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Preface 

 

In the late 19805. the prevalence of fast computers. large computer memory. and inex-

pensive scanners fostered an increasing interest in document image analysis. With
many paper documents being sent and received via fax machines and stored digitally
in large document databases. interest grew in doing more than simply viewing and
printing these images. Research was undertaken and commercial systems built to read
text on a page, to find fields on a form. and to locate iines and symbols on a diagram.
Today, we see the resuits of this research and development in document pioccssing
and optical character recognition (OCR). OCR is used by post offices to automatically
route mail; engineering diagrams are extracted from paper for computer storage and
modification; handheld computers recognize symbols and handwriting for use in
niche markets such as inventory control. [n the future. applications such as these will

be improved, and other document applications will be added. For instance. the mil-
lions of paper volumes now in libraries will be replaced by computer tiles of page
images that can be searched for by content and accessed by many people simulta—
neously—and they wili never be misshelvcd, Businesspeople wiil carry their file cabi-
nets in their portable computers: paper copies of new product literature. receipts. or
other random notes will be instantly filed and accessed in the computer; and sigma

lures will be analyzed by the computer for verification and security access.
This: book describes some of the technical methods and systems used for docu-

ment processing of text and graphics images. The methods have grown out of the

iii
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fieids of digitai signal prmessing. digital image processing, and pattern recognition.
The objective is to give the reader an understanding of what approaches are used for
application to documents and how these methods apply to different situations. Since
the field of document processing IS relatively new, it is also dynamic; in other words.
current methods have room for improvement, and innovations are still being made. In
addition. there are rarely definitive techniques for all cases oia certain problem.

The intended audience is executives. managers. and other decision makers whose
businesses require some acquaintance or understanding of document processing. (We
call this group “executives" in accordance with the [iterative Briefing series.) Some
mdirnentary knowledge of computers and computer images will be helpful back-
groumi for these readers. We begin with basrc principles (such as defining pixels) hut

technique operates and not necessarily knowledge of picture processing. A grasp of
the terminology goes a long way toward aiding the executive in understanding the
technology and processes discussed in each chapter. For this reason, each section
begins with a list of keywords. With knowledge of the terminology and whatever
depth of method or system understanding that he or she decides to take from the text.
the executive shouid be well equipped to deal with document—processing issues.

in each chapter. we attempt to identify major problem areas and to describe more
than one method applied to each problem. as well as the advantages and disadvan»
tages of each method. This gives an understanding of the problems and also the nature
of trade-offs that so often must he made in choosing a method. With this tinderstandw
ing of the problem and a knowledge of the methodology options. an executive will
have the technical background and context with which to ask questions, judge recon:-
mendations, weigh options, and make decisions.

We incittdc technoiogy descriptions and references to the technical papers that
host give details on the techniques presented in the book. The technology descriptions
are detailed enough for one to understand the methods—if implementation is desired.
the references will facilitate this. i’opular as woli as accepted methods are presented
so that the executive can compare a variety of options. in many cases. some of the
options are advanced methods not currently used in commercial products. Depending

eessing. These are described from the applications viewpoint to give concrete exam-
pies of where and how the methods are implemented.

The book is organized in the sequence that document images are usually pro-
cessed. After document input by digital Scanning, pixel processing is first perfumed.
This level of processing includes operations that are applied to all image pixels. These
include noise removal, image enhancement. and segmentation of image components
into text and graphics (lines and symbols). 'Featttrcdevel analysis treats groups of pix~
cls as entities and includes line and curve detection and shape description. The last

IPR2021-01080 Ex. 1007, p. 5 of 41
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2 Chapter 1
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Textual Processing Graphical Processing

   Region and
Symbol

Processing

0 tical Character
ecognitton  Line Processing

    
  

Text Skew, Text Lines. Straight Lines, Filled Regions
Text Blocks, and Corners. and Curves

Paragraphs

Figure 1. 1 Hierarchy oi'document processing subarcas listing the types of document components in each suh~area.

analysis techniques. the megabytes of initial data are culled to yieldtic description of the document.

it is not difficult to find examples ofthe need for doc
the workplace and you will see stacks of paper docum
generated, though invariably by different computers and
formats may be incompatible. Some will include both
well as handwritten entries. and they (tiller in size. from 3.5 x 2 in. (8.89 x 5.08mi)
business cards to 34 x 44 in. (86 x l l loin) engineering drawings. in many businesses
today. imaging systems are used to store images of pages so that storage and retrieval
are more efficient. Future document analysis systems will recognize types of docu~

to translate from one
ist of the. use of and

in a post office at the mounds
es. over a million pieces of mail must
ng and address recognition have been

ument analysis. Look around

cnts. Some may be computer
software. and their electronic
formatted text and tables. as

ments, enable the extraction of their Functional pans, and be able
computer generated format to another. Many other exampics ex
need for document systems. Glance behind the counter
of letters and packages. In some US. post offic
be handled each day. Machines to perform sorti
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What is a Document image and What: Do We [Jo with It? 3
  

used for several decades. but there is still the need to process more mail. more quickly.

and more accurately. Examine the- stacks of a library. where row after row of paper
documents are stored. Loss of material. misiiling. limited numbers oi‘cach copy. and

even degradation of materials are common problems and may be improved hy docu-
ment analysis techniques. All of these examples serve as applications ripe for the
potential solutions of document image analysis.

Though document image analysis has been in use for a couple of decades (espe-
cially in the banking business for computer reading of numeric check codes). only in
the late I980s and early £99le has the field grown rapidly. The predominant reason for
this is the greater speed and lower cost of hardware now available. Since fax machines
have become ubiquitous, the cost ofoptical scanners for document input has dropped
to the level that these are affordable to even small businesses: and individuals.

Although document images contain a relatively large amount of data. even personal
computers now have adequate speed to process them. Computer main memory also is
now adequate for large document images: more importantly. however. optical memory
is now available for mass storage of large amounts of data. This improvement in hard-
ware. and the increased use of computers for storing paper documents. has led to

increasing interest in improving the technology of document processing and recogni-
tion. The advancements being made in document analysis software and algorithms are
an essential complement to these hardware improvements. With OCR recognition
rates now in the mid to high 90 percent range. and other document processing mellir
ods achieving similar improvements, these advances in research have also driven doc-
ument image analysis forward.

As improvements in technology continue. document systems will become
increasingly more common. For instance. OCR systems will he more widely used to
store. search. and excerpt from paper~based documents. Page layout analysis tech-
niques will recognize a particular form or page format and allow its duplication. {Ira-
grams will be entered from pictures or by hand and logically edited. i’cnnhascd
computers will translate handwritten entries into electronic documents. Archives of
paper documents in libraries and engineering companies wili be electronically con-
vened for more efficient storage and instant delivery to a home or office computer.

Although it will be increasingly the case that documents are produced and reside on a
computer. because there are many different systems and prott'icols and because paper
is a very comfortable medium for us to deal with. paper documents will he with us to
some degree for many decades to come. The difference will he that they will iiuaily he
integrated into our computerized world.

