UNITED STATES ~

DESIGN TECHNIQUES

By Bill Venners, JavaWorld
JUN 1, 1998 12:00 AM PST

Object finalization and cleanup

How to design classes for proper object cleanup

Three months ago, | began a mini-series of articles about designing objects with a
discussion of design principles that focused on proper initialization at the beginning of
an object’s life. In this Design Techniques article, I'll be focusing on the design principles

that help you ensure proper cleanup at the end of an object's life.

Why clean up?

Every object in a Java program uses computing resources that are finite. Most obviously,
all objects use some memory to store their images on the heap. (This is true even for
objects that declare no instance variables. Each object image must include some kind of
pointer to class data, and can include other implementation-dependent information as
well.) But objects may also use other finite resources besides memory. For example,
some objects may use resources such as file handles, graphics contexts, sockets, and so
on. When you design an object, you must make sure it eventually releases any finite

resources it uses so the system won't run out of those resources.

Because Java is a garbage-collected language, releasing the memory associated with an
object is easy. All you need to do is let go of all references to the object. Because you
don't have to worry about explicitly freeing an object, as you must in languages such as
C or C++, you needn’t worry about corrupting memory by accidentally freeing the same
object twice. You do, however, need to make sure you actually release all references to

the object. If you don't, you can end up with a memory leak, just like the memory leaks

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

yougetina C++LR“TEgrSaT£pE¥vhen you forget to explicitly free objects. Nevertheless, so
long as you release all references to an object, you needn't worry about explicitly

“freeing” that memory.

Similarly, you needn’t worry about explicitly freeing any constituent objects referenced
by the instance variables of an object you no longer need. Releasing all references to the
unneeded object will in effect invalidate any constituent object references contained in
that object's instance variables. If the now-invalidated references were the only
remaining references to those constituent objects, the constituent objects will also be

available for garbage collection. Piece of cake, right?

The rules of garbage collection

Although garbage collection does indeed make memory management in Java a lot
easier thanitis in C or C++, you aren't able to completely forget about memory when
you program in Java. To know when you may need to think about memory management
in Java, you need to know a bit about the way garbage collection is treated in the Java

specifications.

Garbage collection is not mandated

The first thing to know is that no matter how diligently you search through the Java
Virtual Machine Specification (JVM Spec), you won't be able to find any sentence that
commands, Every JVM must have a garbage collector. The Java Virtual Machine
Specification gives VM designers a great deal of leeway in deciding how their
implementations will manage memory, including deciding whether or not to even use
garbage collection at all. Thus, it is possible that some JVMs (such as a bare-bones smart
card JVM) may require that programs executed in each session "fit" in the available

memory.

Of course, you can always run out of memory, even on a virtual memory system. The

JVM Spec does not state how much memory will be available to a JVM. It just states that

P PR . L W A W P GRS S SRR -F NP PR B R N PR o W B W ol V PRSUR

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

SponsoredPost Sponsored by NTT DATA Services
Don't Leave Your Cloud Migration to Chance

Nevertheless, to give Java applications the best chance of executing without running out
of memory, most JVMs will use a garbage collector. The garbage collector reclaims the
memory occupied by unreferenced objects on the heap, so that memory can be used

again by new objects, and usually de-fragments the heap as the program runs.
Garbage collection algorithm is not defined

Another command you won't find in the JVM specification is All JVMs that use garbage
collection must use the XXX algorithm. The designers of each JVM get to decide how
garbage collection will work in their implementations. Garbage collection algorithm is
one area in which JVM vendors can strive to make their implementation better than the

competition’s. This is significant for you as a Java programmer for the following reason:

Because you don't generally know how garbage collection will be performed inside a

JVM, you don't know when any particular object will be garbage collected.

So what? you might ask. The reason you might care when an object is garbage collected
has to do with finalizers. (A finalizer is defined as a regular Java instance method named
finalize() that returns void and takes no arguments.) The Java specifications make the

following promise about finalizers:

Before reclaiming the memory occupied by an object that has a finalizer, the garbage

collector will invoke that object’s finalizer.

Given that you don't know when objects will be garbage collected, but you do know that

finalizable objects will be finalized as they are garbage collected, you can make the

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

You don't know when gtzirects will be finalized.
UNITED STATES +

You should imprint this important fact on your brain and forever allow it to inform your

Java object designs.

Finalizers to avoid

The central rule of thumb concerning finalizers is this:

Don't design your Java programs such that correctness depends upon “timely”

finalization.

In other words, don't write programs that will break if certain objects aren't finalized by
certain points in the life of the program'’s execution. If you write such a program, it may

work on some implementations of the JVM but fail on others.

SponsoredPost Sponsored by Salesforce
ClOs Should Adopt a Digital Mindset to Lead
Teams Through Change

Don't rely on finalizers to release non-memory resources

An example of an object that breaks this rule is one that opens a file in its constructor
and closes the file in its finalize () method. Although this design seems neat, tidy, and
symmetrical, it potentially creates an insidious bug. A Java program generally will have
only a finite number of file handles at its disposal. When all those handles are in use, the

program won't be able to open any more files.

A Java program that makes use of such an object (one that opens a file in its constructor

and closes it in its finalizer) may work fine on some JVM implementations. On such

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

whose garbage cL?NllTeEgts%Tgsoesn t finalize often enough to keep the program from
running out of file handles. Or, what's even more insidious, the program may work on all
JVM implementations now but fail in a mission-critical situation a few years (and release

cycles) down the road.
Other finalizer rules of thumb

Two other decisions left to JVM designers are selecting the thread (or threads) that will
execute the finalizers and the order in which finalizers will be run. Finalizers may be run
in any order -- sequentially by a single thread or concurrently by multiple threads. If your
program somehow depends for correctness on finalizers being run in a particular order,

or by a particular thread, it may work on some JVM implementations but fail on others.

You should also keep in mind that Java considers an object to be finalized whether the
finalize() method returns normally or completes abruptly by throwing an exception.
Garbage collectors ignore any exceptions thrown by finalizers and in no way notify the
rest of the application that an exception was thrown. If you need to ensure that a

particular finalizer fully accomplishes a certain mission, you must write that finalizer so

that it handles any exceptions that may arise before the finalizer completes its mission.

One more rule of thumb about finalizers concerns objects left on the heap at the end of
the application’s lifetime. By default, the garbage collector will not execute the finalizers
of any objects left on the heap when the application exits. To change this default, you
must invoke the runFinalizersOnExit() method of class Runtime or System, passing
true as the single parameter. If your program contains objects whose finalizers must
absolutely be invoked before the program exits, be sure to invoke

runFinalizersOnExit() somewhere in your program.

So what are finalizers good for?

By now you may be getting the feeling that you don't have much use for finalizers. While
it is likely that most of the classes you design won't include a finalizer, there are some

reasons to use finalizers.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




