Chapter 7 Menus, Controls, and Toolbars

The width of the list box should be sufficient to display the average
width of an entry in the list. If that is not practical because of space
or the variability of what the list might include, consider one or more
of the following options:

* Malke the list box wide enough to allow the entries in the list to be
sufficiently distinguished.

= Use an ellipsis (...) in the middle or at the end of long text entries
to shorten them, while preserving the important characteristics
needed to distinguish them. For example, for long paths, usually
the beginning and end of the path are the most critical; you can
use an ellipsis to shorten the entire name: \Sample\...\Example.

= Include a horizontal scroll bar. However, this option reduces some
usability, because adding the scroll bar reduces the number of
entries the user can view at one time. In addition, if most entries
in the list box do not need to be horizontally scrolled, including a
horizontal scroll bar accommodates the infrequent case.

When the user clicks an item in a list box, it becomes selected. Sup-
port for multiple selection depends on the type of list box you use.
List boxes also include scroll bars when the number of items in the
list exceeds the visible area of the control.

Arrow keys also provide support for selection and scrolling a list
box. In addition, list boxes include support for keyboard selection
using text keys. When the user presses a text key, the list navigates
and selects the matching item in the list, scrolling the list if necessary
to keep the user’s selection visible. Subsequent key presses continue
the matching process. Some list boxes support sequential matches
based on timing; each time the user presses a key, the control
maltches the next character in a word if the user presses the key
within the system’s time-out setting. If the time-out elapses, the
control is reset to matching based on the first character. Other list
box controls, such as combo boxes and drop-down combo boxes, do
sequential character matching based on the characters typed into the
text box component of the control. These controls may be preferable
because they do not require the user to master the timing sequence.
However, they do take up more space and potentially allow the user
to type in entries that do not exist in the list box.

150 The Windows Interface Guidelines for Software Design

172

Menus, Controls, and Toolbars Chapter 7

When the list is scrolled to the beginning or end of data, disable the
corresponding scroll bar arrow button. If all items in the list are
visible, disable both scroll arrows. If the list box never includes more
items that can be shown in the list box, so that the user will not need
to scroll the list, you may remove the scroll bar.

When incorporating a list box into a window’s design, consider =7 For more information about
supporting both command (Cut, Copy, and Paste) and direct Ba! disabling scroll bar arrows, see
manipulation (drag and drop) transfers for the list box. For example, ~ Chapter 6, “Windows.”

if the list displays icons or values that the user can move or copy o

other locations, such as another list box, support transfer operations

for the list. The list view control automatically supports this; how-

ever, the system provides support for you to enable this for other list

boxes as well.

List boxes can be classified by how they display a list and by the
type of selection they support.

Single Selection List Boxes

A single selection list box is designed for the selection of only one
item in a list. Therefore, the control provides a mutually exclusive
operation similar to a group of option buttons, except that a list box
can more efficiently handle a large number of items.

Define a single selection list box to be tall enough to show at least
three to eight choices, as shown in Figure 713 — depending on the
design constraints of where the list box is used. Always include a
vertical scroll bar. If all the items in the list are visible, then follow
the window scroll bar guidelines for disabling the scroll arrows and
enlarging the scroll box to fill the scroll bar shaft.

5 - ——

| Butter P

ecan

Fudae Swirl
Pistachio
I Raspbery

T . 5 S & =

Figure 7.13 A single selection list box

The Windows Interface Guidelines for Software Design 151

173

Chapter 7 Menus, Controls, and Toolbars

The currently selected item in a single selection list box is high-
lighted using selection appearance.

The user can select an entry in a single selection list box by clicking B4 For more information about
on it with mouse button 1 (for pens, tapping). This also sets the input BaX the interaction techniques of
focus on that item in the list. Because this type of list box supports scrofl bars, see Chapter 6, “Windows.”

only single selection, when the user chooses another entry any other
selected item in the list becomes unselected. The scroll bar in the list
box allows the mouse user to scroll through the list of entries, fol-
lowing the interaction defined for scroll bars.

The keyboard interface uses navigation keys, such as the arrow keys,
HOME, END, PAGE UP, and PAGE DOWN. It also uses text keys, with
matches based on timing; for example, when the user presses a text
key, an entry matching that character scrolls to the top of the list and
becomes selected. These keys not only navigate to an entry in the
list, but also select it. If no item in the list is currently selected, when
the user chooses a list navigation key, the first item in the list that
corresponds to that key is selected. For example, if the user presses
the DOWN ARROW key, the first entry in the list is selected, instead
of navigating to the second item in the list.

If the choices in the list box represent values for the property of a
selection, then make the current value visible and highlighted when
displaying the list. If the list box reflects mixed values for a multiple
selection, then no entry in the list should be selected.

Drop-down List Boxes

Like a single selection list box, a drop-down list box provides for the
selection of a single item from a list of items; the difference is that
the list is displayed upon demand. In its closed state, the control
displays the current value for the control. The user opens the list to
change the value. Figure 7.14 shows the drop-down list box in its
closed and opened state.

= W m . = == = =
Tt === Y gl _H
‘ E :.: i : -‘ I Tabs

= ? ‘j' - . ‘q | '_ Column

et B . = =

Figure 7.14 A drop-down list box (closed and opened state)

152 The Windows Interface Guidelines for Software Design

174

Menus, Controls, and Toolbars Chapter 7

While drop-down list boxes are an effective way to conserve space
and reduce clutter, they require more user interaction for browsing
and selecting an item than a single selection list box.

Make the width of a closed drop-down list box a few spaces larger
than the average width of the items in its list. The open list compo-
nent of the control should be tall enough to show three to eight
items, following the same conventions of a single selection list box.
The width of the list should be wide enough not only to display

the choices in the list, but also to allow the user to drag directly
into the list.

The interface for drop-down list boxes is similar to that for menus.
For example, the user can press the mouse button on the current
setting portion of the control or on the control’s menu button to dis-
play the list. Choosing an item in the list automatically closes the list.

If the user navigates to the control using an access key, the TAB key
or arrow keys, an UP ARROW or DOWN ARROW, or ALT+UP ARROW
or ALT+DOWN ARROW displays the list. Arrow keys or text keys
navigate and select items in the list. If the user presses ALT+UP
ARROW, ALT+DOWN ARROW, a navigétion key, or an access key to
move to another control, the list automatically closes. When the list
is closed, preserve any selection made while the list was open. The
ESC key also closes the list.

If the choices in a drop-down list represent values for the property of
a multiple selection and the values for that property are mixed, then
display no value in the current setting component of the control.

Extended and Multiple Selection List Boxes

Although most list boxes are single selection lists, some contexts
require the user to choose more than one item. Extended selection
list boxes and multiple selection list boxes support this functionality.

Extended and multiple selection list boxes follow the same conven-
tions for height and width as single selection list boxes. The height
should display no less than three items and generally no more

than eight, unless the size of the list varies with the size of the
window. Base the width of the box on the average width of the en-
tries in the list.

The Windows Interface Guidelines for Software Design 153

175

Chapter 7 Menus, Controls, and Toolbars

Extended selection list boxes support conventional navigation, and =84 For more information about
contiguous and disjoint selection techniques. That is, extended selec- BaN contiguous and disjoint selec-
tion list boxes are optimized for selecting a single item or a single tion techniques, see Chapter 5,
range, while still providing for disjoint selections. “General Interaction Techniques.”

When you want to support user selection of several disjoint entries =4 For more information about
from a list, but an extended selection list box is too cumbersome, BaX the fiat appearance style for
you can define a multiple selection list box. Whereas extended selec- ~ controls in a list box, see Chapter
tion list boxes are optimized for individual item or range selection, 13, “Visual Design.”

multiple selection list boxes are optimized for independent selection.

However, because simple multiple selection list boxes are not visu-

ally distinct from extended selection list boxes, consider designing

them to appear similar to a scrollable list of check boxes, as shown

in Figure 7.15. This requires providing your own graphics for the

items in the list (using the owner-drawn list box style). This appear-

ance helps the user to distinguish the difference in the interface of

the list box with a familiar convention. It also serves to differentiate

keyboard navigation from the state of a choice. Because the check

box controls are nested, you use the flat appearance style for the

check boxes. You may also create this kind of a list box using a list

view control.

- =
v L;] Yearly Statistics

% Samson Account
[l E] Lukison Review

T TR TR o o I T

Figure 7.15 A multiple selection list box

154 The Windows Interface Guidelines for Software Design

176

Menus, Controls, and Toolbars Chapter 7

List View Controls

A list view conirol is a special extended selection list box that dis-
plays a collection of items, each item consisting of an icon and a
label. List view controls can display content in four different views.

View Description

Icon Each item appears as a full-sized icon with a label below it.
The user can drag the icons to any location within the view.

Small Icon Each item appears as a small icon with its label to the right.
The user can drag the icons to any location within the view.

List Each item appears as a small icon with its label to the right.
The icons appear in a columnar, sorted layout.

Report Each item appears as a line in a multicolumn format with
the leftmost column including the icon and its label. The
subsequent columns contain information supplied by the
application displaying the list view control.

The control also supports options for alignment of icons, selection of
icons, sorting of icons, and editing of the icon’s labels. It also sup-
ports drag and drop interaction.

Use this control where the representation of objects as icons is ap-
propriate. In addition, provide pop-up menus on the icons displayed
in the views. This provides a consistent paradigm for how the user
interacts with icons elsewhere in the Windows interface.

Selection and navigation in this control work similarly to that in
folder windows. For example, clicking on an icon selects it. After
selecting the icon, the user can use extended selection techniques,
including region selection, for contiguous or disjoint selections.
Arrow keys and text keys (time-out based matching) support key-
board navigation and selection.

As an option, the standard control also supports the display of
graphics that can be used to represent state information. For example,
you can use this functionality to include check boxes next to items

in a list.

The Windows Interface Guidelines for Software Design 155

177

Chapter 7 Menus, Controls, and Toolbars

Tree View Controls

A tree view control is a special list box control that displays a set of
objects as an indented outline based on their logical hierarchical
relationship. The control includes buttons that allow the outline to be
expanded and collapsed, as shown in Figure 7.10. You can use a tree
view control to display the relationship between a set of containers
or other hierarchical elements.

- Buttons for expanding
and collapsing outline

5 Desktop

=2} My Computer

-0 3% Floppy &)

[+ &3 5% Floppy [B:]

£-=2 Bobby's Hard Disk (C:)
77 Personal

7 Judy's File
Finance

£ Statistics
{23 Scrap

‘{7 Human Resources

~ Lines illustrate
hierachical relationships

Figure 7.16 A tree view control

You can optionally include icons with the text label of each item in
the tree. Different icons can be displayed when the user expands or
collapses the item in the tree. In addition, you can also include a
graphic, such as a check box, that can be used to reflect state infor-
mation about the item.

The control also supports drawing lines that define the hierarchical
relationship of the items in the list and buttons for expanding and
collapsing the outline. Tt is best to include these features (even
though they are optional) because they make it easier for the user lo
interpret the outline.

156 The Windows Interface Guidelines for Software Design

178

Menus, Controls, and Toolbars Chapter 7

Arrow keys provide keyboard support for navigation through the
control; the user presses UP ARROW and DOWN ARROW (o move
between items and LEFT ARROW and RIGHT ARROW to move along
a particular branch of the outline. Pressing RIGHT ARROW can also
expand the outline at a branch if it is not currently displayed. Text
keys can also be used to navigate and select items in the list, using
the matching technique based on timing.

When you use this control in a dialog box, if you use the ENTER key
or use double-clicking to carry out the default command for an item
in the list, make certain that the default command button in your
dialog box matches. For example, if vou use double-clicking an
entry in the outline to display the item’s properties, then define a
Properties button to be the default command button in the dialog
box when the tree view control has the input focus.

Text Fields

Windows includes a number of controls that facilitate the display,
entry, or editing of a text value. Some of these controls combine a
basic text-entry field with other types of controls.

Text fields do not include labels as a part of the control. However, W4 For more information about
you can add one using a static text [ield. Including a label helps Ba¥ static text fields, see the sec-
identify the purpose of a text field and provides a means of indicat- ~ tion, “Static Text Fields,” later in this
ing when the field is disabled. Use sentence capitalization for mul- chaper.

tiple word labels. You can also define access keys for the text label to

provide keyboard access to the text field. When using a static text

label, define keyboard access to move the input focus to the text field

with which the label is associated rather than the static text field

itsell. You can also support keyboard navigation to text fields by

using the TAB key (and, optionally, arrow keys).

When using a text field for input of a restricted set of possible val- =4 For more information about
ues, for example, a field where only numbers are appropriate, vali- Ba¥ vaiidation of input, see Chap-
date user input immediately, either by ignoring inappropriate ter 8, “Secondary Windows.”

characters or by providing feedback indicating that the value is in-
valid or both.

The Windows Interface Guidelines for Software Design 157

179

Chapter 7 Menus, Controls, and Toolbars

Text Boxes

A text box (also referred to as an edit control) is a rectangular control
where the user enters or edits text, as shown in Figure 7.17. Tt can

be defined to support a single line or multiple lines of text. The
outline border of the control is optional, although the border is typi-
cally included when displaying the control in a toolbar or a second-
ary window.

