Covers

| Windows 95 &
Microsoft® Professional Reference Windows NT™!

Microesoft Press

CYPRESS 1031

The Windows

Interface Guidelines
for Software Design

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
The Windows interface guidelines for software design.
p. cm.
Includes index.
ISBN 1-55615-679-0
L. Microsoft Windows (Computer file) 2. User interfaces (Computer
systems) 3. Computer software--Development. 1. Microsoft
Corporation.
QAT6. 76.W56W553 1995
005.265--dc20 95-330
CIp

Printed and bound in the United States of America.
123456789 QEQE 098765

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329,

Information in this document is subject to change without notice and does not represent a commitment on the
part of Microsoft Corporation. Companies, names, and data used in examples herein are fictitious unless
otherwise noted. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give you
any license to these patents, trademarks, copyrights, or other intellectual property rights.

Adobe, PostScript, and TIFF are trademarks of Adobe Systems, Inc. Apple and TrueType are registered
trademarks of Apple Computer, Inc. Borland and Quattro are registered trademarks of Borland International,
Inc. Frutiger is a registered trademark of Eltra Corporation. HP and LaserJet are registered trademarks of
Hewlett-Packard Company. Backup was developed for Microsoft by Colorado Memory Systems, Inc., a
division of Hewlett-Packard Company. HyperTerminal is a trademark of Hilgraeve, Inc. 1-2-3 and Lotus are
registered trademarks of Lotus Development Corporation. Microsoft, Microsoft Press, Microsoft Press logo,
MS, MS-DOS, PowerPoint, Visual Basic, Windows, Windows logo, and XENIX are registered trademarks
and Windows NT is a trademark of Microsoft Corporation. Arial, Bodoni, Swing, and Times New Roman are
registered trademarks of The Monotype Corporation PLC. Paintbrush is a trademark of Wordstar Atlanta
Technology Center.

Contents

PART |

Introduction

B VT 17 s TR SUAL I REIOMIE MU A USRS MU Ot NP Ot T XV
How t0 1se This GIde . aviman st sridiasamdias xvi
How to Apply the Guidelines vense XVid
Conventions Used in This GUidecccvrvrreesrnerinieenisssiisssinnsniee

FUNDAMENTALS OF DESIGNING USER INTERACTION

User-Centered Design Principles...... .o 3
TTserdn Control i et simitssiio i s

INTECERE S ihvuabssarviesbbinbitions fodasadbvinbisd b bes AV e LA SR S
Consistency ...
Fargiveness
Feedback........
Aesthetics
Simplicity
Design MethOdOLOZY ...ouirrsssrsnmusssenssemassasnssensusmsessesssssnssssnssnssiseasas
A Balaniced Diesign Teamh co i iimmmsanseiiisiin i s imissi o
The Design TVOIS st
Usability Assessment in the Design Process ...
M1y SEATIATHE TIROIS atiis puearsssdssst diosbasinsttinst sr b toiammiuniomins ety mads i
Desioh TrABSOITS i insmasmnins s smnipenl

Contents

Data-Centered DESIO v i ctatis s stisssinimid 17

Objects as Metaphor s I
Object Characteristicsce... i 18
RElaotSIPS 1 ats sniummmimt it diisds i v e ek 100
COMPOSTHON < fivsviassnbisiniis shhna s tosassvsbsisnssrinip siesssvusisissngenrsnes 110
POrSISIENCR (urmsmins i no st 20

Puttiog Theory into Practice! s anamaniaemimnanittmnmsns 20

The Desktopo..... sive 23

) BT s T s ST L e 1. |
The S patt B L At s e e et e DS
WA oW BHHONS Gt syt e s 26
The SEATS ATBH v st I et A s 26

TeOnE e rinnm s el nin e b s e e

B Lk Y L Ao PR TE P LIRS o)

Momse TP i s it S e b st s i e 29
o Vo o) 1 R SV AR OSSR L LoL S S UL NS Y AP NE Ger) 29

Mouse Actions........cceeeereesrunes .31

KEFBOATd TRPUL covowsi vvivesnviradsemsssinar/cabibaiig foissssaizs o ssisissndoiisn - 32
Text Keys........ PRS2
Access Keys..... .
MOdE KBS i idiiiominii i 34
SHOFCUEREYS e avvsis iy R S R s e R it 39

S 1 L S T P |
Pen Pointers...... s 1)
Pen Gestures
Pen Recognition
AArgetINg i i e

e 41
w41
e 42

iv. The Windows Interface Guidelines for Software Design

Navigation ... &
Mouse and Pen Navngatmn

Keyboard Navigation ...

QRIECtION:., s mias b A A TR S ey

Selection Feedbackooovvvcveecenirienicncneenas
Scope of Selection ...
Hierarchical Selectionvemianiienn
Mouse Selectioncccoceiivees
Pen Selectioncccmenmimene
Keyboard Selection ...
Selection SHOTCIS ..o iessiiisieriisinstin esssisns

Common Conventions for Supporting Operationsccoeoeviivecns
Operations for a Multiple Selectioncoeevnniis
Default Operations and Shortcut Techniques........
View OpErationseesresesessssessnmsssnnsins

Editing OPerationsccevriesseistniiinss s e
EAiting TEXL .v.c.oveeecsieas s cess s s s s e
BEIATALES 1.0 sasiisssiinsestaimosss sssasbaas inuarvinsisanss oo pesdniinysinathbban o fheaires

Transactions...
Properties ...
Pcn-SpeCLﬁc Edmng Techmques

Transfer OPErations ... s s
Command Method ...
Direct Manipulation Method.........ccoocicnnnninnnnes

Transfer Feedback ..
Specialized Transfer Commands
Shortcut Keys for Transfer Operations

Creation Operations ...
Copy Command ...
New Command
Insert Commandc.c.coeeveeee
Using Controlsccccccueueee.

USING TEMPIALES w.o.orvurnrrrnmsresenssessessessssases s s
Operations on Linked OBJECtS ... vierimmimmnisissrr i

Contents

sdines 4D
.. 44

58

........................ 58
........................ 59
........................ 59

62
62
63
... 064
seaiini B

.. 66

72
..... 74
..... 77
..... 83
_—]
..... 87
. 87

B
........................ 88
........................ 88

.. 88
88

89

The Windows Interface Guidelines for Software Design v

Contents

PART Il WINDOWS INTERFACE COMPONENTS

Chapler 6 Windows

Common Types of Windowscceeuemrivericciiicererssen

Primary Window COMPONENTScvvrveeeenesrensierssiensnnns

Window Framescccooceevvveroveenn.
e BATS s T s e
THtE BarTeonSo it seistivrvitod:
11 [] e et I RS B e e
THIE B At BRGNS, . istuuiovss revi i diveass i sebesiiis:

Basic Window Operatlons ; i
Activating and Deacnvatmu Wlndowq

Opening and Closing Windowsccocevveeveereovsreeisreseeresenn
MOVINE WIRAOWS /vt sissmerans v i sttt
ReSTZNG WATADWE vt itiasis bbb sissisinsion ot s ot atinns s iebiss ot
SCTOLNE WIAOWE::uciitucvssvsrsd s frislihessonsiaiebessie desshaburvssisssasbesn
SPUEINE WIAOWS L i i harsneis et b bsnsssrvssmrsiiossiies

Chapter 7 Menus, Contru['s,‘-and Toolbars

Menus..

The Menu Bar d‘ﬂd Drop down Menus
Common Drop-down MENUsecerieeereeesvennscececeesneseeneneen,

Pop-up Menus .. Gimhag
Pop-up Menu Inlcmctlon

L oI BON PODI MBS 5 i ssmssassvescninymss a s ha

Cascading Menus
Menu Titles

IVEMU BTN oo it ess s dedesiohsd s A e Bl

Buttons
List Boxes ..

Other General Controls
Pen-Specific Controls...

Toolbars and Status Bars.......
Interaction with Contro]q in Toolbare and Status Bars
Support for User Options
Toolbar and Status Bar Controls

Common Toolbar BUtONSicuiveeeeeeeeereeeeeeeeeeeeeseeeo

vi The Windows Interface Guidelines for Software Design

k2]
121
124
A b)

. 128
129
ches L33
chee 134

.. 135

140
v 141
.. 149

Text I-‘1eld‘; S R S A s e e R T R v 157

e 163
.. 169

il 2

.......... 173

. 174
175
176

Contents

~ Chapter 8 Secondary Windows
Characteristics of Secondary Windowsccceeermeseesssronssnssenens 179
Appearance and BeRavior ... 179
Window PlACEMENL ..covevenrirriiiiiininiiisinssssssest e sissisnees 183
Modeless vs. Modal... s 183
Default Buttons .. o .. 184
Navigation in Secondary Wmdows. .. 185
Validation of TNPUL ..o 187
Property Sheets and INSPECLOLS ..uvurvuecrnescenisimsiins s 187
Property Sheet Interface o
Property Sheet Commands ... lasiisiy, 190
Closing a Property Sheet ... 191
Property Inspectors... R R R ST 191
Properties of a MuIUple Selecnon s 192
Properties of a Heterogeneous Selection.. Geesui193
Properties of Grouped Items ... vo 193
DHALOZ BOXES -cvvveeaiiiiaiivanss e 193
Dialog Box Commdnd% .. 194
LAVOUL. scoctosiiissnsisisisns .. 194
Common Dialog Box INtErfaces ..o emieisinrmssnsrsssssssesseess 193
Prilefte WInoWE it s s nssgne s tandsnnid07
MESSAZE BOXES wevrrcanrivurrcmens ittt 209
Title BAT TEXL ..ccevvvcrerniecsssmmmmsmmsssisstssssssmsssrssssssmsassmssssonssses s 209
Message Box Types .. s 209
Command Buttons in Mc%sageBoxc‘; R [0
Message Box TeXL ..o & 213
Pop-up WINAOWSoveviieiiieeicesesimnsiinsnsins woe 215

The Windows Interface Guidelines for Software Design vii

Contents

PART Ill DESIGN SPECIFICATIONS AND GUIDELINES

Single Document Window Interface

Multiple Document Interface.... s
Opening and Closing MDI Wmdows

Moving and Sizing MDI Windowsccooeeeevveeeervreveeesnnn,
Switching Between MDI Child Windows

MDI Alternativesoeee......
Workspaces
Workbooks ..

Projects ...

Selecting a Window Model ..

Presentation of Object or Task X
DiSplayBagont's ., s e sisimeasing
Data-Centered Designoccovveeereereiveriicrnnens

Combination of Alternativesocouveverveeeeevennenn,

.. 219

siaiis 220
w222

223
225

225

s 227
vennre 229
sen 23l

sisesss 233
L]
wives 234
jerasie 200
239

“The Registry ...
Registering Apphcatlon State Infonnanon
Registering Application Path Information
Registering File Extensions
Supporting Creation ..
Registering Icons..
Registering Commands

Brablng PRIRHTE s s saisis s ot i oits
4t DAL o T O N Ly T,
Registering Shell EXtensionsc..cooceeooooioiiivenennn,
Supporting the Quick View Commandcc.ccoorvcrvrveri,
Registering Sound EVENLSccco.iovivrmimmiensessssessesssseomsessss s

i 2D

Installation ..
Copying FI]CS

Providing Access to Your Apphcatmn
Designing Your Installation Programc.c.evvevvvnceeenenee.

vili The Windows Interface Guidelines for Software Design

10

SR
. 238
.. 241
.. 242
isnivins 2D
searsisni 290
i 2]

253
253
254
256
257

257

. 260
4 260

Installing Fonts .. : T ARE
Installing Your Appllc.anon ona thwork
Uninstalling Your Application...
Supporting AUOPIaY ...
System Naming CONVENtIONS ...cvsemescmseescrsissmsnminmssiscsssssnssnsseens

Taskbar INTEEIAtiONccccvmrriisctimstininserems e seess et ssas s sns s
Taskbar Window BUttonsceccveeiieniiisuiimresrsisns s ierasssses e
Status NOICAHON ...ccovciriassisssisasasrminssusaisasassmssssssesispassssssssssnnssass
Message NOtFICAtON .. ivuiiieniiesiimmscssns

Application Desktop ToOIDars ...t

Full-Screen DIsplaycccovceinniensins s

Recycle Bin INEEIationvwsreeriseiirer s ssassiens

Control Panel INEZrationccvvuiverevieseciensnmmmsssnsssserssnsenes

Adding Control Panel Objects......
Adding to the Passwords Object

Plug and Play SUPPOIT ...c.coovrvcvieiseiscisiimsnssssss s s sesis i
System Settings and NOtfiCAtON ..ovver e

Modeless TRtErACION - :oacrssimeass ssmsssssusnvarvisassssasissasanenassssssbaisanss

The Interaction Model ..
Creating OLE Embedded and OLE Linked Objectscocvrerennenens
Transferring Objects ...
Inserting New Object,s

Displaying Objects

Selecting Objects ... “
Accessing Commands for Selected Ob]ects

Activating ODJECESverieeriisiienies st
Outs1de-In - ACHVAION 1i:i0 i ivsssisiasiamsisiiaasiig iosmimimvesnsiing
Inside-out Activation......
Container Control of Activation ..

OLE Visual Editing of OLE Embedded Db]ects
The Active Hatched Border ...

