
TECHNICAL REPORT 

R-121-AI

CONFIGIT 10471

TECHNICAL REPORT
R-121-Al

 

Artificial

Intelligence 
ANell

ELSEVIER Artificial Intelligence 68 (1994) 211-241
 

Experimental evaluation of preprocessing algorithms for
constraint satisfaction problems

Rina Dechter*’*, Itay Meiri”
“Information and Computer Science Department, University of California, Irvine, CA 29717-3425,

USA

Cognitive Systems Laboratory, Computer Science Department, University of California,
Los Angeles, CA 90024, USA

Received February 1992; revised July 1993

Abstract

This paper presents an experimental evaluation of two orthogonal schemes for pre-
processing constraint satisfaction problems (CSPs). The first of these schemes involves a
class of local consistency techniques that includes directional arc consistency, directional
path consistency, and adaptive consistency. The other scheme concerns the prearrangement
of variables in a linear order to facilitate an efficient search. In the first series of

experiments, we evaluated the effect of each of the local consistency techniques on
backtracking and backjumping. Surprisingly, although adaptive consistency has the best
worst-case complexity bounds, we have found that it exhibits the worst performance,
unless the constraint graph was very sparse. Directional arc consistency (followed by either
backjumping or backtracking) and backjumping (without any preprocessing) outperformed
all other techniques: moreover, the former dominated the latter in computationally
intensive situations. The second series of experiments suggests that maximum cardinality
and minimum width are the best preordering (i.e., static ordering) strategies, while
dynamic search rearrangementis superior to all the preorderings studied.

1. Introduction

Constraint satisfaction tasks belong to the class of NP-complete problems and,
as such, normally lack realistic measures of performance. Worst-case analysis,
because it depends on extreme cases, may yield an erroneous view of typical
performance of algorithms used in practice. Average-case analysis, on the other

* Corresponding author. E-mail: dechter@ics.uci.edu.

0004-3702/94/$07.00 © 1994 Elsevier Science BV. All rights reserved
SSDI 0004-3702(93)E0057-S

1 CONFIGIT 1047f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


2

212 R. Dechter, 1. Meiri { Artificial Intelligence 68 (1994) 211-24]

hand, is extremely difficult and is highly sensitive to simplifying theoretical
assumptions. Thus, theoretical analysis must be supplemented by experimental
studies.

The most thorough experimental studies reported so far include Gaschnig’s
comparisons of backjumping, backmarking and constraint propagation [12],
Haralick and Elliot’s study of look-ahead strategies [14], Brown and Purdom’s
experiments with dynamic variable orderings [21,22], and, more recently,
Dechter’s experiments with structure-based techniques [3], and Prosser’s hybrid
tests with backjumping and forward-checking strategies [20]. Additional studies
were reported in [6, 13, 23, 26, 27}.

Experimental studies are most informative when conducted on a “‘representa-
tive” set of problems from one’s own domain of application. However, this is very
difficult to effect. Real-life problems are often too large or too ill-defined to suit a
laboratory manipulation. A common compromise is to use either randomly
generated problems or canonical examples (e.g., n-queens, crossword puzzles,
and graph-coloring problems). Clearly, conclusions drawn from such experiments
reflect only on problem domains that resemble the experimental conditions and
caution must be exercised when generalizing to real-life problems. Such experi-
ments do reveal the crucial parameters of a problem domain, and so help
establish the relative usefulness of various algorithms.

Our focus in this paper is on algorithms whose performance, as revealed by
worst-case analysis, is dependent on the topological structure of the problem. Our
aim is to uncover whether the same dependency is observed empirically and to
investigate the extent to which worst-case bounds predict actual performance.
Our primary concern is with preprocessing algorithms and their effect on
backtracking’s performance. Since our preprocessing algorithms are dependent on
a static ordering of the variables they invite different heuristics for variable
ordering. We tested the effect of such orderings on the preprocessing algorithms
as well as on regular backtracking and backjumping.