E Text box border

[A w AR At B

|
¥ Text Box
[R A s s N s R

Figure 7.17 A standard text box

The standard text box control provides basic text input and editing
support. Editing includes the insertion or deletion of characters and
the option of text wrapping. Although individual font or paragraph
properties are not supported, the entire control can support a specific
font setting.

You can also use text boxes to display read-only text that is not
editable, but still selectable. When setting this option with the stan-
dard control, the system automatically changes the background color
of the field to indicate to the user the difference in behavior.

A text box supports standard interactive techniques for navigation
and contiguous selection. Horizontal scrolling is available for single
line text boxes, and horizontal and vertical scroll bars are supported
for multiple line text boxes.

You can limit the number of characters accepted as input for a text
box to whatever is appropriate for the context. In addition, you can
support auto-exit for text boxes defined for fixed-length input; that is,
as soon as the last character is typed in the text box, the focus moves
to the next control. For example, you can define a five-character
auto-exit text box to facilitate the entry of zip code, or three two-
character auto-exit text boxes to support the entry of a date. Use
auto-exit text boxes sparingly; the automatic shift of focus can sur-
prise the user. They are best limited to situations involving extensive
data entry.

158 The Windows Interface Guidelines for Sofiware Design

180

Menus, Controls, and Toolbars Chapter 7

Rich-Text Boxes

A rich-text box, as shown in Figure 718, provides the same basic text
editing support as a standard text box. In addition, a rich-text box
supports font properties, such as typeface, size, color, bold, and italic
format, for each character and paragraph format property, such as
alignment, tabs, indents, and numbering. The control also supports
printing of its content and embedding of OLE objects.

SN A N N Y ST

/| The Quick Fox

; The quick fox chases the|
| rabbit everyday over the

v hills and through the
E woods and streams.

SIS ARN

SRR

Figure 7.18 A rich-text box

Combo Boxes

A combo box is a control that combines a text box with a list box, as
shown in Figure 7.19. This allows the user to type in an entry or
choose one from the list.

S

e

Bins
Cans
Cabinets

=

=

Figure 7.19 A combo box

The Windows Interface Guidelines for Software Design 159

181

Chapter 7 Menus, Controls, and Toolbars

The text box and its associated list box have a dependent relation-
ship. As text is typed into the text box, the list scrolls to the nearest
match. In addition, when the user selects an item in the list box, it
automatically uses that entry to replace the content of the text box
and selects the text.

The interface for the control follows the conventions supported for
each component, except that the UP ARROW and DOWN ARROW
keys move only in the list box. LEFT ARROW and RIGHT ARROW
keys operate solely in the text box.

Drop-down Combo Boxes

A drop-down combo box, as shown in Figure 7.20, combines the
characteristics of a text box with a drop-down list box. A drop-down
combo box is more compact than a regular combo box; it can be used
to conserve space, but requires additional user interaction required (o
display the list.

1 arcadB_I.;lmp. . :_l‘ arcade _'J

jeans

| chess
paper Y
arcade y

Figure 7.20 A drop-down combo hox (closed and opened staie)

The closed state of a drop-down combo box is similar to that of a
drop-down list, except that the text box is interactive. When the user
clicks the control’s menu button the list is opened. Clicking the
menu button a second time, choosing an item in the list, or clicking
another control closes the list.

Provide a static text field label for the control and assign an access
key. Use the access key so the user can navigate to the control. You
can also support the TAB key or arrow keys for navigation to the
control. When the control has the input focus, when the user presses
the UP ARROW or DOWN ARROW or ALT+UP ARROW or ALT+DOWN
ARROW key, the list is displayed.

160 The Windows Interface Guidelines for Software Design

182

Menus, Controls, and Toolbars Chapter 7

When the control has the input focus, pressing a navigation key, such
as the TAB key, or an access key or ALT+UP ARROW or ALT+DOWN
ARROW to navigate to another control closes the list. When the list is
closed, preserve any selection made while the list was open, unless
the user presses a Cancel command button. The ESC key also closes
the list.

When the list is displayed, the interdependent relationship between
the text box and list is the same as it is for standard combo boxes
when the user types text into the text box. When the user chooses an
item in the list, the interaction is the same as for drop-down lists —
the selected item becomes the entry in the text box.

Spin Boxes

Spin boxes are text boxes that accept a limited set of discrete
ordered input values that make up a circular loop. A spin box is a
combination of a text box and a special control that incorporates a
pair of buttons (also known as an up-down control), as shown in
Figure 7.21.

Text box

—Up-down control

Figure 7.21 A spin hox

When the user clicks on the text box or the buttons, the input focus is
set to the text box component of the control. The user can type a text
value directly into the control or use the buttons to increment or de-
crement the value. The unit of change depends on what you define
the control to represent.

Use caution when using the control in situations where the meaning
of the buttons may be ambiguous. For example, with numeric values,
such as dates, it may not be clear whether the top button increments
the date or changes to the previous date. Define the top button to
increase the value by one unit and the bottom button to decrease the
value by one unit. Typically, wrap around at either end of the set of
values. You may need to provide some additional information to
communicate how the buttons apply.

The Windows Interface Guidelines for Software Design 161

183

Chapter 7 Menus, Controls, and Toolbars

By including a static text field as a label for the spin box and de-
fining an associated access key, you can provide direct keyboard
access to the control. You can also support keyboard access using the
TAB key (or, optionally, arrow keys). Once the control has the input
focus, the user can change the value by pressing UP ARROW or
DOWN ARROW.

You can also use a single set of spin box buttons to edit a sequence
of related text boxes, for example, time as expressed in hours, min-
utes, and seconds. The buttons affect only the text box that currently
has the input focus.

Static Text Fields

You can use static text fields to present read-only text information.
Unlike read-only text box controls, the text is not sclectable. How-
ever, your application can still alter read-only static text to reflect a
change in state. For example, you can use static text to display the
current directory path or the status information, such as page number,
key states, or time and date. Figure 7.22 illustrates a static text field.

P,

S TaiF

Figure 7.22 A static text field

You can also use static text fields to provide labels or descriptive =W For more information about
information for other controls. Using static text fields as labels for BaM the layout of static text fields,
other controls allows you to provide access-key activation for the see Chapler 13, “Visual Design.” For
control with which it is associated. Make certain that the input focus infnrmation about the use of static
moves to its associated control and not to the static field. Also re- i f'P‘I_d_S_ as labels and SCI'EP:‘H e
member to include a colon at the end of the text. Not only does this E:gruDuets”iglr?%os:; dir:’gfig:r:;'?, Shes
help communicate that the text represents the label for a control, it is :

also used by screen review utilities.

162 The Windows Interface Guidelines for Software Design

184

Menus, Controls, and Toolbars Chapter 7

Shortcut Key Input Controls

A shortcut key input control (also known as a hot key control) is a 597 For more information about
special kind of text box to support user input of a key or key combi- Ba¥ the use of shortcut keys, see
nation to define a shortcut key assignment. Use it when you provide ~ Chapter 4, “Input Basics.”

an interface for the user to customize shortcut keys supported by

your application. Because shortcut keys carry out a command di-

rectly, they provide a more efficient interface for common or fre-

quently used actions.

The control allows you to define invalid keys or key combinations to
ensure valid user input; the control will only access valid keys. You
also supply a default modifier to use when the user enters an invalid
key. The control displays the valid key or key combination including
any modifier keys.

When the user clicks a shortcut key input control, the input focus is
set to the control. Like most text boxes, the control does not include
its own label, so use a static text field to provide a label and assign
an appropriate access key. You can also support the TAB key to pro-
vide keyboard access to the control.

Other General Controls

The system also provides support for controls designed to organize
other controls and controls for special types of interfaces.

Group Boxes

A group box is a special control you can use to organize a set of
controls. A group box is a rectangular frame with an optional label
that surrounds a set of controls, as shown in Figure 7.23. Group
boxes generally do not directly process any input. However, you can
provide navigational access to items in the group using the TAB key
or by assigning an access key to the group label.

The Windows Interface Guidelines for Software Design 163

185

Chapter 7 Menus, Controls, and Toolbars

- Options ——— ———

Figure 7.23 A group box

You can make the label for controls that you place in a group box
relative to the group box’s label. For example, a group labeled Align-
ment can have option buttons labeled Left, Right, and Center. Use
sentence capitalization for a multiple word label.

Column Headings

Using a column heading control, also known as a header control,
you can display a heading above columns of text or numbers. You
can divide the control into two or more parts to provide headings for
multiple columns, as shown in Figure 7.24, The list view control also
provides support for a column heading control.

[Column heading

= = =
‘Mame . | Sige[Tppe | Modiied - T ——}— Golumn part

[#EF11128mp 233KB Bitmap Image 1/23/95 .00 PM =
i &1 11-13bmp 470KB Bitmap Image 1/23/95 301 PM i

[#F 11-14.bmp 151KB Bitmap Image 117495 5:05 PM

[®% 11-15.bmp 151KE Bitmap Image 117495 506 PM

Figure 7.24 A column heading divided into four parts

Each header part label can include text and a graphic image. Use the
graphic image to show information such as the sort direction. You
can align the title elements left, right, or centered.

You can configure each part to behave like a command button to
support a specific function when the user clicks on it. For example,
consider supporting sorting the list by clicking on a particular header
part. Also, you can support clicking on the part with button 2 to
display a pop-up menu containing specitic commands, such as Sort
Ascending and Sort Descending.

164 The Windows Interface Guidelines for Software Design

186

Menus, Controls, and Toolbars Chapter 7

The control also supports the user dragging on the divisions that
separate header parts to set the width of each column. As an option,
you can support double-clicking on a division as a shortcut to a com-
mand that applies to formatting the column, such as automatically
sizing the column to the largest value in that column,

Tabs

A tab control is analogous to a divider in a file cabinet or notebook,
as shown in Figure 7.25. You can use this control to define multiple
logical pages or sections of information within the same window.

Figure 7.25 A tab control

Tab labels can include text or graphic information, or both. Usually,
the control automatically sizes the tab to the size of its label; how-
ever, you can define your tabs to have a fixed width. Use the system
font for the text labels of your tabs and use the same capitalization
for multiple word labels as you use for menus and command buttons
(in English versions, book title capitalization). If you use only graph-
ics as your tab label, support tooltips for your tabs.

By default, a tab control displays only one row of tabs. While the
control supports multiple rows or scrolling a single row of tabs,
avoid these alternatives because they add complexity to the interface
by making it harder to read and access a particular tab. You may
want to consider alternatives such as separating the tabbed pages into
sets and using another control to move between the sets. However, if
scrolling the tabs seems appropriate, follow the conventions docu-
mented in this guide.

When the user clicks a tab with mouse button 1, the input focus
moves and switches to that tab. When a tab has the input focus, LEFT
ARROW or RIGHT ARROW keys move between tabs. CTRL+TAB also
switches between tabs. Optionally, you can also define access keys
for navigating between tabs. If the user switches pages using the tab,
you can place the input focus on the particular control on that page. If
there is no appropriate control or field in which to place the tab,

leave the input focus on the tab itself.

The Windows Interface Guidelines for Software Design 165

187

Chapter 7 Menus, Controls, and Toolbars

Property Sheet Controls

A property sheet control provides the basic framework for defining a
property sheet. It provides the common controls used in a property
sheet and accepts modeless dialog box layout definitions to auto-
matically create tabbed property pages.

The property sheet control also includes support for creating wiz- =¥7 For more information about
ards. Wizards are a special form of user assistance that guide the user Ba property sheets, see Chapter
through a sequence of steps in a specific operation or process. When 8, “Secondary Windows.” For more
using the control as a wizard, tabs are not included, and the standard information about L.Vizal’ds, see
OK, Cancel, and Apply buttons are replaced with a Back, Next, or Chapter 12, “User Assistance.”
Finish button, and a Cancel button.

Scroll Bars

Scroll bars are horizontal or vertical scrolling controls you can use to
create scrollable areas other than on the window frame or list box
where they can be automatically included. Use scroll bar controls
only for supporting scrolling contexts. For contexts where you want
to provide an interface for setting or adjusting values, use a slider or
other control, such as a spin box. Because scroll bars are designed
for scrolling information, using a scroll bar to set values may confuse
the user as to the purpose or interaction of the control.

When using scroll bar controls, follow the recommended conven-
tions for disabling the scroll bar arrows. Disable a scroll bar arrow
button when the user scrolls the information to the beginning or end
of the data, unless the structure permits the user to scroll beyond the
data. For more information about scroll bar conventions, see Chapter
6, “Windows.”

While scroll bar controls can support the input focus, avoid defining
this type of interface. Instead, define the keyboard interface of your
scrollable area so that it can scroll without requiring the user to move
the input focus to a scroll bar. This makes your scrolling interface
more consistent with the user interaction for window and list box
scroll bars.

166 The Windows Interface Guidelines for Software Design

188

Sliders

Menus, Controls, and Toolbars Chapter 7

Use a slider for setting or adjusting values on a continuous range of
values, such as volume or brightness. A slider is a control, some-
times called a trackbar control, that consists of a bar that defines the
extent or range of the adjustment, and an indicator that both shows
the current value for the control and provides the means for changing
the value, as shown in Figure 7.26.

Figure 7.26 A slider

Because a slider does not include its own label, use a static text field
to create one. You can also add text and graphics to the control to
help the user interpret the scale and range of the control.

