between coupling peaks, as
calculated from Eq. (3-30).

At frequencies that are sufficiently high or low relative to the resonant
frequency to lie well on the sides of the re- Af
sponse curve, one can neglect the resistances of -
the primary and secondary circuits when cal-
culating the magnitude of the secondary re- NZAS
sponse. This greatly simplifies calculations
while introducing relatively little error in
magnitudes.

The Effects Produced by Unequal Q’s. The FREQUENCY
behavior of two couplfad circuits resonant at f ‘:,2;:;,?.; d&&:ﬂ‘m&“&m
the same frequency is modified in several petween secondary peaks,
respects when @, # Q,. The secondary re- existing when two circuits
sponse at resonance is still given by' Eq. (3-28), :le::::;'zr:'zo&:fe ;:::;ﬂf;:
and is maximum when the coefficient of cou-
pling has the critical value as defined by Eq. (3-29). However, double
peaks do not now appear until the coupling is somewhat greater than the
critical value, and the magnitude of the response at the secondary peaks
when they do ‘appear is less than the response with critical coupling.

Coupled Resonant Circuits Tuned to Slightly Different Frequencies. Con-
sider the case of two circuits resonant at slightly different frequencies and
coupled together. When @, = @,, the response curve of secondary cur-
rent (or voltage) has almost exactly the same shape as would be obtained
if the circuits were both tuned to the same frequency and the coefficient
of coupling were increased to a value k., such that

keo = 4J k2 + (!-éo)’ (3-31)

where k is the actual coefficient of coupling, A is the difference between the
resonant frequencies of the primary and secondary circuits, and fo is the
frequency midway between the primary and secondary resonant fre-,
quencies. Hence detuning primary and secondary circuits slightly has
1If the coefficient of coupling is not small compared with unity, then the relative
heights of the individual peaks of voltage developed across the secondary capacitor
will be very nearly inversely proportional to the square of the ratio of the frequencies
at which the respective peaks occur. Under these conditions the low-frequency peak
will be slightly higher than the high-frequency peak, although the average height of
the two peaks will still approximate the response with critical coupling.
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approzimaltely the same effect on the shape of the secondary-current curve as
increasing the coefficient of coupling when there is no detuning.

In the more general case of detuning where the circuit @’s are not the
same, the secondary-response curve is no longer symmetrical about the
mean resonance frequency.

Shunt-fed and Shunt-loaded Coupled Circuits. In all the examples of
coupled resonant circuits considered so far, the input voltage has been
applied in scries with the primary circuit. In many practical circum-
stances, however, the excitation is applied to the system as illustrated in

EQUIVALENT RESISTANCE »

R qtglwt‘lf

x X
A
P 9% \ /4
£ D 4 D T counaenr tp )
l T SERIES VOLTAGE
x x

{0) CIRCUIT WITH PARALLEL EXCITATION (5) EQUIVALENT SERIES CIRCUIT
( ASSUMING R »,=% )

Fra. 3-14. Two coupled resonant circuits in which the primary circuit is excited by
shunt feed.

Fig. 3-14a. This arrangement is analogous to the shunt-fed parallel
resonant circuit discussed in connection with Fig. 3-5c.

The shunt-fed arrangement of Fig. 3-14a can be reduced to the equiv-
alent series-fed arrangement of Fig. 3-14b by means of Thévenin’s
theorem, as explained in Sec. 3-7. Examination of the circuit of Fig.
3-14b shows that in a limited frequency range such as represented by the
region about resonance, the equivalent voltage acting in series with the
circuit is substantially constant. However, there is now an added resist-
ance R, in the primary ecircuit that is equal to the equivalent series
resistance that would be obtained by assuming that the resistance R is a
shunt resistance for the primary capacitance C,. The rest of the system
is unchanged.

The principal effect of exciting a system of coupled circuits by parallel
instead of series feed is accordingly to introduce some added resistance in
the primary that lowers the effective value of Q,. This effect will be
slight in the usual case where the resistance R is very large compared with
the reactance 1/wC, of the capacitor C;,. Under these conditions, shunt
feed and series feed accordingly give essentially the same shaped curves of
secondary response as a function of frequency.

In systems involving two coupled resonant circuits, resistances are often
placed in shunt with the primary and secondary resonant circuits for the
purpose of adjusting the effective @'s of the primary and secondary cir-
cuits to desired values. Such resistances are sometimes placed across
both primary and secondary circuits, while in other cases they are used
only across the primary, or only across the secondary. An example
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where a resistance R is shunted across the secondary capacitor is shown in
Fig. 3-15. In each case, a resistance in shunt with a particular resonant
circuit of a coupled system has the same effect on that resonant circuit as
it does when this resonant circuit is isolated, instead of being part of a
coupled system. Hence a shunt resistance can be replaced by an equiv-
alent series resistance, such as R, in Fig. 3-15. The effect of a shunting
resistance is accordingly to lower the effective @ of the resonant circuit
with which it is associated, as discussed in connection with Fig. 3-5.
Bandpass Action in Two Coupled Resonant Circuits. When two
resonant circuits having Q, = Q, are tuned to the same frequency and

Rs e —L
#s As " mwcg?

; B
| [

£
(@) CIRCUIT WITH SHUNT (6) FQUIVALENT CIRCUIT
RESISTANCE LOADING

Fia. 3-15. Two coupled resonant circuits in which a shunt resistance loading is used
to econtrol secondary Q.
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coupled together with eritical coupling, the response characteristic of the
secondary circuit is as shown in Fig. 3-12. As compared with the
response of a simple resonant circuit with the same 70.7 per cent points,
the response of the coupled system is found to be much flatter on top,
and much steeper on the sides. Such an arrangement is often termed
a bandpass filter because to a first approximation it responds equally well
to a band of frequencies centered on the common resonant frequency,-and
rather sharply discriminates against frequencies outside of this band.
Such bandpass charactegistics are particularly desirable when handling
modulated waves, because by proper adjustment of the bandwidth of the
filter, the response can be made practically the same to the carrier and to
all of the important sideband frequencies contained in the wave. In con-
trast with this, an ordinary resonant circuit has a response that is rounded
on top, as shown dotted in Fig. 3-12, and so discriminates against the
higher sideband frequencies in favor of the lower sideband frequencies
and the carrier.

The bandpass characteristic that is best for most purposes corresponds
to a coefficient of coupling equal to the critical value. For this case, still ,
assuming Q, = Q., the design equations giving the required values of k
and Q to realize a given bandwidth B are!

—k =B =Q =1
k=k Vo G=Q k. (3-32)

! With unequal circuit Q's the formulas will be slightly different for equivalent
results, since the curve with flattest top now corresponds to a coeflicient of coupling
greater than the critical value,
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72 CIRCUITS WITH LUMPED CONSTANTS [Crar. 8

where B = the bandwidth between the 70.7 per cent response points,
cycles
fo = center frequency of passband (i.e., resonant frequency of
tuned circuits)
k. = critical coefficient of coupling

Effect of Varying Q in Coupled Systems Tuned to the Same Frequency.
(Coefficient of Coupling Constant). Additional insight into the character-
istics of coupled circuits can be
gained by considering what happens
, to the secondary response curve as
“*%  the (’s of the primary and second-
ary circuits are changed, while
keeping the coefficient of coupling
constant. The effects observed are
illustrated in Fig. 3-16 for a par-
ticular case. This example brings
out clearly the fact that as the
4 peaks of the response become less
pronounced, they tend to move
toward each other, and that at fre-
quencies appreciably off resonance,
the response differs only negligibly
from the response calculated on the
assumption of infinite Q (zero cir-

cuit loss).

|
1
|
|
»

o7
z'}‘z’l

FREQUENCY (LINEAR SCALE)

RE VE VOLTAGE ACROSS SECONDARY CONDENSER (LINEAR SCALE '

Fra. 3-16. Curves of secondary response
when two circuits resonant at the same
frequency are coupled together, showing
the effect of varying the circuit Q’s while
maintaining the coefficient of coupling
unchanged.

3-6. Generalized Coupled Cir-
cuits. Energy can be transferred
from one circuit to another by a
variety of coupling methods, in
addition to the inductive coupling

just considered. Thus, in Fig.
3-17a the coupling consists of an inductance L,, common to the two cir-
cuits; in Fig. 3-17b the coupling is provided by a capacitance C,, common
to the two circuits, and in Fig. 3-17¢c by a capacitance C,, that connects the
two circuits involved. Also, an infinite variety of more complicated
coupling systems can be built up from the basic elements of mutual
inductance, common inductance, common capacitance, and connecting
capacitance. Simple examples of such combined couplings are shown in
Fig. 3-17d and e.

The behavior of all these coupled circuits follows the same general
character as that discussed for inductive coupling. Thus, the secondary
circuit can be considered as producing an equivalent coupled impedance
in the primary circuit while the primary circuit can be considered asinduc-
ing in the secondary & voltage that gives rise to the secondary current.
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The simplest method of analyzing these various forms of coupled
circuits is to take advantage of the fact that all of them can be reduced to
the simple coupled circuit of Fig. 3-17f, provided suitable values are
assigned to Z,, Z,, and M. The rules that determine the values of these
quantities in the simple equivalent circuit are as follows:

1. The equivalent primary impedance Z; of the equivalent circuit is
the impedance that is measured across the primary terminals of the
actual circuit when the secondary circuit has been opened.

2. The secondary impedance Z, of the equivalent circuit is the imped-
ance that is measured by opening the secondary of the actual circuit and

z, Zp {¢
n

Cm

@) DIRECT INDUCTIVE COUPLING (&) CAPACITIVE COUPLING (c) CAPACITIVE COUPLING

>
(o
>
.

(d) COMBINED INDUCTIVE AND (@) COMBINED INDUCTIVE AND (7) EQUIVALENT CIRCUIT
CAPACITIVE COUPLING CAPACITIVE COUPLING

Fia. 3-17. Examples of methods whereby circuits may be coupled.
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determining the impedance between these open points when the primary
is open-circuited. )

3. The equivalent mutual inductance M is determined by assuming a
current I, flowing into the primary circuit. The voltage which then
appears across an open circuit in the secondary is equal to —jwMI,.

In making use of the equivalent circuit of Fig. 3-17f, it is to be remem-
hered that the values of Z,, Z,, and M may all vary with frequency, so
that it is generally necessary to determine a new equivalent circuit for
each frequency at which calculations are to be made.

After the actual coupled circuit has been reduced by the above pro-
cedure to its equivalent form shown in Fig. 3-14f, one can then apply the
formulas that have already been derived for inductively coupled circuits,
using the appropriate values M, Z,, Z, as determined for the equivalent
circuit. This procedure has the advantage of using the same funda-
mental formulas to handle all types of coupling and makes it possible to
carry on the analysis in the same manner for all cases. The method is
particularly convenient in the handling of complex coupling networks
such as illustrated in Fig. 3-17d and e.

The quantity M that appears in the equivalent circuit represents the
effective coupling that is present between the primary and secondary

Momentum Dynamics Corporation
Exhibit 1013
Page 076



74 CIRCUITS WITH LUMPED CONSTANTS [Cuar. 3

circuits. It is not necessarily a real mutual inductance of the inductive
type, but rather a sort of mathematical fiction that gives the equivalent
eflect of whatever coupling is really present. If the actual coupling is
capacitive, the numerical value of M will be found to be negative; if the
coupling is of a complex type representing both resistive and reactive
coupling, the numerical value of M will be found to have both real and
imaginary parts. This need introduce no uncertainty, however, since
the proper procedure is to take the value of M as it comes and substitute
it with its appropriate sign and phase angle whenever M appears in the
expressions previously derived for inductively coupled circuits.

When this analysis is applied to capacitively coupled circuits, such as
those illustrated in Fig. 3-18, the results are essentially the same as for

e} |

LARGE CDNDE IVSEﬁ

SMALL CONDENSE. ﬂ\

)Hé

F16. 3-18. Two methods of capacitively coupling two resonant circuits.

inductive coupling. Thus, when primary and secondary are both tuned
to the same frequency, the secondary-current characteristic has two
humps if the coupling is large, i.e., if capacitor C, is small or C}, large,
while there is only one peak of secondary current when the coupling is
small, i.e., when capacitor C,, is large.

Circuits having combined electromagnetic and electrostatic coupling,
such as those at d and ¢ of Fig. 3-17, behave as ordinary coupled circuits
except that the coefficient of coupling varies with frequency. Thus, in
the case of circuit d, the circuit is capacitively coupled at low frequencies
and inductively coupled at high frequencies because the coupling com-
bination of C, in series with L,, has capacitive and inductive reactance
under these respective conditions. . In between, at the resonant fre-
quency of L, and C,, there is no coupling and ¥ = 0. The arrangement
shown at e acts similarly as a circuit with a coefficient of coupling that
varies with frequencv. Circuits having combined -electrostatic and
electromagnetic coupling find application where it is desired to obtain a
coefficient of coupling that varies with frequency, as is commonly the
case in tuned amplifiers and antenna-coupling circuits of radio receivers.

3-7. Thévenin’s Theorem. According to Thévenin’s theorem, any linear
network containing one or more sources of voltage and having two terminals
behaves, in so far as a load impedance connected across these terminals is
concerned, as though the network and its generators were equivalent to a simple
generator having an internal impedance Z and a generated voltage E, where E
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Sec. 8-7] THEVENIN'S THEOREM 75

18 the voltage that appears across the terminals when no load impedance is
connected and Z 18 the impedance that is measured between the terminals when
all sources of voltage tn the network are short-circuited.!.?

This theorem means that any network and its generators, represented
schematically by the block in Fig. 3-19a, can be replaced by the equiv-
alent circuit shown in Fig. 3-19b. The only limitation to the validity of
Thévenin’s theorem encountered in ordinary practice is that the circuit
elements of the network must be linear; i.e., the voltage developed must
always be proportional to current.

z _1eE/Z
NETWORK WITH 3 l s w000 Z:E :E 000
< < <
GENERATORS 3 ‘I' S : 3
(0) ACTUAL ARRANGEMENT (b) EQUIVALENT ARRANGEMENT {c) EQUIVALENT ARRANGEMENT

(BY NORTON'S THEOREM)

Fia. 3-19. Diagrams illustrating how Thévenin’s and Norton’s theorems can be
used to simplify a complicated network containing generators.

Thévenin’s theorem offers a very powerful means of simplifying net-
works, particularly when a load impedance is connected across the output
terminals of a complicated network. Two examples will be used to
illustrate this. First, consider the circuit of Fig. 3-10, which is redrawn
in Fig. 3-20a. If one takes the secondary capacitor C, as the load
impedance and applies Thévenin’s theorem to the network to the left of
C,, the result is Fig. 3-20b, in which the equivalent generator voltage is
the voltage induced in the secondary inductance L, when the secondary
is open-circuited, and the equivalent generator impedance consists of
the inductance L; and the resistance R, in series with the impedance
which is coupled into L, by a secondary circuit consisting of L, shunted by
the resistance B,. The coupled impedance produced by such a secondary
circuit has been previously considered; it is equivalent to adding capaci-
tive reactance and resistance in series. The resistance causes the effective
Q of the secondary-response curve to be reduced, while the series capaci-

1 When the sources of energy in the network are constant-current generators instead
of constant-voltage generators, the internal impedance Z is the impedance observed
between the terminals when all constant-current generators are open-circuited. This
is due to the fact that a constant-current generator is equivalent to an infinite voltage
source having an infinite internal impedance, so that short-circuiting the ultimate ,
source of voltage of the constant-current generator still leaves an infinite impedance in
the circuit.

* An alternative circuit that is also equivalent to Fig. 3-19a is given in Fig. 3-19¢.
Here the network with its generators is replaced by a constant current 7 that is
delivered to a system consisting of the source impedance Z in shunt with which is the
load impedance, where I is the output current of the network when the output termi-
nals are short-circuited, and is I = E/Z. The equivalence of the arrangements at @
and ¢ in Fig. 3-19 is sometimes referred to as Norion’s theorem.
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tive reactance tends to raise the apparent resonant frequency by an
amount that becomes greater the higher the ratio wL,/R;. This accounts
for the behavior of the curves of Fig. 3-10.

The second example is furnished by Fig. 3-14a. This circuit may be
simplified by considering that the load is represented by the circuit to the
right of the line zz, the generator being the voltage E acting in series with
the resistance B and the capacitance C,. Such a generator can be
reduced immediately by Thévenin’s theorem to the form shown to the
left of the line 2z in Fig. 3-14b. Here it is to be noted that the equivalent
generator resistance R, is the series resistance equivalent to a shunt
resistance R associated with the capacitance C,, as given by Egs. (2-12)
and (2-13).

) ¢ &,

H COUPLED IMPEDANCE 2 2
fwm)?

R, ¢ -y C

L Ly L Al <+

& £yr LMEL

Ritjwl,

M

{0) ACTUAL CIRCUIT (0) EQUIVALENT SECONDARY CIRCUIT
F1a. 3-20. Application of Thévenin’s theorem to simplify and explain the behavior
of the system of Fig. 3-10, consisting of a tuned secondary and untuned primary
circuit coupled together.

3-8. Impedance Matching. A load connected across the output termi-
nals of a network, such as represented schematically by Fig. 3-19a, can be
matched to the source of power in either of two ways. When the load
impedance has the same magnitude and.phase angle as the equivalent
generator impedance Z defined by Thévenin’s theorem (see Fig. 3-19b),
the load is said to be matched to the generator or source of power on an
image-impedance basis. The term “image” arises from the fact that the
impedances on the two sides of the output terminals are images of each
other. When the load impedance is not identical with the generator
impedance and it is desired to obtain impedance matching on an image
basis, it is then necessary to transform the load to the correct impedance
to match the generator. This transformation can be accomplished with
the aid of an appropriate network of feactances or, in simple cases, by
means of a transformer,

Alternatively, a Joad impedance may be matched to a source of power
in such a way as to make the power delivered to the load a maximum.!
This is accomplished by making the load impedance the conjugate of the
generator impedance as defined by Thévenin’s theorem. That is, the
load impedance must have the same magnitude as the generator imped-
ance, but the phase angle of the load is the negative of the phase angle of
the generator impedance. This method of matching is shown schemat-

1 The power delivered to the load under these conditions is termed the available
power of the power source,
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ically in Fig. 3-21. It will be noted that the reactive component of the
load is then in series resonance with the reactive component of the gen-
erator impedance; i.e., the load reactance is the correct value to “tune
out” the generator reactance. The resistance components of the load
and generator impedances are then matched on an image-impedance
basis. Such impedance matching to obtain maximum power delivered to
the load is a common operation in communication circuits. It is carried
out by transforming the equivalent series resistance of the load to a value
equal to the resistance component

of the generator impedance by the -x, ,f;‘rg””

use of suitable networks and trans- | VWU \\""”‘m
. 9 %

formers, and then adding reactance f eyt L

to the load as required to resonate Z

with the generator reactance. \GENERATOR MPEDANCE

It will be noted that, when the Fio. 3'tz1-,lﬂﬂdhimped&ncewm§°'=hed to
generator impedance is resistive, f:‘?g;o:v;: in the load, (0 give maxi-

the conditions corresponding to

matching on an image-impedance basis are identical with those corre-
sponding to matching for maximum power output delivered to the load.
Otherwise, the two conditions are not the same, and matching on an
image-impedance basis then does not result in maximum possible power
being delivered to the load, although it is often still used to maintain
appropriate impedance relations in a system of networks.

PROBLEMS AND EXERCISES

8-1. The coil of Fig. 2-16 is tuned to resonance at 1000 ke by a capacitor having a
power factor of 0.001. What is the circuit Q?

3-2. In Prob, 3-1, what tuning capacitance is required?

8-8. A variable capacitor having a maximum capacitance of 350 uuf and a minimum
capacitance of 20 wuf is used for tuning in a hroadcast receiver. The coil and asso-
ciated wiring have a distributed capacitance of 20 uuf.

a. What size inductance coil is required to make the lowest frequency 530 ke?

b. Calculate the exact tuning range with the coil selected.

8-4. A series circuit is resonant at 800 ke and has an inductance of 160 xh and a
cireuit @ of 75. Caleulate and plot the magnitude of the current that flows when
1 volt is applied to the circuit, carrying the curves out to 40 ke on each side of reso-
nance. In making these calculations use the working rules and the universal reso-
nance curve in the range near resonance and neglect the circuit resistance when
caleulating points too far off resonance to be within the range of the universal reso-
nance curve,

8-5. In Probh. 3-4 calculate the exact response at 40 ke above resonance, taking into
account the circuit resistance, and compare the results with those obtained when the
circuit resistance is neglected.

8-8. Assume that a series resonant circuit employs the coil of Fig. 2-16, and that
the tuning capacitor has negligible losses.

a. Calculate and plot from 500 to 1500 ke the width of the frequency band for
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which the tuned circuit response is at least 70.7 per cent of the response at resonance,
:tion of resonant frequency. .
u: flu)m": :he results omined in (a) with respect to the reception of broadcast
signals having sideband frequencies extending up to 5000 cycles on each side of the
carrier frequency. Consider hoth the umformgty Pf response to the dlﬁe_rent s‘ldeband
frequencies, and the ability of the circuit to digcriminate against undesired signals of
uencies.
Ot::?;.fl’;‘: a series circuit that is resonant at 1150 ke it is'found that when the frequency
differs from resonance by 15 ke the current drops to 0.53 of tl}e current at resonance,
for the same applied voltage. From this information determine t!le Q of t.he circuit.

8-8. A voltage of constant but unknown value is applied to a series circuit resonant
at the frequency of this voltage. The circuit current is observed to be ;. A known
resistance &, is then added to the circuit, and it is found that, with the same applied
voltage as before, the current is now reduced to I,. Derive a formula for the circuit
resistance in terms of o, 14, and K,.

3-9. In variable capacitors used to tune the resonant circuits of radio receivers,
it is customary to shape the plates so that the capacitance varies more slowly with
angle of rotation at small capacitance settings than at high capacitance settings.
Explain why this makes the resonant frequency more nearly linear with respect to the
angle of rotation than if semicircular plates were employed.

3-10. What is the highest effective Q that a tuned circuit may have when it must
respond to a band of frequencies 10,000 cycles wide (5000-cycle sideband frequencies)
with a response always at least 70.7 per cent of the response at resonance, assuming
carrier frequencies of 50, 500, 5000, and 50,000 ke?

3-11. @. A tuned circuit having an inductance of 150 ph and a Q of 70 is adjusted
to resonance at 1100 ke. If the circuit is connected for parallel resonance, calculate
and plot the magnitude of the parallel impedance as a functiorn: of frequency out to
60 ke on each side of resonance, Use the working rules and the universal resonance
curve in the region about resonance, and neglect the circuit resistance when calculating
the impedance at frequencies too far off resonance to be within range of the universal
Tesonance curve,

b. Repeat (a) for a cireuit Q of 40, and ploi the results on the same axes as the
results of (a).

3-12. Caleulate and plot as a function of frequency the parallel impedance at
resonance when the coil of Fig. 2-16 is tuned with a capacitor of negligible losses and
when the resonant frequency is varied from 500 to 1500 ke.

8-18. A tuned circuit is required to have a parallel impedance of 6000 ohms and &
Qof 12, I the resonant frequency is 300 ke determine the inductance, capacitance,
and resistance that the circuit must have.

8-14. Using the same tuned circuit as in Prob. 3-4, but connected for parallel
resonance, calculate and plot curves as g function of frequency from 760 to 840 ke for
(a) magnitude and phase al}gle of parallel impedance; () line current, and current in

8r:9 g in the inductive branch); and (c) reactance and resistance components of the
impedance of (a).

8-'1f. The coil of Fig. 2-16 is tuned to resonance at 1000 ke with a capacitor having
m.aghgnble. losses, Transform this circuit to the form shown in the right-hand part of
Fig. 3-5a by determining R,

Stle. Th? 'eircuit of Fig. 2-16 is tuned to resonance at 1000 ke with a capacitor
having neghg_xble losses, and is then shunted by a resistance R, of 100,000 ohms.
Fia' 31-)50ermme the equivalent shunt resistance R, for such an arrangement (see

g .

b. Calculate the Q of this system,
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8-17. If a parallel resonant circuit is shunted by a resistance R; and if the parallel
resonant impedance of the unshunted circuit is R, prove that the shunt resistance &2,
reduces the equivalent Q of the circuit by the factor /2,/(R; + R,).

3-18. In a low-Q parallel circuit in which the loases are all in the inductive branch.
prove that, when the capacitance is varied, the capacitance that makes the parallel
circuit impedance have unity power factor for a given frequency also makes this
impedance have maximum magnitude at this same frequency.

8-19. A particular coil has an inductance of 180 xh at 1 ke and an apparent induet-
ance of 200 gxh at 1400 ke. Determine the distributed capacitance of the coil,

8-20. Primary and secondary coils have inductances of 75 and 300 uh, respectively,
and 1 volt is applied to the primary circuit. Assuming the resistances of the coils
are negligible, calculate the voltage induced in the secondary as a function of coeffi-
cient of coupling from k = 0 to k = 1.0,

8-21. Draw an equivalent transformer circuit for the coils of Prob. 3-20, for the
cuse where the mutual inductance is 50 gh.

3-22. a. Explain the effect of a short-circuited turn upon the inductance and Q
observed at the terminals of a coil, using coupled-cireuit theory.

b. Indicate qualitatively the differences that would be expected if the short-circuited
turn were the end turn of a single-layer solenoid, as in Fig. 2-1, as against being a
turn near the center.

3-28. Two identical coils cach having @ = 100 and an inductance of 200 uh arc
coupled together with a mutual inductance of 50 uh. If the secondary coil is short-
circuited, calculate (a) the coupled resistance and coupled reactance at a frequency of
600 ke, (b) the total resistance and reactance of the primary circuit, and (c) the effec-
tive Q of the primary circuit including effect of the coupled impedance.

8-24. Describe a procedure for experimentally determining the cocfficient of
coupling between a coil and its shield can, assuming that the shield has negligible
resistance.

8-26. Derive the formula in the sccond footnote on page 61 for the cquivalent
primary-circuit inductance in the presence of an inductive secondary with zero losses.

8-26. An air-cored coil is placed near a brass panel. Describe in a qualitative
way the effect that copper plating this panel will have on the inductance and Q
observed at the « il terminals.

8-27. The coil of Fig. 2-16 is coupled to a primary coil with a mutual inductance of
50 gh. If the secondary coil is tuned to resonance by means of a capacitor having
negligible loss, calculate and plot the coupled impedance at the resonant frequency
of the secondary as this resonant frequency is varied from 500 to 1500 ke.

3-28. The coil of Fig. 2-16 is coupled to a primary circuit having an inductance of
75 ph, and is tuned to resonance at 1000 ke with a eapacitor having negligible losses.
Calculate the impedance coupled into the primary circuit at 1000 ke as a function of
coefficient of coupling from k£ = 0 to k = 1.0.

8-29. In the circuit of Fig. 3-8b, what general effect is produced on the phase and
magnitude of the coupled impedance at the resonant frequency of the secondary by
shunting the secondary capacitor C, by a resistance R,?

8-30. Explain why in Fig. 3-11 a flat-topped secondary-circuit curve (like & = 0.01)
can be obtained only if the primary-current curve has pronounced double peaks

8-81. Derive Eq. (3-29) from LEq. (3-28).

8-82. Two identical circuits resonant at 1000 ke, having @ = 80 and inductances of
140 xh, are coupled together.

a. Calculate the critical coefficient of coupling.

b. Calculate and plot the secondary current at the resonant frequency for 1 volt
applied to the primary, as the mutual inductance is varied from zero to twice the
critical value,
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i X ircui . 3-32 is adjusted to make the

The coupling between the circuits of Pfob 32 | juste )
co:f.li’csi-ent of coupll)ing have a value 0.03, and 1 volt is uPplled in series with the primary,
a. What will be the approximate frequencies at which the secondary-current peaks

will occur? . 4 )
b. What will be the approximate height of these peaks of secondary current

Assume the two peaks have equal heights.

