Window Management Chapter 9

Selecting a Window Model

Deciding how to present your application’s collection of related
tasks or processes requires considering a number of design factors:
your intended audience and their skill level, the presentation of ob-
Ject or task, effective use of the space on the display, and evolution
towards data-centered design.

Presentation of Object or Task

What an object represents and how it is used and relates to other

objects influences how you present its view. Simple objects that are
self-contained may not require a primary window, or only require a
set of menu commands and a property sheet to edit their properties.

An object with user-accessible content in addition to properties, such
as a document, only requires a primary window. The single docu-
ment window interface can be sufficient when the object’s primary
presentation or use is as a single unit, even when containing different
types. Alternative views can easily be supported with controls that
allow the user to change the view. Simple, simultaneous views of the
same data can even be supported by splitting the window into panes.
The system uses the single document window style of interface for
most of the components it includes, such as folders.

MDI, workspaces, workbooks, and projects are more effective when
the composition of an object requires multiple views or the nature of
the user’s tasks requires views of multiple objects. These constructs
provide a grouping and focus for a set of specific user activities,
within the larger environment of the desktop.

MDI is best suited for viewing homogeneous types. The user cannot
mix different objects within the same MDI parent windows unless
you supply them as part of the application. On the other hand, you
can use MDI to support simultaneous views of different objects.

Use a workbook when you want to optimize quick user navigation
of multiple views. A workbook simplifies the task by eliminating the

management of child windows, but in doing so, it limits the user’s
ability to see simultaneous views.

The Windows Interface Guidelines for Software Design 233

255

Chapter 9 Window Management

Workspaces and projects provide flexibility for viewing and mixing
of objects and their windows. Use a workspace as you would MDI,
when you want to clearly segregate the icons and their windows
used in a task. Use a project when you do not want to constrain any
child windows.

A project provides the greatest flexibility for user placement and
arrangement of its windows. It does so, however, at the expense

of an increase in complexity because it may be more difficult for a
user to differentiate the child window of a project from windows of
other applications.

Display Layout

Consider the requirements for layout of information. For very high
resolution displays, the use of menu bars, toolbars, and status bars
poses little problem for providing adequate display of the informa-
tion being viewed in a window. Similarly, the appearance of these
common interface elements in each window has little impact on the
overall presentation. At VGA resolution, however, this can be an
issue. The interface components for a set of windows should not so
dominate the user’s work area that the user cannot easily view or
manipulate their data.

MDI, workspaces, workbooks, and projects all allow some interface
components to be shared among multiple views. Within shared ele-
ments, it must be clear when a particular interface component ap-
plies. Although you can automatically switch the content of those
components, consider what functions are common across views or
child windows and present them in a consistent way to provide for
stability in the interface. For example, if multiple views share a Print
toolbar button, present that button in a consistent location. If the
button’s placement constantly shifts when the user switches the
view, the user’s efficiency in performing the task may decrease.
Note that shared interfaces may make user customization of interface
components more complex because you need to indicate whether the
customization applies to the current context or across all views.

234 The Windows Interface Guidelines for Software Design

256

Window Management Chapter 9

Regardless of the window model you chose, always consider allow-
ing users to determine which interface components they wish to have
displayed. Doing so means that you also need to consider how to
make basic functionality available if the user hides a particular com-
ponent. For example, pop-up menus can often supplement the inter-
face when the user hides the menu bar.

Data-Centered Design

A single document window interface provides the best support for

a simple, data-centered design and may be the easiest for users to
learn; MDI supports a more conventional application-centered de-
sign. Tt is best suited to multiple views of the same data or contexts
where the application does not represent views of user data. You can
use workspaces, workbooks, and projects to provide single document
window interfaces while preserving some of the management tech-
niques provided by MDI.

Combination of Alternatives

Single document window interfaces, MDIs, workspaces, workbooks,
and projects are not exclusive design techniques, It may be advanta-
geous to combine these techniques. For example, documents can be
presented within a workspace. You can also design workbooks and
projects as objects within a workspace. In similar fashion, a project
might contain a workbook as one of its objects.

The Windows Interface Guidelines for Software Design 235

257

258

CHAPTER

Integrating with the
System

Users appreciate seamless integration between the system and their
applications. This chapter covers information about integrating your
software with the system and how to extend its features, including
using the registry to store information about your application, install-
ing your application, using appropriate naming conventions, and
supporting shell features, such as the taskbar, Control Panel, and
Recycle Bin.

This chapter is only intended to provide an overview. Details re-
quired for some conventions go beyond the scope of this guide. For
information about these conventions, see the documentation inclu-
ded in the Microsoft Win32 Software Development Kit (SDK). In
addition, some of these conventions and features may not be sup-
ported in all releases. For more information about specific releases,
see Appendix D, “Supporting Specific Versions of Windows.”

The Registry

Windows provides a special repository called the regisiry that serves
as a central configuration database for user-, application-, and com-
puter-specific information. Although the registry is not intended for
direct user access, the information placed in it affects your appli-
cation’s user interface. Registered information determines the icons,

259

Chapter 10 Integrating with the System

commands, and other features displayed for files. The registry also
makes it easier to manage and support configuration information
used by your application and eliminates redundant information
stored in different locations.

The registry is a hierarchical structure. Each node in the tree is called
a key. Each key can contain subkeys and data entries called values.
Key names cannot include a space, backslash (\), or wildcard charac-
ter (* or 7). In the HKEY_CLASSES_ROOT key, names beginning
with a period (.) are reserved for special syntax (filename exten-
sions), but you can include a period within a key name. The name of
a subkey must be unique with respect to its parent key. Key names
are not localized into other languages, although their values may be.

A key can have any number of values. A value entry has three parts:
the name of the value, its data type, and the value itself. Value en-
tries larger than 2048 bytes should be stored as files with their
filenames stored in the registry.

When the user installs your application, register keys for where ap-
plication data is stored, for filename extensions, icons, shell com-
mands, OLE registration data, and for any special extensions. To
register your application’s information, you can create a registra-
tion file and use the Registry Editor to merge this file into the
system registry. You can also use other utilities that support this
function, or use the system-supplied registry functions to access

or manipulate registry data.

Registering Application State Information

Use the registry to store state information for your application.
Typically, the data you store here will be information you may
have stored in initialization (.INI) files in previous releases of
Windows, Create subkeys under the Software subkey in the
HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER
keys that include information about your application.

238 The Windows Interface Guidelines for Software Design

260

The example registry entries

in this chapter represent only
the hierarchical relationship of the
keys. For more information about
the registry and registry file formats,
see the documentation included in
the Win32 SDK.

a To use memory most effi-
ciently, the system stores
only the registry entries that have
been installed and that are required
for operation. Applications should
never fail to write a registry entry
because it is not already installed.
To ensure this happens, use regis-
try creation functions when adding
an entry.

Integrating with the System Chapter 10

HKEY_LOCAL_MACHINE
Software
CompanyName
ProductName
Version

HKEY_CURRENT_USER
Software
CompanyName
ProductName
Version

Use your application’s HKEY_LOCAL_MACHINE entry as the
location to store computer-specific data and the HKEY CURRENT
_USER entry to store user-specific data. The latter key allows you to
store settings to tailor your application for individual users working
with the same computer. Under your application’s subkey, you can
define your own structure for the information. Although the system
still supports initialization files for backward compatibility, use the
registry wherever possible to store your application’s state informa-
tion instead.

Use these keys to save your application’s state whenever appropriate,
such as when the user closes its primary window. In most cases, it is
best to restore a window to its previous state when the user reopens it.

When the user shuts down the system with your application’s win-
dow open, you may optionally store information in the registry so
that the application’s state is restored when the user starts up Win-
dows. (The system does this for folders.) To have your application’s
state restored, store your window and application state information
under its registry entries when the system notifies your application
that it is shutting down. Store the state information in your appli-
cation’s entries under HKEY_CURRENT_USER and add a value
name-value pair to the RunOnce subkey that corresponds to your
application. When the user restarts the system, it runs the command
line you supply. Once your application runs, you can use the data
you stored to restore its state.

The Windows Interface Guidelines for Software Design

261

239

Chapter 10 Integrating with the System

HKEY_CURRENT_USER
Software
Microsoft
Windows
CurrentVersion
RunQnce application identifier = command line

If you have multiple instances open, you can include value name
entries for each or consolidate them as a single entry and use com-
mand-line switches that are most appropriate for your application.
For example, you can include entries like the following.

WordPad Document 1 = C:\Program Files\Wordpad.exe Letter to Bill /restore
WordPad Document 2 = C:\Program Files\Wordpad.exe Letter to Paul /restore
Paint = C:\Program Files\Paint.exe Abstract.omp Cubist.omp

As long as you provide a valid command-line string that your appli-
cation can process, you can format the entry in a way that best fits
your application.

You can also include a RunOnce entry under the HKEY_LOCAL_
MACHINE key. When using this entry, however, the system runs
the application before starting up. You can use this entry for applica-
tions that may need to query the user for information that affects
how Windows starts. Just remember that any entry here will affect
all users of the computer.

RunOnce entries are automatically removed from the registry once The system’s ability to restore
the system starts up. Therefore, you need not remove or update the an application’s state depends
entries, but your application must always save its state when the user 0n the availability of the application
shuts down the system. The system also supports a Run subkey in and its data files. If they have been
both the HKEY_CURRENT_USER and HKEY_LOCAL_ deleted or the user has logged in

over the network where the same
files are not available, the system
may not be able to restore the state.

MACHINE keys. The system runs any value name entries under
this subkey after the system starts up, but does not remove those
entries from the registry. For example, a virus check program can be
installed to run automatically after the system starts up. You can also
support this functionality by placing a file or shortcut to a file in the
Startup folder. The registry stores the location of the Startup folder,
as a value in HKEY_CURRENT_USER \Software\Microsoft\
Windows\CurrentVersion\Explorer\Shell Folders.

240 The Windows Interface Guidelines for Software Design

262

Integrating with the System Chapter 10

Registering Application Path Information

The system supports “per application” paths. If you register a path,
Windows sets the PATH environment variable to be the registered
path when it starts your application. You set your application’s path
in the App Paths subkey under the HKEY _LOCAL_MACHINE
key. Create a new key using your application’s executable filename
as its name. Set this key’s Default value to the path of your execut-
able file. The system uses this entry to locate your application if it
fails to find it in the current path; for example, if the user chooses the
Run command on the Start menu and only includes the filename of
the application, or if a shortcut icon doesn't include a path setting. To
identify the location of dynamic-link libraries placed in a separate
directory, you can also include another value entry called Path and
set its value to the path of your dynamic-link libraries.

HKEY_LOCAL_MACHINE

Software
Microsoft
Windows
CurrentVersion
App Paths
Application Executable Filename = path
Path = path

The system will automatically update the path and default entries if
the user moves or renames the application’s executable file using the
system shell user interface.

Register any system-wide shared dynamic-link libraries in a subkey
under a SharedDLLs subkey of HKEY_LOCAL_MACHINE key.
If the file already exists, increment the entry’s usage count index.
For more information about the usage count index, see the section,
“Installation,” later in this chapter.

HKEY_LOCAL_MACHINE
Software
Microsoft
Windows
CurrentVersion
SharedDLLs filename [= usage count index]

The Windows Interface Guidelines for Software Design 241

263

Chapter 10 Integrating with the System

Registering File Extensions

If your application creates and maintains files, register entries for
the file types that you expose directly to users and that you want
users to be able to easily differentiate. For every file type you regis-
ter, include at least two entries: a filename-extension key entry and
an application (class) identification key entry.

If you do not register an extension for a file type, it will be displayed
with the system’s generic file object icon, as shown in Figure 10.1,
and its extension will always be displayed. In addition, the user will
not be able to double-click the file to open it. (Open With will be the
icon’s default command.)

Figure 10.1 System-generated icons for unregistered types

The Filename Extension Key

The filename extension entry maps a filename extension to an appli-
cation identifier. To register an extension, create a subkey in the
HKEY_CLASSES ROOT key using the three-letter extension
(including a period) and set its value to an application identifier.

HKEY_CLASSES_ROOT
.ext = Applicationidentifier

For the value of the application identifier (also known as program-
matic identifier or Prog ID), use a string that uniquely identifies a
given class. This string is used internally by the system and is not
exposed directly to users (unless explicitly exported with a special
registry utility); therefore, you need not localize this entry.

242 The Windows Interface Guidelines for Software Design

264

Integrating with the System Chapter 10

Avoid assigning multiple extensions to the same application identi-
fier. To ensure that each file type can be distinguished by the user,
define each extension such that each has a unique application identi-
fier. If you have utility files that the user does not interact with di-
rectly, you should still register an extension (and icon) for them,
preferably the same extension so that they can be identified. In addi-
tion, mark them with the hidden file attribute.

The system provides no arbitration for applications that use the same
extensions. So define unique identifiers and check the registry to
avoid writing over and replacing existing extension entries, a prac-
tice which may seriously affect the user’s existing files. More spe-
cifically, avoid registering an extension that conflicts or redefines the
common filename extensions used by the system. Examples of these
extensions are shown in Table 10.1.

Table 10.1 Common Filename Extensions Supported by Windows

Extension Type description

386 Windows virtual device driver
3GR Screen grabber for MS-DOS—based applications
ACM Audio compression manager driver
ADF Administration configuration files
ANI Animated pointer

AVI Video clip

AWD FAX viewer document

AWP FAX key viewer

AWS FAX signature viewer

BAK Backed-up file

BAT MS-DOS batch file

BFC Briefcase

BIN Binary data file

BMP Picture (Windows bitmap)

CAB Windows Setup file

CAL Windows Calendar file

CDA CD audio track

CFG Configuration file

The Windows Interface Guidelines for Software Design

265

243

Chapter 10 Integrating with the System

(Continued)

Extension Type description

CNT Help contents

COM MS-DOS — based application

CPD FAX cover page

CPE FAX cover page

CPI International code page

CPL Control Panel extension

CRD Windows Cardfile document

Ccsv Command-separated data file

CUR Cursor (pointer)

DAT System data file

DCX FAX viewer document

DLL Application extension (dynamic-link library)

DOC WordPad document

DOS MS-DOS file (also extension for NDIS2 net card and
protocol drivers)

DRV Device driver

EXE Application

FND Saved search

FON Font file

FOT Shorteut to font

GR3 Windows 3.0 screen grabber

GRP Program group file

HLP Help file

HT HyperTerminal™ file

ICM ICM profile

ICO Icon

IDF MIDI instrument definition

INF Setup information

INI Initialization file (configuration settings)

244 The Windows Interface Guidelines for Software Design

266

Integrating with the System Chapter 10

(Continued)

Extension Type description

KEBD Keyboard layout

LGO Windows logo driver

LIB Static-link library

LNK Shorteut

LOG Log file

MCI MCI command set

MDB File viewer extension

MID MIDI sequence

MIF MIDI instrument file

MMF Microsoft Mail message file

MMM Animation

MPD Mini-port driver

MSG Microsoft® Exchange mail document
MSN Microsoft Network home base

NLS Natural language services driver

PAB Microsoft Exchange personal address book
PCX Bitmap picture (PCX format)

PDR Port driver

PF ICM profile

PIF Shortcut to MS-DOS-based application
PPD PostScript® printer description file

PRT Printer formatted file (result of Print to File option)
PST Microsoft Exchange personal information store
PWL Password list

QIC Backup set for Microsoft Backup

REC Windows Recorder file

REG Application registration file

RLE Picture (RLE format)

RMI MIDI sequence

The Windows Interface Guidelines for Software Design 245

267

Chapter 10 Integrating with the System

(Continued)

Extension Type description

RTF Document (rich-text formart)
SCR Screen saver

SET File set for Microsoft Backup
SHB Shorteut into a document

SHS Scrap

SPD PostScript printer description file
SwWp Virtual memory storage

SYS System file

TIF Picture (TIFF® format)

TMP Temporary file

TRN Translation file

TSP Windows telephony service provider
TTF TrueType® font

TXT Text document

VBX Microsoft Visual Basic® control file
VER Version description file

VXD Virtual device driver

WAV Sound wave

WPC WordPad file converter

WRI Windows Write document

It is a good idea to investigate extensions commonly used by popular
applications so you can avoid creating a new extension that might
conflict with them, unless you intend to replace or superset the func-
tionality of those applications.

