
Backtracking algorithms for constraint

satisfaction problems�

Rina Dechter and Daniel Frost

Department of Information and Computer Science

University of California, Irvine

Irvine, California, USA 92697-3425

fdechter,frostg@ics.uci.edu

September 17, 1999

Abstract

Over the past twenty �ve years many backtracking algorithms have

been developed for constraint satisfaction problems. This survey describes

the basic backtrack search within the search space framework and then

presents a number of improvements developed in the past two decades,

including look-back methods such as backjumping, constraint recording,

backmarking, and look-ahead methods such as forward checking and dy-

namic variable ordering.

1 Introduction

Constraint networks have proven successful in modelingmundane cognitive tasks
such as vision, language comprehension, default reasoning, and abduction, as

well as specialized reasoning tasks including diagnosis, design, and temporal and
spatial reasoning. The constraint paradigm is a generalization of propositional
logic, in that variables may be assigned values from a set with any number
of elements, instead of only true and false. Flexibility in the number of
values can improve the ease and naturalness with which interesting problems
are modeled.

The contribution of this paper is a survey of several approaches to solv-
ing constraint satisfaction problems, focusing on the backtracking algorithm
and its variants, which form the basis for many constraint solution procedures.
We provide on a careful exposition of each algorithm, its theoretical underpin-
nings, and its relationship to similar algorithms. Worst-case bounds on time
and space usage are developed for each algorithm. In addition to the survey,

�This work was partially supported by NSF grant IRI-9157636, Air Force O�ce of Scienti�c

Research grant AFOSR F49620-96-1-0224, Rockwell MICRO grants ACM-20775 and 95-043.

1

CONFIGIT 10481f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the paper makes several original contributions in formulation and analysis of
the algorithms. In particular the look-back backjumping schemes are given a
fresh exposition through comparison of the three primary variants, Gashnig's,
graph-based and conict-directed. We show that each of these backjumping
algorithms is optimal relative to its information gathering process. The com-
plexity of several schemes as a function of parameters of the constraint-graph are
explicated. Those include backjumping complexity as a function of the depth
of the DFS traversal of the constraint graph, learning algorithms as a function
of the induced-width, and look-ahead methods such as partial-lookahead as a
function of the size of the cycle-cutset of the constraint graph.

The remainder of the paper is organized as follows. Section 2 de�nes the
constraint framework and provides an overview of the basic algorithms for solv-
ing constraint satisfaction problems. In Section 3 we present the backtracking
algorithm. Sections 4 and 5 survey and analyze look-back methods such as
backjumping and learning schemes while Section 6 surveys look-ahead methods.
Finally, in Section 7 we present a brief historical review of the �eld. Previous
surveys on constraint processing as well as on backtracking algorithms can be
found in [Dec92, Mac92, Kum92, Tsa93, KvB97].

2 The constraint framework

2.1 De�nitions

A constraint network or constraint satisfaction problem (CSP) is a set of n
variables X = fx1; : : : ; xng, a set of value domains Di for each variable xi, and
a set of constraints or relations. Each value domain is a �nite set of values, one
of which must be assigned to the corresponding variable. A constraint RS over
S � X is a subset of the cartesian product of the domains of the variables in S.
If S = fxi1 ; : : : ; xirg, then RS � Di1

� � � � � Dir
. S is called the scope of RS .

A nogood is a particular assignment of values to a subset of variables which is
not permitted. In a binary constraint network all constraints are de�ned over
pairs of variables. A constraint graph associates each variable with a node and
connects any two nodes whose variables appear in the same scope.

A variable is called instantiated when it is assigned a value from its domain;
otherwise it is uninstantiated. By xi = a or by (xi; a) we denote that variable xi
is instantiated with value a from its domain. A partial instantiation or partial
assignment of a subset of X is a tuple of ordered pairs ((x1; a1); :::; (xi; ai)),
frequently abbreviated to (a1; ::::; ai) or ~ai when the order of the variables is
known.