Sliders support a number of options. You can set the slider orienta-
tion as vertical or horizontal, define the length and height of the slide
indicator and the slide bar component, define the increments of the
slider, and whether to display tick marks for the control.

The user moves the slide indicator by dragging to a particular loca-
tion or clicking in the hot zone area of the bar, which moves the slide
indicator directly to that location. To provide keyboard interaction,
support the TAB key and define an access key for the static text field
you use for its label. When the control has the input focus, arrow
keys can be used to move the slide indicator in the respective direc-
tion represented by the key.

Progress Indicators

A progress indicator is a control, also known as a progress bar con-
trol, you can use to show the percentage of completion of a lengthy
operation. It consists of a rectangular bar that “fills” from left to
right, as shown in Figure 7.27.

The Windows Interface Guidelines for Software Design

189

167

Chapter 7 Menus, Controls, and Toolbars

‘ANEEEEE

Figure 7.27 A progress indicator

Because a progress indicator only displays information, it is typically
noninteractive. However, it may be useful to add static text or other
information to help communicate the purpose of the progress
indicator. If you do include text, place it outside of the progress
indicator control.

Use the control as feedback for long operations or background pro- =W For more information about
cesses as a supplement to changing the pointer. The control provides M message boxes, see Chapter
more visual feedback (o the user about the progress of the process. 9, “Secondary Windows." For more

information about status bars, see
the section, “Toolbars and Status
Bars,” later in this chapter.

You can also use the control to reflect the progression of a back-
ground process, leaving the pointer’s image to reflect interactivity for
foreground activities. When determining whether to use a progress
indicator in message box or status bar, consider how modal the op-
eration or process the progress indicator represents.

Tooltip Controls

A tooltip control provides the basic functionality of a tooltip. A For more information about
tooltip is a small pop-up window that includes descriptive text dis- ‘Ml the use of tooltips, see Ghap-
played when the user moves the pointer over a control, as shown in ter 12, “User Assistance.” For more
Figure 7.28. The tooltip appears after a short time-out and is auto- information about the use of tooltips

matically removed when the user clicks the control or moves the in toolbars, see the s‘ection, _'TOO_I'
by bars and Status Bars,” later in this
pointer off the control.

chapter.

= Cut f—
Figure 7.28 A tooltip control

The system displays a tooltip control at the lower right of the
pointer, but automatically adjusts the tooltip to avoid displaying it
offscreen. However for text boxes, the tooltip should be displayed
centered under the control it identifies. The control supports an op-
tion to support this behavior.

168 The Windows Interface Guidelines for Software Design

190

Menus, Controls, and Toolbars Chapter 7

Wells

A well is a special field similar to a group of option buttons, but
facilitates user selection of graphic values such as a color, pattern, or
images, as shown in Figure 7.29. This control is not currently pro-
vided by the system; however, its purpose and interaction guidelines
are described here to provide a consistent interface.

Figure 7.29 A well control for selection colors

Like option buttons, use well controls for values that have two or =¥ For more information about
more choices and group the choices to form a logical arrangement, h‘. how to display well controls,
When the control is interactive, use the same border pattern as a see Chapter 13, “Visual Design.”

check box or text box. When the user chooses a particular value in
the group, indicate the set value with a special selection border
drawn around the edge of the control.

Follow the same interaction techniques as option buttons. When the
user clicks a well in the group the value is set to that choice. Provide
a group box or static text to label the group and define an access key
for that label and supporting the TAB key to navigate to a group. Use
arrow keys to move between values in the group.

Pen-Specific Controls

When the user installs a pen input device, single line text boxes and
combo boxes automatically display a writing tool button described in
Chapter 5, “General Interaction Techniques.” In addition, the system
provides special controls for supporting pen input.

Boxed Edit Controls

A boxed edit control provides the user with a discrete area for enter-
ing characters. It looks and operates similarly to a writing tool win-
dow without some of the writing tool window’s buttons, as shown in
Figure 7.30.

The Windows Interface Guidelines for Software Design 169

191

Chapter 7 Menus, Controls, and Toolbars

] 3]

4 S.a.l. e WTIENIEIN:
e clear
Clear
clean

Clean
[Blank)

o

Figure 7.30 A single line hoxed edit control

Both single and multiple line boxed edit controls are supported.
Figure 7.31 shows a multiple line boxed edit control.

This Fesr) s
coleawin oA
mal +i~{ine - B
IEdufurutubn‘u:|.r‘|\.‘|
. hrs-storts.
et p@ w1 ine.s v

+ - # % +

Figure 7.31 A multiple line boxed edit control

Like the writing tool window, these controls provide a pen selection
handle for selection of text and an action handle for operations on a
selection. They also provide easy correction by overwriting and
selecting alternative choices.

Ink Edit Controls

The ink edit is a pen control in which the user can create and edit
lines drawn as ink; no recognition occurs here. It is a drawing area
designed for ink input, as shown in Figure 7.32.

170 The Windows Interface Guidelines for Software Design

192

Menus, Controls, and Toolbars Chapter 7

~ Action handle

|
| -
|

|
|
I
|
|
|

\
X

111
\
N

f":

Figure 7.32 An ink edit control

The control provides support for an optional grid, optional scroll
bars, and optional display of a frame border. Selection is supported
using tapping to select a particular stroke; lasso-tapping is also sup-
ported for selecting single or multiple strokes. After the user makes a
selection, an action handle is displayed. Tapping on the action handle
displays a pop-up menu that includes commands for Undo, Cut,
Copy, Paste, Delete, Use Eraser, Resize, What’s This?, and Proper-
ties. Choosing the Properties command displays a property sheet
associated with the selection — this allows the user to change the
stroke width and color.

If you use an ink edit control, you may also want to include some
controls for special functions. For example, a good addition is an
Eraser button, as shown in Figure 7.33.

Figure 7.33 The eraser toolbar button

Implement the Eraser button to operate as a “spring-loaded” mode;
that is, choosing the button causes the pen to act as an eraser while

the user presses the pen to the screen. As soon as it is lifted, the pen
reverts to its drawing mode.

The Windows Interface Guidelines for Software Design 171

193

Chapter 7 Menus, Controls, and Toolbars

Toolbars and Status Bars

Like menu bars, toolbars and status bar are special interface con-
structs for managing sets of controls. A toolbar is a panel that con-
tains a set of controls, as shown in Figure 7.34, designed to provide
quick access to specific commands or options. Specialized toolbars
are sometimes called ribbons, tool boxes, and palettes.

Tool box

[Ruler

~~ — Ribbon

|22/ — Tool bar

i ; '1'2'3'45ﬁ',1, — Ruler
Figure 7.34 Examples of toolbars
A status bar, shown in Figure 7.35, is a special area within a win- =W For more information about
dow, typically the bottom, that displays information about the cur- Ba¥ status bar messages, see
rent state of what is being viewed in the window or any other Chapter 12, “User Assistance.”

contextual information, such as keyboard state. You can also use the
status bar to provide descriptive messages about a selected menu or
toolbar button. Like a toolbar, a status bar can contain controls;
however, typically include read-only or noninteractive information.

172 The Windows Interface Guidelines for Software Design

194

Menus, Controls, and Toolbars Chapter 7

S e T ey
. D e e Bt e
e

Figure 7.35 Examples of status bars

Interaction with Controls in Toolbars and Status Bars

The user can access the controls included in a toolbar or status bar
with the mouse or pen through the usual means of interaction for
those controls. You can provide keyboard access using either short-
cut keys or access keys. If a control in a toolbar or status bar does not
have a text label, access keys may not be as effective. Furthermore, if
a particular access key is already in use in the primary window, it
may not be available for accessing the control in the toolbar. For
example, if the menu bar of the primary window is already using a
particular access key, then the menu bar receives the key event.

When the user interacts with controls in a toolbar or status bar that
reflect properties, any change is directly applied to the current selec-
tion. For example, if a button in a toolbar changes the property of
text to bold, choosing that button immediately changes the text to
bold; no further confirmation or transaction action is required. The
only exception is if the control, such as a button, requires additional
input from the user; then the effect may not be realized until the user
provides the information for those parameters. An example of such
an exception would be the selection of an object or a set of input
values through a dialog box.

Always provide a tooltip for controls you include in a toolbar or
status bar that do not have a text label. The system provides support

for tooltips in the standard toolbar control and a tooltip control for
use in other contexts. '

The Windows Interface Guidelines for Software Design 173

195

7 M Controls, and Toolbars

Support for User Options

174

To provide maximum flexibility for users and their tasks, design
your toolbars and status bars to be user configurable. Providing the
user with the option to display or hide toolbars and status bars is one
way to do this. You can also include options that allow the user to

change or rearrange the elements included in toolbars and status bars.

Provide toolbar buttons in at least two sizes: 24 by 22 and 32 by 30
pixels. To fit a graphic label in these button sizes, design the images
no larger than 16 by 16 and 24 by 24 pixels, respectively. In addi-
tion, support the user’s the option to change between sizes by pro-
viding a property sheet for the toolbar (or status bar).

Consider also making the location of toolbars user adjustable. While
toolbars are typically docked by default — aligned to the edge of a
window or pane to which they apply — design your toolbars to be
moveable so that the user can dock them along another edge or dis-
play them as a paletie window.

To undock a toolbar from its present location, the user must be able
to click anywhere in the “blank™ area of the toolbar and drag it to its
new location. If the new location is within the hot zone of an edge,
your application should dock the toolbar at the new edge when the
user releases the mouse button. If the new location is not within the
hot zone of an edge, redisplay the toolbar in a palette window. To
redock the window with an edge, the user drags the window by its
title bar until the pointer enters the hot zone of an edge. Retum the
toolbar to a docked state when the user releases the mouse button.

The Windows Interface Guidelines for Software Design

196

For more information about
&'. designing toolbar buttons,
see Ghapter 13, “Visual Design.”

For more information about
'l palette windows, see Chap-
ter 8, “Secondary Windows.”

Menus, Controls, and Toolbars Chapter 7

As the user drags the toolbar, provide visual feedback, such as a
dotted outline of the toolbar. When the user moves the pointer into a
hot zone of a dockable location, display the outline in its docked
configuration to provide a cue to the user about what will happen
when the drag operation is complete. You can also support user op-
tions such as resizing the toolbar by dragging its border or docking
multiple toolbars side by side, reconfiguring their arrangement and
size as necessary.

‘When supporting toolbar and status bar configuration options, avoid
including controls whose functionality is not available elsewhere in
the interface. In addition, always preserve the current position and
size, and other state information, of toolbar and status bar configura-
tion so that they can be restored to their state when the user reopens
the window.

Toolbar and Status Bar Controls

The system includes toolbar and status bar controls that you can use
to implement these interfaces in your applications. The toolbar con-
trol supports docking and windowing functionality. It also supports a
dialog box for allowing the user to customize the toolbar. You define
whether the customization features are available to the user and what
features the user can customize. The system also supports creation of
desktop toolbars. For more information about desktop toolbars, see
Chapter 10, “Integrating with the System.”

The standard status bar control also includes the option of including
a size grip control for sizing the window, described in Chapter 6,
“Windows.” When the status bar size grip is displayed, if the win-
dow displays a size grip at the junction of the horizontal and vertical
scroll bars of a window, that grip should be hidden so that it does not
appear in both locations at the same time. Similarly, if the user hides
the status bar, restore the size grip at the comer of the scroll bars.

The Windows Interface Guidelines for Software Design 175

197

Chapter 7 Menus, Controls, and Toolbars

Common Toolbar Buttons

Table 7.5 illustrates the button images that you can use for common

functions.

Table 7.5 Common Toolbar Butions

16 x 16 24 x24
button button Function

New

Save

Print

Print Preview

Redo

176 The Windows Interface Guidelines for Software Design

198

(Continued)

16x16
button

24x24
button

Menus, Controls, and Toolbars Chapter 7

Funetion

Delete

Find

Replace

Bold

Italic

Underline

What's This? (context-sensitive Help mode)

Show Help Topics

The Windows Interface Guidelines for Software Design 177

199

Chapter 7 Menus, Controls, and Toolbars

(Continued)
16x16 24x24

bution Function

Region selection tool

Writing tool (pen)

Eraser tool (pen)

Use these images only for the function described. Consistent use of ™%4 For more information about
these common tool images allows the user to transfer their learning BaY the design of toolbar buttons,
and skills from product to product. If you use one of the standard see Chapter 13, “Visual Design.”
images for a different function, you may confuse the user. When

designing your own toolbar buttons, follow the conventions sup-

ported by the standard system controls.

178 The Windows Interface Guidelines for Software Design

200

CHAPTER

Secondary Windows

Most primary windows require a set of secondary windows to sup-
port and supplement a user’s activities in the primary windows.
Secondary windows are similar to primary windows but differ in
some fundamental aspects. This chapter covers the common uses of
secondary windows, such as property sheets, dialog boxes, palette
windows, and message boxes.

Characteristics of Secondary Windows

Although secondary windows share some characteristics with pri-
mary windows, they also differ from primary windows in their be-
havior and use. For example, secondary windows should not appear
on the taskbar. Secondary windows obtain or display supplemental
information which is often related to the objects that appear in a

primary window.