1.1 Hardware Advancements and the Evolution of

Document Image Analysis

The history of document image analysis can be traced through a computer lineage that
includes digital signal processing and digital image processing. Digital signal process-
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computer vision for processing images of three-dimensional scenes used in robotics.In the mid- to lote- l 9805, document image analysis bega
this was predominantly due to hardware advancements enabling processing to beformed at a reasonable cost and speed. Whereas a speech sign 'in frames of 256 samples long . ' ' ‘

document image is from 2.550 X 3.300 pixels for at business l‘ -dots per inch (dpi) ( l2 dots per millimeter) to 34.000 X 44 000 pixels for a 34 x 44 in.

H:
I Hmmmwile»«a-:"--:4~::3r"

l,l

:23g:
fament analysissystems are now available for storing business forms, performing OCR on typewrittentext, and compressing engineering drawings. Document analysis research continues to

pursue more intelligent handling of documents. better compression. especiallythrough component recognition. and faster processing.

7.500

LSOO W03

1 Title, 2 3

that the image ol‘ the document contains only raw data that must he further atto glean the information. For example, Figure 1.3 shows the imagis a pixel array of ON or OFF values whose sh' pe is known to h
however. to a computer it is just a string ol‘ bits in computer me

tulyzed
e of the letter 6. This

umans as the letter e,-
mory,

Figure 1 .a
1.2.1 Pixel-Level Processing [Chapter 2)
This stage of document image analysis includes hinarization, noise reduction, signalenhancement, and segmentation. For gray-scale images with information that is inher— 
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1 Company Logo. and so on

 
Document Description ‘

Figure 1.2 Atypical sequence of steps for document analysis, with examples of intermediate and final results
and data site. ?
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What: Is a Document Image and What; Do We Do with It? 7

i2

Segmentation occurs on two levels. On the first level, segmentation occurs if the
document contains both text and graphics—these are separated for subsequent pro-
cessing by different methods. 0n the second level. segmentation is performed on tcxt
by iocating columns. paragraphs. Words. titles. and captions; and on graphics by sepa-
rating symbol and line components. For instance. in a page: containing a flow chart
with an accompanying caption. text and graphics are first separated. Then the text is
separated into that of the caption and that of the chart. The graphics are separated into
rectangles. circics. connecting lines. and so on.

 

 
 

 
 
 

 

 
 

 
 

 
 
 
 

 
 

1 .2.2 Feature-«Level Analysis [Chapter 3]

in a text image. the global features describe each page and consist of skew (the tilt at
which the page has been scanned). line lengths. tine spacing, and so on. Local features
describe individual characters and consist of font size, number of loops in a character.
numbe:r of crossings. accompanying dots and so on.

In a graphical image. global features describe the skew of the page. the line
widths. range of curvature. minimum fine lengths. and so on. Local features describe

each corner. curvc. and straight line. as wail as the rectangles, circles. and other geo—
metric shapes.

1.2.3 Recognition of Text and Graphics [Chapters 4
and 5]

The float step in document image analysis is recognition and description: components
are assigned a semantic label and the entirc document is described as a whoic.

Domain knowledge is used most extensively at this stage. The result is a description
of a ductirncnt as a human wouid give it. For a text image. we refer for example. not to
pixel groups or biobs of black on white. but to titles. subtitles. bodies ni‘text, and took
notes. Depending on the arrangement of these text blocks, a page of text may be a title
page of a papcr, ii labia of contents of a journal. at business form. or the l’acc of a mail
piece. For a graphical image. an electrical circuit diagram for instance. we refer not to
tines joining circles and triangles and other shapes. but to connections betwocn AND
gates, transistors. and other eicctronic components. The components and their connec—
tions describe a particular circuit that has a purpose. in the known domain. It is this
semantic description that is most ci'ficicntiy stored and most cfi‘cctivcly used for com
mon tasks. such as indexing and modifying particular document components .
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Chapter 2

Preparing the Document
Image 

2. 1 Introduction

Data capture of documents by optical scanning or by digital video yields a file of pic-
ture elements, or pixels, that is the raw input to document analysis. These pixels are

samples of intensity values taken in a grid pattern over the document page, where the
intensity values may be OFF (0) or ON (1) for binary images, 0 to 255 for gray-scale
images, and three channels of 0 to 255 color values for color images. The first step in
document analysis is to perform processing on this image to prepare it for further

analysis. Such processing includes thresholding to reduce a gray-scale or color image
to a binary image, reduction of noise to reduce extraneous data, and thinning and
region detection to enable easier subsequent detection of pertinent features and
objects of interest. This pixel-level processing (also called preprocessing and low-
level processing in other literature) is the subject of this chapter.

2.2 Thresholding

Keywords: thresholding, binarization, global thresholding, adaptive thresholding,
intensity histogram

In this treatment of document processing. we deal with images containing text and

graphics of binary information—that is, these images contain a single foreground
level that is the text and graphics of interest and a single background level upon which

9

sarahtapola
Copyright
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\

the foreground contrasts. We will also call the foreground objects, regions of interest,
or components. (Of course, documents may also contain true gray-scale [or color]
information, such as in photographic figures; however, except for recognizing the
presence of a gray—scale picture in a document, we leave the analysis of pictures to the
more general fields of image analysis and machine vision.) Although the information
is binary, the data—in the form of pixels with intensity values—are not likely to have
only two levels, they, instead, have a range of intensities. This may be due to non-uni-
form printing or non-uniform reflectance from the page or a result of intensity transi-
tions at the region edges that are located between foreground and background regions.
The objective in binarization is to mark pixels that belong to true foreground regions
with a single intensity (0N) and background regions with a different intensity (OFF).
Figure 2.] illustrates the results of binarizing a document image at different threshold
values. The UN values are shown in black in Figure 2.1, and the OFF values are inwhite.

For documents with a good contrast of components against a uniform back-
ground, binary scanners are available that combine digitization with thresholding to
yield binary data; however, for the many documents that have a wide range of back-
ground and object intensities, this fixed threshold level often does not yield images
with clear separation between the foreground components and the background. For
instance, when a document is printed on differently colored paper, when the fore
ground components are faded due to photocopying, or when different scanners have
different light levels, the best threshold value will also be different. For these cases,
there are two alternatives. One is to empirically determine the best binarization setting
on the scanner (most binary scanners provide this adjustment) and to do this each time
an image is poorly binarized. The other alternative is to start with gray-scale images
(having a range of intensities, usually from 0 to 255) from the digitization stage and
then to use methods for automatic threshold determination to better perform binariza-
tion. Although the latter alternative requires more input data and processing, the
advantage is that a good threshold level can be found automatically, ensuring consis-
tently good images, and precluding the need for time~consuming manual adjustment
and repeated digitization. The following discussion presumes initial digitization to
gray-scale images.