¢. What will be the secondary current at the resonant frequency?

d. Over what frequency range will the secondary response equal or exceed the

ndary response at resonance?

m:., Wit}l,n thzoinformation obtained above, sketch the approximate shape of the
secondary-current curve as a functioh of frequency. )

8-84. The circnits of Prob. 3-32 are coupled with a coefficient of coupling of 0.1.
Determine the frequencies at which the secondary-current peaks occur, and give the
approximate ratio of voltages across the sccondary at frequencies corresponding to

the low- and high-frequency peaks.
3-86. The two circuits of Prob. 3-32 are coupled with a mutual inductance of

2.8 uh(k = 0.02).

a. Calculate and plot the resistance and reactance components of the coupled
impedance out to 40 ke on each side of resonance,

b. Calculate and plot the resistance and reactance components of the primary
cireuit when the secondary is removed.

c. Add (a) and (b) to obtain the curve of total primary-circuit resistance and
reactance, and convert the results into curves giving the magnitude and phase of the
totul primary impedance in the presence of the secondary.

3-86. If, in Prob. 3-35, the mutual inductance had a value of 1 ph, then to what
frequencies would it be necessary to tune the primary and secondary circuits in order
to obtain the same shape of secondary-response curve as is actually obtained for
the conditions given in Prob. 3-35?

3-37. In a shunt-feed circuit such as illustrated in Fig. 3-14, the tuned circuits are
the same as in Prob. 3-32, and the shunt-feed resistance R is 100,000 ohms. What is
the equivalent primary @ under these corditions?

8-38. The two resonunt circuits in Fig. 3415 are the same as in Prob. 3-32. What
value must K have to make the effective Q of the secondary equal to 40?

3-39. A particular bandpass filter is to be used to handle a wave in which the highest
modulation frequeney is 4000 cycles. The carrier frequency of the wave is 456 ke.
If the primary and secondary inductances are both 2 mh and if it is desired just
barely to avoid double humps in the response curve, specify the proper coeficient of
coupling and the proper cireuit Q’s, assuming equal primary and sccondary Q’s.

8-40. Two identieal tuned circuits are used in a shunt-feed bandpass arrangement.,
The circuits arc resonant at 450 ke, have indurtances of 2.0 mh, and Q's of 80. The
shunt-feed resistance has o valye of 300,000 ohms. A bandwidth betwcen 70.7
per cent response points of 30 ke js desired.

a. Caleulate required values of cireuit @'s, assuming Q, = Q..

b. Determine the resistance that must be shunted across the secondary capacitor
to make the f.-ﬂ‘ective 0 of the secondary circuit have the required value.

'3 Debermme' the resistance that must be shunted across the primary capacitor to
make the effective Q of the primary have the required value when the effect of both
the shunt-feed resistance and the Primary-circuit resistance are taken into account.

. 8~4L. According to Fig, 3-16 the response at resonance will increase as the Q is
increased while leaving the coefficient of coupling unchanged.

a l’)emom?trate that this result is predicted by Eq. (3-28).

o rblc Ee;e;;n;ﬁfe::h:h?:& of reaponse at resonance for ero circuit losses to the response
. uit losses make & = 0,01 correspond to critical coupling.
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3-42. Calculate the coefficient of coupling in the cirouit of Fig. 3-185 when
¢, = Cy = 100 puf, and C;, = 1.5 puf.

8-48. Bignals in the frequency range of 550 to 1500 ke are to be handled by means
of & bandpass filter. If the circuits are assumed to have Q = 100 over this frequency
range, and if the adjustment is such that & = 0.01 at 1000 ke, discuss how the width
and shape of the passband will vary with resonant frequency when the tuning is
obtained by varying the primary and secondary capacitors simultaneously and when
the coupling is (a) inductive as shown at Fig. 2-8b, and (b) capacitive as shown at
Fig. 2-8¢c. Assume that the circuit elements that provide the eoupling do not change
as the capacitors are varied. Illustrate the discussion with the aid of sketches showing
in a general way the relative character of the response curves to be expected at 550,
1000, and 1500 ke for each type of coupling.

3-44. Explain how the magnitudes of the Thévenin-theorem equivalent voltage
and impedance for a complex network can be determined experimentally from an
open- and short-circuit test at the output terminals of the network, using only a
voltmeter and an ammeter.

8-46. In Fig. 3-20 (also Fig. 3-10) the secondary circuit has an inductance of 150 uh,
and is resonant at 1000ke. If B, = 10,000, L; = 150 xh, and M = 100 gh, calculate
the frequency at which the peak of secondary response occurs.

8-46. A primary circuit has an inductance of 1 mh and a resistance of 150 ohms
«connected in series. A secondary coil is coupled to the primary coil and delivers
power to a load consisting of the secondary coil, a resistance of 50 ohms, and a tuning
capacitance, all in series. If the impedance that the secondary circuit couples into
the primary circuit is considered to be the load impedance of the primary circuit,
determine the mutual inductance required between the two circuits and the reactance
that the secondary circuit must have if the load is to match the generator on a maxi-
mum-power basis.

8-47. a. Inorder to demonstrate impedance matching for maximum-power transfer,
write the equation of power P delivered to a rheostat as a function of its resistance R
when connected to a d-c generator of internal resistance R, and open-circuit voltage E,.
Show that this equation has a maximum for B = R,.

b. Plot a graph of the equation of (a), showing P/Pmex versus R/R,, where P is the
actual power when the load resistance is R, and P,y i8 the power when B= R,. By
how many decibels is the power reduced for the following cases of mismatch:
(1) R = 0.5R, and (2) R = 2R,?
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CHAPTER 4

TRANSMISSION LINES

4-1. Voltage and Current Relations on Radio-frequency Transmission
Lines in Terms of Traveling Waves.! Transmission lines find many
uses in radio work.  They are employed, not only to transmit energy, but
also as resonant circuits at very high frequencies, as measuring devices at

high frequencies, as aids to obtain

Ieor I . .
-i— -!-‘ impedance matching, ete.
2 l Basic Transmission-line Equations.
£10E € g, tr
‘D
>

F f_l_ Consider the voltage and current rela-

tions that exist in a very short length

ke l dl of the transmission line shown in

‘ . towew  Jig 4-1. In this short distance the

(l“l:‘(:l.li::;f'i;r:‘;::::l‘lmtgl‘.(m line, showink ¢ ltage hetween the wires changes an

amount dE as a result of the voltage

drop produced by the line current I flowing through the resistance £ dl

and reactance jols dl of the length dl. Likewise, the current changes a

small amount dI in the length as a result of the flow of current between

the wires through the capacitance € d! and conduetance (7 di caused by the

voltage that exists between these wires. Referring to Fig. 4-1, one can
accordingly write the equations

dE =T X (impedance of length dl)
= (R + jul) dl
dl = E X (admitiance of length dl)

E@ + joC) di

! This material on transmission lines isa review and summary of those concepts and
relations that are most widely used in radio work. It presupposes at least a little
previous familiarity with the subject, and therefore should not be regarded as a self-
supporting presentation of transmission-line theory. The reader desiring to gain a
compl:('hensivc understanding of transmission lines, or desiring the derivation of the
equations made use of here, should consult one of the several excellent textbooks that
are available on the subject, for example, H. H. Skilling, “Electric Transmission
}:mcs,” N.Icgmw.-l{ill Book Company, Inc., New York, 1951; Walter C. Johnson,

Transmission Lines and Networks,” McGraw-Hill Book Company, Inc., New York,
1950. More lirpited trentments of transmission lines, typically of chapter length,
are to be found in most textbooks on communication engineering; these are adequate
a8 an introduction to the material presented here,
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Sec. 4-1] VOLTAGE AND CURRENT RELATIONS 83

Rearranging, iE
2% = (B + jal) = 21 (4-1a)
Y @ +o0E = YE (&-15)

where E = voltage across line at distance ! from receiving end
I = current in line at distance ! from receiving end
1 = distance measured from load end of line
R = resistance per unit length, ohms
L = inductance per unit length, henrys
C = capacitance per unit length, farads
G = conductance per unit length, mhos
Z = (R + jwL) = line series impedance per unit length, ohms
Y = (G + jwC) = line shunt admittance per unit length, mhos
w/2r = frequency, cycles
Simultaneous solution of Eq. (4-1) gives!

d’E

¥L — zvE (4-20)
2
= av1 (4-2b)

Equations (4-2a) and (4-2b) are not independent of each other, since they
are related through Eqs. (4-1a) or (4-1b).

Equations (4-2a) and (4-2b) are the standard differential equations of
wave propagation and have solutions of the form

E = E]é‘fi—f” + Ezé"fﬁ, (4-30)
I = LeVZYl 4 [, VZT1 - (4-3b)

where E,, E,, I, and I, are constants of integration whose values are
determined by the boundary conditions, i.e., by the load impedance and
the magnitude of the voltage applied to the system. Although four
constants appear in Eqs. (4-3), actually only two of them are independent
since it can be readily shown that?

B K
L= (+4a)
~E: _ -E (4-4b)

I 2 = p——y
VZJ)Y Z,
! These results are obtained by differentiating Eq. (4-1a), and then substituting
Iiq. (4-1b) to eliminate the resulting dI/dl. This gives
a*E dl
Equation (4-2b) is obtained in an analogous manner,
* These relations are obtained by substituting Eq. (4-3a) in Eq. (4-1a), and thea
comparing the result with Eq. (4-3b).
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Here
(4-5)

The final solution of the differential Eqs. (4-1a) and (4-1b) of the trans-
mission line can accordingly be written as
E EVIT 4 Eye~VZ¥i = ' + B (4-6a)
El VZY1l Eg -VZ¥! =r + I (4-66)
VZY° V7Y
In these equations Z, = v/Z/Y is termed the characteristic impedance
of the line. 1In the case of radio-frequency lines, Z, can nearly always
he assumed to be a pure resistance, as discussed on page 88.
The quantity +/ZY is called the propagation constant of the line. Itis
a complex quantity, having a real part a called the attentiation constant
and an imaginary part 8 termed the phase constant. That is

VZY = a +j8 (4-7)

4-2. Interpretation of Transmission-line Equations in Terms of
Traveling Waves. The voltage and current existing on a transmission
line as given by Eqgs. (4-6) can be conveniently expressed as the sum of
the voltages and currents of two waves. One of these waves can be
regarded as traveling toward the receiving or load end of the line, and is
called the incident wave because it is incident upon the load. The second
wave can be thought of as traveling from the load toward the generator
end of the line; it is termed the reflected wave, and is generated at the load
by reflection of the incident wave.” These two waves are identical in
nature except for consequences arising from their different directions of
travel.

The Incident Wave. The incident wave consists of the voltage com-
ponent £’ of Eq. (4-6a) associated with the current component I’ of Eq.
(4-6b). For such a wave it follows that everywhere on the line

ha

T = /tiq (4-8)

The magnitude |E’| of the incident wave becomes larger as the distance
! from the load increases, according to the relation

] = [reter] = |Bjeo (+9)

In this equation E, is the veetor value of the voltage of the incident wave
at the load end of the line, and « is the attenuation constant,! as defined
1 The unit of « in Eq. (4-9) is the neper.  In discussing attenuation of lines, values

of a (or of al)_an‘, however, frequently described in decibels.  The relation between
nepers and decibels is

Attenuation in decibels = 8.686a (4-9a)
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Sec. 4-2] TRAVELING WAVES 85

by Eq. (4-7). The quantity al, the total attenuation of the line, is com-
monly called simply the line attenuation.

The phase of the incident wave advances g radians per unit distance
from the load, where 8 is the phase constant as defined by Eq. (4-7).
Hence the phase position of the incident wave at a distance ! from the
load leads the phase position at the load by gl radians.

The incident wave on the transmission line can therefore be described
as a voltage accompanied by a current that is everywhere in phase with,

o]
¥ ¥ Y ¥ ¥ ¥ l‘_d
i

FROM
GenERATOR &g Ef £e £Eg £ Ep £,
¥ ¥ L ¥ ¥ L} T )

(@) TRANSMISSION LINE

(D) VOLTAGE OF INCIDENT WAVE (¢) VOLTAGE OF REFLECTED WAVE

INCIDENT WAVE
s - REFLECTED WAVE

(d) VOLTAGE DISTRIBUTIONS FOR UNITY REFLECTION™ AT LOAD

Fi1a. 4-2. Diagrams illustrating behavior of the voltage of the incident and reflected
waves on a transmission line. The case shown assumes that the reflection coefficient
at the load is unity, and that the line attenuation is only moderate. The clock dia-
grams show magnitude and phase of the voltage at increasing values of distance
from the load.

and proportional to, the voltage, with the voltage and hence current
decreasing exponentially in magnitude and dropping back uniformly in
phase as the load is approached. Such a distribution is illustrated in
Fig. 4-2, and can be represented by the equations

E = Byt (4-10a)
i’
r-= % - 57’1—; kit (4-10b)

The incident wave is said to travel toward the load because it gets
smaller as the load is approached and because its phase at a distance from
the generator corresponds to the phase that existed at the generator at an
earlier time proportional to distance. These are properties of a wave
propagating away from a source. The velocity of propagation, called
the phase velocity, is discussed below in connection with Eq. (4-19b).
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The Reflected Wave. The reflected wave is identical with the incident
wave excj:pt that it is traveling toward the generator. The reﬂ?ceed
onsists of the component voltage E” of Eq. (4-8a) associated

wave thus ¢ .
with a current component 1" such that everywhere on the line

E”

7= -2 (4-11)

This differs from Eq. (4-8) only by the negative sign, which arises from
the fact that the current in the reflected wave travels toward the gen-
erator, whereas the current in the incident wave travels toward the load.
The magnitude |E;| of the reflected wave becomes smaller as the wave
travels away from the receiver (i.e., as ! increases) according to the

relation
|B"| = |Ese @l = |Byle (¢12)

Here E; is the vector value of the reflected wave at the load. Equation
(4-12) is similar to Eq. (4-9) except for the negative sign in the exponent;
this denotes a decrease in magnitude with increasing distance ! from the
receiver.

The phase of the reflected wave drops back 8 radians for each unit of
distance that the wave travels toward the generator. Thus the reflected
wave at a distance [ from the load lags the phase position at the load by
Bl radians.

As a result of these properties, the reflected wave on the transmission
line ean be described as a voltage accompanied by a current proportional
to the voltage and flowing away from the load, with the voltage, and hence
current, decreasing exponentially in magnitude and dropping back uni-
formly in phase as the distance from the load increases. Such a dis-
tribution is illustrated in Fig. 42, and can be represented by the equations

E' = E ’e—(c-h'ﬁ)l (4-130)
E" E
I = — = _Z_: ~(a+iDl (4-13b)

Relation of Incident and Reflected Waves—Reflection Coefficient. The
reflected wave is generated at the load as a result of reflection of the inci-
dent wave by the load impedance. This reflection is of such a character
as simultaneous'y to meet the following conditions: (1) The voltage and
current of the incident wave at the load must satisfy Eq. (4-8); (2) the
voltage and current of the reflected wave at the load must satisfy Eq.
(4-11); (3) the load voltage E, is the sum of the voltages of the incident
and reflected waves at the load, that i8, B, = E, + E,; (4) the load cur-
;‘z:; I :histt!m ;um o§ the currents of the incident and reflected waves at the

, that1s, I = I, 4 Iy; and (5) the i
load impedeac Z,. ; (5) the vector ratio E./I, must equal the
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Sec. 4-3] TRANSMISSION-LINE CONSTANTS 87

The vector ratio E./E, of the voltage of the reflected wave to the
voltage of the incident wave at the load is termed the reflection coefficient
of the load. Simultaneous solution of the above five relations leads to the

result B (@
" ot = = L2 _ (Zi/Z0) — 1

Reflection coefficient ="p -7y F1 (4-14)
The reflection coefficient has both magnitude and phase, and s0 is a vector
quantity. Although Eq. (4-14) is expressed in terms of the situation at
the load, the ratio E”’/E’ of the voltages of the reflected and incident
waves at a distance ! from the load can be termed the reflection coefficient
at the point I. It will be noted that when o = 0 (i.e., zero losses on the
line), the reflection coefficient everywhere has the same magnitude, and
equals the reflection coefficient of the load. However, when a # 0, then
the reflected wave becomes smaller and the incident wave larger with
increasing distance from the load, causing |p| to decrease correspondingly.
The quantitative relation is

lpo| = |pae2ete—to (4-15)

where |p,| and |o| are the magnitudes of the reflection coefficients at dis-
tances I, and I, respectively, from the load.

The relation between the load voltage and current and the voltages of
the incident and reflected waves at the load can be deduced from the
above five required conditions. It is

» _ Ei. _ (Ei+ I.Z
E“1+p"( ) ) (t-160)
E; = pE, = 1——_‘*’_—; E, = (F—"——_z—hﬁ’) " (4-16b)

The corresponding currents are given by Eqs. (4-8) and (4-11).

Line Voltage and Current. 'The actual voltage and current existing on
a transmission line are the sum of the voltages and currents, respectively,
of the incident and reflected waves, as given by Egs. (4-6), with the
values for E, and E, defined as in Eqs. (4-16).! Although the equations
of the transmission line appear complicated, the character of the voltage
and current distributions that they lead to under different conditions can
be readily understood with the aid of the typical examples considered in
Sec. 4-4.

4-3. Transmission-line Constants. The electrical properties’ of a
transmission line are determined by the inductance L, capacitance C,

1This result can also be written in an equivalent form in terms of hyperbolic
functions:
E = E; cosh (a + jB)l + ILZosinh (a« + jB)l (4-17a)
I = I cosh (o + j8)L + 2 sinh (o + )1 (4-175)
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i i e R, and shunt conductance G, per unit length of line.
?I‘e;:?nmiiz ané capacitance can be .calculated by the usual fon?:n:'llas
for transmission lines, except that at radio frequencies there are neghglb!e
magnetic-flux linkages inside the conductor as & result of skin eﬁefst; this
means that one should omit the small term. in th.e low-frequenc.y mdu.ct-
ance formulas that does not involve the dlmer'lsmns. The series resist-
ance of radio-frequency lines is controlled by skin effect, and so is propor-
tional to the square root of the frequency. The sh}mt conductance is
determined by the dielectric loss. With air insulation the shunt con-
ductance is therefore negligible, but with solid dielectric su.ch as used in
twisted-pair and coaxial cables, the shunt conductanc.e w1ll.be propor-
tional to the product of frequency, power factor, and dielectric constant.

The electrical properties of the transmission line enter into the equa-
tions of the line through the characteristic impedance Z, and the propaga-
tion constant \/ZY as defined by Egs. (4-5) and (4-7). At radio fre-
quencies it is nearly always permissible to assume that wL > > R, and
«C >> G. To the extent that this is true, one can rewrite Egs. (4-5) and

(4-7) as follows.
\/% (4-18a)

_ R ,GZ, N
« =37 + <5 (4-18b)
g =w\VLC (4-18¢)

The characteristic impedance Z, is the ratio of voltage to current in an
individual wave [sce Eqs. (4-8) and-(4-11)}; it is also the impedance of a
line that is infinitely long or the impedance of a finite length of line when
Z. = Zo. 1t will be noted that at radio frequencies the characteristic
impedance is a resistance that is independent of frequency. Typical
values for the characteristic impedance are of the order of 200 to 800
ohms for two-wirc lines with air insulation, and 20 to 100 ohms for
coaxial cables.

The attenuation constant of radio-frequency lines as given by Eq. (4-7)
increases with frequency; this follows from Eq. (4-18b), and the fact that
at high frequencies the series resiytance and shunt conductance are pro-
portional to the square root and the first power of frequency, respectively.
With air insulati=n the conductance @ is negligible, and the attenuation is
due almost entirely to the skin-effect resistance of the conductors. How-
ever, in lines possessing solid dielectric, such as twisted-pair and many
coaxial cables, the situation is more involved. Conductor resistance loss
is then responsible for most of the attenuation at low frequencies, while
the dielectric loss is the cause of most of the attenuation when the fre-
quency is sufficiently high.

The phase constant 8 of a radio-f requency line is seen from Eq. (4-18¢)

Momentum Dynamics Corporation
Exhibit 1013
Page 091



Lew
Sec. 44] VOLTAGE AND CURRENT DISTRIBUTIONS 89

to be proportional to frequency, and to the square root of the product LC
of the line inductance and capacitance, but is independent of line resist-
ance or conductance. The use of dielectric insulation, as is common in
coaxial cables, increases the capacitance of the line, and thereby makes
8 larger in proportion to /k where k is the dielectric constant of the
insulation.

Wavelength and Phase Velocity. The distance A that a wave must travel
along the line in order for the total phase shift to be 2x radians is defined
as the wavelength \ of the line. Thus, since S\ = 2x,

A= %‘ (4-19a)

In the case of radio-frequency lines with air dielectrie, A approximates the
free-space wavelength of a radio wave of the same frequency. In the
case of cables with solid dielectric having a dielectric constant k, the
wavelength is very closely the free-space wavelength divided by v/k.

A wavelength \ at a frequency f corresponds to a velocity v, = f\.
This is termed the phase velocity of the line, i.e.,

Phase velocity = /A = Z%f (4-19b)
In radio-frequency lines having air dielectric, the phase velocity approxi-
mates very closely the velocity of light. In lines with solid-dielectric
insulation, the phase velocity is the velocity of light divided by the square
root of the dielectric constant of the insulation.

4-4. Examples of Voltage and Current Distributions on Transmission
Lines. The various ways in which the voltage and cutrent may be dis-
tributed along a transmission line can be understood by considering in
detail a number of special cases. In the discussion of these examples to
follow, it is assumed that the attenuation constant « is small; this is done
in order to simplify the phenomena involved. The modifications intro-
duced when the attenuation constant is not small are discussed in Sec. 4-5.

Transmission Line with Open-circuited Load. When the load imped-
ance is infinite, Eq. (4-14) shows that the coefficient of reflection will be
1/0. Under these conditions the incident and reflected waves will have
equal magnitudes at the load, and the reflection will be such that the
voltages of the incident and reflected waves have the same phase. Asa
result, the voltages of the two waves add arithmetically so that at the load
E, = Es = E./2. Under these conditions it follows from Egs. (4-8)
and (4-11) that the currents of the two waves are equal in magnitude but
opposite in phase; they thus add up to zero load current, as must be the
case if the load is open-circuited.

Consider now how these two waves behave as the distance ! from the
load increases. The incident wave advances in phase 8 radians per unit
length, while the reflected wave lags correspondingly; at the same time
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magnitudes do not change greatly when the attenuatio‘n constant « is
small. The vector sum of the voltages of the two waves is then lgm than
the arithmetic sum, as illnstrated in Fig. 4-3a, for I = /8. This tend-
ency continues until the distance to the load becomes exactly a quarter
wavelength, i.e., until-8l = x/2. The incident wave has then advanced
90° from its phase position at the load, while the reflected wave has
dropped back a similar amount. The line voltage at this point is thus the
arithmetic difference of the voltages of the two waves, as shown in Fig.
4-3a, for | = \/4, and it will be quite small if the attenuation is small.
The resultant voltage will not be zero, however, because some attenuation
will always be present, and this causes the incident wave to be larger and
the reflected wave smaller at the quarter-wave length point than at the
load, where the amplitudes are exactly the same.

As the distance to the load increases to a value greater than a quarter
wavelength, the phase of the incident wave continues to advance, while
that of the reflected wave continues to lag. As a consequence, the volt-
ages of the two waves depart increasingly from the condition of phase
opposition existing at the quarter-wavelength point, and give a resultant
value that becomes larger with increasing distance. This tendency con-
tinues until the distance from the load is a half wavelength (that is,
Bl = x); at this point the phases of the two waves have respectively
advanced, and retarded, by 180°. The result is that the voltages now
have the same relative phase relation with respect to each other as
existed at the load, and so add arithmetically as at the load to give a large
resultant line voltage. At greater distances than a half wavelength the
cycle starts to repeat, as illustrated in Figs. 4-3a and 4-4a.

The voltage distribution on the open-circuited transmission line that
results from this process is shown in Figs. 4-3a and 4-4¢. It is charac-
terized by voltage maxima at points that are even multiples of a quarter
wavelength distant from the load, and by deep voltage minima at points
that are odd multiples of a quarter wavelength from the load.

The current distribution associated with this voltage is also illustrated
in Fig. 44a. The current distribution has minima where the voltage
has maxima, and vice versa. This arises from the fact that the current
of the reflected wave has the opposite phase from the reflected voltage
[see Eq. (4-11)). As a result, the currents in the two waves add where
:;3 voltages sub’ract, and subtract to give a minimum where the voltages

It will be noted that the variations in both the voltage and current dis-
tributions repeat their general character each half wavelength. This is
characteristic of all distributions on transmission lines.

Transmission Line with Shori-circuited Load. When the load end of
the line is short-circuited, that is, Z, = 0, reference to Eq. (4-14) shows
that the reflection coefficient has the value —1.0/0° = 1.0/180°. Asin
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TRANSMISSION LINES

the reflected wave has an amplitude equal to the
wave. However, the reflection now takes place
the voltage, and without change in phase of the
hat the current in each individual wave at the

[Caar. &

load is half of the load current, while
the voltages in the two waves add up
at the load to a resultant of sero volt-
age, a8 obviously is required across a
short circuit.

If one now examines the situation
as the distance from the load in-
creases, the incident wave advances
in phase while the reflected wave lags
correspondingly, exactly as in the
case of the open-circuited load.
However, since it is now the currents
that add at the load end of the line
and the voltages that subtract, one
obtains the distribution of voltage
and current illustrated in Fig. 4-4e.
This differs from the corresponding
distributions of the open-circuited
load case only in that voltage and
current are interchanged. That is,
with the short-circuited load the
voltage on the line goes through
minima at distances from the load
that are even multiples of a quarter
wavelength, and through maxima at
distances that are odd multiples of a
quarter wavelength. As before, the
positions of the current maxima cor~
respond to the voltage minima, and
vice versa.

Characteristic Impedance Load.

When the load impedance is equai to the characteristic impedance, the
reflection coefficient is zero; i.e., there is no reflected wave. Under these
conditions the voftage and current both increase exponentially with
increasing distance from the load, as illustrated in Fig. 4-4c.

) The p.hysical significance of the situation where the reflection coefficient
is zero (i.e., when Z;, = Z,) is that the vector ratio of the voltage to cur-
rent required by the load is exactly the same as that present in the inci-
dent wave. The load is therefore able to absorb completely the incident
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wave. With any other value of load impedance this is not possible, and a
reflected wave is then produced.

Intermediate Values of Load Impedance. When the load impedance is
s resistance greater than the characteristic. impedance, the reflected
wave produced at the load is smaller than the incident wave, but has the
same phase angle as in the open-circuited case.! As a result, the voltage
and current distributions go through successive maxima and minima at
exactly the same places as for the open-circuited load. However, since
the reflected wave is emaller than the incident wave, the minima are not
as deep in proportion to the load voltage; this is illustrated in Fig. 4-4b.
Vector diagrams showing how the voltages of the incident and reflected
waves add to give the line voltage in this case are shown in Fig. 4-3b; a
comparison with the corresponding diagrams of Fig. 4-3a shows in detail
why and how the situation is modified when the reflected wave is smaller
than the incident wave.

When the load impedance is a resistance that is smaller in magnitude
than the characteristic impedance of the line, then the reflected wave is
smaller than the incident wave, and has the same phase relation with
respect to the incident wave as in the short-circuited load case. Under
these conditions, the voltage and current distributions possess maxima
and minima at exactly the same points as for the short-circuited load, but
the maxima are not as large and the minima are less deep. This is
illustrated in Fig. 4-4d.

Reactive Loads. Next consider the case where the load impedance is a
pure reactance. Study of Eq. (4-14) shows that if the characteristic
impedance can be assumed to be a resistance, the reflection coefficient for
Z,, reactive ir unity irrespective of the magnitude of the load reactance;
however the phase angle of the reflection coefficient will depend upon the
ratio of the load reactance to characteristic impedance. The conse-
quences of this situation are illustrated in Fig. 4-4f and g. With a reac-
tive load impedance, the voltage and current distributions vary in the
same way, and to the same extent, as with the open-circuited (or short-
circuited) load case. However, a reactive load impedance causes the
minima of these eurves to be displaced with respect to the position of the
minima for an open-circuited line.