... 262

262

20263

264
266

268
268
269
270

271
272
273
273

i 213
s 2

275
275
276

el TF

279
279
285

.. 290

93
v 295

297
297

w297
... 298

300

.. 304

Contents

The Windows Interface Guidelines for Software Design ix

11

Contents

Menu Integration Ay R ST RA TP |) LY
Keyboard Interface Integrauon T 11
Toolbars, Frame Adornments, and Palette Wmdows Somibinsi s SLO
Opening OLE Embedded Objects............c.covoveevvecessrinersnnn. 313

Editing an OLE Linked Objectccccceeviereivnerrieereeesessieressssnsens. 316
Automatic and Manual Updating .. 318
Operations and Linkscccconrnninnrinisiicinenns ... 319
Types and Links ... e L G T s P 20
Link Management S s R Y s s e D2

Accessing Properties of OLE Objects T A |
The Properties Command.................. 321
The Links Command............ .. 324

COnVertingTVDES &l b it ol e i iizne 326
Using Handles .. i R T S T et e T 2D
Undo Operatlons for Active and Open ObJECs raemin i sz 350

Displaying Messages ... s e 3B
Object Application Messages TP LT ST R R TR 1 1)
OLE Linked Object Messagee e s R S st DL
SIS Tine WISSEATES vt iiusressssmsrranverinisiisissisisssisinessisesvmsrsisinisr 336

Contextual User ASSISANCEccvieeirienrrroesseemssesseeeseeseessesesnrs 330
Context-Sensitive Help339
Guidelines for Writing Contcxt Sensmvc Help . 342
Tooltips ... GEEST SR baradnies s s 450 Saansay b s e p s s aas ey eaen i e SN
Status Bar Mcssagcq s i e O
Guidelines for Writing Status Bar Messages 345
The Help Command BUttonccoecoeeereeroreerrreessicesrecennnn. 346

Task-Oriented Help ... v 347
Task Topic Wmdows s 347
Guidelines for Wr1t1ng Task Help Toplcs w348
Shortcut Buttons 349

X The Windows Interface Guidelines for Software Design

12

Reference Help ...
The Reference Hclp Wmdow

Guidelines for Writing Refercnce Help

The Help Topics Browser ...
The Help Topics Tabs .o

Wizards .. %
Guldelmes for Demgnmg leardb
Guidelines for Writing Text for WLzard Pages

Visual CommuniCationvueveveereeneerierecenrmrisines

Composition and Organization ...
Coloil. . wiaan

PAMENSTORALTEY 1osvxsssaisisnsassssisiasedarcanasnisoas duasurmnss donedisssnss vins sssi

Design of Visual EIEMEntso.oveeeieiieesicmseinnmsenenicnsiissasiiessenns
Basic Border STYIES: .. i iiiis o indaisansesaessssadipsrssiesnassho siicnsiaisns

Window Border Style
Button Border Styles
Field Border Style
Status Field Border Style...
Grouping Border Style

Visual States fOr CONITOLE ..vevereeceieniececseirnassnesnns ssasssnssisnstssssases
LAYOUL Lovoivsnpvisesesussiisnmiiitenionsissbid ixsons éhoms o punss vasnsidd F4sbast idarssia s smabos

Font and Size ..
Capltahz.atlon i
Grouping and Spdc.mg
Alignment...

PIABBISHE 3ty crcssistivasgarmsasionsina b S i sy ies s serive

Design of Graphic TMAZEscouiimimimsrsrenrsisere s
ICON DESIZIL c.vvverrirririrersrsssenenimssssnmstsmsssssnsssnss simsas ssstssassensasesons
POInter DESIEN 1vurivsivsiiassimissimissrrivnsssamas sinsis imssinssusispsssnssasasesisens

Selection APPEATANCEcoveriserirersrerressressasmsssssassesssssessessnsssasssnses

Highlighting

HANAIES o iticnionihrebedtiains fiapi it i alisidones fatisadon tons marsatacizess
AT TETADDEATANCE vuivs sosssvsssistitisisissibrorintbbinssoiierominsess s bai sy i 6aTs 398

OPEN ADPDEATANCE ..vvvvivsrsirimnsrsersasesssasesss tasssbnasssnsssssnnssssas siaess bosss

N EEIOTE i e i st sa Foab bbb bateh i B B T S b e s T

13

Contents

w300
A5l

........................ 352
........................ 354
........................ 354

sune 358
S
s 963

..................... 365

..... 366
)

... 370
371

372
372
373
374
N
Seovi S0

5376
377

384
384
387
388
389
389

390
391
394

395
396
397

399
400

The Windows Interface Guidelines for Software Design xi

Contents

Sound ...

ACCBSSIbll][y

Types of Dlsablllllﬁl‘v

Types of Accessibility AldS
Compatibility with Screen Review Utilities ...
The User’s Point of Focus .. .

Timing and Navigational Interfaccs

Color ..
Keyboard and Mouse [nterfacc

... 401
... 403

Documentation, Packaging, and Support
XIRaDI It TeBtINE it crcimcavtsmmmusioisisssabssiasssvm rpove i o s e

Internationalization ...
TeXb o nnnui

CATADNICE et oo beserhodfor it s i e e v e e b e
keyhoards s ibiammsi it asmnisesnietal
CharEEDSEI s et o st
.. 419

Formats ..
Layout ...
Refercnces to Unsupportecl Feature‘a

NetWDHEOMPUING rsississinsivvnsmiss st

404
406

v 408
wian 411
swizs 417
e 412

.. 413

414
414

s 415
.. 416

417
418
419

.. 420

. 420
. 421

Laverape SYSIEMSUDPOR v i s s
Client-Server APPHCAtONSc.ovcreereomsrrsressmsisesrisamsesrasissnessarens
SlAred DAt BIICE: wiy i eriss i it sdisiiss it it e h bt

.. 422
e 423
.. 424

Record Processing
Telephony ...
Microsoft Exchange

Coexisting with Other lnformatlon Servu:es
Adding Menu Items and Toolbar Buttonsccoccooo......
SHDPArHDE ORI CHONE sviisernsevmmiom s s e i
Installing Information Servicescocovivveieieciiioeiceereee e

xii The Windows Interface Guidelines for Software Design

14

421
421
422

424
424
425
425

PART IV APPENDIXES

Contents

Interaction Guidelines for Common
Unmodified Mouse ACtionscc.ocverveverreierscenas
Interaction Guidelines for Using the SHIFT Key
to Modify Mouse ACtiOnSc.ccovvevevererniscsninnens
Interaction Guidelines for Using the CTRL Key
t0 Modify Mouse ACHONScoueuniieuesieussinmesinesismssssinnsines

Common Navigation Ke¥s ... e dsodsisasiiins assivianusssisines

Common Shortcut Keys

WIDAOWS KOS cottosiiisustiio ncsiidedsrinnyssnssssassséssios

Accessibility Keys .o
Access Key ASSignmentscoeeecneiennncen

437
...... 438
........................ 439
........................ 440
........................ 441

General Design
Design Process.............

Input and INtELACHON ...cvovieemi i ces st sas e e
NVIRAOWS i i wwseish S s i B mus s e eag i e msgh ot

Control Usage ...
Integration
User Assistance ...

Visual DESiEN oo iobsivmmenssiasesivissssineiotisss hoisans
SOUNL .. sz i sl AT i

Accessibility

Tt arn AHONAl TTSEIE: i, cvibicisonasionsvissnbnsasionins shiviscsonsbeinsssrsbiaaintsisy
INETWOTK TISEES oo vvvssvaivessosesviey sveanivn s ssssuigassayices s ghoes boastpans ¥avbadis

15

The Windows Interface Guidelines for Software Design xiii

Contents

Microsoft Windows: el .o vt o et aeborsinionspessibosstons st ilane 3 1
Microsoft WIndows NT 3.51 ..c.ceveiieeeeieereereersreesersnsrenennnn. 453

International Word LiStScecieniienisicriiiecceesereseseerneseeesenns 453

xiv. The Windows Interface Guidelines for Software Design

16

17

18

Introduction

Welcome to The Windows Interface Guidelines for Software Design,
an indispensable guide to designing software that runs with the
Microsoft® Windows® operating system. The design of your
software’s interface, more than anything else, affects how a user
experiences your product. This guide promotes good interface design
and visual and functional consistency within and across Windows-
based applications.

What’s New

Continuing the direction set by Microsoft OLE, the enhancements in
the Windows user interface provide a design evolution from the
basic and graphical to the more object oriented — that is, from an
application-centered interface to a more data-centered one. In re-
sponse, developers and designers may need to rethink the interface of
their software — the basic components and the respective operations
and properties that apply to them. This is important because, from a
user’s perspective, applications have become less the primary focus
and more the engines behind the objects in the interface. Users can
now interact with data without having to think about applications,
allowing them to better concentrate on their tasks.

When adapting your existing Windows-based software, make certain
you consider the following important design aspects:

s Title bar text and icons
e Property sheets

 Transfer model (including drag and drop)

19

Introduction

¢ Pop-up menus

e New controls

¢ Integration with the system

* Help interface

* OLE embedding and OLE linking

e Visual design of windows, controls, and icons
* Window management

* Presentation of minimized windows

These elements are covered in depth throughout this guide.

How to Use This Guide

This guide is intended for those who are designing and developing
Windows-based software. [t may also be appropriate for those inter-
ested in a better understanding of the Windows environment and the
human-computer interface principles it supports. The content of the
guide covers the following areas:

* Basic design principles and process — fundamental design phi-
losophy, assumptions about human behavior, design methodol-

ogy, and concepts embodied in the interface.

¢ Interface elements — descriptive information about the various
components in the interface as well as when and how to use them.

¢ Design details — specific information about the details of effec-
tive design and style when using the elements of the interface.

* Additional information — summary and quick reference informa-
tion, a bibliography, a comprehensive word list in numerous lan-
guages to assist in product localization, and a glossary.

xviii The Windows Interface Guidelines for Software Design

20

Introduction

This guide focuses on the design and elements of an application ’s
user interface. Although an occasional technical reference is
included, this guide does not generally cover detailed information
about technical implementation or application programming inter-
faces (APIs), because there are many different types of development
tools that you can use to develop software for Windows. The docu-
mentation included with the Microsoft® Win32® Software Develop-
ment Kit (SDK) is one source of information about specific APIs.

How to Apply the Guidelines

This guide promotes visual and functional consistency within and
across the Windows operating system. Although following these
guidelines is encouraged, you are free to adopt the guidelines that
best suit your software. However, by following these guidelines, you
enable users to transfer their skills and experience from one task to
the next and to learn new tasks easily. In addition, evolution toward
data-centered design breaks down the lines between traditional appli-
cation domains, making inconsistencies in the interface more obvi-
ous and distracting to users.

Conversely, adhering to the design guidelines does not guarantee
usability. The guidelines are valuable tools, but they must be com-
bined with other factors as part of an effective software design pro-
cess, such as application of design principles, task analysis,
prototyping, and usability evaluation.

You may extend these guidelines, provided that you do so in the
spirit of the principles on which they are based, and maintain a rea-
sonable level of consistency with the visual and behavioral aspects of
the Windows interface. In general, avoid adding new elements or
behaviors unless the interface does not otherwise support them. More
importantly, avoid changing an existing behavior for common ele-
ments. A user builds up expectations about the workings of an inter-
face. Inconsistencies not only confuse the user, they also add
unnecessary complexity.

The Windows Interface Guidelines for Software Design Xix

21

Introduction

These guidelines supersede those issued for Windows version 3.1 and
all previous releases and are specific to the development of applica-
tions designed for Microsoft® Windows®, Microsoft® Windows NT ™
Workstation, and Microsoft® Windows NT Server. There is no direct
relationship between these guidelines and those provided for other

operating systems,

For more information about special considerations concerning
developing applications for both Windows 95 and Windows NT
operating system, see Appendix D, “Supporting Specific Versions

of Windows.”

Conventions Used in This Guide

The following conventions are used throughout this guide.

Convention

Indicates

SMALL CAPITAL LETTERS

KEY+KEY

Ttalic text

Bold text

Registry text
[]

A reference to related topics in this guide
or other books that provide more
information about the topic.

Additional or special information about
the topic.

Names of keys on the keyboard — for
example, SHIFT, CTRL, or ALT.

Key combinations for which the user
must press and hold down one key and
then press another — for example,
CTRLAP or ALT+F4.

New terms and variable expressions,
such as parameters.

Win32 API keywords and registry key
entries.

Examples of registry entries.

Optional information.

xx The Windows Interface Guidelines for Software Design

22

24

CHAPTER

Design Principles and
Methodology

A well-designed user interface is built on principles and a develop-
ment process that centers on users and their tasks. This chapter sum-
marizes the basic principles of the interface design for Microsoft
Windows. It also includes techniques and methodologies employed
in an effective human-computer interface design process.

User-Centered Design Principles

The information in this section describes the design principles on
which Windows and the guidelines in this book are based. You will
find these principles valuable when designing software for Windows.

User in Control

An important principle of user interface design is that the user should
always feel in control of the software, rather than feeling controlled
by the software. This principle has a number of implications.

The first implication is the operational assumption that the user ini-
tiates actions, not the computer or software — the user plays an
active, rather than reactive, role. You can use techniques to automate
tasks, but implement them in a way that allows the user to chose or
control the automation.

25

Chapter 1 Design Principles and Methodology

The second implication is that users, because of their widely varying
skills and preferences, must be able to personalize aspects of the
interface. The system software provides user access to many of these
aspects. Your software should reflect user settings for different sys-
tem properties, such as color, fonts, or other options.

The final implication is that your software should be as interactive
and responsive as possible. Avoid modes whenever possible. A mode
is a state that excludes general interaction or otherwise limits the
user to specific interactions. When a mode is the only or the best
design alternative — for example, for selecting a particular tool in a
drawing program — make certain the mode is obvious, visible, the
result of an explicit user choice, and easy to cancel.

For information about applying the design principle of user in con-
trol, see Chapter 4, “Input Basics,” and Chapter 5, “General Interac-
tion Techniques.” These chapters cover the basic forms of interaction
your software should support.

Directness

Design your software so that users can directly manipulate software
representations of information. Whether dragging an object to relo-
cate it or navigating to a location in a document, users should see
how the actions they take affect the objects on the screen. Visibility
of information and choices also reduce the user’s mental workload.
Users can recognize a command easier than they can recall its syntax.

