
Fisheye Menus
Benjamin B. Bederson

Human-Computer Interaction Lab
Institute for Advanced Computer Studies

Computer Science Department
University of Maryland, College Park, MD 20742

+1 301 405-2764
bederson@cs.umd.edu

ABSTRACT
We introduce “fisheye menus” which apply traditional
fisheye graphical visualization techniques to linear menus.
This provides for an efficient mechanism to select items
from long menus, which are becoming more common as
menus are used to select data items in, for example, e-
commerce applications. Fisheye menus dynamically
change the size of menu items to provide a focus area
around the mouse pointer. This makes it possible to
present the entire menu on a single screen without requiring
buttons, scrollbars, or hierarchies.
A pilot study with 10 users compared user preference of
fisheye menus with traditional pull-down menus that use
scrolling arrows, scrollbars, and hierarchies. Users
preferred the fisheye menus for browsing tasks, and
hierarchical menus for goal-directed tasks.

Keywords
Fisheye view, menu selection, widgets, information
visualization.

INTRODUCTION
The concept of a "fisheye" distortion in a computer
interface to present detailed information in context has
been around a long time. Spence & Apperley introduced
the idea in 1982 [24]. Furnas then discussed the cognitive
aspects of how people remember information [7]. Several
researchers then applied fisheye distortion to a broad
variety of applications [4, 15, 25]. Several variations of the
fisheye technique have been explored. They have been
used in one dimension for word processing [9], access to
time [12], and for long lists [13, 14]. They have been used
in two dimensions for tables [17], graphical maps [20] and
space-scale diagrams [8]. They have even been used in
three dimensions for document browsing [19]. Some
applications of fisheye distortion techniques have been
carefully evaluated, often finding a significant advantage to
fisheye views [5, 11, 21].
However, despite the careful investigation of fisheye view
distortion techniques, and their application to a broad set of
complex tasks, fisheye views have never been applied to

the mundane challenge of ordinary menus. This paper
applies standard fisheye techniques to menus in Graphical
User Interfaces with the goal of improving performance in
user's ability to select one item from a long list.
Selecting items from menus is another well-studied area,
and the trade-offs of menu design are well understood [10,
16]. Menu design has become quite standard with well-
grouped menu items in consistent locations using common
names. This is appropriate for carefully designed
applications where every element of the menus can be
chosen in advance.
However, with the introduction of the Web and e-
commerce applications, it is becoming increasingly
common to use menus for selecting data items, as opposed

Figure 1: A screen shot of the fisheye menu in use.
This shows 100 web sites taken from the most popular
list of PC Magazine.

1 CYPRESS 1019f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

to selecting operations. For example, menus are used to
select from a long list of fonts, to select one state out of 50,
to select one country out of 250, or to select a web site
from a list of favorites.
It was this last example that motivated the application of
fisheye views to menus. Managing ones favorite locations
on the web is an important application of web browsers, but
one study showed that most web browser users don't put
more than about 35 items in their favorite lists before
resorting to using hierarchies [1]. While hierarchies
certainly help to organize information, this study found that
while some people used hierarchies, many stopped adding
new favorites altogether. The user interface for managing
favorites may contribute to this. Since web browsers use
pull-down menus to store favorites, and since these menus
don't work very well as the number of elements within the
menu grows, it is not surprising that people don't put more
than that many items in the menus before using hierarchies.
Some researchers have looked at alternative interfaces for
managing web favorites [18], but they have not yet made it
into commercial products. Also, those approaches are fine-
tuned to web favorite organization, and may not apply very
well to other menu selection tasks.
Selecting data items from menus is different than selecting
functions because the data items in the menu are likely to
change from use to use, and there are typically many more
data elements in a menu than there are in functional menus.
In addition, since the user is not as familiar with the menu,
it is more likely that they won't know the exact text of each
item. Thus, supporting browsing as well as searching is
important. The length of the menu is crucial in determining
usability. It takes users a time proportional to the location
of an item in a menu to access it [6, 22]. However, the real
problem comes with menus that have more items than fit
on the screen. AlphaSliders are one approach for selecting
textual items from a long list in a small space [2]. However
that approach only displays one item at a time, and does not
fit into the pull-down menu metaphor.
The existing approaches to selecting from one of many
displayed items in a long list are limited. There are three
commonly used approaches which are to use scrolling
arrows at the top and bottom of the list, to use hierarchical
"cascading" menus to make the list smaller, or to use
scrollbars. Let us look at each of these approaches in more
detail.
Standard GUI toolkits today provide support for long pull-
down menus by adding small scrolling arrows to the top
and bottom of the list if the entire list doesn't fit on the
display. When the user clicks on those arrows, the list is
scrolled up or down. Each toolkit implements these arrows
differently, some having fast scrolling if you hold the arrow
down (Microsoft MFC), and some slow (Swing). Some
automatically scroll when the mouse is just placed over the
arrows without clicking (Internet Explorer). However, in
any case, the user is required to first move the mouse to the
arrow, and then scroll until the desired element becomes