If one takes the open-circuit distribution as a reference, then a capaci-
tive load causes the first minimum in the voltage distribution to occur
closer to the receiver than a quarter wavelength, as illustrated in Fig. 4-4¢.
This comes about because for capacitive loads the phase angle of the

1 For the reflection coefficient to have a phase angle of exactly 0 or 180°, it is neces-
sary that the load impedance have the s#me phase angle as the characteristic imped-
ance, Inthameofndio—fnquenoym-mmnhnu, tbummubtdthtforall
practical purposes is resistive,
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jon coefficient is negative, i.e., the reflected wave at the load lags
;:?u?(!’lt;ihe incident wave. Thus with a capacitive load tl}e c'lista,nce froz.n
the load at which the reflected wave lags 180° behind the lPCIdent wave is
Jess than a quarter wavelength. In contrast, an inductive load causes
the first voltage minimum to occur at & distance from the load that is

greater than a quarter wavelength, as illustrated in Fig. 4-4f. This
results from the fact that the phase

- ol PHASE angle of the reflection coefficient is
> -— 360° positive in this case. With both in-

D\ iy ductive and capacitive loads, the dis-

S o+ placement of the minima from their

f’}ﬂf‘ oF weewr | X < open-circuited position is greater the
] ] N Lm0 lower the load reactance. Ift is also

* i to be noted that the effect of a reac-

(o) o;zzsgcgrr:m Notace tive load is merely to displace the
puase  Dosition of the minima; the distance

NG T between the adjacent minima still
- o+ 00" —136  remains a half wavelength, just as in
— = N the open- and short-circuited cases.
ase o] o 80 Load impedances that have both
- INCIDENT WAVE < resistive and reactive components
FSm— =N o will result in voltage and current dis-

{5) PHASE OF LINE CURRENT tributions in which the variation in
010 amplitude along the line is less than

i 0°Las  in the open- and short-circuited cases

- — pad 40° because the reflection coefficient is
. N v 0° less than unity, as in Fig. 4-4band d.
40° However, at the same time the

T 20°LEAD maxima and minima areshifted along

(¢) POWER FACTOR ANGLE LOAD

) i the line in the same direction as
Fi1a. 4-5. Phase relations on a transmis- h he load i I :
sion line for two typical conditions. In  When the 1s purely reactive.
these ¢ irves, the voltage of the incident Phase Relations in Voltage and
wave at the load is used as the reference 'y prent Distributions. The phase of
phase, and the line attenuation is : . . ae
assumed to he small, the voltage and current in an indi-

] ) vidual wave drops back g radians per
unit length in the direction in which the wave travels. Thus, when the
load impedance equals the characteristic impedance so that only the inci-
dent wave is pres-nt, the line voltage and current advance in phase at the
uniform rate of 8 radians per unit length as one goes from the load to the
generator. The total phase shift is 2r radians per wavelength under
these conditions.

When the lo?;d impedance does not equal the characteristic impedance,
the phase relations are complicated by the presence of the reflected wave.
The phase of the resulting line voltage (or current) then oscillates about
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Skc. 4-5] EFFECT OF ATTENUATION 95

the phase of the voltage (or current) of the incident wave, as illustrated in
Fig. 4-5. The phase shift under these conditions tends to be concen-
trated in regions where the voltage (or current) goes through a minimum;
this is increasingly the case as the reflected wave approaches equality
with the incident wave. However, irrespective of the relative amplitudes
of the incident and reflected waves, the phase of both voltage and current
will advance exactly » radians (180°) when the distance toward the gen-
erator decreases by a half wavelength. Although in the absence of a
reflected wave the variation in phase is at a uniform rate within this dis-
tance, this is not the case when a reflected wave is present.

4-5. The Effect of Attenuation on Voltage and Current Distribution—
Lossless Lines. The voltage and current distributions illustrated in

ACTUAL VOLTAGE
THE LINE ud

AMPLITUDE OF
INCIDENT wAVE

RELATIVE AMPLITUDE

-
S~
-
Sw
S~
-

\7""5‘ OF INCIDENT WAVE === 3w
"y

acruat / I
WL"GE aﬂ Tﬂf LINE ————— T}

~— DISTANCE FROM LOAD
F1a. 4-6. Variation of voltage amplitude and phase with distance along a transmission
line having such high attenuation that toward the generator end the reflected wave
is attenuated at a very small size.

Fig. 4-4 assume that the total attenuation al of the line is small compared
with unity. Under these conditions the amplitude of the incident, and
also of the reflected wave, changes only slightly in traveling the entire
length of the line.

When the attenuation of the line is relatively large the incident wave
then increases rapidly in amplitude as one goes toward the generator.
Similarly the reflected wave decreases rapidly in size as it recedes from the
load. The resulting behavior is as illustrated in Fig. 4-8; at a consider-
able distance from the load the reflected wave becomes so small thet the
voltage and current begin to approximate the values that would exist
for the case Z. = Z,, irrespective of the actual value of the load imped-
ance. The progressive change in the ratio of reflected to incident waves
that is caused by attenuation produces corresponding effects on the phase
behavior. These are also illustrated in Fig. 4-6, which shows that the
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actual phase departs less and less from the phase of the incident wave as

the reflected wave becomes smaller.

Transmission Lines with Zero Losses. The behavior of an idealized

transmission line with zero losses

is important because under many

circumstances, and for many purposes, it is permissible to neglect the

’ £
=

7’

=4~ DISTANCE FROM LOAD
(0) MAGNITUDE

LoAD

180¢

0
LOAD

() PHASK

LAG
0

LEAl
90°

(C) POWER FACTOR

(/) MAGNITUDE AND PHASE SHOWN
SIMULTANEOUSLY

Fie. 4.7. Voltage, current, and phase

relations on an open-circuited transmis-

sion line having sero losses.

tudes to indicate the polarity revers
Since the waves on a lossless line

travel along the line,

where constant and e

where the same on a lossless line,
4-8. Standing-wave Ratio. The

distribution on a transmission ling

of the ratio of the maximum am

qual to the reflection coefficien
by Eq. (4-14). Similarly, the standing-wave ratio

losses associated with practical
radio-frequency transmission lines.
When the resistance and con-
ductance of a transmission line are
zero, the attenuation constant « is
likewise zero, and the incident and
reflected waves on the transmission
line suffer no change in amplitude
as they travel from one end of the
line to the other. The voltage and
current distributions that result are
then similar to those of Fig. 4-4,
except that all the maxima (and
minima) are of the same height.
When the reflection coefficient of
the load is unity, corresponding to
an open- or short-circuited or reac~
tive load, the curves giving the dis-
tribution of voltage and current on
the loss-free line are sections of half
sine waves that go to gzero at the
minims, as shown in Fig. 4-7a. In
this case the phase of the voltage
(or current) jumps 180° at each
minimum, as indicated in Fig. 4-7b.
The distribution curves of the loss-
less line are hence commonly drawn
as shown in Fig. 4-7d, which simul-
taneously indicates both magnitude
and phase by using negative ampli-
al associated with s 180° phase shift.
do not change in amplitude as they

the reflection coefficient in such a system is every-

t at the load, as given
(see below) is every-

character of the voltage (or current)

e can be conveniently described in terms
plitude to minimum amplitude possessed
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Sec. 4-6] STANDING-WAVE RATIO 97

by the distribution. This quantity is termed the standing-wave ratio
(often abbreviated SWR) ; thus in Fig. 4-8,!
Standing-wave ratio = § = % (4-20)
. Bmia
Alternatively, the standing-wave ratio may be defined in terms of
maximum and minimum current; for any particular line the standing-

wave ratio at a given region on the line will be the same whether defined
in terms of the voltage or current distribution.

s
£ RELATIVE
min AMPLITUDE
Emon. Emo.
1 Emin J Emin.
¥ ¥
POSITION ALONG LINE Loap

Fi1a. 4-8. Diagram illustratiog nomenclature used in defining the standing-wave ratio.

In terms of the amplitudes |E,| and |E,| of the incident and reflected
waves respectively, the standing-wave ratio can be written

|Ey] + |Es
s B “2D
The standing-wave ratio is seen from Eq. (4-21) to be a measure of the
amplitude ratio of the reflected to incident waves. Thus a standing-wave
ratio of unity denotes the absence of a reflected wave, while a very high
standing-wave ratio indicates that the reflected wave is almost as large
as the incident wave. Theoretically, for the cage of zero attenuation, the
standing-wave ratio will be infinite when the load is either open- or short-
circuited, or is a losslesa reactance.
The standing-wave ratio S is one means of expressing the magnitude
of the reflection coefficient; the exact relation between the two is

8 (4-220)

S—1
el ) (4-22b)
This relationship is illustrated graphically in Fig. 4-9.
The importance of the standing-wave ratio arises frpm the fact that it
can be very easily measured experimentally. Moreover, the standing-
1 This definition of standing-wave ratio is sometimes called voltage standing-wave
ratio (VBWR) to distinguish it from the standing-wave ratio expressed as a power
ratio, which i8 (Emax/Emin)%
Momentum Dynamics Corporation
Exhibit 1013
Page 100



TRANSMISSION LINES [Cuar. 4

98
wave ratio indicates directly the extent to which reflected waves efxist on
a system. In addition, standing-wave measurements provide an impor-

tant means of measuring impedance, as discussed in Sec. 4-9.

1.0

— 1 — —

8
\

REFLECTED WAVE
INCIDENT WAVE
°
o

N

le] =
o
~N

0' 2 5 [+

§« STANDING-WAVE RATIO (VOLTAGE OR CURRENT)

F16. 4-9. The relationship between standing-wave ratio and magnitude |o] of reflection
cocfficient.

4-7. Impedance and Power-factor Relations in Transmission Lines.
The expression ‘‘transmission-line impedance’ applied to a point on a
transmission line signifies the vector ratio of line voltage to line current at
that particular point. This is the impedance that would be obtained if
the transmission line were cut at the point in question, and the impedance
looking toward the load were measured on a bridge.

When the load impedance equals the characteristic impedance, only the
incident wave is present, and the line impedance is everywhere equal to
the characteristic impedance. The line impedance is also equal to the
characteristic impedance under conditions where the total attenuation
al to the load is so great that the reflected wave is of negligible amplitude
compared with the incident wave. Under these conditions the impedance
of the transmission line is independent of conditions at the load.

When a reflected wave is present, the impedance will be alternately
greater and lower than the characteristic impedance, as illustrated in
Fig. 410. Since the line current is always a minimum when the voltage
is maximum, and vice versa, the impedance maxima and minima coincide
with the voltage maxima and minima, respectively. The magnitude of
the line impedance thercfore varigs cyclically with a periodicity of a half
wavelength. If the line losses are low and the reflection coefficient of the
load is not too close to unity, the line impedance repeats almost exactly
in successive hali-wave intervals, as illustrated in Fig. 4-10a. However,
.when the reflection coefficient at the load approaches unity (large stand-
Ing-wave ratio), then the line attenuation, even if small, will cause the
peaks of impedance to diminish in amplitude at progressively larger dis-
tances to the load, as in Fig. 4-10b.

) The power factor of the line impedance varies according to the stand-
Ing-wave situation. When the load impedance equals the characteristic
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impedance, there is no reflected wave and the power-factor angle of the
line is zero, corresponding to a resistive impedance. However, when a
reflected wave is present, the power-factor angle is zero only at the points
on the line where the voltage goes through a maximum or a minimum.
At other points the power-factor angle will alternate between leading and
lagging at intervals of a quarter wavelength, as shown in Figs. 4-10 and
4-5c. When the line is short-circuited at the receiver (Fig. 4-10b), or if

REFLECTED
REFLECTED WAVE: wave
e \\“’, , ‘\\\mus :'/] * - d VOLTS
INCIDENT WAVE \//mewr wave

L 1 L { 1 L L ‘
A 3nv4 ar2 A4 A 34 Ar2 a4 LOAD

DISTANCE FROM LOAD DISTANCE FROM LOAD

VOLTAGE DISTRIBUTION VOLTAGE DISTRIBUTION

Ty

b N L N

-l
a 3va rr2 A4 LOAD Y 374 ar2 A4 LOAD
LINE IMPEDANCE LINE IMPEDANCE
90°
LAG LAG
A 60° X o
/4 A
) N\ o a\/u Ar2 Asa LEAD
AN A2 An Jo00
60° POWER -FACTOR ANGLE OF LINE IMPEDANCE
POWER-FACTOR ANGLE OF LINE IMPEDANCE{ { EAD
(0) MODERATE STANDING-WAVE RATIO (5) LARGE STANDING-WAVE RATIO (LOAD SHORT

CIRCUITED)

F1G. 4-10. Magnitude and power factor of line impedance with increasing distance
from the load, for load impedances that are, respectively, a resistance less than the
characteristic impedance, and a short circuit. These diagrams assume that the attenu-

ation of the line is small.

the load is a resistance less than the characteristic impedance so that the
voltage distribution is of the short-circuit type (Fig. 4-10a), the power
factor is inductive (lagging) for lengths corresponding to less than the dis-
tance to the first voltage maximum, and thereafter alternates between
capacitive and inductive at intervals of a quarter wavelength. Similarly,
with an open-circuited receiver, or with a resistance load greater than the
characteristic impedance so that the voltage distribution is of the dpen-
circuit type (Fig. 4-5), the power factor is capacitive for lengths less than
the distance to the first voltage minimum. Thereafter, the power factor
alternates between capacitive and inductive at intervals of a quarter
wavelength, exactly as in the short-circuited case.

If one considers the impedance at the generator end of a transmission
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i ed length under conditions where the frquxency of mwment
il:n:r:fgxiﬁ;sivelt;gitmreased, the impedam.:e wﬂl vary in magnitude with f.ve-
quency in much the same manner a8 with increasing length. Thus, w.xth
a short-circuited load, the line impedan.ce will go through successive
maxima at frequencies that make the line length correspond to'one-
quarter, three-quarters, five-quarters, etc., of a waYelength, and will go
through minima at frequencies that correspond to line lengths measqre.d
in wavelengths that are an even number of quarter wavelengths. This is
illustrated in Fig. 4-11. o
The extent to which the power factor of the line impedance varies v.nth
changes in length, or changes in frequency, depends upon tl}e standing-
wave ratio at the point on the line where the power factor is observed.

2RO
f ,’ \ ‘r' 'r/wssts
g MODERATE
z tosses
: Nl
FREQUENCY
(C)]
1Lag) 90° 260 LoSSeS
F—-m RATE
w Losses
q
T
a
tLeaD) 9o° A

(V4]
Fia. 4-11. Effect of variation in frequency o the magnitude and phase of the sending-
end impedance of a short-circuited transmission line of fixed length.,

If the standing-wave ratio is large, and the line losses low (solid curve in
Fig. 4-11), the power-factor angle will approach 90° except in the immedi-
ate vicinity of the voltage maxima and minima. Then the power-factor
angle suddenly shifts between nearly +90° and nearly —90°, as illus-
trated in Fig. 4-11b and Fig. 4-5¢. In fact, in the case of a short-circuited
or open-circuited ideal line of zero losses, the power-factor angle is exactly
90° everywhere except at the voltage maxima and minima, as illustrated
in Fig. 4-7c, and by the dotted line'in Fig. 4-11a. On the other hand, if
the standing-wave ratio is small or moderate, the maximum range over
which the power-factor angle varies about unity power factor will be cor-
respondingly less than 90° (see Figs. 4-5¢ and 4-10a).

4-8. Transmission-line Charts—the Smith Chart. The various prop-
erties of a transmission line can be presented graphically in an almost end-
less variety of charts. The most useful graphical representations, how-
ever, are those which give the impedance relations that exist along a loss-
less line for different load conditions,
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Szc. 4-8] THE SMITH CHART 101

The Smith chart shown in Fig. 4-12 is the most widely used trans-
mission-line chart of this class.! This diagram is based on two sets of
orthogonal circles. One set represents the ratio R/Z, where R is the
resistance component of the line impedance, and Z, is the characteristic
impedance (which for a lossless line is a resistance). The second set of
circles represents the ratio jX/Z,, where X is the reactive component of
the line impedance. These coordinates are so chosen by means of a con-
formal transformation that conditions on the lossless line corresponding
to a given standing-wave ratio (or what is the same thing, a given magni-
tude of the load reflection coefficient) lie on a circle having its origin at the
center of the chart.

The standing-wave ratio S corresponding to any particular circle is
equal to the value of B/Z, at which the circle crosses the horizontal axis
on the right-hand side of the chart center (see Prob. 4-25). This same
circle intersects the horizontal axis to the left of the center at a value of
R/Zosuch that 1/8 = R/Z,. Intersections with the horizontal axis that
are on the left of the chart center represent voltage minima; intersections
with the horizontal axis on the right of the center correspond to voltage
maxima. -

Moving around a given standing-wave circle is equivalent to traveling
along a lossless transmission line on which the standing-wave ratio cor-
responds to the circle involved; thus the successive values of impedance
indicated by a given circle correspond to the line impedances at successive
points along the lossless line. Distance on the actual transmission line is
directly proportional to the angle of rotation around the standing-wave
circle, with one complete revolution corresponding to exactly a half wave-
length on the transmission line. Thus in Fig. 4-12 the distance between
points on the line where the impedance canditions are represented by
P and Q on the chart is 0.05 wavelength, because P and @ lie on the same
circle, and radial lines OPA and OQB drawn from the center of the chart
are displaced by 0.05\ on the outer scale; this corresponds to 36° angular
displacement, or 36/720 = 0.05 wavelength.? Travel around the circle
in a clockwise direction is toward the generator, whereas travel in a
counterclockwise direction is toward the load; this fact is marked on the
periphery of the chart.

The impedance at any point on a transmission line for a given load

1P, H. Smith, Transmission Line Caloulator, Electronics, vol. 12, p. 29, January,
1939; P. H. Smith, An Improved Transmission Line Calculator, Electronics, vol. 17,
p. 130, January, 1944, Graph paper and a plastic calculator are commercially avail-
able, A paper covering the theoretical foundations of the Smith chart, and its rela-
tion to the so-called rectangular chart, is H. L. Krauss, Transmission Line Charts,
Elec. Eng., vol. 68, p. 767, September, 1949.

2 Distances greater than a half wavelength are handled by going around the stand-
ing-wave circle as many times as required. Thus the distance OA to OB actually
represents 0.05\ + n\/2, where n can be any interger, including zero.
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Fia. 4-12. The Smith chart.

P, then the standing-wave ratio that would exist on the line would be
2.0; the impedance at other points along the line could be obtained by
traveling clockwise around the circle passing through P by an amount
indicated by the calibration on the periphery of the chart. For example,
at a distance 0.05\ toward the generator from P, the line impedance is
Zo(1.56 + j0.7), corresponding to point @, while 0.27\ distant from P,
the impedance corresponds to Q' and is Zy(0.6 — j0.38). Again, if the
load impedance corresponded to the value @, the standing-wave ratio

Momentum Dynamics Corporation
Exhibit 1013

Page 105



Sec. 4-8] THE SMITH CHART 108

would still be 2, but the impedance at @’ would now be the line impedance
at a distance 0.22\ from the receiver, since @’ is 0.22\ around the circle
in a clockwise direction from Q.

The Smith chart thus shows very simply and directly the standing-wave
ratio corresponding to a given load impedance. It also shows the line
impedance at any desired point, given the standing-wave ratio and the
impedance at any other point on the line, for example, the load imped-
ance. From the standing-wave ratio, one can obtain the magnitude of

% 4 /
g LINE ATTENUATION ~——> 4o /
5 0 oo ]
w 0/
§ / | dv /
g3 -
°
: Ve //’/ 200 fe—
w L—1
§ 2 // 1% 3db) _ | —
§ 4// 5db
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S ,—-—1-—""
'

6

n

3 a
STANDING- WAVE RATIO AT LOAD END

F16. 4-13. Relationship between standing-wave ratios at two points on a trans-
mission line, for different values of line attenuation between these points.

the reflection coefficient from Eq. (4-22b) or Fig. 4-9. The phase angle
of the reflection coefficient is given on the chart periphery. Thus for
point P one has p = 0.33/72°. The Smith chart can also be used to
determine impedance from data obtained from standing-wave measure-
ments; this is discussed in Sec. 4-9.

Effect of Line Attenuation. The Smith chart assumes that the line
attenuation is zero. Under these conditions the standing-wave ratio is
everywhere constant, and the chart implies that this is the case. When
attenuation is present it is, however, still possible to use the Smith chart
by using Fig. 4-13 to correct for the change in standing-wave ratio with
position.! The method of doing this is made clear by the following
example. ’

Example. Assume that the couditions existing at some point on the line correspond

to P in Fig. 4-12; this may be the generator end of the line although it is not so limited.
1t is then desired to know the line impedance at & point 0.23\ closer to the load when

1 The curves in Fig. 4-13 are obiained by combining Eqs. (4-15), (4-22a), (4-22b),
and (4-9g).
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the total attenuation for the line length of 0.23\ is lmown to be 3.0 db rather tlun
sero. The first step is to ignore the line attenuation and tnvel counterclockwise
around the circle passing through P for & distance 9orrespondmg to 0.23\. This
brings one to point ¢, which corresponds tn the line impedance that would eu:ist‘ at
the desired point if the line had no attenuation. However; Fig. 4-13 shows that a line
attenuation of 3 db causes a standing-wave ratio ?f 2.0 at the generator end of the
section of line to correspond to a standing-wave ratio of 5.0 at t.he load .end. A mre!e,
shown détted in Fig. 4-12, is then drawn corresponding to this ntnndm.g-wnve ratio.
The intersection of this circle with the radial line 0Q’ then defines a point Q" on the
chart that corresponds to the desired impedance, taking into account the line attenua-~

tion;! this impedance is Z, (0.26 — j0.52).

4-9. Impedance Measurements Using Standing-wave Ratios.? The
impedance at very high frequencies is commonly determined with the aid
of standing waves. This is done by using the unknown impedance as the
load impedance of a line having low losses. The resulting standing-wave
ratio is then observed experimentally and, in addition, the distance from
the receiver to the first voltage minimum is observed. From this
information one can, with the aid of a Smith chart, readily determine the
unknown impedance.

Example 1. Suppose that a standing-wave ratio of 2.0 is observed and that the
first voltage minimum is 0.08\ from the load. One would then enter the Smith
chart at the point 7, which corresponds to a voltage minimum for a standing-wave
ratio that is 2.0, and would then travel along this circle of constant standing-wave ratio
toward the load a distance 0,08\ thus arriving at point Q'. The coordinates of this
point are 0.6 — j0.38, and multiplying these numbers by the value of Z, for the
transmission line gives the impedance of the terminating load, which is the impedance
to be determined.

Example 2. Assume that once again the standing-wave ratio is observed to be 2.0,
but that it is now inconvenient to measure the actual distance from the load to the
first voltage minimum. The procedure then consists in first connecting the unknown
impedance across the end of the line and observing the position of some convenient
voltage minimum. Next, the unknown impedance is replaced by a short circuit, and
the position of the first voltage minimum on the load side of the original minimum is
observed. Assume that this minimum is 0.35\ toward the load from the original
minimum, It is then permissible to regard this new minimum as the equivalent posi-
tion of the load. This follows from the fact that on a lossless line impedances repeat
exactly each half wavelength. Therefore one enters the Smith chart at point P/,
which corresponds to the voltage minimum with the load connected, and travels 0.35)
toward the load along the circle for 8 = 2.0, This leads to point P, which has the
coordinates 0.98 -+ j0.7; these numbers multiplied by Z, then give the unknown

! 8mith charts are sometimes provided with an auxiliary decibel scale that can be
used to determine the effect of the attenuation on the radius of the standing-wave
circle. Such a scale is shown in Fig. 4-12, and is calibrated so that each unit on the
auxiliary scale represents the change in circle radius associated with 1 db attenuation.
Thus starting with a standing-wave circle of radius 0@’ in Fig. 4-12, the circle passing
through Q" is drawn with a radius that is 3.0 units different on the decibel scale than
0Q’ a8 shown, because the line attenuation is 3.0 db,

? An extensive summarizing discussion of this subject is given by F. E. Terman and
J. M. Pettit, “Electronic Measurements,” pp. 135-152, McGraw-Hill Book Com-
pany, Inc., New York, 1952.
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impedance. An slternative procedure would be to note that if the reference point is
taken as the minimum with the unknown connected at the load, then when the line is
short circuited, the first minimum on the generator side of this reference point is
0.5 — 0.35 = 0.15\ toward the generalor. Entering the chart at P’ as before, one
could therefore proceed 0.15\ toward the generator (i.e., a distance —0.16\ toward
the load). This also brings one to point P,

Equipment for Ezperimental Determination of Stamding-wave Ratio for
Impedance Measurements. The standing-wave ratio on a transmission
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Tsz OTTED SECTION OF /
FIXED ATTENUATOR NEGLIGIBLE ATTENUATOR IMPEDANCE
(OPTIONAL)

UNDER INVESTIGATION

(Q) SYSTEM FOR MAKING STANDING~WAVE-RATIO MEASUREMENTS

TUNING ADJUSTMENT

DIELECTRIC SUPPORT
(b) SLOTTED LINE AND CARRIAGE

PROBE TUMING
" apausTMENT
CARRIAGE MOVABLE SHORT~
\/cmcwr
PROBE

TO AMPLIFIER
CRYSTAL- —\ AND WOICATOR

OIELECTRIC —f=======

& SUPPORT —
tS P PROBE OUTPUT LINE
() SECTION OF LINE PROBE
THROUGH CARRIAGE (d) PROBE AND DETECTOR CONNECTIONS

F1a. 4-14. Details of a slotted-line type of standing-wave detector for a coaxial line.

line can be observed by exploring along the length of the line with a pickup
arrangement that will indicate the strength of either the electric field (line
voltage) or the magnetic field (line current), in the vicinity of the line. A
typical example of such a standing-wave detector that is suitable for coaxial
systems is illustrated in Fig. 4-14. This arrangement consists of a section
of coaxial line having air insulation and a longitudinal slot in the outer
conductor, as shown. Mounted on this slotted section is a traveling
carriage carrying a probe that projects through the slot toward the center
conductor, as shown. To this probe there is connected some form of
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- e-indicating device, often a simple detector. An oscil-
m:: In:s :;n‘:\zlc‘;,s:i to one endg of the slotted line, while the other end is con-
nected to the unknown impedance or, altf:rnatlvely, tf’ the input of the
transmission line that is to have its standmg—wa.ve' ratio obsen:ed. The
standing-wave pattern is then obtair}ed by moving the carriage (and
hence the probe position) and observing the resulting variations in the
tput.

przl-):o(.’ul‘};msmission Lines as Resonant Circuits and as Circuit Ele-
ments.! A transmission line can be used to perform the functions of a
resonant circuit. Thus, if the line is short-circuited at the load, then at
frequencies in the vicinity of a frequency for which the line lengt.;h is an
odd number of quarter wavelengths long, the impedance will be high and
will vary with frequency in the vicinity of resonance (i.e., frequency cor-
responding to quarter wavelength) in exactly the same manner as does the
impedance of an ordinary parallel resonant circuit. It is therefore possi-
ble to describe resonance on a transmission line in terms of the impedance
at resonance and the equivalent Q of the resonance curve.?

At very high frequencies, the parallel impedance at resonance and the
obtainable circuit @ are far higher than can be realized with lumped
circuits. In high-frequency lines having air insulation the losses all arise
from skin effect in the conductors, and one has with copper conductors

For concentric lines:®
Q = 0.0839 \/fbH (4-23a)
z, = 1111 VfbF (4-235)

For two-wire lines (neglecting radiation losses):

Q = 0.0887 \/f bJ (4-24a)
Z, = ??;Qé%/f.b_g (4-24b)

! For further information, including particularly a derivation of the hasic relations,
see F. E. Terman, Resonant Lines in Radio Circuits, Elec. Eng., vol. 53, p. 1046,
July, 1934. In this paper it was demonstrated for the first time that the resonance
curve of a transmission line has the same shape as the resonance curve of a circuit
with coil and capacitor, and so can he described by specifying a Q.