Familiar metaphors provide a direct and intuitive interface to user
tasks, By allowing users to transfer their knowledge and experience,
metaphors make it easier to predict and learn the behaviors of
software-based representations.

When using metaphors, you need not limit a computer-based imple-
mentation to its “real world” counterpart. For example, unlike its
paper-based counterpart, a folder on the Windows desktop can be
used to organize a variety of objects such as printers, calculators, and
other folders. Similarly, a Windows folder can be more casily re-
sorted. The purpose of using metaphor in the interface is to provide a
cognitive bridge; the metaphor is not an end in itself,

4 The Windows Interface Guidelines for Software Design

26

Design Principles and Methodology Chapter 1

Metaphors support user recognition rather than recollection. Users
remember a meaning associated with a familiar object more easily
than they remember the name of a particular command.

For information about applying the principle of directness and meta-
phor, see Chapter 5, “General Interaction Techniques,” and Chapter
13, “Visual Design.” These chapters cover, respectively, the use of
directness in the interface (including drag and drop) and the use of
metaphors when designing icons or other graphical elements.

Consistency

Consistency allows users to transfer existing knowledge to new
tasks, learn new things more quickly, and focus more on tasks be-
cause they need not spend time trying to remember the differences in
interaction. By providing a sense of stability, consistency makes the
interface familiar and predictable.

Consistency is important through all aspects of the interface, includ-
ing names of commands, visual presentation of information, and
operational behavior. To design consistency into software, you must
consider several aspects:

» Consistency within a product. Present common functions using a
consistent set of commands and interfaces. For example, avoid
implementing a Copy command that immediately carries out an
operation in one situation but in another presents a dialog box that
requires a user to type in a destination. As a corollary to this ex-
ample, use the same command to carry out functions that seem
similar to the user.

« Consistency within the operating environment. By maintaining a
high level of consistency between the interaction and interface
conventions provided by Windows, your software benefits from
users’ ability to apply interaction skills they have already learned.

» Consistency with metaphors. If a particular behavior is more
characteristic of a different object than its metaphor implies, the
user may have difficulty learning to associate that behavior
with an object. For example, an incinerator communicates a dif-
ferent model than a wastebasket for the recoverability of objects
placed in it.

The Windows Interface Guidelines for Software Design 5

27

Chapter 1 Design Principles and Methodology

Although applying the principle of consistency is the primary goal
of this guide, the following chapters focus on the elements common
to all Windows-based software: Chapter 6, “Windows,” Chapter 7,
“Menus, Controls, and Toolbars,” and Chapter 8, “Secondary Win-
dows.” For information about closely integrating your software with
the Windows environment, see Chapter 10, “Integrating with the
System,” and Chapter 11, “Working with OLE Embedded and OLE
Linked Objects.”

Forgiveness

Users like to explore an interface and often learn by trial and error.
An effective interface allows for interactive discovery. It provides
only appropriate sets of choices and warns users about potential
situations where they may damage the system or data, or better,
makes actions reversible or recoverable.

Even within the best designed interface, users can make mistakes.
These mistakes can be both physical (accidentally pointing to the
wrong command or data) and mental (making a wrong decision
about which command or data to select). An effective design avoids
situations that are likely to result in errors. It also accommodates
potential user errors and makes it easy for the user to recover,

For information about applying the principle of forgiveness, see
Chapter 12, “User Assistance,” which provides information about
supporting discoverability in the interface through the use of contex-
tual, task-oriented, and reference forms of user assistance. For infor-
mation about designing for the widest range of users, see Chapter 14,
“Special Design Considerations.”

6 The Windows Interface Guidelines for Software Design

28

Design Principles and Methodology Chapter 1

Feedback

Always provide feedback for a user’s actions. Visual, and sometimes
audio, cues should be presented with every user interaction to con-
firm that the software is responding to the user’s input and to com-
municate details that distinguish the nature of the action.

Effective feedback is timely, and is presented as close to the point of
the user’s interaction as possible. Even when the computer is pro-
cessing a particular task, provide the user with information regarding
the state of the process and how to cancel that process if that is an
option. Nothing is more disconcerting than a “dead” screen that is
unresponsive to input. A typical user will tolerate only a few seconds
of an unresponsive interface.

It is equally important that the type of feedback you use be appro-
priate to the task. Pointer changes or a status bar message can com-
municate simple information; more complex feedback may require
the display of a message box.

For information about applying the principle of visual and audio
feedback, see Chapter 13, “Visual Design,” and Chapter 14, “Special
Design Considerations.”

Aesthetics

The visual design is an important part of a software’s interface.
Visual attributes provide valuable impressions and communicate
important cues to the interaction behavior of particular objects. At
the same time, it is important to remember that every visual element
that appears on the screen potentially competes for the user’s atten-
tion. Provide a pleasant environment that clearly contributes to the
user’s understanding of the information presented. A graphics or
visual designer may be invaluable with this aspect of the design.

For information and guidelines related to the aesthetics of your inter-
face, see Chapter 13, “Visual Design.” This chapter covers every-
thing from individual element design to font use and window layout.

The Windows Interface Guidelines for Software Design 7

29

Chapter 1 Design Principles and Methodology

Simplicity
An interface should be simple (not simplistic), easy to learn, and
easy Lo use. It must also provide access to all functionality provided
by an application. Maximizing functionality and maintaining sim-
plicity work against each other in the interface. An effective design
balances these objectives.

One way to support simplicity is to reduce the presentation of infor-
mation to the minimum required to communicate adequately. For
example, avoid wordy descriptions for command names or messages.
Irrelevant or verbose phrases clutter your design, making it difficult
for users to easily extract essential information. Another way to
design a simple but useful interface is to use natural mappings and
semantics. The arrangement and presentation of elements affects
their meaning and association.

You can also help users manage complexity by using progressive
disclosure. Progressive disclosure involves careful organization of
information so that it is shown only at the appropriate time. By “hid-
ing” information presented to the user, you reduce the amount of
information to process. For example, clicking a menu displays its
choices; the use of dialog boxes can reduce the number of menu
options.

Progressive disclosure does not imply using unconventional tech-
niques for revealing information, such as requiring a modifier key as
the only way to access basic functions or forcing the user down a
longer sequence of hierarchical interaction. This can make an inter-
face more complex and cumbersome.

For information about applying the principle of simplicity, see Chap-
ter 7, “Menus, Controls, and Toolbars.” This chapter discusses pro-

gressive disclosure in detail and describes how and when to use the
standard (system-supplied) elements in your interface.

8 The Windows Interface Guidelines for Software Design

30

Design Principles and Methodology Chapter 1

Design Methodology

Effective interface design is more than just following a set of rules.
It requires a user-centered attitude and design methodology. It also
involves early planning of the interface and continued work through
the software development process.

A Balanced Design Team

An important consideration in the design of a product is the compo-
sition of the team that designs and builds it. Always try to balance
disciplines and skills, including development, visual design, writing,
human factors, and usability assessment. Rarely are these character-
istics found in a single individual, so create a team of individuals
who specialize in these areas and who can contribute uniquely to the
final design.

Ensure that the design team can effectively work and communicate
together. Locating them in close proximity or providing them with a
common area to work out design details often fosters better commu-
nication and interaction.

The Design Cycle

An effective user-centered design process involves a number of
important phases: designing, prototyping, testing, and iterating.
The following sections describe these phases.

Design

The initial work on a software’s design can be the most critical be-
cause, during this phase, you decide the general shape of your prod-
uct. If the foundation work is flawed, it is difficult to correct
alterwards.

This part of the process involves not only defining the objectives and
features for your product, but understanding who your users are and

their tasks, intentions, and goals. This includes understanding factors
such as their background — age, gender, expertise, experience level,
physical limitations, and special needs; their work environment —

The Windows Interface Guidelines for Software Design 9

31

Chapter 1 Design Principles and Methodology

equipment, social and cultural influences, and physical surroundings;
and their current task organization — the steps required, the depen-
dencies, redundant activities, and the output objective. An order-
entry system may have very different users and requirements than an
information kiosk.

At this point, begin defining your conceptual framework to represent
your product with the knowledge and experience of your target audi-
ence. [deally, you want to create a design model that fits the user’s
conceptual view of the tasks to be performed. Consider the basic
organization and different types of metaphors that can be employed.
Observing users at their current tasks can provide ideas on effective
metaphors to use.

Document your design. Committing your planned design to a written
format not only provides a valuable reference point and form of
communication, but often helps make the design more concrete and
reveals issues and gaps.

Prototype

After you have defined a design model, prototype some of the basic
aspects of the design. This can be done with “pencil and paper”
models — where you create illustrations of your interface to which
other elements can be attached; storyboards — comic book-like
sequences of sketches that illustrate specific processes; animation —
movie-like simulations; or operational software using a prototyping
tool or normal development tools.

A prototype is a valuable asset in many ways. First, it provides an
effective tool for communicating the design. Second, it can help you
define task flow and better visualize the design. Finally, it provides a
low-cost vehicle for getting user input on a design. This is particu-
larly useful early in the design process.

The type of prototype you build depends on your goal. Function-
ality, task flow, interface, operation, and documentation are just
some of the different aspects of a product that need to be assessed.
For example, pen and paper models or storyboards may work when
defining task organization or conceptual ideas. Operational proto-
types are usually best for the mechanics of user interaction.

10 The Windows Interface Guidelines for Software Design

32

Test

Design Principles and Methodology Chapter 1

Consider whether to focus your prototype on breadth or depth. The
broader the prototype, the more features you should try to include to
gain an understanding about how users react to concepts and organi-
zation. When your objective is focused more on detailed usage of a
particular feature or area of the design, use depth-oriented prototypes
that include more detail for a given feature or task.

4

ity testing a design, or a particular aspect of a design, provides valu- ASE = s 0 ¢
able information and is a key part of a product’s success. Usability S ~ud o
testing is different than quality assurance testing in that, rather than
find programming defects, you assess how well the interface fits user
needs and expectations. Of course, defects can sometimes affect how
well the interface will fit.

-

User-centered design involves the user in the design process. Usabil- | ‘! B
t{’& i
w7

)
s

K all

o
5

There can be different reasons for testing. You can use testing to look
for potential problems in a proposed design. You can also focus on
comparative studies of two or more designs to determine which is
better, given a specific task or set of tasks.

Usability testing provides you not only with task efficiency and
success-or-failure data, it also can provide you with information
about the user’s perceptions, satisfaction, questions, and problems,
which may be just as significant as the ability to complete a particu-
lar task.

When testing, it is important to use participants who fit the profile of
your target audience. Using fellow workers from down the hall might
be a quick way to find participants, but software developers rarely
have the same experience as their customers. The section, “Usability
Assessment in the Design Process,” provides details about conduct-
ing a usability test.

The Windows Interface Guidelines for Software Design 11

33

Chapter 1 Design Principles and Methodology

Iterate

Because testing often uncovers design weaknesses, or at least pro-
vides additional information you will want to use, repeat the entire
process, taking what you have learned and reworking your design or
moving onto reprototyping and retesting. Continue this refining
cycle through the development process until you are satisfied with
the results.

During this iterative process, you can begin substituting the actual
application for prototypes as the application code becomes available.
However, avoid delaying your design cycle waiting for the applica-
tion code to be complete enough; you can lose valuable time and
input that you could have captured with a prototype. Moreover, by
the time most applications are complete enough for testing, it is
difficult to consider significant changes, because it becomes easier to
ignore usability defects because of the time resources invested. In
addition, changes at this point may affect the application’s delivery
schedule.

Usability Assessment in the Design Process

As described in the previous section, usability testing is a key part of
the design process, but testing design prototypes is only one part of
the picture. Usability assessment should begin in the early stages of
product development, where you can use it to gather data about how
users do their work. You then roll your findings back into the design
process. As the design progresses, usability assessment continues to
provide valuable input for analyzing initial design concepts and, in
the later stages of product development, can be used to test specific
product tasks. Apply usability assessment early and often.

Consider the user’s entire experience as part of a product’s usability.
The usability assessment should include all of a product’s compo-

nents. A software interface is more than just what shows up on the
screen or in the documentation.

12 The Windows Interface Guidelines for Software Design

34

Design Principles and Methodology Chapter 1

Usability Testing Techniques

Usability testing involves a wide range of techniques and investment
of resources, including trained specialists working in sound-proofed
labs with one-way mirrors and sophisticated recording equipment.
However, even the simplest investment of an office or conference
room, tape recorder, stopwatch, and notepad can produce benefits.
Similarly, all tests need not involve great numbers of subjects.

More typically, quick, iterative tests with a small, well-targeted
sample, 6-10 participants, can identify 80 to 90 percent of most de-
sign problems.

Like the design process itself, usability testing begins with defining
the target audience and test goals. When designing a test, focus on
tasks — not features. Even if your goal is testing specific features,
remember that your customers will use them within the context of
particular tasks. It is also a good idea to run a pilot test to work out
the bugs of the tasks to be tested and make certain the task scenarios,
prototype, and equipment work smoothly.

When conducting the usability test, provide an environment compa-
rable to the target setting; usually a quiet location, free from distrac-
tions, is best. Make participants feel comfortable. Unless you have
participated yourself, you may be surprised by the pressure many test
participants feel. You can alleviate some pressure by explaining the
testing process and equipment to the participants, and staling your
objective in testing the software and not them; if they become con-
fused or frustrated, it is not a reflection upon them.

Allow the user reasonable time to try and work through any difficult
situations. Although it is generally best to not interrupt participants
during a test, they may get stuck or end up in situations that require
intervention. This need not necessarily disqualify the test data, as
long as the test coordinator carefully guides or hints around a prob-
lem. Give general hints before moving to specific advice. For more
difficult situations, you may need to stop the test and make adjust-
ments. Keep in mind that less intervention usually yields better re-
sults. Always record the techniques and search patterns that users
employ when attempting to work through a difficulty, and the num-
ber and type of hints you have to provide.