If the pixel values of the components and those of the background are fairly con-
sistent in their respective values over the entire image, a single threshold value can be
found for the image. This use of a single threshold for all image pixels is called global
thresholding. Processing methods will be described that automatically determine the
best global threshold value for different images. For many documents, however, a sin-
gle global threshold value cannot be used even for a single image due to non-unifor-
mities within foreground and background regions. For example, for a document
containing white background areas as well as highlighted areas of a different back-
ground color, the best thresholds will change by area. For this type of image, different
threshold values are required for different local areas; this is adaptive thresholdingand will also be described.

BANK OF AMERICA IPR2021-01080 Ex. 1007, p. 13 of 41
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a. Histogram

Q 255 (black)
(Whlte) (b) (c) (d) Intensity Value

b. Low Threshold . ' 1.} 9 u _ . ‘
, T ém‘é‘i’ku'ssio 5

Scientists, p.5

c. Good Threshold ’ , Topping ihe
_ r, Talent of Russia's

" Scientists, p.5

d. High Threshold 
Figure 2.1 Image binarization. (a) Histogram of original gray-scale image; horizontal axis shows markings

for threshold values of images below. The lower peak is for the white background pixels, and the
upper peak is for the black foreground pixels. Image binarized with: (b) threshold value too low.
(c) good threshold value. and (d) threshold value too high.
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12 Chapter 2

2.2.1 Global Thresholding

The most straightforward way to automatically select a global threshold is to use a

histogram of the pixel intensities in the image. The intensity histogram plots the num-
ber of pixels with values at each intensity level. See Figure 2.1 for a histogram of a
document image. For an image with well-differentiated foreground and background
intensities, the histogram will have two distinct peaks. The valley between these peaks
can be found as the minimum between two maxima, and the intensity value there is
chosen as the threshold that best separates the two peaks.

There are a number of drawbacks to global threshold selection based on the shape
of the intensity distribution. The first drawback is that images do not always contain
well—differentiated foreground and background intensities because of poor contrast

and noise. A second drawback is that, especially for an image of sparse foreground

components, such as for most graphics images, the peak representing the foreground
will be much smaller than the peak of the background intensities. This often makes it

difficult to find the valley between the two peaks. In addition, reliable peak and valley
detection are separate problems unto themselves. One way to improve this approach is
to compile a histogram of pixel intensities that are weighted by the inverse of their
edge-strength values [1]. Region pixels with low edge values will be weighted more

highly than boundary and noise pixels with higher edge values, thus sharpening the
histogram peaks due to these regions and facilitating threshold detection between

them. An analogous technique is to highly weight intensities of pixels with high edge
values, then choose the threshold at the peak of this histogram corresponding to the
transition between regions [2]. This requires peak detection of a single maximum, and

this is often easier than valley detection between two peaks. This approach also
reduces the problem of large size discrepancy between foreground and background
region peaks because edge pixels are accumulated on the histogram instead of region
pixels; the difference between a small and large size area is a linear quantity for edges
versus a much larger squared quantity for regions. A third method uses a Laplacian
weighting. The Laplacian is the second derivative operator, which highly weights

transitions from regions into edges (the first derivative highly weights edges). This
will highly weight the border pixels of both foreground regions and their surrounding
backgrounds, and because of this the histogram will have two peaks of similar area.

Although these histogram-shape techniques offer the advantage that peak and valley
detection are intuitive, peak detection is still susceptible to error due to noise and

poorly separated regions. Furthermore, when the foreground or background region
consists of many narrow regions, such as for text, edge and Laplacian measurement

may be poor due to very abrupt transitions (narrow edges) between foreground and
background.

A number of methods determine foreground and background classes by using for-
mal pattern recognition techniques that optimize some measure of separation. One
method is minimum error thresholding [3, 4] (Figure 2.2). Here, the foreground and
background intensity distributions are modeled as normal (Gaussian or bell—shaped)
probability density functions. For each intensity value (from 0 to 255, or a smaller

BANK OF AMERICA IPR2021-01080 Ex. 1007, p. 15 of 41
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range if the threshold is known to be limited to it), the means and variances are calcu-
lated for the foreground and background classes, and the threshold is chosen such that

. the misclassification error between the two classes is minimized. Minimum error
:. thresholding is classified as a parametric technique because of the assumption that the

?' gray—scale distribution can be modeled as a probability density function. This is a pop-
ular method for many computer vision applications, but some experiments indicate
that documents do not adhere well to this model: thus, results with this method are

poorer than nonparametric approaches [5]. One nonparametric approach is Otsu’s
method [6, 7]. Calculations are first made of the ratio of between~class variance to
within-class variance for each potential threshold value. The classes here are the fore-

ground and background pixels, and the purpose is to find the threshold that maximizes
the variance of intensities between the two classes and minimizes them within each

class. This ratio is calculated for all potential threshold levels, and the level at which
the ratio is maximum is the chosen threshold. An approach similar to Otsu’s employs

an information theory measure, entropy, which is a measure of the information in the

image expressed as the average number of bits required to represent the information
[5, 8]. Here, the entropy for the two classes is calculated for each potential threshold,

f and the threshold where the sum of the two entropies is largest is chosen as the best
‘ threshold. Moment preservation is another thresholding approach [9]. This method is

less popular than the preceding ones; however, we have found it to be more effective
in binarizing document images containing text. In the moment preservation method, a
threshold is chosen that best preserves moment statistics in the resulting binary image

as compared with the initial gray—scale image. These moments are calculated from the
intensity histogram—the first four moments are required for binarization.

Many images have more than two levels. For instance, magazines often employ
boxes to highlight text; the background of the box has a different color than the white
background of the page. In this case, the image has three levels: background, fore-
ground text, and background of highlight box. To properly threshold an image of this
type, multithresholding must be performed. There are fewer multithresholding meth-
ods than binarization methods. Most require that the number of levels is known (for

example, [6]). For the cases where the number of levels is not known beforehand, one
method [16] will determine the number of levels automatically and perform appropri-
ate thresholding. This added level of flexibility may sometimes lead to unexpected
results; for example, a magazine cover with three intensity levels may be thresholded
to four levels because of the presence of an address label that is thresholded at a sepa-
rate level.