246 The Windows Interface Guidelines for Software Design

268

Integrating with the System Chapter 10

The Application Identifier Key

The second registry entry you create for a file type is its class-defini-
tion (Prog ID) key. Using the same string as the application identi-
fier you used for the extension’s value, create a key, and assign a
type name as the value of the key.

HKEY_CLASSES_ROOT
.ext = Applicationidentifier
Applicationldentifier = Type Name

Under this key, you specify shell and OLE properties of the class.
Provide this entry even if you do not have any extra information to
place under this key; doing so provides a label for users to identify
the file type. In addition, you use this entry to register the icon for
the file type. .

Define the type name (also known as the MainUserTypeName) as
the human-readable form of its application identifier or class name.
It should convey to the user the object’s name, behavior, or capabil-
ity. A type name can include all of the following elements:

1. Company Name
Communicates product identity.

2. Application Name
Indicates which application is responsible for activating a data
object.

3. Data Type
Indicates the basic category of the object (for example, drawing,
spreadsheet, or sound). Limit the number of characters to a maxi-
mum of 15.

4. Version
When there are multiple versions of the same basic type, for up-
grading purposes, you may want to include a version number to
distinguish types.

When defining your type name, use title capitalization. The name

can include up to a maximum of 40 characters. Use one of the fol-
lowing three recommended forms:

The Windows Interface Guidelines for Software Design 247

269

Chapter 10 Integrating with the System

1. Company Name Application Name |Version] Data Type
For example, Microsoft Excel Worksheet.

2. Company Name-Application Name [Version] Data Type
For cases when the company name and application are the same
— for example, ExampleWare 2.0 Document.

3. Company Name Application Name [Version]
When the application sufficiently describes the data type — for
example, Microsoft Graph.

These type names provide the user with a precise language for refer-
ring to objects. Because object type names appeat throughout the
interface, the user becomes conscious of an object’s type and its
associated behavior. However, because of their length, you may also
want to include a short type name. A short type name is the data
type portion of the full type name. Applications that support OLE
always include a short type name entry in the registry. Use the short
type name in drop-down and pop-up menus. For example, a
Microsoft® Excel Worksheet is simply referred to as a “Worksheet”

in menus.
To provide a short type name, add an AuxUserType subkey under =7 For more information about
the application’s registered CLSID subkey (which is under the BaX registering type names and
CLSID key). other information you should in-
clude under the CLSID key, see the
HKEY CLASSES ROOT OLE documentation included in the
.ext = Applicationldentifier Win32 SDK.

Applicationldentifier = Type Name
CLSID = {CLSID identifier}

CLSID
{CLSID identifier}
AuxUserType
2 = Short Type Name

If a short type name is not available for an object because the string
was not registered, use the full type name instead. All controls that
display the full type name must allocate enough space for 40 charac-
ters in width. By comparison, controls need only accommodate 15
characters when using the short type name.

248 The Windows Interface Guidelines for Software Design

270

Integrating with the System Chapter 10

Supporting Creation

The system supports the creation of new objects in system contain-
ers, such as folders and the desktop. Register information for each
file type that you want the system to include. The registered type
will appear on the New command that the system includes on menus
for the desktop, folders, and the Open and Save As common dialog
boxes. This provides a more data-centered design because the user
can create a new object without having to locate and run the associ-
ated application.

To register a file type for inclusion, create a subkey using the
Application Identifier under the extension’s subkey in HKEY _
CLASSES_ROOT. Under it, also create the ShellNew subkey.

HKEY_CLASSES_ROOT
.ext = Applicationldentifier
Applicationldentifier
ShellNew Value Name = Value

Assign a value entry to the ShellNew subkey with one of the four
methods for creating a file with this extension.

Value name Value Result

NullFile S Creates a new file of this type as a
null (empty) file.

Data binary data Creates a new file containing the
binary data.

FileName path Creates a new file by copying the
specified file.

Command filename Carries out the command. Use this

to run your own application code to
create a new file (for example, run a
wizard).

The Windows Interface Guidelines for Software Design

271

249

Chapter 10 Integrating with the System

The system also will automatically provide a unique filename for the
new file using the type name you register.

When using a Command value, place your application file (that
creates the new file) in the directory that the system uses to store
these files. To determine the path for that directory, check the setting
for the Templates value in the Shell Folders subkey found in
HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Explorer. Then you need only register the
filename for the command.

Registering Icons

The system uses the registry to determine which icon to display for a
specific file. You register an icon for every data file type that your
application supports and that you want the user to be able to distin-
guish easily. Create a DefaultIcon subkey entry under the applica-
tion identifier subkey you created and define its value as the
filename containing the icon. Typically, you use the application’s
executable filename and the index of the icon within the file. The
index value corresponds to the icon resource within the file. A posi-
tive number represents the icon’s position in the file. A negative
number corresponds to the inverse of the resource ID number of the
icon. The icon for your application should always be the first icon
resource in your executable file. The system always uses the first
icon resource to represent executable files. This means the index
value for your data files will be a number greater than 0.

HKEY_CLASSES_ROOT
Applicationldentifier = Type Name
Defaultlcon = path [,index]

Instead of registering the application’s executable file, you can reg- =4 For more information about
ister the name of a dynamic link library file (.DLL), an icon file BaW designing icons, see Chapter
(.ICO), or bitmap file (BMP) to supply your data file icons. If an 13, “Visual Design.”

icon does not exist or is not registered, the system supplies an icon

derived from the icon of the file type’s registered application. If no

icon is available for the application, the system supplies a generic

icon. These icons do not make your files uniquely identifiable, so

design and register icons for both your application and its data file

types. Include the following sizes: 16 x 16 pixel (16 color), 32 x 32

pixel (16 color), and 48 x 48 pixel (256 color).

250 The Windows Interface Guidelines for Software Design

272

Integrating with the System Chapter 10

Registering Commands

Many of the commands found on icons, including Send To, Cut,
Copy, Paste, Create Shortcut, Delete, Rename, and Properties, are
provided by their container — that is, their containing folder or the
desktop. But you must provide support for the icon’s primary com-
mands, also referred to as verbs, such as Open, Edit, Play, and Print.
You can also register additional commands that apply to your file
types, such as a What’s This? command and even commands for
other file types.

To add these commands, in the HKEY_CLASSES_ROOT key, you
rcgister a shell subkey and a subkey for each verb, and a command
subkey for each menu command name.

HKEY_CLASSES_ROOT
Applicationldentifier = Type Name
shell [= default verb [,verb2[,..]]
verb [= Menu Command Name)
command = pathname [parameters)

You can also register a DDE command string for a DDE command.

HKEY_CLASSES_ROOT
Applicationidentifier = Type Name
shell [= default verb [,verb2[,..]]
verb [= Menu Command Name]
ddeexec = DDE command string
Application = DDE Application Name
Topic = DDE topic name

A verb is a language-independent name of the command. Applica-
tions may use it to invoke a specific command programmatically.
The system defines Open, Print, Find, and Explore as standard verbs
and automatically provides menu command names and appropriate
access key assignments, localized in each international version of
Windows. When you supply verbs other than these, provide menu
command names localized for the specific version of Windows on
which the application is installed. To assign a menu command name
for a verb, make it the default value of the verb subkey.

The Windows Interface Guidelines for Software Design 251

273

Chapter 10 Integrating with the System

The menu command names corresponding to the verbs for a file type
are displayed to the user, either on a folder’s File drop-down menu
or pop-up menu for a file’s icon. These appear at the top of the
menu. You define the order of the menu commands by ordering the
verbs in the value of the shell key. The first verb becomes the de-
fault command in the menu.

By default, capitalization follows how you enter format the menu
command name value of the verb subkey. Although the system auto-
matically capitalizes the standard commands (Open, Print, Explore,
and Find), you can use the value of the menu command name to
format the capitalization differently. Similarly, you use the menu
command name value to set the access key for the menu command
following normal menu conventions, prefixing the character in the
name with an ampersand (&). Otherwise, the system sets the first
letter of the command as the access key for that command.

To support user execution of a verb, provide the path for the applica-
tion or a DDE command string. You can include command-line
switches. For paths, include a %1 parameter. This parameter is an
operational placeholder for whatever file the user selects.

For example, to register an Analyze command for an application that
manages stock market information, the registry entries might look
like the following.

HKEY_CLASSES_ROOT
stockfile = Stock Data
shell = analyze
analyze = &Analyze
command = C:\Program Files\Stock Analysis\Stock.exe /A

You may have different values for each command. You may assign one
application to carry out the Open command and another to carry out
the Print command, or use the same application for all commands.

252 The Windows Interface Guidelines for Software Design

274

Integrating with the System Chapter 10

Enabling Printing

If your file types are printable, include a Print verb entry in the shell
subkey under HKEY_CLASSES_ROOT, following the conven-
tions described in the previous section. This will display the Print
command on the pop-up menu for the icon and on the File menu of
the folder in which the icon resides when the user selects the icon.
When the user chooses the Print command, the system uses the reg-
istry entry to determine what application to run to print the file.

Also register a Print To registry entry for the file types your applica-
tion supports. This entry enables dragging and dropping of a file
onto a printer icon. Although a Print To command is not displayed
on any menu, the printer includes Print Here as the default command
on the pop-up menu displayed when the user drag and drops a file on
the printer using button 2.

In both cases, print the file, preferably, without opening the
application’s primary window. One way to do this is to provide a
command-line switch that runs the application for handling the print-
ing operation only (for example, WordPad.exe /p). In addition, dis-
play some form of user feedback that indicates whether a printing
process has been initiated and, if so, its progress. For example, this
feedback could be a modeless message box that displays, “Printing
page m of n on printer name” and a Cancel button. You may also
include a progress indicator control.

Registering OLE

Applications that support OLE use the registry as the primary =4 For more information about
means of defining class types, operations, and properties for data Ba¥ the specific registration en-
types supported by those applications. You store OLE registration tries for OLE, see the OLE documen-

information in the HKEY_CLASSES_ROOT key in subkeys under 1ation included in the Win32 SDK.
the CLSID subkey and in the class description’s (Prog ID) subkey.

The Windows Interface Guidelines for Software Design 253

275

Chapter 10 Integrating with the System

Registering Shell Extensions

Your application can extend the functionality of the operational
environment provided by the system, also known as the shell, in a
number of ways. A shell extension enhances the system by providing
additional ways to manipulate file objects, by simplifying the task of
browsing through the file system, or by giving the user easier access
to tools that manipulate objects in the file system.

Every shell extension requires a handler, special application code
(32-bit OLE InProc server implemented as a dynamic-link library)
that implements subordinate functions. The types of handlers you
can provide include:

= Pop-up (context) menu handlers: these add menu items to the
pop-up menu for a particular file type.

« Drag handlers: these allow you to support the OLE data transfer
conventions for drag and drop operations of a specific file type.

= Drop handlers: these allow you to carry out some action when the
user drops objects on a specific type of file.

s Nondefault drag and drop handlers: these are pop-up menu han-
dlers that the system calls when the user drags and drops an object
by using mouse button 2.

 Icon handlers: these can be used to add per-instance icons for file
objects or to supply icons for all files of a specific type.

» Property sheet handlers: these add pages to a property sheet that
the shell displays for a file object. The pages can be specific to a
class of files or to a particular file object.

 Copy-hook handlers: these are called when a folder or printer

object is about to be moved, copied, deleted, or renamed by the
user. The handler can be used to allow or prevent the operation.

254 The Windows Interface Guidelines for Software Design

276

=4 Support for shell extensions
h'. may depend on the version
of Windows installed. For more in-
formation about specific releases,
see Appendix D, “Supporting Spe-
cific Versions of Windows.”

Integrating with the System Chapter 10

You register the handler for a shell extension in the HKEY ™% For more information about
CLASSES_ROOT key. The CLSID subkey contains a list of Pa¥ creating handlers and class
class identifier key values such as {00030000-0000-0000- identifiers, see the OLE documenta-
C000-000000000046 } . Each class identifier must also be a tion included in the Win32 SDK.

globally unique identifier.

You must also create a shellex subkey under the application’s class
identification entry in the HKEY_CLASSES_ROOT key.

HKEY_CLASSES_ROOT
Applicationldentifier =Type Name
Shell [= default verb [,verb2[,..]]

shellex
HandlerType
{CLSID identifier} = Handler Name

HandlerType = {CLSID identifier;

The shell also uses several other special keys, such as *, Folder,
Drives, and Printers, under HKEY_CLASSES_ROOT. You can
use these keys to register extensions for system-supplied objects. For
example, you may use the ¥ key to register handlers that the shell
calls whenever it creates a pop-up menu or property sheet for a file
object, as in the following example.

HKEY_CLASSES_ROOT
shellex
ContextMenuHandlers
{00000000-1111-2222-3333-0000000001}
PropertySheetHandlers = Summarylnfo
{00000000-1111-2222-3333-0000000002}
IconHandler = {00000000-1111-2222-3333-000000003}

The shell would use these handlers to add to the pop-up menus and
property sheets of every file object. (The entries are intended only as
examples, not literal entries.)

The Windows Interface Guidelines for Software Design 255

277

Chapter 10 Integrating with the System

A pop-up menu handler may add commands to the pop-up menu of
a file type, but it may not delete or modify existing menu commands.
You can register multiple pop-up menu handlers for a file type. The
order of the subkey entries determines the order of the items in the
context menu. Handler-supplied menu items always follow regis-
tered command names.

Keep in mind that if you want to include a command on the pop-up
menu of every file of a particular type, you do not need to create and
register a pop-up menu handler. You can just use the normal means
of registering commands for that type. Create a pop-up menu handler
only when you want to provide a command only under specific con-
ditions, such as the length of the file or its timestamp.