The Windows Interface Guidelines for Software Design

35

13

Chapter 1 Design Principles and Methodology

Ask subjects to think aloud as they work, so you can hear what as-
sumptions and inferences they are making. As the participants work,
record the time they take to perform a task as well as any problems
they encounter. You may also want to follow up the session with a
questionnaire that asks the participants to evaluate the product or
tasks they performed.

Record the test results using a portable tape recorder, or better, a
video camera. Since even the best observer can miss details, review-
ing the data later will prove invaluable. Recorded data also allows
more direct comparisons between multiple participants. It is usually
risky to base conclusions on observing a single subject. Recorded
data also allows all the design team to review and evaluate the
results.

‘Whenever possible, involve all members of the design team in ob-
serving the test and reviewing the results. This ensures a common
reference point and better design solutions as team members apply
their own insights to what they observe. If direct observation is not
possible, make the recorded results available to the entire team.

Other Assessment Techniques

There are many techniques you can use to gather usability informa-
tion. In addition to those already mentioned, “focus groups™ are
helpful for generating initial ideas or trying out ideas. A focus group
requires a moderator who directs the discussion about aspects of a
task or design, but allows participants to freely express their opin-
ions. You can also conduct demonstrations, or “walkthroughs,” in
which you take the user through a set of sample scenarios and ask
about their impressions along the way. In a so-called “Wizard of Oz
technique, a testing specialist simulates the interaction of an inter-
face. Although these latter techniques can be valuable, they often
require a trained, experienced test coordinator.

(1

14 The Windows Interface Guidelines for Software Design

36

Design Principles and Methodology Chapter 1

Understanding Users

The design and usability techniques described in the previous sec-
tions have been used in the development of Windows and in many of
the guidelines included in this book. That process has yielded the
following general characteristics about users. Consider these charac-
teristics in the design of your software:

* Beginning Windows users often have difficulty with the mouse.
For example, dragging and double-clicking are skills that may
take time for beginning mouse users to master. Dragging can be
difficult because it requires continued pressure on the mouse but-
ton and involves properly targeting the correct destination.
Double-clicking is not the same as two separate clicks, so many
beginning users have difficulty handling the timing necessary to
distinguish these two actions, or they overgeneralize the behavior
to assume that everything needs double-clicking. Design your
interface so that double-clicking and dragging are not the only
ways to perform basic tasks; allow the user to conduct those tasks
using single click operations.

» Beginning users often have difficulty with window management.
They do not always realize that overlapping windows represent a
three-dimensional space. As a result, when a window is hidden by
another, a user may assume it no longer exists.

» Beginning users often have difficulty with file management. The
organization of files and folders nested more than two levels is
more difficult to understand because it is not as obvious in the real
world.

= Intermediate users may understand file hierarchies, but have diffi-
culty with other aspects of file management — such as moving
and copying files. This may be because most of their experience
working with files is often from within an application.

« Advanced, or “power,” users want efficiency. The challenge in
designing for advanced users is providing for efficiency without
introducing complexity for less-experienced users. (Shortcut
methods are often useful for supporting these users.) In addition,
advanced users may be dependent upon particular interfaces,
making it difficult for them to adapt to significant rearrangement
or changes in an interface.

The Windows Interface Guidelines for Software Design

37

15

Chapter 1 Design Principles and Methodology

* To develop for the widest audience, consider international users
and users with disabilities. Including these users as part of your
planning and design cycle is the best way to ensure that you can
accommodate them.

Design Tradeoffs

A number of additional factors may affect the design of a product.
For example, marketing considerations may require you to deliver a
product with a minimal design process, or comparative evaluations
may force you to consider additional features. Remember that short-
cuts and additional features can affect the product. There is no
simple equation to determine when a design tradeoff is appropriate.
So in evaluating the impact, consider the following:

= Every additional feature potentially affects performance,
complexity, stability, maintenance, and the support costs of an
application.

e Itis harder to fix a design problem after the release of a product
because users may adapt, or even become dependent on, a pecu-
liarity in the design.

e Simplicity is not the same as being simplistic. Making something
simple to use often requires a good deal of work and code.

* Features implemented by a small extension in the application
code do not necessarily have a proportional effect in a user inter-
face. For example, if the primary task is selecting a single object,
extending it to support selection of multiple objects could make
the frequent, simple task more difficult to carry out.

16 The Windows Interface Guidelines for Software Design

38

CHAPTER

Basic Concepts

Microsoft Windows supports the evolution and design of software
from a basic graphical user interface to a data-centered interface that
is better focused on users and their tasks. This chapter outlines the
fundamental concepts of data-centered design. It covers some of the
basic definitions used throughout this guide and provides the funda-
mental model for how to define your interface to fit well within the
Windows environment.

Data-Centered Design

Data-centered design means that the design of the interface supports
a model where a user can browse for data and edit it directly instead
of having to first locate an appropriate editor or application. As a
user interacts with data, the corresponding commands and tools to
manipulate the data or the view of the data become available to the
user automatically. This frees a user to focus on the information and
tasks rather than on applications and how applications interact.

In this data-centered context, a document is a common unit of data
used in tasks and exchanged between users. The use of the term is
not limited to the output of a word-processing or spreadsheet appli-
cation, but it emphasizes that the focus of design is on data, rather
than the underlying application.

39

Chapter 2 Basic Concepts

Objects as Metaphor

A well-designed user interface provides an understandable, consis-
tent framework in which users can work, without being confounded
by the details of the underlying technology. To help accomplish this,
the design model of the Windows user interface uses the metaphor
of objects. This is a natural way we interpret and interact with the
world around us. In the interface, objects not only describe files or
icons, but any unit of information, including cells, paragraphs, char-
acters, and circles, and the documents in which they reside.

Object Characteristics

Objects, whether real-world or computer representations, have cer-
tain characteristics that help us understand what they are and how
they behave. The following concepts describe the aspects and char-
acteristics of computer representations:

* Properties — Objects have certain characteristics or attributes,
called properties, that define their appearance or state — for ex-
ample, color, size, and modification date. Properties are not lim-
ited to the external or visible traits of an object. They may reflect
the internal or operational state of an object, such as an option in
a spelling check utility that automatically suggests alternative
spellings.

* Operations — Things that can be done with or to an object are
considered its operations. Moving or copying an object are ex-
amples of operations. You can expose operations in the interface
through a variety of mechanisms, including commands and direct
manipulation.

* Relationships — Objects always exist within the context of other
objects. The context, or relationships, that an object may have
often affects the way the object appears or behaves. Common
kinds of relationships include collections, constraints, and
composites.

18 The Windows Interface Guidelines for Software Design

40

Basic Concepts Chapter 2

Relationships

The simplest relationship is a collection, in which objects in a set
share a common aspect. The results of a query or a multiple selection
of objects are examples of a collection. The significance of a collec-
tion is that it enables operations to be applicd to a set of objects.

A constraint is a stronger relationship between a set of objects in that
changing an object in the set affects some other object in the set. The
way a text box streams text, the way a drawing application layers its
objects, and even the way a word-processing application organizes a
document into pages are all examples of constraints.

When a relationship between objects becomes so significant that the
aggregation can be identified as an object itself with its own set of
properties and operations, the relationship is called a composite.

A range of cells, a paragraph, and a grouped set of drawing objects
are examples of composites.

Another common kind of relationship found in the interface is con-
tainment. A container is an object that is the place where other ob-
jects exist, such as text in a document or documents in a folder.

A container often influences the behavior of its content. It may add
or suppress certain properties or operations of an object placed in it.
In addition, a container controls access to its content as well as what
kind of object it will accept as its content. This may affect the results
when transferring objects from one container to another.

All these aspects contribute to an object’s fype, a descriptive way of
distinguishing or classifying objects. Objects of a common type have
similar traits and behaviors.

Composition

As in the natural world, the metaphor of objects implies a con-
structed environment. Objects are compositions of other objects.
You can define most tasks supported by applications as a specialized
combination or set of relationships between objects. A text docu-
ment is a composition of text, paragraphs, footnotes, or other items.
A table is a combination of cells; a chart is a particular organization
of graphics. When you define user interaction with objects to be as
consistent as possible at any level, you can produce complex con-
structions while maintaining a small, basic set of conventions. These

The Windows Interface Guidelines for Software Design 19

41

Chapter 2 Basic Concepts

conventions can apply throughout the interface, increasing ease of
use. In addition, using composition to model tasks encourages modu-
lar, component-oriented design. This allows objects to be adapted or
recombined for other uses.

Persistence

In the natural world, objects persist in their existing state unless
changed or destroyed. When you use a pen to write a note, you need
not invoke a command to ensure that the ink is preserved on the
paper. The act of writing implicitly preserves the information. This is
the long term direction for objects in the interface as well. Although
it is still appropriate to design software that requires explicit user
actions Lo preserve data, consider whether data can be preserved
automatically. In addition, view state information, such as cursor
position, scroll position, and window size and location, should be
preserved so it can be restored when an object’s view is reopened.

Putting Theory into Practice

Using objects in an interface design does not guarantee usability.
But applying object-based concepts does offer greater potential for a
well-designed interface. As with any good user interface design, a
good user-centered design process ensures the success and quality of
the interface.

The first step to object-based design should begin as any good de-
sign with a thorough understanding of what users’ objectives and
tasks are. When doing the task analysis, identify the basic compo-
nents or objects used in those tasks and the behavior and the charac-
teristics that differentiate each kind of object, including the
relationships of the objects to each other and to the user. Also iden-
tify the actions that are performed, the objects to which they apply,
and the state information or attributes that each object in the task
must preserve, display, and allow to be edited.

Once the analysis is complete, you can start identifying the user
interfaces for the objects. Define how the objects you identified are
to be presented, either as icons or data elements in a form. Use icons
primarily for representing composite or container objects that need to
be opened into their own windows. Attribute or state information

20 The Windows Interface Guidelines for Software Design

42

Basic Concepts Chapter 2

should typically be presented as properties of the associated object,
most often using property sheets. Map behaviors and operations to
specific kinds of interaction, such as menu commands, direct ma-
nipulation, or both. Make these accessible when the object is se-
lected by the user. The information in this guide will help you define
how to apply the interfaces provided by the system.

Redesigning an existing Windows 3.1-based application to a more
data-centered interface need not require an immediate, complete
overhaul. You can begin the evolution by adding contextual inter-
faces such as pop-up menus, property sheets, and OLE drag and drop
and by following the recommendations for designing your window
title bars and icons. '

The Windows Interface Guidelines for Software Design 21

43

44

The Windows
Environment

The

This chapter provides a brief overview of some of the basic elements
included in the Microsoft Windows operating system that allow the
user to control the environment (sometimes collectively referred to
as the shell). These elements provide not only the backdrop for a
user’s environment, but can be landmarks for the user’s interaction
with your application as well.

Desktop

The desktop represents a user’s primary work area; it fills the screen
and forms the visual background for all operations (as shown in
Figure 3.1). However, the desktop is more than just a background. It
can also be used as a convenient location to place objects that are
stored in the file system. In addition, for a computer connected to a
network, the desktop also serves as a private work area through
which a user can still browse and access objects remotely located on
the network.

45

CHAPTE

Chapter 3 The Windows Environment

lcon

Desktop
[3 Status area
Start button Window button L Taskbar
Figure 3.1 The desktop
The Taskbar
The taskbar is a special component of the desktop that can be used to
switch between open windows and to access global commands and
other frequently used objects. As a result, it provides a home base —
an operational anchor for the interface. |
Like most toolbars, the taskbar can be configured. For example, a =4 For more information about
user can move the taskbar from its default location and relocate it h integrating your application
along another edge of the screen (as shown in Figure 3.2). Theuser ~ With the taskbar, see Chapter 10,
can also configure display options of the taskbar. The taskbar can Integrating with the System.

24 The Windows Interface Guidelines for Software Design

46

The Windows Environment Chapter 3

provide the user access to your application. It can also be used to
provide status information even when your application is not active.
Because the taskbar is an interface shared across applications, be
sure to follow the conventions and guidelines covered in this guide.

Fig 3.2 Showing the taskbar in another location

The Start Button

The Start button at the left side of the taskbar displays a special
menu that includes commands for opening or finding files. The
Program menu entry automatically includes the Program Manager
entries when the system is installed over Windows 3.1. When install-
ing your Windows-based application, you also can include an entry
for your application by placing a shortcut icon in the system’s
Programs folder.

The Windows Interface Guidelines for Software Design 25

47

Chapter 3 The Windows Environment

Window Buttons

Whenever the user opens a primary window, a button is placed on
the taskbar for that window. This button provides the user access to
the commands of that window and a convenient interface for switch-
ing to that window. The taskbar automatically adjusts the size of the
buttons to accommodate as many buttons as possible. When the size
of the button requires that the window’s title be abbreviated, the
taskbar also automatically supplies a small pop-up window (as
shown in Figure 3.3) that displays the full title for the window.

Full title of the window

Figure 3.3 Pop-up window with full title

When a window is minimized, the window’s button remains on the
taskbar, but is removed when the window is closed.

Taskbar buftons can also be used as drag and drop destinations. =4 For more information about
When the user drags over a taskbar button, the system activates the 'l drag and drop, see Chapter
associated window, allowing the user to drop within that window. 5, “General Inferaction Techniques.”

The Status Area

On the opposite side of the taskbar from the Start menu is a special
status arca. Your application can place special status or notification
indicators here, even when it is not active.

Icons

Icons may appear on the desktop and in windows. Icons are pictorial =% For more information about
representations of objects. This goes beyond the use of icons in Win- BaM the use of icons, see Chap-
dows 3.1, which only represented minimized windows. Your soft- ter 10, “Integrating with the
ware should provide and register icons for its application file and any ~ SYStem.” For information about
of its associated document or data files. !‘co_n demg_n, see Chapter 13,
Visual Design.”

Windows includes a number of icons that represent basic objects,

such as the following.