visible. An additional, but uncommon problem is that if
the menu is scrolled too far, the mouse must be moved to
the arrow on the opposite side of the menu, and the user
must then scroll in the other direction.
A common alternative to long lists is to use hierarchical
"cascading" menus. This works by having the application
developer, or sometimes the user, organize the menu
elements into groups. Then, one entry that represents each
group is placed in the menu. When the user selects that
group element, the members of the group are displayed in a
second menu off to the side. This approach solves the
problem of physically navigating a long list, but replaces it
with a new problem of requiring the user to know what
group the desired element is in. If the user knows the
hierarchy structure well, then this approach works.
However, if the user does not know the hierarchy structure
well, then the user must look in each group, which is
potentially time consuming. Typical applications with
stable menu structures regularly use hierarchical cascading
menus because presumably the user will rapidly learn
where each element belongs. However, it is uncommon in
practice to find hierarchical menus that are used for
organizing data driven menus.
Finally, the last common solution for managing long menus
is to use a scrollbar that controls the portion of the menu
that is visible. This seems like an excellent approach
because it gives fixed time access to menus of any length
unlike the more common scrolling arrows, which takes
time proportional to the menu length. However, while
scrollbars are commonly used in dialog boxes, they are
rarely if ever used in pull-down menus. Perhaps this is
because current toolkits do not provide this as a default
behavior, although it is possible to implement it with some
toolkits.
In addition to these visualization methods, nearly all
toolkits support keyboard shortcuts for selecting menu
items. There are often modeless shortcuts (such as Ctrl-C
for "Copy") that select a menu element throughout the
application, even when the menu is closed. In addition to
those shortcuts, the keyboard can be used to select items in
the menu when it is open. Developers can either specify
which key should apply to each item by specifying a
"mnemonic", or if it is left unspecified, the first character of
the item is used. Thus, in an alphabetically sorted list,
pressing any key will jump the cursor to the first item
starting with that letter. Pressing it again will move to the
next item starting with that letter, and so on.
These keyboard accelerators are very powerful as they
bypass some of the shortcomings of the mouse-based
interaction techniques just described. They give users
direct access to either the target element, or at least to the
general area if there is more than one element sharing the
mnemonic. However, despite their power, many users do
not use them at all. Some users are not aware of them, but
others are aware of them and choose not to use them
anyway. Perhaps this is because their hand is already on the

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

mouse and takes too long to reacquire the keyboard, or
perhaps they don't know the keyboard well enough to
justify searching for the right key. Or they may not know
the exact text and actually are browsing the menu. And
finally, some users may just not like using the keyboard
when interacting with menus. People that only use the
mouse for selecting menu items are likely to be the largest
beneficiaries of fisheye menus.

FISHEYE MENU DESIGN ISSUES
We offer a new solution to the problem of menus that have
more items than fit on the screen by using a fisheye view to
display the menu elements. In fisheye menus, all of the
elements are always displayed in a single window that is
completely visible, but the items near the cursor are
displayed at full size, and items further away from the
cursor are displayed at a smaller size. In addition, the
interline spacing between items is also increased in the
focus area, and decreased further away from the focus area.
In this manner, the entire list of items fits on a single
screen. The items are dynamically scaled so that as the
cursor moves, a "bubble" of readable items moves with the
cursor (Figure 1). A fisheye menu applet can be found at
http://www.cs.umd.edu/hcil/fisheyemenu.
The fisheye menu uses all the available screen space, and
will calculate a distortion function so that the menu items
always just fill the menu. There are two principal
parameters of the fisheye menu that the application
developer can control: maximum font size, and focus
length. As with traditional menus, the designer can specify
the font size, which for the fisheye menu translates in to the
maximum font size, since some elements are rendered
smaller. However, the designer can also specify the desired
focus length. This specifies the number of items that are
rendered at maximum size near the cursor.
The focus length parameter is important because it controls
the trade-off between the number of menu items at full size
versus the size that is used to render the smallest items.
The fisheye menu dynamically computes the distortion
function based on the available space and these input
parameters. So, if the focus length is set to a large number
(i.e., 20), then this will push the peripheral items to be very
small, and as the user moves the cursor, there will be a lot
of distortion. If, however, the focus length is set to a small
number (i.e., 5), then there will be more room for
peripheral items and they will all be a bit larger. Figure 2
shows this trade-off.

