

Copyright IBM Research -Technical Report RC21457 Log96&56 4/26199

Abstract:

Software Testing Best Practices

Ram Cbillarege
Center for Software Engineering

IBM Research

This report lists 28 best practices that contribute to improved software testing. n,ey are not
necessarily related to software test tools. Some may have associated tools 0111 they are
fundamentally practice. The collections represent practices that several experienced software
organizations have gained from and and recognize as key.

1. Introduction

Every time we conclude a snidy or task force on the subject of software development
process I have found one recO!ll!llendation that comes out loud and d ear. "We need to adopt the
best practices in the industry." While it appears as an obvious conclusion, the most glaring lack of
it's presence continues to astound the snidy team. So clear is its presence that it distinguishes the
winners from the also-ran like no other factor.

The se.arch for best practices is constant. Son1e are known and well recognized, others
debated, and several hidden. Sometimes a practices that is obvious to the observer may be
transparent to the practitioner who chants "that's just the ·way we do things." At other tin1es
what's known in one co!ll!llunity is never heard of in another.

The list in this article is focused on Software Testing. While every attempt is made to
foe.us it to testing, we know, that testing does not stand alone. It is intiniately dependent on the
development activity and therefore draws heavily on the development practices. But finally,
testing is a separate process activity - the final arbiter of validity before the user assesses its
merit.

The collec.tion of practices have come frohm many sources - at this point indelibly
blended wi th its long history. Some of them were identified merely through a recognition of what
is in the literatures; others through focus groups where practitioners identified what they \>allied.
The list has been sifted and shared \\~th increasing nunlber of practitioners to gain their insight.
And finally they were culled down to a reasonable number.

A long list is hard to conceptualize, less translate to implementation. To be actionable, we
need to think in terms of steps - a few at a time, and avenues to tailor the choice to our own
independent needs. I like to think of them as Basic, Foundational, and Incremental.

I

CONFIGIT 1023f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Copyright IBM Research -Technical Report RC 21457 Log 96856 4116199

The Basics are exactly that. They are the training wheels you need to get started and
when you take them off, it is evident that you !mow how to ride. But remember, that you take
them off does not mean you forget how to ride. 1bis is an imponant difference which all too often
is forgotten in software. "Yeah, we used to write functional specification but we don't do that
anymore" means you forget to ride, not that you didn't need to do that step anymore. The
Basic practices have been around for a long time. Their v-alue contribution is widely recognized
and documented in our software engineering literature. Their applicability is broad, regardless of
product or process.

The Foundational practices are the rock in the soil that protects your effons against
harshness of nanire, be it a redesign of your architecnire or enhancements to sustain unforeseen
growth. They need to be put down thoughtfully and will make the difference in the long haul,
whether you build a ranch or a sl..-yscraper. Their value add is significant and established by a few
leaders in the industry. Unlike the Basics, they are probably not as well !mown and therefore need
implementation help. While there may be no textbooks on them yet, there is plenty of
documentation to dig up.

The Incremental practices provide specific advantages in special condition~. While they
may not provide broad gains across the board of testing, they are more specialized. These are the
right angle drills - when you need it, there's nothing else that can get between narrow snids and
drill a hole perfectly square. At the same time, if there was just one drill you were going to buy, it
may not be yollf first choice. Not all practices are widely !mown or greatly docmnented. But they
all possess the strength that are powerful when judiciously applied.

The next sections describe each of the practices and are grouped under Basics,
Foundational, and Incren1ental.

2. The Basic Practices

• Functional Specifications
• Reviews and In~pection
• Formal entry and exit criteria
• Functional test - variations
•Multi-platform testing
• Internal Betas
• Automated test execution
• Beta programs
• 'Nightly' Builds

f unctional Specifications

Functional specifications are a key pan of many development processes and came
into vogue with the development of the waterfall process. While it is a development

2

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Copyright IBM Research -Technical Report RC 21457 Log 96856 4/26199

process aspect, it is critically necessary for software functional test. A functional
specification often describes the external view of an object or a procedure indicating the
options by which a service could be invoked. The testers use this to write down test cases
from a black box testing perspective ..

The advantage of having a functioual specification is that the test generation
activity could happen in parallel with the development of the code. This is ideal fron1
several dimen~ons. Firstly, it gain~ parallelism in execution, removing a serious
serialization bottleneck in the development process. By the time the software code is
ready, the test cases are also ready to be run against the code. Secondly, it forces a degree
of clarity from the perspec.tive of a designer and an architect, so essential for the overall
efficiencies of development. Thirdly, the functional specifications becon1e documentation
that can be shared with the customers to gain an additional perspective on what is being
developed.