* The Q in such a situation can be defined in terms of the detuning required to reduce
the response to 70.7 per cent. of the response at resonance, in accordance with Rule 1
on p. 49; alternatively, one may employ Eq. (3-1).

? Examination of Fig. 4-15 shows that in an air-insulated coaxial line of given outer
radius b, Q will be maximum when the inner conductor has a size such that b/a = 3.6,
corre.sponding to Zo = 77 ohms. These are also the proportions for minimum power
loes in & transmission line operated with Z, = Z,. However, the maximum power
that can be transmitted without exceeding a given voltage gradient occurs when
b/a = 1.65, giving Z, = 30 ohms.

Momentum Dynamics Corporation
Exhibit 1013
Page 109



Szc. 4-10) RESONANT CIRCUITS 107

where @ = circuit Q defined from the resonance curve so that Q =
Jo/24f, where fo is the resonant frequency and Af is the
number of cycles off resonance at which the response is
70.7 per cent of the response at resonance
Z, = sending end or input impedance
f = frequency, cycles
b = inner radius of outer conductor of a concentric line, or spac-
ing of wire centers in two-wire line, cm
a = outer radius of inner conductor in concentric line, or wire
radius in two-wire line, em
n = number of quarter wavelengths in the line
F, G, H,J = constants determined by b/a and given in Fig. 4-15
Substitution of reasonable values in these equations leads to surprising
results. Thus, at a wavelength of 150 em (200 Mec), a concentric line
with copper conductors and air 1o

insulation in which b/a = 3.6 and os o
with a diameter of outer conductor °¢—

of 5 em (2 in.) possesses a Q of ap- z: 1
proximately 3000; when the line  ——F
length is a quarter wavelength long ., £
(approximately 15 in.), the re- o3

sonant impedance is over 250,000 o2
ohms. Because of favorable prop- ¢! I
erties such as these, together with %6 26— 36
the fact that the physical size of a

resonant line is relatively large in  Fra. 4-15. Factors F, G, H, and J for use
proportion to wavelength as com- in Eqs. (4-23) and (4-24).

pared with a coil-and-capacitor combination, resonant transmission lines
find extensive use as resonant circuits at the higher radio frequencies,
particularly at frequencies of the order of 100 Mc and greater.

A behavior corresponding to that of a series resonant circuit can be
obtained from a transmission line that is an odd number of quarter wave-
lengths long and open-circuited at the receiver. Under these conditions,
the voltage at the load is much higher than the applied voltage, as is
apparent from Fig. 4-4. Furthermore, at frequencies near resonance the
voltage step-up varies with frequency in exactly the same manner as does
a resonance curve, and has an equivalent Q given by Eq. (423a) or
(4-24a) as the case may be. The voltage step-up ratio is, however,
Q X 4/xn, instead of @ as in the case of the ordinary series resomant
circuit.

Transmission lines can be used to provide low-loss inductances or
capacitances by employing the proper combination of length, frequency,
and termination. Thus a line short-circuited at the load will offer an
inductive reactance when less than a quarter wavelength long, and a
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capacitive reactance when between & quarter arfd a8 half wavelength l.opg.
With an open-circuited load, conditions for inductive and capacitive
reactances are interchanged. )

4-11. Impedance Matching in Transmission Lines.! Energy is trans-
mitted most efficiently by a transmission line when no reflected wave, is
present.? However, only under exceptional cases will the load impedance

be a resistance that is exactly equal
n— to the characteristic impedance of
o\ Z' the line. Thus, to obtain trans-
«—T0 GENERATOR L\
a, SHORT CIRCUIT

mission of energy with maximum
efficiency, it is necessary to provide
means for matching the actual load
impedance to the characteristic im-
» pedance of the line. Again, it is
,’ often desired that the line im-
pedance be independent of the dis-
tance to the load. Likewise in
making many types of measure-
ments in systems involving trans-
mission lines, it is frequently de-
sirable, and in some cases very
necessary, that there be no reflected
wave present.
At the lower radio frequencies a
load can be matched to the charac-

(@) STUB LINE

LOAD
(5) VOLTAGE DISTRIBUTION WITH STUD DISCONNECTED

STUB CONNECTED HERE

LOAD

{€) VOLTAGE DISTRIBUTION WITH STUB FROPERLY
ADJUSTED

Fia. 4-16. TImpedance matching by

means of a short-circuited stub line.
Although the arrangement shown is a
two-wire system, coaxial lines may be
employed.

teristic impedance of a line by as-
sociating with the load a network
of reactances that tunes out the

load reactance and simultaneously
transforms the resulting resistance to a value equal to the characteristic
impedance of the line. This is discussed further in Sec. 4-12.

At very high and microwave frequencies, impedance matching is
normally achieved with the aid of transmission-line techniques. The
stub line arrangement of Fig. 4-16 is a common example. Here a short

! For additional information of a design character see T. E. Moreno, * Microwave
'il‘;:;smission Data,” pp. 103-110, McGraw-Hill Book Company, Inc.. New York,
? When the characteristic impedance is a resistance, as is always the case at high
frequencies, one can consider that the incident wave delivers energy to the load and
that the reflected wave carries energy from the load bagk toward the generator. If
the load impedance does not equal the characteristic impedance, i.e., if the load is not
matched to the line, then some of the incident energy is reflected by the load and
travels a round trip over the line, dissipating power in the line without delivering
energy to the load. Thus the ratio of energy lost in the line to power dissipated in
the load is increased by reflection.
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section of short-circuited transmission line is connected in shunt with the
transmission line. The distance !, from the load, and the length a of the
stub, are so chosen that the reflected wave produced by the shunting

impedance of the shunt line is equal
in magnitude and opposite in phase
to the reflected wave existing on
the line at this point as a result of
the reflection from the load imped-
ance Z;. Thus, although a re-
flected wave is present in the length
I, because of reflection from Z,,
there is no reflected wave on the
generator side of the stub line as a
result of the cancellation of the two
reflected waves.!

The practical design of a stub-
line system of this type can be
readily carried out with the aid of
Fig. 4-17, which gives the length a

024

a+n F+ LENGTH OF SHORTED STUS

\

N b+ POSITION OF STUS
. MEASURED TOWARD LOAD
FROM A VOLTAGE MINIMUM
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§ \::~'~n
W 004 "'ﬁ
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- 2 s ) 20

STANDING * WAVE RATIO

F1a. 4-17. Design information giving the
length and position required for a short-
circuited stub in order to obtain imped-
ance matching. If desired, the stub line
be made any convenient multiple

may
. .o N f a half el ter than a.
of the stub? and its position b with ength greater a

respect to a voltage minimum of the standing-wave pattern existing in the
absence of the stub. A stub line used in this way will enable any load im-
pedance to be matched to the characteristic impedance of a transmission
line provided only that the load is not an open-circuit, short-circuit, or
pure reactance.

ADJUSTABLE
SHORTING
PLUNGERS

STU8S

o 2z,
GENERATOR

g l,
Fi1a. 4-18. Double-stub impedance-matching system.

Another arrangement often used to match a load to a transmission line
is the two-stub system of Fig. 4-18. Here two spaced stubs whose lengths
are individually controllable are shunted across the line near the load as

! Another way of expressing this situation is tb say that the stub position and length
are so selected that the input impedance of line ; shunted by the input impedance of
stub line ¢ will equal the characteristic impedance Z,.

1 The stub length cw.n actually be made any convenient number of half wavelengths
plus the value a given by Fig. 4-17.
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shown. This arrangement has the advantage that trial-a-md-error adjust-
ment of the impedance-matching system can be made without .th.e neces-
sity of providing a connection that can be fhd along the tl:ansmlssxox} h.ne.
The arrangement is thus particularly smtg.ble for c.oaxm.l .transmumqn
lines, as it avoids the mechanical problems involved in moving the posi-
tion of a shunting stub along a coaxial line. The disadvantage of the
two-stub system is that the range of load impedances t!m.t can be matched
to the transmission line is limited. Thus, in the typical case where the
spacing between stubs is made an eighth wavelength, an impedance

s DIELECTRIC SLUGS
: . M
TS
AN SN 777
N4
1-;2

(@) DIELECTRIC SLUGS

b METAL SLEEVES
=]

Z 2 Z2Z

T e a
| AN

b? Z s Z CITIIIIS S 2l

I,

(5) METAL SLEEVE SLUGS
Fra. 4-19. Double-slug system for impedance matching in a coneentric-line system.

match can be obtained only if the conductance component of the imped-
ance at the stub nearest the load and looking toward the load is less than
2/Zy.*

The impedance-matching systems of Fig. 4-19 are termed two-slug
tuners, and make use of two spaced elements that can be either dielectrics,
as at a, or metal sleeves that reduce the clearance between inner and
outer conductors, as at b. These arrangements operate by introducing a
reflected wave that is adjusted to produce a reflection equal in magnitude
and opposite in phase to the reflegted wave produced by the load imped-
ance. The phase of the reflection ‘introduced in this way is controlled by
moving the slugs along the line while maintaining the spacing l; between
them constant. I'he magnitude of the reflected wave can be controlled
with little effect on the phase by moving the two slugs equal amounts in
opposite directions (i.e, by changing I, while keeping the slugs sym-
metrical with respect to reference line b). Like the two-stub arrange-

* When this requirement is not satisfied, an impedance match can still be obtained
by increasing the distance U from the double-stub tuner to the load by a quarter
vuvele.ngth. This is because of the impedance-transforming action of a quarter-
wave line, as discussed in connection with Eq. (4-31).
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ment, slug tuners are limited in the range of load impedances that can be
matched to a given line.

When the load impedance is resistive, or when it can easily be made
resistive by tuning, the impedance-matching problem is considerably
simplified. It is then merely necessary to transform the resistance actu-
ally present to a resistance that is equal to the characteristic impedance of
the line. Transmission-line techniques that can be used to achieve this
result, in addition to those discussed above, include the use of a quarter-
wave transformer and a tapered section, as discussed in connection with
Figs. 4-27 and 4-28, respectively.

Nonreflecting Terminations for Ultra-high-frequency and Microwave
Transmission Lines."* In some circumstances, particularly in measure-
ment work, it is necessary to terminate a transmission line so that the
reflected wave is as small as possible. In many cases this condition must
be realized for a substantial band of frequencies. The problem of
achieving a nonreflecting load contrasts with the case where one starts
with an assigned load impedance that is to absorb the power and desires
to match this load as well as possible to the transmission line.

A simple and effective means of obtaining a nonreflecting load imped-
ance is to connect the end of the transmission line involved to a length of
transmission line having high loss but the same characteristic impedance
as the line being terminated. This arrangement is illustrated in Fig,
4-20a. An incident wave reaching such a termination will proceed into
the lossy line and will be completely absorbed if the attenuation of the
lossy line is sufficient. For example, if the attenuation of this line is
20 db, then even if the reflection coefficient at the end of the lossy line is
unity, the reflected wave emerging from the junction of the two lines
will be 40 db weaker than the incident wave, corresponding to a reflection
coefficient of 0.01, or a standing-wave ratio of 1.02.

Lossy lines must be especially designed so that the total attenuation
required can be achieved in a reasonable length. Flexible cable is com-
mercially available for these applications in which the attenuation has
been intentionally made very high by the use of insulation having high
radio-frequency losses, and by employing resistance wire for the center
conductor of the cable. In lines having air insulation, high attenuation
can be obtained in coaxial systems by plating a high-resistivity coating on
the center conductor of the coaxial line to give high skin-effect losses; in
the case of two-wire open-air lines it is customary to obtain a high
attenuation by using resistance wire or iron wire for the conductors.

1 For further information on this subject see F. E. Terman and J. M. Pettit, ““Elec-
tronic Measurements,” sec. 14-7, McGraw-Hill Book Company, Inc., New York,
1952,

* Emphasis is placed here on the higher frequencies. At short-wave and lower
frequencies lumped resistance terminations are entirely satisfactory.
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An slternative type of nonreflecting term_ination that is particularly
suitable for coaxial systems with air insulation mal.ms use of a tapered
section of lossy dielectric arranged as illustrated in Fig. 4-20b The
taper provides a gradual transition between the nonattenuating and the
attenuating regions, so that no reflection is produced in spite of the fact
that the dielectric changes the characteristics of the line. The lossy
diclectric can be some type of plastic loaded with conducting material.
Nonreflecting terminations of this type have the advantage that the total
length of the termination is relatively small compared with the length of

T g

ORDINARY CABLE

LOSSY CABLE™ 1 nMINATING RESISTANGE
0PTIONAL )

(o) TERMINATION BY LOSSY CABLE .

4

LOSSY DIELECTRIC TO

/
AIR-DIELECTRIC CABLE
ABSORE INCIDENT WAVE

TAPERED TO MINIMIZE
REFLECTIONS

{5) TERMINATION BY TAPERED LOSSY SECTION

Fi1G. 4-20. Nonreflecting terminations for coaxial transmission lines, suitable for use
at very high frequencies.

a lossy cable required to achieve a similar result. This difference arises
from the fact that the taper makes it possible to work up to a very much
higher attenuation per unit length without reflection than can be obtained
in a uniform structure such as a lossy cable.

4-12. Artificial Lines. An artificial line is a four-terminal network
composed of resistance, inductance, and capacitance elements. In so far
as the terminals are concerned, such a network can be considered as being
the equivalent of some transmission line when symmetrical about the
mid-point, er a combination of a transmission line and a transformer when
unsymmetrical.! %

It can be demonstrated that any four-terminal network can have its
properties at any one frequency represented, in so far as the terminals are
concerned, by three independent constants. From this it follows that the
most general artificial lines possible can be represented at any one fre-
quency by three independent impedances. These can be arranged either
in the form of a T or a x, as in Figs. 4-21a and 4-21b.* The L network

! The unsymmetrical case is also equivalent to a tapered transmission line,

1 It will be noted that the T and » can be drawn as Y and A arrangements of imped-
ances, respeotively.
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shown in Fig. 4-22 is a special case of the more general three-element
network in which one of the impedance arms has become either zero or
infinity.

The characteristics of a four-terminal artificial line can be expressed,
from the transmission-line point of view, in terms of a propagation

o 22 o Tz}

— - — -
L Re L Rz

(0) T SECTION (5) T SECTION

F1g. 4-21. General T and » networks.

constant a + j8 that has exactly the same significance as in ordinary
transmission-line theory (see Secs. 4-1 and 4-2), together with two charac-
teristic impedances (or resistances), one associated with one pair of
terminals and the other with the other set of
terminals. When the network is symmetrical
about its mid-point, i.e., when Z, = Z5 for the
= network, or Z; = Z. for the T network, these
two characteristic impedances are identical.!
However, when the network is unsymmetrical,
the two characteristic impedances differ, and Fro. 4-22. General L net-
the transmission line, in addition to introduc- work.
ing a certain attenuation and phase shift, also introduces a transformation
of the characteristic impedance. The artificial line is then equivalent
to a line plus a transformer or, what is the same thing, to a tapered line.
as discussed below in connection with Fig. 4-27.

Artificial lines find extensive use in radio work for impedance matching

1 The relations between the impedances of such a symmetrical artificial line and the
constants Z, and « + jB8 of the equivalent transmission line are:
For symmetrical T section of Fig. 4-21a (Z, = Z,):

Zo = VZ? + 22,2, (4-25a)
coeh (a +8) = 1 + 2! (4-255)
For symmetrical x section of Fig. 4-21b (Zx = Zp):
» _ ZaZe (4-260)
cosh (« + i8) -1+§§ (4-26b)

Corresponding formulas for unsymmetrical artificial lines (that is, Z: »# Z; and
Z4 % Zs) are given by F. E. Terman, “Radio Engineers’ Handbook,” p. 208,
McGraw-Hill Book Company, Inc., New York, 1943.
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introducing phase shifts. Networks for these_ purposes are com-
;de(fio:)fl n:eactivenilzments having the sn'!allest_ possible rem?tance and
conductance in order that the artificial I_me will (Eon'sum.e httle. or no
energy. In this way it is possible to realize an artlﬁcm.l. hpe which has
almost zero attenuation and which simultaneously has resistive values for
the characteristic impedances. The only effect that the presence of such
an artificial line has on a traveling wave, other than the transformation ‘in
impedance level that may be present, is the introduction of a phase shift,
of B radians in the wave involved.!

Design of T and x Reactive Networks.® The design of an ideal network
composed of reactive impedances with zero losses to give assigned values
Ry and R; of characteristic impedance and to introduce a desired phase
shift B can be carried out with the aid of the following relations:

For T section:

- Ry cos § — VRiR,

%= sin 8

v . ’f! Co8 ﬁ - '\/RIFZ

Ly= —j— sin g (4-27)
VR

I §n 8
For x section:
Z, = j__ﬂ_l_lg’ sing
! Ry cos g — \/]le;

_-.&E.’_.Sin _.ﬂ (4‘28)

’ =JR1008.5- \/ﬁ
Zc =ij;R,sinﬁ

The reactances obtained from these equations are inductive or capacitive
according to whether their sign is + or —, respectively. R, and R, are
the two values of characteristic impedance associated with the network.
The angle 8 in Eqs. (4-27) and (4-28) is the angle by which the phase of
the wave reaching the output terminals of the network lags behind the
phase that the corresponding wave had at the input terminals; a negative
value of 8 is possible and indicates that passage of the wave through the
network advances the phase. It s to be noted that this phase shift is the
same irrespective of the direction in which the wave travels through the
network. A single reactive T or x scetion is capable of transforming the
impedance level from any assigned resistance R, to any other resistance

! It is customary to discuss the behavior of an artificial line in terms of the incident
and reflected waves that would exist on the cquivalent transmission line. Although
these wave trains cannot exist, physically on the artificial line, the behavior, in so far
as the terminals are concerned, is exactly as though they were present,

* For further information on design details see F. E. Terman, “Radio Engineers’
Handbook,"” pp. 210-215, McGraw-Hill Book Company, Inc., New York, 1943,
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Rs, without restriction on the values of these resistances, and is capable
of introducing phase shifts of any desired value between 0 and +180°.

In case the load (or for that matter the generator) has a reactive
impedance component, this reactance can be used to supply part of the
reactance required by the network. For example, if a load impedance
R. + jX. is connected to the right-hand terminals of the T network of
Fig. 4-21a, then one would consider X to be part of the impedance Z,
of the impedance-matching network. In the same way, if the load is
regarded as a resistance shunted by a reactance, then the shunting
reactance can be used to supply part of the shunt impedance Z; of the »
section of Fig. 4-21b.

L Reactive Networks. An L network composed of reactive impedances
is able to transform from one arbitrarily assigned characteristic impedance
to a second arbitrarily assigned characteristic impedance. However,
since the L network contains only two circuit elements, the phase shift 8
introduced by the L section is determined by the ratio of these two imped-
ances. The design equations of a reactive L network in terms of the
characteristic impedances R, and R at the two pairs of terminals are,
assuming the configuration of Fig. 4-22, and that R, > R,,

Zy = £jVEy(R: — E»)
s Ry
Z; = FjR, o (4-29)
One may employ either the two top signs, or the two bottom signs. The
phase shift 8 corresponding to the characteristic impedances R, and R, is

(4-30)

4-13. Directional Couplers.! A directional coupler is a device that
couples a secondary system only to a wave traveling in a particular direc-
tion on a primary line, and ignores entirely the wave traveling in the
opposite direction.

Loop-type Directional Coupler. A number of types of directional
couplers have been devised. One example is illustrated in Fig. 4-23a.
This is a coaxial arrangement in which the secondary system consists of
lines A and B interconnected by coupling loop D that projects into the
primary line in such a manner as to be subjected to the simultaneous
influence of the electric and magnetic fields produced by the waves
traveling on the primary line.

The operation of this arrangement will now be explained. Assume
that & wave is traveling on the primary line toward the right. The

1 For a further discussion, together with an extensive list of references on the subject,
see Terman and Pettit, op. cit., p. 57.
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electric field of this wave induces a charge on the loop D that produces
a wave in part A of the secondary syste{n, a.m.i als.xo a wave in Em.rt B
The equivalent circuit that describes this action is l!lustrated in Fig.
4-23b; it consists of a voltage E, that is applied to coaxial systems A. and
B in parsllel through series capacitance C,, prod}lcillg ?urrents as md.i-
cated by the arrows. At the same time loop D links with the magnetic
flux from the wave in the primary line, and therefore has a voltage E.
induced in series with it, as illustrated by the equivalent circuit of Fig.

02
TERMINAT ION

VARD

(OR POWER) %ﬁ —

ELECTRIC
COUPLING

MAGNETIC
COUPLING

(b)) EQUIVALENT CIRCUITS
Fire. 4-23. Loop type of directional
coupler for coaxial line, together with
equivalent circuits that take into ac-
count the effects produced by the electric

4-23b. This series voltage gives
rise to an additional wave in A and
likewise a second wave in part B.
These magnetically induced waves
are characterized by currents that
flow in the directions indicated by
the arrows.

The two waves in section A pro-
duced by magnetic and electro-
static coupling, respectively, are of
the same polarity and so add, while
the two waves produced in section
B are of opposite polarity and so
tend to cancel each other. It is
accordingly apparent that if the
electric and magnetic couplings are
so proportioned that the waves in-
duced by the magnetic effect have
the same amplitudes as the waves

and magnetic ficlds on the primary line, induced by the electric coupling,

then complete cancellation takes place in section B. When this is the
case, then a wave traveling to the right in the primary line will induce
only one resultant wave in the secondary system, namely, a wave that
travels in the direction of A. No wave is induced that travels in
direction B.

The relative magnitude of electric and magnetic couplings in Fig. 2-23a
can be readily controlled by the design of the coupling loop D. The elec-
tric coupling depends on the amount of electric field that terminates on
the loop, and so is determined by the length of the loop and by the width
(or diameter) o: its conductor. Similarly, the magnetic coupling is
determined by the amount of magnetic flux that links with the loop, and
8o is determined by the area enclosed between the loop and the outer con-
ductor and by the orientation of the plane of the loop with respect to the
axis of the line.

Assuming that the coupling arrangement in Fig. 4-23 has been designed
8o that a wave traveling to the right on the primary system produces no
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induced wave in part B, then consider the effect of a wave traveling to
the left in the primary system. The component waves induced in A and
B by the electric and magnetic fields in the primary coaxial line will again
be equal to each other, since their relative magnitudes are not affected
by the direction of travel of the primary wave. However, the polarity of
the waves produced by magnetic coupling will now be reversed with
respect to the polarity of the induced waves resulting from electric
coupling. Accordingly, the two waves induced in A now cancel each
other, while the two waves induced in B add. Consequently, a wave
traveling to the left in the primary line produces no effect in section A4,
but does produce an induced wave traveling to the right in section B.
By terminating B of the secondary system in its characteristic impedance,
this induced wave is absorbed. The final result is that any wave travel-
ing to the left in section A is determined only by the wave traveling to
the right in the primary system, and is independent of the presence or
absence of a wave traveling to the left in the primary system. Thus one
has achieved a directional coupling
system. ﬁ:[avuanr, \

It is to be noted that to obtain >, F——"% —
the directional action it is abso- :
lutely necessary that B be ter-
minated in its characteristic
impedance. If the impedance ter-
minating B produces a reflection,
the resulting reflected wave will
return along line B, pass through
the coupling loop, and enter A. The actual wave traveling to the left in
A will then be the resultant of the desired effect produced by the wave
traveling to the right in the primary line and an undesired effect propor-
tional to the product of the amplitude of the wave traveling to the left in
the primary system and the reflection coefficient at the termination of B.

Two-hole Coupler. A quite different type of directional coupling sys-
tem is shown in Fig. 4-24. This is known as a two-hole coupler, and
consists of primary and secondary systems which are coupled either elec-
trically or magnetically at two points separated by an odd multiple of a
quarter wavelength. It is essential that the coupling at each of these
two points be either primarily electric or primarily magnetic. This
result can be achieved by using probes (for electric coupling), loops (for
magnetic coupling), or suitably shaped and oriented slots that favor
either one or the other type of coupling.! In the two-hole coupler a wave
traveling to the right in the primary system gives rise to a wave that also

! Details relating to the use of slots as a means of coupling are discussed on p. 133.

The narrow axially oriented slots in Fig. 4-24 provide coupling that is predominately
elec i

f \ \
COUPLING SLOTS
PRIMARY LINE (LONG AND NARROW)

F1e. 4-24. Example of two-hole direc-
tional coupler for coaxial line.
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travels to the right in the secondary system, but not to a wave traveling

to the left; similarly, a wave traveling t? the left in the primary system
gives rise to a wave traveling to the left in the secondary system, but not
to a wave traveling to the right. This ret.ault comes about becaul.se
although each hole induces waves that travel in t:,he secondary aystem. in
hoth directions away from the coupling point, the induced waves tra.veln.xg
in the favored direction away from the two holes add in phase, while
those in the reverse direction cancel exactly if they are of equal amplitude,
provided the holes are an odd multiple of a quarter waveleng‘th apal:t.

Directivity and Coupling in Directional Couplers. In an ideal direc-
tional coupler, the secondary system will respond only to a wave traveling
in the favored direction on the primary line. In actual directional
couplers, mechanical imperfections, frequency differing from the design
value, second-order effects, ete., will ordinarily result in a small output
being produced by a wave traveling in the backward direction. The ratio
of the responses to waves traveling in the two directions on the primary
is called the directivity of the coupling system, and is commonly expressed
in decibels. Thus a directivity of 30 db means that the undesired induced
wave is 30 db weaker (representing only one-thousandth as much power)
than the desired induced wave when equal waves travel in opposite direc-
tions on the primary line.

The ratio of power induced in the secondary system by a wave traveling
in the desired direction on the primary line to the power of this wave on
the primary line is called the cou-
-— s E;' pling of thedirectional coupler. The

L—! coupling is ordinarily expressed in
IRREGULARITY " decibels, and represents the attenua-
tion introduced by the coupling
system.

4-14. Miscellaneous Aspects of
Transmission Lines. Transmission-
line Irregularities—Discontinuity

T o
< POSITION ALONG LINE LA Capacitance. When a wave travel-

Fia. 4-25. Diagram illustrating standing ~ : o 3
waves produced on the generator side ing along a transrm_sslon ,lm? el.l"
of an irregularity in the case of a trans-  counters an isolated discontinuity, it

mission line terminated with & load. is partially reflected; i.e., while a
L’;‘fﬁ:’l‘;‘n"; equal to the characteristic | otion of the wave continues to
travel down the line, another portion
of the wave is reflected backwards. Thus, in a transmission line ter-
minated with a load equal to the characteristic impedance, an irregularity
at some point on the line as shown in Fig. 4-25 will cause standing waves
to exist on the generator side of the irregularity, as indicated.

Irregularities may be introduced in many ways. Typical causes are
sharp bends, insulating supports, joints possessing resistance, coupled
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Skc. 4-14] MISCELLANEOUS ASPECTS OF LINES 119

circuits, and extraneous objects that affect the electric or magnetic field,
such as probes, dielectric or metal bodies, etc.

A type of irregularity that is particularly important at very high fre-
quencies results from the distortion of the electric and magnetic fields
associated with a change in line geometry. Consider, for example, a
coaxial line in which the characteristic impedance changes abruptly as a
result of a change in diameter of the outer conductor, as illustrated in
Fig. 4-26a. It can be shown! that the distortion of the electric and mag-
netic fields in the vicinity of the
junction is equivalent to shunting a / /%L_______._}_

capacitance across the junction, as
shown in Fig. 4-26b, in addition to L__memu———
whatever effects are caused by the ,l

change in characteristic impedance. (a) JeTulL SITUATION, SHOWING ELECTRIC
This “discontinuity capacitance” is |

ordinarily only a few tenths of a

. . Z 27—
micromicrofarad; however, at ultra- = ? ld
| —OISCONTINUITY

high frequencies and higher fre- A I ANCE
quencies its reactance becomes low

chough to affect the behavior SRS ST,
signiﬁcantly. g;IAE‘I’LEI‘\:l;ERfCII;'Irngcc(JUNT DISTORTION

A discontinuity capacitance i8  Fic. 4-26. Transmission line with dis-
ordinarily present whenever a geo- continuity in the characteristic imped-

: \ : ance, showing distortion of the electric
metrical change occurs. Thus, in g 3% "o iee "and how this is taken

Figs. 4-16 and 4-18, the change in  into account by postulating a discon-
geometry at the points where the tinuity capacitance at the point of
stubs are. connected to the lines has ;‘;;fﬁ‘t’;"::lti har ;«ti::’t;a: iﬁpﬂc‘l‘;ﬂ‘t:f""'
an effect equivalent to a small

capacitance connected in shunt across the coaxial line at the junction
point. This shunting capacitance is in addition to the shunting action
of the stub.