Alphabetic Index
A fundamental characteristic of the fisheye menu is that
many of the menu items are too small to read at any given
position. However, since it is common to organize menu
items alphabetically for data menus, we can encourage this
organization for fisheye menus without undue burden.
Then, users can use their alphabetic knowledge to move the
cursor to the area they expect the item to be at, thus
bringing that portion of the menu into focus at which point
they can read the menu items and select the particular item

they want. This is similar to how people use telephone
directory books. Despite the fact that items are listed
sequentially in the phone book, people use their alphabetic
knowledge to jump to the portion of the phone book where
they expect the item they are looking for to be. They then
see where they actually are, and fine-tune their search.
This telephone book analogy guides the design. One of the
reasons people can find items in telephone books so
quickly is that telephone books have index information at
the top of every page specifying in a large clear font what
information is on that page. These indices allow users to
just look at the indices while looking for the right page, and
then look at the content when they have found the page
they are looking for. It has been shown that indexes can
decrease search time with lists [3].
We designed the fisheye menus to have an alphabetic index
with the goal of making it easier for users to target the
portion of the menu that contains the item they are looking
for. The alphabetic index appears on the left side of the
menu. Each letter of the alphabet for which there is room
is displayed in the specified maximum font size.
The index letters are positioned so that when the pointer is
moved to the same vertical position as an index letter, the
first item starting with that letter will be just under the
mouse pointer. This provides the user with the ability to
rapidly move to the general area of the list they are
targeting.
This is our second design of the index letters. The first
design always positioned the letters at the current position
of the first item starting with that letter. Thus, as the
fisheye focus changed, the index letters would move
around, following the items. This turned out to be

Figure 2: The same menu of 100 items displayed with
varying focus lengths (7, 12, and 20). There is a fixed
maximum font size.

3f

Find authenticated court documents without watermarks at docketalarm.com.

http://www.cs.umd.edu/hcil/fisheyemenu
https://www.docketalarm.com/

distracting and not useful. By the time a user moved the
pointer to the position an index letter was at, that index
letter would have moved (since the focus and thus item
positioning would have changed.) We quickly realized the
value of the index letters was to inform pointer motion, and
shifted to the current stable design described above. Figure
3 shows the fisheye menu at different focus points.

High-Resolution Selection (Focus Lock Mode)
One difficulty with the fisheye menu mechanism as
described so far is that small mouse movements result in a
change of fisheye focus. With traditional menus, the
mouse must move over the full height of a menu item to
change the focus to the next item. However, with fisheye
menus, the amount the mouse must move to go to the next
item is equal to the smallest font size in the menu. This is a
fundamental result of the fisheye algorithm since all of the
menu items must be selectable by pointer movement in the
fixed vertical space of the menu.
This is a significant liability because despite the fact that
the focused elements are large and plainly readable, they
are difficult to select.
We overcame this problem by offering a "focus lock" mode
to the fisheye menu. Users operate the menu as described
above until they get near the item of interest. They then
move the pointer to the right side of the menu, which locks
the focus on the item the cursor is over. Then, when users
move the pointer up and down, the focus stays fixed, but
individual menu elements can still be selected. The focus
region on the right side of the menu gets highlighted to
indicate that the menu is in focus lock mode.
Further, if the pointer is moved above or below the focus
region (staying on the right side of the menu), the focus
area is expanded. Eventually all of the menu items become

full-size and thus easy to select. But, of course, not all of
the items are visible anymore as the ends get pushed off the
screen as the focus area is expanded. Since the menu
layout is quite different in focus lock mode, the index
characters become inaccurate, and so they are faded out as
the focus area is expanded in focus lock mode.
If users decide to continue looking in a different portion of
the menu, moving the pointer back to the left side of the
menu turns off focus lock mode, and the menu returns to
regular behavior. This focus lock approach to high-
resolution selection within a fisheye view solves the
resolution problem at the cost of a small mouse movement.
We considered several alternative approaches to entering
the focus lock mode. We first tried using the right button,
but gave that up as it seemed too unlikely that users would
discover it on their own – especially since it did not follow
the standard Windows model of pressing the right button
for a context-sensitive menu. And, of course, it would not
work at all for systems without a second mouse button. We
also considered using the speed of the mouse to determine
the focus mode, but that seemed to be too unpredictable by
users. Also, an earlier study of the AlphaSlider confirmed
this intuition [2].
We ended up with the current design, which offers an
affordance for the focus lock feature. There is a subtly
shaded box on the right side of the menu that moves up and
down with the focus. This was intended to draw user’s
attention to the right side of the menu. In addition, the two
small arrows on the right side are intended to suggest to
users that they can move the pointer up and down in focus
lock mode. When the pointer is moved towards the arrows,

the focus area is extended, and the arrows move
accordingly. The users can thus discover that the focus can

Figure 3: The same menu displayed with the cursor at
three positions.