Let Y and S be sets of variables, and let ~y be an instantiation of the variables
in Y . We denote by ~yS the tuple consisting of only the components of ~y that
correspond to the variables in S. A partial instantiation ~y satis�es a constraint
RS i� ~yS 2 RS. [Rina, the next sentence is new.] ~y is consistent if ~y satis�es all
constraints RT ; T � Y . A consistent partial instantiation is also called a partial
solution. A solution is an instantiation of all the variables that is consistent.

2

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

T1

T2

T3

T5

T4

Unary constraint

T4 6= 2:00
Binary constraints

T1, T2: f(1:00,2:00), (1:00,3:00), (2:00,1:00)
(2:00,3:00), (3:00,1:00), (3:00,2:00)g

T1, T3: f(2:00,1:00), (3:00,1:00), (3:00,2:00)g
T2, T4: f(1:00,2:00), (1:00,3:00), (2:00,1:00)

(2:00,3:00), (3:00,1:00), (3:00,2:00)g
T3, T4: f(1:00,2:00), (1:00,3:00), (2:00,3:00)g
T3, T5: f(2:00,1:00), (3:00,1:00), (3:00,2:00)g

Figure 1: The constraint graph and constraint relations of the scheduling prob-
lem in Example 1.

Example 1. The constraint framework is useful for expressing and solving
scheduling problems. Consider the problem of scheduling 5 tasks T1, T2, T3,
T4, T5, each of which takes 1 hour to complete. The tasks may start at 1:00,
2:00, or 3:00. Any number of tasks can be executed simultaneously, subject to
the restrictions that T1 must start after T3, T3 must start before T4 and after
T5, T2 cannot execute at the same time as T1 or T4, and T4 cannot start at
2:00.

With �ve tasks and three time slots, we can model the scheduling problem
by creating �ve variables, one for each task, and giving each variable the domain
f1:00, 2:00, 3:00g. Another equally valid approach is to create three variables,
one for each starting time, and to give each of these variables a domain which
is the powerset of fT1, T2, T3, T4, T5g. Adopting the �rst approach, the
problem's constraint graph is shown in Figure 1. The constraint relations are
shown on the right of the �gure.

2.2 Constraint algorithms

Once a problem of interest has been formulated as a constraint satisfaction
problem, it can be attacked with a general purpose constraint algorithm. Many
CSP algorithms are based on the principles of search and deduction; more so-
phisticated algorithms often combine both principles. In this section we briey
survey the �eld of CSP algorithms.

2.2.1 Search - backtracking

The term search is used to represent a large category of algorithms which solve
problems by guessing an operation to perform or an action to take, possibly
with the aid of a heuristic [Nil80, Pea84]. A good guess results in a new state
that is nearer to a goal. If the operation does not result in progress towards the
goal (which may not be apparent until later in the search), then the operation
can be retracted and another guess made.

3

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

For CSPs, search is exempli�ed by the backtracking algorithm. Backtracking
search uses the operation of assigning a value to a variable, so that the current
partial solution is extended. When no acceptable value can be found, the pre-
vious assignment is retracted, which is called a backtrack. In the worst case the
backtracking algorithm requires exponential time in the number of variables,
but only linear space. The algorithm was �rst described more than a century
ago, and since then has been reintroduced several times [BR75].

2.2.2 Deduction - constraint propagation

To solve a problem by deduction is to apply reasoning to transform the problem
into an equivalent but more explicit form. In the CSP framework the most
frequently used type of deduction is known as constraint propagation or con-
sistency enforcing [Mon74, Mac77, Fre82]. These procedures transform a given
constraint network into an equivalent yet more explicit one by deducing new
constraints, tightening existing constraints, and removing values from variable
domains. In general, a consistency enforcing algorithm will make any partial so-
lution of a subnetwork extendable to some surrounding network by guaranteeing
a certain degree of local consistency, de�ned as follows.