Tapered Transmission Lines.? A length of transmission line in which
the characteristic impedance varies gradually and continuously from one
value to another is said to be tapered. A traveling wave passing through
such a section will have its ratio of voltage to current transformed in
accordance with the ratio of the characteristic impedances involved.

The requirement for a satisfactory taper is that the change in charac-
teristic impedance per wavelength must not be too large; otherwise the

!See J. R, Whinnery, H. W. Jamieson, and T. E. Robbins, Coaxial Line Digcon-
tinuities, Proc. IRE, vol. 32, p. 695, November, 1944,

? For further information see Wilbur N. Christensen, The Exponential Transmission
Line Employing Straight Conductors, Proc. IRE, vol. 35, p. 576, June, 1947; Charles
. Burrows, Exponential Transmission Line, Bell Systen Tech. J., vol. 17, p. 855,
October, 1938; Harold A. Wheeler, Transmission Line with Exponential Taper,
Proc. IRE, vol. 27, p. 65, January, 1939; Moreno, op. cit., pp. 53-55.
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tapered section will introduce & reflection. Tnat is, if the change in
characteristic impedance per wavelength is excessive, thet{ the tapered
section acts as a’lumped irregularity rather than producing merely a
ransformation.

gml’“dr‘::rlx t1;hese considerations it follows that a tapered section of trans-
mission line acts as a perfect impedance transformer at the higher fre-
quencies. However, as the frequency is lowered, such a section finally
fails to be satisfactory as an impedance transformer, because the distance
represented by a wavelength, and hence the change in characteristic
impedance per wavelength, becomes greater. Thus as the frequency is

reduced the taper introduces an in-

creasingly large reflection. The prac-

%///////7//////// Z 72z tical lower-frequency limit of useful-

przrrzzz ness of a tapered section that thereby

% TAPERED SECTION - results corresponds to the frequency
(a) COAXIAL TAPERED SECTION for which the characteristic imped-
ance changes by a factor between

——— about 1.3 and 4.0 per wavelength,

2o _____________._----——f--—:E with the exact value depending upon
the standing-wave ratio that can be

\e—74PERED SECTION—>]
tolerated.
() TWO-WIRE TAPERED SECTION v .
F1a. 4-27. Tapered line. A line can be tapered by varying

the spacing of the conductors in the
case of a two-wire line, or by varying the diameter of the inner (or outer)
conductor in the case of a concentric line. ‘The ideal type of taper is one
in which the characteristic impedance changes uniformly with length, so
that the higher derivatives of the rate of change of characteristic imped-
ance with length are minimized. However, nearly as satisfactory
results are obtained by the much more practical arrangement shown in
Fig. 4-27, in which the spacing varies linearly with distance. Such
straight-line tapers are accordingly used in ordinary practice.

Quarter- and Half-wave Transformers. Sections of transmission lines
that are exactly a quarter wavelength or a half wavelength long have
unique impedance-transforming properties that are frequently made uge
of in radio work. Thus consider the situation illustrated in Fig. 4-28.
When the length [ of the line is exactly an odd number of quarter wave-
lengths, then to the extent that the losses in [ can be neglected, the imped-
ance looking ini+ the system is

Z, = Z,,‘f (4-31)

where Z, is the characteristic impedance of the line . When the load

im.peda.nee Z, is = resistance, the effect of the line is thus to transform

this resistance into another resistance Z, that is inversely proportional to
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the resistance Z.. Again, when Z, is a capacitive reactance,then the
impedance-transforming action of the line causes Z, to be an inductive
reactance having a magnitude inversely proportional to the capacitive
reactance of Zp.

In an arrangement such as illustrated in Fig. 4-28, the ratio of imped-
ance transformation obtained can be varied by adjusting the character-
istic impedance Z, of the connecting transmission line I. In the case of a
two-wire line, this is readily accomplished by varying the spacing between
the conductors that form the line.

With coaxial lines, one can change IL ! -
the diameter of the inner condue- , _= 12
tOf, or can n.].O\.'e the lnn.er c?nduo- \LINE WITH CHARACTERISTIC bt
tor so that it is eccentric with re- IMPEDANCE + Zo

spect to the outer conductor. F1q. 4-28. Transmission line as an imped-

When the tiansmission line of ®0°¢ transformer.

Fig. 4-28 is exactly a whole number of half wavelengths long, then
Zl = ZL (4’32)

This relation holds irrespective of the characteristic impedance of the line
provided only that the line losses can be neglected. The half-wave line is
thus a one-to-one impedance transformer. A typical practical applica-
tion of such an arrangement is to provide a short circuit across an inacces-
sible pair of terminals. This can be achieved by connecting a transmis-
sion line to these terminals and then placing
grec™c  a short circuit across the line at an accessible
wmagneric  point that is exactly a whole number of half
LInES wavelengths away from the terminals across
which it is desired that a short cireuit exist.
; Higher-order Modes. When the spacing be-
- tween the two wires of a transmission line
Fia. 4-20. First higher mode  €Xceeds a half wavelength, or when the cir-
in a coaxial transmissionline. cumference of a coaxial line exceeds a wave-
length, it is possible for energy to propagate
down the transmission line by using configurations of electric and mag-
netic fields that differ from the field arrangements ordinarily associated
with transmission lines. These special configurations are termed higher-
order modes. 'The first such higher-order mode that can exist on a coaxial
transmission line is illustrated in Fig. 4-29. Fields of this particular type
will propagate freely provided that the arithmetic mean circumference
exceeds the wavelength )’ in the cable, i.e., when

N<alte (4-33)

Where g and b are the radii of the inner and outer conductors, respectively.
Modes of still higher order are also possible on two-wire lines.
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i the higher mode (or modes), compared wx'th the
am'l;;ll)i:u;:li}“t::en:frmal mogl: is determined by the extent to which the
method of applying voltage to the cable produces a field oon'ﬁgur;at;on
corresponding to the higher mode (or modes). However, evenif a hlgher
mode is produced at the terminals of a tra.nsmmsan line, the mode will
not propagate along the line unless the wavelength. is less than th? cuto.ﬁ
value given by relations such as Eq. (4-3:-?). This can hap?en in ordi-
nary cables and lines only at the higher microwave fl:eq.uen(.:les. )

Loaded Lines. A loaded line is an ordma.r).r transmission line to which
lumped elements, usually capacitances or inductances, are added at

BT — TR — —

— T — Y — T~ ———
Q) SERIES INDUCTANCE LOADING (5} SERIES CAPACITANCE LOADING
EENNERE:

i T

(€} SHUNT INDUCTANCE LOADING (d) SHUNT CAPACITANCE LOADING

A LTI I T I I T T T

W
§////////////////

N

(€) UNDERCUT BEADS
Fia. 4-30. Examples of loaded transmission lines.

regular intervals, as illustrated in Fig. 4-30. When these lumped loading
impedances are spaced uniformly at distances that do not appreciably
exceed a quarter wavelength, they act almost ‘exactly as though their
impedances were uniformly distributed. However, if the frequency is so
high that the spacing appreciably exceeds a quarter wavelength, then the
loading impedances act ag irregularities that tend to prevent transmission.

The most common use of loading is in connection with telephone cables
where inductance coils are commonly added at regular intervals, as in

lowering the velocity of propagation. Also, if most of the line losses
result {rom the serieg resistance of the line, the attenuation constant is
reduced by inductive loading. Loading by means of series capacitances,
a8 in Fig. 4-30b, reduces the characteristic impedance and increases the
phase vel?city to & value greater than that of light, while shunt induct-
ances as in Fig. 4-30¢ increase both characteristic impedance and the
pha‘se velocity. These results follow from Eqgs. (4-18¢) and (4-18¢), by
noting that series inductive loading increases the equivalent line induct-
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ance, and series capacitive loading reduces it, while shunt loading similarly
increases the equivalent line capacitance if capacitive, and reduces it if
inductive.

An important case of loading is provided by the beads sometimes used
to support the center conductor of a concentric cable having air insulation.
These beads introduce localized additions to the line capacitance and so
represent shunt capacitive loading, as illustrated in Fig. 4-30d. This has
the effect of increasing the effective line capacitance and thereby lowering
the characteristic impedance and the velocity of phase propagation, as
well as fixing an upper frequency beyond which the line does not behave
properly. In order to overcome these effects, the beads are sometimes
undercut, as in Fig. 4-30e. Here the reduction in diameter of the center
conductor is 8o chosen as to make up for the increased dielectric constant
of the space occupied by the bead, as well as the discontinuity capacitance
introduced by the bead. In this way the characteristic impedance of the
section containing the bead can be made the same as that of the portion
of the line having only air insulation.

PROBLEMS AND EXERCISES

4-1. Assume that Fig. 4-1 is modified so that the length ! is measured from the
generator or sending end of the line instead of from the load end as in Fig. 4-1. Set
up the differential equations of the line in terms of this notation, and obtain a solution
to the transmission line analogous to Eqs. (4-6), but in terms of the amplitudes E], E},
I, and I of the individual waves at the generator end of the line.

4-2. Redraw Fig. 4-2b, ¢, and d for (a) an attenuation that is considerably greater
than in Fig. 4-2, and (b) zero attenuation.

4-8. In a transmisgion line 100 ft long terminated so that only the incident wave is
present, the power at the load end of the line is 1.2 db less than at the generator end,
What is the value of « per foot?

4-4. Derive Eq. (4-14).

4-5. In a transmission line in which Z, = 50 ohms, calculate and plot the reflection
coefficient as a function of load resistance for load resistances ranging from 0 to
250 ohms.

4-8. In a transmission line in which Z, = 50 ohms and which has a reactive load,
calculate and plot the magnitude and phase angle of the reflection coefficient as a
function of load reactance in the range from —;100 ohms to +3;100 ohms,

4-7. Derive Eq. (4-15). In doing this, start by assuming that the incident wave at
point a is E., and then exprees the magnitudes of the various waves at ¢ and b in
terms of E. and IP.I-

4-8. Derive Eq. (4-16a).

4-9. a. The line conductance will be negligible in a transmission line with air
dielectric. Under these conditions the attenuation constant « of a radio-frequency
line is proportional to the square root of the frequency. Explain.

b In a coaxial transmission line with solid dielectric, the dielectric losses st
extremely high frequencies will be very much greater than the losses resulting from
the line resistance. Under these conditions, how does the attenuation constant «
vary with frequency?
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transmission line with air dielectric is 20 m long. What is the line length,
m;llg.e:in wuvelengt.;n, and what is the value of 8 at frequ.eneiel of 10 and 100 M‘o?
4-11. Show vector diagrams and curves for the current distributions that go with
the voltage distributions in Fig. 4-3a and b. On the resulting curves show the voltage
istributions of Fig. 4-3 by dotted lines. .
du‘t.nll;:.ltg:w ofr‘ses mdyveetor diagrams similar to those of Fig. 4-3b, except for
case p = 0.5/180°.
th:-u. (‘;dcuhé;l; exact distance from the load in wavelengths at which the first
voltage maximum occurs in Fig, 4-4f when Z2.YZ, = j0.5. o

4-14. Sketch the voltage distribution on a low-loss transmission line in the manner
shown in Fig. 4-4, but for the case where Z./Z, = 2.0/45°.

4-18. Sketch curves of voltage and current distribution on a low-loss transmission
line analogous to the curves of Fig. 4-4, but for the following load impedance condi-
tions. (Note: In each case calculate location and relative amplitude of minima and
maxima accurately, and show these minima and maxima in correct positions and in
correct magnitudes in the sketch, carrying the curves for a distance of slightly more
than one wavelength from the load end of the line.)

a. Reflection coefficient at load = 0.2/0°.

b. Reflection coefficient at load = 0.8/0°.

¢ Reflection coefficient at load = 0.8/45°.

d. Reflection coefficient at load = 1.0/ —45°,

4-18. Derive a formula giving the distance from the load to the first minimum of
voltage in terms of the phase shift B per unit length of line and the phase angle 3 of the
ooefficient of reflection of the load.

4-17. Sketch curves analogous to those of Fig. 4-5, except applying to a short-
circuited load.

4-18. Sketch curves analogous to those of Fig. 4-6, except assume that the attenua-
tion of the line is approximately twice as great as in Fig. 4-6. For purpeses of com-
parison, sketch the solid curves from Fig. 4-6 on the same axes,

4-18. Derive Eq. (4-22q) starting with Eq, (4-21).

4-20. Calculate and plot the standing-wave ratio as a function of Z./Z, for resistive
loads, for values of this ratio ranging from 0.1 to 10.0.

4-31. Prove that resistive loads of R: and R, will produce the same standing-wave
ratio provided R\R, = Z.

4-22. Sketch curves similar to those of Fig. 4-10a and b, except applying to cases
where the load is (a) a resistance greater than the characteristic impedance, and (b) an
open circuit, respectively,

483 Ina transmission line having negligible losses, derive formulas giving, respec-

load and the characteristic impedance of the line,

4-8¢. Sketch curves similar to those of Fig, 4-10» except applying to a transmission
line baving considerably greater attenuation, .

4-28. When the load impedance of a transmission line is & resistance R,, prove that
8 = Ri/Zywhen R, > Zy, and likewige that S = Zo/Ry when Ry, < Z,,

) Note that this proof shows that the standing-wave ratio corresponding lo any particular
cirdemlhcﬂmithchartiaoivmbytheintcrudioanthhdrdewﬂhthehmﬁmm,
a8 slated in the second Paragraph on page 101.

’4-30. In a particular transmission line the load impedance is such that

Z5 = (0.8 - j0.6)2,

With the aid of the Smith chart, determine the standj -wave ratio on the line, and
the magnitude and phase angle of the reflection ooeﬂidld?;:t. e
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4-87. Assuming that the line of Prob. 4-26 has negligible losses, plot the magnitude
and phase of the line impedance as a function of distance from the load up to a dis-
tance alightly greater than one wavelength. Make use of the Smith chart to deter-
mine the resistive and reactive components of the impedance.

4-28. An impedance of 356 + j75 ohms is connected across the load end of a trans-
mission line having a characteristic impedance of 60 ohms,

a. With the aid of the Smith chart, and assuming that the line has negligible losses,
determine the standing-wave ratio produced on the line, and also the input impedance
of the line when the line length is 1.8A.

b. If the total attenuation of the line is 1.4 db, determine the standing-wave ratio
and the line impedance at the generator end of the line.

¢. Tabulate the results from (a) and (b) side by side, and explain in physical terms
how attenuation accounts for the differences observed.

4-29. With the aid of the Smith chart determine the magnitude and the phase
angle of an impedance which, when placed at the receiving end of a transmission line
having the characteristic impedance Ry = 75 ohms, would account for an observed
standing-wave ratio of 1.65 with a voltage distribution such that the voltage minima
with a short-circuited load are 0.2\ closer to the load than the voltage minima pro-
duced by the impedance to be measured.

4-30. Same as Prob. 4-29, except that S = 2,10, and the minima with a short-
circuited load are 0.10A closer to the generafor than the minima produced by the
impedance to be determined.

4-81. A concentric transmission line having copper conductors and air insulation
is short-circuited at the receiving end and is to be in quarter-wavelength resonance
at a frequency of 100 Mc. Determine (a) the smallest diameter of the outer concentric
line for which a Q of 5000 can be obtained, and (b) the sending-end impedance of the
line in a.

4-32. A resonant quarter-wave coaxial transmission line 25 cm long has b = 1 cm
and b/a = 3.6. Determine the resonant frequency, Q, and standing-end impedance.

4-38. A load impedance is connected to a transmission line and. is found to produce
a standing-wave ratio of 2.0. The first voltage minimum occurs at a distance of
0.4. wavelength from the load. Design a stub-line impedance-matching system for
this situation. !

4-34. A load impedance of 70/30° is connected to a concentric transmission line
having a characteristic impedance of 50 ohms. Calculate the resulting standing-wave
ratio and the location of the voltage minima. From this information specify the
length and position of a stub line that will match the load to the transmission line.

4-85. Assume that the double-slug tuner of Fig. 4-19) is adjusted to give an imped-
ance match. Will this impedance match be destroyed if the right-hand slug is then
displaced a half wnvelength to the right, while leaving the position of the other slug
unchanged?

4-36. A short-circuited lossy line is used to terminate a transmission line. How
much total attenuation must the lossy line have if the standing-wave ratio on the
terminated line is not to exceed S8 = 1.10? Assume the lossy line is open-circuited.

4-37. Design a reactive T network that at 1000 ke will match a load impedance of
100 ohms to a line having a characteristic impedance of 50 ohms, and introduce a
phase shift of 30° leading in the load current.

4-38. Design a reactive T network that will match a load impedance of 100 + j50
ohms to a 50-ohm line, and introduce a phase shift of 30° leading in the load curren

4-39. Explain how the directional coupler of Fig. 4-23 can be arranged so that
wave in the secondary section B is proportional to the wave traveling to the left on
the primary line and is not affected by the primary wave traveling to the right.

4€-40. Explain how one could measure the magnitude of the reflection coefficient
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126
paratus including (a) & directional coupler of the type illustrated in

line by a; e bed
;‘x"‘g.‘ 4-n2§, :'ndp(b) two instruments suitable for measuring voltage on transmission

lines. )
ml-&l.. In the directional coupler system of Fig. 4-23, assume that the left-hand

side of the secondary system (i.e., line 4) is terminated by & load equal to the charac-
‘teristic impedance but that the right-hand is not. Under these oo?dmom prove
that the intensity of the secondary wave traveling to the right in B is proportional
to the strength of the primary wave traveling to the left, irrespective of the presence
or absence of a primary wave traveling toward the right, but that the secondary
wave traveling to the left in A is dependent on both the primary wave traveling to the
left and the primary wave traveling to the right.

4-42. Give a detailed explanation of why the two-hole directional coupler of Fig.
4-24 theoretically can give ideal directional coupler action only when the hole spacing
is exactly nA/4, where n is odd. Include a justification for the fact that increasing the
spacing by a half wavelength makes no difference.

4-43. A two-hole coupler such as illustrated in Fig. 4-24 is operated at a frequency
5 per cent higher than the value that makes the hole spacing exactly A/4. What is
the directivity in decibels caused by this incorrect operating frequency?

4-44. Sketch a curve similar to that of Fig. 4-25, except for an irregularity that is a
series resistance equal in magnitude to the characteristic impedance. Be careful to
show the correct standing-wave ratio on the generator side of the irregularity, as
well as the correct location of the minima with respect to the irregularity, and also
show the voltage drop in the series resistance,

4-48. In Fig. 4-25, the irregularity consists of a shunt discontinuity capacitance of
0.2 puf. Determine the standing-wave ratio on the generator side of the irregularity
at 100 and 10,000 Mc, assuming that the characteristic impedance of the line is
80 ohms.

4-46. Two coaxial lines having characteristic impedances of 50 and 100 ohms,
respectively, are to be joined by a tapered section. If it is desired that the reflections
introduced by the tapered section be kept very small in the frequency range 2000 to
11,000 Mec, determine the minimum length of tapered section that can be used.

4-47. A load resistance of 300 ohms is to be matched to a two-wire transmission
line having a characteristic impedance of 600 ohms by means of a quarter-wave
matching line, What characteristic impedance must the matching line have?

4-48. From the behavior of incident and reflected waves, demonstrate the correct-
ness of Eq. (4-32).

4-490. In a particular coaxial transmission line, b/a = 3.6 and b = 1 em. What
is the shortest wavelength that can be transmitted on the line without danger of a
higher-order mode being generated?

4-80. Explain with the aid of Eq. (4-18c) why the different types of loading illus-
trated in Fig. 4-30a to d have the effects on phase velocity summarized on page 122,
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CHAPTER 5

WAVEGUIDES AND CAVITY RESONATORS

6-1. Waveguides—General Considerations,? A hollow conducting
tube used to transmit electromagnetic waves is termed a waveguide. At
ultra-high and microwave frequencies, waveguides provide a practical
alternative to transmission lines for the transmission of electrical energy.

Any configuration of electric and magnetic fields that exists inside a
waveguide must be a solution of Maxwell’s equations. In addition, these
fields must satisfy the boundary conditions imposed by the walls of the
guide. To the extent that the walls are perfect conductors there can
therefore be no tangential component of electric field at the walls. Many
different field configurations can be found that meet these requirements.
Each such configuration is termed & mode.

A critical examination of the various possible field configurations or
modes that can exist in a waveguide reveals that they all belong to one
or the other of two fundamental types. In one type, the electric field is
everywhere transverse to the axis of the guide, and has no component

1The practical possibilities of waveguides as transmission systems for very high-
frequency waves was discovered independently and almost simultaneously by W. L.
Barrow and G, C. Southworth. Fundamental papers on the subject include: W. L.
Barrow, Transmission of Electromagnetic Waves in Hollow Tubes of Metal, Proc.
IRE, vol. 24, p. 1208, October, 1936; G. C. Southworth, Hyper-frequency Wave
Guides—General Considerations and Experimental Results, Bell System Tech. J.,
vol. 15, p. 284, April, 1936; L. J. Chu and W. L. Barrow, Electromagnetic Waves of
Hollow Metal Tubes of Rectangular Cross Section, Proc. IRE, vol. 26, p. 1520,
December, 1938.

2 The discussion given here of waveguides is intended to provide a description of
their more important characteristics, together with formulas for calculating quantita-
tively their principal characteristics. The rigorous derivation of the quantitative
relations existing in waveguides is a specialized subject that would take more space
than is available in a book of this type. The reader who wishes to study the tech-
niques by which waveguide equations are derived is referred to Ramo and Whinnery,
“Field and Waves of Modern Radio,” John Wiley & Sons, Inc., New York, 1944;
H. H. Skilling, “Fundamentals of Electric Waves,” John Wiley & Sons, Inc., New
York, 1948. An excellent discussion of the physical phenomena involved in wave-
guides is given by H. G. Booker, The Elements of Wave Propagation Using
Impedanee Concept, J. IEE, vol. 94, part III, p. 171, May, 1047, Useful summary
information on waveguide techniques is given by M. H. L. Prece, Waveguides, J. IEE,
vol. 93, part IIIA, no. 1, p. 33, 1946; T. E. Moreno, ‘Microwave Transmission Data,”
McGraw-Hill Book Company, Inc., New York, 1048,
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anywhere in the direction of the guide axis; the associated magnetic field
does, however, have a component in the direction of the axis. ) Modes of
this ;ype are termed transverse electric or TE modes (?'190 s.ometl.mes called
H modes). In the other type of distribution, .the situation with respect
to the fields is reversed, the magnetic field being everywhere transverse
to the guide axis while at some places the electric field has componemfs in
the axial direction. Modes of this type are termed transverse magnetic or
T M modes (also sometimes called E modes).! The different mcfdesof each
class are designated by double subscripts, such as TEs,, asexplained below.

The behavior of a waveguide is similar in many respects to the behavior
of a transmission line. Thus waves traveling along a guide have a phase
velocity, and are attenuated. When a wave reaches the end of a guide it
is reflected unless the load impedance is carefully adjusted to absorb the
wave; also an irregularity in & waveguide produces reflection just as does
an irregularity in a transmission line. Again, reflected waves can be
eliminated by the use of an impedance-matching system, exactly as with a
transmission line. Finally, when both incident and reflected waves are
gimultaneously present in a waveguide, the result is a standing-wave pat-
tern, such as illustrated in Fig. 4-4, that can be characterized by defining
a standing-wave ratio.

In some other respects waveguides and transmission lines are unlike
in their behavior. The most striking difference is that a particular mode
will propagate down a waveguide with low attenuation only if the wave-
length of the waves is less than some critical value determined by the
dimensions and the geometry of the guide. If the wavelength is greater
than this critical cufoff value, the waves in the waveguide die out very
rapidly in amplitude even when the walls of .the guide are of material
having infinite conductivity. Different modes have different values of
cutoff wavelength; the particular mode for which the cutoff wavelength is
greatest is termed the dominant mode.

5-2. Rectangular Waveguides. The most frequently used type of
waveguide has a rectangular cross section, as illustrated in Fig. 5-1. In
such a guide, the preferred mode of operation is the dominant mode.

Field Configuration of the Dominant Mode in ¢ Rectangular Waveguide.
At wavelengths less than the cutoff value, the electric and magnetic fields
representing the dominant mode in a rectangular waveguide have the
character illustrated in Fig. 5-2. Here the electric field is transverse to
the guide axis, and extends between the two walls that are closest together,
i.e., between the top and bottom of Fig. 5-1. The intensity of this elec-

1 Followh?g t!:is system of designation, the field configuration normally associated
with a coaxial line is sometimes called the TEM mode, because both the electric and
magnetic fields are transverse to the axis of the line, The higher-order coaxial mode

illustrated in Fig. 4-20 is a TE mode, since the electric field i
o reted c is everywhere transverse
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tric field is maximum at the center of the guide, and drops off sinusoidally
to zero'intensity at the edges, as shown. The magnetic field 18 in the
form of loops which lie in planes that
are at right angles to the electric field,
i.e., planes parallel to the top and bot-
tom of the guide in Fig. 5-1. The
magnetic field is the same in all of these
planes, irrespective of the position of
the plane along the y axis.

This field configuration travels along
the waveguide axis (in the z direction in
Fig. 5-1).! As it travels a distance !
down the guide, the amplitude will be
reduced by the factor ¢! ag a result of Fie. 5-1. Rectangular waveguide,
energy losses in the walls of the guide, . Ustrating notation.
and the wave will drop back in phase S/ radians, just as in the analogous
transmission-line case, where a and g are termed the attenuation constant
and phase constant respectively.
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F1a. 5-2. Field configuration of the dominant or TE;, mode in a rectangular waveguide,

The field configuration representing the dominant mode illustrated in
Fig. 5-2 is seen to be a transverse electric mode and is designated as the

1 Thus Fig. 5-2 can be regarded as representing a snapshot of the fields as they
exist at some particular moment. As this field configuration travels down the guide,
the fields at any given point vary sinusoidally in amplitude. Thus, although the
fields at position w in Fig. 5-2 have zero intensity, & quarter cyocle later the fields will
have moved a distance \,/4, and the amplitude at w will then be the same as the
amplitude shown for position v in Fig. 5-2.
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o. The subscript 1 means that the ﬁeld. dil:h'ibl'lﬁon in the
glir:e‘:t:::d of the long side of the waveguide (z_ diret.:tlo.n in Fig. 5-1) con-
tains one-half cycle of variation. The subsrjnpt 0 indicates fahat t,he.re is
no variation in either the electric or magnetic field strength in the direc-
tion of the short side (y axis) of the guide. )

The equations giving the fields at frequencies .abo‘.'e cutoff for the
dominant mode in a rectangular waveguide filled with air are as follows:

E,=E =B, =0
E, = A% 5inZ sin (wt — B2)
[ a

B, =—-A cos'-f cos (wt ~ B2) -1

B
B‘ = ;E,,

where E = electric field intensity, abvolts por cm

B = magnetic field intensity, gauss

w/2x = frequency
t = time

A = an arbitrary constant of amplitude
The quantities a, z, y, and z have meanings indicated in Fig. 5-1. Sub-
scripts z, y, and z indicate components in these respective directions.
Finally 8, the phase constant, has the value given by Eq. (5-4) below.

