213 Larsen Hall, University of Florida PO Box 116200, Gainesville, FL 32611-6200 352-392-4931 <u>darnold@ufl.edu</u> <u>http://www.img.ufl.edu/darnold</u>

EDUCATION

Ph.D.	Electrical and Computer Engineering	Georgia Institute of Technology	Dec. 2004
M.S.	Electrical and Computer Engineering	University of Florida	Dec. 2001
B.S.	Electrical Engineering	University of Florida	May 1999
B.S.	Computer Engineering	University of Florida	May 1999
ACAD	EMIC APPOINTMENTS		
George En	Kirkland Engineering Leadership Professor g., University of Florida	, Dept. Electrical and Computer	8/2016-present
Affiliate	e Professor, Dept. Materials Science and Eng	g., University of Florida	3/2010-12/2020
Professo	or, Dept. Electrical and Computer Eng., Uni	versity of Florida	8/2014-8/2016
Visiting	Scientist, FRIAS/IMTEK, University of Fr	eiburg, Germany	10/2011-11/2011
Visiting	Professor, G2ELab/INPG/Institut Néel, Gro	enoble, France	9/2011-10/2011
Associa	te Professor (tenure), Dept. Electrical and C	omputer Eng., University of Florida	8/2010-8/2014
Assistar	nt Professor, Dept. Electrical and Computer	Eng., University of Florida	6/2005-8/2010
Postdoc	toral Fellow, School of Electrical and Comp	. Eng., Georgia Tech	1/2005-6/2005
LEAD	ERSHIP		
UF Site Rea Un	Director and University/Industry Partnershi search Center for the Internet of Things for I iversity of Florida	ps Director, NSF Engineering Precision Agriculture (IoT4Ag),	9/2020-present
Associa	te Chair for Research, Dept. of Electrical an	d Computer Engineering	8/2019-present
Deputy (M	Director, NSF I/UCRC on Multi-functional IST Center), University of Florida	Integrated System Technology	8/2014-3/2021
Inaugur	al Director, Interdisciplinary Microsystems	Group (IMG), University of Florida	4/2016-4/2019

Interim Director, Nanoscience Institute for Medical and Engineering Technology 1/2012–6/2013 (NIMET), University of Florida

RESEARCH INTERESTS

Micro/nanostructured magnetic materials Magnetic microsystems and electromechanical transducers Biomedical applications of magnetic systems Compact (<100 W) power/energy systems (wireless power, energy harvesting, interface circuits)

HONORS & AWARDS

DOCKE.

AIP Advances in Magnetism Award (Best Paper) Finalist (2019) **UF ECE Excellence Award for Teaching** (2019) Best Poster, 2018 Fall MIST Center Meeting (2018) Anderson Scholar Faculty Honoree (2018, 2019) Best Demo, 2018 Spring MIST Center Meeting (2018) Best Poster, 2017 Fall MIST Center Meeting (2017) Best Demo, 2017 Fall MIST Center Meeting (2017)

UF Term Professorship (2017-2020)

Best Application Paper, 2017 MARSS Conference (2017)

UF ECE Excellence Award for Service (2017)

George Kirkland Engineering Leadership Professorship (2016-present)

Best Paper, SPIE 'Smart Biomedical and Physiological Sensor Technology XIII' Conference (2016)

UF Research Foundation Professorship (2016-2019)

Best Poster, Frontiers in Biomagnetic Particles Conf. (2015)

UF Technology Innovator (2013, 2014, 2015, 2016)

UF Engineering Doctoral Dissertation Advisor/Mentoring Award (2013)

UF Engineering Pramod P. Khargonekar Junior Faculty Award for Excellence (2011)

DARPA Young Faculty Award (2009)

Presidential Early Career Award for Scientists and Engineers (PECASE) - DoD (2008)

UF Dean's Honor Roll of Teaching (2007)

Southeastern Center for Electrical Engineering Education (SCEEE) Young Investigator Grant (2007)

UF ECE Teacher of the Year, Runner-Up (2005-06)

Georgia Tech Presidential Fellowship (2002-04)

National Science Foundation Graduate Research Fellowship (2000-03)

Trainer of the Year, Honorable Mention, MiRC Cleanroom, Georgia Tech (2003)

Best Paper, AIAA Aerodynamic Measurement Technical Committee (2002)

Tau Beta Pi Fellowship (1999-2000)

UF ECE "Electric E" Award (1999)