26 The Windows Interface Guidelines for Software Design

48

The Windows Environment Chapter 3

Table 3.1 lcons

Icon Type Function

g System Folder Provides access to a user’s private storage.
My Computer

System Folder Provides access to the network.
Wetwork
Neighborhood
Folder Provides organization of files and folders.
Folder
Shortcut Provides access to other objects. A shortcut icon uses the icon of the type

Sharteut b of file it is linked to, overlaid with the link symbol.

My Favarite Folder

Saved Search Locates files or folders.
All Files
S Application Allows browsing of the content of a user’s computer or the network.
Windows
Ewplarer
Q’ System Folder Stores deleted icons.
Recycle Bin
System Folder Provides access to properties of installed devices and resources (for

Conticl Panel example, fonts, displays, and keyboards).

The Windows Interface Guidelines for Software Design 27

49

Chapter 3 The Windows Environment

Windows

You can open icons into windows. Windows provides a means of
viewing and editing information, and viewing the content and prop-
erties of objects. You can also use windows to display parameters to
complete commands, palettes of controls, or messages informing a
user of a particular situation. Figure 3.4 demonstrates some of the
different uses for windows.

W For more information about
Ba windows, see Chapter 6,
“Windows,” and Chapter 8, “Sec-
ondary Windows.”

* Figure 3.4 Different uses of windows

28 The Windows Interface Guidelines for Software Design

50

CHAPTER

Input Basics

A user can interact with objects in the interface using different types
of input devices. The most common input devices are the mouse, the
keyboard, and the pen. This chapter covers the basic behavior for
these devices; it does not exclude other forms of input.

Mouse Input

The mouse is a primary input device for interacting with objects in =% For more information about
the Microsoft Windows interface. Other types of pointing devices &'} interactive techniques such

that emulate a mouse, such as trackballs, fall under the general use as navigation, selection, viewing,
of the term “mouse.” editing, transfer, and creating new

objects, see Chapter 5, “General In-
teraction Technigues.”

Mouse Pointers

The mouse is operationally linked with a graphic on the screen
called the pointer (also referred to as the cursor). By positioning the
pointer and clicking the buttons on the mouse, a user can select ob-
Jjects and their operations.

As a user moves the pointer across the screen, its appearance can

change to provide feedback about a particular location, operation, or
state. Table 4.1 lists some common pointer shapes and their uses.

51

Chapter 4 Input Basics

Tahle 4.1 Common Pointers

Shape Screen location

Available or current action E The system does not provide
I}& Over most objects

all of these pointers. For
more information about designing
your own pointers, see Chapter 13,
“Visual Design.”

Pointing, selecting, or moving.

Over text

Over any object or location

Over any screen location

Over most objects

Inside a window

Over a sizable edge

Over a sizable edge

Over a sizable edge

Over a sizable edge

Along column gridlines

Along row gridlines

Over split box in

vertical scroll bar

Over split box in
horizontal scroll bar

Over any object

Selecting text.

Processing an operation.

Processing in the background
(application loading), but the
pointer is still interactive.
Context-sensitive Help mode.
Zooming a view.

Resizing an edge vertically.
Resizing an edge horizontally.
Resizing an edge diagonally.
Resizing an edge diagonally.
Resizing a column.

Resizing a row.

Splitting a window (or

adjusting a split) horizontally.

Splitting a window (or
adjusting a split) vertically.

Not available as a drop target.

30 The Windows Interface Guidelines for Software Design

52

Each pointer has a particular point — called a hot spot — that de-
fines the exact screen location of the mouse. The hot spot determines
what object is affected by mouse actions. Screen objects can addi-
tionally define a hot zone; the hot zone defines the area the hot spot
must be within to be considered over the object. Typically, the hot
zone coincides with the borders of an object, but it may be larger, or
smaller, to make user interaction casier.

Mouse Actions

Basic mouse actions in the interface use mouse button 1 or button 2.
By default, button 1 is the leftmost mouse button and button 2 is the
rightmost button. The system allows the user to swap the mapping
of the buttons. Button 2 actions typically duplicate functions already
accessible with button 1, but provide those functions more efficiently.

The following are the common behaviors performed with the mouse.

Action Description

Pointing Positioning the pointer so it “points to” a particular
object on the screen without using the mouse button.
Pointing is usually part of preparing for some other
interaction. Pointing is often an opportunity to provide
visual cues or other feedback to a user.

Clicking Positioning the pointer over an object and then pressing
and releasing the mouse button. Generally, the mouse is
not moved during the click, and the mouse button is
quickly released after it is pressed. Clicking identifics
(selects) or activates objects.

Double-clicking Positioning the pointer over an object and pressing and
releasing the mouse button twice in rapid succession.
Double-clicking an object typically invokes its default
operation.

Pressing Positioning the pointer over an object and then holding
down the mouse button. Pressing is often the beginning
of a click or drag operation.

Dragging Positioning the pointer over an object, pressing down
the mouse button while holding the mouse button down,
and moving the mouse. Use dragging for actions such as
selection and direct manipulation of an object.

Input Basics Chapter 4

E For a mouse with three but-
tons, button 2 is the right-
most button, not the center button.

The Windows Interface Guidelines for Software Design 31

53

Chapter 4 Input Basics

For most mouse interactions, pressing the mouse button only identi-
fies an operation. User feedback is usually provided at this point.
Releasing the mouse button activates (carries out) the operation. An
auto-repeat function — for example, pressing a scroll arrow to con-
tinuously scroll — is an exception.

This guide does not cover other mouse behaviors such as chording
(pressing multiple mouse buttons simultaneously) and multiple-
clicking (triple- or quadruple-clicking). Because these behaviors
require more user skill, they are not generally recommended for basic
operations. However, you can consider them for special shortcut
operations.

Because not every mouse has a third button, there is no basic action
defined for a third (middle) mouse button. It is best to limit the as-
signment of operations to this button to those environments where
the availability of a third mouse button can be assumed, and for
providing redundant or shortcut access to operations supported else-
where in the interface. When assigning actions to the button, you
need to define the behaviors for the actions already described (point-
ing, clicking, dragging, and double-clicking) for this button.

Keyboard Input

@ The keyboard is a primary means of entering or editing text informa- =% For more information about

tion. However, the Windows interface also supports the use of key- BaN using the keyboard for navi-
gation, selection, and editing, see
Chapter 5, “General Interaction
Technigues.”

board input to navigate, toggle modes, modify input, and, as a
shortcut, to invoke certain operations.

32 The Windows Interface Guidelines for Software Design

54

Input Basics Chapter 4

Following are the common interactive behaviors performed with the

keyboard.

Action Description

Pressing Pressing and releasing a key. Unlike mouse interaction,
keyboard interaction occurs upon the down transition of the
key. Pressing typically describes the keyboard interaction
for invoking particular commands or for navigation.

Holding Pressing and holding down a key. Holding typically
describes interaction with keys such as ALT, SHIFT, and
CTRL that modify the standard behavior of other input —
for example, another key press or mouse action.

Typing Typing input of text information from the keyboard.

Text Keys
Text keys include the following:
e Alphanumeric keys (a-z, A-Z, 0-9)
e Punctuation and symbol keys
* TAB and ENTER keys

¢ The SPACEBAR

In text-entry contexts, pressing a text key enters the corresponding Most keyboards include two
character and typically displays that character on the screen. Except keys labeled ENTER: one on
in special views, the characters produced by the TAB and ENTER the main keyboard and one on the

numeric keypad. Because these keys
have the same label (and on some
keyboards the latter may not be
available), assign both keys the

Access KCyS same functionality.

keys are not usually visible. In some contexts, text keys can also be
used for navigation or for invoking specific operations.

An access key is an alphanumeric key — sometimes referred to as a
mnemonic — that when used in combination with the ALT key navi-
gates to and activates a control. The access key maiches one of the
characters in the text label of the control. For example, pressing
ALT+0 activates a control whose label is “Open” and whose assigned
access key is “07. Typically, access keys are not case sensitive. The
effect of activating a control depends on the type of control.

The Windows Interface Guidelines for Software Design 33

55

Chapter 4 Input Basics

Assign access key characters to controls using the following guide-
lines (in order of choice):

1. The first letter of the label for the control, unless another letter
provides a better mnemonic association.

2. A distinctive consonant in the label.
3. A vowel in the label.

Avoid assigning a character where the visual indication of the access
key cannot be distinguished from the character. Also, avoid using a
character normally assigned to a common function. For example,
when you include an Apply button, reserve the “A”™ — or its local-
ized equivalent — as the access key for that button. In addition, do
not assign access keys to the OK and Cancel commands when they
map to the ENTER and ESC keys, respectively.

Nonunique access key assignments within the same scope access

the first control. Depending on the control, if the user presses the
access key a second time, it may or may not access another control
with the same assignment. Therefore, define an access key to be
unique within the scope of its interaction — that is, the area in which
the control exists and to which keyboard input is currently being
directed.

Controls without explicit labels can use static text controls to create
labels with assigned access keys. Software that supports a nonroman
writing system (such as Kanji), but that runs on a standard keyboard,
can prefix each control label with an alphabetic (roman) character as
its access key.

Mode Keys

Mode keys change the actions of other keys (or other input devices).
There are two kinds of mode keys: toggle keys and modifier keys.

A toggle key turns a particular mode on or off each time it is pressed.
For example, pressing the CAPS LOCK key toggles uppercase alpha-

betic keys; pressing the NUM LOCK key toggles between numeric and
directional input using the keypad keys.

34 The Windows Interface Guidelines for Software Design

56

"W For more information about
h‘. static text controls, see Chap-
ter 7, “Menus, Controls, and
Toolbars.”

Input Basics Chapter 4

Like togele keys, modifier keys change the actions of normal input.
Unlike toggle keys, however, modifier keys establish modes that
remain in effect only while the modifier key is held down. Modifier
keys include the SHIFT, CTRL, and ALT keys. Such a “spring-loaded”
mode is often preferable to a “locked” mode because it requires the
user to continuously activate it, making it a conscious choice and
allowing the user to easily cancel the mode by releasing the key.

Because it can be difficult for a user to remember multiple modifier
assignments, avoid using multiple modifier keys as the primary
means of access to basic operations. In some contexts, such as envi-
ronments that are specific to pen input, the keyboard may not be
available. Therefore, use modifier-based actions only for quick access
to operations that are supported adequately elsewhere in the interface.

Shortcut Keys
Shortcut keys (also referred to as accelerator keys) are keys or key Function key and modified
combinations that, when pressed, provide quick access to frequently funct_iDn key compinations
performed operations. CTRL+letter combinations and function keys M3y be easier for international us-
(F1 through F12) are usually the best choices for shortcut keys. By ers because they have no mnemonic

relationship. However, there is a
tradeoff because function keys are
often more difficult to remember
and to reach. For a list of the most

definition, a shortcut key is a keyboard equivalent of functionality
that is supported adequately elsewhere in the interface. Therefore,
avoid using a shortcut key as the only way (o access a particular

operation. common shortcut key assignments,
see Appendix B, “Keyboard Interface
When defining shortcut keys, observe the following guidelines: Summary.”

= Assign single keys where possible because these keys are the
easiest for the user to perform.

+ Make modified-letter key combinations case insensitive.

¢ Use SHIFT+key combinations for actions that extend or comple-
ment the actions of the key or key combination used without the
SHIFT key. For example, ALT+TAB switches windows in a top-to-
bottom order. SHIFT+ALT+TAB switches windows in reverse order.
However, avoid SHIFT+text keys, because the effect of the SHIFT
key may differ for some international keyboards.

e Use CTRL+key combinations for actions that represent a larger
scale effect. For example, in text editing contexts, HOME moves to
the beginning of a line, and CTRL+HOME moves to the beginning

The Windows Interface Guidelines for Software Design 35

57

Chapter 4 Input Basics

of the text. Use CTRL+key combinations for access to commands
where a letter key is used — for example, CTRL+B for bold. Re-
member that such assignments may be meaningful only for
English-speaking users.

* Avoid ALT+key combinations because they may conflict with the
standard keyboard access for menus and controls. The ALT+key
combinations — ALT+TAB, ALT+ESC, and ALT+SPACEBAR — are
reserved for system use. ALT+number combinations enter special
characters.

= Avoid assigning shortcut keys defined in this guide to other opera-
tions in your software. That is, if CTRL+C is the shortcut for the
Copy command and your application supports the standard copy
operation, don’t assign CTRL+C to another operation.

* Provide support for allowing the user to change the shortcut key
assignments in your software, when possible.

¢ Use the ESC key to stop a function in process or to cancel a direct
manipulation operation. It is also usually interpreted as the short-
cut key for a Cancel button.

Some keyboards also support three new keys, the Application key
and the two Windows keys. The primary use for the Application key
is to display the pop-up menu for current selection (same as SHIFT+
F10). You may also use it with modifier keys for application-specific
functions. Pressing either of the Windows keys — left or right — Windows key and
displays the Start menu. These keys are also used by the system as Application key
meodifiers for system-specific functions. Do not use these keys as

meodifiers for nonsystem-level functions.

36 The Windows Interface Guidelines for Software Design

58

Input Basics Chapter 4

Pen Input

Systems with a Windows pen driver installed support user input
using tapping or writing on the surface of the screen or a tablet with
a pen, and in some cases with a finger.

"4 The GetSystemMetrics func-

"M tion provides access to the
SM_PENWINDOWS constant that
indicates when a pen is installed.

. . For more information about this
Depending on the placement of the pen, you can use it for both function, see the documentation

pointing and writing. For example, if you move the pen over menus included in the Microsoft Win32
or most controls, it acts as a pointing device. Because of the pointing Software Development Kit (SDK).
capabilities of the pen, the user can perform most mouse-based op-

erations. When over a text entry or drawing area, the pen becomes a

writing or drawing tool; the pointer changes to a pen shape to pro-

vide feedback to the user. When the tip of the pen touches the input

surface, the pen starts inking — that is, tracing lines on the screen.