Figure 4: A fisheye menu in focus lock mode whose
focus area is being extended upwards

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

be extended. Figure 4 shows the focus lock mode with the
focus area being extended upwards.
IMPLEMENTATION
The fisheye menu is a drop-in replacement for Java's
standard "JMenu" component in the Swing GUI toolkit.
This new widget, called FishEyeMenu, is written in Java 1,
and works for applications and applets. This means that
any Java code that currently uses traditional Swing menus
can switch to using the fisheye menus with a one-word
change by replacing “new JMenu()” with “new
FishEyeMenu()”1.
The standard approach to implementing fisheye distortion
techniques is to compute a "Degree of Interest" (DOI)
function for each element to be displayed. The DOI
function calculates whether to display an item or not, and it
calculates the item's size. Typical degree of interest
functions include both the distance of an item from the
focus point as well as the item's a priori importance [7].
Thus, certain landmark items may be shown at a large size
even though they are far from the focus point.
The fisheye menu uses a very simple DOI function that
only includes distance from the focus point, and does not
use a priori importance. A simple function that captures the
essence of the fisheye menu is shown in Figure 5. It keeps
several menu items near the focus point at the maximum
size, where the exact number is specifiable. Then, the
menu items get smaller, one point in font size at a time
until the minimum font size is reached at which time, all
more distant items stay at the minimum font size.
Using this DOI function, the fisheye menu calculates the
largest minimum size font that will result in a menu that fits
on the screen. If there are so many items in the menu, or if
there is so little available screen space that there is not
enough room for the menu, then the DOI function
parameters are adjusted so there is enough room. First, the
focus length is reduced. If there is still not enough room

1 Note that the online applet uses Java 2 to decrease the
portability problems associated with accessing Swing
from Java 1.

when the focus length is set to 1, then the maximum font
size is reduced.

Complexities
In practice, the DOI function is actually a little more
complex than just described for two reasons. The first
reason is that we want the menu items to be visually stable
outside of the focus area. That is, if the focus is on the first
half of the menu, it is important that the second half of the
menu doesn't move at all as the focus changes. The fisheye
menu is stable using the above DOI function when the
focus is not near one of the ends of the menu. However,
when it is near the ends of the menu, there is a surprising
side effect of the algorithm, which results in the entire
menu shifting.
Since we render each item based on the position of the item
before it, one item alone changing size will slide all other
lower menu items up or down. Moving the focus in the
middle of the menu doesn't cause a problem because for
every item that gets bigger, another items gets smaller by
the same amount. To understand the issue here, let us look
at the simplest case where the focus is on the first item in
the menu. In this case, there are no items before the focus
item to get rendered, and the items after the focus item get
smaller until the minimum size is reached. Compare this
with the focus being on the second item in the menu. Now,
one item before the focus is rendered at a large size while
the items after the focus get smaller in the same way.
Thus, more space is taken altogether, and the entire menu
shifts down a little bit. The entire menu continues to grow
as the focus moves down from the end until the distortion
no longer goes to the end of the menu and the menu
becomes stable.
Our solution is to increase the size of the focus area just
enough to account for the smaller number of focus items
when the focus point is near the menu end. This way, the
total amount of space used by the focus area is always
constant, and the entire menu remains visually stable.
The fisheye menu uses this modified DOI function to
calculate the required size of the popup menu. This leads
to the second reason that our DOI function is more
complex in practice. We use integer calculations since text
is only rendered in integer sizes, and so the popup menu
size can end up being substantially smaller than the
available space. We want to use as large a menu size as
possible since the bigger the menu is, the more items we
can render in a large enough font to read, and the more
usable the fisheye menu will be.
Once the minimum size font is calculated, a menu that uses
all the available screen space is created. Then the DOI
function is modified using the same technique that we used
to solve the first problem - the focus area is expanded until
the text fills up the full menu space.
One remaining issue has to do with the alphabetic index.
Since the index characters are always rendered at full size,
they would overlap each other when they are far from the

Focus
length

Max font size

Min font size

Item Number

Item
Size

Figure 5: The basic Degree of Interest function used for
the fisheye menu.

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