Culoff Wavelength in a Rectangular Waveguide. Field configurations

such as those illustrated in Fig. 5-2 can exist and propagate down a guide
only when the frequency is such that the free-space wavelength is greater
than a certain critical value termed the culoff wavelength, commonly
denoted as A, For the dominant mode in rectangular waveguide, the
cutoffl wavelength is exactly twice the width a of the guide. That is

Cutoff wavelength based

on free-space conditions | A =2a 5-2)

If the frequency is less than the cutoff value, so that the free-space wave-
length is greater than A, then the waves attenuate rapidly with distance
down the guide, as discussed in Sec. 5-8, instead of propagating freely.

The fact that a waveguide must have a dimgnsion approaching a wave-
length in order for the fields to propagate limits the practical use of
waveguides to extremely high frequencies. For example, to transmit
300 Mec the guide width must exceed 20 in.

Each mode that can exist in 8 waveguide has its own cutoff wavelength
The dominant mode is by definition the particular mode having the
!u‘gest possible cutoff wavelength (lowest cutoff frequency). Accord-
ingly, there is usually a frequency range between the dominant and the
next higher mode in which only the dominant mode will propagate
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freely. By 8o proportioning a waveguide that the frequeney to be trans-
mitted Hes in this range, all higher modes are suppressed after traveling a
short distance down the guide; thereafter the only fields present in the
guide will be those of a single pure mode, the dominant mode. In the case
of a rectangular guide so proportioned that a = 2b, such single-mode
operation occurs for free-space wavelengths lying between 2a and a.
This matter is discussed further on page 138.
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F1a. 5-3. Variation of phase velocity and wavelength in waveguides as a function of
ratio of actual wavelength to the cutoff wavelength.

Guide Wavelength, Phase Constant, Group and Phase Velocity. The axial
length A, corresponding to one cycle of variation of the field configuration
in the axial direction (see Fig. 5-2) is termed the guide wavelength. It is
related to the free-space wavelength A and the cutoff wavelength e
according to the equation

. A
Guide wavelength = \, = \/1 o (5-3)

Results calculated from Eq. (5-3) are plotted in Fig. 5-3. It will be noted
that the guide wavelength exceeds the wavelength in free space, with the
ratio of the two becoming increasingly large as the cutoff wavelength is
approached.

The guide wavelength A\, also represents the distance that a wave
travels down the guide when undergoing a phase shift of 2» radians.
Accordingly, the phase constant 8, representing the phase shift per unit
distance traveled by the wave, has the value

NP £ 54
=5 =3 1- (5 ? (5-4)
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where ¢ is the velocity of light. It will be noted that the phase constant

B has the same significance in waveguides as in tmmn lines. .
The quantity v, = fA, is the distance the wave travels in f cycles (i.e.,

one second) and so has the dimension of a velocity. Termed the phase

velocity,! it is related to the velocity of light ¢ by the equation

Phase velocity ~ vp _ As _ 1 (55)
Velocity of light ¢ A VT =)

This relation is plotted in Fig. 5-3. It is seen from Eq (5-5).tha.t the
velocity of phase propagation always exceeds the velocity of light. In
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Fra. 5-4. Top view of TE, field in a rectangular waveguide, showing the effect upon
the guide wavelength A, of reducing the guide dimension a.

particular, as the frequency is lowered so that it approaches the cutoff
value, the phase velocity increases and becomes indefinite at cutoff.
Similarly, as the guide width is reduced so that the cutoff wavelength is
made to approach the free-space wavelength, the phase velocity and A,
increase and 8 decreases. This behavior arises from the fact that, as the
width of the guide is reduced while keeping the frequency constant, the
field configuration required to satisfy Maxwell’s equations is affected in
the manner shown in Fig. 5-4; specifically, compressing the flux sidewise
by narrowing the guide is compensated for by an axial expansion that
increases the guide wavelength and hence the phase velocity.

Currents in Waveguide Walls. The fields inside a waveguide induce
currents that flow on the inner surface of the walls and that can be con-
sidered to be associated with the magnetic flux adjacent to the wall. The

! The phase velocity is an apparent velocity deduced from the rate of phase change
with position along the axis. The actual velocity with which a pulse of energy travels
is termed the group velocity v,,, and is related to vy and ¢ by the equation vyw,r = ct.
Thus the group velocity is less than the velocity of light to the extent that the phase
velocity is greater. This matter is discussed further on p. 142,
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relationship between flux density at the surface of the wall and the cur~
rent flowing in the wall is given by Eq. (2-18). The direction in which
the cutrent flows at any point in the wall is at right angles to the direction
of the adjacent magnetic flux. The resulting lines of instantaneous cur-
rent flow in the walls of a rectangular guide for the dominant mode are
illustrated in Fig. 5-5. In the sides of the guide the current everywhere
flows yertically, since the magnetic flux in contact with the side walls lies
in planes parallel to the top and bottom sides of the guide. In the top
and bottom of the guide there are a transverse component of current pro-
portional to the axial component B, of magnetic field, and an axially
flowing current component proportional at any point to the transverse
magnetic field B,.

F1a. 5-6. Paths of current flow in the walls of a rectangular waveguide when propagat-
iﬂng the dominant mode, showing slots transverse and parallel to the lines of current
ow.

The current in the guide walls penetrates in accordance with the laws
of skin effect, as'given in Eq. (2-9). The depth of penetration is accord-
ingly inversely proportional to the square root of the frequency. At the
very high frequencies at which waveguides are used, this penetration is
very small, and the walls provide practically perfect shielding.

Coupling and Leakage through Slots and Holes in Waveguide Walls. A
hole or joint or slot in the waveguide wall introduces the possibility that
energy will leak from the guide to outer space. When this happens, the
fields inside the guide are affected, thereby introducing an irregularity
with resulting reflection. The coupling thus introduced by a hole in the
guide wall may be either to the electric or magnetic fields inside the guide.
Electric coupling occurs when electrostatic flux lines that would normally
terminate on the guide wall are able to pass through the hole into outside
space. Magnetic coupling results when the hole or slot interferes with
the current flowing in the guide wall. With either type of coupling, both
electric and magnetic fields will be present outside the guide. Thus elec-
tric flux leaking through the hole will induce currents on the outer surface
of the guide that produce a magnetic field. Again, when magnetic flux
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ole, the associated interference with the flow of currents
mt::nm:hro;:ces ’a voltage across th.e hole that gives rise to an electric
field that will extend outside of the guide. )

The nature and magnitude of th? couplmg in any pa:rtwula.r case
depend upon the size, shape, and orientation of the cquphng hole, and
upon the thickness of the guide wall. The factors involved can be
understood by considering the effects produced by long narrow slots
oriented in various ways, a8 illustrated in Flg.. 5-5. Thusslot 1, whnc!x is
transverse to the magnetic field inside the guide and 80 produces & mini-
mum of interference with currents in the guide wall, u}troduce-s ht}:le or
no magnetic coupling. It will, however, permit eleci.;nc coupling if .t.he
slot width is great enough in proportion to the wall thickness to permit a
reasonable number of electric flux lines to pass through the slot. How-
ever, if the slot is in the nature of a joint representing two surfaces fitted
together, or is very narrow, then the electric coupling will be negligible.
Similarly, long, narrow slot 4 produces little magnetic coupling because
it is transverse to the magnetic flux and therefore interferes only negligibly
with the flow of current in the guide wall; neither does it produce electric
coupling because there.is no electric field terminating on the side wall.
Such a slot will therefore have negligible effect even if it is quite long.
In contrast, slot 5, while causing no electric coupling, introduces a sub-
stantial amount of magnetic coupling to outside space through the fact
that its long dimension is parallel to the magnetic field in the guide; this
slot is hence oriented in such a manner as to permit easy escape of mag-
netic flux lines and to interfere to a maximum extent with the wall cur-
rents. This coupling is fully effective even if the slot is quite narrow,
since it is necessary only that the slot interrupt the flow of current in the
wall. Slots 2 and 3 in Fig. 5-5 also give rise to'magnetic coupling, because
they interfere with the flow of current in the guide wall. In the case of
slot 2, the amount of magnetic coupling will be greater the farther the
slot is to the side of the center line of the guide. Slots 3 and 2 will also
simultaneously introduce electric coupling to the extent that the slot is
wide enough in relation to the wall thickness to permit the passage of
electric flux. In the case of slot 2, the electric coupling becomes less the
farther the slot is from the center line, because the intensity of the elec-
tric field terminating on the top and bottom sides of the guide becomes
less as the side walls are approached. .

A-ucmwtim. The propagation of energy down a waveguide is accom-
p_amed by a certain amous* of attenuation as a result of the energy dis-
mpa.t.ed by the current induced in the walls of the guide. The magnitude
of this current at any point is determined by the intensity of the magnetic
field adjacent to the wall at that point, as explained above. The resis-
tivity that the mdu'ced currents encounter is determined by the skin
effect of the wall as discussed in Sec. 2-4, and is proportional to the square
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root of the frequency and the square root of the resistivity of the material
of which the wall'is composed.

The/total energy loss in a waveguide can be calculated by summing up
the IR loss in the top, bottom, and two sides of the guide for each unit
area over & length corresponding to a half wavelength. This is done for
the magnet:c field distribution actually present as calculated by Egs.
(5-1), assuming the field at any one point varies sinusoidally with time;
under these circumstances the rms value of the field (and current) deter-
mines the time average of the power

loss occurring at the point.! i

The energy loss is conveniently ex- g A 2"
pressed in decibels attenuation per g \ e
unit length.  With rectangular guides | e
the loss has the general behavior illus- \ \
trated in Fig. 5-6. It will be noted N e Tf20—
that for each mode there is a particu- |
lar frequency for which the attenua- ooosg g 8 8 8 8
tion is & minimum. This is a result o ¢ & g 5 g
of two opposing tendencies. Thus as FREQUENCY, MEGACYCLES

the frequency is lowered the skin Fyg, 5-6. Attenuation of different
depth becomes greater, causing the modes in a particular rectangular
effective resistivity of the walls to ¢oPPe c‘;‘“‘“’d" 88 & function of
decrease. At the same time, as the ’

frequency approaches the cutoff value for the mode in question, the group
velocity decreases. This causes the magnetic fields adjacent to the walls
to become rapidly stronger for a given rate of energy flow down the guide.

5-3. Higher Modes in Rectangular Waveguides. The dominant mode
is only one of an infinite series of field configurations that can exist in a
waveguide. Fields for several of the higher-order modes that are possible
in a rectangular waveguide are illustrated in Fig. 5-7.2 In addition to
TE modes, these include TM types, in which the magnetic flux lines lie in
planes that are at right angles to the axis of the guide.

These various modes are designated by double subscripts, such as
TElo, TEgo, TEu, TE,.,., TMu, TMu, and TM.".. In this system of
nomenclature the first subscript denotes the number. of half-pericd varia-
tions of the electric (or magnetic) field in the transverse plane in the direc-
tion of the long side of the rectangle (along the z axis in Fig. 5-1); the
second subscript denotes the number of half-period variations of the same
field in the direction of the short side of the rectangle (along the y axis in
Fig. 5-1). ,

1 Formulas for the attenuation of different modes in rectangular waveguides are
given by Moreno, op. cit., chap. 8; they are also to be found in most handbooks.
? Equations for the fields of the various higher modes are to be found in many
reference books; for example, see Moreno, op. cit., p. 115.
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Each mode has its own cutoff wavelength, gfude wavelength, phue
constant, and phase and group velocities. Equations (5-3) to (5-5) giving
relations between these quantities apply to ?he higher-order modes as well
as to the dominant mode [except for the right-hand form of Eq. (5-4)).

() Ty (o) Thg,

—— ELECTRIC FIELD

===== MAGNETIC FIELD
F16. 6-7. Field configurations in the transverse plane for the first four higher modes in a
rectangular waveguide.

The cutoff wavelength in the general case is given by the relation
A = 2q
V/(m*) + (na/b)?
Here a and b have the significance shown in Fig. 5-1, and m and » are,
respectively, the first and second subseripts deseribing the mode. Equa-
tion (5-1), giving the cutoff wavelength of the dominant mode, is & special
case of Eq. (5-5), in whichm = 1andn = 0. Results from Eq. (5-6) are
tabulated in Table 5-1 for a few of the lowest-order modes for rectangular

TABLE 5-1
CUTOFF WAVELENGTHS IN WAVEGUIDES

(5-6)

Rectangular guide Square guide Circular guide
a=2b ea=b) radius = r
Cutoff Cutoff”’ Cutoff
Mode wavelength Mode wavelength Mode wavelength
TE,, 2a TE;, 2a TEy 3.42r
TEOI a TEo; 2a TM" 2.61r
TEn a TEu 1l.4a TEu 2.061‘
TE,, 0.89a TM,, 1.4a TE,, 1.64r
TMn 0.890 TEu a TMu 1.64r
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guides that are square (a/b = 1), and for the shape a/b = 2 that is cus-
tomarily used. .
Generation of Different Waveguide Modes. Any actual configuration

electric and magnetic fields existing in a waveguide can be regarded as
being the result of a series of modes that are superimposed upon one
another. If the magnitude, phase, and position along the axis of each
individual mode is properly chosen, then the sum of the fields of the
individual modes can be made to equal any actual electric and magnetic
fields that can be present. Modes in waveguides are thus analogous to
the harmonics of a periodic wave, since a periodic wave of arbitrary shape

e ELECTRIC FIELD <~ o —>]
e— ¢ f WAVE GUIDE
(snonrm
PLUNGER COAXIAL LINE
(0) SIDE VIEW ,SHOWING ELECTRIC FIELD {5) END VIEW, SHOWING
ELECTRIC FIELD

l MAGNETIC

FIELD

(¢) TOP VIEW, SHOWING MAGNETIC FIELD
Fia. 5-8. Launching of TE,, wave in a waveguide excited by a coaxial line.

can always be considered as being represented by the sum of & series of
properly chosen harmonic components.

The magnitude of each component mode associated with a given con-
figuration of fields is determined by the character of the field distribution
involved. For example, consider the arrangement illustrated in Fig. 5-8,
where a concentric line delivers energy to a waveguide as a result of the
electric and magnetic fields produced in the waveguide by the extension
ef of the center coaxial conductor that extends from the bottom to the
top of the guide. Current in ef generates a magnetic field in the guide,
which lies in planes parallel to the top and bottom sides of the guide. At
the same time, the voltage drop along ef, and the consequent difference in
voltage thereby produced between the top and bottom of the guide, result
in electric fields being produced as shown. This configuration suggests
the TE;o mode, in that the magnetic field lies in planes parallel to the top
and bottom of the guide, while the electric field is vertical and is maximum
midway between the sides of the guide. Thus the TEjo is the largest
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single component in the field configuration of Fig. 5-8. The diﬁ'eneng
between the field configuration of this mode an(! the a,ct.ual field present is
then accounted for by the presence of a succession of higher-order modes,
each of which is of smaller amplitude than the 'IjEw comp?nex}t. These
higher-order modes will be primarily TE types, since examination of Fxg
5-8 indicates that, except to a very minor extept, the} electn(.z ﬁelfi is
everywhere almost cxactly transverse to the guide axis. Again, since
the coupling element ef is located midway between 'the sxd'es, the system
is symmetrical with respect to the center of the guide; -thls means tl.la.t,
for this particular situation, no mode can be present that is unsymmetn.cal
about the guide center; i.e., modes such as the TEz or TE4, cannot exist.

X
SIDE VIEW SECTION THROUGH xx

Fra. 5-9. Rectangular waveguide with vertical stub posts extending into the guide
from the top and bottom sides.

—5 =~

While the modes initially present in s waveguide are determined by the
field configuration used to excite the guide, new modes are generated
whenever the field is distorted. For example, consider the situation in
Fig. 5-9, where an obstacle in the form of a pair of metal posts is present
in the guide, and assume that a TE;, mode is traveling down the guide.
The posts distort both the electric and magnetic fields, which, therefore,
in the vicinity of the posts can no longer have the configuration cor-
responding to a pure TE;y mode. The resulting distorted configuration
can, however, he represented by a TE,, mode of different amplitude from
that which would be present in the absence of the posts, plus super-
imposed higher-order modes.

It is thus seen that an irregularity transforms a portion of an original
made into new modes.  This is true irrespective of the exact nature of the
irregularity, which, for example, can be a bend, a twist, a constructional
irregularity, etc., instead of a post.  Also any arrangement for absorbing
cnergy from the waveguide (ie., a load termination) can in general be
expected to distort the ficld and generate new modes unless special care
is taken to avoid this resylt,

Suppression of Unwansed M, odes. An attempt is usually made to
operate wavegnides so that only a single pure mode is present. In this
way coupling systems and terminations can be designed on the basis of &
definitely known type of field pattern. In meost cases, the dominant mode
is preferred because the guide then has the smallest possible dimensions,
and the undesired modes can be very simply eliminated.,
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A dominant mode, free of higher-order modes, can be obtained by
taking advantage of the fact that the dominant mode has the lowest cut-
off frequency of all possible modes. Thus, by proportioning the guide so
that it is large enough to transmit the dominant mode while too small to
permit propagation of any other mode, the higher-order modes do not
travel down the guide, but rather are confined to the region where they
are generated.

In rectangular guides, mode suppression of this character is most effec-
tive when the guide is so proportioned that a/b = 2 in Fig. 5-1. With
these proportions, there is a two-to-one frequency range over which only
the dominant mode propagates (see Table 5-1, page 136). In contrast, if
the guide were made square, the TEo; mode would have the same cutoff
wavelength as the TE;, mode, and there would be no frequency range
over which only a single mode could propagate. Because of considera-
tions such as this, rectangular guides are practically always proportioned
so that a/b = 2, as this ratio gives the best mode separation of all possible
proportions.

Modes which are beyond cutoff, and so cannot propagate, are some-
times termed evanescent modes. They represent localized field distribu-
tions, i.e., induction fields, that introduce reactive effects but do not
carry energy away from the point of origin as does the dominant mode.
For example, if the waveguide in Fig. 5-9 is so proportioned that only the
dominant mode can propagate, the end result of the field distortion intro-
duced by the post will be equivalent to introducing an irregularity in the
waveguide that causes a portion of the dominant wave to be reflected as
though from a reactive load. In addition, there will be induction fields
in the immediate vicinity of the irregularity that represent reactive
energy obtained from the incident dominant mode. However, if in
Fig. 5-9 the waveguide were made sufficiently large to permit some of the
higher-order modes produced by the post to propagate in the guide, these
modes would then travel away from the post, carrying energy with them
that was derived from the incident dominant mode. The remaining
modes, of such high order as to be unable to propagate, would still be
evanescent modes, and would give rise to reactive effects.

Another method of suppressing undesired modes consists in modifying
the guide in such a manner that fields of undesired modes are interfered
with, while fields of the desired mode are not affected. An example of
such a mode filter is illustrated in Fig. 5-10. Here the metal vanes do not
affect the fields of the TE.,, modes, but do interfere with both the electric
and magnetic fields of any TM or TE,, mode that might be present.
Thus such an arrangement is an effective means of suppressing the trans-
verse magnetic mode in a rectangular waveguide.

An obvious means of mode suppression is to arrange matters so that as
far as possible the undesired modes are never generated. This means
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140 WAVEGUIDES AND CAVITY RESONATORS [Cusr. §

exciting the waveguide in such a manner that the initial field eonﬁgum-
tion resembles the desired mode as much as possible, and then avoiding
irregularities, including terminations, that mt:roduce dlstortlons in the
field pattern. For example, a means of launching the waves in the guu}e
that produces only transverse vertical electric fields that do not vary in
strength in the vertical direction will not generate any TM mode, or any
of the TE,, series of modes. Fur-
ther, if the launching system is also
symmetrical with respect to the
center of the long side of the rec-
tangular guide, the only modes
present will be of the TE., type,
where m is odd.
D R Anr s 5-4. Physical Picture of Prop-
METAL VANES - agation in Rectangular Wave-
Fia. 5-10. Simple mode filter. guides., It is possible to explain
many of the properties of waveguide propagation by means of a simple
physical picture. To do so, start by considering two parallel conducting
planes; these planes will later define the top and bottom walls of g
rectangular waveguide. A plane radio wave such as illustrated in Fig.
1-1 will propagate freely in the space between these surfaces provided
the electric field is vertical. Such a wave travels with the velocity of
light, and its electric and magnetic fields are everywhere in time phase.
Some of the details involved are portrayed in Fig. 5-11. This wave can
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?.lso be represented by successive crests spaced a wavelength apart, as
illustrated in Fig. 5-12e, where @ is the direction of travel of the wave with
respect to some reference axis. A second similar wave, differing in that
the direetion of travel with respect to the same reference axis is —8, is
illustrated in Fig. 5-12b.

If now both waves are simultaneously present in the space between the
conducting planes, one obtaing the situation pictured in Fig. 5-12¢. A
cloae.examination of Fig. 5-12¢ shows that if tHe two waves have equal
amplitudes, then in vertical planes indicated by the heavy dotted lines,
cc and dd, the electric fields of the two waves are equal and opposite and
80 cancel. The transverse components of the magnetic fields likewise
cancel at cc and dd, causing the resultant magnetic field at these planes to
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be parallel to lines cc and dd.  Vertical conducting sheets can accordingly
be placed along bb and cc without affecting either magnetic or electrie

fields in any respect. These vertical
conducting surfaces, together with
the conducting horizontal planes,
define a rectangular waveguide with
conducting walls. The fields inside
this guide satisfy the boundary con-
ditions imposed by the walls, and
also satisfy Maxwell’s equations in
the space inside the guide. The re-
sultant field configuration obtained
by adding the fields of these two
plane waves that travel at angles 8
and —0, respectively, is the TE;
mode; this is illustrated by the dotted
lines in Fig. 5-12¢, which show the
resultant magnetic flux and are seen
to correspond to the magnetic-flux
distribution given in Fig. 5-2.

Study of Fig. 5-12c shows that it
is -now possible to consider that the
fields inside the waveguide are the
result of a pair of electromagnetic
waves that travel back and forth
between the sides of the guide,
following a zigzag path as illustrated
in Fig. 5-12d. “Each time such a
wave strikes the conducting side
wall, it is reflected with reversal of
the electric field, with an angle of re-
flection equal to the angle of inci-
dence, as illustrated.

The guide wavelength A\, for the
situation in Fig. 5-12¢ is the distance
along the axis between points in the
guide where the positive crests
coincide. It will be noted that the

RESUL ranr > ;f
MAGNETIC FIELD

(¢) WAVES OF (o) AND (b6) SUPERIMPOSED ,
SHOWING PLANES cc ANDoK/ OF ZERO RESULTAN1
ELECTRIC FIELD

N
\X// d

(d) 216-2AG WAVE PATHS THAT REPRESENT
SITUATION ILLUSTRATED IN (¢)

F1a. 5-12. Bteps involved in building up
a physical picture of propagation in a
rectangular waveguide.

d.
d

guide wavelength A\, exceeds the free-space wavelength A of the plane wave

by an amount that will increase as 6

becomes larger. Various relations

follow from the geometry of Fig. 4-42¢; thus

008 6 = % (5-70)
tan 8 *-'7/5 -2 (5-7)
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Combining to eliminate 6 gives

A
el v S

This is equivalent to Eq. (5-3) when it is noted that A, = 2a.

Examination of the geometry of Fig. 5-12¢ reveals that, if the distance
between successive crests is increased (i.e., free-space wavelength \
increased), then if the electric fields are to cancel along planes cc and dd, it
is necessary that 6 be increased. As thefree-space wavelength approaches
closer and closer to the cutoff wavelength, 6 thus becomes increasingly
large, and the zigzag path of the waves becomes increasingly transverse,
as illustrated in Fig. 5-13.

The fact that the guide wave-
length A, in Fig. 5-12¢ exceeds the
free-space wavelength causes the
phase velocity in the rectangular
guide to exceed the velocity of
light. At the same time, the in-
dividual waves themselves advance
more slowly down the guide than
the velocity of light, since the indi-
vidual waves travel by a zigzag
path. This rate at which the
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F1a. 5-13. Paths followed by a wave
traveling back and forth between the
sides of a waveguide for values of free-

space wavelengths differing from the cut-
off wavelength by various amounts.

waves progress down the guide is
the group velocity and corresponds
to the rate at which a pulse of
energy would travel. As the free-
space wavelength approaches more
closely the cutoff wavelength of the

guide (i.e.,, as A — 2a), the phase
velocity becomes progressively larger and the group velocity progressively
less. In the limit, at the cutoff wavelength, the waves travel back and
forth between the sides of the guide at right angles to the axis (§ = 90°).
Under these conditions nothing at all travels down the guide, so the group
velocity is zero, while the phase velocity is infinite.!

This picture that has been developed of wave propagation in a rectan-
gular guide can be readily extended to take into account the higher-order
modes. For example, in Fig. 5-12¢, it is apparent that there are also
other vertical planes in which the electric fields of the two component
waves cancel exactly; one such plane is indicated by ee in Fig. 5-14a. If

! An excellent discussion of the significance of group and phase velocities is given
by J. A. Stratton, “Electromagnetic Theory,” pp. 330-340, McGraw-Hfll Book
Company, Inc; New York, 1941; also see H. H. Skilling, “Electric Transmission
Lines,” pp. 369-373, McGraw-Hill Book Company, Inc., New York, 1951.
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now vertical conducting sheets are placed at cc and ee instead of cc and
dd, one again has formed a rectangular waveguide inside of which are
fields (illustrated in Fig. 5-14b and ¢) that satisfy all of the required con-
ditions; this particular configuration is the TE,, mode.

LO) COMPONENT WAVES SUPERIMPOSED, SHOWING THREE PLANES WHERE THE
ELECTRIC FIELDS CANCEL

14
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F1a. 5-14. Physical picture showing how the TEs mode arises in a rectangular
waveguide.

5-5. Circular Waveguides. It might be thought that waveguides
with circular cross sections would be preferred to guides with rectangular
cross sections, just as circular pipes are commonly uscd for carrying water
and fluids in preference to rectangular pipes. However, aircular wave-
guides have the disadvantage that there is only a very narrow range
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F16. 5-15. Field configuration of the dominant TE,, mode, and of the first few higher-
order modes in a circular wavegiide.

between the cutoff wavelength of the dominant mode and the cutoff
wavelength of the next higher mode. Thus the frequency range over
which pure mode operation is assured is relatively limited. Also, because
of i?s_circuls.r symmetry, the circular guide possesses no characteristic that
positively prevents the plane of polarization of the wave from rotating
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Sec. 5-8] CIRCULAR WAVEGUIDES 145

about the guide axis as the wave travels. As a result, circular wave-
guides are used only under special circumstances, for example, where it is
necessary to introduce a rotating joint into a waveguide system.

Field configurations for the more important circular modes are illus-
trated in Fig. 5-15. As with rectangular guides, these modes may be
classified as transverse electric (TE) or transverse magnetic (TM),

according to whether it is the elec-
f:\
/

tric or magnetic lines of force that
lie in planes perpendicular to the
axis of the guide. The different
modes are designated by a double
subscript system analogous to that
for rectangular guides.!

The wavelength corresponding to
cutoff for a particular mode in a
circular guide is proportional to the
diameter of the waveguide, with 8
the exact relationship being given «©
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[o1+]] \
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by the equation

Cutoff wavelength = \, = 2o

(5-9)

F1a. 5-16. Attenuation as a function of
frequency of the dominant and first
higher-order mode in a particular circu-
lar waveguide with copper walls.

where r is the guide radius and u is a constant that depends on the order
of the mode.? Results of Eq. (5-9) for the first few modes are tabulated
in Table 5-1.

The TE,, circular mode (see Fig. 5-15) has the longest cutoff wave-
length, and is accordingly the dominant circular mode. The next higher
circular mode is the TM,; mode, for whieh the cutoff wavelength is 0.76
times that of the dominant mode. The corresponding ratio is 0.5 for the
first two modes in a rectangular guide with a/b = 2. Thus the ratio of
frequencies over which only the dominant mode will propagate is over
50 per cent greater for the rectangular guide than for the circular guide.

The guide wavelength ), in a circular guide is greater than the wave-
length A in free space, just as in the rectangular guide. In fact, Eq. (5-3)
applies to circular as well as to rectangular guides. The velocity of phase
propagation is A,/A times the velocity of light in all cases.