Appearance and Behavior

A typical secondary window, as shown in Figure 8.1, includes a title
bar and frame; a user can move it by dragging its title bar. However,
a secondary window does not include Maximize and Minimize but-
tons because these sizing operations typically do not apply to a sec-
ondary window. A Close button can be included to dismiss the
window. The title text is a label that describes the purpose of the
window; the content of the label depends on the use of the window.
The title bar does not include icons.

201

Chapter 8 Secondary Windows

What's This? button
Close button

Figure 8.1 A secondary window

You can include status information in secondary windows, but avoid
including a status bar control used in primary windows.

Like a primary window, a secondary window includes a pop-up
menu with commands that apply to the window. A user can access
the pop-up menu for the window using the same interaction tech-
niques as primary windows.

A secondary window can also include a What’s This? button in its
title bar. This button allows a user to display context-sensitive Help
information about the components displayed in the window.

Interaction with Other Windows

Secondary windows that are displayed because of commands chosen
within a primary window depend on the state of the primary win-
dow; that is, when the primary window is closed or minimized, its
secondary windows are also closed or hidden. When the user re-
opens or restores the primary window, restore the secondary win-
dows to their former positions and states. However, if opening a
secondary window is the result of an action outside of the object’s
primary window — for example, if the user chooses the Properties
command on an icon in a folder or on the desktop — then the prop-
erty sheet window is independent and appears as a peer with any
primary windows, though it should not appear in the taskbar.

180 The Windows Interface Guidelines for Sofiware Design

202

Secondary Windows Chapter 8

When the user opens or switches to a secondary window, it is acti-
vated or deactivated like any other window. With the mouse or pen,
the user activates a secondary window in the same way as a primary
window. With the keyboard, the ALT+F6 key combination switches
between a secondary window and its primary window, or other peer
secondary windows that are related to its primary window. A sec-
ondary window must be modeless to support this form of switching.

When the user activates a primary window, bringing it to the top of
the window Z order, all of its dependent secondary windows also
come to the top, maintaining their same respective order. Similarly,
activating a dependent secondary window brings its primary window
and related peer windows to the top.

A dependent secondary window always appears on top of its associ-
ated primary window, layered with any related window that is a peer
secondary window. When activated, the secondary window appears
on top of its peers. When a peer is activated, the secondary window
appears on top of its primary window, but behind the newly acti-
vated secondary window that is a peer.

You can design a secondary window to always appear at the top of
its peer secondary windows. Typically, you should use this technique
only for palette windows and, even in this situation, make this fea-
ture configurable by the user by providing an Always On Top prop-
erty setting for the window. If you support this technique for multiple
secondary windows, then the windows are managed in their own Z
order within the collection of windows of which they are a part.

Avoid having a secondary window with the Always On Top behavior
appear on top of another application’s primary window (or any of
the other application’s dependent secondary windows) when the user
activates a window of that application, unless the Always On Top
window can also be applied to that application’s windows.

When the user chooses a command that opens a secondary window,
use the context of the operation to determine how to present infor-
mation in that window. In property sheets, for example, set the val-
ues of the properties in that window to represent the selection.

In general, display the window in the same state as the user last
accessed it. For example, an Open dialog box should preserve the

current directory setting between the openings of a window. Simi-
larly, if you use tabbed pages for navigating through information in a

The Windows Interface Guidelines for Software Design 181

203

Chapter 8 Secondary Windows

secondary window, display the last page the user was viewing when
the user closed the window. This makes it casier for the user to re-
peat an operation that is associated with the window. It also provides
more stability in the interface.

However, if a command or task implies or requires that the user
begin a process in a particular sequence or state, such as with a wiz-
ard window, you should present the secondary window using a fixed
or consistent presentation. For example, entering a record into a
database may require the user to enter the data in a particular se-
quence. Therefore, it may be more appropriate to present the input
window always displaying the first entry field.

Unfolding Secondary Windows

Except for palette windows, avoid defining secondary windows to be
resizable because their purpose is to provide concise, predefined
information. However, you can use an unfold button to expand a
window to reveal additional options as a form of progressive disclo-
sure. An unfold button is a command button with a label that in-
cludes two “greater than” characters (>>). When the user chooses the
button, the sccondary window expands to its alternative fixed size.
As an option, you can use the button to “refold” the additional part
of the window.

Cascading Secondary Windows

‘You can also provide the user access to additional options by includ-
ing a command button that opens another secondary window. If the
resulting window is independent in its operation, close the secondary
window from which the user opened it and display only the new
window. However, if the intent of the subsequent window is to ob-
tain information for a field in the original secondary window, then
the original should remain displayed and the dependent window
should appear on top, offset slightly to the right and below the origi-
nal secondary window. When using this latter method, limit the
number of secondary windows to a single level to avoid creating a
cluttered cascading chain of hierarchical windows.

182 The Windows Interface Guidelines for Software Design

204

Secondary Windows Chapter 8

Window Placement

When determining where to place a secondary window consider a
number of factors, including the use of the window, the overall dis-
play dimensions, and the reason for the appearance of the window.
In general, display a secondary window where it last appeared. If the
user has not yet established a location for the window, place the
window in a location that is convenient for the user to navigate to
and that fully displays the window. If neither of these guidelines
apply, horizontally center the secondary window within the primary
window, just below the title bar, menu bar, and any docked toolbars.

Modeless vs. Modal

A secondary window can be modeless or modal. A modeless second-
ary window allows the user to interact with either the secondary
window or the primary window, just as the user can switch between
primary windows. It is also well suited to situations where the user
wants 1o repeat an action — for example, finding the occurrence of a
word or formatting the properties of text.

A modal secondary window requires the user to complete interaction
within the secondary window and close it before continuing with any
further interaction outside the window. A secondary window can be
modal in respect to its primary window or the system. In the latter
case, the user must respond and close the window before interacting
with any other windows or applications.

Because modal secondary windows restrict the user’s choice, use
them sparingly. Limit their use to situations when additional infor-
mation is required to complete a command or when it is important to
prevent any further interaction until satisfying a condition. Avoid
using system modal secondary windows unless your application
operates as a system level utility and then only use them in severe
situations — for example, when an impending fatal system error or
unrecoverable condition occurs.

The Windows Interface Guidelines for Software Design 183

205

Chapter 8 Secondary Windows

Default Buttons

‘When defining a secondary window, you can assign the ENTER key
to activate a particular command button, called the default button, in
the window. The system distinguishes the default button from other
command buttons with a bold outline that appears around the button.

Define the default button to be the most likely action, such as a
confirmation action or an action that applies transactions made in the
secondary window. Avoid making a command button the default
button if its action is irreversible or destructive. For example, in a
text search and substitution window, do not use a Replace All button
as the default button for the window.

You can change the default button as the user interacts with the win-
dow. For example, if the user navigates to a command button that is
not the default button, the new button temporarily becomes the de-
fault. In such a case, the new default button takes on the default
appearance, and the former default button loses the default appear-
ance. Similarly, if the user moves the input focus to another control
within the window that is not a command button, the original default
button resumes being the default button.

The assignment of a default button is a common convention. How-
ever, when there is no appropriate button to designate as the default
button or another control requires the ENTER key (for example, en-
tering new lines in a multiline text control), you cannot define a
default button for the window. In addition, when a particular control
has the input focus and requires use of the ENTER key, you can
temporarily have no button defined as the default. Then when the
user moves the input focus out of the control, you can restore the
default button.

Optionally, you can use double-clicking on single selection control,
such as an option button or single selection list, as a shortcut tech-

nigue to set or select the option and carry out the default button of
the secondary window.

184 The Windows Interface Guidelines for Software Design

206

Secondary Windows Chapter 8

Navigation in Secondary Windows

With the mouse and pen, navigation to a particular field or control
involves the user pointing to the field and clicking or tapping it. For
button controls, this action also activates that button. For example,
for check boxes, it toggles the check box setting and for command
buttons, it carries out the command associated with that button.

The keyboard interface for navigation in secondary windows uses
the TAB and SHIFT+TAB keys to move between controls, to the next
and previous control, respectively. Each control has a property that
determines its place in the navigation order. Set this property such
that the user can move through the secondary window following the
usual conventions for reading: in western countries, left-to-right and
top-to-bottom, with the primary control the user interacts with lo-
cated in the upper left area of the window. Order controls such that
the user can progress through the window in a logical sequence,
proceeding through groups of related controls. Command buttons for
handling overall window transactions are usually at the end of the
order sequence.

You need not provide TAB key access to every control in the window.
When using static text as a label, set the control you associated with
it as the appropriate navigational destination, not the static text field
itself. In addition, combination controls such as combo boxes, drop-
down combo boxes, and spin boxes are considered single controls for
navigational purposes. Because option buttons typically appear as a
group, use the TAB key for moving the input focus to the current set
choice in that group, but not between individual options — use ar-
row keys for this purpose. For a group of check boxes, provide TAB
navigation to each control because their settings are independent of
each other.

Optionally, you can also use arrow keys to support keyboard naviga-
tion between controls in addition to the TAB navigation technique
wherever the interface does not require those keys. For example, you
can use the UP ARROW and DOWN ARROW keys to navigate between
single-line text boxes or within a group of check boxes or command
buttons. Always use arrow keys to navigate between option button
choices and within list box controls.

The Windows Interface Guidelines for Software Design 185

207

Chapter 8 Secondary Windows

You can also use access keys to provide navigation to controls =% For more information about
within a secondary window. This allows the user to access a con- Ba guidelines for selecting ac-
trol by pressing and holding the ALT key and an alphanumeric key og:ss”keys, see Chapter 4, “Input Ba-
that matches the access key character designated in the label of SICS.

the control.

Unmodified alphanumeric keys also support navigation if the control
that currently has the input focus does not use these keys for input.
For example, if the input focus is currently on a check box control
and the user presses an alphanumeric key, the input focus moves to
the control with the matching access key. However, if the input focus
is in a text box or list box, an alphanumeric key is used as text input
for that control so the user cannot use it for navigation within the
window without modifying it with the ALT key.

Access keys not only allow the user to navigate to the matching
control, they have the same effect as clicking the control with the
mouse. For example, pressing the access key for a command button
carries out the action associated with that button. To ensure the user
direct access to all controls, select unique access keys within a sec-
ondary window.

You can also use access keys to support navigation to a control, but
then return the input focus to the control from which the user navi-
gated. For example, when the user presses the access key for a spe-
cific command button that modifies the content of a list box, you can
return the input focus to the list box after the command has been
carried out.

OK and Cancel command buttons are typically not assigned access
keys if they are the primary transaction keys for a secondary win-
dow. In this case, the ENTER and ESC keys, respectively, provide
access to these buttons.

Pressing ENTER always navigates to the default command button, if
one exists, and invokes the action associated with that button. If

there is no current default command button, then a control can use
the ENTER key for its own use.

186 The Windows Interface Guidelines for Software Design

208

Secondary Windows Chapter 8

Validation of Input

Validate the user’s input for a field or control in a secondary window
as closely to the point of input as possible. Ideally, input is validated
when it is entered for a particular field. You can either disallow the
input, or use audio and visual feedback to alert the user that the data
is not appropriate. You can also display a message box, particularly if
the user repeatedly tries to enter invalid input. You can also reduce
invalid feedback by using controls that limit selection to a specific
set of choices — for example, check boxes, option buttons, drop-
down lists — or preset the field with a reasonable default value.

If it is not possible to validate input at the point of entry, consider
validating the input when the user navigates away from the control.
If this 1s not feasible, then validate it when the transaction is com-
mitted, or whenever the user attempts to close the window. At that
time, leave the window open and display a message; after the user
dismisses the message, set the input focus to the control with the
inappropriate data.

Property Sheets and Inspectors

You can display the properties of an object in the interface in a num-
ber of ways. For example, some folder views display certain file
system properties of an object. The image and name of an icon on
the desktop also reflect specific properties of that object. You can
also use other interface conventions, such as toolbars, status bars, or
even scroll bars, to reflect certain properties. The most common
presentation of an object’s properties is a secondary window, called
a property sheet. A property sheet is a modeless secondary window
that displays the user-accessible properties of an object — that is,
viewable, but not necessarily editable properties. Display a property
sheet when the user chooses the Properties command for an object.

A property inspector is different from a property shect — even when
a property sheet window is modeless, the window is typically modal
with respect to the object for which it displays properties. If the user
selects another object, the property sheet continues to display the
properties of the original object. A property inspector always reflects
the current selection.

The Windows Interface Guidelines for Software Design 187

209

Chapter 8 Secondary Windows

Property Sheet Interface

The title bar text of the property sheet identifies the displayed object.
If the object has a name, use its name and the word “Properties”. If
the combination of the name plus “Properties” exceeds the width of
the title bar, the system truncates the name and adds an ellipsis. If
the object has no name, use the object’s type name. If the property
sheet represents several objects, then also use the objects’ type name.
Where the type name cannot be applied — for example, because the
selection includes heterogeneous types — substitute the word “Se-
lection” for the type name.

Because there can be numerous properties for an object and its con-
text, you may need to categorize and group properties as sets within
the property window. There are two techniques for supporting navi-
gation to groups of properties in a property sheet. The first is a
tabbed property page. Each set of properties is presented within the
window as a page with a tab labeled with the name of the set. Use
tabbed property pages for grouping peer-related property sets, as
shown in Figure 8.2.