2.2.2 Adaptive Thresholding

A common way to perform adaptive thresholding is by analyzing gray-level intensi-
ties within local windows across the image to determine local thresholds [10, 11].
White and Rohrer [12] describe an adaptive thresholding algorithm for separating
characters from background. The threshold is continuously changed through the
image by estimating the background level as a two-dimensional running average of
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Number of Pixels Number of Pixels

 
Background
Peak

 Foreground
Peak

 
h—p Intensity I Intensity

 
Area of Misclassification
Error

Figure 2.2 Illustration of misclassification error in thresholding. Left, intensity histogram showing fore-
ground and background peaks; right, the tails of the foreground and background populations have
been extended to show the intensity overlap of the two populations. This overlap makes it impos—
sible to correctly classify all pixels using a single threshold. The minimum-error method of
threshold selection minimizes the total misclassification error.

local pixel values taken for all pixels in the image (Figure 2.3). Mitchell and Gillies
[13] describe a similar thresholding method where background white-level normaliza-
tion is first done by estimating the white level and subtracting this level from the raw
image. Segmentation of characters is accomplished by applying a range of thresholds
and selecting the resulting image with the least noise content. Noise content is mea-

sured as the sum of areas occupied by components that are smaller and thinner than
empirically determined parameters. From the results of binarization for different

thresholds shown in Figure 2.1, one can see that the best threshold selection yields the
least visible noise. The main problem with any adaptive binarization technique is the
choice of window size. The window size should be large enough to guarantee that
enough background pixels are included to obtain a good estimate of average value,
but not so large as to average over non-uniform background intensities. Often, how-
ever, the features in the image vary in size, causing problems with fixed window size.
To remedy this, domain dependent information can be used to ensure that the results

of binarization give the expected features (a large blob of an ON-valued region is not
expected in a page of smaller symbols, for instance). If the result is unexpected, then
the window size can be modified and binarization applied again.

2.2.3 Choosing a Thresholding Method

Whether global or adaptive thresholding methods are used for binarization, one can

never expect perfect results. Depending on the quality of the original, there may be
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Figure 2.3 Diagram illustrating adaptive thresholdng by background normalization. Left, original image has
portions of text with different average background values; right, the image shows that the back—
grounds have been eliminated leaving only ON and OFF values.

gaps in lines, ragged edges on region boundaries, and extraneous pixel regions of ON
and OFF values. This is generally true with other document and image processing
methods. The recommended procedure is to process as well as possible at each step of
processing and to defer decisions that do not have to be made until later steps to avoid
making irreparable errors. In later steps more information is available as a result'of
processing to that point, and this provides greater context and higher level descnp-
tions to aid in making correct decisions and ultimately recognition. Deferment, when
possible, is a principle appropriate for all stages of document analysrs: - .

A number of different thresholding methods have been presented in this section—
no single method is best for all image types and applications. For Simpler problems
where the image characteristics do not vary much within the image or across different
images, the simpler methods will suffice. For more difficult problems of Horse or vary-
ing image characteristics, more complex (and time-consuming) meth9d§_Wl“ usually
be required. Commercial products vary in their thresholding capabilities. Today 5
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scanners usually perform binarization with respect to a fixed threshold. More sophisti-
cated document systems provide manual or automatic histogram-based techniques for
global thresholding. The most common use of adaptive thresholding is in special-pur-
pose systems used by banks to image checks. The best way to choose a method is by
narrowing the choices by the method descriptions, experimenting with the different
methods, and examining their results.

Because no “best” thresholding method exists, there is still room for research.

One problem that requires more investigation is identifying which thresholding meth-

ods or approaches work best on documents with particular characteristics. Many of
the methods described here were not formulated specifically for documents, and their

performance on them is not well documented. Another problem is quantifying the
results of thresholding (for example, performing optical character recognition on the
binarized results and measuring the recognition rate for different thresholds). A prob-

lem that requires further work is multithresholding. Sometimes documents have not
two, but three or more levels of intensities. For instance, many journals contain high-

lighted boxes within the text, where the text is positioned against a background of a
different gray level or color. Although multithresholding capabilities have been
claimed for some of the methods discussed earlier, not much research has been

focused on this problem.
For other reviews and more complete comparisons of thresholding methods, see

I 14, 16] for global and multithresholding techniques and [15] for adaptive techniques.
We suggest manually setting a threshold when the documents are similar and test-

ing is performed beforehand. For automatic, global threshold determination, we have
found (in [16]) that the moment—preserving method [9] works well on documents. For

adaptive thresholding, the method of [11] is a good choice—this paper also gives
background and comparison on these adaptive methods. For multithresholding, the
method in [7] is appropriate if the number of thresholds is known, and the method in
[16] if not.

2. 3 Noise Reduction

Keywords: filtering, noise reduction, salt-and—pepper noise, filling, morphological

processing, cellular processing

After binarization, document images are usually filtered to reduce noise. Salt-and-

pepper noise (also called impulse and speckle noise, or just dirt) is a prevalent artifact

in poor quality document images (such as poorly thresholded faxes or poorly photo-
copied pages). This appears as isolated pixels or pixel regions of ON noise in OFF
backgrounds or OFF noise (holes) within ON regions and as rough edges on charac-
ters and graphics components (Figure 2.4). The process of reducing noise is called
filling. The most important reason to reduce noise is that extraneous features will oth—

,
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erwise cause subsequent errors in recognition. Furthermore, noise reduction reduces
the size of the image file, and this in turn reduces the time required for subsequent
processing and storage. The objective in the design of a filter to reduce noise is that it
removes as much of the noise as possible while retaining all of the signal.

2.3.1 Morphological and Cellular Processing

Morphological [17, 18, 19] and cellular processing [20] are two families of processing
methods by which noise reduction can be performed. (These methods are more gen-
eral than for just the noise-reduction application mentioned here, but we leave further

description of the methods to the references.) The basic morphological or cellular
operations are erosion and dilation. Erosion is the reduction in size of ON regions.
This is most simply accomplished by peeling off a single—pixel layer from the outer
boundary of all ON regions on each erosion step. Dilation is the opposite process,
where single-pixel, ON—valued layers are added to boundaries to increase their size.

These operations are usually combined and applied iteratively to erode and dilate
many layers. One of these combined operations is called opening, where one or more
iterations of erosion are followed by the same number of iterations of dilation. The

result of opening is that boundaries can be smoothed, narrow isthmuses broken, and
small noise regions eliminated. The morphological dual of opening is closing. This
combines one or more iterations of dilation followed by the same number of iterations

of erosion. The result of closing is that boundaries can be smoothed, narrow gaps

xxx xxxx xxxx xxxx xxx xxxx xxx xxxx xx xxx xxx xxxxx xxxx

xxxxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxx xxxxxxxxx xxxxxxxxxxxx xxx xxx xxx xxx xxx xxx xx xxx xxx xxx xxx xxxx xxxxx

x  

Figure 2.4 Illustration of letter e with salt-and-pepper noise. Left, the letter is shown with its ON and OFF
pixels as X3 and blanks; right, the noisy character is shown. '
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joined, and small noise holes filled. See Figure 2.5 for an illustration of morphologi-
cal operations.

2.3.2 Text: and Graphics Noise Filters

For documents, more specific filters can be designed to take advantage of the known
characteristics of the text and graphics components. In particular, we desire to main-
tain sharpness in these document components, not to round comers and shorten
lengths, as some noise—reduction filters will do. Single-pixel islands, holes, and pro—
trusions can be found by passing a 3 x 3 pixel window that matches these patterns
over the image [21] and then filling it. For noise larger than one pixel, the kFill filter
can be used [22].