‘When registering an icon handler for providing per-instance icons for

a file type, set the value for the DefaultIcon key to %1. This denotes
that each file instance of this type can have a different icon.

Supporting the Quick View Command

The system includes support for fast, read-only views of many file =4 For more information about
types when the user chooses the Quick View command from the Ba¥ supporting the Quick View
file object’s menu. This allows the user to view files without open- command and creating file viewers,

see the documentation included in

ing the application. the Win32 SDK

If your file type is not supported, you can install a file parser that
translates your file type into a format the system file viewer can
read. Although this approach allows you to easily support viewers
for your data file types, it limits the interaction options for your file
types to those provided by the system. Alternatively, you can create
your own file viewer, using the system-supplied interfaces. You can
also register a file viewer for a file type already registered.

You can also support the Quick View command for data objects
stored within your application’s interface, either by supplying a
specific viewer for your data types or by writing the data to a tempo-
rary file and then executing a file viewer and passing the temporary
file as a parameter.

256 The Windows Interface Guidelines for Software Design

278

Integrating with the System Chapter 10

Registering Sound Events

Your application can register specific events to which the user can
assign sound files so that when those events are triggered, the as-

signed sound file is played. To register a sound event, create a key
under the HKEY_CURRENT_USER key.

HKEY_CURRENT_USER
AppEvents
Event Labels
EventName = Event Name

Set the value for EventName to a human-readable name.

Registering a sound event only makes it available in Control Panel so
the user can assign a sound file. Your application must provide the
code to process that event.

Installation

The following sections provide guidelines for installing your
application’s files. Applying these guidelines will help you reduce
the clutter of irrelevant files when the user browses for a file. In
addition, you'll reduce the redundancy of common files and make
it easier for the user to update applications or the system software.

Copying Files

When the user installs your software, avoid copying files into the
Windows directory (folder) or its System subdirectory. Doing so
clutters the directory and may degrade system performance. Instead,
create a single directory, preferably using the application’s name, in
the Program Files directory (or the location that the user chooses).

In this directory, place the executable file. For example, if a program
is named My Application, create a My Application subdirectory and
place My Application.exe in that directory.

The Windows Interface Guidelines for Software Design 257

279

Chapter 10 Integrating with the System

To locate the Program Files directory, check the ProgramFilesDir
value in the CurrentVersion subkey under HKEY LOCAL_
MACHINE\Software\Microsoft\Windows. The actual directory
may not literally be named Program Files. For example, in interna-
tional versions of Microsoft Windows, the directory name is appro-
priately localized. For networks that do not support the Windows
long filename conventions, MS-DOS names may be used instead.

In your application’s directory, create a subdirectory named System
and place all support files that the user does not directly access in it,
such as dynamic-link libraries and Help files. For example, place a
support file called My Application.dll in the subdirectory Program
Files\My Application\System. Hide the support files and your
application’s System directory and register its location using a Path
value in the App Paths subkey under HKEY_LOCAL_MACHINE
\Software\Microsoft\Windows\CurrentVersion. Although you
may place support files in the same directory as your application,
placing them in a subdirectory helps avoid confusing the user and
makes files easier to manage.

Applications can share common support files to reduce the amount of
disk space consumed by duplication. If some non-user-accessed files
of your application are shared as systemwide components (such as
Visual Basic’s Vbrun300.dll), place them in the System subdirectory
of the directory where the user installs Windows. The process for
installing shared files includes these logical steps:

1. Before copying the file, verify that it is not already present. =4 The system provides support
BN services in Verdll for assist-
2. If the file is already present, compare its date and size to deter- ing you to do Veysion veriii(?atio_n.
mine whether it is the same version as the one you are installing. !;or morteh'"fgrma“ﬂntﬂf_ﬂu’[_“'"-|°> létlg
1f it is, increment the usage count in its corresponding registr iy, see the documentation include
it c S in the Win32 SDK.

3. If the file you are installing is not more recent, do not overwrite
the existing version.

4. If the file is not present, copy it to the directory.
If you store a new file in the System directory installed by Windows,

register a corresponding entry in the SharedDLL subkey under the
HKEY LOCAL_MACHINE key.

258 The Windows Interface Guidelines for Software Design

280

Integrating with the System Chapter 10

If a file is shared, but only among your applications, create a
subdirectory using your application’s name in the Common Files
subdirectory of the Program Files subdirectory and place the file
there. To locate the Common Files directory, check the Common-
FilesDir value in the CurrentVersion subkey of HKEY LOCAL
MACHINE\Software\Microsoft\Windows. Alternatively, for
“suite” style when multiple applications are bundled together, you
can create a suite subdirectory in Program Files, where you place
your executable files, and within that a System subdirectory with the
support files shared only within the suite. In either case, register the
path using the Path subkey under the App Paths subkey

When installing an updated version of the shared file, ensure that it
is upwardly compatible before replacing the existing file. Alterna-
tively, you can create a separate entry with a different filename (for
example, Vbrun301.dll).

Name your executable file, dynamic-link libraries, and any other
files that the user does not directly use, but that may be shared on a
network, using conventional MS-DOS (8.3) names rather than long
filenames. This will provide better support for users operating in
environments where these files may need to be installed on network
services that do not support the Windows long filename conventions.

Windows no longer requires Autoexec.bat and Config.sys files. En-
sure that your application also does not require these files, Consider
converting any MS-DOS device drivers to Windows virtual device
drivers. The system supports dynamic loading of this type of device
drivers, unlike MS-DOS device drivers which need to be loaded
through Config.sys when starting the system. Similarly, because the
registry allows you to register your application paths, your applica-
tion does not require path information in Autoexec.bat.

In addition, do not make entries in Win.ini. Storing information in
this file can make it difficult for the user to update or move yvour
application. Also, avoid maintaining your application’s own initial-
ization file. Instead, use the registry. The registry provides conven-
tions for storing most application and user settings. The registry
provides greater flexibility allowing you to store information on a
per machine or per user basis. It also supports accessing this infoma-
tion across a network.

The Windows Interface Guidelines for Software Design 259

281

Chapter 10 Integrating with the System

Make certain you register the types supported by your application
and the icons for these types along with your application’s icons. In
addition, register other application information, such as information
required to enable printing.

Providing Access to Your Application

To provide easy user access to your application, place a shortcut icon You can create a “program

to the application in the Programs folder. You can determine the path ==l group” entry in the Programs
for this folder in Shell Folders subkey under HKEY_CURRENT_ folder using the Windows 3.1 dy-
USER\Software\Microsoff\Windows\CurrentVersion\Explorer. namic date exchange application

programming interface (API). How-
ever, it is not recommended for ap-
plications installed with Microsoft

This adds the entry to the submenu of the Programs menu of the
Start button. Avoid adding entries for every application you might
include in your software; this quickly overloads the menu. Option- Wirdows 95 and later relsases
ally, you can allow the user to choose which icons to place in the configured with the new shell Maar
menu. Avoid using a folder as your entry in the Programs menu, interface.

because this creates a multilevel hierarchy. Including a single entry

makes it easier and simpler for a user to access your application.

Also consider the layout of files you provide with your application.
Folders in Windows 95 and later releases provide much greater flex-
ibility for file organization than did the Windows Program Manager.
In addition to the recommended structure for your main executable
file and its support files, you may want to create special folders for
documents, templates, conversion tools, or other files that the user
accesses directly.

Designing Your Installation Program

Your installation program should offer the user different installation
options such as:

e Typical Setup: installation that proceeds with the common de-
faults set, copying only the most common files. Make this the
default setup option.

e Compact Setup: installation of the minimum files necessary to
operate your application. This option is best for situations where
disk space must be conserved — for example, on laptop com-
puters. You can optionally add a Portable setup option for addi-
tional functionality designed especially for configurations on
laptops, portables, and portables used with docking stations.

260 The Windows Interface Guidelines for Software Design

282

Integrating with the System Chapter 10

e Custom Setup: installation for the experienced user. This option
allows the user to choose where to copy files and which options
or features to include. This can include options or components not
available for compact or typical setup.

¢ CD-ROM Setup: installation from a CD-ROM. This option al-
lows users to select what files to install from the CD and allows
them to run the remaining files directly from the CD.

= Silent Setup: installation using a command-line switch. This al-
lows your setup program to run with a batch file

In addition to these setup options, your installation program should
be a well-designed, Windows-based application and follow the con-
ventions detailed in this guide and in the following guidelines:

= Supply a common response to every option so that the user can
step through the installation process by confirming the default
settings (that is, by pressing the ENTER key).

= Tell users how much disk space they will need before proceeding
with installation. In the custom setup option, adjust the figure as
the user chooses to include or exclude certain options. If there is
not sufficient disk space, let the user know, but also give the user
the option to override.

* Offer the user the option to quit the installation before it is fin-
ished. Keep a log of the files copied and the settings made so the
canceled installation can be cleaned up easily.

= Ask the user to insert a disk only once during the installation. Lay
out your files on disk so that the user does not have to reinsert the
same disk multiple times.

¢ Provide a visual prompt and an audio cue when the user needs to
insert the next disk.

¢ Support installation from any location. Do not assume that instal-
lation must be done from a logical MS-DOS drive (such as drive
A). Design your installation program to support any valid univer-

sal naming convention (UNC) path.

¢ Provide a progress indicator message box to inform the user how
far they are through the installation process.

The Windows Interface Guidelines for Software Design

283

261

Chapter 10 Integrating with the System

If you are creating your own installation program, consider using the ™% For more information about
wizard control. Using this control and following the guidelines for Ba¥ designing wizards, see Ghap-
wizards will result in a consistent interface for users. ter 12, "User Assistance.

Naming your installation program Setup.exe or Install.exe (or local-
ized equivalent) will allow the system to recognize the file. Place the
file in the root directory of the disk the user inserts. This allows the
system to automatically run your installation program when the user
chooses the Install button in the Add/Remove Programs utility in
Control Panel.

Installing Fonts

When installing fonts with your application on a local system,
determine whether the font is already present. If it is, rename
your font file — for example, by appending a number to the end
of its filename. After copying a font file, register the font in the
Fants subkey.

Installing Your Application on a Network

If you create a client-server application so that multiple users access =73 For more information about
it from a network server, create separate installation programs: an 1M designing client-server appli-
installation program that allows the network administrator to prepare ~ Cations, see Chapter 14, “Special
the server component of the application, and a client installation Design Considerations.” Additional

program that installs the client component files and sets up the set- information can dlso be found in
N 2 : : the documentation included in

tings to connect to the server. Design your client software so that an Win32 SDK

administrator can deploy it over the network and have it automati- J

cally configure itself when the user starts it.

Because Windows may itself be configured to be shared on a server,
do not assume that your installation program can store information in
the main Windows directory on the server. In addition, shared appli-
cation files should not be stored in the “home” directory provided for
the user.

Design your installation program to support UNC paths. Also, use
UNC paths for any shortcut icons you install in the Start Menu folder.

262 The Windows Interface Guidelines for Software Design

284

Integrating with the System Chapter 10

Uninstalling Your Application

The user may need to remove your application to recover disk space
or to move the application to another location. To facilitate this,
provide an uninstall program with your application that removes its
files and settings. Remember to remove registry entries and shortcuts
your application may have placed in the Start menu hierarchy. How-
ever, be careful when removing your application’s directory structure
not to delete any user files (unless you confirm their removal with
the user).

Your uninstall program should follow the conventions detailed in
this guide and in the following guidelines:

* Display a window that provides the user with information about
the progress of the uninstall process. You can also provide an
option to allow the program to uninstall “silently” — that is, with-
out displaying any information so that it can be used in batch files.

¢ Display clear and helpful messages for any errors your uninstall
program encounters during the uninstall process.

* When uninstalling an application, decrement the usage count in
the registry for any shared component — for example, a dynamic-
link library. If the result is zero, give the user the option to delete
the shared component with the warning that other applications
may use this file and will not work if it is missing.

Registering your uninstall program will display your application in
the list of the Uninstall page of the Add/Remove Program utility
included with Windows. To register your uninstall program, add
entries for your application to the Uninstall subkey.

HKEY_LOCAL_MACHINE
Software
Microsoft
Windows
CurrentVersion
Uninstall

ApplicationName DisplayName = Application Name
UninstallString = path [switches]

The Windows Interface Guidelines for Software Design 263

285

Chapter 10 Integrating with the System

Both the DisplayName and UninstallString values must be supplied
and be complete for your uninstall program to appear in the
Add/Remove Program utility. The path you supply to Uninstall-
String must be the complete command line used to carry out your
uninstall program. The command line you supply should catry out the
uninstall program directly rather than from a batch file or subprocess.

Supporting AutoPlay

Windows supports the ability to automatically run a file when the
user inserts removable media that support insertion notification, such
as CD-ROM, PCMCIA hard disks, or flash ROM cards. To support
this feature, include a file named Autorun.inf in the root directory of
the removable media. In this file, include the filename of the file to
run, using the following syntax.

[autorun]
open = filename

Unless you specify a path, the system looks for the file in the root
of the inserted media. If you want to run a file located in a subdir-
ectory, include a path relative to the root; include that path with the
file as in the following example.

open = My Directory\My File.exe

Running the file from a subdirectory does not change the current
directory setting. The command-line string you supply can also in-
clude parameters or switches.

Because the autoplay feature is intended to provide automatic
operation, design the file you specify in the Autorun.inf file to pro-
vide visnal feedback quickly to confirm the successful insertion of
the media. Consider using a startup up window with a graphic or
animated sequence. If the process you are automating requires a long
load time or requires user input, offer the user the option to cancel
the process.

264 The Windows Interface Guidelines for Software Design

286

Integrating with the System Chapter 10

Although you can use this feature to install an application, avoid
writing files to the user’s local disk without the user’s confirmation.
Even when you get the user’s confirmation, minimize the file storage
requirements, particularly for CD-ROM games or educational appli-
cations. Consuming a large amount of local file space defeats some
of the benefits of the turnkey operation that the autoplay feature
provides. Also, because a network administrator or the user can dis-
able this feature, avoid depending on it for any required operations.

You can define the icon that the system displays for the media

by including an entry in the Autorun.inf file that includes the
filename (and optionally the path) including the icon using the fol-
lowing form.

icon = filename

The filename can specify an icon, a bitmap, an executable, or a
dynamic-link library file. If the file contains more than one icon
resource, specify the resource with a number after the filename —
for example, My File.exe, 1. The numbering follows the same con-
ventions as the registry. The default path for the file will be relative
to the Autorun.inf file. If you want to specify an absolute path for an
icon, use the following form.

defaulticon = path

The system automatically provides a pop-up menu for the icon and
includes AutoPlay as the default command on that menu, so that
double-clicking the icon will run the Open = line. You can include
additional commands on the menu for the icon by adding entries for
them in the Autorun.inf file, using the following form.

shellwerb\command = filename
shell\verb = Menu Item Name

To define an access key assignment for the command, precede the
character with an ampersand (&). For example, to add the command
Read Me First to the menu of the icon, include the following in the
Autorun.inf file.

shell\readme\command = Notepad.exe My Directory\Readme.txt
shell\readme = Read &Me First

The Windows Interface Guidelines for Software Design

287

265

Chapter 10 Integrating with the System

Although AutoPlay is typically the default menu item, you can
define a different command to be the default by including the
following line.

shell = verb

When the user double-clicks on the icon, the command associated
with this entry will be carried out.