Figure 8.2 A property sheet with tabbed pages

188 The Windows Interface Guidelines for Software Design

210

When displaying the property sheet of an object, you can also pro-
vide access to the properties of the object’s immediate context or
hierarchically related properties in the property sheet. For example, if
the user selects text, you may want to provide access to the proper-
ties of the paragraph of that text in the same property sheet. Simi-
larly, if the user selects a cell in a spreadsheet, you may want to
provide access to its related row and column properties in the same
property sheet. Although you can support this with additional tabbed
pages, better access may be facilitated using another control — such
as a drop-down list — to switch between groups of tabbed pages, as
shown in Figure 8.3. This technique can also be used instead of
multiple rows of tabs.

il
:

|
i

\eiraan Paragraph

Regular
Bald

Figure 8.3 A drop-down list for access to hierarchical property sets

Where possible, make the values for properties found in property
sheets transferable. You can support special transfer completion
commands to enable copying only the properties of an object to
another object. For example, you may want to support transferring
data for text boxes or items in a list box.

Secondary Windows Chapter 8

=% For more details on fransfer
&‘. operations, see Chapter 5,
“General Interaction Techniques.”

The Windows Interface Guidelines for Software Design 189

211

Chapter 8 Secondary Windows

Property Sheet Commands

Property sheets typically allow the user to change the values for
a property and then apply those transactions. Include the follow-
ing common command buttons for handling the application of
property changes.

Command Action Optionally, you can also sup-

port a Reset command for
canceling pending changes without
closing the window.

OK Applies all pending changes and closes the property sheet
window.

Apply Applies all pending changes but leaves the property sheet
window open.

Cancel Discards any pending changes and closes the property sheet
window. Does not cancel or undo changes that have already
been applied.

You can also include other command buttons in property sheets.
However, the location of command buttons within the property sheet
window is very important. If you place a button on a property page,
apply the action associated with the button to that page. For com-
mand buttons placed outside the page but still inside the window,
apply the command to the entire window.

For the common property sheet transaction buttons — OK, Cancel,
and Apply — it is best to place the buttons outside the pages because
users consider the pages to be just a simple grouping or navigation
technique. This means that if the user makes a change on one page,
the change is not applied when the user switches pages. However, if
the user makes a change on the new page and then chooses the OK or
Apply command buttons, both changes are applied — or, in the case
of Cancel, discarded.

If your design requires groups of properties to be applied on a page-
by-page basis, then place OK, Cancel, and Apply command buttons
on the property pages, always in the same location on each page.
When the user switches pages, any property value changes for that
page are applied, or you can prompt the user with a message box
whether to apply or discard the changes.

190 The Windows Interface Guidelines for Software Design

212

Secondary Windows Chapter 8

You can include a sample in a property sheet window to illustrate a
property value change that affects the object when the user applies
the property sheet. Where possible, include the aspect of the object
that will be affected in the sample. For example, if the user selects
text and displays the property sheet for the text, include part of the
text selection in the property sheets sample. If displaying the actual
object — or a portion of it — in the sample is not practical, use an
illustration that represents the object’s type.

Closing a Property Sheet

If the user closes a property sheet window, follow the same conven-
tion as closing the content view of an object, such as a document.
Avoid interpreting the Close button as Cancel. If there are pending
changes that have not been committed, prompt the user to apply or
discard the changes through a message box, as shown in Figure 8.4.
If there are no unsaved changes, just close the window.

Figure 8.4 Prompting for pending property changes

If the user chooses the Yes button, the properties are applied and the
message box window and the property sheet window are removed. If
the user chooses the No button, the pending changes are discarded
and the message box and property sheet windows are closed. Include
a Cancel button in the message box, to allow the user to cancel the
closing of the property sheet window.

Property Inspectors

You can also display properties of an object using a dynamic viewer ™4 For more information about
or browser that reflects the properties of the current selection. Such a 'l supporting docked and win-
property window is called a property inspector. When designing a dowed toolbars, see Chapter 7,

“Menus, Controls, and Toolbars.”
For more information about palette
windows, see the section, “Palette
Windows,” later in this chapter.

property inspector, use a toolbar or palette window, or preferably a
toolbar that the user can configure as a docked toolbar or palette
window, as shown in Figure 8.5.

The Windows Interface Guidelines for Software Design 191

213

Chapter 8 Secondary Windows

E‘D’ BN R
['.i Times New

L o

Fo

man

Figure 8.5 A property inspector

Apply property transactions that the user makes in a property inspec-
tor dynamically. That is, change the property value in the selected
object as soon as the user makes the change in the control reflecting
that property value.

Property inspectors and property sheets are not exclusive interfaces;
you can include both. Each has its advantages. You can choose to
display only the most common or frequently accessed properties in a
property inspector and the complete set in the property sheet. You
also can include multiple property inspectors, each optimized for
managing certain types of objects.

As an option, you also can provide an interface for the user to change
the behavior between a property sheet and a property inspector form
of interaction. For example, you can provide a control on a property
inspector that “locks” its view to be modal to the current object
rather than tracking the selection.

Properties of a Multiple Selection

When a user selects multiple objects and requests the properties for
the selection, reflect the properties of all the objects in a single prop-
erty sheet or property inspector rather than opening multiple win-
dows. Where the property values differ, display the controls
associated with those values using the mixed value appearance —
sometimes referred to as the indeterminate state. However, also
support the display of multiple property sheets when the user dis-
plays the property sheet of the objects individually. This convention
provides the user with sufficient flexibility. If your design still re-
quires access to individual properties when the user displays the
property sheet of a multiple selection, include a control such as a list
box or drop-down list in the property window for switching between
the properties of the objects in the set.

192 The Windows Interface Guidelines for Software Design

214

Secondary Windows Chapter 8

Properties of a Heterogeneous Selection

When a multiple selection includes different types of objects, in-
clude the intersection of the properties between the objects in the
resulting property sheet. If the container of those selected objects
treats the objects as if they were of a single type, the property sheet
includes properties for that type only. For example, if the user selects
text and an embedded object, such as a circle, and in that context an
embedded object is treated as an element within the text stream,
present only the text properties in the resulting property sheet.

Properties of Grouped Items

When displaying properties, do not equate a multiple selection with
a grouped set of objects. A group is a stronger relationship than a
simple selection, because the aggregate resulting from the grouping
can itself be considered an object, potentially with its own properties
and operations. Therefore, if the user requests the properties of a
grouped set of items, display the properties of the group or compos-
ite object. The properties of its individual members may or may not
be included, depending on what is most appropriate.

Dialog Boxes

A dialog box provides an exchange of information or dialog between
the user and the application. Use a dialog box to obtain additional
information from the user — information needed to carry out a par-
ticular command or task.

Because dialog boxes generally appear after choosing a particular
menu item (including pop-up or cascading menu items) or a
command button, define the title text for the dialog box window to
be the name of the associated command. Do not include an ellipsis
in the title text, even if the command menu name may have included
one. Also, avoid including the command’s menu title unless neces-
sary to compose a reasonable title for the dialog box. For example,
for a Print command on the File menu, define the dialog box
window’s title text as Print, not Print... or File Print. However, for an
Object... command on an Insert menu, you can title the dialog box as
Insert Object.

The Windows Interface Guidelines for Software Design 193

215

Chapter 8 Secondary Windows

Dialog Box Commands

Like property sheets, dialog boxes commonly include OK and Can-
cel command buttons. Use OK to apply the values in the dialog box
and close the window. If the user chooses Cancel, the changes are
ignored and the window is closed, canceling the operation the user
chose. OK and Cancel buttons work best for dialog boxes that allow
the user to set the parameters for a particular command. Typically,
define OK to be the default command button when the dialog box
window opens.

You can include other command buttons in a dialog box in addition "4 For more information about
to or replacing the OK and Cancel buttons. Label your command Ba¥ command buttons, see Chap-
buttons to clearly define the button’s purpose, but be as concise as ter 7, “Menus, Controls, and
possible. Long, wordy labels make it difficult for the user to easily Toolbars,” and Chapter 13, “Visual

scan and interpret a dialog box’s purpose. Follow the design con- Design.”

ventions for command buttons.

Layout

Orient controls in dialog boxes in the direction people read. In coun-
tries where roman alphabets are used, this means left to right, top to
bottom. Locate the primary ficld with which the user interacts as
close to the upper left corner as possible. Follow similar guidelines
for orienting controls within a group in the dialog box.

Lay out the major command buttons either stacked along the upper
right border of the dialog box or lined up across the bottom of the
dialog box. Position the most important button — typically the de-
fault command — as the first button in the set. If you use the OK
and Cancel buttons, group them together. You can use other arrange-
ments if there is a compelling reason, such as a natural mapping
relationship. For example, it makes sense to place buttons labeled
North, South, East, and West in a compass-like layout. Similarly, a
command button that modifies or provides direct support for another
control may be grouped or placed next to those controls. However,
avoid making that button the default button because the user will
expect the default button to be in the conventional location.

194 The Windows Interface Guidelines for Software Design

216

Secondary Windows Chapter 8

Common Dialog Box Interfaces

The system provides prebuilt interfaces for many common opera- E The common dialog box
tions. Use these interfaces where appropriate. They can save you interfaces have been revised
time while providing a high degree of consistency. If you customize ~ from the ones provided in previous
or provide your own interfaces, maintain consistency with the basic ~ 'éleases of Microsoft Windows.
functionality supported in these interfaces and the guidelines for

their use. For example, if you provide your own property sheet for

font properties, model your design to be similar in appearance and

design to the common Font dialog box. Consistent visual and opera-

tional styles will allow users to more easily transfer their knowledge

and skills.

Open Dialog Box

The Open dialog box, as shown in Figure 8.6, allows the user to
browse the file system, including direct browsing of the network,
and includes controls to open a specified file. Use this dialog box
to open files or browse for a filename, such as the File Open menu
command or a Browse command button. Always set the title text
to correctly reflect the command that displays the dialog box.

ElEEE

|| £ Alex's Secrets [My Reading List [Interest Rates
| % Herry Accaunt @ Lost and Found i§| Data Analysis
|| 2] Time Analysis 2] Lunar Studies

| Period Review !;é_j Statistics

1 ; % Letter to Bob

/ [":3 Tools Farr Eé] ‘Youth Foundation

% Human Resource Eé_] Movie Reviews

1 2] Tewt Document [2) Financial Report

NE R L L A FRRERSRFES
'H Letter to Nancy

R LR L A A e Ty P T I

Figure 8.6 The Open dialog hox

The Windows Interface Guidelines for Software Design 195

217

Chapter 8 Secondary Windows

The system-supplied dialog box automatically handles the display
of long filenames, direct manipulation transfers — such as drag and
drop — and access to an icon’s pop-up menus. The dialog box only
displays filename extensions for files of registered types when the
user selects this viewing option.

To open a file, the user selects a file from the list in the dialog box,
or types a name in the File Name field and then chooses the Open
command. The user can also display the pop-up menu for the file
and choose its Open command. As a shortcut, double-clicking also
opens the file. Choosing the Cancel button closes the window with-
out opening the file.

When the user opens a shortcut icon, the dialog box opens the file
of the object to which the link refers. In other words, the effect is the
same as if the user directly opened the original file. Therefore, the
name of the original file — not the name of the file link — should
appear in the primary window’s title bar.

The files listed in the dialog box reflect the current directory path
and the type filter set in the Files Of Type drop-down list box. The
list of files also includes shortcut icons in the current directory; these
shortcut icons refer to file types that match the type filter.

The Look In drop-down list box displays the current directory. Dis-
playing the list allows the user to view the hierarchy of the directory
path and to navigate up the path tree. Tool buttons that are adjacent
to this control provide the user with easy access to common func-
tions. The dialog box also supports pop-up menus for the icons, the
view in the list of files box, and the other controls in the window.

Set the default directory based on context. If the user opened the file
directly, either from its location from the file system or using the
Open dialog box, set the directory path to that location. If the user
opened the application directly, then you can set the path as best fits
the application. For example, an application may set up a default
directory for its data files.

The user can change the directory path by selecting a different item
in the Look In list, selecting a file system container (such as a folder)
in the list of files, or entering a valid path in the File Name field and
choosing the Open button. Choosing the Cancel button should not
change the path. Always preserve the latest directory path between
subsequent openings of the dialog box. If the application supports

196 The Windows Interface Guidelines for Software Design

218

Secondary Windows Chapter 8

opening multiple files, such as in MDI design, set the directory path
to the last file opened, not the currently active child window. How-
ever, for multiple instances of an application, maintain the path sepa-
rately for each instance.

Your application determines the default Files Of Type filter for the
Open dialog box. This can be based on the last file opened, the last
file type set by the user, or always a specific type, based on what
most appropriately fits the context of the application.

The user can change the type filter by selecting a different type in
the Files Of Type drop-down list box or by typing a filter into the
File Name text box and choosing the Open button. Filters can in-
clude filename extensions. For example, if the user types in *.fxt and
chooses the Open button, the list displays only files with the type
extension of .TXT. Typing an extension into this text box also
changes the respective type setting for the Files Of Type drop-down
list box. If the application does not support that type, display the
Files Of Type control with the mixed-case (indeterminate) appear-
ance.