Weorganized our experimental results into two classes. The first class concerns
consistency enforcing algorithms, which transform a given constraint network into
a more explicit representation. On this more explicit representation, any back-
tracking algorithm is guaranteed to encounter fewer deadends [16]. Since these
algorithms are polynomial while backtracking is exponential, and since they
always improve search, one may hastily conclude that they should always be
exercised. Our aim was to test this hypothesis. The three consistency enforcing
algorithms tested are directional arc consistency (DAC), directional path consis-
tency (DPC), and adaptive consistency (ADAPT)[6]. These algorithms represent
increasing levels of preprocessing effort as well as an increasing improvement in
subsequent search. Although DAC and DPC, whose complexities are quadratic
and cubic, respectively, can still be followed by exponential search (in the worst
case), ADAPTis guaranteedto yield a solution in time bounded by O(exp(W*)),
where W* is a parameterreflecting the sparseness of the network.

Ourresults show, contrary to predictions based on worst-case analysis, that the
average complexity of backtracking on our randomly generated problemsis far

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


3

R. Dechter, I. Meiri / Artificial Intelligence 68 (1994) 211-241 213

from exponential. Indeed the preprocessing performed by the most aggressive
scheme, ADAPT,did not pay off unless the graph was very sparse, in spite ofits
theoretical superiority to backtracking. On the other hand, the least aggressive
scheme, DAC, came out as a winner in computationally intensive cases.
Apparently, DAC performsjust the desired amount of preprocessing. Additional-
ly, while ADAPT showedthatits average complexity is exponentially dependent
on W*, the dependence of all other schemes on W* seems to be quite weak or
even non-existent.

In the second class we report the effect of various static ordering strategies on
backtracking and backjumping without preprocessing. Static orderings, in contrast
to dynamic orderings, are appealing in that they do not require any overhead
during search. We tested four static heuristic orderings, minimum width (MIN),
maximum degree (DEG), maximum cardinality (CARD), and depth-first search
(DFS). Those orderings are advised when analyzing their effect on the preproces-
sing algorithms ADAPT and even DPCas they yield a low W*. Although no
worst-case complexity ties backtracking or backjumping to W*, we nevertheless
wanted to discover whether a correlation exists, and which of these static
orderings yields a better average search. Lastly, in order to relate our experiments
with other experiments reported in the literature, we compared ourstatic
ordering with one dynamic ordering, dynamic search rearrangement (DSR) [21].
Wetested two implementation styles of DSR, presenting a tradeoff between space
and time overhead.

Our results show that minimum width and maximum cardinality clearly
dominated the maximum degree and depth-first search orderings. However, the
exact relationship between the first two is still unclear. While dynamic ordering
was only second or third best when implemented in a brute-force way it
outperformed all static orderings when a more careful implementation that
restricted its time overhead was introduced.

The remainder of the paper is organized as follows: we review the constraint
network model and general background in Section 2, present the tested algo-
rithms in Section 3, describe the experimental design in Section 4, discuss the
results in Section 5, and provide a summary and concluding remarksin Section 6.

2. Constraint processing techniques

A constraint network (CN) consists of a set of variables X = {X,,...,X,},
each associated with a domain of discrete values D,,...,D,, and a set of
constraints {C,,...,C,}. Each constraint is a relation defined on a subset of
variables. The tuples of this relation are all the simultaneous value assignments to
this variable subset which, as far as this constraint alone is concerned,arelegal.’

‘This does not meanthat the actual representation of any constraint is necessarily in the form ofits
defining relation, rather the relation can in principle be generated using the constraint’s specification
without the need to consult other constraints in the network.

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


4

214 R. Dechter, I. Meiri / Artificial Intelligence 68 (1994) 211-241

Formally, constraint C, has two parts: a subset of variables S;= {X;,... X}
on which it is defined, called a constraint-subset, and a relation vel, defined over

S;: rel, CD, X +++ x dD, The scheme of a CNis the set of its constraint subsets,
namely, scheme(CN) = {S,,5S,,...,5,}, $;¢X. An assignment of a unique
domain value to each memberof some subset of variables is an instantiation. An

instantiation is a solution only if it satisfies all the constraints. The set of all
solutions is a relation p defined on the set of all variables. Formally,

p= {(X,=x,,...,X, =x,)| VS, E scheme, I;p Crel;} , (1)

whereII,is the projection ofrelation p over a subset of its variables X, namely
it is the set of all subtuples over X that can be extended to a full tuple in p.