System Naming Conventions

Windows provides support for filenames up to 255 characters long. =W The system automatically for-
Use the long filename when displaying the name of a file. Avoid Ba¥ mats a filenarpe correctly if
displaying the filename extension unless the user chooses the option ~ YOU Use the SHGefFilelnfo or Get-

to display extensions or when the file type is not registered. FileTitle function. For more infor-
mation about these functions, see

the documentation included in the

Because the system uses three-letter extensions to describe a file Win32 SDK.

type, do not use extensions to distinguish different forms of the
same file type. For example, if your application has a function that
automatically backs up a file, name the backup file Backup of
filename.ext (using its existing extension) or some reasonable
equivalent, not filename.bak. The latter implies a change of the file’s
type. Similarly, do not use a Windows filename extension unless
your file fits the type description.

Long filenames can include any character, except the following.
LY R o

When your application automatically supplies a filename, use a
name that communicates information about its creation. For ex-
ample, files created by a particular application should use either the
application-supplied type name or the short type name as a proposed
name — for example, worksheet or document. When that file exists
already in the target directory, add a number to the end of the
proposed name — for example, Document (2). When adding num-
bers to the end of a proposed filename, use the first number of an
ordinal sequence that does not conflict with an existing name in

that directory.

266 The Windows Interface Guidelines for Software Design

288

Integrating with the System Chapter 10

When saving a file, make certain you preserve the creation date of
the file. For simple applications that open and save a file, this hap-
pens automatically. However, more sophisticated applications may
create temporary files, delete the original file, and rename the tem-
porary file to the original filename. In this case, the application
needs to copy the creation date as well from the old file to the new,
using the standard system functions. Certain system file manage-
ment functionality may depend on the correct creation date.

When you create a filename, the system automatically creates an
MS-DOS filename (alias) for a file. The system displays both the
long filename and the MS-DOS filename in the property sheet for
the file.

When a file is copied, use the words “Copy of” as part of the gener-
ated filename — for example, “Copy of Sample” for a file named
“Sample.” If the prefix “Copy of” is already assigned to a file, in-
clude a number in parentheses — for example, “Copy (2) of
Sample”. You can apply the same naming scheme to links, except
the prefix is “Link to” or “Shortcut to.”

It is also important to support UNC paths for identifying the
location of files and folders. UNC paths and filenames have the fol-
lowing form.

WServeAShare\Directory\Filename. ext

Using UNC names enables the user to directly browse the network
and open files without having to make explicit network connections.

Wherever possible, display the full name of a file (without the exten-
sion). The number of characters you’ll be able to display depends
somewhat on the font used and the context in which the name is
displayed. In any case, supply enough characters such that the user
can reasonably distinguish between names. Take into account com-
mon prefixes such as “Copy of” or “Shortcut to”. If you don’t dis-
play the full name, indicate that it has been truncated by appending
an ellipsis to the end of the name.

The Windows Interface Guidelines for Software Design 267

289

Chapter 10 Integrating with the System

You can use an ellipsis to abbreviate path names, in a displayable,
but noneditable situation. In this case, include at least the first two
entries of the beginning and the end of the path, using ellipses as
notation for the names in between, as in the following example.

WMy Server\My Share\...\My Folder\My File

When using an icon to represent a network resource, label the icon
with the name of the resource. If you need to show the network con-
text rather than using a UNC path, label the resource using the fol-
lowing format.

Resource Name on Computer Name

Taskbar Integration

The system provides support for integrating your application’s inter-
face with the taskbar. The following sections provide information on
some of the capabilities and appropriate guidelines.

Taskbar Window Buttons

When an application creates a primary window, the system auto-
matically adds a taskbar button for that window and removes it when
that window closes. For some specialized types of applications that
run in the background, a primary window may not be necessary. In
such cases, make certain you provide reasonable support for control-
ling the application using the commands available on the appli-
cation’s icon; it should not appear as an entry on the taskbar,
however. Similarly, the secondary windows of an application should
also not appear as a taskbar button.

The taskbar window buttons support drag and drop, but not in the
conventional way. When the user drags an object over a taskbar

window button, the system automatically restores the window. The
user can then drop the object in the window.

268 The Windows Interface Guidelines for Software Design

290

Integrating with the System Chapter 10

Status Notification
The system allows you to add status or notification information to =97 The Shell_Notifyleon func-
the taskbar. Because the taskbar is a shared resource, add information Ba¥ tion provides support for
to it that is of a global nature only or that needs monitoring by the adding a status item in the taskbar.
user while working with other applications. For more information about this

function, see the documentation in-

Present status notification information in the form of a graphic sup- cluded in the Win32 SDK.

plied by your application, as shown in Figure 10.2.

Figure 10.2 Status indicator in the taskbar

When adding a status indicator to the taskbar, also support the fol-
lowing interactions:

* Provide a pop-up window that displays further information or
controls for the object represented by the status indicator when the
user clicks with button 1. For example, the audio (speaker) status
indicator displays a volume control. Use a pop-up window to
supply for further information rather than a dialog box, because
the user can dismiss the window by clicking elsewhere. Position
the pop-up window near the status indicator so the user can navi-
gate to it quickly and easily. Avoid displaying other types of sec-
ondary windows because they require explicit user interaction to
dismiss them. If there is no information or control that applies, do
not display anything.

= Display a pop-up menu for the object represented by the status
indicator when the user clicks on the status indicator with button
2. On this menu, include commands that bring up property sheets
or other windows related to the status indicator. For example, the
audio status indicator provides commands that display the audio
properties as well as the Volume Control mixer application.

* Carry out the default command defined in the pop-up menu for
the status indicator when the user double-clicks.

The Windows Interface Guidelines for Software Design 269

291

Chapter 10 Integrating with the System

» Display a tooltip that indicates what the status indicator repre-
sents. For example, this could include the name of the indicator, a
value, or both.

 Provide the user an option to not display the status indicator,
preferably in the property sheet for the object displaying the status
indicator. This allows the user to determine which indicator to
include in this shared space. You may need to provide an alternate
means of conveying this status information when the user turns
off the status indicator.

Message Notification

When your application’s window is inactive but must display a
message, rather than displaying a message box on top of the cur-
rently active window and switching the input focus, flash your
application’s title bar and taskbar window button to notify the user
of the pending message. This avoids interfering with the user’s cur-
rent activity but lets the user know a message is waiting. When the
user activates your application’s window, the application can display
a message box.

Use the system setting for the cursor blink rate for your flash rate. This
allows the user to control the flash rate to a comfortable frequency.

Rather than flashing the button continually, you can flash the win-
dow button only a limited number of times (for example, three), then
leave the button in the highlighted state, as shown in Figure 10.3.
This lets the user know there is still a pending message.

=¥7 The FlashWindow function

W supports flashing your title
bar and taskbar window button. For
more information about this func-
tion, see the documentation in-
cluded in the Win32 SDK.

=7 The GeiCaretBlinkTime func-

W tion provides access to the
current cursor blink rate setting. For
more information about this func-
tion, see the documentation in-
cluded in the Win32 SDK.

Figure 10.3 Flashing a iaskbar button to notify a user of a pending message

This cooperative means of notification is preferable unless a message
relates to the system integrity of the user’s data, in which case your
application may immediately display a system modal message box.
In such cases, flush the input queue so that the user does not inad-
vertently select a choice in that message box.

270 The Windows Interface Guidelines for Software Design

292

Integrating with the System Chapter 10

Application Desktop Toolbars

The system supports applications supplying their own desktop
toolbars, also referred to as access bars or appbars, that operate simi-
larly to the Windows taskbar. These may be docked to the edges of
a screen and provide access to controls, such as buttons, for specific
functions.

The system supports the same auto-hide behavior for application
desktop toolbars as it does for the taskbar. This allows the desktop
toolbar to only be visible when the user moves the pointer to the
edge of the screen. The system also provides the “always on top”
behavior used by the taskbar. When the user sets this property, the
taskbar always appears on top (in the Z order) of any windows and
also acts as a boundary for windows set to maximize to the display
screen size.

Desktop toolbars can also be undocked and displayed as a palette W4 For more information on the
window or redocked at a different edge of the screen. In the un- Ea! rpcommended pehavior for
docked, displayed as a palette window state, the toolbar no longer undocking and redocking toolbars,

see Chapter 7, “Menus, Controls,

constrains other windows. However, if it supports the Always on :
and Toolbars.

Top property, it remains on top of other application windows.

Before designing a desktop toolbar, consider whether your appli-
cation’s tasks really require one. Remember that a desktop toolbar
will potentially affect the visible area for all applications. Only pro-
vide one for frequently used interfaces that can be applied across
applications and always design it to be an optional interface, allow-
ing the user to close it or otherwise configure it not to appear. You
may also want to consider removing it when a specific application or
applications are closed.

When creating your own desktop toolbar, model its behavior on the
taskbar. Consider using the system’s notification of when the task-
bar’s auto-hide or Always on Top property changes to apply a desk-
top toolbar you provide. If this does not fit your design, be certain to
provide your own property sheet for setting these attributes for your
desktop toolbar. Note that the system only supports auto-hide func-
tionality for one desktop toolbar on each edge of the display. In
addition, always provide a pop-up menu to access commands that
apply to your desktop toolbar, such as Close, Move, Size, and Prop-
erties (but not the commands included on the desktop toolbar).

The Windows Interface Guidelines for Software Design 271

293

Chapter 10 Integrating with the System

You can choose to display a desktop toolbar when the user runs a
specific application, or by creating a separate application and includ-
ing a shortcut icon to it in the system’s Startup folder. Preferably set
the initial size and position of your desktop toolbar so that it does
not interfere with other desktop toolbars or the taskbar. However, the
system does support multiple desktop toolbars to be docked along
the same edge of the display screen. When docking on the same edge
as the taskbar, the system places the taskbar on the outermost edge.

Your desktop toolbar can include any type of control. A desktop
toolbar can also be a drag and drop target. Follow the recommenda-
tions outlined in this guide for supporting appropriate interaction.

Full-Screen Display

Although the taskbar and application desktop toolbars normally
constrain or clip windows displayed on the screen, you can define a
window to the full extent of the display screen. Because this is not
the typical form of interaction, only consider using full-screen dis-
play for very special circumstances, such as a slide presentation, and
only when the user explicitly chooses a command for this purpose.
Make certain you provide an easy way for the user to return to nor-
mal display viewing. For example, you can display an on-screen
button when the user moves the pointer that restores the display
when the user clicks it. In addition, keyboard interfaces, like
ALT+TAB and ESC, should automatically restore the display.

Remember that desktop toolbars, including the taskbar, should sup-
port auto-hide options that allow the user to configure them to re-
duce their visual impact on the screen. Consider whether this
auto-hide capability may be sufficient before designing your applica-
tion to require a full-screen presentation. Advising the user to close
or hide desktop toolbars may provide you with sufficient space with-
out having to use the full display screen.

272 The Windows Interface Guidelines for Software Design

294

Recycle Bin Integration

The Recycle Bin provides a repository for deleted files. If your ap-
plication includes a facility for deleting files, support the Recycle
Bin interface. You can also support deletion to the Recycle Bin for
nonfile objects by first formatting the deleted data as a file by writ-
ing it to a temporary file and then calling the system functions that
support the Recycle Bin.

Control Panel Integration

The Windows Control Panel includes special objects that let users
configure aspects of the system. Your application can add Control
Panel objects or add property pages to the property sheets of existing
Control Panel objects.

Adding Control Panel Objects

You can create your own Control Panel objects. Most Control Panel
objects supply only a single secondary window, typically a property
sheet. Define your Control Panel object to represent a concrete ob-
ject rather than an abstract idea.

Every Control Panel object is a dynamic-link library. To ensure that
the dynamic-link library can be automatically loaded by the system,
set the file’s extension to .CPL and install it in the Windows System
directory.

Adding to the Passwords Object

The Passwords object in Control Panel supplies a property sheet that
allows the user to set security options and manage passwords for all
password-protected services in the system. The Passwords object
also allows you to add the name of a password-protected service to
the object’s list of services and use the Windows login password for
all password-protected services in the system.

Integrating with the System Chapter 10

¥4 The SHFileOperation func-
ﬁ‘. tion supports deletion using
the Recycle Bin interface. For more
information about this function, see
the documentation included in the
Win32 SDK.

E The system automatically
caches information about
Control Panel objects in order to
provide quick user access, provided
that the Control Panel object sup-
ports the correct system interfaces.
For more information about devel-
oping Control Panel objects, see the
documentation included in the
Win32 SDK.

The Windows Interface Guidelines for Software Design 273

295

Chapter 10 Integrating with the System

When you add your service to the Passwords object, the name of the
service appears in the Select Password dialog box that appears

when the user chooses Change Other Passwords. The user can then
change the password for the service by selecting the name and filling
in the resulting dialog box. The name of your service also appears in
the Change Windows Password dialog box; the name appears with

a check box next to it. By setting the check box option, the user
chooses to keep the password for the service identical to the
Windows login password. Similarly, the user can disassociate the
service from the Windows login password by toggling the check box

setting off.

To add your service to the Passwords object, register your service =4 For more information about

under the HKEY_LOCAL_MACHINE key. h‘. registering your password
service, see the documentation in-

HKEY_LOCAL_MACHINE cluded in the Win32 SDK.

System
CurrentControlSet
Control

PwdProvider
Provider Name Value Name = Value

You can also add a page to the property sheet of the Passwords object
to support other security-related services that the user can set as
property values. Add a property page if your application provides
security-related functionality beyond simple activation and changing
of passwords. To add a property page. follow the conventions for
adding shell extensions.

274 The Windows Interface Guidelines for Software Design

296

Integrating with the System Chapter 10

Plug and Play Support

Plug and Play is a feature of Windows that, with little or no user
intervention, automatically installs and configures drivers when their
corresponding hardware peripherals are plugged into a PC. This
feature applies to peripherals designed according to the Plug and
Play specification. Supporting and appropriately adapting to Plug
and Play hardware change can make your application easier to use.
Following are some examples of supporting Plug and Play:

* Resizing your windows and toolbars relevant to screen size
changes.

¢ Prompting users to shut down and save their data when the system
issues a low power warning.

* Warning users about open network files when undocking their
computers.

* Saving and closing files appropriately when users eject or remove
removable media or storage devices or when network connections
are broken.

System Settings and Notification

The system provides standard metrics and settings for user interface
aspects, such as colors, fonts, border width, and drag rectangle (used
to detect the start of a drag operation). The system also notifies run-
ning applications when its settings change. When your application
starts up, query the system to set your application’s user interface to
match the system parameters to ensure visual and operational consis-
tency. Also, design your application to adjust itself appropriately
when the system notifies it of changes to these settings.