Include the types of files your application supports in the Files Of
Type drop-down list box. For each item in the list, use a type descrip-
tion preferably based on the registered type names for the file types.
For example, for text files, the type descriptor should be “Text Docu-
ments”. You can also include an “All Files” entry to display all files
in the current directory, regardless of type.

When the user types a filename into the Open dialog box and
chooses the Open button, the following conventions apply:

» The string includes no extension: the system attempts to use your
application’s default extension or the current setting in the Files
Of Type drop-down list box. For example, if the user types in My
Document, and the application’s default extension is .DOC, then
the system attempts to open My Document.doc. (The extension is
not displayed.) If the user changes the type setting to Text Docu-
ments (*.txt), the file specification is interpreted as My
Document.txt. If using the application’s default type or the type
setting fails to find a matching file, the system attempts to open a
file that appears in the list of files with the same name (regardless
of extension). If more than one file matches, the first will be se-
lected and the system displays a message box indicating multiple
files match.

The Windows Interface Guidelines for Software Design

219

197

Chapter § Secondary Windows

= The string includes an extension: the system first checks to see
if it matches the application’s default type, any other registered
types, or any extension in the Files Of Type drop-down list box.
If it does not match, the system attempts to open it using the
application’s default type or the current type setting in the Files
Of Type drop-down list box. For example, Microsoft WordPad
will open the file A Letter to Dr. Jones provided that: the file’s
type matches the .DOC extension or the current type setting, and
because the characters Jones (after the period) do not constitute a
registered type. If this fails, the system follows the same behavior
as for a file without an extension, checking for a match among the
files that appear in the list of files.

o The string includes double-quotes at the beginning and end: the
system interprets the string exactly, without the quotes and with-
out appending any extension. For example, “My Document” is
interpreted as My Document.

¢ The system fails to find a file: when the system cannot find a file,
it displays a message box indicating that the file could not be
found and advises the user to check the filename and path speci-
fied. However, your application may chose to handle this condi-
tion itself.

¢ The string the user types in includes invalid characters for a
filename: the system displays a message box advising the user of
this condition.

The Open dialog only handles the matching of a name to a file. It is
your application’s responsibility to ensure the format of the file is
valid, and if not, to appropriately notify the user.

Save As Dialog Box

The Save As dialog box, as shown in Figure 8.7, is designed to save
a file using a particular name, location, type, and format. Typically,

applications that support the creation of multiple user files provide

this command. However, if your application maintains only private
data files and automatically updates those files, this dialog box may
not be appropriate.

198 The Windows Interface Guidelines for Software Design

220

Display this dialog box when the user chooses the Save As command
or file-oriented commands with a similar function, such as the Ex-
port File command. Also display the Save As dialog box when the
user chooses the Save command, and has not supplied or confirmed
a filename. If you use this dialog box for other tasks that require
saving files, define the title text of the dialog box to appropriately
reflect that command.

— SAnamasrawa) ¥y B ENT VT O ==

| 23 Alex's Folde | |
| Alex's Secrets Iy Reading List Interest Fates

| @ Henm Account Lost and Found @ Data Analpsis
|| =] Time Analysis Z] Lunar Studies I
| %j Period Review J% Statistics it
i @ Letter ta Nancy Eé_j Lstter to Bob :
: @ Tools Form i% “Youth Foundation
:; Human Resource Movie Reviews
J:éj Test Document @ Financial Report

Ay
A EAK 'yl

I Letter to Mancy
AR A R

CatlL)

Figure 8.7 The Save As dialog box

The appearance and operation of the Save As dialog box is similar to
the Open dialog box, except that the type field — the Save As Type
drop-down list box — defines the default type for the saved file; it
also filters the list of files displayed in the window.

To save a file, the user chooses the Save button and saves the file
with the name that appears in the File Name text box. Although the
user can type in a name or select a file from the list of files, your
application should preset the field to the current name of the file. If
the file has not been named yet, propose a name based on the regis-
tered type name for the file — for example, Text Document (2).

The Save In drop-down list box indicates the immediate container in
the directory path (or folder). The user can change the path using this
control and the list of files box. If the file already exists, always save
the file to its original location. This means that the current path for
the Save As dialog box should always be set to the path where the

Secondary Windows Chapter 8

=¥4 For more information about
Ba’ naming files, see Chapter 6,
“Windows,” and Chapter 10, “Inte-
grating with the System.”

The Windows Interface Guidelines for Software Design 199

221

Chapter 8 Secondary Windows

file was last saved. If the file has never been saved, save the file with
your application’s default path setting or to the location defined by
the user, either by typing in the path or by using the controls in the
dialog box.

If the user chooses the Cancel button in the Save As dialog box,
do not save the file or other settings. Restore the path to its
original setting.

Include the file types supported by your application in the Save As
Type drop-down list box. You may need to include a format descrip-
tion as part of a type name description. Although a file’s format can
be related to its type, a format and a type are not the same thing. For
example, a bitmap file can be stored in monochrome, 16 , 256 or 24-
bit color format, but the file’s type is the same for all of them. Con-
sider using the following convention for the items you include as
type descriptions in the Save As Type drop-down list box.

Type Name [Format Description]

When the user supplies a name of the file, the Save As dialog box
follows conventions similar to the Open dialog box. If the user does
not include an extension, the system uses the setting in the Save As
Type drop-down list or your application’s default file type. If the
user includes an extension, the system checks to see if the extension
matches your application’s default extension or a registered exten-
sion. If it does, the system saves the file as the type matching that
extension. (The extension is hidden unless the system is set to dis-
play extensions.) Otherwise, the system interprets the user-supplied
extension as part of the filename and appends the extension set in
the Save As Type field. Note that this only means that the type (ex-
tension) is set. The format may not be correct for that type. It is your
application’s responsibility to write out the correct format.

200 The Windows Interface Guidelines for Software Design

222

E Make certain you preserve

the creation date for files that
the user opens and saves. If your
application saves files by creating a
temporary file then deletes the origi-
nal, renaming the temporary file to
the original filename, be certain you
copy the creation date from the
original file. Gertain system file man-
agement functionality may depend
on preserving the identity of the
original file.

Secondary Windows Chapter 8

If the user types in a filename beginning and ending with double
quotes, the system saves the file without appending any extension.
If the string includes a registered extension, the file appears as that
type. If the user supplies a filename with invalid characters or the
specified path does not exist, the system displays a message box,
unless your application handles these conditions.

Here are some examples of how the system saves user supplied
filenames. Examples assume .TXT as the application’s default type
or the Save As Type setting.

What the user types How system saves the file Description

My File My File.txt Type is based on the file type established in Save As
Type drop-down list box or the application’s default
type.

My File.txt My File.txt Type must match the application’s default type or a

My File for Mr. Jones

My File for Mr. Jones.txt

“My File”

“My File.txt”

My File.

“My File.”
“My"” File

My File for Mr. Jones.txt

My File for Mr. Jones.txt

My File

My File.txt

My File..txt

My File.

File is not saved.

registered type.

- Jones does not qualify as a registered type or a type
included in the Save As Type drop-down list box, so the
type is appended based on the Save As Type setting or
the application’s default type.

Type must match a registered type or a type included in
the Save As Type drop-down list box.

Type will be unknown. The file is saved exactly as the
string between the quotes appears.

No type is appended. The file is saved exactly as the
string between the quotes appears.

Type is based on the Save As Type drop-down list box
or the application’s default type.

Type will be unknown.

System (or application) displays a message box
notifying the user of invalid filename.

The Windows Interface Guidelines for Software Design 201

223

Chapter § Secondary Windows

Find and Replace Dialog Boxes

The Find and Replace dialog boxes provide controls that search for a
text string specified by the user and optionally replace it with a sec-
ond text string specified by the user. These dialog boxes are shown
in Figure 8.8.

Figure 8.8 The Find and Replace dialog boxes

Print Dialog Box

The Print dialog box, shown in Figure 8.9, allows the user to select
what to print, the number of copies to print, and the collation se-
quence for printing. It also allows the user to choose a printer and
provides a command button that provides shortcut access to that
printer’s properties.

202 The Windows Interface Guidelines for Software Design

224

Secondary Windows Chapter 8

Figure 8.9 The Print dialog box

Print Setup Dialog Box
The Print Setup dialog box displays the list of available printers and E Do not include this dialog hox
provides controls for selecting a printer and setting paper orientation, if you are creating or updat-
size, source, and other printer properties. ing your application for Microsoft

Windows 95 or later releases.

Page Setup Dialog Box

The Page Setup dialog box, as shown in Figure 8.10, provides con-
trols for specifying properties about the page elements and layout.

The Windows Interface Guidelines for Software Design 203

225

Chapter 8 Secondary Windows

Figure 8.10 Page Setup interface used as a dialog box

In this context, page orientation refers to the orientation of the page
and not the printer, which may also have these properties. Generally,
the page’s properties override those set by the printer, but only for
the printing of that page or document.

The Printer button in the dialog box displays a supplemental dialog
box (as shown in Figure 8.11) that provides information on the cur-
rent default printer. Similarly to the Print dialog box, it displays the
current property settings for the default printer and a button for ac-
cess o the printer’s property sheet.

204 The Windows Interface Guidelines for Software Design

226

Secondary Windows Chapter 8

Figure 8.11 The supplemental Printer dialog box

Font Dialog Box

sizes of the

on can filter thi

int

This dialog box displays the available fonts and po

available fonts installed in the system.

15

icati

Your appl

list to show only the fonts applicable to your application. You can

use the Font dialog box to display or set the font properties of a se-
lection of text. Figure 8.12 shows the Font dialog box.

Times Mew Roman

B

Figure 8.12 The Font dialog box

205

The Windows Interface Guidelines for Software Design

227

Chapter 8 Secondary Windows

Color Dialog Box

The Color dialog box (as shown in Figure 8.13) displays the avail-
able colors and includes controls that allow the user to define custom
colors. You can use this control to provide an interface for users to
select colors for an object.

—

[
|

f :
| 1

l

E

I

|

|

[

i

Figure 8.13 The Color dialog box (unexpanded appearance)

The Basic Colors control displays a default set of colors. The
number of colors displayed here is determined by the installed
display driver. The Custom Colors control allows the user to define
more colors using the various color selection controls provided

in the window.

Initially, you can display the dialog box as a smaller window with
only the Basic Colors and Custom Colors controls and allow the user

to expand the dialog box to define additional colors (as shown in
Figure 8.14).

206 The Windows Interface Guidelines for Software Design

228

Secondary Windows Chapter 8

Figure 8.14 The Color dialog box (expanded)

Palette Windows

Palette windows are modeless secondary windows that present a set =4 For more information about
of controls. For example, when toolbar controls appear as a window, Ba¥ toolbars and palette windows,
they appear in a palette window. Palette windows are distinguished see Chapter 7, “Menus, Controls,

by their visual appearance. The height of the title bar for a palette

and Toolbars.”

window is shorter, but it still includes only a Close button in the title

area, as shown in 8.15.

AESEATAARAANN)

Figure 8.15 A palette window

229

The Windows Interface Guidelines for Software Design 207

Chapter 8 Secondary Windows

Make the title text for a palette window the name of the command "4 The title bar height and font
that displays the window or the name of the toolbar it represents. i size settings can be accessed
The system supplies default size and font settings for the title bar using the SystemParametersinfo

function. For more information
about this function, see the docu-

You can define palette windows as a fixed size, or, more typically, {fnv?::;aztl%Z}?ﬁglr:e%gmz}rllgpwg;{t’sm

sizable by the user. Two visual cues indicate when the window is (SDK).
sizable: changing the pointer image to the size pointer, and placing a

Size command in the window’s pop-up menu. Preserve the

window’s size and position so the window can be restored if it, or its
associated primary window, is closed.

and title bar text for palette windows.

Like other windows, the title bar and the border areas provide an
access point for the window’s pop-up menu. Commands on a palette
window’s pop-up menu can include Close, Move, Size (if sizable),
Always On Top, and Properties, as shown in Figure 8.16.

Figure 8.16 A pop-up menu for a paletie window

Including the Always On Top command or property in the window’s
property sheet allows the user to configure the palette window to
always stay at the top of the Z order of the window set of which it is
a part. Turning off this option keeps the palette window within its set
of related windows, but allows the user to have other windows of the
set appear on top of the palette window. This feature allows the user
to configure preferred access to the palette window.

You can also include a Properties command on the palette window’s
pop-up menu to provide an interface for allowing the user to edit

properties of the window, such as the Always On Top property, or a
means of customizing the content of the palette window.

208 The Windows Interface Guidelines for Software Design

230

Secondary Windows Chapter 8

Message Boxes

A message box is a secondary window that displays a message;
information about a particular situation or condition. Messages are
an important part of the interface for any software product. Messages
that are too generic or poorly written frustrate users, increase support
costs, and ultimately reflect on the quality of the product. Therefore,
it is worthwhile to design effective message boxes.

However, it is even better to avoid creating situations that require
you to display a message. For example, if there may be insufficient
disk space to perform an operation, rather than assuming that you
will display a message box, check before the user attempts the opera-
tion and disable the command.