We describe the kFill noise reduction method in more detail. Filling operations

are performed within a k X k window that is applied in raster-scan order, centered on
each image pixel. This window comprises an inside (k -— 2) x (k — 2) region called the
core, and the 4(k — 1) pixels on the window perimeter, called the neighborhood. The
filling operation entails setting all values of the core to ON or OFF dependent upon
pixel values in the neighborhood. The decision whether or not to fill with ON (OFF)
requires that all core values must be OFF (ON) and depends on three variables deter—
mined from the neighborhood. For a fill value equal to ON (OFF), the n variable is the
number of ON (OFF) pixels in the neighborhood, the c variable is the number of con-
nected groups of ON pixels in the neighborhood, and the r variable is the number of
corner pixels that are ON (OFF). Filling occurs when the following conditions are
met:

(6 = 1)AND{(n > 3k — 4)OR[(n = 3k — 4)AND(r = 2)]}

The conditions on n and r are set as functions of the window size k such that the

preceding text features are retained. The stipulation that C = 1 ensures that filling does
not change connectivity (that is, does not join two letters together or separate two
parts of the same connected letter). Noise reduction is performed iteratively on the
image. Each iteration consists of two subiterations, one performing ON—fills, and the
other OFF—fills. When no filling occurs on two consecutive subiterations, the process

stops automatically. An example is shown in Figure 2.6.
The kFill filter is designed specifically for text images to reduce salt-and—pepper

noise while maintaining readability. It is a conservative filter, erring on the side of
maintaining text features versus reducing noise when the two conflict. To maintain
text quality, the filter retains comers on text of 90 degrees or less, reducing rounding
that occurs for other low-pass spatial filters. The filter has a k parameter (the k in
“kFill”) that enables adjustment for different text sizes and image resolutions, thus
enabling retention of small features such as periods and the stick ends of characters.
Since this filter is designed for fabricated symbols, text, and graphics, it is not appro-
priate for binarized pictures where less regularly shaped regions and dotted shading
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Figure 2.5 Morphological processing. (a) The structuring element is centered on each pixel in the image and pixel val
ues are changed as follows. For erosion, an ON—valued center pixel is turned OFF if the structuring element
is over one or more OFF pixels in the image. For dilation. an OFF—valued center pixel is turned ON if the
structuring element is over one or more ON pixels in the image. (b) Erosion is followed by dilation; that
combination is called opening. The isolated pixel and the spur have been removed in the final result. (c)
Dilation is followed by erosion; that combination is called closing. The hole is filled, the concavity on the
border is filled, and the isolated pixel is joined into one region in the final result.
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(half-tone) are prevalent. A drawback of this filter — and of processes that iterate sev—
eral times over the entire image ——is that the processing time is expensive. Whether
the cost of applying a filter such as this in the preprocessing step is justified depends
on the input image quality and the tolerance for errors due to noise in subsequent
steps.

Most document-processing systems perform rudimentary noise reduction by
passing 3 X 3 filter masks across the image to locate isolated ON and OFF pixels. For
more extensive descriptions of these techniques in document see [’23] for use

7
systems
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of morphology in a music-reading system, and [24] for the use of kFill in an electronic
library system.

2.4 Thinning and Distance Transform

Keywords: thinning, skeletonizing, medial axis transform, distance transform

2.4.1 Thinning

Thinning is an image-processing operation in which binary valued image regions are
reduced to lines that approximate the center lines, or skeletons, of the regions. The

purpose of thinning is to reduce the image components to their essential information
so that further analysis and recognition are facilitated. For instance, the same words
can be handwritten with different pens giving different stroke thicknesses, but the lit-
eral information of the words is the same. For many recognition and analysis methods

where line tracing is done, it is easier and faster to trace along one-pixel wide lines
than along wider ones. Although the thinning operation can be applied to binary
images containing regions of any shape, it is useful primarily for “elongated” shapes
versus convex, or “bloblike,” shapes. Thinning is commonly used in the preprocessing

stage of such document analysis applications as diagram understanding and map pro-
cessing. In Figure 2.7, some images are shown whose contents can be analyzed well
due to thinning, and their thinning results are also shown.

Thinning is also referred to as skeletonizing and core-line detection in the litera-
ture. We will use the term thinning to describe the procedure, and thinned line, or skel-
eton, to describe the results; a related term is the medial axis. This is the set of points
of a region in which each point is equidistant to its two closest points on the boundary.
The medial axis is often described as the ideal that thinning approaches. However,

since the medial axis is defined only for continuous space, it can only be approxi-

mated by practical thinning techniques that operate on a sampled image in discrete
space.

The thinning requirements are formally stated as follows: (1) connected image
regions must thin to connected line structures, (2) the thinned result should be mini-
mally eight-connected (explained later), (3) approximate endline locations should be
maintained, (4) the thinning results should approximate the medial lines, and (5)
extraneous spurs (short branches) caused by thinning should be minimized. That the
results of thinning must maintain connectivity as specified by requirement 1 is essen-'
tial. This guarantees an equal number of thinned connected line structures as the num-
ber of connected regions in the original image. By requirement 2, we stipulate that the
resulting lines should always contain the minimal number of pixels that maintain
eight-connectedness. (A pixel is considered eight-connected to another pixel if the
second pixel is one of the eight closest neighbors to it.) Requirement 3 states that the
locations of endlines should be maintained. Since thinning can be achieved by itera-
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Figure 2. 7 Left, original images; right, thinned image results. (a) The letter m, (b) a line diagram, (c) a fin-

gerprint image.
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tively removing the outer boundary pixels, it is important not to also iteratively
remove the last pixels of a line. This would shorten the line and not preserve its loca-
tion. Requirement 4 states that the resultant thin lines should best approximate the
medial lines of the original regions. In digital space, the true medial lines can only be

approximated. For instance, for a two-pixel wide vertical or horizontal, the true
medial line should run at the half—pixel spacing along the middle of the original. Since

it is impossible to represent this in digital image space, the result will be a single line
running at one side of the original. With respect to requirement 5, noise should be
minimized, but it is often difficult to say what is noise and what is not. We do not want

spurs to result from every small bump on the original region, but we do want to recog—
nize when a somewhat larger bump is a feature. Though some thinning algorithms

have parameters to remove spurs, thinning and noise removal should be performed
separately. Since one person‘s undesired spur may be another’s desired short line, it is
best to perform thinning first, then, in a separate process, remove any spurs whose
length is less than a specified minimum.

The basic iterative thinning operation is to examine each pixel in an image within
the context of its neighborhood region of at least 3 x 3 pixels and to “peel” the region

boundaries, one pixel layer at a time, until the regions have been reduced to thin lines.
(See [25] for basic 3 x 3 thinning, and [26] for generalization of the method to k x k
sized masks.) This process is performed iteratively—0n each iteration every image

pixel is inspected, and single-pixel-wide boundaries that are not required to maintain
connectivity or endlines are erased (set to OFF). In Figure 2.8, one can see how, on
each iteration, the outside layer of one—valued regions is peeled off in this manner, and
when no changes are made on an iteration, the image is thinned.