=% The GetSystemMetrics, Get-
V¥ SysColor, and SystemPara-
metersinfo functions and the
WM_SETTINGSCHANGE message
are important to consider when sup-
porting standard system settings.
For more information about these
system interfaces, see the documen-
tation included in the Win32 SDK.

The Windows Interface Guidelines for Software Design 275

297

Chapter 10 Integrating with the System

Modeless Interaction

When designing your application, try to ensure that it is as interac-
tive and nonmodal as possible. Here are some suggested ways of
doing this:

¢ Use modeless secondary windows wherever possible.

* Segment processes, like printing, so you do not need to load the
entire application to perform the operation.

» Make long processes run in the background, keeping the fore- ™4 For more information about
ground interactive. For example, when something is printing, it '8l threads, see the documenta-
should be possible to minimize the window even if the document tion included in the Win32 SDK.
cannot be altered. The multitasking support of Windows provides
for defining separate processes, or threads, in the background.

276 The Windows Interface Guidelines for Software Design

298

CHAPTER

Working with
OLE Embedded and
OLE Linked Obyects

Microsoft OLE provides a set of system interfaces that enables users
to combine objects supported by different applications. This chapter
outlines guidelines for the interface for OLE embedded and OLE
linked objects; you can apply many of these guidelines to any imple-
mentation of containers and their components.

The Interaction Model

As data becomes the major focus of interface design, its content is
what occupies the user’s attention, not the application managing it.
Tn such a design, data is not limited to its native creation and editing
environment; that is, the user is not limited to creating or editing data
only within its associated application window. Instead, data can be
transferred to other types of containers while maintaining its viewing
and editing capability in the new container. Compound documents
are a common example and illustration of the interaction between
containers and their components, but they are not the only expres-
sion of this kind of object relationship that OLE can support.

Figure 11.1 shows an example of a compound document. The docu-

ment includes word-processing text, tabular data from a spreadsheet,
a sound recording, and pictures created in other applications.

299

Chapter 11 Working with OLE Embedded and OLE Linked Objects

-t

ability to enter the lives and minds of three astound-
ing musical geniuses. That’s because the Composer
Collection contains three CD-ROM titles full of music,
information, and entertainment. They are: Microsoft
Multimedia Mozart, Microsoft Multimedia Stravinsky,
and Microsoft Multimedia Beethoven. These works are
reviewed below — be sure to check them out! ~-7DB

Classical CD Review

by Thomas D. Becker

The introduction of the compact disc has had a far greater impact on the recording

. ~4 industry than anyone could have imagined, especially the manufacturers of vinyl long
play (LP) albums. With the 1991 sales totals in, compact disc is clearly the preferred recording medium
for American ears. In addition to audio compact discs, CD-ROMs are appearing on the market offering a
multimedia experience of the classical repertoire. The Microsoft Composer Collection brings you the

U.S. Compact Disc vs LP Sales ($)

1983 1987 1991
CDs 6,345K 18,852K 32,657K
LPs 31,538K 26,571K 17.429K
Total 37,883K 45,223K 50,086K

Multimedia Mozart: The
Dissonant Quartet

The Voyager Company
Microsoft

In the words of author and musiec scholar Robert
Winter, the string guartet in the eighteenth
century was regarded as one of the “most
sublime forms of communication.” The String
Quartet in C Major is no exception, Discover the
power and the beauty of this music with
Microsoft Multimedia Mozart: The Dissonant
Quartet, and enter the world in which Mozart
created his most memorable masterpieces. Sit
back and enjoy The Dissonant Quarter in its
entirety, or browse around, exploring its themes
and emotional dynamics in depth, View the
entire piece in a single-screen overview with the
Pocket Awdio Guide.

Multimedia Stravinsky: The
Rite of Spring

The Voyager Company
Microsoft

Multimedia Stravinsky: The Rite of Spring
offers you an in-depth look at this
controversial composition. Author Robert

Winter provides a fascinating commentary that

follows the music, giving you greater

understanding of the subtle dynamics \ag:
1

of the instruments and powerful
lechniques of Stravinsky. You'll also
have the opportunity to discover the ballet that
accompanied The Rite of Spring in performance.
Choreographed by Sergei Diaghilev, the ballet
was as unusual for its time as the music.
To whet your appetite, play this audio clip.

Multimedia Beethoven: The
Ninth Symphony

The Voyager Company
Microsoft

Multimedia Beethoven: The Ninth Symphony
is one of a series of engaging, informative, and
interactive musical explorations from Microsoft.
It enables you to examine Beethoven’s world
and life, and explore the form and beauty of one
of his foremost compositions. You can compare
musical themes, hear selected orchestral
instruments, and see the symphonic score come
alive. Multimedia Beethoven: The Ninth
Symphony is an extraordinary opportunity to
learn while you listen to one of the world’s
musical treasures. Explore this inspiring work at
your own pace in A Close Reading. As you
listen to a superb performance of Beethoven’s

The Audiophile Journal, June 1994 12

Figure 11.1 A compound document

278 The Windows Interface Guidelines for Software Design

300

Working with OLE Embedded and OLE Linked Objects Chapter 11

How was this music review created? First, a user created a document
and typed the text, then moved, copied, or linked content from other
documents. Data objects that, when moved or copied, retain their
native, full-featured editing and operating capabilities in their new
container are called OLE embedded objects.

A user can also link information. An OLE linked object represents
or provides access to another object that is in another location in the
same container or in a different, separate container.

Generally, containers support any level of nested OLE embedded
and linked objects. For example, a user can embed a chart in a
worksheet, which, in turn, can be embedded in a word-processing
document. The model for interaction is consistent at each level

of nesting.

Creating OLE Embedded and OLE Linked Objects

OLE embedded and linked objects are the result of transferring
existing objects or creating new objects of a particular type.

Transferring Objects

Transferring objects into a document follows basic command and =7 For more information about

direct manipulation interaction methads. The following sections ¥ command transfer and direct

provide additional guidelines for these commands when you use manipulation transfer methods, see

them to create OLE embedded or linked objects. Chapter 5, “General Interaction
Technigues.”

The Paste Command

As a general rule, using the Paste command should result in the most
complete representation of a transferred object; that is, the object is
embedded. However, containers that directly handle the transferred
object can accept it optionally as native data instead of embedding it
as a separate object, or as a partial or transformed form of the object
if that is more appropriate for the destination container.

The Windows Interface Guidelines for Software Design 279

301

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Use the format of the Paste command to indicate to the user how =% For more information about
a transferred object is incorporated by a container. When the user & type names and the system
copies a file object, if the container can embed the object, include registry, see Chapter 10, “Integrat-

the object’s filename as a suffix to the Paste command. If the object ing with the _Syst;m," and tr_'e OLE

is only a portion of a file, use the short type name — for example, &qcumi['wf:_losg S:ln;:twdedD A lth‘q_’

Paste Worksheet or Paste Recording — as shown in Figure 11.2. A byl BR RV
F . : 3 : ment Kit (SDK).

short type name can be derived from information stored in the regis-

try. A Paste command with no name implies that the data will be

pasted as native information.

Figure 11.2 The Pasle command with short type name

The Paste Special Command

Supply the Paste Special command to give the user explicit control
over pasting in the data as native information, an OLE embedded
object, or an OLE linked object. The Paste Special command dis-
plays its associated dialog box, as shown in Figure 11.3. This dialog
box includes a list box with the possible formats that the data can
assume in the destination container.

280 The Windows Interface Guidelines for Software Design

302

Working with OLE Embedded and OLE Linked Objects Chapter 11

are described in this chapter.

Word Table
Formatted Text (RTF)
Lnformatted Text

Figure 11.3 The Paste Special dialog hox

In the formats listed in the Paste Special dialog box, include the
object’s full type name first, followed by other appropriate native
data forms. When a linked object has been cut or copied, precede its
object type by the word “Linked” in the format list. For example, if
the user copies a linked Microsoft Excel worksheet, the Paste Special
dialog box shows “Linked Microsoft Excel Worksheet™ in the list of
format options because it inserts an exact duplicate of the original
linked worksheet. Native data formats begin with the destination
application’s name and can be expressed in the same terms the desti-
nation identifies in its own menus. The initially selected format in
the list corresponds to the format that the Paste command uses. For
example, if the Paste command is displayed as Paste Object File-
name or Paste Short Type Name because the data to be embedded is
a file or portion of a file, this is the format that is initially selected in
the Paste Special list box.

To support creation of a linked object, the Paste Special dialog box
includes a Paste Link option. Figure 11.4 shows this option.

The Windows Interface Guidelines for Software Design

303

5 The Win32 SDK includes the
Paste Special dialog box and
other OLE-related dialog boxes that

281

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Figure 11.4 Paste Special dialog box with Paste Link option set

A Display As Icon check box allows the user to choose displaying
the OLE embedded or linked object as an icon. At the bottom of the
dialog box is a section that includes text and pictures that describe
the result of the operation. Table 11.1 lists the descriptive text for use
in the Paste Special dialog box.

Table 11.1 Descriptive Text for Paste Special Command

Function Resulting text

Paste as an OLE “Inserts the contents of the Clipboard

embedded object. into your document so you that you
may activate it using CompanyName
ApplicationName.”

Paste as an OLE embedded “Inserts the contents of the Clipboard

object so that it appears into your document so you that you

as an icon. may activate it using CompanyName

ApplicationName application. It will be
displayed as an icon.”

Paste as native data. “Inserts the contents of the Clipboard
into your document as Native Type
Name. [Optional additional Help

sentence.]”
Paste as an OLE linked “Inserts a picture of the contents of the
object. Clipboard into your document. Paste

Link creates a link to the source file so
that changes to the source file will be
reflected in your document.”

282 The Windows Interface Guidelines for Software Design

304

Working with OLE Embedded and OLE Linked Objects Chapter 11

(Continued)

Function Resulting text

Paste as an OLE linked object “Inserts a Shortcut icon into your

so that it appears as a document which represents the contents
shortcut icon. of the Clipboard. A link is created to the

source file so that changes to the source
file will be reflected in your document.”

Paste as linked native data. “Inserts the contents of the Clipboard
into your document as Native Type
Name. A link is created to the source file
so that changes to the source file will be
reflected in your document.”

The Paste Link, Paste Shortcut, and Create Shortcut Commands

If linking is a common function in your application, you can option-
ally include a command that optimizes this process. Use a Paste Link
command to support creating a linked object or linked native data.
When using the command to create a linked object, include the name
of the object preceded by the word “to” — for example, ‘“Paste Link
to Latest Sales.” Omitting the name implies that the operation results
in linked native data.

Use a Paste Shortcut command to support creation of a linked object
that appears as a shortcut icon. You can also include a Create Short-
cut command that creates a shortcut icon in the container. Apply
these commands to containers where icons are commonly used.

Direct Manipulation

You should also support direct manipulation interaction techniques, =7 For more information about
such as drag and drop, for creating OLE embedded or linked objects. WM using direct manipulation for
When the user drags a selection into a container, the container appli- ~ Moving, copying, and linking 0b-
cation interprets the operation using information supplied by the iECI_S’ Hee Gh?pmr §= “General Inter-
source, such as the selection’s type and format, and by the destina- action Techniques.

tion container’s own context, such as the container’s type and its

default transfer operation. For example, dragging a spreadsheet cell

selection into a word-processing document can result in an OLE

embedded table object. Dragging the same cell selection within the

The Windows Interface Guidelines for Software Design 283

305

Chapter 11 Working with OLE Embedded and OLE Linked Objects

spreadsheet, however, would likely result in simply transferring the
data in the cells. Similarly, the destination container in which the
user drops the selection can also determine whether the dragging
operation results in an OLE linked object.

For nondefault OLE drag and drop, the container application dis-
plays a pop-up menu with appropriate transfer commands at the end
of the drag. The choices may include multiple commands that trans-
fer the data in a different format or presentation. For example, as
shown in Figure 11.5, a container application could offer the follow-
ing choices for creating links: Link Here, Link Short Type Name
Here, and Create Shortcut Here, respectively resulting in a native
data link, an OLE linked object displayed as content, and an OLE
linked object displayed as an icon. The choices depend on what the
container can support.

100.00 1

Figure 11.5 Containers can offer different OLE link options

The default appearance of a transferred object also depends on the
destination container application. For most types of documents,
make the default command one that results in the data or content
presentation of the object (or in the case of an OLE linked object,

a representation of the content), rather than as an icon. If the user
chooses Create Shortcut Here as the transfer operation, display the
transferred object as an icon. If the object cannot be displayed as
content — for example, because it does not support OLE — always
display the object as an icon,

284 The Windows Interface Guidelines for Software Design

306

Working with OLE Embedded and OLE Linked Objects Chapter 11

Transfer of Data to Desktop

The system allows the user to transfer data selection within a file
to the desktop or folders providing that the application supports the
OLE transfer protocol. For move or copy operations — using the
Cut, Copy, and Paste commands or direct manipulation — the
transfer operation results in a file icon called a scrap. A link
operation also results in a shortcut icon that represents a shortcut
into a document.

When the user transfers a scrap into a container supported by your
application, integrate it as if it were being transferred from its origi-
nal source. For example, if the user transfers a selected range of cells
from a spreadsheet to the desktop, it becomes a scrap. If the user
transfers the resulting scrap into a word-processing document, the
document should incorporate the scrap as if the cells were transferred
directly from the spreadsheet. Similarly, if the user transfers the
scrap back into the spreadsheet, the spreadsheet should integrate the
cells as if they had been transferred within that spreadsheet. (Typi-
cally, internal transfers of native data within a container result in
repositioning the data rather than transforming it.)

Inserting New Objects

In addition to transferring objects, you can support user creation of
OLE embedded or linked objects by generating a new object based
on an existing object or object type and inserting the new object into
the target container.

The Insert Object Command

Include an Insert Object command on the menu responsible for creat-
ing or importing new objects into a container, such as an Insert
menu. If no such menu exists, use the Edit menu. When the user
selects this command, display the Insert Object dialog box, as shown
in Figure 11.6. This dialog box allows the user to generate new ob-
jects based on their object type or an existing file.

The Windows Interface Guidelines for Software Design 285

307

Chapter 11 Working with OLE Embedded and OLE Linked Objects

MID| Sequence
| MS PowerPoirt Fresentation

§ Fo

Figure 11.6 The Insert Object dialog box

The type list is composed of the type names of registered types.
‘When the user selects a type from the list box and chooses the OK
button, an object of the selected type is created and embedded.

The user can also create an OLE embedded or linked object from an
existing file, using the Create From File and Link options. When the
user sets these options and chooses the OK button, the result is the
same as directly copying or linking the selected file.

‘When the user chooses the Create From File option button, the Ob-
ject Type list is removed, and a text box and Browse button appear in
its place, as shown in Figure 11.7. Ignore any selection formerly
displayed in the Object Type list box (shown in Figure 11.6).