A CN may beassociated with a constraint graph in which nodes represent
variables and arcs connect variables that appear in the same constraint. For
example, the CN depicted in Fig. 1(a) represents a crossword puzzle. The
variables are E, D, C, A, and B. The scheme is {ED, EC, CA, AD, DB}. For
instance, the pair DE is in the scheme since the word associated with D and the
word associated with E share a letter. The constraint graph is given in Fig. 1(b).

Typical tasks defined on a CN are determining whetherasolution exists, finding
one solution or the set ofall solutions, and establishing whether an instantiation
of a subset of variables is part of a global solution. Collectively, these tasks are
known as constraint satisfaction problems (CSPs).

Dr= {hoses, laser, sheet ,snail,steer}
Da=Dp = {hike,aron,keet,earn, same}

De = {run,sun,let ,yes,eat ,ten}
Dz = {no,de,us,it}

Cap = {(hoses,same) , (laser, same) , (sheet,earn),
(snail,aron),(steer,earn)}

(a)

 

(b) (c)
Fig. 1. (a) A crossword puzzle (D denotes domains of variables, C,, is the constraint between
variables A and B), (b) its CN representation, and (c) a depth-first search preordering.

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


5

R. Dechter, I. Meiri / Artificial Intelligence 68 (1994) 211-241 215

Techniques used in processing constraint networks can beclassified into three
categories: (1) search algorithms, for systematic exploration of the space ofall
solutions, which all have backtracking as their basis; (2) consistency enforcing
algorithms, that enforce consistency on small parts of the network, and (3)
structure-driven algorithms, which exploit the topological features of the network
to guide the search. Hybrids of these techniques are also available. For a detailed
survey of constraint processing techniques, see [4, 15].

Backtracking traverses the search space in a depth-first fashion. The algorithm
typically considers the variables in some order. It systematically assigns values to
variables until either a solution is found or the algorithm reaches a deadend,
wherea variable has no value consistent with previous assignments. In this case
the algorithm backtracks to the most recent instantiation, changes the assigned
value, and continues. It is well known that the worst-case running time of
backtracking is exponential.

Improving the efficiency of backtracking amounts to reducing the size of the
search space it expands. Two types of procedures were developed: preprocessing
algorithms that are employed prior to performing the search, and dynamic
algorithms that are used during the search.

The preprocessing algorithms include a variety of consistency enforcing algo-
rithms [9, 16, 18]. These algorithms transform a given CN into an equivalent, yet
more explicit form, by deducing new constraints to be added to the network.
Essentially, a consistency enforcing algorithm makes a small subnetwork con-
sistent relative to its surrounding constraints. For example, the most basic
consistency algorithm, called arc consistency or 2-consistency (also known as
constraint propagation or constraint relaxation), ensures that any legal value in
the domain of a single variable has a legal match in the domain of any other
variable. Path consistency (or 3-consistency) ensures that any consistent solution
to a two-variable subnetwork is extensible to any third variable, and, in general,
i-consistency algorithms guarantee that any locally consistent instantiation of i — 1
variables is extensible to any ith variable. The algorithms, DAC, DPC, and
ADAPTareall restricted (because they take into account the direction in which
backtracking instantiates the variables) versions of these consistency enforcing
algorithms.

The preprocessing algorithmsalso include algorithms for ordering the variables
prior to search. Several heuristics for static orderings have been proposed [7, 10].
The heuristics used in this paper—minimum width, maximum cardinality, maxi-
mum degree, and depth-first search—follow the intuition that tightly constrained
variables should be instantiated first.

Strategies that dynamically improve the pruning power of backtracking can be
classified as either look-ahead schemesor look-back schemes. Look-ahead schemes

are invoked whenever the algorithm is about to assign a value to the next
variable. Some schemes, such as forward-checking, use constraint propagation
[14, 28] to predict the way in which the current instantiation restricts future
assignments of values to variables. An example of a look-ahead schemeis
dynamic search rearrangement, which decides what variable to instantiate next

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