Unwanted in the thinned image are isolated lines and spurs off longer lines that
are artifacts due to the thinning process or noise in the image. Some thinning methods,

such as [27], require that the binary image is noise filtered before thinning because
noise severely degrades the effectiveness and efficiency of this processing. Noise can
never be totally removed, however, and, it is often difficult to distinguish noise from

the signal in the earlier stages. An alternative approach is to thin after rudimentary
noise reduction and then perform noise reduction with higher level information. Seg-
ments of image lines between endpoints and junctions are found and descriptive

parameters (length, type as classified by junctions or endlines at the ends of the seg-
ment, average curvature, absolute location, and so on) are associated with them. This

descriptive and contextual information is then used to remove the line artifacts.
Instead of iterating through the image for the number of times that is proportional

to the maximum line thickness, thinning methods have been developed to yield the

result in a fixed number of steps [27, 28, 29]. This is computationally advantageous

when the image contains thick objects that would otherwise require many iterations.
For these noniterative methods, skeletal points are estimated from distance measure-

ments with respect to opposite boundary points of the regions (see Section 2.4.2 on
distance transformation). Some of these methods require joining the line segments

after thinning to restore connectivity and require a parameter estimating maximum
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thickness of the original image lines so that the search for pairs of opposite boundary

points is spatially limited. In general, compared to iterative methods, these nonitera—
tive thinning methods are less regularly repetitive, not limited to local operations, and
less able to be pipelined; and these factors make their implementation in special-pur-
pose hardware less appropriate.

Algorithms have been developed for extracting thin lines directly from gray-level
images of line drawings by tracking along gray-level ridges—that is, without the need
for binarization [30]. These have the advantage of being able to track along ridges

whose peak intensities vary throughout the image such that binarization by global
thresho'lding would not yield connected lines. A problem, however, with tracking lines

on gray-scale images is following false ridges (the gray-scale equivalent of spurs),
which results in losing track of the main ridge or requires computationally expensive

backtracking. Binarization and thinning are the methods most commonly used for
document analysis applications because they are well understood and relatively sim-
ple to implement.

For recent overview papers on thinning, see [31, 32]; for thinning applied specifi-
cally to documents, see [33].

2.4.2 Distance Transformation

The distance transform is a binary image operation in which each pixel is labeled by
the shortest distance from it to the boundary of the region within which it is contained.

One way this can be used is to determine the shortest path from a given interior point
to the boundary. It can also be used to obtain the thinned image by retaining only

ridges of maximum local distance measures. This thinned image, complete with dis-
tance values, has more information than simply the thinned image without distance
information. It can be used as a concise and descriptive representation of the original

image from which line widths can be obtained or the original image can be recon—
structed. Results of the distance transform are shown in Figure 2.9.

Two approaches are used to obtain the distance transform. The first approach is
similar to the iterative thinning method described earlier. On each iteration, bound-

aries are peeled from regions. Instead of setting each erased pixel value to OFF, they
are set to the distance from the original boundary. Therefore, on the first iteration

(examining 3 x 3 sized masks), erased boundaries are set to zero. On the second itera-

tion, any erased core pixels will have a distance of 1 for vertical or horizontal distance
to a boundary point or J? for diagonal distance to a boundary point. On the third and
subsequent iterations, each pixel’s distance value is calculated as the sum of the small—
est distance value of a neighboring pixel plus its distance to that neighbor. When a
core can no longer be thinned, it is labeled with its distance to the closest boundary.

The second approach requires a fixed number of passes through the image. To
obtain the integer approximation of the Euclidean distance, two passes are necessary.

The first pass proceeds in raster order, from the top row to the bottom row, left to right
on each row. The distances are propagated in a manner similar to the preceding

approach, but because the direction of the raster scan is from top left to bottom right,
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these first iteration values are only intermediate values—they only contain distance
information from above and to the left. The second pass proceeds in reverse raster
order, from bottom fight to top left, where the final distance values are obtained taking
into account the distance information from below and to the right as well. For further
treatments of distance transformations, see [34, 35 , 36].

The iterative method is used if iterative thinning is desired. As mentioned earlier,

thinning is only appropriate for elongated regions, and if the distance transform of an
image containing thick lines or more convex regions is desired, the fixed-pass method
is more appropriate. The fixed-pass method can also be used as a first step toward
thinning. For all of these distance transformation methods, the distance must not
exceed the pixel word size, usually a byte, since distance is stored in the pixel; further-
more, floating point distance is approximated by integer numbers, usually by sealing

the floating point number up (for example, 1.414 would become 14). Word size con-
sideration is usually not a problem for images of relatively thin, elongated regions but
may be a problem for larger regions.

Thinning is available on most commercial graphics analysis systems. The particu-
lar method varies—many are available—but the method is usually iterative and uses 3
x 3 or 3 X 4 sized masks. Most systems take advantage of a fast table lookup approach

for the mask operations. These are implemented in software or in hardware for more

specialized (faster and more expensive) machines.

2.5 Chain Coding and Vectorization

Keywords: chain code, Freeman chain code, primitives chain code (PCC), line and
contour compression, topological feature detection, vectorization

2.5.1 Chain Coding

When objects are described by their skeletons or contours, they can be represented
more efficiently than simply by ON and OFF valued pixels in a raster image. One
common way to do this is by chain coding, where the ON pixels are represented as

sequences of connected neighbors along lines and curves. Instead of storing the abso-
lute location of each ON pixel, the direction from its previously coded neighbor is
stored. A neighbor is any of the adjacent pixels in the 3 x 3 pixel neighborhood around
that center pixel (Figure 2.10). Coding by direction has two advantages over absolute
coordinate location. One is in storage efficiency. For commonly sized images larger

than 256 x 256, the coordinates of an ON-valued pixel are usually represented as two,
16-bit words; in contrast, for chain coding with eight possible directions from a pixel,

each ON-valued pixel can be stored in a byte or even packed into 3 bits. A more
important advantage in this context is that, since the chain coding contains informa—
tion on connectedness within its code, this can facilitate further processing, such as
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Figure 2. 1O 3 X 3 pixel region with center pixel denoted as X, showing codes for chain directions from center

pixel to each of eight neighbors: 0 (east), 1 (northeast). 2 (north), 3 (northwest), and so on.

smoothing of continuous curves and analysis, such as feature detection of straight
lines.

The definition of connected neighbors that we will use here is called eight-con-
nected; that is, a chain can connect from one pixel to any of its eight closest neighbors
in directions 0 to 7 in Figure 2.10. Other definitions of connectedness are also used in
the literature. The most common is four-connected, where a pixel can be connected to

any of its four closest neighbors in the directions 0, 2. 4, or 6. An advantage of the
four-connected chain is that each of its four chain directions has the same distance of

one pixel spacing (eight—connected chains have two distances: 1 and J5 pixel spac—
ings). The primary advantage of the eight-connected chain is that it more closely rep—
resents diagonal lines and portions of lines; that is, without the horizontal and vertical
stair-steps to which the four-connected code is limited. Eight-connected codings also
yield more concise representations.