286 The Windows Interface Guidelines for Software Design

308

= For more information about
B‘. type names and the registry,
see Chapter 10, “Integrating with the
System.”

Working with OLE Embedded and OLE Linked Objects Chapter 11

Figure 11.7 Creating an OLE embedded object from an existing file

The text box initially includes the current directory as the selection.
The user can edit the current directory path when specifying a file. As
an alternative, the Browse button displays an Open dialog box that
allows the user to navigate through the file system to select a file.
Use the file’s type to determine the type of the resulting OLE object.

Use the Link check box to support the creation of an OLE linked
object to the file specified. The Insert Object dialog box displays this
option only when the user chooses the Create From File option. This
means that a user cannot insert an OLE linked object when choosing
the Create New option button, because linked objects can be created
only from existing files.

The Display As Icon check box in the Insert Object dialog box en-
ables the user to specify whether to display the OLE object as an
icon. When this option is set, the icon appears beneath the check
box. An OLE linked object displayed as an icon is the equivalent of
a shortcut icon. It should appear with the link symbol over the icon.

At the bottom of the Insert Object dialog box, text and pictures de-
scribe the final outcome of the insertion. Table 11.2 outlines the
syntax of descriptive text to use within the Insert Object dialog box.

E If the user chooses a non-

QLE file for insertion, it can
be inserted only as an icon. The re-
sult is an OLE package. A package
is an OLE encapsulation of a file so
that it can be embedded in an OLE
container. Because packages sup-
port limited editing and viewing ca-
pabilities, support OLE for all your
object types so they will not be con-
verted into packages.

The Windows Interface Guidelines for Software Design 287

309

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Table 11.2 Descriptive Text for Insert Object Dialog Box

Function

Resulting text

Create a new OLE embedded

object based on the selected type.

Create a new OLE embedded
object based on the selected type
and display it as an icon.

Create a new OLE embedded
object based on a selected file.

Create a new OLE embedded
object based on a selected file
(copies the file) and display it
as an icon.

Create an OLE linked object that
is linked to a selected file.

Create an OLE linked object that
is linked to a selected file and
display it as a Shortcut icon.

“Inserts a new Type Name into your
document.”

“Inserts a new Type Name into your
document as an icon.”

“Inserts the contents of the file as an
object into your document so that you
may activate it using the application
which created it.”

“Inserts the contents of the file as an
object into your document so that you
may activate it using the application
which created it. It will be displayed
as an icon.”

“Inserts a picture of the file contents
into your document. The picture will
be linked to the file so that changes to
the file will be reflected in your
document.”

“Inserts a Shortcut icon into your
document which represents the file.
The Shorteut icon will be linked to the
original file, so that you can quickly
open the original from inside your
document.”

You can also use the context of the current selection in the container
to determine the format of the newly created object and the effect of
it being inserted into the container. For example, an inserted graph
can automatically reflect the data in a selected table. Use the follow-
ing guidelines to support predictable insertion:

288 The Windows Interface Guidelines for Software Design

310

Working with OLE Embedded and OLE Linked Objects Chapter 11

 If an inserted object is not based on the current selection, follow = For more information about
the same conventions as for a Paste command and add or replace Ba¥l the quidelines for inserting an
the selection depending on the context. For example, in text or list ~ 0bject with a Paste command, see
contexts, where the selection represents a specific insertion loca- ~ Chapter 5'“ “General Interaction
tion, replace the active selection. For nonordered or Z-ordered Teghyqee.
contexts, where the selection does not represent an explicit inser-
tion point, add the object, using the destination’s context to deter-
mine where to place the object.

o If the new object is automatically connected (linked) to the selec-
tion (for example, an inserted graph based on selected table data),
insert the new object in addition to the selection and make the
inserted object the new selection.

After inserting an OLE embedded object, activate it for editing.
However, if the user inserts an OLE linked object, do not activate
the object.

Other Techniques for Inserting Objects

The Insert Object command provides support for inserting all regis-
tered OLE objects. You can include additional commands tailored to
provide access to common or frequently used object types. You can
implement these as additional menu commands or as toolbar buttons
or other controls. These buttons provide the same functionality as
the Insert Object dialog box, but perform more efficiently. Figure
11.8 illustrates two examples. The drawing button inserts a new
blank drawing object; the graph button creates a new graph that
uses the data values from a currently selected table.

Insert graph

Insert drawing

Figure 11.8 Using toolbar buttons for creating new objects

The Windows Interface Guidelines for Software Design 289

311

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Displaying Objects

While a container can control whether to display an OLE embedded
or linked object in its content or icon presentation, the container
requests the object to display itself. In the content presentation, the
object may be visually indistinguishable from native objects, as

shown in Figure 11.9,

OLE linked object

I ahility to exter the Lves and nunds of three astounding
I nmsical geminses, That’s becanse the Composer
Cuﬂe:tm contains three CD ROM titles full of rmsic,

teat t. They are: Microsoft
ft Multnned Stra\’msky

Classical CD Revnew

The intimduction of the compact disc has had a far geater mpact on the recording
3_[mdustry than anyone could have imagined, especially the mamafacturers of vinyl Jong |

p].ay (LF) a]bu.ms With the 1991 sales totals in, compact disc is clearly the preferred recording medium = |

for American ears, In addition to sudic compact dises, CD-ROM: are appearing on the maket cffering a

| ymltimedia expenence of the classical repetoire. The Microsoft Composer Collection brings you the

by Thomas D. Becker | |

WA

U CompartDisc ve. P Sales §) | OLE
1983 1987 1991 |\ meedded

CDs B345K 186524 32657K :
LPs 31538 26571K 17429 object
Tatal T AST AE F¥EL SN MR

L

3

Figure 11.9 A compound document containing OLE objects

You may find it preferable to enable the user to visually identify
OLE embedded or linked objects without interacting with them. To
do so, you can include a Show Objects command that, when chosen,
displays a solid border, one pixel wide, drawn in the window text

290 The Windows Interface Guidelines for Software Design

312

Working with OLE Embedded and OLE Linked Objects Chapter 11

color around the extent of an OLE embedded object and a dotted =%d The GetSysColar function
border around OLE linked objects (shown in Figure 11.10). If the Ea! | provides the current settings
container application cannot guarantee that an OLE linked objectis 0T window text color (COLOR_WIN-
up-to-date with its source because of an unsuccessful automatic D(?WTEXT)R;“:'(?E?(?VB;] text color
update or a manual link, the system should draw a dotted border (COLO B—G _}' ol r.nore I

: : formation about this function, see
using the system grayed text color to suggest that the OLE linked i ba ;

bty 45 the documentation included in the
object is out of date. The border should be drawn around a con- Win32 SDK.

tainer’s first-level objects only, not objects nested below this level.

Border for OLE linked object

Classical CD Review

by Thomas D. Becker

The intoduction of the compart dise has had 2 far greater impact on the recording
_ tindustry than amyone oould have imagined, especially the flact of vayl long

S A
e s
| play (LP) albums. With the 1991 sales totals in, compact dise & clewly the prefened mcording medion
i for dmerican ears. In addition o andio compact dises, CD-ROM s are appearing on the market offering 2
nultimedia experience of the classical repetoive. The Microseft Composer Collection brings you the

ability to enter the Hves and minds of three asiounding =

rmusical geminses. That™s becanse the Composer IL5. Compact Discus. LP Sales (5)
I Collection contains three CD-ROM titles full of mmsiz, 1983 1987 1991
| - ion, and i They are: Micxosof | CDs B345K 18E652K 32097K
Multimedia Mozart, Microsoft Multimedia Stravinsky, LPs 31,538K Z6STIK 17429K
and Micros 1 These works are Total 37,883K 45223K 50,086k

—{— Border for OLE
ﬂ embedded object

Figure 11.10 Identifying OLE objects using borders

If these border conventions are not adequate to distinguish OLE
embedded and linked objects, you can optionally include additional
distinctions; however, make them clearly distinct from the appear-
ance for any standard visual states and distinguish OLE embedded
from OLE linked objects.

The Windows Interface Guidelines for Software Design 291

313

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Whenever the user creates an OLE linked or embedded object with
the Display As Icon check box set, display the icon using the icon

of its type, unless the user explicitly changes it. A linked icon also
includes the shortcut graphic. If an icon is not registered in the regis-
try for the object, use the system-generated icon.

An icon includes a label. When the user creates an OLE embedded
object, define the icon’s label 1o be one of the following, based on
availability:

* The name of the object, if the object has an existing human-read-
able name such as a filename without its extension.

* The object’s registered short type name (for example, Picture,
Worksheet, and so on), if the object does not have a name.

* The object’s registered full type name (for example, a bitmap
image, a Microsoft Excel Worksheet), if the object has no name

or registered short type name.

¢ “Document” if an object has no name, a short type name, or a
registered type name.

When an OLE linked object is displayed as an icon, define the label =%d The system provides support

using the source filename as it appears in the file system, preceded Ba¥ o automatically format the
by the words “Shortcut to” — for example, “Shortcut to Annual name COH_ECUV if you use the
Report.” The path of the source is not included. Avoid displaying GetlconOfFile function. For more

information about this function, see
the OLE documentation included in
the Win32 SDK.

the filename extension unless the user chooses the system option
to display extensions or the file type is not registered.

When the user creates an OLE object linked to only a portion of a
document (file), follow the same conventions for labeling the short-
cut icon. However, because a container can include multiple links to
different portions of the same file, you may want to provide further
identification to differentiate linked objects. You can do this by ap-
pending a portion of the end of the link path (moniker). For example,
you may want to include everything from the end of the path up to
the last or next to last occurrence of a link path delimiter. OLE appli-
cations should use the exclamation point (!) character for identifying
a data range. However, the link path may include other types of de-
limiters. Be careful when deriving an identifier from the link path to
format the additional information using only valid filename charac-
ters so that if the user transfers the shortcut icon to a folder or the
desktop, the name can still be used.

292 The Windows Interface Guidelines for Software Design

314

Working with OLE Embedded and OLE Linked Objects Chapter 11

Selecting Objects

An OLE embedded or linked object follows the selection behavior
and appearance techniques supported by its container; the container
application supplies the specific appearance of the object. For ex-
ample, Figure 11.11 shows how the linked drawing of a horn is
handled as part of a contiguous selection in the document.

For information about selec-
tion, see Chapter 5, “General
Interaction Techniques.” For infor-
mation about selection appearance,
see Chapter 13, “Visual Design.”

If ab]lliy to enter the lives and minds of three astounding
ge:u.uses Tha.t s becanse the Compl:sar

a2

play (LP) albms. With the 1991 sales totals in, compaet dise is clearly the preferred record
| for Lmerican ears. In addition to mudic compact dises, CD-ROMs are appearing on the maxk
| nmltimedia experience of the classical repetoire, The Microsoft Composer Collection brh

U.5. Compact Disc vs. LP Sa

Figure 11.11 An OLE linked object as part of a multiple selection

When the user individually selects the object, display the object
with an appropriate selection appearance. For example, for the con-
tent view of an object, display it with handles, as shown in Figure
11.12. For OLE linked objects, overlay the content view’s lower left
corner with the shortcut graphic. In addition, if your application’s
window includes a status bar that displays messages, display an
appropriate description of how to activate the object (see Table

11.3 later in this chapter).

The Windows Interface Guidelines for Software Design 293

315

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Handle

Indicates —E——

an OLE
linked
ohject

-
T
1
‘ o

Classical CD Revi

by Thomas D,
|

|
The introduction of the compact dise has had a far greater impact on tP__ |
1 imdustry then amyomne could have imagined, especially the oot o

|
i
|

| poltimedia experi of the classical repetoire. The Microsoft Composer Collection b

| ahility to enter the lives and minds of three astounding ‘
I nmsical gemiuses. That's becanse the Composer
|

|

oy o Nantiom amarbaive #lves CT RO+ t1nLﬁ'lead‘u-iu-a "
sessi

[s e 3%
T R A

i ——— =

Figure 11.12 An individually selected OLE linked object

When the object is displayed as an icon, use the same selection
appearance as for selected icons in folders and on the desktop, as
shown in Figure 11.13.

Product Activity

Over the past 12 months, we introduced several systems and applications products
j that have sst the foundation for our software plans thioughout the 1990's, A5 indi- l
cate,-d below our revenue was generated from Applications [48%) . Systems/ Languages

[39%), and other product groups (13%).

|

On May 22, we announced the shipment of Microsoft ‘Windows graphical environ-
___ment warsinn 3 0_the Isbast wersiorn af o aeankical anerstinn esvironrest feoduet |
T

mem" S - =

Figure 11.13 A selected OLE ohject displayed as an icon

294 The Windows Interface Guidelines for Software Design

316

Working with OLE Embedded and OLE Linked Objects Chapter 11

Accessing Commands for Selected Objects

A container application always displays the commands that can be E You can also support opera-
applied to its objects. When the user selects an OLE embedded or tions based on the selection
linked object as part of the selection of native data in a container, appearance. For example, you can
enable commands that apply to the selection as a whole. When the support operations, such as re-

user individually selects the object, enable only commands that
apply specifically to the object. The container application retrieves
these commands from what has been registered by the object’s type
in the registry and displays these commands in the menus that are

sizing, using the handles you sup-
ply. When the user resizes a selected
OLE object, however, scale the pre-
sentation of the object, because
there is no method by which an-

supplied for the object. If your application includes a menu bar, other operation, such as cropping,
include the selected object’s commands on a submenu of the Edit can be applied to the OLE object.
menu, or as a separate menu on the menu bar. Use the name of the
object as the text for the menu item. If you use the short type name
as the name of the object, add the word “Object.” For an OLE linked
object, use the short type name, preceded by the word “Linked.”
Figure 11.14 shows these variations.

Figure 11.14 Drop-down menus for selected OLE object

Define the first letter of the word “Object”, or its localized equiva-
lent, as the access character for keyboard users. When no object

is selected, display the command with just the text, “Object”, and
disable it.

A container application should also provide a pop-up menu for a
selected OLE object (shown in Figure 11.15), displayed using the
standard interaction techniques for pop-up menus (clicking with
mouse button 2). Include on this menu the commands that apply to
the object as a whole as a unit of content, such as transfer commands
and the object’s registered commands. In the pop-up menu, display
the object’s registered commands as individual menu items rather
than in a cascading menu. It is not necessary to include the object’s
name or the word “Object” as part of the menu item text.

The Windows Interface Guidelines for Software Design

317

295

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Multimedia Mozam: The Winter provides a fascinating conumentary that
Dissonznt Guarts follows the nmsie, gving you greater
understanding of the subtle dymamics ;
of the imstroments and powerful -4
techmiques of Stravinsky. You'll also
have the opporhmity to discover the ballet that
accompanied The Rite of Spring in performance.
5 Choreographed by Sergei Diaghilev, the ballet
' scholar Robert was as unwsual for its time as the nmsic.
| the eighteerth To whet your appetite, play this audio clip.
of the “most
hn? The String
Quartet in G gy o - bn. Discover the
power and 777 Ms mumsic with
Microsoft Multimedia Mozart: The [Xssonant
(uartet and enter the world in which Mozart
created his most memorsble masterpieces, Sit
back and emjoy The Dissonent Cuartet in its
entirefy, or browse around, explorng its themes
and emotional dymamics in depth, Wiew the
entire piece in a single-screen overview with the
Pockst Audio Guide.