Title Bar Text

Use the title bar of a message box to appropriately identify the con-
text in which the message is displayed — usually the name of the
object. For example, if the message results from editing a document,
the title text is the name of that document, optionally followed by the
application name. If the message results from a nondocument object,
then use the application name. Providing an appropriate identifier for
the message is particularly important in the Windows multitasking
environment, because message boxes might not always be the result
of current user interaction. In addition, because OLE technology
allows objects to be embedded, different application code may be
running when the user activates the object for visual editing. There-
fore, the title bar text of a message box provides an important role in
communicating the source of a message. Do not use descriptive text
for message box title text such as “warning” or “caution.” The mes-
sage symbol conveys the nature of the message. Never use the word
“error” in the title text.

Message Box Types

Message boxes typically include a graphical symbol that indicates
what kind of message is being presented. Most messages can be clas-
sified in one of the categories shown in Table 8.1.

The Windows Interface Guidelines for Software Design 209

231

Chapter 8 Secondary Windows

Table 8.1 Message Types and Associated Symbols
Symbol Message type Description

@ Information Provides information about the results of a command. Offers no user choices;
the user acknowledges the message by clicking the OK button.

& Warning Alerts the user to a condition or situation that requires the user’s decision and
input before proceeding, such as an impending action with potentially
destructive, irreversible consequences. The message can be in the form of a
question — for example, “Save changes to MyReport?”.

Q Critical Informs the user of a serious problem that requires intervention or correction
before work can continue.

CRh .
[asa e

210 The Windows Interface Guidelines for Software Design

232

The system also includes a question mark message symbol. This
message symbol (as shown in Figure 8.17) was used in earlier
versions of Windows for cautionary messages that were phrased as
a question.

©

Figure 8. 17 Inappropriate message symbol

However, the message icon is no longer recommended as it does not
clearly represent a type of message and the phrasing of a message as
a question could apply to any message type. In addition, users can
confuse the message symbol question mark with Help information.
Therefore, do not use this question mark message symbol in your
message boxes. The system continues to support its inclusion only
for backward compatibility.

You can include your own graphics or animation in message boxes.
However, limit your use of these types of message boxes and avoid
defining new graphics to replace the symbols for the existing stan-
dard types.

Because a message box disrupts the user’s current task, it is best to
display a message box only when the window of the application
displaying the message box is active. If it is not active, then the ap-
plication uses its entry in the taskbar to alert the user. Once the user
activates the application, the message box can be displayed. Display
only one message box for a specific condition. Displaying a sequen-
tial set of message boxes tends to confuse users.

You can also use message boxes to provide information or status
without requiring direct user interaction to dismiss them. For ex-
ample, message boxes that provide a visual representation of the
progress of a particular process antomatically disappear when the
process is complete, as shown in Figure 8.18. Similarly, product

Secondary Windows Chapter 8

=4 For more information about
"M how to use the taskbar to no-
tify the user when the application
may not be active, see Chapter 10,
“Integrating with the System.”

The Windows Interface Guidelines for Software Design 211

233

Chapter 8 Secondary Windows

start-up windows that identify the product name and copyright infor-
mation when the application starts can be automatically removed
once the application has loaded. In these situations, you do not need
to include a message symbol. Use this technique only for noncritical,
informational messages, as some users may not be able to read the
message within the short time it is displayed.

Progress indicator

s

Wi

Figure 8.18 A progress message hox

—————

Command Buttons in Message Boxes

Typically, message boxes contain only command buttons as the ap-
propriate responses or choices offered to the user. Designate the most
frequent or least destructive option as the default command button.
Command buttons allow the message box interaction to be simple
and efficient. If you need to add other types of controls, always
consider the potential increase in complexity.

If a message requires no choices to be made but only acknowledg-
ment, use an OK button — and, optionally, a Help button. If the
message requires the user to make a choice, include a command
button for each option. The clearest way to present the choices is to
state the message in the form of a question and provide a button for
each response. When possible, phrase the question to permit Yes or
No answers, represented by Yes and No command buttons. If these
choices are too ambiguous, label the command buttons with the
names of specific actions — for example, “Save” and “Delete.”

212 The Windows Interface Guidelines for Software Design

234

You can include command buttons in a message box that correct the
action that caused the message box to be displayed. For example, if
the message box indicates that the user must switch to another appli-
cation window to take corrective action, you can include a button
that switches the user to that application window. Be sure, however,
to make the result of any such button’s action very clear.

Some situations may require offering the user not only a choice
between performing or not performing an action, but an opportunity
to cancel the process altogether. In such situations, use a Cancel
button, as shown in Figure 8.19. Be sure, however, to make the result
of any such button’s action very clear.

Figure 8.19 Message box choices

Message Box Text

The message text you include in a message box should be clear,
concise, and in terms that the user understands. This usually means
using no technical jargon or system-oriented information.

In addition, observe the following guidelines for your message text:

* State the problem, its probable cause (if possible), and what the
user can do about it — no matter how obvious the solution may
seem to be. For example, instead of “Insufficient disk space,” use
“‘Sample Document’ could not be saved, because the disk is full.
Try saving to another disk or freeing up space on this disk.”

= Consider making the solution an option offered in the message.
For example, instead of “One or more of your lines are too long.
The text can only be a maximum of 60 characters wide,” you
might say, “One or more of your lines are too long. Text can be a
maximum of 60 characters in Portrait mode or 90 characters wide
in Landscape. Do you want to switch to Landscape mode now?”
Offer Yes and No as the choices.

Secondary Windows Chapter 8

e When using Cancel as a com-

mand button in a message
box, remember that to users, Can-
cel implies restoring the state of the
process or task that started the mes-
sage. If you use Cancel to interrupt
a process and the state cannot be
restored, use Stop instead.

The Windows Interface Guidelines for Software Design 213

235

Chapter 8 Secondary Windows

= Avoid using unnecessary technical terminology and overly com-
plex sentences. For example, “picture” can be understood in con-
text, whereas “picture metafile” is a rather technical concept.

* Avoid phrasing that blames the user or implies user error. For
example, use “Cannot find filename” instead of “Filename error.”
Avoid the word “error” altogether.

1l

¢ Make messages as specific as possible. Avoid mapping more than
two or three conditions to a single message. For example, there
may be several reasons why a file cannot be opened; provide a
specific message for each condition.

* Avoid relying on default system-supplied messages, such as MS-
DOS® extended error messages and Kernel INT 24 messages;
instead, supply your own specific messages wherever possible.

= Be brief, but complete. Provide only as much background infor-
mation as necessary. A good rule of thumb is to limit the message
to two or three lines. If further explanation is necessary, provide
this through a command button that opens a Help window.

You may also include a message identification number as part of the
message text for each message for support purposes. However, to
avoid interrupting the user’s ability to quickly read a message, place
such a designation at the end of the message text and not in the title
bar text.

214 The Windows Interface Guidelines for Software Design

236

Secondary Windows Chapter 8

Pop-up Windows

Use pop-up windows to display additional information when an =% For more information about
abbreviated form of the information is the main presentation. For h using pop-up windows for
example, you could use a pop-up window to display the full path for ~ Help information, see Chapter 12,
a field or control, when an entire path cannot be presented and must ~ “User Assistance.”

be abbreviated. Pop-up windows are also used to provide context-

sensitive Help information, as shown in Figure 8.20.

X
i
¥
|

FERY

Click this to set up options for this printer. The options available
depend on the features of the printer.

Figure 8.20 A context-sensitive Help pop-up window

Tooltips are another example of a pop-up window used to display
contextual information, by providing the names for controls in
toolbars. The writing tool is also another example of the use of a
pop-up window.

How pop-up windows are displayed depends on their use, but the
typical means is by the user either pointing or clicking with mouse
button 1 (for pens, tapping), or an explicit command. If you use
pointing as the technique to display a pop-up window, display

the window after a time-out. The system automatically handles
time-outs if you use the standard tooltip controls. If you are pro-
viding your own implementation, you can use the current double-
click speed setting as a metric for displaying and removing the
pop-up window.

If you use clicking to display a pop-up window, change the pointer
as feedback to the user indicating that the pop-up window exists and

requires a click, From the keyboard, you can use the Select key
(SPACEBAR) to open and close the window.

The Windows Interface Guidelines for Software Design 215

237

238

240

CHAPTER

Window Management

User tasks can often involve working with different types of infor-
mation, contained in more than one window or view. There are dif-
ferent techniques that you can use to manage a set of windows or
views. This chapter covers some common techniques and the factors
to consider for selecting a particular model.

Single Document Window Interface

In many cases, the interface of an object or application can be ex-
pressed using a single primary window with a set of supplemental
secondary windows. The desktop and taskbar provide management
of primary windows. Opening a window puts it at the top of the

Z order and places an entry on the taskbar, making it easier for
users to switch between windows without having to shuffle or
reposition them.

By supporting a single instance model where you activate an existing
window (within the same desktop) if the user reopens the object, you
make single primary windows more manageable, and reduce the
potential confusion for the user. This also provides a data-centered,
one-to-one relationship between an object and its window.

In addition, Microsoft OLE supports the creation of compound ®¥4 For more information about
documents or other types of information containers. Using these con- Ea' OLE, see Chapter 11, “Work-
structs, the user can assemble a set of different types of objects fora Ing with OLE Embedded and OLE
specific purpose within a single primary window, eliminating the Linked Objects.”

necessity of displaying or editing information in separate windows.

241

Chapter 9 Window Management

Some types of objects, such as device objects, may not even require
a primary window and use only a secondary window for viewing
and editing their properties. When this occurs, do not include the
Open command in the menu for the object; instead, replace it with
a Properties command, defined as the object’s default command.

It is also possible for an object to have no windows; an icon is its
sole representation. In this very rare case, make certain that you
provide an adequate set of menu commands to allow a user to
control its activity.

Multiple Document Interface

For some tasks, the taskbar may not be sufficient for managing a set
of related windows; for example, it can be more effective to present
multiple views of the same data or multiple views of related data in
windows that share interface elements. You can use multiple docu-
ment interface (MDI) for this kind of situation.

The MDI technique uses a single primary window, called a parent
window, to visually contain a set of related document or child win-
dows, as shown in Figure 9.1. Each child window is essentially a
primary window, but is constrained to appear only within the parent
window instead of on the desktop. The parent window also provides
a visual and operational framework for its child windows. For ex-
ample, child windows typically share the menu bar of the parent
window and can also share other parts of the parent’s interface, such
as a toolbar or status bar. You can change these to reflect the com-
mands and attributes of the active child window.

220 The Windows Interface Guidelines for Software Design

242

Window Management Chapter 9

The intwdaction of the compact disc has had a far greal
e ixldustry than anyone oauld have imagined, espec:.ally the 1;
el (TP e Stk the 151

Figure 9.1 An MDI parent and child window

Secondary windows — such as dialog boxes, message boxes, or =4 For more information about
property sheets — displayed as a result of interaction within the the interaction between a pri-
MDI parent or child, are typically not contained or clipped by the mary window and its secondary
parent window. These windows should be activated and displayed windows, see Chapter 6, “Win-

dows,” and Chapter 8, “Secondary

following the common conventions for secondary windows asso- ¢ 5
Windows.

ciated with a primary window, even if they apply to individual
child windows.

For the title bar of an MDI parent window, include the icon and
name of the application or the object that represents the work area
displayed in the parent window. For the title bar of a child window,
include the icon representing the document or data file type and its
filename. Also support pop-up menus for the window and the title
bar icon for both the parent window and any child windows.

The Windows Interface Guidelines for Software Design 221

243

Chapter 9 Window Management

Opening and Closing MDI Windows

The user starts an MDT application either by directly opening the
application or by opening a document (or data file) of the type sup-
ported by the MDI application. If directly opening an MDI docu-
ment, the MDI parent window opens first and then the child window
for the file opens within it. To support the user opening other docu-
ments associated with the application, include an interface, such as
an Open dialog box.

When the user directly opens an MDI document outside the interface
of its MDI parent window — for example, by double-clicking the
file — if the parent window for the application is already open,
open another instance of the MDI parent window rather than the
document’s window in the existing MDI parent window. Although
the opening of the child window within the existing parent window
can be more efficient, the opening of the new window can disrupt the
task environment already set up in that parent window. For example,
if the newly opened file is a macro, opening it in the opened parent
window could inadvertently affect other documents open in that
window. If the user wishes to open a file as part of the set in a
particular parent MDI window, the commands within that window
provide that support.

Because MDI child windows are primary windows, support closing
them following the same conventions for primary windows by in-
cluding a Close button in their title bars and a Close command in
their pop-up menu for the windows. When the user closes a child
window, any unsaved changes are processed following these com-
mon conventions for primary windows. Do not close its parent
window, unless the parent window does not provide context or op-
erations without an open child window.

When the user closes the parent window, close all of its child win-
dows. Where possible, preserve the state of a child window, such as

its size and position within the parent window; restore the state when
the user reopens the file.

222 The Windows Interface Guidelines for Software Design

244

Window Management Chapter 9

Moving and Sizing MDI Windows

MBDI allows the user to move or hide the child windows as a set E The recommended visual ap-
by moving or minimizing the parent window. When the user moves = pearance of a minimized child
an MDI parent window, maintain the relative positions of the open window in Microsoft Windows is
child windows within the parent window. Moving a child window now that of a window that has been
constrains it to its parent window; in some cases, the size of the ,S'Ze‘? down to d'SP'ay only part t,)f
A et Pl ; : its title area and its border. This
parent window’s interior area may result in clipping a child win- ; ; ;
Savi Ontinhall o sl it ot i avoids potential confusion between
ow. Optionally, you can support automatic resizing of the paren minimizad child window icons and
window when the user moves or resizes a Chll.d window either icons that represent objects.
toward or away from the edge of the parent window.