A wave traveling down a circular guide is attenuated as a result of

! For example, in the TM,, mode, the magnetic field is circular, and m is the number
of cylinders, including the boundary of the guide, to which the electric vector is
normal. Rules for determining the subscripts for the various possible cases are given
in “Standards on Radio Wave Propagation—Definitions of Terms Related to Guided
Waves,” Institute of Radio Engineers, New York, 1945.

2 For TE.m Waves, u is the mth root of the equation J.(z) = 0, and for TM .. waves,
it is the mth root of the relation Ja(z) = 0.
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power dissipated in the walls by the induced wall cm.‘rents, exactly. as in
the case of a rectangular guide. Curves of attenuation as a functz_on of
frequency are given in Fig. 5-16 for the first two modes mn a particular
guide. Thesc are similar in character to the corresponding curves of
Fig. 5-6 for the rectangular guide, in that the attenuation passes through
a minimum at a frequency that is moderately greater than the cutoff
frequency.’ o

5-6. Reflected and Incident Waves, Field Distributions, and Stand-
ing-wave Ratio in Waveguides. As indicated previously, the field con-
figuration in the waveguide behaves in the same way as a wave on a trans-
mission line. That is, the electric and magnetic fields associated with a
particular mode, such as the TE;o mode, travel down the guide at f,he
phase velocity. At the end of the guide, or at an irregularity, a reflection
is produced that crcates a similar field configuration traveling in the
opposite direction. As in the analogous transmission line case, the reflec-
tion coefficient at a point can be defined as the ratio of the reflected to
incident wave at that point in the guide.

The superposition of incident and reflected waves in a waveguide gives
rise to amplitude distributions along the guide that are of exactly the
same character as the voltage and current distributions encountered in
transmission lines (illustrated in Fig. 4-4) provided one interprets the
electric and magnetic ficlds of the guide as being equivalent, respectively,
to the voltage and current of the transmission line. Thus a short-
circuited receiver (zero voltage or zero electric field at the receiving end of
the system) gives a distribution in which the resultant electric field is
maximum at distances from the load corresponding to an odd number of
quarter wavelengths based on A, the guide wavelength. At the same
time, the resultant magnetic ficld is maximumat the load, and at distances
from the receiver corresponding to an even number of quarter wave-
lengths. Resistive loads of the incorrect value to absorb the incident
wave completely will give partial reflections, but with the maxima and
minima in the distribution occurring at the same places as in the cor-
responding open- and short-circuited cases. On the other hand, load
impedances that have a reactive component will have the minima dis-
placed, cxactly as in the case of the transmission line.

The extent to which a reflected wave is present in a waveguide can be
conveniently expressed in terms of a standing-wave ratio. As applied
to a waveguide, the standing-wave ratio has the same significance and

! An exception to this otherwsse general behavior is the THy mode, sometimes called
the “smoke ring” mode, in which the attenuation decreases steadily with increasing
frequeney and becomes zero at infinite frequency.  This result comes about through
the fact that in this mode the magnetic field adjacent to the walls of the guide becomes
progressively weaker as the ratio of frec-space to cutoff wavelengths becomes less.
In the limit, at infinite frequency, this magnetic field becomes zero, resulting in zero
current induced in the walls,
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usefulness as in the analogous transmission-line situation, provided
that one remembers that the magnetic and electric fields in the guide
correspond respectively to current and voltage in the transmission
line.

Any irregularity in a waveguide will give rise to reflections and hence
will establish standing waves, just as does a load impedance that is not
matched to the waveguide. Thus bends, twists, joints, probes, mechan-
ical imperfections, pieces of dielectric, etc., all give rise to reflections, the
magnitude of which can be expressed in terms of the resulting standing-
wave ratio.!

Transmission-line Equivalent of a Waveguide System. In dealing with a
waveguide system possessing an irregularity, it is commonly convenient
to regard the arrangement as though it were a transmission line possessing
a corresponding irregularity. The characteristic impedance of this equiv-
alent transmission line can be taken as the waveguide impedance defined
in whatever manner is most convenient (see below). The impedance of
the transmission-line irregularity? (and also the load impedance) is then
assigned the value such that in relation to the characteristic impedance
the resulting reflection coefficient associated with the transmission-line
irregularity will be the same as the reflection coefficient actually produced
in the waveguide by the irregularity. The standing-wave situation exist-
ing on the equivalent transmission line is then the same in every respect
as is actually present on the waveguide; an example is given on page 149,

5-T7. Impedance Relations in Waveguides. Waveguide Impedance. In
a transmission line, one can define a characteristic impedance that is
determined by the geometry of the line and which holds for all frequencies.
In contrast, there are several different ways in which a ‘‘characteristic
impedance” can be defined for a waveguide, and each of these definitions
gives a different numerical result. In addition, the waveguide impedance
for a given guide will be a function of frequency irrespective of how
defined.

One commonly used approach is to define the impedance associated
with a waveguide as the ratio of the transverse components of the electric
to magnetic field strength. This is termed the wave impedance; for a
guide with air dielectric it is given by the formulas

For TE waves:
Wave impedance = 3772‘)‘1 ohms (5-10)

! The quantitative effects produced by bends, twists, etc., are summarized by
N. Elson, Rectangular Waveguide Systems, Wireless Eng., vol. 24, p. 44, February,
1947; also see Moreno, op. cit., pp. 162-169.

2 In many cases an irregularity is more satisfactorily represented by a simple T or »
network, or a simple resonant circuit, than by a single circuit element. Examples of
such cases are given in Figs. 5-19c and 5-28.
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For TM waves: \ .
Wave impedance = 377 N, ohms (5-11)

Here A and ), are the free-space and guide wavele.ng'thg, respectively.
The wave impedance has the desirable feature that it is mdependgnt. of
the physical proportions or shape of the guide, or of the transmission
mode, except in so far as these affect the guide wavelength \,. The con-
cept of wave impedance is particularly useful in the study of waveguide
discontinuities and loads.

Another approach is to define the impedance of a waveguide as the
ratio of the mazimum value of the transverse voltage developed across the
guide to the total longitudinal current flowing in the guide walls for a
traveling wave when no reflected wave is present. On this basis, the
waveguide impedance Z, for the TE;q mode in an air-filled rectangular
guide is

Ambh
Zy = 377 Y" 3a (5-12)
This definition of waveguide impedance is useful in the design of systems
for coupling waveguides to coaxial lines, such as illustrated in Fig. 5-8.
It must be used with some caution, however, because in contrast with
transmission lines, the fields of a guide are not uniformly distributed over
the cross section.

I'mpedance Malching in Waveguides. Reflected waves are generally to
be avoided in waveguides for exactly the same reasons that they are
avoided in transmission lines. One method of achieving this result in a
waveguide is to arrange matters so that the load impedance that is used
will completely absorb the incident fields exactly as they arrive, so that
there is nothing left over to be reflected ; this corresponds to characteristic
impedance termination in a transmission line, A second approach to the
problem is to create a reflected wave near the load that is equal in magni-
tude but opposite in phase from the wave reflected by the load; in this
way the two reflected waves cancel each other. Most commonly both
methods of impedance matching are used simultaneously. That is, the
system is initially so arranged that the load provides as good an imped-
ance match as is possible to obtain with regsonable effort, and then what
reflected wave still remains is eliminated by the use of an impedance-
matchiug system that introduces g neutralizing reflection.

Numerous waveguide arrangements have been devised for introducing
& controllable reflection. Some of these are analogous to the impedance-
matching arrangements employed in transmission lines (described in
Sec. 4-11), while others are unique to waveguides.

The wayeguide analogue of the stub line of Fig. 4-16 is the stub guide
or T section illustrated in Fig. 5-17. Two possibilities are to be dis-
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tinguished.! At a the reactance at the input of the stub guide is effec-
tively in series with the equivalent transmission line of the guide, while
with the stub as in b, the reactance introduced by the stub is.in shunt in
the equivalent transmission line circuit of the guide. This is shown
schematically at ¢ and d, respectively. The magnitude of the reflection
introduced by such a stub guide is controlled by the position of the short-
circuiting plunger in the stub guide. The phase of the reflected wave
produced by the stub is determined by the position of the stub in relation

SHORTING
PLUNGER

(@) SERIES T (b) SHUNT T

REACTANCE OF REACTANCE OF
SIDE ARM - SIDE ARM

() TRANSMISSION LINE EQUIVALENT OF (@) (d) TRANSMISSION LINE EQUIVALENT OF (b)

Fig. 5-17. Waveguides provided with tuning stubs in arrangements analogous to that
of Fig. 4-18, together with equivalent transmission-line circuits.

to a minimum of the standing-wave pattern existing in the absence of the
stub. Thus, to eliminate a reflected wave using a single stub, it is neces-
sary to be able to vary not only the effective length of the stub, but also
its distance to the load. This latter requirement makes a single stub
arrangement unsatisfactory in systems that must be adjusted by trial
and error, since there is no simple way that the position of the stub can
be continuously varied. When trial-and-error adjustment is required,
one can, however, employ two waveguide stubs spaced approximately
n),/8, where n is odd, to give the waveguide equivalent of the two-stub
tuner of Fig. 4-18.
An alternative to the waveguide stub is an adjustable screw or probe
! The arrangements at a and b are often referred to as E and H stubs, respectively,
because the axis of the stub is parallel to the E lines and H plane, respectively, in the
main guide,
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that projects into the waveguide in a direction parallel to the electric
field, as illustrated in Fig. 5-18. Such an arrsnggment has the same
effect as shunting a capacitive load across the equivalent transmission
line of the waveguide, with the susceptance of this capacitive load increas-
ing with penetration into the guide up to the point where the equivalent
penctration is a quarter of a wavelength.! Thus the extent to which such

a probe (or screw) projects into the

A waveguide determines the magni-
tude of the compensating reflection,
| while the position of the probe with

respect to the standing-wave pat-
tern that is to be eliminated de-
termines the phasing of the reflected
— wave. When it is necessary that
Fia. 5-18. Adjustable screw (or probe)  the axial position of the probe or
for producing an adjustable reflection for . B
impedance-matching purposes. screw be adjustable experimentally,
this can be achieved by providing
the guide with a longitudinal slot located in the middle of the broad side,
as shown dotted in Fig. 5-18. As pointed out in connection with Fig. 5-5,
such a slot (labeled 1 in this figure) produces a minimum of interference
with the fields inside the guide, and has little tendency to radiate energy.
Where it is desirable to avoid the use of a slot, one can instead employ
two spaced probes in an arrangement analogous to that of Fig. 4-18.

E E LB QA

METAL OBSTACLE-

<l
‘ B SSNINRS
NN &}\\\‘

(@) INDUCTIVE WINDOW (&) CAPACITIVE WINDOW (€) POST (INDUCTIVE)

Fya. 5-19. Examples of obstacles used in wavegnides to introduce reflection, together
with equivalent transmission-line systems.

Another impedance-matching system consists of a thin metallic barrier,
or “window,"” placed at right angles to the axis of the guide, as illustrated
in Fig. 5-19. 'The arrangements at a and b introduce, respectively, induc-
tive and capacitive shunts in the equivalent transmission-line circuit of
the waveguide as shown, the magnitudes of which depend upon the size

! When the equivalent penetration is exactly a quarter wavelength, the probe
begomes resonant. The system then acts as though a series resonant circuit of low
resistance was connected in shunt with the waveguide; thus at exact resonance the
probe acts as a shunt of very low resistance.
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of the opening, A conducting cylindrical post going from top to bottom
of a rectangular waveguide, as at ¢, produces an inductive shunt suscept-
ance! having a magnitude determined by the size of the wayeguide, the
diameter of the post, and the post position in the transverse plane. Still
another type of obstacle is illustrated in Fig. 5-9. Reflections introduced
by obstacles such as illustrated in Fig. 5-19 cannot be conveniently
adjusted experimentally. These arrangements are of practical use, how-
ever, in systems where a reflected

wave of known and unvarying e case b

character is to be neutralized.? CASE 0 »
Impedance Maiching with Resist-

ive Loads. There is the theoretical

possibility of matching a resistance T V'€¥ swoRT-CiRcuITED
load directly to the waveguide in
such a manner as to avoid a re-

flected wave; this eliminates the b3
need of introducing a compensating fe—ra gy —>1
reflection. Thus consider the situ- sioe view (n-0dd)

ation illustrated in Fig. 5-20, case @, Fia. 5-20. Resistance load connccted
where the load consists of a resist- be?:"e“ top and bottom sides of wave-
ance R, connected between the top puide:

and bottom planes df the guide midway between the sides, and an odd
multiple of a quarter of a guide wavelength away from a short circuit.?
If the load resistance R. is now equal to the waveguide impedance Z, as
defined by Eq. (5-12), then the incident wave will be absorbed without
reflection. If the resistance R, that is to be used differs from the value
called for by Eq. (5-12), one can change the guide impedance as required

! Actually the equivalent circuit will be a simple shunt inductance only when the
diameter of the post is not more than a few per cent of the guide width. With thicker
posts, the equivalent circuit includes series capacitances in addition to the shunt
inductance, as shown dotted in Fig. 5-19c. These capacitances become larger (i.e.,
have lower reactance) the smaller the post diameter and have negligible reactance in
the case of very thin posts The T network shown in Fig. 5-19¢ will accurately
represent the behavior of even a very thick post over a wide range of frequencies
when the inductance and capacitances of the equivalent section are properly chosen.
Similarly, if the strips forming the windows at a and b are not thin, the obstacle is
represented more accurately by a T network than by a single shunting reactance.

2 Quantitative analysis of the structures shown in Fig. 5-19, and also of other forms
of obstacles, is given in “Waveguide Handbook” (vol. 10, Radiation Laboratory
Series, chap. 5, McGraw-Hill Book Company, Inc., New York, 1951; also see Moreno,
op. cit., chap. 9.

3 The short circuit placed an odd multiple of a quarter of a guide wavelength distant
from the load is necessary because if the guide is continued indefinitely beyond the
resistance, then Ry would act merely as a shunt irregularity in the guide. Alter-
natively, if the guide simply ended at the point where the resistance was connected,
then part of the energy of the incident wave would be radiated from the open end of
the guide rather than being dissipated in the resistance.
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by varying the height b of the guide, using 8 gradual taper as illus?rl.te.d
in Fig. 5-21a to avoid introducing & meﬂec.tlon. A vana.t:mn cons.nsts in
tapering only the center portion of the guide to form a ridge, as in Fig.
5.11:'alternative arrangement, suitable for use when the load resistance
is less than the guide impedance,
consists in placing R. off center as
indicated by case b of Fig. 5-20.
This subjects R. to less voltage
4lr4m:o secrion | than case a, and so gives an im-
pedance-transforming action.! A
(@), GUIDE WITH TAPERED HEIGHT Similar eﬁect is alﬂo Obtained by
making the distance from R, to the
short circuit differ from an odd
multiple of a quarter wavelength.
In actual practice, arrangements
of the type illustrated in Fig. 5-20
usually introduce a discontinuity
(9 cuibe with Taperep RiDGE  wo6e  capacitance. 'When this isthe case,
Fia. 5-21. Waveguides terminated with o adjustment of the resistance
resistance loads. match will eliminate completely the
reflected wave; to achieve such a result some additional impedance-
matching adjustment, such as obtainable with a probe or a stub guide,
must also be used.
Nonreflecting Loads. In systems involving waveguides it is often neces-
sary, particularly in measurement work, to provide a termination that

[ 4 |
| B

[
SIDE VIEW END VIEW

() LOSSY VANES (5) LOSSY WEDGE OF DIELECTRIC OR POLYIRON
Fia. 5-22. Examples of nonreflecting terminations for waveguides.

will completely absorb any wave going down the guide, irrespective of the
exact frequency of this wave, and without any adjustment being required.

This result is most conveniently achieved by absorbing the wave in a
lossy section tapered so gradually as to introduce no reflection. Examples
of such sections are illustrated in Fig. 5-22; these involve lossy vanes, or
wedges of lossy dielectric or iron dust core material, tapered on the enter-

! The off-center connection causes the resistive impedance that the gui
-cent guide presents
tg the coaxial line to be less than Eq. (5-12) by the factor cos? (rz/a), where z is the
distance off center and a is the guide width.
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ing edge, and having a sufficient length to absorb an entering wave alinost
completely.!

5-8. Waveguide Behavior at Wavelengths Greater than Cutoff.®
When a waveguide is excited at a wavelength greater than cutoff, the
behavior is entirely different from the behavior at wavelengths less than
cutoff. In particular, the electric and magnetic fields now decay expo-
nentially with distance at.a very much more rapid rate than is accounted
for by energy losses in the walls. The rate of this attenuation, moreover,
depends only on the ratio /X, of the free-space wavelength to the cutoff
wavelength; unlike waves shorter than the cutoff wavelength the attenua~
tion is independent of the material of the guide walls. The exact law of
attenuation can be derived by application of the fundamental field equa-
tions, and is

. o 3
Attenuation in } — 3 A (_A_c (5-13a)

db per unit length Ao A
When the actual wavelength is much greater than cutoff (A > > 1,), then
@~ 5_;-_6 (5-13b)
(]
TABLE 5-2
ATTENUATION FORMULAS FOR CUTOFF ATTENUATORS
Attenuation, db
Mode per unit length Value of A
Circular waveguides of radius r
TE:; 1.0 3.42r
TM.; @ 2.61r
TEo :237:! 1.64r
Recta.nguhr"guide of width a and height b
TEu Z3 %
27.3 a\? 2a
TEyand TMu | 20341 4+ (_) ——
a b a\?*
\11 + (;)

1 For further discussion of nonreflecting terminations for waveguides see F. E.
Terman ahd J. M. Pettit, Electronic Measurements,” p. 639, MoGraw-Hill Book
Company, Inc., New York, 1952.

? The ariginal paper on this subject was by Daniel E. Harnett and Nelson P, Case
The Design and Testing of Multirange Receivers, Proc. IRE, vol. 23, p. 578, June, 1935.
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Here \ is the free-space wavelength and A, is th‘_"““ﬂ wwelen.gth,
measured in the same units of length used in expressing the attenuation.
Equatious (5-13) apply to all modes of propagation in all types of wave-
guides. The resulting relation between the rate of attenuation ‘and the
guide dimensions is given in Table 5-2 for cases of particular interest.
Frequency enters into the expres-
10 sion for attenuation only through the
/':_ term A/A in Eq. (5-13a). When this
is small, the attenuation is substan-
tially independent of frequency.! As
the wavelength approaches the cutoff
o™t value, the rate of attenuation will
diminish in accordance with Eq.
10t (5-13a). This is illustrated in Fig.
5-23. As cutoff is very closely ap-
1o~ Z proached, a rapid transition takes
o place, as shown, and when the wave-
length is less than cutoff, the attenua-
10705 o 7s tion assumes the comparatively low
ACTUAL WAVELENGTH ___ A value associated with wall losses.
WAVEL.ENGTH A;T f:ur-o:r Ao Waveguides o perated at wave-
Nion n s whrepubte with eaons  longths groater than cutof, termed
in the vicinity of cutoff. waveguide attenuators, are often used as
attenuators in signal generators. The
usual arrangement for this purpose, illustrated in Fig. 5-24, involves
exciting the guide, which may be either circular or rectangular, with a
coil, the axis of which is at right angles to the axis of the guide. The
pickup system then consists of a similar coil with its axis parallel to the

==
__6_.! d T FA)
weur ‘AL' 32 \ ] ourrur

ExcmG con— PICKUP GOIL
Fra. 5-24. Schematic diagram of typical waveguide attenuator.

axis of the exciting coil. Such an arrangement uses the TE;, mode in the
rectangular case, and the TE,; mode when the guide is circular.? The

! This neglects the varistion with frequency of, the depth of current penetration
into the wall. To obtain maximum accuracy when using Eqs. (5-13), the effective
internal dimensions of the waveguide should be taken as extending into the walls a
distance equal to one-fourth the skin depth as given by Eq. (2-10). Since this akin
depth varies with frequency, the value to be assigned ), will likewise vary with fre-
quency, increasing slightly as the frequency is reduced, and hence introducing a small
additional cause of variation of attenuation per unit length.

? Theee are the dominant modes and are employed because they attenuate more
9Iowly‘ with distance than do higher-order modes, Hence when the dominant mode
is initne.lly mixed fo some extent with higher-order modes, then the mode becomes
increasingly pure as one goes down the guide away from the exciting coil.
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output of such an attenuator is varied by adjusting the distance between
the pickup coil and the exciting coil. The change in output produced by
a known displacement of the pickup coil can be calculated from the
waveguide dimensions, using Table 5-2 or Eqgs. (5-13). The waveguide
operated at wavelengths greater than cutoff hence provides a simple and
reliable way of introducing known changes in the output.!

5-9. Miscellaneous Aspects and Properties of Waveguides. Coupling
between. Coaztal Lines and Wavegutdes. Numerous arrangements have
been devised for coupling a coaxial transmission line to a waveguide so
that power may flow from one transmission system
into the other. A typical example? is illustrated in
Fig. 5-8. As viewed by the coaxial transmission line,
the waveguide in this arrangement behaves like a
resistance equal to the waveguide impedance as defined
by Eq. (5-12). In addition, there is a reactive effect
associated with the coupling as a result of the induct-
ance of the length of conductor extending across the F¥19. 5-25. Wave-

. guide-to-coaxial-
waveguide, and also as a result of evanescent modes Jine coupling sys-
present at the junction. In order to obtain an im- tem based upon a
pedance match between a coaxial line and waveguide Slot A i“wth" f"“t:"
such that power will pass from one system to the other  coaial line. the
without producing a reflected wave, it is therefore
necessary not only to match the characteristic impedance of the coaxial
line properly to the waveguide impedance, but in addition & compensat-
ing reactance must beintroduced at the coupling point. A simple method
of producing the required neutralizing effect consists in adjusting the dis-
tance ¢ in Fig. 5-8a so that the shunt reactance observed by the coaxial
line, when looking toward the short-circuited end of the waveguide, is
equal and opposite to the shunt reactance associated with the coupling
system.?

A very different approach to the problem of coupling a waveguide to a
coaxial line is illustrated in Fig. 5-25. Here a transverse slot in the outer
conductor of the coaxial line allows magnetic flux to leak from the line
into the waveguide. At the same time, the slot interrupts the flow of
current in the outer conduetor of the coaxial line, thereby creating a
voltage difference across the slot that produces an electric field between
the top and bottom sides of the waveguide. In this way a wave on the

! A more extensive discussion of waveguide attenuators is given by Terman and
Pettit, op. cit., p. 656.

2 The detailed design of systems of this type is given by Seymour B. Cohn, The
Design of Simple Broad-band Waveguide-to-coaxial-line Junctions, Proc. I RE, vol. 35.
P. 920, September, 1947.

3 The resistance that the waveguide offers the coaxial line can, when desired, be
reduced by placing the coupling point off center, i.e., by making distance d in Fig.
5-8b less than half the guide width.

COAXIAL LINE
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BT ic and magnetic fields into the waveguide
coaxial line introduces Sem Bl et the dominant mode. Con-
that correspond roughly to & RN
versely, a dominant mode traveling down the waveguide will excite a

on the coaxial system.

i Dir omal Couplers. Tt is possible to devise directional-
coupling systems involving waveguides that are analogous to the trans-
mission-line directional-coupling arrangements discussed on page 115.
The waveguide equivalent of the two-hole directional coupler of Fig. 4-24
is illustrated in Fig. 5-26. Directional coupling between a waveguide
and a coaxial system is also possible. Thus, if the primary line in Fig.
4-23 is replaced by & waveguide,
one obtains directional coupling
between a waveguide primary and
a coaxial secondary system.

Magic T. The waveguide ar-
rangement illustrated in Fig. 5-27a,
termed & magic T, possesses many
of the qualities of & bridge. Thus
-~ if the two side outlets C and D have
i, 538 Trobe diial ol s gt ad re erminaid
coaxial :ilnz “"fx'f'x of ltﬁhg ;-:; The identically, then power delivered to
narrow slot parallel to the guide axis the gystem at A divides at the junc-
m:m":: pling that s predominantly tion and flows equally to C and D,

with no output whatsoever being
obtained at B’ similarly, power supplied at B divides between C and D
and none of it appears at A. On the other hand, if power is delivered to
the system at A and the terminations at C and D are not identical, then
there will be an output at B proportional to the difference between the
waves reflected at C and D.

This behavior can be explained as follows: A wave of the dominant
mode traveling down A4 cannot turn the corner into B, because the
orientation of the electric field in A is such that in turning into B the
electric field would necessarily have to be parallel to the long dimension
of the guide. For this field configuration, guide B will have a cutoff
wavelength less than the wavelength of the wave arriving from A, pro-
vided the proportions and absolute dimensions of the system are properly
chosen. The waves arriving from A can, however, divide and travel in
directions ' and D, it merely being necessary for the electric flux to turn
corners into similar guides. Equal reflections from C and D, upon reach-
iz_lg the junction of the magic T, will divide between A and B. The por-
tions entering A from C and D are in phase and so combine to give stand-
ing waves in A. However, the portions of these reflected waves that
attempt to enter B do o as a result of the electric vector turning a corner
as illustrated in Fig. 5-27b, and it will be noted that the reflections from C
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and D when entering B are of opposite polarity and so tend to cancel.
This cancellation is complete if the reflected waves from C and D are
identical upon arrival at the junction, in which case there is no trans-
mission to B. However, if the reflected waves produced at C and D are
not identical in magnitude and phase as they arrive at the junction, then
there will be a resulting component entering B that is proportional to the
vector difference of the two waves.!*

The Resonant Obstacles in Waveguides.* When certain types of obstruc-
tions are placed in waveguides, a resonant effect is introduced that is
equivalent to shunting the equivalent transmission line of the guide with
either a series or shunt resonant circuit, as the case may be. The quarter-

PR R g

{5) BEHAVIOR OF REFLECTIONS
(@) MAGIC T CONFIGURATION FROM C AND 0

Fia. 5-27. Magic-T arrangement.

wave resonant post discussed in connection with Fig. 5-18 is an example,
and is equivalent to a series resonant system connected across the guide.
Another example is provided by a rectangular window in a rectangular
waveguide, illustrated in Fig. 5-28a, which acts as a parallel resonant
shunt. In contrast, an obstacle having the configuration shown in Fig.
5-28b acts as a series resorant shunt, the resonance occurring at a fre-
quency determined largely by the peripheral length of the obstructing
rectangular ring. Many other forms of resonant obstacles are also
possible.

Obstructions that behave as shunting series-resonant systems will
transmit energy rather freely at all frequencies except those in the
immediate vicinity of the series resonant frequency, where the shunting
impedance is 80 low as to reflect nearly all of the energy. In contrast,

!'This explanation assumes that the discontinuity capacitances existing at the
common junction of the magic-T configuration have been neutralised by the introduc-
tion of appropriate inductive irregularities, such as a window of the type illustrated
in Fig. 5-19a.

* Another waveguide arrangement, known as the Aybrid ring, has properties similar
to those of the magic T, and can be regarded as an alternative arrangement. Various
forms of the hybrid ring are described by W. A. Tyrell, Hybrid Circuits for Micro-
waves, Proc. IRE, vol. 35, p. 1204, November, 1947,

3 Further material on this subject, particularly design information, is given by
Moreno, op. cit., pp. 150-157; also see * Waveguide Handbook,” op. cil., chap. b.
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le that acts as a parallel resonant shunt will have no effect on
::eotb:na:r:ission at the resonant frequency of the obstacle, but.at a.ll
frequencies differing appreciably from the rgsona.nt frequency it will
introduce a low shunting reactance that permits very little energy to be

itted past the obstacle.

tm;;;:atl Wal;eguidea.‘ Under some circumstz}nces there is an advanf.age
in providing a rectangular waveguide with a ridge analogous to the ridge
shown in Fig. 5-21b except not tapered. This increases the cutoff wave-
length, and widens the frequency range over which only the dominant
mode will propagate. Thus a ridged structure has t‘zdvantages when
physical compactness is important, and when the guide is to be used over

L 3

(a) RETANGULAR WINDOW AND (&) RECTANGULAR RING AND
EQUIVALENT TRANSMISSION-LINE EQUIVALENT TRANSMISSION-LINE
CiRCUIT CIRCUIT

F1a. 5-28. Typical resonant obstacles, together with their equivalent transmission-line
circuits.

an unusually wide frequency range. At the same time, the attenuation
of the ridged structure per unit length is greater than for the correspond-
ing rectangular guide. The impedance of the ridged structure analogous
to the impedance defined in Eq. (5-12) is less than in a rectangular guide;
this is sometimes an advantage when matching impedances (see Fig.
5-21b), or when coupling a coaxial line to a waveguide.