The Freeman chain code is a widely used chain coding method [37]. Coding is

accomplished in the following manner. A raster search is made from the top left of the
image to the bottom right, examining each pixel. When an ON—valued pixel is found,
the coordinate location of this pixel is stored, that pixel is set to OFF in the image, and
chain coding is begun. The direction code is stored for each connection from the cur-
rent pixel to a neighboring pixel, the current pixel is set to OFF, and this is done for all
connected pixels until the end of a line or until a closed loop rejoins. If there is a
branch in the line, one of the branching neighbors is chosen arbitrarily. The end of the

chain is indicated by adding a code that is the inverse direction of the previous code
(for example, 0, 4; or 1, 5; and so forth), and since this is otherwise impossible, this
indicates the chain end. See Figure 2.1 1 for an example of a Freeman chain coded line
structure.

Though the Freeman chain code is highly effective for compression of line
images, it was designed for contours, without any provision for maintaining branch-
ing line structures (each branch is coded as a separate chain). This is fine for compres-
sion, but for image analysis it is important to retain the complete line structure with all
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Figure 2. 1 ‘l Pixels of a branching line structure.The Freeman chain code for this is {(x.y)1. 0, 0, 0, 1, 2, 1, 0, 0,
0, 4, (x,y)2. 6, 7, 0, 0. 0, 4}, where the top branch is coded first, then the bottom beginning with the
pixel at (x,y)2.

its branches and to know the topology at each junction. In [38], the skeleton is coded

with pixel values of 0, 1, 2, and 3 for background pixels, terminal (end-of-line) pixels,
intermediate pixels, and junction pixels respectively. This, combined with chaining,
allows line segments and their interconnections to be easily determined.

Another method, the primitives chain code (PCC) also preserves topological fea-
tures [39]. PCC contains codes for the following features: ends of lines, bifurcation
and cross junctions, and breaks indicating the beginning of coding within a closed
contour. With these additional features, subsequent pattem recognition steps are facil-

itated. PCC usually results in higher compression than the other chain code techniques
because it efficiently limits the number of code words to the number of eight-con-
nected possibilities and packs them efficiently. The FCC has been applied to analysis
of fingerprints, maps, and engineering diagrams, all of which contain branches as
important features. PCC coding is accomplished in a manner similar to Freeman chain
coding; that is, a raster scan for ON—valued pixels is first done, and any lines are fol-
lowed and encoded. The difference is that features are also encoded, and because of

the presence of codes for these features, different line topologies can be recognized
from the code. For the example in Figure 2.11, the PCC code is: (x,y)1, 41, b, 15, 41,
e, 61, 41, e, where (x,y) 1 is the starting point, followed by the chain and feature codes.
The bold characters indicate PCC features and the non-bold numbers indicate portions

of up to three chain directions between the features. Here, the features are seen easily
as a branch junction (b) followed by two endlines (e). The other codes are table
lookup values for the connections between features: 41 is equivalent to {0,0,0} in
Freeman chain coding, 15 is equivalent to {1,2,1}, and 61 is equivalent to {6,7,0}.

2.5.2 Vectorization

An alternative to thinning and chain coding is to represent image lines by the straight
line segments that can be drawn within the original thicker lines. This approach is
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called vectorization. In one vectoriza’tion approach, [40], horizontal runs within lines

are first found, adjacent runs 'on subsequent scan lines are grouped together, and
piecewise-straight segments are fit along these connected regions. In [41], vectoriza—
tion is performed at the initial digitizing level by hardware that locates and tracks long
straight line segments (Figure 2.12). One advantage of vectorization is that, since long

(a)

(b)

Figure 2.1 2 The diagram shows the radial-search procedure to determine long, straight lines for vectorization
[41].
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lines are searched and found, there are fewer spurs than usually result by thinning and
chain coding. These straight segments found by vectorization will not usually corre-
spond to complete straight lines as intended in the original drawing. This is partially
due to the stair-stepping that results from straight lines being digitized at slight angles.

To determine complete line features, subsequent analysis is necessary. An example of
post-processing of vectorized data to better match objects found against the object
model is described in [42]

Vecton'zation is intermediate in purpose between the thinning and chain coding
procedures and polygonalization that will be described in Chapter 3. Thinning and
chain coding attempt to exactly represent the line paths, polygonalization attempts to
approximate line features, and vectorization yields something between the two. If the

vectorization tolerance parameter is zero, the results are closest to those of thinning
and chain coding. If the tolerance is such that a piecewise straight approximation of
straight and curved lines results, this is similar to polygonalization. In practice, the
term vectorization is often used loosely for techniques that span this range. To avoid
this confusion we use chain coding and polygonalization to describe families of meth-
ods and vectorization only for the so-called hardware vectorizers mentioned here.

A final note should be made on automatic and human-assisted vectorization.

Often the image quality is such that automatic line extraction is too error-prone to be
useful. For instance, for conversion of engineering drawings to CAD format from

older blueprints, the cost of a human operator correcting all the errors made by the
computer may be higher than manually entering the entire diagram in the first place.
For cases such as this, a computer can be used to facilitate manual conversion. One

example of this is Fastrak [43], an interactive line-following digitizer in which a

human operator simply “leads” the computer along the path of the line using an input
device such as a mouse. Most practical commercial systems for diagram entry employ
a combination of image analysis and computer-aided manual correction.

Chain coding or vectorization is performed in most commercially available sys-
tems for storing and analyzing graphics documents. The Freeman code is the most

common, though systems often incorporate proprietary vectorization techniques.
Refer to [42] for vectorization for map processing.

2.6 Binary Region Detection

Keywords: binary segmentation, region coloring, blob detection, connected compo-
nent labeling, contour detection, line adjacency graph (LAG)

Before feature-level analysis can take place, segmentation must be performed to
detect individual regions (also called objects or blobs) in the image. For gray-scale
and color images, detection is sometimes difficult because the objects may blend into
the background or there may be overlap. For binary images, however. it is a straight-
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forward procedure to find each group‘of neighboring ON pixels. Thus, the character, a
comprises one region, and the character i two regions. A dashed line is composed of
as many regions. Once regions have been found, features can be determined from
them, and recognition can be made of the region as one or part of a particular charac-
ter or graphics component.