“her Company

sublime forn|
MMultimedia Besthoven: The
Ninth Symphony

The Yoyager Company
Mcrosch

Figure 11.15 Pop-up menu for an OLE embedded picture

In the drop-down menu and the pop-up menu, include a Properties
command. You can also include commands that depend on the state
of the object. For example, a media object that uses Play and Rewind
as operations disables Rewind when the object is at the beginning of
the media object.

If an object’s type is not registered, you still supply any commands
that can be appropriately applied to the object as content, such as
transfer commands, alignment commands, and an Edit and Proper-
ties command. When the user chooses the Edit command, display
the system-supplied message box, as shown in Figure 11.41. This
message box provides access to a dialog box that enables the user to
choose from a list of applications that can operate on the type or
convert the object’s type.

296 The Windows Interface Guidelines for Software Design

318

Working with OLE Embedded and OLE Linked Objects Chapter 11

Activating Objects

Although selecting an object provides access to commands appli-
cable to the object as a whole, it does not provide access to editing
the content of the object. The object must be activated in order to
provide user interaction with the internal content of the object. There
are two basic models for activating objects: outside-in activation and
inside-out activation.

Qutside-1n Activation

Qutside-in activation requires that the user choose an explicit acti-
vation command. Clicking, or some other selection operation, per-
formed on an object that is already selected simply reselects that
object and does not constitute an explicit action. The user activates
the object by using a particular command such as Edit or Play,
usually the object’s default command. Shortcut actions that corre-
spond to these commands, such as double-clicking or pressing a
shortcut key, can also activate the object. Most OLE container
applications employ this model because it allows the user to easily
select objects and reduces the risk of inadvertently activating an
object whose underlying code may take a significant amount of time
to load and dismiss.

When supporting outside-in activation, display the standard pointer
(northwest arrow) over an outside-in activated object within your
container when the object is selected, but inactive. This indicates to
the user that the outside-in object behaves as a single, opaque object.
When the user activates the object, the object’s application displays
the appropriate pointer for its content. Use the registry to determine
the object’s activation command.

Inside-out Activation

With inside-out activation, interaction with an object is direct; that
is, the object is activated as the user moves the pointer over the ex-
tent of the object. From the user’s perspective, inside-out objects are
indistinguishable from native data because the content of the object

The Windows Interface Guidelines for Software Design 297

319

Chapter 11 Working with OLE Embedded and OLE Linked Objects

is directly interactive and no additional action is necessary. Use this
method for the design of objects that benefit from direct interaction,
or when activating the object has little effect on performance or use
of system resources.

Inside-out activation requires closer cooperation between the con-
tainer and the object. For example, when the user begins a selection
within an inside-out object, the container must clear its own selec-
tion so that the behavior is consistent with normal selection inter-
action. An object supporting inside-out activation controls the
appearance of the pointer as it moves over its extent and responds
immediately to input. Therefore, to select the object as a whole, the
user selects the border, or some other handle, provided by the object
or its container. For example, the container application can support
selection techniques, such as region selection that select the object.

Although the default behavior for an OLE embedded object is out- =W For more information about
side-in activation, you can store information in the registry that "Ml how to access OLEMISC_ IN-
indicates that an object’s type (application class) is capable of inside- SIDEOUT and OLEMISC_ACTIVATE-
out activation (OLEMISC_INSIDEOUT) and prefers inside-out WHENVISIBLE and the 10leObject::
behavior (OLEMISC_ACTIVATEWHENVISIBLE). You can set GetMiscStatus function, see the

OLE documentation included in the

these values in a MiscStatus subkey, under the CLSID subkey of Win32 SDK.

the HKEY_CLASSES_ROOT key.

Container Control of Activation

The container application determines how to activate its component
objects: either it allows the inside-out objects to handle events di-
rectly or it intercedes and only activates them upon an explicit ac-
tion. This is true regardless of the capability or preference setting

of the object. That is, even though an object may register inside-out
activation, it can be treated by a particular container as outside-in.
Use an activation style for your container that is most appropriate for
its specific use and is in keeping with its own native style of activa-
tion so that objects can be easily assimilated.

298 The Windows Interface Guidelines for Software Design

320

Working with OLE Embedded and OLE Linked Objects Chapter 11

Regardless of the activation capability of the object, a container
should always activate its content objects of the same type consis-
tently. Otherwise, the unpredictability of the interface is likely to
impair its usability. Following are four potential container activation
methods and when to use them.

Activation method When to use

Outside-in throughout This is the most common design for
containers that often embed large OLE
objects and deal with them as whole units.
Because many available OLE objects are
not yet inside-out capable, most compound
document editors support outside-in
throughout to preserve uniformity.

Inside-out throughout Ultimately, OLE containers will blend
embedded objects with native data so
seamlessly that the distinction dissolves.
Inside-out throughout containers will
become more feasible as increasing
numbers of OLE objects support inside-
out activation.

Outside-in plus inside-out Some containers may use an outside-in

preferred objects model for large, foreign embeddings but
also include some inside-out preferred
objects as though they were native objects
(by supporting OLEMISC_ACTIVATE-
WHENVISIBLE). For example, an OLE
document might present form control
objects as inside-out native data while
activating larger spreadsheet and chart
objects as outside-in.

Switch between inside-out Visual programming and forms layout
throughout and outside-in design applications may include design and
throughout run modes, In this type of environment, a

container typically holds an object that is
capable of inside-out activation (if not
preferable) and alternates between outside-
in throughout when designing and inside-
out throughout when running.

The Windows Interface Guidelines for Software Design 299

321

Chapter 11 Working with OLE Embedded and OLE Linked Objects

One of the most common uses for activating an object is editing its
content in its current location. Supporting this type of in-place inter-
action is called OLE visual editing, because the user can edit the
object within the visual context of its container.

Unless the container and the object both support inside-out activa-
tion, the user activates an embedded object for visual editing by
selecting the object and choosing its Edit command, either from

a drop-down or pop-up menu. You can also support shortcut tech-
niques. For example, by making Edit the object’s default operation,
the user can double-click to activate the object for editing. Simi-
larly, you can support pressing the ENTER key as a shortcut for
activating the object.

When the user activates an OLE embedded object for visual editing,
the user interface for its content becomes available and blended into
its container application’s interface. The object can display its frame
adornments, such as row or column headers, handles, or scroll bars,
outside the extent of the object and temporarily cover neighboring
material. The object’s application can also change the menu inter-
face, which can range from adding menu items to existing drop-
down menus to replacing entire drop-down menus. The object can
also add toolbars, status bars, supplemental palette windows, and
provide pop-up menus for selected content.

The degree of interface blending varies based on the nature of the
OLE embedded object. Some OLE embedded objects may require
extensive support and consequently result in dramatic changes to the
container application’s interface. Finer grain objects that emulate the
native components of a container may have little or no need to make
changes in the container’s user interface. The container always de-
termines the degree to which an OLE embedded object’s interface
can be blended with its own, regardless of the capability or prefer-
ence of the OLE embedded object. A container application that pro-
vides its own interface for an OLE embedded object can suppress an
OLE embedded object’s own interface. Figure 11.16 shows how the
interface might appear when its embedded worksheet is active.

300 The Windows Interface Guidelines for Software Design

322

OLE Visual Editing of OLE Embedded Objects

a Although earlier versions of

OLE user interface documen-
tation suggested the ALT+ENTER key
combination to activate an object if
the ENTER key was already assigned,
this key combination is now the rec-
ommended shortcut key for the
Properties command. Instead, sup-
port the pop-up menu shortcut key.
This enables the user to activate the
object by selecting the command
from the pop-up menu.

Working with OLE Embedded and OLE Linked Objects Chapter 11

Classical CD Review

by Thomas D. Becker

i

B

g A The intioduction of the compact dise has had a far greater impact on the yecording
L g industry than anyone could have imagined, especially the factarers of viryl long
play (LP) albums., With the 1991 sales totals i, compal:l d.m: i clearly the preﬁm'ed reoonimg medimm
for American eavs. In addition to andio compact dis & 1M A
nmltimedia experience of the classical repetoire. 7] i
shility to erter the Lives and minds of thrae astounf—— . 4
rmsical geniuses. That’s becamse the Compii—— — fi“ [lIsJ:_ i _|:|_, 5_#':'?(3;) e
Collection contains three CD-ROM titles full of nog 83 1987 (1991
information, and entertainment. They are: MicxoS BV CDs | B345K 1B552K_ L 32B57K
Multimedia Mozart, Microsoft Multimedia Stravirs?d= @ | LPs 31536K | 26571K | 17.429K
and Micyosoft Multimedia Beethoven. These works 47 LY. Total | 37863K | 45223K | 50,086K
reviewed below - be sure to check them out! — T,

Faas Y‘....' e -
i 3 f-_pi-{._ﬂji:‘,i sl

Figure 11.16 An embedded worksheet activated for OLE visual editing

When the user activates an OLE embedded object, avoid changing
the view and position of the rest of the content in the window. Al-
though it may seem reasonable to scroll the window and thereby
preserve the content’s position, doing so can disturb the user’s focus,
because the active object shifts down to accommodate a new toolbar
and shifts back up when it is deactivated. An exception may be when
the activation exposes an area in which the container has nothing to
display. However, even in this situation, you may wish to render a
visible region or filled area that corresponds to the background area
outside the visible edge of the container so that activation keeps the
presentation stable.

Activation does not affect the title bar. Always display the top-level
container’s name. For example, when the worksheet shown in Figure
11.16 is activated, the title bar continues to display the name of the
document in which the worksheet is embedded and not the name of
the worksheet. You can provide access to the name of the worksheet
by supporting property sheets for your OLE embedded objects.

The Windows Interface Guidelines for Software Design 301

323

Chapter 11 Working with OLE Embedded and OLE Linked Objects

A container can contain multiply nested OLE embedded objects.
However, only a single level is active at any one time. Figure 11.17
shows a document containing an active embedded worksheet with an
embedded graph of its own. Clicking on the graph merely selects it
as an object within the worksheet.

Product Activity

7| Ower the past 12 months, we introduced several systems and applications products ||
that have set the foundation for our software plans throughout the 1990's. As indi-
cated below our revenue was generated from Applications [48%) . Systems/ Languages
[337’I and OU'lar product groups (1 34:]

Applications -" | 48%
Systems/Languages Taaz
| ® Hardware, Books, and Other |132

IZIn May 22, we announced the shlpmenl uf Mu:rusuft Wlnduws graphical environ-
:L[l[,'-!nh!r‘al nner.ahm Pmtw:mmm:ll_n

Figure 11.17 A selected graph within an active worksheet

Activating the embedded graph, for example, by choosing the
graph’s Edit command, activates the object for OLE visual editing,
displaying the graph’s menus in the document’s menu bar. This is
shown in Figure 11.18. At any given time, only the interface for the
currently active object and the topmost container are presented;
intervening parent objects do not remain visibly active.

302 The Windows Interface Guidelines for Software Design

324

Working with OLE Embedded and OLE Linked Objects Chapter 11

Product Aclmly

1
Over the past 12 months, we introduced several spstems and applications products ;:'
that have set the foundation for our saftware plans throughout the 1990's. As indi- £
cated below our revenue was generated from Applications (48%) . Systems/ Languages

[39%). and ather praduct groups [13%).

1990 Revenue by Product Group

| ,r'f/f//t’-’ff/f/,.'/fn’/f-’f//t‘//’

XK

4

Z Z W Anlﬂ'caﬂuns . 48%
! % B Systems/Languages 39%
:;- ? E Hardware, Books, and Other 132

‘/f/ff/ffff/f/"/ff/f/ff/f/fj g
On May 22, we announced the shipment of Microsoft Windows graphical erviran- _@
____ment wersinn (0 _the IaLaQLuemnn_nLnLu aranhkiral aneesting euuuum:r-enl nraduet
" " X R o 'Y .‘
W - !

T T e Y T K

Figure 11.18 An active graph within a worksheet

An OLE embedded object should support OLE visual editing at any
view magnification level because its container’s view can be scaled
arbitrarily. If an object cannot accommodate OLE visual editing in
its container’s current view scale, or if its container does not support
OLE visual editing, open the object into a separate window for edit-
ing. For more information about opening OLE embedded objects,
see the section, “Opening Embedded Objects,” later in this chapter.

For any user interaction outside the extent of an active object, such
as when the user selects or activates another object in the container,
deactivate the current object and give the focus to the new object.
This is also true for an object that is nested in the currently active
object. An OLE embedded object application should also support
user deactivation when the user presses the ESC key, after which it
becomes the selected object of its container. If the object uses the
ESC key at all times for its internal operation, the SHIFT+ESC key
should deactivate the object.

The Windows Interface Guidelines for Software Design 303

325

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Edits made to an active object become part of the container immedi- OLE embedded objects par-
ately and automatically, just like edits made to native data. Conse- ticipate in the undo stack of
quently, do not display an “Update changes?” message box when the theé window in which they are acti-
object is deactivated. Remember that the user can abandon changes vated. For mon information about
to the entire container, embedded or otherwise, if the topmost con- embidded nhi]]ects an_d the“G: "30
tainer includes an explicit command that prompts the user to save Et[?:ra,tit?r?se ft Dre ASC?:;EUQFI d 0: eg
or discard changes to the container’s file. Objects,” later in this chapter.
While Edit is the most common command for activating an OLE

embedded object for OLE visual editing, other commands can also

create such activation. For example, when the user carries out a

Play command on a video clip, you can display a set of commands

that allow the user to control the clip (Rewind, Stop, and Fast

Forward). In this case, the Play command provides a form of

OLE visual editing.

The Active Hatched Border

If a container allows an OLE embedded object’s user interface to
change its user interface, then the active object’s application displays
a hatched border around itself to show the extent of the OLE visual
editing context (shown in Figure 11.19). For example, if an active
object places its menus in the topmost container’s menu bar, display
the active hatched border. The object’s request to display its menus
in the container’s menu bar must be granted by the container appli-
cation. If the object’s menus do not appear in the menu bar (because
the object did not require menus or the container refused its request
for menu display), or the object is otherwise accommodated by the
container’s user interface, you need not display the hatched border.
The hatched pattern is made up of 45-degree diagonal lines.

304 The Windows Interface Guidelines for Software Design

326

Working with OLE Embedded and OLE Linked Objects Chapter 11

' U.5. Cofnpact Disc vs. LP Sales ($)
1983 1987 19941

Chs 6345K | 168652K | 32B857K
LPs 31,936K | 26571K : 17,428K
|| Total 37383k : 45223K : S0,086K f

it ,\K

[ENEEEN| 0 1 T O I O |
s i o 1 B

Figure 11.19 Hatched border around active OLE embedded objects

The active object takes on the appearance that is best suited for its
own editing; for example, the object may display frame adornments,
table gridlines, handles, and other editing aids. Because the hatched
border is part of the object’s territory, the active object defines the
pointer that appears when the user moves the mouse over the border.