Comparison of Waveguides and Coazial Transmission Lines. Wave-
guides find their principal use in the transmission of power at wave-
lengths of the order of 10 ¢m or less, under conditions where low attenua-
tion or high power-carrying capacity is important. The power losses in
& waveguide will be of the order of one-third as great as in a comparable
coaxial line having air dielectric with sipporting insulators, and the
supericrity is many times greater as compared with the best flexible
cable. The power-carryig capacity of a waveguide as limited by flash-
over is likewise from three to ten times as great as that of a standard
coaxial line having air dielectric with supporting insulators, and may be
of the order of thousands of times as great as that of a flexible cable with
solid dielectric.

! For further details see Seymour B, Cohn, Properties of Ridge Wave Guide, Proc.
IRE, vol. 35, p. 783, August, 1947,
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A waveguide must have a size that is a reasonable fraction of a wave-
length. This is an advantage at very short wavelengths, such as 1 em,
where coaxial lines with proportions that avoid higher modes are pro-
hibitively small. However, at wavelengths much greater than 10 em,
the waveguide becomes undesirably large and so then finds use only in
special applications. Other things being equal, waveguides also have the
advantage in mechanical simplicity over coaxial lines with air insulation
and dielectric support.

5-10. Cavity Resonators.! Any space enclosed by conducting walls
possesses & resonant frequency for each particular type of field configura-
tion that can exist in the space. Resonators of this type, commonly
called cavity resonators, find extensive use as resonant circuits at extremely
high frequencies. Their behavior is analogous to that of coil-and-capaci-
tor combinations, but for microwave frequencies cavity resonators have
the advantages of reasonable dimensions, simplicity, remarkably high @Q,
and very high shunt impedance.

Cavity resonators can take many forms, since any enclosed surface,
irrespective of how irregular its outline, forms a cavity resonator. The
simplest cavity resonator is a length of circular or rectangular waveguide
short-circuited at each end to form a cylinder or rectangular prism,
respectively. A spherical cavity is also of interest from a theoretical
point of view, although not very useful in a practical way. Cavities such
as illustrated in the lower half of Fig. 5-29, in which the opposite sides
are brought close together to form a reentrant structure, are of importance
when an electron beam is passed through the cavity, as in klystron tubes.?
In such arrangements, the electric field is very strong in the gap formed
by the reentrant sections, thus permitting effective interaction with elec-
trons passing across this gap.

Cavity resonators can also be derived from coaxial lines. For exaniple,
a line short-circuited at each end, as in Fig. 5-30a, is resonant whenever
the length is a multiple of a half wavelength. Alternatively, it is possible
to arrange a coaxial transmission line, as illustrated in Fig. 5-30b; this
can be regarded as a line short-circuited at one end and open at the other
end except for the localized capacitance between the center conductor and

1 Resonant cavities were introduced to radio by W. W. Hansen, A Type of Electrical
Resonator, J. Appl. Phys, vol. 9, p. 654, October, 1938. Useful information on
properties of cavities is given by Moreno, op. cit., pp. 210-241; Terman and Pettit,
op. cit., pp. 204-210; I. G. Wilson, C. W. Schramm, and J. P. Kinzer, High Q Resonant
Cavities for Microwave Testing, Bell System Tech. J., vol. 25, p. 408, July, 1946;
J. P. Kinzer and I. G. Wilson, Some Results on Cylindrical Cavity Resonators, Bell,
Syatem Tech. J., vol. 26, p. 410, July, 1947; End Plate and 8ide Wall Currents in
Circular Cylinder Cavity Resonator, ibid., vol. 26, p. 31, January, 1947.

2 Properties of such resonators are given by T. E. Moreno, op. cil.; also see W. W,
Hansen and R. D. Richtmyer, On Resonators Suitable for Klystron Oscillators,
J. Appl Phys. vol. 10, p. 189, March, 1939,
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i ine. It is also poesible
the conducting surface that closes the end of the ]m?
to regard the f,a.vity of Fig. 5-30b as a reentrant cavity analogous to that
of Fig. 5-29f.! . . .
Mfdes infCavaiea. As in waveguides, it is possible fos many dm‘?rent
types of field configurations, or modes, to exist in a cavity. ) Associated
with each such mode is a resonant frequency that is detgrmufed b}f the
particular field configuration involved and by the cavity dimensions.

A
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Fia. 5-29. Examples of cavity resonators. All these resonators except the prism are
shown as cross sections of figures of revolution. The field distributions shown for
certain of the resonators correspond to the distributions with the dominant mode of
operation. .

Thus each cavity resonator possesses an infinite number of resonant fre-
quencies. As in the case of the waveguide, the lowest resonant frequency
associated with a particular cavity is termed the dominant mode, while
the remaining resonant frequencies are referred to as higher-order modes.

The cavity modes can in many cases be associated with waveguide
modes. Thus in the case of the rectangular prism of Fig. 5-29¢, a TE or
TM wave traveling in the ! direction will be in resonance whenever the
frequency is such as to make the cavity length ! a multiple of half of a
guide wavelength for the mode in question. An analogous situation also

1 Resonant lines of this typs are sometimes termed hybrid lines, since as the center
vonductor is shortened in length compared with the length of the outer conductor
(see c and d of Fig. 5-30), the behavior, including field configurations, is intermediate
between that of a resonant line and that of a cylindrical cavity. The properties of
coaxial cavity resonators are discussed by W. L. Barrow and W. W, Mieher, Natural
Oscillations of Electrical Cavity Resonators, Proc. IRE, vol. 28, p. 184, April, 1940;
also see W. W. Hansen, On the Resonant Frequency of Closed Concentric Lines,
J. Appl. Phys., vol. 10, p. 38, January, 1939,
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exists with cylindrical cavities. However, in the case of the cylindrical
cavity, it happens that the dominant mode corresponds to the field con-
figuration illustrated in Fig. 5-29b, for which there is no waveguide
counterpart. In contrast, the dominant mode for the rectangular prism
corresponds to the TE;, waveguide mode traveling along the axis that is
longest when measured in guide wavelengths.  In reentrant cavities, the
dominant mode corresponds to a field configuration of the type illustrated
in Fig. 5-20¢; here the electric field is most intense in the gap.

Modes in a cavity are classified as transverse electric (TE) or transverse
magnetic (TM) modes, corresponding as far as possible to the analogous
waveguide modes. The particular mode of any such class is then com-
monly designated by three subscripts. Thus the field configuration

il

(a) (¥-2) (T3] (d1 (@)

Fi1a. 5-30. Transition from concentric line to cylindrical cavity, showing electric fields
for various intermediate or hybrid cases.

i

shown in Fig. 5-29b is the TM ;o mode. Here TM denotes that the mag-
netic field lies in planes transverse to the axis of the cylinder, while the
first and third subscripts denote, respectively, that the variation of the
magnetic field is zero with radial direction and with position along the
axis, and the second subscript indicates that there is one-half cycle of
variation in the field along a radial line passing from one edge of the
cylinder to the other edge. Again, the field configuration indicated in
Fig. 5-29¢ is the TE;0; mode, meaning that the electric field is transverse
to an axis in the ! direction and that the variation of the electric field is
one-half cycle, zero, and one-half cycle in the a, b, and [ directions,
respectively.

A cavity resonator possesses many more modes than does the corre-
sponding waveguide. For example, in the rectangular prism of Fig.
5-29¢, there are an infinite number of TE 0, modes for each of the three
axes of the prism. Thus a triple infinity of modes exists in the rectan-
gular prism corresponding to the single infinity of TE.. waveguide modes.
As a result, at frequencies appreciably greater than that corresponding
to resonance at the dominant mode, it is found that the resonant fre-
quencies of cavities will be extremely closely spaced. This results in an
impossible situation if one wishes to obtain pure mode operation; at the
same time, it is an advantage if one desires to make it as easy as possible
for the cavity to resonate with an arbitrary exciting frequency.
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Resonant Frequency of Cavity Resonators. A resonant frequency of a
cavity resonator corresponds to a possible solution of Maxwell’s equations
for the electric and magnetic fields within the resonator. The resonant
frequencies (or wavelengths) can be calculated mathemati(fally for
geometrical shapes such as spheres, cylinders, and rectangular prisms and
some idealized forms of reentrant sections. Formulas for the resonant
wavelength of the dominant mode are given in Table 5-3 for spheres,
cylinders, and square prisms. In the case of prisms it will be noted that
the length [ corresponds ta A,/2 for the corresponding TE,, waveguide
mode.! .

The resonant wavelength is proportional in all cases to the size of the
resonator; i.e., if all dimensions are doubled, the wavelength correspond-
ing to resonance will likewise be doubled. This fact simplifies the con-
struction of resonators of shapes that cannot be calculated. To obtain a
resonator operating exactly at a desired frequency, one first constructs a
resonator of convenient size and of the desired proportions and measures
the resulting resonant wavelength. The ratio of the desired resonant
wavelength to this wavelength gives a scale factor that is applied to every
dimension of the test model to obtain the dimensions of the desired
resonator.

The resonant frequency of a cavity resonator can be changed by alter-
ing the mechanical dimensions, by coupling reactance into the resonator,
or by means of a copper paddle. Small changes in mechanical dimen-
sions can be achieved by flexing walls, while large changes require some
type of sliding member. Reactance can be coupled into the resonator
through & coupling loop in the manner discussed below, thus affecting
the resonant frequency. A copper paddle placed inside the resonator will
affect the normal distribution of flux and tetd to alter the resonant fre-
quency by an amount that can be controlled by the orientation of the
paddle.

Q of Cavity Resonators. The Q of a cavity resonator has the same sig-
nificance as for an ordinary resonant circuit. It can be defined on the
basis that when the response has dropped to 70.7 per cent of the response
at resonance, the cycles off resonance are the resonant frequency divided
by 2Q (see Rule 1, page 49). In the case of cavity resonators, it is also
sometimes convenient to hase the definition of Q upon Eq. (3-1), namely,

_ energy stored
Q=2 energy lost per cycle (5-14)

The energy stored is proportional to the square of the magnetic flux
density integrated throughout the volume of the resonator, while the
energy lost per cycle in the walls is proportional to the skin depth and to
the square of the magnetic flux density integrated over the surface of the
. ! Design data for reentrant eavities of the type illustrated in Fig. 5-20d and ¢ are
gives by Moreno, op. cit., Pp. 230-238.
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cavity. Thus, to obtain high Q, the resonator should have a large ratio
of volume to surface area, since it is the volume that stores energy and it
is the surface area that dissipates energy. As a consequence, resonators
such as spheres, cylinders, and prisms can in general be expected to have
higher Q’s than corresponding resonators with pronounced reentrant
sections.

TABLE 5-3
PROPERTIES OF CAVITY RESONATORS FOR DOMINANT MODE
Type of cavity Sphere Cylfnder Square prism
Figure illustrating notation. ... 5-28a 5-29b 5-29¢
Wavelength )\ at resonance. ... 2.28r 2.61r 1.414a
) 1 X N S
Qe 0.318 3 0.381’,1 ey 0.3531 F @/ 3
Shunt impedance across A4 at A . \ 5
‘. 0
resonance........... ...... 104.4 - 72;].—-F_(1'/—115T 120;———:'_ (a/2b)'c_

All dimensions are in centimeters.
& = gkin depth as defined by Eq. (2-10)
= 6.62/+/7 em for copper, where f is in cycles

Quantitative analysis leads to the formulas given in Table 5-3 for the @
of the dominant mode of spheres, cylinders, and square prisms. Some
typical values of Q obtainable in practical cavity resonators are given in
Table 5-4. It will be noted that the values are extremely high compared
with those encountered in ordinary resonant circuits (e.g., Fig. 2-16).
This is true even in the case of the reentrant cavity.

TABLE 5-4

PROPERTIES OF TYPICAL CAVITY RESONATORS
WHEN OPERATING IN THE DOMINANT MODE

Resonant Q Shunt
Resonator Dimensions, wave- (copper resistance,
cm length \o. ohms (cop-
walls)
cm per walls)
Sphere................... r=35 11.4 28,000 | 9.7 X 10¢
Cylinder................. rm=h/2 =35 13.0 24,000 | 9.1 X 10°
Square prism (cube) . ...| a=b =1 =10 14.1 23,000 | 7.8 X 10¢
Reentrant (Fig. 5-29f) .. | a = 0.81 12.8 4,000 | 0.17 X 10¢
b =1.69 (approx.) | (approx.) | (approx.)
&0 = 1.82
d/2 = 0.20

The Q of resonators of the same proportions but of different size will be
Proportional to the square root of the resonant wavelength. This arises
from the fact that, whereas the ratio of volume to wall surface is propor-
tional to a resonant wavelength, the skin depth (and hence the energy
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dissipation per unit of surface) is proportional to the square root of the
h.

mg:ll‘en!;g;mm of Cavity Resonators. The shun!; impedance of &
cavity resonator between two surfaces, such as those mww by the
axis A4 in Fig. 5-29, can be defined as the square of the hf:e integral of
voltage along a path such as A4 divided by the po.wer.loss in the resona-
tor when excited to give the voltage used in the !me integration. This
impedance corresponds to the parallel resonant impedance of 8 tuned
circuit, and at resonance becomes a resistance termed the shunt resistance
of the resonator.

The shunt resistance obtained with spheres, cylinders, and square
prisms operating in the dominant mode can be calculated from the
formulas given in Table 5-3. Values of shunt resistance for the dominant
mode in several typical cases are given in Table 5-4, and are seen to be
very large compared with the shunt resistances obtainable with ordinary
resonant circuits. It is further to be noted that although the shunt
resistance of the reentrant cavity is much less than that of the other
cavities, this impedance is developed across such a short distance that the
impedance per unit length is of the same order of magnitude as the
maximum value obtainable with other geometries.

6-11. Coupling to Cavity Resonators. To make use of a cavity
resonator it must be coupled in some manner to a transmission line or

caviry . cavITY
@ a-:-r-.-
: -COUPLING
{a) CAVITY WITH (b)) EQUIVALENT (C) CAVITY WITH
COUPLING LOOP CIRCUIT OF (a) COUPLING PROBE

F14. 5-31. Loop and probe coupling to cavity resonator.

waveguide. One means of accomplishing this is to employ a small loop so
oriented a8 to link with magnetic flux lines existing in the desired mode of
operation, as illustrated in Fig. 5-31a. A current passed through such a
loop will then excite oscillations of this mode- conversely, oscillations
existing in the resonator will induce a voltage in the coupling loop. The
combination of the coupling loop and cavity resonator is equivalent to the
inductively coupled system of Fig. 5-31b. In such a system, the ratio of
the impedance that the cavity couples into the loop to the shunt resistance
of the cavity resonator is equal to the square of the ratio of the coupled
flux to the total magnetic flux lying to one side of the cylinder axis.! The

! When the plane of the coupling loop is at right angles to the direction of the flux

lines, the loop area is in the most favorable position for enclosing magnetic flux; then
it the loop is located at a position where the magnetic flux density approximates the
Momentum Dynamics Corporation
Exhibit 1013
Page 167



CuaP. 5] °  PROBLEMS AND EXERCISES 165

magnitude of the magnetic coupling can be readily controlled by the
orientation of the loop, and its location with respect to the magnetic field.
Thus the coupling is reduced to zero when the plane of the loop is rotated
so that it is parallel to the magnetic flux. Also the coupling will be low if
the loop is placed at a point of low magnetic flux density; thus a loop near
the vertical axis, as shown dotted in Fig. 5-31a, will have little coupling to
the dominant mode.

Coupling to & cavity can also be achieved by means of a probe as
illustrated in Fig. 5-31c. Here the electric flux of the desired mode
terminates on the probe, inducing a current in it; conversely a voltage
applied to the probe produces electric fields inside the cavity that excite
oscillations, This is thus a form of capacitive coupling, the magnitude of
which is determined (1) by the surface that the probe exposes to the electric
field of oscillations of the desired mode and (2) by the intensity of the
electric field at the position of the probe. Thus maximum coupling is
obtained in & cylindrical cavity operating in the TMy;o mode when the
probe is located on the axis as shown; the coupling to this mode will be
zero if the probe projects into the cavity from the side wall instead of the
end (dotted probe in Fig. 5-31c).

Still another method of coupling to a cavity is by means of a hole or slot.
The principles involved in this situation are the same as in the correspond-
ing waveguide case, and are discussed in detail on page 133.

PROBLEMS AND EXERCISES

6-1. 8ketch fields corresponding to the side view in Fig. 5-2, for three successive
values of time each differing by one-quarter of a cycle. Show the three cases one
above the other. "

5-2. Sketch field distributions similar to those of Fig. 5-2, for A = 1.5a, being
careful to show A, and a to scale.

5-8. A particular rectangular waveguide has a width of 2 in. and a height of 1 in.
What is the lowest frequency wave that will be transmitted by this waveguide?

5-4. Calculate and plot the ratio of phase shift per unit length in a rectangular
waveguide (dominant mode) to the phase shift per unit length in a coaxial trans-
mission line having air dielectric, as the dimension a of the waveguide is varied from
0.55\ to A

5-8. A wave having a frequency of 10,000 Mc travels down a rectangular guide for
which dimension ¢ = 2 cm. Calculate the value of 8 per cm, and compare the result
with the value of 8 that would be obtained at the same frequency on an air-filled
coaxial line.

5-8. What is the ratio v,/c at a frequency such that the guide width a is exactly
A/2?

average flux density in the cavity, one has to a rough approximation:

Impedance cou area of loop 'shunt impedance
into loop pled } ( half of cross-sectional cross-sectio! of cavity (6-15)
area of cavity
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5-7. Draw curves similar to those of Fig. 5-4, but for a = 0.55A and @ = 0.7\,
w a and A, to scale.
Be‘o-:fe;\;l:o w:.':'oeguide op:;ating at a wavelength of 3 cm, calculate the de]_)th in the
copper walls at which the current density is reduced to 0.0001 of the density at the
i f the walls.
ml:-;.s ll;:&::: v:sveguide of Fig. 5-5, discuss how the distribution of the current
flowing in the walls will change at fimes differing by (a) one-half cycle, and (b) one-
r cycle.

qu:::;. xf. Fig. 5-5, what would be the consequences of making hol.es 1 and 4 round
instead of rectangular, assuming that the area of the hole is the same in .each case?

8-11. In Fig. 5-5, what effects are produced on the electric coupl_mg by making
glot 1 half as long and twice as wide, thus keeping the area of the opening unchanged?

8-18. An incident TE;, wave of 5000 Mc travels down the guide of Fig. 5-6. How
far must it go before the amplitude is reduced to 70.7 per cent of the initial amplitude?

B-18. A rectangular waveguide has dimensions 2.5 by 5 cm. Determine ), 8, and
phase velocity at a wavelength of 4.5 cm for the dominant mode and the first higher-
order mode, and tabulate results side by side.

B-14. What aie the lowest frequencies for which the waveguide of Prob. 5-13 will
transmit (a) the dominant mode, and (b) the first higher-order mode?

6-18. A rectangular waveguide is 2 by 3 cm. What are the cutoff wavelengths for
the dominant and the first two higher-order modes?

§-18. What higher-order modes will tend to be excited in a waveguide by the
coaxial line exciting systems illustrated in the attached figure?

NOTE ARROWS INDICATE RELATIVE PCLARITY
() (Y2 )

Pros. 5-16

8-17. Buggest an arrangement involving a coaxial line terminating in a loop for
exciting the TM,, mode 1n a rectangular waveguide.

8-18. In a rectangular guide in which @ = 4 c¢m, calculate and plot cutoff wave-
length as a function of b/a for b/a = 0 to b/a = 1, for TEs, TEw, TE;z, TE:, and
TMu modes,

6-18. Which of the following modes will be unaffected by the posts of Fig. 5-9
(assuming the posts are located midway between the vertical sides): TE;, TEo,
TEz, TM;;, TMyi? N

6-20. Draw a diagram similar to Fig. 5-12, but assume 4 = 70°, Be sure to mark
the distunces representing A and A,. Compare the ratio A,/ with the ratio for Fig.
§-12, and show that the result, is consistent with Fig. 5-3.

8-21. Explain how Fig. 5-14 is consistent with the fact, deduced from Eq. (5-6),
that with a given guide, the cutoff wavelength for the TE;y mode will always be
exactly twice the cutoff wavelength for the TE,;, mode.

8-22. Sketch curves for the TE:, mode, analogous to those given in the right-hand
part of Fig. 5-15a, for a frequency of 3000 Mc in a circular waveguide when the
diameter of the guide is (a) 6.3 cm, and (b) 8 cm. Draw the curves to full-scale size,
and be careful to show A, correctly.
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§-28. In a circular waveguide in which the radius is 1.5 in. (r = 3.8 em) calculate
the value of 8 and the phase velocity for the dominant mode at a wavelength of 10 cm.

§-24. One has available in a wall a circular hole of 2 in. diameter through which a
waveguide is to be passed. If it is desired to obtain the longest possible cutoff wave-
length, what are the relative merits of the following guides: (a) circular; (b) rectangu-
lar, a = b; (c) rectangular, b/a = 0.5; and (d) rectangular, b/a — 0?

5-28. A long, narrow longitudinal slot is to be cut in the wall of a circular wave-
guide. Assuming the fields in the guide are as shown in Fig. 5-154, where should this
alot be located on the circumference of the guide if it is desired that the slot provide
(a) coupling to the electric field, but not to the magnetic field inside the guide, and
(b) magnetic coupling but no electric coupling?

6-26. Plot the voltage (i.e., electric field) distribution of the standing-wave pattern
as a function of position from 0 to 20 cm from the receiver for a rectangular waveguide
carrying a wave having a free-space wavelength of 10 cm, when the receiving end of
the waveguide is short-circuited and the waveguide dimensions are 6 by 3 cm. Show
the position of the minima and maxima accurately. Neglect attenuation.

5-27. The rectangular waveguide illustrated in Fig. 5-6 carries a TE;, wave of
5000 Mc. If the standing-wave ratio produced at the load end of the waveguide is 2,
what will be the standing-wave ratio 100 ft from the load end of the line?

5-28. In a 6 by 3 cm rectangular guide, calculate and plot the waveguide impedance
Z,, a8 a function of frequency, from cutoff to twice the cutoff frequency.

6-29. How should a longitudinal vane projecting radially inward from the side
of a circular waveguide carrying the TE,; mode be arranged to serve as (a) a mode
filter, and (b) as an impedance-matching device?

5-80. Explain why in Fig. 5-18 a probe projecting into the guide from the side,
with its axis horizontal, will be of no assistance in impedance matching for the TE,,
mode, but would be useful in the case of TEq, TE1., and TM;; modes.

5-81. The power transmitted down a rectangular waveguide is to be delivered
to a 50 ohm load resistance that is connected between the top and bottom sides of the
guide, and matched by a tapered section, as in Fig. 5-21a. If the guide on the input
side of the taper is 2.5 by 1.25 in. and the frequency is 3000 Mc, then what is the
required height on the load side of the taper?

5-32. The 50-chm load in Prob. 5-31 is matched to the guide by being placed off
center, as in case b in Fig. 5-20, instead of by tapering the guide. How far to theside
of the center line should the load resistance be placed?

5-38. In a particular rectangular waveguide attenuator based upon the TE,, mode,
it is desired that the attenuation be exactly 10 db per in. Determine the width that
the waveguide must have, assuming that the wavelength is many times the waveguide
width.

8-84. In a circular waveguide attenuator, it is found that at a particular distance
from the source of excitation there is an undesired TE, mode present which is 30 db
weaker than the desired TE;; mode. If the fields are now examined at a position
where the attenuation to the TE;: mode is increased by 48 db, how strong is the
undesired TE,, mode output compared with the TE,, output?

6-35. a. Repeat Prob. 5-34, but assume that the modes are interchanged; i.e., assume
that initially the TE,; mode (which is now the desired mode) is 30 db stronger than
the TEu mode.

b. Explain why in this case the attentuation in decibels per inch will be different
for large values of attenustion as compared with small values of attenuation.

8-36. In a circular waveguide attenuator using the TE;; mode, what will be the
effect of rotating the pickup coil 90° about the axis of the guide?

6-37. A coaxial line is to be coupled to a waveguide in the manner illustrated in
Fig. 5-8. If a good impedance match is desired, show that the guide cannot have the
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proportion a/b = 2.0 if the characteristic impedance of the coaxial line is in the range

60;3’1'02 ’_‘tﬁlot in Fig. 5-25 were replaced by a round hole aligned with the center

axis of the guide, what mode would be excited in the waveguide by energy in the
ial line?

00:!-1;: h;uggeet a means by which a coaxial line could be coupled to & circular wave-

guide in such a manner as to excite the TE,, mode.

8-40. Describe an experimental means which could be used to measure the ter-
minating impedance actually existing on a waveguide withou? removing this unknow.n
terminating impedance from its guide, and involving a magic-T junction and a cali-
brated adjustable terminating impedance.

6-41. A waveguide system possesses an obstacle, the exact nature of which is not
known, although the position of the obstacle is. Lixplain how, by the aid of standing-
wave measurements, one can determine whether the obstacle is inductive, capacitive,
series resonant, or shunt resonant,

§-43. Bketch curves showing qualitatively how the electric and magnetic fields are
distributed in a cylindrical cavity resonator operating in the TE,, waveguide mode,
under conditions wheére the cavity is a half guide-wavelength long.

§-48. Derive the formula given in Table 5-3 for the wavelength of a square prism
type of cavity from the properties of the TE,, mode in a rectangular waveguide,

8-44. In a cavity that is a rectangular prism operating in the TE,, waveguide
mode, it is found that the resonant frequency is independent of the dimension b in
Fig. 5-20c. Explain how this is consistent with waveguide theory.

§-48. Derive a formula for the resonant frequency of a eylindrical cavity formed by
a section of length & of the guide shown jn Fig. 5-15¢, short~circuited at both ends, and
operating in the TE, waveguide mode in such a manner that one-half cycle of field
variation occurs in the 4 direction.

§-46. Show that, when a cylindrical cavity is operated in the waveguide TE,, mode,
the resonant frequency depends on both the radius and length of the cavity.

8-47. A particular cavity with copper walls is found to have 3 Q of 10,000, The
walls are then plated with a material having s resistivity seven times that of copper.
What value will the Q then have, assuming that the plating is relatively thick?

6-48. A cylindrical cavity has a radius of 2 ir, and is 6 in. long, Calculate the
resonant frequency for the mode illustrated in Fig. 5-28b (the dominant mode), the
circuit Q, and the shunt impedance, assuming copper walls, Tabulate the results,

5-49. A sphere, cylinder, and square prism (cube) are all so proportioned as to
have the same resonant wavelength of 12.8 em. Calculate Q, shunt impedance, and
shunt impedance per unit length of shunt path, for each case. Tabulate the regults,
and include in the table the corresponding results from Table 5-4 for the reentrant
eavity of Fig. 5-297. Also give in the tabulation the largest linear dimension i.e.,
diameter, or length of side) for each resonator,

§-80. A coupling loop 1 em in diameter is inserted in the cylindrical cavity reso-
nator of Table 54, as in Fig. 5314 Calculate the approximate value of the imped-
anoce that the resonator will couple into this lobp at resonance, considering the reso-
nator as a secondary, and the loop as a primary.

8-81. a. Describe how tv locate s probe s0 as to couple to the TE,n cavity mode
illustrated in Fig. 5-29¢,

b. How could a loop be arranged to couple to the same mode? Give both the
location of the loop and the required orientation of its plane,
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