Re,iews and Inspection

Software inspection, which was invented by Mike Fagan in the mid ?O's at IBM,
has grown to be recognized as one of the most efficient methods of debugging code.
Today, 20 years later, there are several books written on software inspec.tion, tools have
been made available, and consulting organizations teach the practice of software
inspection. It is argued that software inspection can easily provide a ten times gain in the
process of debugging software .. Not much needs to be said about this, since it is a fairly
well-know11 and understood practice.

f onnal :Entry and :Exit Ciiteria

The notion of a formal entry and exit criteria goes back to the evohllion of the
waterfall development processes and a model called ETVX, again an IBM invention. The
idea is that every process step, be it inspec.tion, fttnctioual test, or software design, has a
precise entry and precise exit criteria. These are deiined by the development process and
are watched by management to gate the movement from one stage to another. It is
arguable as to how precise any one of the criteria can be, and with the decrease of
emphasis developmerll, process entry and exit criteria went out of currency. However,
this practice allows much more careful management of the software development process.

f unctional Test - Variations

Most functioual tests are written as black box tests working off a functional
specification. The number of test cases that are generated usually are variations on the
input space coupled ,vith visiting the output conditions. A variation refers to a spec.ific
combination of input conditions to yield a specific output condition. Writing down
functional tests involves v.'Iiting different variations to cover as much of the state space as
one deems necessary for a program. The best practice involves understanding how to
,mte variations and gain coverage which is adequate enough to thoroughly test the

3

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Copyright IBM Research -Technical Report RC 21457 Log 96856 4116199

fttnction. Given that there is no measure of cove.rage for functional tests, the practice of
writing variations does involve an element of art. Toe practice has been in use in many
locations within IBM and we need to consolidate our knowledge to teach new flmction
testers the art and practice.

Multi-platform Testing

Many products today are designed to mn on different platfomlS which creates the
additional burden to both design and test the product. When code is ported fron1 one
platfom1 to another, modifications are sometimes done for perfonnance pwposes. Toe net
result is that testing on multiple platfOllllS has become a necessity for most products.
Therefore techniques to do this better, both in development and testing, are essential. This
best practice should address all aspects of multi-platform development and testing.

Internal Betas

The idea of a Beta is to release a product to a limited number of customers and get
feedback to fix problen1S before a larger shipment. For larger companies, such as IBM,
Microsoft and Oracle, many of their products are used internally, th11S fotnling a good beta
audience. Techniques to best conduct such an internal Beta test are essential for us to
obtain good coverage and efficiently use internal resources. This best practice has
everything to do with Beta progran15 though on a smaller scale to best leverage it and
reduce cost and expense of an external Beta.

Automated Test Enrntion

The goal of automated test execution is that we minimize the a11101111t of manual
work involved in test execution and gain higher coverage with a larger number of test
cases. The automated test execution has a significant impact on both the tools sets for test
execution and also the way tests are designed. Integral to automated test envir0flll1ents is
the test oracle that verifies current operation and logs failure with diagnosis information.
This is a best practice fairly well 1.111derstood in some segn1ents of software testing and not
in others. The best practice., therefore, needs to leverage what is known and then develop
methods for areas where autoniation is not yet fully exploited.

Beta Programs

(see internal betas)

'Nightly' Builds

4

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Copyright IBM Research -Technical Report RC 21457 Log 96&56 4126199

The concept of a nightly build has been in vogue for a long time. While every build
is not necessarily done every day, the concept capnires frequent builds from changes that
are being promoted into the change control system. The advantage is firstly, that if a
major regression occurs because of errors recently generated, they are capnired quickly.
Secondly, regression tests can be mn in the background. Thirdly, the newer releases of
software are available to developers and testers sooner.

3. Foundational

User Scenarios
Usability Testing
In-process ODC feedback loops
Multi-release CDC/Butterfly profiles
R.equiren1ents for test planning
Automated test generation

User Sc.ena1ios

As we integrate multiple software products and create end user applications that
invoke one or a multiplicity of products, the task of testing the end user feantres gets
complicated. One of the viable methods of testing is to develop user scenarios that
exercise the functionality of the applications. We broadly call these User Scenarios. The
advantage of the user scenario is that it tests the product in the ways that most likely
reflect customer usage, imitating what Software Reliability Engineering has for long
advocated under the concept of Operational Profile. A fttrther advantage of using user
scenarios is that one reduces the con1plexity of writing test cases by moving to testing
scenarios than feantres of an application. However, the methodology of developing user
scenarios and using enough ofthen1 to get adequate coverage at a fonctional level
continues to be a difficult task. 1bis best practice should capntre methods of recording
user scenarios and developing test cases based on them. In addition it could discuss
potential diagnosis methods when specific faihtre scenarios occurs.

Usability Testing

For a large munber of products, it is believed that the usability becon1es the final
arbiter of quality. 1bis is true for a large number of desktop applications that gained
market share through providing a good user experience. Usability testing needs to not only
assess how usable a product is but also provide feedback on methods to improve the user
experience and thereby gain a positive quality image. The best practice for usability
testing should also have knowledge about advances in the area of Human Computer
Interface

5

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