A constraint network is 1-consistent if the values in the domain of each vari-
able satisfy the network's unary constraints (that is, constraints which pertain
to a single variable). A network is k-consistent, k � 2, i� given any consistent
partial instantiation of any k � 1 distinct variables, there exists a consistent
instantiation of any kth additional variable [Fre78]. The terms node-, arc-, and
path-consistency [Mac77] correspond to 1-, 2-, and 3-consistency, respectively.
Given an ordering of the variables, the network is directional k-consistent i� any
subset of k � 1 variables is k-consistent relative to variables that succeed the
k � 1 variables in the ordering [DP87]. A problem that is k-consistent for all k
is called globally consistent.

A variety of algorithms have been developed for enforcing local consistency
[MF85, MH86, Coo90, VHDT92, DP87]. For example, arc-consistency algo-
rithms delete certain values from the domains of certain variables, to ensure
that each value in the domain of each variable is consistent with at least one
value in the domain of each other variable. Path-consistency is achieved by
introducting new constraints or nogoods which disallow certain pairs of values.

Constraint propagation can be used as a CSP solution procedure, although
doing so is usually not practical. If global consistency can be enforced, then one
or more solutions can easily be found in the transformed problem, without back-
tracking. However, enforcing k-consistency requires in general exponential time
and exponential space in k [Coo90], and so in practice only local consistency,
with k � 3, is used.

In Example 1, enforcing 1-consistency on the network will result in the value
2:00 being removed from the domain of T4, since that value is incompatable
with a unary constraint. Enforcing 2-consistency will cause several other domain
values to be removed. For instance, the constraint between T1 and T3 means
that if T1 is scheduled for 1:00, there is no possible time for T3, since it must

4

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

occur before T1. Therefore, an arc-consistency algorithm will, among other
actions, remove 1:00 from the domain of T1.

Algorithms that enforce local consistency can be performed as a preprocess-
ing step in advance of a search algorithm. In most cases, backtracking will
work more e�ciently on representations that are as explicit as possible, that is,
those having a high level of local consistency. The value of the tradeo� between
the e�ort spent on pre-processing and the reduced e�ort spent on search has
to be assessed experimentally, and is dependent on the character of the prob-
lem instance being solved [DM94]. Varying levels of consistency-enforcing can
also be interleaved with the search process, and doing so is the primary way
consistency enforcing techniques are incorporated into constraint programming
languages [JL94].

2.2.3 Other constraint algorithms

In addition to backtracking search and constraint propagation, other approaches
to solving constraint problems include stochastic local search and structure-

driven algorithms. Stochastic methods typically move in a hill-climbingmanner
augmented with random steps in the space of complete instantiations [MJPL90].
In the CSP community interest in stochastic approaches was sparked by the
success of the GSAT algorithm [SLM92]. Structure-driven algorithms, which
employ both search and consistency-enforcing components, emerge from an at-
tempt to characterize the topology of constraint problems that are tractable.
Tractable classes of constraint networks are generally recognized by realizing
that for some problems enforcing low-level consistency (in polynomial time)
guarantees global consistency. The basic graph structure that supports tractabil-
ity is a tree [MF85]. In particular, enforcing 2-consistency on a tree-structured
binary CSP network ensures global consistency along some ordering of the vari-
ables.

3 Backtracking

A simple algorithm for solving constraint satisfaction problems is backtracking,
which traverses the search graph in a depth-�rst manner. The order of the
variables can be �xed in advance or determined at run time. The backtracking
algorithm maintains a partial solution that denotes a state in the algorithm's
search space. Backtracking has three phases: a forward phase in which the next
variable in the ordering is selected; a phase in which the current partial solution
is extended by assigning a consistent value, if one exists, to the next variable;
and a backward phase in which, when no consistent value exists for the current
variable, focus returns to the variable prior to the current variable.

Figure 2 describes a basic backtracking algorithm. As presented in Figure 2,
the backtracking algorithm returns at most a single solution, but it can easily be
modi�ed to return all solutions, or a desired number. The algorithm employs a
series of mutable value domainsD0

i
such that each D0

i
� Di. D

0
i
holds the subset

5

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