TEACHING HISTORY

DOCKET

A I A R M

			Instructor Evaluation [*]		Instructor Overall [†]			
Term	Course	Title	Instr. Dept. Coll.			Instr. Dept. Coll.		
Spr 2021	EEL 3008	Physics of EE	4.82	4.36	4.25			
Spr 2021	EGN 6933	Eng. Faculty Development	4.82	4.78	4.25			
Fall 2020	EEL 3008	Physics of EE	4.69	4.30	4.25			
Spr 2020	EGN 6933	Eng. Faculty Development	4.73	4.54	4.26			
Spr 2020	EEL 4412	Appl. Magn. & Magn. Mtls.	4.71	4.34	4.26			
Spr 2020	EEL 5417	Appl. Magn. & Magn. Mtls.	4.88	4.53	4.26			
Fall 2019	EEL 3008	Physics of EE	4.63	4.32	4.19			
Fall 2018	EEL 3008	Physics of EE	4.80	4.38	4.27	4.82	4.35	4.22
Spr 2018	EGN 6933	Eng. Faculty Development	4.80	4.54	4.51	4.88	4.58	4.50
Spr 2018	EEE 6465	Design MEMS Transducers	4.94	4.56	4.51	5.00	4.54	4.50
Fall 2017	EEL 3008	Physics of EE	4.57	4.25	4.17	4.62	4.21	4.11
Fall 2017	EEL 4412	Appl. Magn. & Magn. Mtls.	4.93	4.25	4.17	5.00	4.21	4.11
Fall 2017	EEL 5417	Appl. Magn. & Magn. Mtls.	4.81	4.39	4.41	4.75	4.34	4.40
Spr 2017	EEL 3008	Physics of EE	4.50	4.30	4.21	4.55	4.26	4.16
Spr 2017	EMA6936	Eng. Faculty Development	4.69	4.40	4.45	4.69	4.39	4.43
Fall 2016	EEL 3008	Physics of EE	4.42	4.30	4.20	4.46	4.28	4.15
Spr 2016	EEE 6465	Design MEMS Transducers	4.73	4.45	4.45	4.71	4.46	4.45
Fall 2015	EEL 5225	Prin. MEMS Transducers	4.75	4.30	4.20	4.75	4.29	4.16
Spr 2015	EEL 4930	Appl. Magn. & Magn. Mtls.	4.44	4.30	4.17	4.33	4.30	4.14
Spr 2015	EEL 5934	Appl. Magn. & Magn. Mtls.	4.93	4.30	4.17	5.00	4.30	4.14
Fall 2014	EEL 3111	Circuits 1	4.46	4.20	4.16	4.65	4.17	4.13
Fall 2013	EEL 5225	Prin. MEMS Transducers	4.78	4.29	4.18	5.00	4.27	4.17

Spr 2013	EEL 5934	Appl. Magn. & Magn. Mtls.	4.24	4.27	4.15	4.29	4.30	4.15
Spr 2011	EEL 5934	Appl. Magn. & Magn. Mtls.	4.77	4.18	4.10	4.85	4.19	4.11
Spr 2011	EEE 6465	Design MEMS Transducers	4.80	4.18	4.10	4.86	4.19	4.11
Fall 2010	EEL 5225	Prin. MEMS Transducers	4.33	4.40	4.34	4.29	4.41	4.39
Spr 2010	EEE 6465	Design MEMS Transducers	4.55	4.47	4.36	4.44	4.50	4.41
Fall 2009	EEL 3211	Basic Electr. Energy Eng.	4.48	4.09	4.06	4.67	4.14	4.10
Spr 2009	EEL 5934	Appl. Magn. & Magn. Mtls.	4.50	4.50	4.36	4.69	4.56	4.40
Fall 2008	EEE 4331	Microelectronic Fab. Tech.	4.60	4.13	4.07	4.67	4.19	4.11
Fall 2008	EEE 5405	Microelectronic Fab. Tech.	4.37	4.38	4.33	4.40	4.45	4.40
Spr 2008	EEE 6465	Design MEMS Transducers	4.57	4.48	4.35	4.78	4.60	4.43
Fall 2007	EEL 4331	Microelectronic Fab. Tech.	4.74	4.02	4.17	4.82	4.07	4.22
Fall 2007	EEE 5405	Microelectronic Fab. Tech.	4.93	4.31	4.32	5.00	4.37	4.38
Spr 2007	EEE 6465	Design MEMS Transducers	4.82	4.37	4.37	4.79	4.39	4.42
Fall 2006	EEL 5225	Prin. MEMS Transducers	4.07	4.18	4.29	4.00	4.19	4.35
Spr 2006	EEL 4331	Solid-State Technology	4.57	4.12	4.00	4.75	4.18	4.04
Spr 2006	EEL 5934	Microelectronic Fab. Tech.	4.85	4.30	4.25	5.00	4.36	4.29
Fall 2005	EEL 5225	Prin. MEMS Transducers	4.62	4.26	4.22	4.71	4.28	4.26
		AVERAGES	4.65	4.32	4.25	4.69	4.32	4.26

Numerical evaluations based on 5.0 scale. Semesterly undergraduate or graduate department (Dept.) and college (Coll.) averages are shown for comparison. *Average of N specific questions relating to the instructor (N=9 for 2005–2018; N=6 for 2019–present). [†]Overall evaluation based on a single question (this question eliminated in 2019).