Region detection is analogous to chain coding preceded by thinning since the
objective of both procedures is to yield a single representation of a group of neighbor-
ing ON pixels. The difference between the two procedures is their applicability. As
has been mentioned, thinning and chain coding can be applied to any shape but are
most useful for elongated shapes. Region detection can also be applied to any shape,
but it is especially useful for rounder shapes where the results from thinning are less
useful; for example, a circular disk will thin to a single point (under perfect thinning
conditions), and the size information will be lost in this thinned image; whereas
region detection will retain this size information. Region detection is also useful for
hole detection. For instance. thinning an image of Swiss cheese will result in many
connected lines representing the cheese connections; however, this may not be as use-
ful as the result of contour detection that will have one contour for the boundary of the
cheese and contours for each of the holes. As a counterexample, for the letter H, thin-

ning will yield the pertinent topological information that the symbol is made up of
two vertical lines joined by a horizontal line, whereas region detection will yield only
a single region with no topological information and will require additional feature
detection for character recognition. Since many document components are made from
line strokes, thinning and chain coding are often used; however. if the purpose is just
to locate document components, or if the objects are truly blob-shaped, region detec-
tion is appropriate.

2.B.1 Contour Detection

Contour detection can be thought of as a reciprocal operation of thinning. Whereas
thinning yields the inside skeletons, contour detection yields the outside boundaries,
or contours. Since a single contour envelopes a single region, contour detection can be
used for region detection. Contours are composed of boundary, ON-valued pixels that
border OFF-valued pixels. These contours can be found easily by examining each
pixel within a 3 X 3 window, and if the center pixel is ON, and at least one of its
neighborhood pixels is OFF. the center pixel is a contour pixel and it is set to ON; all
other pixels are set to OFF. Each resulting contour can then be chain coded to repre-
sent each region. Usually chain coding is done in one direction around ON regions
(counterclockwise) and in the opposite direction (clockwise) around holes. The result
of contour detection is illustrated in Figure 2.13. (See [44, 45] for contour tracing

algorithms.)
The contour image can be used in a number of ways. For instance, the number of

contours gives the number of regions (both ON-valued regions and OFF-valued holes
within ON-valued regions). The centroid of the boundary pixels gives a measure of
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Figure 2. 1 3 Left, region, with ON-valued pixels represented by Xs; right, contour of this region, where only
the outer and inner boundaries remain ON. The arrows around the contour show the direction of
coding.

the region location. The length of a contour indicates the enclosed region size. The
length and enclosed area can be used to give a measure of how elongated or “fat” the
region is. Curvature and comer features can be determined from the contour to deter-
mine the region shape. (For other feature detection methods applicable to contours,
see Chapter 3.)

2.6.2 Region Labeling

Regions can also be found by other techniques based on interior (versus contour) pix—
els, One way to locate regions is to perform connected component labeling, or region
coloring, which results in each region of an image being assigned a different label or
color [46, 47]. The method involves a two-pass process where pixels are individually
labeled. The image is first scanned in raster order, and each pixel is examined. For
each ON—valued pixel, the previously labeled pixels to the left and above are exam-
ined. If none is ON, then the pixel is set to a new label value. If one of these is ON,
then the current pixel is given the same label as that pixel. If more than one are ON,
then the pixel is set to one of the labels, and all labels are put in an equivalence class
(that is, they are stored for later merging). At the end of this pass, the number of con-
nected components is the number of equivalence classes, plus the number of labels not
in an equivalence class. The second pass consists first of merging all labels in each
equivalence claSs to be the same label and then reassigning all labeled pixels in the
image to these final labels.
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A method that relates to connected component labeling and to thinning is the line

adjacency graph (LAG) [45]. First, runs of ON pixels are found—where a run is a
group of same—valued, adjacent pixels on the same row. For each run, if there is a run
on an adjacent row in which one or more pixels are neighboring, these runs are said to
be graph nodes and are joined by graph branches. If these branches are visualized as
segments drawn between the middle points of each pair of runs, the branches will
form a structure similar to a skeleton (Figure 2.14). This skeleton will retain topologi-
cal information of holes and will approximate large nodules in the shape, but because
the method is dependent upon the orientation, it cannot be used to obtain a good
approximation of the medial lines or of endlines.

Both contour detection and coloring operations are usually available on graphics

analysis systems to be applied to the nonthin components.
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Figure 2.1 4 Line adjacency graph of region. The ON pixels are shown as Xs. The middle of each row of
ON pixels is shown as a filled box. The lines that join these midpoints of each ON row shows
the line adjacency graph.
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more compact than storing the document as a file of pixels. For example, just as an
English letter is stored as its 8~bit ASCII representation in lieu of its larger-size image,
for a compression of two to three orders of magnitude, a graphics symbol, such as a

company logo or electrical “AND” gate, can also have a similarly compact “code

word” that essentially indexes the larger-sized image. Document image analysis can
be important when the original document is produced by computer as well. Anyone

" who has dealt with transport and conversion of computer files knows that compatibil-

' ity can rarely be taken for granted. Because of the many different languages, propri~
' etary systems, and changing versions of CAD and text-formatting packages that are

" used, incompatibility is especially true in this area. Because the formatted docu-
ment—that viewed by humans—is semantically the same independent of the lan—

| | guage of production, this form is a “protocol-less protocol.” If a document system can
' ‘ | translate between different machine—drawn formats, the next objective is to translate

‘ from hand-drawn graphics. This is analogous to handwriting recognition and text rec-
I ' ognition in OCR. When machines can analyze complex hand-drawn diagrams accu—
| rately and quickly, the graphics recognition problem will be solved, but there is stillI
|

  

much opportunity for research before this goal will be reached.

| A common sequence of steps taken for document image analysis of graphics
interpretation is similar to that for text. Preprocessing, segmentation, and feature

I I extraction methods such as those described in earlier chapters are first applied. An ini-
tial segmentation step that is generally applied to a mixed text-graphics image is that I

| of text and graphics separation. An algorithm specifically designed for separating textii components in graphics regions irrespective of their orientation is described in [1].
‘l I This is a Hough transformnbased technique that uses the heuristic that text compo—nents are colinear. Once text is segmented, typical features extracted from a graphics

image include straight lines, curves, and filled regions. After feature extraction, pat-

|' I tern recognition techniques are applied, both structural pattern recognition methods to
determine the similarity of an extracted feature to a known feature using geometric
and statistical means, and syntactic pattern recognition techniques to accomplish this

same task using rules (a grammar) on context and sequence of features. After this
i l mid-level processing, these features are assembled into entities with some meaning—

I | ' or semantics—~that is dependent on the domain of the particular application. Tech-
I niques used for this include pattern matching, hypothesis and verification, and knowl-

edge—based methods. The semantic interpretation of a graphics element may be
I different depending on domain; for instance, a line may be a road on a map or an elec-

‘ trical connection of a circuit diagram. Methods at this so-called high level of process-
' ing are sometimes described as artificial intelligence techniques.

‘ ‘1 Most commercial OCR systems will recognize long border and table lines as
being different from characters so will not attempt to recognize them as characters.
Graphics analysis systems for engineering drawings must discriminate between text

ll and graphics (mainly lines). This is usually accomplished very well except for some
confusion when characters adjoin lines, causing them to be interpreted as graphics or

I ' when there are small, isolated graphics symbols that are interpreted as characters.
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