The user can then draw shapes, characters, and other patterns; these

patterns remain on the screen exactly as drawn or can be recoghized,

interpreted, and redisplayed.

The pen can retain the functionality of a pointing device (such as a
mouse) even in contexts where it would normally function as a writ-
ing or drawing tool. For example, you can use timing to differentiate
operations; that is, if the user holds the pen tip in the same location
for a predetermined period of time, a different action may be in-
ferred. However, this method is often unreliable or inefficient for
many operations, so it may be better to use toolbar buttons to switch
to different modes of operation. Choosing a particular button allows
the user to define whether to use the pen for entering information
(writing or drawing) or as a pointing device.

You can also provide the user with access to other operations using =7 For more information about
an action handle. An action handle is a special graphic displayed for ‘"Ml action handles, see Chapter
a selection. An action handle can be used to support direct manipula- 5, “General Interaction Techniques.”
tion operations or to provide access to pop-up menus.

The Windows Interface Guidelines for Software Design 37

59

Chapter 4 Input Basics

Following are the fundamental behaviors defined for a pen.

Action

Description

Pressing

Tapping

Double-tapping

Dragging

Positioning and pressing the tip to the input surface.
A pen press is equivalent to a mouse press and typi-
cally identifies a particular pen action.

Pressing the pen tip on the input surface and lifting it
without moving the pen. In general, tapping is equiva-
lent to clicking mouse button 1. Therefore, this action
typically selects an object, setting a text insertion point
or activating a button

Pressing and lifting the pen tip twice in rapid succes-
sion. Double-tapping is usually interpreted as the
equivalent to double-clicking mouse button 1.

Pressing the pen tip on the input surface and keeping it
pressed while moving the pen. In inking contexts, you
can use dragging for the input of pen strokes for writ-
ing, drawing, gestures, or for direct manipulation,
depending on which is most appropriate for the con-
text. In noninking contexts, it is the equivalent of a
mouse drag.

Some pens include buttons on the pen barrel that can be pressed. For
pens that support barrel buttons, the following behaviors may be

supported.
Action Description
Barrel-tapping Holding down the barrel button of the pen while

Barrel-dragging

tapping. Barrel-tapping is equivalent to clicking with
mouse button 2.

Holding down the barrel button of the pen while
dragging the pen. Barrel-dragging is equivalent to
dragging with mouse button 2.

38 The Windows Interface Guidelines for Software Design

60

A user may move the pen

more between taps when
double-tapping than a user double-
clicking with a mouse. As a result,
you may want to slightly increase
your hot zones for detecting a
double-tap when of a pen device has
been installed.

Because not all pens support

barrel buttons, any behaviors
that you support using a barrel but-
ton should also be supported by
other technigues in the interface.

Input Basics Chapter 4

Pen input is delimited, by the lifting of the pen tip, an explicit termi-
nation tap (such as tapping the pen on another window or as the
completion of a gesture), or a time-out without further input. You can
also explicitly define an application-specific recognition time-out.

Proximity is the ability to detect the position of the pen without it
touching the input surface. While Windows provides support for pen
proximity, avoid depending on proximity as the exclusive means of
access to basic functions, because not all pen hardware supports this
feature. Even pen hardware that does support proximity may allow
other non-pen input, such as touch input, where proximity cannot be
supported.,

Pen Pointers

For pen tablets, as with a mouse, pointers play an important part in
visually indicating the user’s location of interaction on the screen.
When the input surface is actually a screen display, pointers may
seem superfluous; however, they still have an important role to play.
Pointers help the pen user select small targets faster. Moreover,
changes from one pointer to another provide useful feedback about
the actions supported by the object under the pen. For example,
when the pen moves over a resizable border, the pointer can change
from a pen (indicating that writing is possible) to a resizing pointer
(indicating that the border can be dragged to resize the object).
‘Whenever possible, include this type of feedback in pen-enabled
applications to help users understand the kinds of supported actions.

Following are two common pointers used with the pen.

Table 4.2 Pen Pointers

Shape Common usage
% Pointing, selecting, moving, and resizing
\ Writing and drawing

The Windows Interface Guidelines for Software Design 39

61

Chapter 4 Input Basics

‘When the screen is the input surface — because a pointer may

be partially obscured by the pen or by the user’s hand — you may
need to consider including additional forms of feedback, such as
toolbar button states or status bar information, to indicate the pen’s
input state.

Pen Gestures
When using the pen for writing, certain ink patterns are interpreted ¥ For more information about
as gestures. Using one of these specially drawn symbols invokes a Ea¥ common gestures and their

interpretation, see Chapter 5, “Gen-

particular operation, such as deleting text, or produces a nonprinting ; ; .
eral Interaction Techniques.

text character, such as a carriage return or a tab. For example, a
circled X gesture is equivalent to the Cut command. After the system
interprets a gesture, the gesture’s ink is removed from the display.

All gestures include a circular stroke to distinguish them from ordi-
nary characters. Most gestures also operate positionally; in other
words, they act upon the objects on which they are drawn. Determin-
ing the position of the specific gesture depends on either the area
surrounded by the gesture or a single point — the hot spot of the
gesture.

Pen gestures usually cannot be combined with ink (writing or draw-
ing actions) within the same recognition sequence. For example, the
user cannot draw a few characters, immediately followed by a ges-
ture, followed by more characters.

The rapidity of gestural commands is one of the key advantages of
the pen. Do not rely on gestures as the only or primary way to per-
form commands, however, because gestures require memorization by
users. Regard gestures as a quick access, shortcut method for opera-
tions adequately supported elsewhere in the interface, such as in
menus or buttons. If the pen extensions are installed, you can option-
ally place a bitmap of the gesture next to the corresponding com-
mand (in place of the keyboard shortcut text) to help the user learn
particular gestures.

In addition, avoid using gestures when they interfere with common
functionality or make operations with parallel input devices, such as

the mouse or keyboard, more cumbersome. For example, although
writing a character gesture in a list box could be used as a way to

40 The Windows Interface Guidelines for Software Design

62

Input Basics Chapter 4

scroll automatically within the list, it would interfere with the basic
and more frequent user action of selecting an item in the list, A bet-
ter technique is to provide a text input field where the user can write
and, based on the letters entered, scroll the list.

Pen Recognition

Recognition is the interpretation of pen strokes into some standard-
ized meaning. Consider recognition as a means to an end, not an end
in itself. Do not use recognition if it is unnecessary or if it is not the
best interface. For example, it may be more effective to provide a
control that allows a user to select a date, rather than requiring the
user to write it in just so your software can recognize it.

Accurate recognition is difficult to achieve, but you can greatly im-
prove your recognition interface by providing a fast, easy means to
correct errors. For example, if you allow users to overwrite charac-
ters or choose alternatives, they will be less frustrated and find rec-
ognition more useful. You can also improve recognition by using
context and constraints. For example, a checkbook application can
constrain certain fields to contain only numbers.

Ink Input

In some cases — for example, signatures — recognition of pen input
may be unnecessary; the ink is a sufficient representation of informa-
tion. Ink is a standard data type supported by the Clipboard. Con-
sider supporting ink entries as input wherever your software accepts
normal text input, unless the representation of that input needs to be
interpreted for other operations, such as searching or sorting.

The Windows Interface Guidelines for Software Design 41

63

Chapter 4 Input Basics

Targeting

Targeting, or determining where to direct pen input, is an important
design factor for pen-enabled software. For example, if the user
gestures over a set of objects, which objects should be affected? If
the user writes text that spans several writing areas, which text
should be placed in which area? In general, you use the context of
the input to determine where to apply pen input. More specifically,
use the following guidelines for targeting gestures on objects:

e [f the user draws the gesture on any part of a selection, apply the
gesture to the selection.

« [f the user draws the gesture on an object that is not selected,
select that object, and apply the gesture to that object.

= [f the user does not draw the gesture on any object or selection,
but there is a selection, apply the gesture to that selection.

If none of these guidelines applies, ignore the gesture.
For handwriting, you can also use context to determine where to

direct the input. Figure 4.1 demonstrates how the proximity of the
text to the text boxes determines the destination of the written text.

Rl i

Figure 4.1 Targeting handwritien input

The system’s pen services provide basic support for targeting, but
your application can also provide additional support. For example,
your application can define a larger inking rectangle than the control
usually provides. In addition, because your application often knows
the type of input to expect, it can use this information to better inter-
pret where to target the input.

42 The Windows Interface Guidelines for Software Design

64

- H A P-T-E.R

General Interaction
Techniques

This chapter covers basic interaction techniques, such as navigation,
selection, viewing, editing, and creation. Many of these techniques
are based on an object-action paradigm in which a user identifies an
object and an action to apply to that object. By maintaining these
techniques consistently, you enable users to transfer their skills to
new tasks.

Where applicable, support the basic interaction techniques for the
mouse, keyboard, and pen. When adding or extending these basic
techniques, consider how the feature or function can be supported
across input devices. Techniques for a particular device need not be
identical for all devices. Instead, tailor techniques to optimize the
strengths of a particular device. In addition, make it easy for the user
to switch between devices so that an interaction started with one
device can be completed with another.

Navigation

One of the most common ways of identifying or accessing an object
is by navigating to it. The following sections include information
about mouse, pen, and keyboard techniques.

65

Chapter 5 General Interaction Techniques

Mouse and Pen Navigation

Navigation with the mouse is simple; when a user moves the mouse
left or right, the pointer moves in the corresponding direction on the
screen. As the mouse moves away from or toward the user, the
pointer moves up or down. By moving the mouse, the user can move
the pointer to any location on the screen. Pen navigation is similar to
mouse navigation, except that the user navigates by moving the pen
without touching the input surface.

Keyboard Navigation

Keyboard navigation requires a user to press specific keys and key
combinations to move the input focus — the indication of where the
input is being directed — to a particular location. The appearance of
the input focus varies by context; in text, it appears as a text cursor
or insertion point.

Basic Navigation Keys

The navigation keys are the four arrow keys and the HOME, END,
PAGE UP, PAGE DOWN, and TAB keys. Pressed in combination with
the CTRL key, a navigation key increases the movement increment.
For example, where pressing RIGHT ARROW moves right one char-
acter in a text field, pressing CTRL+RIGHT ARROW moves right one
word in the text field. Table 5.1 lists the common navigation keys
and their functions. You can define additional keys for navigation.

44 The Windows Interface Guidelines for Software Design

66

For more information about
Ea displaying the input focus,
see Chapter 13, “Visual Design.”

General Interaction Techniques Chapter 5

Table 5.1 Basic Navigation Keys

Key Moves cursor to CTRL+key moves cursor to
LEFT ARROW Left one unit. Left one (larger) unit.
RIGHT ARROW Right one unit. Right one (larger) unit.
UP ARROW Up one unit or line. Up one (larger) unit.
DOWN ARROW Down one unit or line. Down one (larger) unil.
HOME Beginning of line. Beginning of data or file (topmost position).
END End of line. End of data or file (bottommost position).
PAGE UP Up one screen Left one screen (or previous unit,
(previous screen, same position). if left is not meaningful).
PAGE DOWN Down one screen Right one screen (or next unit,
(next screen, same position). if right is not meaningful).
TAB Next field. (SHIFT+TAB Next larger field.

moves in reverse order).

Unlike mouse and pen navigation, keyboard navigation typically =4 For more information about
affects existing selections. Optionally, you can support the SCROLL Ea keY'_Joard navigation in sec-
LOCK key to enable scrolling navigation without affecting existing ondary windows, such as dialog

boxes, see Chapter 8, “Secondary

selections. If you do so, the keys scroll the appropriate increment. 4
¥ ¥ pprop Windows.”

Selection

Selection is the primary means by which the user identifies objects
in the interface. Consequently, the basic model for selection is one of
the most important aspects of the interface.

Selection typically involves an overt action by the user to identify an
object. This is known as an explicir selection. Once the object is
selected, the user can specify an action for the object.

There are also situations where the identification of an object can be
derived by inference or implied by context. An implicit selection
works most effectively where the association of object and action is
simple and visible. For example, when the user drags a scroll box,
the user establishes selection of the scroll box and the action of

The Windows Interface Guidelines for Software Design 45

67

Chapter 5 General Interaction Techniques

moving at the same time. Implicit selection may result from the
relationships of a particular object. For example, selecting a character
in a text document may implicitly select the paragraph of which the
character is a part.

A selection can consist of a single object or multiple objects.
Multiple selections can be contiguous — where the selection set is
made up of objects that are logically adjacent to each other, also
known as a range selection. A disjoint selection set is made up of
objects that are spatially or logically separated.

Multiple selections may also be classified as homogeneous or
heterogeneous, depending on the type or properties of the selected
objects. Even a homogeneous selection might have certain aspects in
which it is heterogeneous. For example, a text selection that includes
bold and italic text can be considered homogeneous with respect to
the basic object type (characters), but heterogeneous with respect to
the values of its font properties. The homogeneity or heterogeneity
of a selection affects the access of the operations or properties of the
objects in the selection.

Selection Feedback
Always provide visual feedback for explicit selections as the user =7 For more information about
makes the selection, so that the user can tell the effect of the selec- BaX how to visually render the se-

lection appearance of an object, see
Chapter 13, “Visual Design.” For
more information about how the
context of an object can affect its

fons 2 ; : selection appearance, see Chapter
You may not need to provide immediate selection feedback for 11, *Working with OLE Embedded

implicit selection; you can often indicate the effects of implicit selec- and OLE Linked Objects.”
tion in other ways. For example, when the user drags a scroll box,

the scroll box moves with the pointer, Similarly, if the effect of

selecting a word in a paragraph implicitly selects the paragraph, you

would not use selection appearance on the entire paragraph, but

rather reflect the implicit selection by including the paragraph’s

properties when the user chooses the Properties command.

tion operation. Display the appropriate selection appearance for each
object included in the selection set. The form of selection appearance
depends on the object and its context.