Clicking in the hatched pattern (and not on the handles) is inter-
preted by the object as clicking just inside the edge of the border
of the active object. The hatched area is effectively a hot zone that
prevents inadvertent deactivations and makes it easier to select the
content of the embedded object.

Menu Integration

As the user activates different objects, different commands need to
be accessed in the window’s user interface. The following classifica-
tion of menus — primary container menu, workspace menu, and
active object menus — separates the interface based on menu group-
ings. This classification enhances the usability of the interface by
defining the interface changes as the user activates or deactivates
different objects.

The Windows Interface Guidelines for Software Design 305

327

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Primary Container Menu

The topmost or primary container viewed in a primary window con-
trols the work area of that window. If the primary container includes
a menu bar, it supplies at least one menu that includes commands
that apply to the primary container as an entire unit. For example,
for document file objects, use a File menu for this purpose, as shown
in Figure 11.20. This menu includes document and file level com-
mands such as Open, Save, and Print. Always display the primary
container menu in the menu bar at all times, regardless of which
object is active,

Primary |- Active object menus

container
menu

Figure 11.20 OLE visual editing menu layout

Workspace Menu

An MDI-style application also includes a workspace menu (typically
labeled “Window™) on its menu bar that provides commands for
managing the document windows displayed within it, as shown in
Figure 11.21. Like the primary container menu, the workspace menu
should always be displayed, independent of object activation.

Workspace menu

Active object menus

container
menus

Figure 11.21 OLE visual editing menu layout for MDI

306 The Windows Interface Guidelines for Software Design

328

Working with OLE Embedded and OLE Linked Objects Chapter 11

Active Object Menus

Active objects can define menus that appear on the primary
container’s menu bar that operate on their content. Place commands
for moving, deleting, searching and replacing, creating new items,
applying tools, styles, and Help on these menus. As the name sug-
gests, active object commands are executed by the currently active
object and apply only within the extent of that object. If no embed-
ded objects are active, but the window is active, the primary con-
tainer should be considered the active object.

An active object’s menus typically occupy the majority of the menu
bar. Organize these menus following the same order and grouping
that you display when the user opens the object into its own win-
dow. Avoid naming your active object menus File or Window, be-
cause primary containers often use those titles. Objects that use
direct manipulation as their sole interface need not provide active
object menus or alter the menu bar when activated.

The active object can display a View menu. However, when the
object is active, include only commands that apply to the object. If
the object’s container requires its document or window-level “view-
ing” commands to be available while an object is active, place them
on a menu that represents the primary container window’s pop-up
menu and on the Window menu — if present.

When designing the interface of selected objects within an active
object, follow the same guidelines as that of a primary container and
one of its selected OLE embedded objects; that is, the active object
displays the commands of the selected object (as registered in the
registry) either as submenus of its menus or as separate menus.

An active object also has the responsibility for defining and display-
ing pop-up menus for its content, with commands appropriate to

apply to any selection within it. Figure 11.22 shows an example of
a pop-up menu for a selection within an active bitmap image.

The Windows Interface Guidelines for Software Design 307

329

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Selection within the active objsct

Iultimedia Mozat: The Winter provides a fascmating conunentary that
Dissonant Quarte followss the rowic, giving yom greater
cr Bonoal understanding of the subtle dymamics =

i of the instroments and poweerfil
teckmimes of Stravinsky, Tou'll also
hawe the opportunity to discover the ballet that
accompanied The Rire of Spring in performance,
Choreographed by Sergel Diaghilev, the ballet
scholar Robert was as unuwsual for its thme as the mwsie

fhe eighteenth To whet your appetite, play this audio clip.
of the *most

7 The String
. Discoverthe
nmsie with
rrroe—Tolhe ¥
Chuertet and enter the world in which Mozat
created his most memorshle masterpieces. Sit
back and ewoy The Dissomant Juortet m its
entivety, or browse around, explonng its themes
and emotional dymamics m depth. View the
entive piece in a single-soreen overview with the
Pocker Audio Guide.

Multimedia Besthoven: The
Iinth Symphony

The Yayager Compani
Microsoft

Figure 11.22 Example of pop-up menu for a selection in an active object

Keyboard Interface Integration

In addition to integrating the menus, you must also integrate the
access keys and shortcut keys used in these menus.

Access Keys

The access keys assigned to the primary container’s menu, an active
object’s menus, and MDI workspace menus should be unique. Fol-
lowing are guidelines for defining access keys for integrating these
menu names:

= Use the first letter of the menu of the primary container as its
access key character, Typically, this is “F” for File. Use “W” for
a workspace’s Window menu. Localized versions should use the
appropriate equivalent.

¢ Use characters other than those assigned to the primary container
and workspace menus for the menu titles of active OLE embedded
objects. (If an OLE embedded object has previously existed as a
standalone document, its corresponding application avoids these
characters already.)

308 The Windows Interface Guidelines for Software Design

330

Working with OLE Embedded and OLE Linked Objects Chapter 11

* Define unique access keys for an object’s registered commands
and avoid characters that are potential access keys for common
container-supplied commands, such as Cut, Copy, Paste, Delete,
and Properties.

Despite these guidelines, if the same access character is used more
than once, pressing an ALT+leffer combination cycles through each
command, selecting the next match each time it is pressed. To carry
out the command, the user must press the ENTER key when it is
selected. This is standard system behavior for menus.

Shortcut Keys

For primary containers and active objects, follow the shortcut key =4 For more information about
guidelines covered in this guide. In addition, avoid defining shortcut Ba! defining shortcut keys, see
keys for active objects that are likely to be assigned to the container. ~ Chapter 4, “Input Basics,” and
For example, include the standard editing and transfer (Cut, Copy, Appendix ”B, “Keyboard Interface
and Paste) shortcut keys, but avoid File menu or system-assigned Summary.

shortcut keys. There is no provision for registering shortcut keys

for a selected object’s commands.

If a container and an active object share a common shortcut key,

the active object captures the event. That is, if the user activates an
OLE embedded object, its application code directly processes the
shortcut key. If the active object does not process the key event, it is
available to the container, which has the option to process it or not.
This applies to any level of nested OLE embedded objects. If there is
duplication between shortcut keys, the user can always direct the key
based on where the active focus is by activating that object. To direct
a shortcut key to the container, the user deactivates an OLE embed-
ded object — for example, by selecting in the container — but out-
side the OLE embedded object. Activation, not selection, of an OLE
embedded object allows it to receive the keyboard events. The excep-
tion is inside-out activation, where activation results from selection.

The Windows Interface Guidelines for Software Design 309

331

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Toolbars, Frame Adornments, and Palette Windows

Integrating drop-down and pop-up menus is straightforward because
they are confined within a particular area and follow standard con-
ventions. Toolbars, frame adornments (as shown in Figure 11.23), and
palette windows can be constructed less predictably, so it is best to
follow a replacement strategy when integrating these elements for
active objects. That is, toolbars, frame adornments, and palette win-
dows are displayed and removed as entire sets rather than integrated
at the individual control level — just like menu titles on the menu bar.

[Toolbar

Toolbar

Ribbon

Al Zea b

Status bar

“— Status bar

Figure 11.23 Examples of toolbars, status bars, and frame adornments

When the user activates an object, the object application requests a
specific area from its container in which to post its tools. The con-
tainer application determines whether to:

» Replace its tool (or tools) with the tools of the object, if the
requested space is already occupied by a container tool.

= Add the object’s tool (or tools), if a container tool does not
occupy the requested space.

* Refuse to display the tool (or tools) at all. This is the least
desirable method.

310 The Windows Interface Guidelines for Software Design

332

Working with OLE Embedded and OLE Linked Objects Chapter 11

Toolbars, frame adornments, and palette windows are all basically
the same interfaces — they differ primarily in their location and the
degree of shared control between container and object. There are
four locations in the interface where these types of controls reside,
and you determine their location by their scope. Figure 11.24 shows
possible positions for interface controls.

Location Description

Object frame Place object-specific controls, such as a table
header or a local coordinate ruler, directly
adjacent to the object itself for tightly coupled
interaction between the object and its inter-
face. An object (such as a spreadsheet) can
include scrollbars if its content extends
beyond the boundaries of its frame.

Pane frame Locate view-specific controls at the pane level.
Rulers and viewing tools are common
examples.

Document (primary Attach tools that apply to the entire document

container) window frame (or documents in the case of an MDI win-
dow) just inside any edge of its primary
window frame. Popular examples include
ribbons, drawing tools, and status lines.

Windowed Display tools in a palette window — this
allows the user to place them as desired.
A palette window typically floats above the
primary window and any other windows of
which it is part.

The Windows Interface Guidelines for Software Design 311

333

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Document frame Pane frame

shility to enter the lives and minds of three astounding e T T
nmsical gemiuses. That’s becanse the Composer i ’éf}

The intwmdnction of the compact dise has had a far greater impact on the mmw\
e mdustry than ampone oould have imagined, especially the marmfactorers of VJILIH

play (LP) albums. With the 1991 sales totaks in, compact disc 15 cleazly the preferred recordi|ps

for American ears. In addition to audio compact dises, CD-ROMs are appearing on the marle St

nultimedia experience of the classical repetoire. The Microsoft Composer Collection bem | £ 1]

Windowed

N

Collection cortains three CD-ROM titles full of nmsic,
] information, and entertainment. They are: Microsoft

I Multimedia Mozat, Microsoft Multimedia Stravinsky,
] and Mierosoft Multimedia Beethoven. These works are
xa\m!wvzﬂ below - be sure lu c.'hgr](them aut' DB

-_}5:_:_-

e b A ey
AP Y j‘a,'n'i‘!‘l.fl .grn .ngg.,'t'z/é]

- Object frame

Figure 11.24 Passible locations for interface controls

When determining where to locate a tool area, avoid situations that
cause the view to shift up and down as different-sized tool areas are
displayed or removed as the user activates different objects. This can
be disruptive to the user’s task.

Because container tool areas can remain visible while an object is
active, they are available to the user simply by interacting with them
— this can reactivate the container application. The container deter-
mines whether to activate or leave the object active. If toolbar but-
tons of an active object represent a primary container or workspace
commands, such as Save, Print, or Open, disable them.

312 The Windows Interface Guidelines for Software Design

334

; For more information about
h‘. the negotiation protocols
used for activation, see the OLE
documentation included in the
Win32 SDK.

Working with OLE Embedded and OLE Linked Objects Chapter 11

As the user resizes or scrolls its container’s area, an active object
and its toolbar or frame adornments placed on the object frame are
clipped, as is all container content. These interface control areas lie
in the same plane as the object. Even when the object is clipped, the
user can still edit the visible part of the object in place and while the
visible frame adornments are operational.

Some container applications scroll at certain increments that may
prevent portions of an OLE embedded object from being visually
edited. For example, consider a large picture embedded in a work-
sheet cell. The worksheet scrolls vertically in complete row incre-
ments; the top of the pane is always aligned with the top edge of a
row. If the embedded picture is too large to fit within the pane at one
time, its bottom portion is clipped and consequently never viewed or
edited in place. In cases like this, the user can open the picture into
its own window for editing.

Window panes clip frame adornments of nested embedded objects,
but not by the extent of any parent object. Objects at the very edge
of their container’s extent or boundary potentially display adorn-
ments that extend beyond the bounds of the container’s defined area.
In this case, if the container displays items that extend beyond the
edge, display all the adornments; otherwise, clip the adornments at
the edge of the container. Do not temporarily move the object within
its container just to accommodate the appearance of an active em-
bedded object’s adornments. A pane-level control can potentially

be clipped by the primary (or parent, in the case of MDI) window
frame, and a primary window adornment or control is clipped by
other primary windows.

Opening OLE Embedded Objects

The previous sections have focused on OLE visual editing — editing
an OLE embedded object in place; that is, its current location is
within its container. Alternatively, the user can also open embedded
objects into their own window. This gives the user the opportunity of
seeing more of the object or seeing the object in a different view state.
Support this operation by registering an Open command for the
object. When the user chooses the Open command of an object, it
opens it into a separate window for editing, as shown in Figure 11.25.

The Windows Interface Guidelines for Software Design 313

335

Chapter 11 Working with OLE Embedded and OLE Linked Objects

Title includes name of container

xsheet in Cl

TS : Microsoft ///‘_////’ :
M&fmahmuna:,nﬁzmnﬁm Stmmy, ////%%t
 and Microsoft Multimedia Besthoven, These works are :Z‘/Ay—/ ’,{?

e

Figure 11.25 An opened OLE embedded worksheet

After opening an object, the container displays it masked with an
“open” hatched (lines at a 45-degree angle) pattern that indicates the
object is open in another window, as shown in Figure 11.26.

Figure 11.26 An opened OLE embedded object

Format the title text for the open object’s window as “QObject Name % This convention for the title
in Container Name” (for example, “Sales Worksheet in Classical CD bar text applies only when the
Review”). Including the container’s name emphasizes that the object ~ User opens an OLE embedded ob-

in the container and the object in the open window are considered ject. When the user activates an OLE
the same object. embedded object for visual editing,

do not change the title bar text.

314 The Windows Interface Guidelines for Software Design

336

Working with OLE Embedded and OLE Linked Objects Chapter 11

An open OLE embedded object represents an alternate window onto
the same object within the container as opposed to a separate appli-
cation that updates changes to the container document. Therefore,
reflect edits immediately and automatically in the object in the win-
dow of its container. There is no need to display an update confirma-
tion message upon exiting the open window. Nevertheless, you can
still include an Update Container Filename command in the window
of the open object to allow the user to request an update explicitly.
This is useful if you cannot support frequent “real-time” image up-
dates because of operational performance. In addition, when the user
closes an open object’s window, automatically update its presenta-
tion in the container’s window, Provide a Close & Return To
Container Filename or Exit & Return To Container Filename on

the File menu replacing the Close or Exit command, as shown in
Figure 11.25.

You can also include Tmport File and similar commands in the win-
dow of the open object. Treat importing a file into the window of the
open embedded object the same as any change to the object.

If it has file operations, such as New or Open, remove these in the
resulting window or replace them with commands, such as Import, to
avoid severing the object’s connection with its container. The objec-
tive is to present a consistent conceptual model; the object in the
opened window is always the same as the one in the container. You
can replace the Save As command with a Save Copy As command
that displays the Save As dialog box, but unlike Save As, Save Copy
As does not make the copied file the active file.

When the user opens an object, it is the selected object in the con-
tainer; however, the user can change the selection in the container
afterwards. Like any selected OLE embedded object, the container
supplies the appropriate selection appearance together with the open
appearance, as shown in Figure 11.27.

Handle

o i b e s PP

Figure 11.27 A selected open OLE embedded object

The Windows Interface Guidelines for Software Design 315

337