Although an MDI parent window minimizes as an entry on the
taskbar, MDI child windows minimize within their parent window,
as shown in Figure 9.2.

ZF Application N;ame

Figure 9.2 A minimized MDI child window

When the user maximizes an MDI parent window, expand the win-
dow to its maximum size, like any other primary window. When the
user maximizes an MDI child window, also expand it to its maxi-
mum size. When this size exceeds the interior of its parent window,
merge the child window with its parent window. The child window’s
title bar icon, Restore button, Close button, and Minimize button (if

The Windows Interface Guidelines for Software Design 223

245

Chapter 9 Window Management

supported) are placed in the menu bar of the parent window in the
same relative position as in the title bar of the child window, as
shown in Figure 9.3. Append the child window title text to the
parent window’s title text.

| D 0 Do s
15 A el | Eents | Febe TR | Hobl]
1_0.@% e eon 1o o= E]= =]

Classu:al CD Rev1ew

by Thomas D. Becker

The intwduction of the compact dise has had a far greater impact on the recording

Gt industry than arpone could have imagined, especially the mamfacturers of vyl long
play (I.Pj albums, With the 1991 sales totals in, compact dise 35 clearly the preferred recording me dium
I for American ears. In addition to audio compact dises, CD-FOMs are appearing on the market offering 2
”L nmltimedia experience of the classical yepetoive. The Mirrosoft Composer Collection brings you the

! ahility to exter the lives and minds of three astounding
1 nosical gemiuses. That’s becawse the Composer

U.5. Compact Disc us. LP Sales ($)

224

Col.lectmzl. comtains three CD-ROM titles full of nmsic, 1983 41987 1991
I ft ior, and entertal t. They are: Microsoft Chs B345K 18632K 32657K
| Multimedia Mozart, Microsoft Multimedia Stravinshy, LPs HMA3K 2B5TIK 17428K
I and Microsoft Multimedia Beethoven, These works are Total 37883K 45223K S0036K

reviewrad below - be sure to check them out!

e

LT L P

—— -

TEE

Figure 9.3 A maximized MDI child window

If the user maximizes one child window and it merges with the
parent window and then switches to another, display that window
as maximized. Similarly, when the user restores one child window
from its maximized state, restore all other child windows to their
previous sizes.

The Windows Interface Guidelines for Software Design

246

Window Management Chapter 9

Switching Between MDI Child Windows

Apply the same common mouse conventions for activating and
switching between primary windows for MDI child windows.
CTRL4F6 and CTRLATARB (and SHIFT+ modified combinations to
cycle backwards) are the recommended keyboard shortcuts for
switching between child windows. In addition, include a Window
menu on the menu bar of the parent window with commands for
switching between child windows and managing or arranging the
windows within the MDI parent window — such as Tile or Cascade.

When the user switches child windows, you can change the interface
of the parent window — such as its menu bar, toolbar, or status bar
— Lo appropriately reflect the commands that apply to that child
window. However, provide as much consistency as possible, keeping
constant any menus that represent the document files and control the
application or overall parent window environment, such as the File
menu or the Window menu.

MDI Alternatives

MDI does have its limitations. MDI reinforces the visibility of the
application as the primary focus for the user. Although the user can
start an MDI application by directly opening one of its document or
data files, to work with multiple documents within the same MDI
parent window, the user uses the application’s interface for opening
those documents.

When the user opens multiple files within the same MDI parent
window, the storage relationship between the child windows and the
objects being viewed in those windows is not consistent. That is,
although the parent window provides visual containment for a set of
child windows, it does not provide containment for the files those
windows represent. This makes the relationship between the files and
their windows more abstract, making MDI more challenging for
beginning users to learn.

The Windows Interface Guidelines for Software Design 225

247

Chapter 9 Window Management

Similarly, because the MDI parent window does not actually contain
the objects opened within it, MDI cannot support an effective design
for persistence. When the user closes the parent window and then
reopens it, the context cannot be restored because the application
state must be maintained independently from that of the files last
opened in it.

MDI can make some aspects of the OLE interface unintentionally
more complex. For example, if the user opens a text document in an
MDI application and then opens a worksheet embedded in that text
document, the task relationship and window management breaks
down, because the embedded worksheet’s window does not appear
in the same MDI parent window.

Finally, the MDI technique of managing windows by confining child
windows to the parent window can be inconvenient or inappropriate
for some tasks, such as designing with window or form layout tools.
Similarly, the nested nature of child windows may make it difficult
for the user to differentiate between a child window in a parent win-
dow versus a primary window that is a peer with the parent window,
but positioned on top.

Although MDI provides useful conventions for managing a set of
related windows, it is not the only means of supporting task manage-
ment. Some of its window management techniques can be applied in
some alternative designs. The following — workspaces, workbooks,
and projects — are examples of some possible design alternatives.
They present a single window design model, but in such a way that
preserves some of the window and task management benefits found
in MDIL.

Although these examples suggest a form of containment of multiple
objects, you can also apply some of these designs to display multiple
views of the same data. Similarly, these alternatives may provide
greater flexibility with respect to the types of objects that they con-
tain. However, as with any container, you can define your imple-
mentation to hold and manage only certain types of objects. For
example, an appointment book and an index card file are both con-
tainers that organize a set of information but may differ in the way
they display that information and the type of information they man-
age. Whether you define a container to hold the same or different
types of objects depends on the design and purpose of the container.

226 The Windows Interface Guidelines for Software Design

248

Window Management Chapter 9

The following examples illustrate alternatives of data-centered win-
dow or task management. They are not exclusive of other possible
designs. They are intended only as suggestive possibilities, rather
than standard constructs. As a result, the system does not include
these constructs and provides no explicit programming interfaces.
In addition, some specific details are left to you to define.

Workspaces

A workspace shares many of the characteristics of MDI, including
the association and management of a set of related windows within
a parent window, and the sharing of the parent window’s interface
elements, such as menus, toolbars, and status bar. Figure 9.4 shows
an example of a workspace.

Elasslcal
|| CD Review

The inhoduction of the compact disc has had
e industry than anyone oould have bnagined, espe
p].ay (LP] albms, With the 1991 sales totals in, cnmpact disc is ¢

Figure 9.4 Example of a workspace design

The Windows Interface Guidelines for Software Design

249

227

Chapter 9 Window Management

Workspaces as a Container

Based on the metaphor of a work area, like a table, desktop, or of-
fice, a workspace differs from an MDI by including the concept of
containment. Objects contained or stored in the workspace can be
presented in the same way files appear in folders. However, objects
within a workspace open as child windows within the workspace
parent window. In this way, a workspace’s behavior is similar to that
of the desktop, except that a workspace itself is an object that can be
displayed as an icon and opened into a window. To have an object’s
window appear in the workspace, the object must reside there.

The actual storage mechanism you use depends on the type of con-
tainer you implement. The content of the parent window can repre-
sent a single file, or you can devise your own mechanism to map the
content into the file system. Consider using OLE in your implemen-
tation to facilitate interaction between your workspace, the shell, and
other applications. For example, you may want to support the user
moving objects from the workspace into other containers, such as the
desktop and folders. However, if you do, when the user opens the
object, it should appear in its own window, not the workspace
window — with its interface elements, such as a menu bar — also
appearing within its own window.

The workspace is an object itself and therefore you should define

its specific commands and properties. You can also include com-
mands for creating new objects within the workspace and, optionally,
a Save All command that saves the state of all the objects opened in
the workspace.

Workspaces for Task Grouping

Because a workspace visually contains and constrains the icons and
windows of the objects placed in it, you can define workspaces to
allow the user to organize a set of objects for particular tasks. Like
MDI, this makes it easy for the user to move or switch to a set of
related windows as a set.

Also similar to MDI, the child windows of objects opened in the
workspace can share the interface of the parent window. For ex-

ample, if the workspace includes a menu bar, the windows of any
objects contained within the workspace share the menu bar. If the

228 The Windows Interface Guidelines for Software Design

250

Window Management Chapter 9

workspace does not have a menu bar, or if you provide an option for
the user to hide the menu bar, the menu bar should appear within the
document’s child window. The parent window can also provide a
framework for sharing toolbars and status bars.

Window Management in a Workspace

A workspace manages windows using the same conventions as
MDI. When a workspace closes, all the windows within it close. You
should retain the state of these windows, for example, their size and
position within the workspace, so you can restore them when the
user reopens the workspace.,

Like most primary windows, when the user minimizes the
workspace window, the window disappears from the screen but its
entry remains on the taskbar. Minimized windows of icons opened
within the workspace have the same behavior and appearance as
minimized MDI child windows. Similarly, maximizing a window
within a workspace can follow the MDI technique: if the window’s
maximized size exceeds the size of the workspace window, the child
window merges with the workspace window and its title bar icon and
window buttons appear in the menu bar of the workspace window.

A workspace should provide a means of navigating between the
child windows within a workspace, such as listing the open child
windows on a Window drop-down menu and on the pop-up menu
for the parent window, in addition to direct window activation.

Workbooks

A workbook is another alternative for managing a set of views —
one which uses the metaphor of a book or notebook instead of a
work area. Within the workbook, you present views of objects as
sections within the workbook’s primary window rather than in indi-
vidual child windows. Figure 9.5 illustrates one possible way of
presenting a workbook.

The Windows Interface Guidelines for Software Design 229

251

Chapter 9 Window Management

|_Sa]:|IEka = . : - 5 =52 = 1 “-i

o s
30 Year Moﬁgqg?_ﬂgtés

| $135K | $145K $155K | $165K | $175K | $185K | $195K

7.0% | 4838 | $965 | 1031 | $1098 | $1164 | $1201 | $1.297

$907 | $a74 | 41042 41109 | $1976 0 $1.243 | 1,910
$916 | 4384 41,052 $1,188 | 31,324
4 31, ; ; ; !
$935 $1.004 | $1073 | $1142 | $1.212 | $1.281 | #1350
$944 | 1004 | $1084 | §1, $1,224 | $1.294 | $1,363 |
$953 | $1,024 | $1034 | $165 [$1.236 | $1,306 | $1.377
C$962 | $1.034 | $1105 | $176 | 41248 $1319 | $1.390
$972

3972 | $1044 | W16 | $1188 | $1.260 | $1332 | $1404 |
$931 | 1054 | 41127 72 | $.47

nt | (=), Capital Hil] <], Fremont - -

R

Figure 9.5 Example of a workhook design

For a workbook, you can use tabs to serve as a navigational interface
to move between different sections. Locate the tabs as best fits the
content and organization of the information you present. Each sec-
tion represents a view of data, which could be an individual docu-
ment. Unlike a folder or workspace, a workbook may be better suited
for ordered content; that is, where the order of the sections has sig-
nificance. In addition, you can optionally include a special section
listing the content of the workbook, like a table of contents. This
view can also be included as part of the navigational interface for
the workbook.

A workbook shares an interface similar to an MDI parent window
with all of its child windows maximized. The sections can share the
parent window’s interface elements, such as the menu bar and status
bar. When the user switches sections within the workbook, you can
change the menu bar so that it applies to the current object. When the
user closes a workbook, follow the common conventions for han-
dling unsaved edits or unapplied transactions when any primary
window closes.

230 The Windows Interface Guidelines for Software Design

252

Window Management Chapter 9

Consider supporting OLE to support transfer operations so the user
can move, copy, and link objects into the workbook. You may also
want to provide an Insert command that allows the user to create
new objects, including a new tabbed section in the workbook. You
can also include a Save All command, which saves any uncommitted
changes or prompls the user to save or discard those changes.

Projects

A project is another window management technique that provides for
association of a set of objects and their windows, but without visu-
ally containing the windows. A project is similar to a folder in that
the icons contained within it can be opened into windows that are
peers with the parent window. As a result, each child window can
also have its own entry on the taskbar. Unlike a folder, a project
provides window management for the windows of its content. For
example, when the user opens a document in a folder and then closes
the folder, it has no effect on the window of the opened document.
However, when the user closes a project window, all the child win-
dows of objects contained in the project also close. In addition,
when the user opens a project window, this action should restore the
windows of objects contained within it to their previous state.

Similarly, to facilitate window management, when the user mini-
mizes a project window, you may want to minimize any windows
of the objects the project contains. Taskbar entries for these windows
remain. Allow the user to restore a specific child window without
restoring the project window or other windows within the project.

In addition, support the user independently minimizing any child
window without affecting the project window. Figure 9.6 shows an
example of a project.

The Windows Interface Guidelines for Software Design 231

253

Chapter 9 Window Management

Figure 9.6 Example of a project design

The windows of objects stored in the project do not share the menu
bar or other areas within the project window. Instead, include the
interface elements for each object in its own window. However, you
can provide toolbar palette windows that can be shared among the
windows of the objects in the project.

Just as in workspaces and workbooks, a project should include com-
mands for creating new objects within the project, for transferring
objects in and out of the project, and for saving any changes for the
objects stored in the project. In addition, a project should include
commands and properties for the project object itself.

232 The Windows Interface Guidelines for Software Design

254