46 The Windows Interface Guidelines for Software Design

68

General Interaction Techniques Chapter 5

Scope of Selection

The scope of a selection is the area, extent, or region in which, if
other selections are made, they will be considered part of the same
selection set. For example, you can select two document icons in the
same folder window. However, the selection of these icons is inde-
pendent of the selection of the window’s scroll bar, a menu, the
window itself, or selections made in other windows. So, the selection
scope of the icons is the area viewed through that window. Selec-
tions in different scopes are independent of each other. For example,
selections in one window are typically independent of selections in
other windows. Their windows define the scope of each selection
independently. The scope of a selection is important because you use
it to define the available operations for the selected items and how
the operations are applied.

Hierarchical Selection

Range selections typically include objects at the same level. How-
ever, you can also support a user’s elevating a range selection to the
next higher level if it extends beyond the immediate containment of
the object (but within the same window). When the user adjusts the
range back within the containment of the start of the range, return the
selection to the original level. For example, extending a selection
from within a cell in a table to the next cell, as shown in Figure 5.1,
should elevate the selection from the character level to the cell level,
adjusting the selection back within the cell should reset the selection
to the character level.

Telephone

...........

Ele ctricitsy

1 . Telephone

Figure 5.1 Hierarchical selection

The Windows Interface Guidelines for Software Design 47

69

Chapter 5 General Interaction Techniques

Mouse Selection

Selection with the mouse relies on the basic actions of clicking and
dragging. In general, clicking selects a single item or location, and
dragging selects a single range consisting of all objects logically
included from the button-down to the button-up location. If you also
support dragging for object movement, use keyboard-modified
mouse selection or region selection to support multiple selection.

Basic Selection

Support user selection using either mouse button. When the user
presses the mouse button, establish the starting point. or anchor
point, of a selection. If, while pressing the mouse button, the user
drags the mouse, extend the selection to the object nearest the hot
spot of the pointer. If, while continuing to hold the mouse button
down, the user drags the mouse within the selection, reduce the
selection to the object now nearest the pointer. Tracking the selection
with the pointer while the mouse button continues to be held down
allows the user to adjust a range selection dynamically. Use appro-
priate selection feedback to indicate the objects included in the
selection.

The release of the mouse button ends the selection operation and
establishes the active end of the selection. If the user presses mouse
button 2 to make a selection, display the contextual pop-up menu for
the selected objects when the user releases the mouse button.

The most common form of selection optimizes for the selection of a
single object or a single range of objects. In such a case, creating a
new selection within the scope of an existing selection (for example,
within the same area of the window) cancels the selection of the
previously selected objects. This allows simple selections to be cre-
ated quickly and easily.

When using this technique, reset the selection when the user presses
the mouse button and the pointer (hot spot) is outside (not on) any
existing selection. If the pointer is over a selected item, however,
don’t cancel the former selection, Instead, determine the appropriate
result according to whether the user pressed mouse button 1 or 2.

48 The Windows Interface Guidelines for Software Design

70

= For more information about
Bn‘: the appearance of selection
feedback, see Chapter 13, “Visual
Design.”

S For more information about
Ml pop-up menus, see Chapter
7, “Menus, Controls, and Toolbars.”

General Interaction Techniques Chapter 5

If the user presses mouse button 1 and the pointer does not move
from the button down point, the effect of the release of the mouse
button is determined by the context of the selection. You can support
whichever of the following best fits the nature of the user’s task:

* The result may have no effect on the existing selection. This is the
most common and safest effect.

* The object under the pointer may receive some special designa-
tion or distinction; for example, become the next anchor point or
create a subselection.

¢ The selection can be reset to be only the object under the pointer.

If the user pressed mouse button 2, the selection is not affected, but
you display a pop-up menu for selection.

Although selection is typically done by positioning the pointer over
an object, it may be inferred based on the logical proximity of an
object to a pointer. For example, when selecting text, the user can
place the pointer on the blank area beyond the end of the line and the
resulting selection is inferred as being the end of the line.

Selection Adjustment

Selections are adjusted (elements added to or removed from the Disjoint selection techniques
selection) using keyboard modifiers with the mouse. The CTRL key may not apply to all situations
is the disjoint, or toggle, modifier. If the user presses the CTRL key where you support selection.

while making a new sclection, preserve any existing selection within
that scope and reset the anchor point to the new mouse button-down

location. Toggle the selection state of the object under the pointer —
that is, if it is not selected, select it; if it is already selected, unselect it.

[f a selection modified by the CTRL key is made by dragging, the
selection state is applied for all objects included by the drag opera-
tion (from the anchor point to the current pointer location). This
means if the first item included during the drag operation is not se-
lected, select all objects included in the range. If the first item in-
cluded was already selected, unselect it and all the objects included
in the range regardless of their original state.

The Windows Interface Guidelines for Software Design 49

71

Chapter 5 General Interaction Techniques

For example, the user can make an initial selection by dragging.

Button down Button up

The [IE LG Compact Disc, beginning in the

\- Anchor paint Active end

The user can then press the CTRL key and drag to create a disjoint
selection, resetting the anchor point.

CTRL+button down Button up

The [T I ELERLE Compact Disc, CENIN]in the

Anchor point Active end

The user must press the CTRL key before using the mouse button for
a disjoint (toggle) selection. After a disjoint selection is initiated, it
continues until the user releases the mouse button (even if the user
releases the CTRL key before the mouse button).

The SHIFT key adjusts (or extends) a single selection or range selec-
tion. When the user presses the mouse button while holding down
the SHIFT key, reset the active end of a selection from the anchor
point to the location of the pointer. Continue tracking the pointer,
resetting the active end as the user drags, similar to a simple range
drag selection. When the user releases the mouse button, the selec-
tion operation ends. You should then set the active end to the object
nearest to the mouse button release point. Do not reset the anchor
point. It should remain at its current location.

Only the selection made from the current anchor point is adjusted.
Any other disjoint selections are not affected unless the extent of the
selection overlaps an existing disjoint selection.

The effect on the selection state of a particular object is based on the
first item included in the selection range. If the first item is already
selected, select (not toggle the selection state of) all objects included
in the range; otherwise, unselect (not toggle the selection state of)
the objects included.

50 The Windows Interface Guidelines for Software Design

72

General Interaction Techniques Chapter 5

The user must press and hold down the SHIFT key before pressing the
mouse button for the action to be interpreted as adjusting the selec-
tion. When the user begins adjusting a selection by pressing the
SHIFT key, continue to track the pointer and adjust the selection
(even if the user releases the modifier key) until the user releases the
mouse button.

Pressing the SHIFT modifier key always adjusts the selection from
the current anchor point. This means the user can always adjust
the selection range of a single selection or CTRL key—modified
disjoint selection. For example, the user can make a range selection
by dragging.

Button down Button up

LL1lH introduction of the Compact Disc, beginning (iRul=

L Anchor point Active end
The same result can be accomplished by making an initial selection.

Button down Button up

B e, b |
The [T IR Compact Disc, beginning in the

L Anchor point Active end
The user can adjust the selection with the SHIFT key and dragging.

SHIFT+button down Button up

1lilH introduction of the Compact Disc, beginning [iRUTH

{ Anchor point [Active end

The Windows Interface Guidelines for Software Design 51

73

Chapter 5 General Interaction Techniques

The following sequence illustrates how the user can use the SHIFT

key and dragging to adjust a disjoint selection. The user makes the
initial selection by dragging.

Button down Button up

The GG T ORI R LR Compact Disc, beginning in the
{ Anchor point \- Active end

The user presses the CTRL key and drags to create a disjoint selection.

CTRL+button down Button up

b e t
U introduciion of the ILNSEYNER i c ginning [T

Anchor point l Active end

The user can then extend the disjoint selection using the SHIFT key
and dragging. This adjusts the selection from the anchor point to the
button down point and tracks the pointer to the button up point.

SHIFT+button down Button up

L introduction of the [T EIQEN beginning in the

Anchor point [Active end

52 The Windows Interface Guidelines for Software Design

74

General Interaction Techniques Chapter 5

Figure 5.2 shows how these same techniques can be applied within a

spreadsheet.
1. The user salects four cells 2. The user holds down the
by dragging from A2 to B3. SHIFT key and clicks C4.
- Anchor point - Anchor point
| e R R e T A T
20 40 |] ik 20|
70 30 027
120 i
M O 8 I -
140 | 60| 180 5 140 |
170| 140 210 B 170
Active end Active end
3. The user holds down the 4. The user holds down the
CTRL key and clicks AG. SHIFT key and clicks C6.
[T (e o e et |
ks 20 40 |]
BN o[o o
Tl
e 140 160 180 JES 140] 160 180

6 — 1| 20 6 ?
Anchor point Anchor point Active end

Figure 5.2 Selection within a spreadsheet

The following summarizes the mouse selection operations.

Operation Mouse action =97 For more information about

3 P :)W the mouse interface, includ-
Select object (range of objects) Click (drag) ing selection behavior, see Appen-
Disjoint selection state of noncontiguous CTRL+click (drag) dix A, “Mouse Interface Summary.”

object (range of objects)

Adjust current selection to object SHIFT+click (drag)
(or range of objects)

The Windows Interface Guidelines for Software Design 53

75

Chapter 5 General Interaction Techniques

Region Selection

In Z-ordered, or layered, contexts, in which objects may overlap,
user selection can begin on the background (sometimes referred to as
white space). To determine the range of the selection in such cases, a
bounding outline (sometimes referred to as a marquee) is drawn. The
outline is typically a rectangle, but other shapes (including freeform
outline) are possible.

When the user presses the mouse button and moves the pointer (a
form of selection by dragging), display the bounding outline, as
shown in Figure 5.3. You set the selection state of objects included
by the outline using the selection guidelines described in the previ-
ous sections, including operations that use the SHIFT and CTRL
modifier keys.

MNew Tenxt
t Document (2] Document [3] 8 Do SEll Document [5)

Figure 5.3 Region selection

You can use the context of your application and the user’s task to
determine whether an object must be totally enclosed or only inter-
sected by the bounding region to be affected by the selection opera-
tion. Always provide good selection feedback during the operation
lo communicate to the user which method you support. When the
user releases the mouse button, remove the bounding region, but
retain the selection feedback.

54 The Windows Interface Guidelines for Software Design

76

General Interaction Techniques Chapter 5

Pen Selection
When the pen is being used as the pointing device, you can use the =4 For more information about
same selection techniques defined for the mouse. For example, in Ea! supporting selection in pen-
text input controls, you support user selection of text by dragging enabled controls, see the “Pen-

Specific Editing Techniques” section

through it. Standard pen interfaces also support text selection using a e
later in this chapter.

special pen selection handle. In discrete object scenarios, like draw-
ing programs, you support selection of individual objects by tapping
or by performing region selection by dragging.

In some specialized contexts, you can also use a press-hold-drag
technique or the lasso-tap gesture to support selection of individual
objects or ranges of objects. However, avoid implementing these
techniques when it might interfere with primary operations such as
direct manipulation. In general, consider using a pen selection
handle or pen controls that include the selection handles before you
consider these methods.

For the press-hold-drag technique, you switch to a selection mode
when the user holds the pen tip at the same location for a predefined
time-out. Then the user can drag to make a selection.

Lasso-tap involves making a circular gesture around the object, then
tapping within the gesture. For example, in Figure 5.4, making the
lasso-tap gesture selects the word “controversial.”

The prezident today
sighed jnkmlaw a

aioill that
make it illegal

Tap gesture

Lasso gesture —

Figure 5.4 A lasso-tap gesture

In text contexts, base the selection on the extent of the lasso gesture
and the character-word-paragraph granularity of the text elements
covered. For example, if the user draws the lasso around a single
character, select only that character. If the user draws the lasso
around multiple characters within a word, select the entire word. If
the gesture encompasses characters in multiple words, select the
range of words logically included by the gesture. This reduces the
need for the user to be precise.

The Windows Interface Guidelines for Software Design 55

77

Chapter 5 General Interaction Technigues

Keyboard Selection
Keyboard selection relies on the input focus to define selected =7 For more information about
objects. The input focus can be an insertion point, a dotted outline h input_ focus, see Chapter 13,
box, or some other cursor or visual indication of the location where “Visual Design.”

the user is directing keyboard input.

In some contexts, selection may be implicit with navigation. When
the user presses a navigation key, you move the input focus to the
location (as defined by the key) and automatically select the object at
that location.

In other contexts, it may be more appropriate to move the input
focus and require the user to make an explicit selection with the
Select key. The recommended keyboard Select key is the SPACEBAR,
unless this assignment directly conflicts with the specific context —
in which case, you can use CTRL+SPACEBAR. (If this conflicts with
your software, define another key that best fits the context.) In some
contexts, pressing the Select key may also unselect objects; in other
words, it will toggle the selection state of an object.

Contiguous Selection

In text contexts, the user moves the insertion point to the desired
location using the navigation keys. Set the anchor point at this loca-
tion. When the user presses the SHIFT key with any navigation key
(or navigation key combinations, such as CTRL+END), set that loca-
tion as the active end of the selection and select all characters be-
tween the anchor point and the active end. (Do not move the anchor
point.) If the user presses a subsequent navigation key, cancel the
selection and move the insertion point to the appropriate location
defined by the key. If the user presses LEFT ARROW or RIGHT ARROW
keys, move the insertion point to the end of the former selection
range. If UP ARROW or DOWN ARROW are used, move the insertion
point to the previous or following line at the same relative location.

You can-use this technique in other contexts, such as lists, where
objects are logically contiguous. However, in such situations, the

selection state of the objects logically included from the anchor point
to the active end depend on the selection state of the object at, or

56 The Windows Interface Guidelines for Software Design

78

General Interaction Techniques Chapter §

first traversed from, the anchor point. For example, if the object at
the anchor point is selected, then select all the objects in the range
regardless of their current state. If the object at the anchor point is
not selected, unselect all the items in the range.