SPONSORED RESEARCH HISTORY

Summary:

49 distinct projects from 20 different sponsors \$46M in total funding (\$7M as PI), \$10M my portion \$409k/year average research expenditures (FY2018-20)

Title	Role	Sponsor	Dates	Amount*
NSF Engineering Research Center for the Internet	CoPI	NSF	9/1/20-8/31/25	\$31,014,717
of Things for Precision Agriculture (IoT4Ag)				(7%)
Magnetic Nanoparticles and Symbiosis	CoPI	Moore	9/1/20-8/30/23	\$549,426
		Foundation		(17%)
Phase II IUCRC University of Florida: Center for	CoPI	NSF	4/1/20-3/31/25	\$750,000
Multi-functional Integrated System Technology				(50%)
(MIST)				
Planning Grant: Engineering Research Center for	CoPI	NSF	9/1/19-8/31/20	\$100,000
Ubiquitous Wireless Power for a Healthy World				(0%)
(POWERHEALTH)				
Development of Wirelessly Rechargeable Battery	PI	UF	7/9/18-12/31/19	\$24,850
Technology				(100%)
Collaborative: Single-Input Control of Large	PI	NSF	6/1/17-5/30/21	\$295,191
Microrobot Swarms using Serial Addressing for				(100%)
Microassembly and Biomedical Applications				
Electromagnetic and Magnetic Penetration for	CoPI	DARPA	12/6/17-5/30/20	\$1,070,000
High-Resolution Image Reconstruction				(14%)
Rapid, Portable Detection of Coliforms and <i>E</i> .	PI	Innovative	8/15/17-7/14/18	\$49,759
coli. in Drinking Water		Space		(85%)

Find authenticated court documents without watermarks at docketalarm.com.

		Tech.		
		(DHA)		
SNM: Large-area Manufacturing of Integrated	CoPI	NSF	7/1/17-6/30/22	\$1.396.666
Devices with Nanocomposite Magnetic Cores				(28%)
Magnetic Thick Films for Integrated Microwave	PI	DARPA	2/1/17-1/31/22	\$1,119,928
Devices				(72%)
Miniaturization of Resonant Wireless Power	CoPI	MIST	1/1/17-12/31/17	\$25,000
Transfer System Components		Center		(50%)
Chip-Scale MEMS Receivers for Low-Power	CoPI	MIST	1/1/17-6/30/18	\$75,000
Wireless Charging		Center		(50%)
Electrodynamic Wireless Power Transmission	PI	UF	6/15/16-6/30/18	\$25,526
Prototype				(100%)
Zero-Power Magnetic Field Sensors Using	CoPI	MIST	1/1/16-12/31/19	\$195,000
Magnetoelectric Nanowires		Center		(49%)
Levitated Microfactories for High-speed Adaptive	PI	SRI	6/15/15-5/31/17	\$170,000
Microassembly		(DARPA)		(100%)
Biological and Fluidic Measurements using	PI	UF	6/1/15-8/31/16	\$22,005
Magnetic Microdiscs				(100%)
Modeling of the Magnetic Particle Imaging Signal	CoI	NIH	3/1/15-1/31/18	\$386,844
Due to Magnetic Nanoparticles				(29%)
Directed Nanoparticle Assembly by	PI	MIST	1/1/15-12/31/15	\$47,000
Electrophoretic Deposition		Center		(100%)
High-Performance CoPt Micromagnets	PI	MIST	1/1/15-12/31/15	\$47,000
		Center		(100%)
Development of Integrated Magnetic Sensors:	PI	Allegro	10/1/14-6/30/15	\$50,000
Phase 2		Microsyst.		(100%)
EAGER: Processes for Manufacturing High-	PI	NSF	9/1/14-4/30/16	\$120,000
Performance Magnetic Materials in Electronic				(64%)
Systems				
I/UCRC Phase I: Multi-functional Integrated	CoPI	NSF	9/1/14-8/31/20	\$957,012
System Technology (MIST)				(50%)
Development of Nanocomposite Micro-Inductor	PI	UF	7/11/14-12/31/15	\$22,986
Prototypes				(100%)
Distributed Wireless Power Transmission to	PI	GTS	12/1/13-12/31/15	\$200,000
Compact Electronic Devices		(US Army)		(100%)
Magnetic Collection of Joint-Level Osteoarthritis	Invest.	NIH	9/16/13-8/31/15	\$335,070
Biomarkers				(37%)
Development of Integrated Magnetic Sensors	PI	Allegro	9/1/13-5/31/14	\$84,143
	a DI	Microsyst.		(100%)
Planning Grant: I/UCRC for Multi-functional	CoPI	NSF	//1/13-6/30/15	\$55,971
Integrated System Technology	DI	NGE		(50%)
Collaborative Research: Lailoring Energy Flow in	PI	NSF	6/1/13-12/31/16	\$250,000
Magnetic Oscillator Arrays	C DI	I IF	5/1/12 4/20/15	(100%)
Magnetic Nanoparticle/Biomarker Harvesting	CoPI	UF	5/1/13-4/30/15	\$87,792
Treatment of Octoo extensition				(17%)
I realment of Usteoartnritis	זת	A 11	2/15/12 5/15/12	¢ 4 700
Nagnetic Unaracterization of Leadframe	PI	Allegro	3/13/13-3/13/13	\$4,700
Iviaterials	C. DI	Iviicrosyst.	0/1/12 0/21/14	(100%)
Interdisciplinary Research Group on Magnetic	CoPI	UF	9/1/12-8/31/14	\$222,000