Disjoint Selection

You use the Select key for supporting disjoint selections. The user
uses navigation keys or navigation keys modified by the SHIFT key
to establish the initial selection. The user can then use navigation
keys to move to a new location and subsequently use the Select key
to create an additional selection.

In some situations, you may prefer to optimize for selection of a
single object or single range. In such cases, when the user presses a
navigation key, reset the selection to the location defined by the
navigation key. Creating a disjoint selection requires supporting the
Add mode key (SHIFT+F8). In this mode, you move the insertion
point when the user presses navigation keys without affecting the
existing selections or the anchor point. When the user presses the
Select key, toggle the selection state at the new location and reset the
anchor point to that object. At any point, the user can use the
SHIFT+navigation key combination to adjust the selection from the
current anchor point.

When the user presses the Add mode key a second time, you toggle
out of the mode, preserving the selections the user created in Add
mode. But now, if the user makes any new selections within that
selection scope, you return (o the single selection optimization —
canceling any existing selections — and reset the selection to be only
the new selection.

Selection Shortcuts

Double-clicking with mouse button 1 and double-tapping — its pen Double-clicking as a short-
equivalent — is a shorteut for the default operation of an object. In cut for selection only applies
text contexts, it is commonly assigned as a shortcut to select a word. 10 text. In other contexts, it may per-
When supporting this shortcut, select the word and the space follow- form other operations.

ing the word, but not the punctuation marks.

The Windows Interface Guidelines for Software Design 57

79

Chapter 5 General Interaction Techniques

You can define additional selection shortcuts or techniques for spe-
cialized contexts. For example, selecting a column label may select
the entire column. Because shortcuts cannot be generalized across
the user interface, however, do not use them as the only way to per-
form a selection.

Common Conventions for Supporting Operations

There are many ways to support operations for an object, including
direct manipulation of the object or its control point (handle), menu
commands, buttons, dialog boxes, tools, or programming. Support
for a particular technique is not exclusive to other techniques. For
example, the user can size a window by using the Size menu com-
mand and by dragging its border.

Design operations or commands to be contextual, or related to, the
selected object to which they apply. That is, determine which
commands or properties, or other aspects of an object, are made
accessible by the characteristics of the object and its context (rela-
tionships). Often the context of an object may add to or suppress the
traits of the object. For example, the menu for an object may include
commands defined by the object’s type and commands supplied by
the object’s current container.

Operations for a Multiple Selection

When determining which operations to display for a multiple selec-
tion, use an intersection of the operations that apply to the members
of that selection. The selection’s context may add to or filter out the
available operations or commands displayed to the user.

It is also possible to determine the effect of an operation for a mul-
tiple selection based upon a particular member of that selection. For
example, when the user selects a set of graphic objects and chooses
an alignment command, you can make the operation relative to a
particular item identified in the selection.

Limit operations on a multiple selection to the scope of the selected
objects. For example, deleting a selected word in one window should

not delete selections in other windows (unless the windows are
viewing the same selected objects).

58 The Windows Interface Guidelines for Software Design

80

General Interaction Techniques Chapter 5

Default Operations and Shortcut Techniques

An object can have a default operation; a default operation is an
operation that is assumed when the user employs a shortcut tech-
nique, such as double-clicking or drag and drop. For example,
double-clicking a folder displays a window with the content of the
folder. In text editing situations, double-clicking selects the word.
The behavior differs because the default commands in each case
differ: for a folder, the default command is Open; and for text, it is

Select Word.
Similarly, when the user drags and drops an object at a new location =4 For more infarmation about
with mouse button 1, there must be a default operation defined to &M supporting default operations

determine the result of the operation. Dragging and dropping to some ~ for drag and cirop, see the “Trans-
locations can be interpreted as a move, copy, link, or some other fer Operations” section later in this

i 1S s A : chapter; also see Chapter 11, “Work-
operation. In this case, the drop destination determines the default ing with OLE Embedded and OLE

operation. Linked Objects.”

Shortcut techniques for default operations provide greater efficiency
in the interface, an important factor for more experienced users.
However, because they typically require more skill or experience and
because not all objects may have a default operation defined, avoid
shortcut techniques as the exclusive means of performing a basic
operation. For example, even though double-clicking opens a folder
icon, the Open command appears on its menu.

View Operations

Following are some of the common operations associated with view-
ing objects. Although these operations may not always be used with
all objects, when supported, they should follow similar conventions.

Operation Action

Open Opens a primary window for an object. For container
objects, such as folders and documents, this window
displays the content of the object.

Close Closes a window.
Properties Displays the properties of an object in a window,
typically in a property sheet window.

Help Displays a window with the contextual Help
information about an object.

The Windows Interface Guidelines for Software Design 59

81

Chapter 5 General Interaction Techniques

When the user opens a new window, you should display it at the top
of the Z order of its peer windows and activate it. Primary windows
are typically peers with each other. Display supplemental or second-
ary windows belonging to a particular application at the top of their
local Z order — that is, the Z order of the windows of that applica-
tion, not the Z order of other primary windows.

If the user interacts with another window before the new window
opens, the new window does not appear on top; instead, it appears
where it would usually be displayed if the user activated another
window. For example, if the user opens window A, then opens win-
dow B, window B appears on top of window A, If the user clicks
back in window A before window B is displayed, however, window
A remains active and at the top of the Z order; window B appears
behind window A.

Whether opening a window allows the user to also edit the informa-
tion in that window’s view depends on a number of factors. These
factors can include who the user is, the type of view being used, and
the content being viewed.

After the user opens a window, re-executing the command that
opened the window should activate the existing window instead of
opening another instance of the window. For example, if the user
chooses the Properties command for a selected object whose prop-
erty sheet is already open, the existing property sheet is activated,
rather than a second window opened.

Closing a window does not necessarily mean quitting the processes
associated with the object being viewed. For example, closing a
printer’s window does not cancel the printing of documents in its
queue. Quitting an application closes its windows, but closing a
window does not necessarily quit an application. Similarly, you can
use other commands in secondary windows which result in closing
the window — for example, OK and Cancel. However, the effect of
closing the window with a Close command depends on the context
of the window. Avoid assuming that the Close command is the
equivalent of the Cancel command.

60 The Windows Interface Guidelines for Software Design

82

For more information about
Ba' opening windows, property
sheets, and Help windows, see
Chapter 6, “Windows,” Chapter 8,
“Secondary Windows,” and Chap-
ter 12, “User Assistance,” respec-
tively.

E This guideline applies per
user desktop. Two users
opening a window far the same ob-
ject on a network can each see sepa-
rate windows for the object from
their individual desktops.

General Interaction Techniques Chapter 5

If there are changes transacted in a window that have not yet been
applied and the user chooses the Close command, and those changes
will be lost if not applied, display a message asking whether the user
wishes to apply or discard the changes or cancel the Close operation.
If there are no outstanding changes or if pending changes are retained
for the next time the window is opened, remove the window.

View Shortcuts

Following are the recommended shortcut techniques for the common
viewing commands.

Sharteut Operation 4 For more information on
BaN reserved and recommended
shortcut keys, see Appendix B,
“Keyboard Interface Summary.”

CTRL+0 Opens a primary window for an object. For
container objects, such as folders and
documents, this window displays the content of

the object.

ALT+F4 Closes a window.

F1 Displays a window with contextual Help
information.

SHIFT+F1 Starts context-sensitive Help mode.

Double-click Carries out the default command.

(button 1) or ENTER

ALT+double-click Displays the properties of an object in a

or ALT+ENTER window, typically in a property sheet window.

Use double-clicking and the ENTER key to open a view of an object
when that view command is the default command for the object. For
example, double-clicking a folder opens the folder’s primary win-
dow. But double-clicking a sound object plays the sound; this is
because the Open command is the default command for folders, and
the Play command is the default command for sound objects.

The Windows Interface Guidelines for Software Design 61

83

Chapter 5 General Interaction Techniques

Editing Operations

Editing involves changing (adding, removing, replacing) some fun-
damental aspect about the composition of an object. Not all changes
constitute editing of an object, though. For example, changing the
view of a document to an outline or magnified view (which has no
effect on the content of the document) is not editing. The following
sections cover some of the common interface techniques for editing
objects.

Editing Text

Editing text requires that you target the input focus at the text to be
edited. For mouse input, the input focus always coincides with the
pointer (button down) location. For the pen, it is the location of the
pointer when the pen touches the input surface. For the keyboard,
the input focus is determined with the navigation keys. In all cases,
the visual indication that a text field has the input focus is the pres-
ence of the text cursor, or insertion point.

Inserting Text

Inserting text involves the user placing the insertion point at the
appropriate location and then typing. For each character typed, your
application should move the insertion point one character to the right
(or left, depending on the language).

If the text field supports multiple lines, wordwrap the text; that is,
automatically move text to the next line as the textual input exceeds
the width of the text-entry area.

Overtype Mode

Overtype is an optional text-entry behavior that operates similarly to
the insertion style of text entry, except that you replace existing
characters as new text is entered — with one character being re-
placed for each new character entered.

62 The Windows Interface Guidelines for Software Design

84

General Interaction Techniques Chapter 5

Use a block cursor that appears at the current character position to
support overtype mode, as shown in Figure 5.5. This looks the same
as the selection of that character and provides the user with a visual
cue about the difference between the text-entry modes.

The 1893 statistics are complete

Figure 5.5 An overtype cursor

Use the INSERT key to toggle between the normal insert text-entry
convention and overtype mode.

Deleting Text

The DELETE and BACKSPACE keys support deleting text. The DE-
LETE key deletes the character to the right of the text insertion point.
BACKSPACE removes the character to the left. In either case, move
text in the direction of the deletion to fill the gap — this is some-
times referred to as auto-joining. Do not place deleted text on the
Clipboard. For this reason, include at least a single-level undo opera-
tion in these contexts.

For a text selection, when the user presses DELETE or BACKSPACE,
remove the entire block of selected text. Delete text selections when
new text is entered directly or by a transfer command. In this case,
replace the selected text by the incoming input.

Handles

Objects may include special control points, called handles. You can
use handles to facilitate certain types of operations, such as moving,
sizing, scaling, cropping, shaping, or auto-filling. The type of handle
you use depends on the type of object. For example, the title bar acts
as a “move handle” for windows. The borders of the window act as
“sizing handles.” For icons, the selected icon acts as its own “move
handle.” In pen-enabled controls, special handles may appear for
selection and access to the operations available for an object.

A common form of handle is a square box placed at the edge of an
object, as shown in Figure 5.6.

™./ For more information about

W pen handles, see the “Pen-
Specific Editing Techniques” section
later in this chapter.

The Windows Interface Guidelines for Software Design 63

85

Chapter 5 General Interaction Techniques

» Handle

[]
Figure 5.6 A graphic object with handles

When the handle’s interior is solid, the handle implies that it can ™% For more information about
perform a certain operation, such as sizing, cropping, or scaling. If W the design of handles, see
the handle is “hollow,” the handle does not currently support an Chapter 13, “Visual Design.”
operation. You can use such an appearance to indicate selection even

when an operation is not available.

Transactions

A transaction is a unit of change to an object. The granularity of a
transaction may span from the result of a single operation to that of a
set of multiple operations. In an ideal model, transactions are applied
immediately, and there is support for “rolling back,” or undoing,
transactions. Because there are times when this is not practical, spe-
cific interface conventions have been established for committing
transactions. If there are pending transactions in a window when it is
closed, always prompt the user to ask whether to apply or discard the
transactions.

Transactions can be committed at different levels, and a commitment
made at one level may not imply a permanent change. For example,
the user may change font properties of a selection of text, but these
text changes may require saving the document file before the changes
are permanent.

Use the following commands for committing transactions at the file

level.
Command Function ﬁ Use the Save command in
o . 2 1] contexis where committing
Save Saves a.ll‘mterlml edits, or checkpoints, to disk and begins a file transactions applies to transac-
e oditing seasicn, tions for an entire file, such as a
Save As Saves the file (with all interim edits) (o a new filename and ~ document, and are committed at one
begins a new editing session, time. It may not necessarily apply
for transactions committed on an
Close Prompts the user to save any uncommitted edits. If individual basis, such as record-
confirmed, the interim edits are saved and the window is oriented processing.
removed.

64 The Windows Interface Guidelines for Software Design

86

General Interaction Techniques Chapter 5

On a level with finer granularity, you can use the following com-
mands for common handling transactions within a file.

Command Function

Repeat Duplicates the last/latest user transaction.

Undo Reverses the last, or specified, transaction.

Redo Restores the most recent, or specified, “undone”
transaction.

OK Commits any pending transactions and removes the
window.

Apply Commits any pending transactions, but does not remove
the window.

Cancel Discards any pending transactions and removes the
window.

Following are the recommended commands for handling process

transactions.

Command Function 5 Although you can use the
Cancel command to halt a

Pause Suspends a process.

process, Cancel implies that the
Resume Resumes a suspended process. state will be restored to what it was
before the process was initiated.

Stop Halts a process.
Properties
Defining and organizing the properties of an application’s compo- =4 For more information about

nents are a key part of evolving toward a more data-centered design. () property sheets, see Chapter
Commands such as Options, Info, Summary Info, and Format often 8, “Secondary Windows."

describe features that can be redefined as properties of a particular

object (or objects). The Properties command is the common com-

mand for accessing the properties of an object; when the user

chooses this command, display a secondary window with the proper-

ties of the object.

Defining how to provide access to properties for visible or easily
identifiable objects, such as a selection of text, cells, or drawing

objects, is straightforward. It may be more difficult to define how to
access properties of less tangible objects, such as paragraphs. In

The Windows Interface Guidelines for Software Design 65

87