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Biomaterials				(33%)
Micromachining of Permanent Magnet Undulator	PI	DARPA	9/13/11-12/12/13	\$1,078,701
Structures for Compact X-ray Sources				(51%)
High Energy Density 3-D Electrodes for Energy	CoPI	Encell	7/15/11-11/14/11	\$44,000
Storage Applications		Technology		(50%)
Faculty Enhancement Opportunity Fund	PI	UF	8/1/11-12/31/11	\$7,549
				(100%)
Development of Fully-Integrated Micromagnetic	PI	ARO	10/1/09-3/31/15	\$1,000,000
Actuator Technologies (PECASE)				(100%)
Microelectromechanical Inductors for Switch-	PI	DARPA	9/16/09-9/15/11	\$300,000
Mode Power Converters				(100%)
Alternative Energy Technologies	PI	Vertical	9/1/09-1/31/10	\$26,250
		Partners		(100%)
Femtosecond Laser for 3D Micromachining	PI	ARO	5/1/09-10/31/10	\$175,000
(DURIP)				(100%)
Demonstration of a Wingless Electromagnetic Air	CoPI	AFOSR	3/1/09-10/31/11	\$453,459
Vehicle				(21%)
Magnetic Induction Power Generation for	PI	Siemens-	12/1/08-3/9/10	\$92,666
Wireless Sensor Systems Embedded in Gas		FHTCC		(100%)
Turbines				
Ultra-Miniature Power Management for	PI	ARL	7/1/08-8/27/12	\$665,000
Microsystem Platforms				(50%)
Vibrational Energy Scavenging Technology to	PI	Siemens	1/1/08-12/31/08	\$125,000
Power Remote Wireless Sensors				(100%)
Progress in MEMS Sensor Technology toward	CoPI	Boeing	12/1/07-4/1/09	\$310,000
Suitability for Aeroacoustic Phased Array				(6%)
Measurement Applications: Phase IV				
Optimization and Experimental Validation of an	PI	SCEEE	7/1/07-6/30/08	\$36,000
Electromagnetic Vibrational Energy Scavenger				(100%)
SGER: Microfabrication Approaches for	PI	NSF	5/1/07-10/31/08	\$74,860
Microscale Permanent Magnets				(100%)
Development of Advanced Zero-Net Mass-Flux	CoPI	NASA	3/19/07-3/18/11	\$695,869
Actuators for Active Flow Control Applications				(34%)
Shear-Stress Sensor Array Measurement	CoPI	NASA	12/1/06-11/30/10	\$644,202
Technology for the Support of Turbulence Model				(18%)
Development for Flow Separation				
Magnetic Self-Assembly of Small Parts	PI	NSF	5/1/06-4/30/10	\$226,000
				(100%)
Micromachined Thermoelectric Generators for	PI	ARL	1/1/06-6/30/08	\$362,259
Waste Heat Power Generation				(100%)

*Total award values and percentages attributed to D. P. Arnold are indicated

PRIMARY STUDENT/POSTDOC SUPERVISION

Role	Student	Research Topic	Home Dept.	Completion Date
Chair,	Sai Amirisetti*	Magnetic nanocomposites	CHE	current
20 Ph.D.	Connor Smith	Electro-infiltrated magnetic composites	ECE	current
Dissertation	Yuzheng Wang	Electroplated CoPt /FePt micromagnets	ECE	current

DOCKET ALARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

