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or several years, Digital Equipment Corporation
has used a system called R1 (or sometimes Xcon)
to configure the computer systems it manufac—
tures. The most recent account of Rl’s develop-

ment1 notes that as R1 has grown to several thousand rules,
maintaining and developing it have become substantially
more difficult. As we explored what kind of tool could
facilitate knowledge acquisition for R1, we saw that the most
valuable tool would (1) help determine the role any new piece
of knowledge should play and (2) suggest how to represent
the knowledge so it would be applied whenever relevant.
Several researchers in recent years24 have stressed that to
maintain and to continue to develop a knowledge base it is
critical to identify the various knowledge roles and to repre-
sent the knowledge in a way that does not conflate these
roles. What is not yet clear is how many interestingly differ-
ent roles exist and, if there are many, how one identifies the
appropriate subset for a particular expert system.

We believe we will find the answers to these questions by
studying knowledge roles in different problem-solving
methods. Our approach is to develop knowledge acquisition
tools that make explicit the knowledge representation impli—
cations of various methods. Until recently, most of the

research in knowledge acquisition tools has concentrated on
tools for classification problem-solvers.’ Because knowledge
acquisition tools such as Teiresias,‘ BIS," and More8 presup-
pose relatively similar problem-solving methods, the systems
built with these tools have similar knowledge roles. However,
knowledge acquisition tools for constructive problem-solvers
are now being developed—-e.g., Salt9 and Sear, the knowl—
edge acquisition tool we describe in this article—that are

This article is a revised version of an earlier paper, “Doing RI with Style.”
presented at the Second Conference on Al Applications, Miami, Fla., 1985.
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based on problem-solving methods significantly different
from classification problem-solving methods. Because the
problem-solving method that Sear presupposes is signifi-
cantly different not only from classification problem-solving
methods but also from the constructive method presupposed
by Salt, the diversity of possible roles is becoming more
apparent.

In this article, we discuss how a problem-solving method
can influence the development of a knowledge acquisition
tool. We first investigate why adding knowledge to R1 in its
current form is difficult and find that the main reason is that

Rl’s knowledge roles are ill-defined. We then examine
another computer-system configurer, Rime, and the

explicitly defined knowledge roles that are part of its
problem-solving method. Finally, we indicate how Rime’s
problem-solving method served as the basis for the knowl—
edge acquisition tool, Sear.

Rl’s approach to configuration

In performing the configuration task, R1 takes as input a
list of components a customer has ordered and produces as
output a set of diagrams of the interrelationships among
those components. The initial list of components may be
incomplete (i.e., it may not be possible to configure a func-
tional system with that set of components) and, if so, R1
must add appropriate components.

Rl’s problem-solving method. Because of the number of
possible combinations of components, the only reasonable
approach to configuring the components is to construct (as
opposed to select) an appropriate system. Generally, con-
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structive tasks perform heuristic search, that is, a com-
binatorial search in which candidate partial solutions are
constructed and their potentials evaluated. Rl can for the

most part, however, avoid the combinatorial search (and
thus avoid backtracking) by using small local searches for
additional information at steps where there is ambiguity
about what next action is most appropriate.10 In other
words, local cues are ordinarily sufficient to drive R1 along a
path to a solution.

R1’s problem-solving method selects the next piece of
knowledge to apply from among those associated with the
currently active subtask. Ordinarily, only a few are relevant
at any given time. A piece of knowledge is considered rele-
vant whenever the pattern defining its relevance can be
instantiated by elements describing the current state of the
world. When more than one piece of knowledge is relevant,

the problem-solving method relies on very general heuristics,
such as the recency of the elements and the specificity of

each pattern, to determine which piece to apply.
Thus, Rl’s problem-solving can be characterized as fol-

lows: Given that it’s involved in some task, it will take what-

ever next action (i.e., apply whatever knowledge) is relevant;
if more than one piece of knowledge is potentially relevant,
the choice will be made on the basis of very general con-

siderations; if there is no more knowledge relevant to the
current task, Rl’s attention returns to the parent task; when-
ever Rl does not have enough information to confidently

prefer one possible action to all other candidate actions, it
does some local problem—solving (e.g., by invoking some
information-gathering subtask) until sufficient information
has been collected.

Why it’s hard to add knowledge to R1. R1’s problem-
solving method does not provide expert configurers with
clear guidelines about what knowledge they are expected to
share. In particular, a person adding knowledge to R1 could
use substantially more help in (1) how to go about bounding
the potential relevance of a piece of knowledge and (2) how
to determine which piece to apply when more than one is
relevant.

The relevance of each piece of Rl’s knowledge is defined
by a pattern (i.e., a set of conditions); the pattern specifies,
for some subtask, the circumstances under which the piece
of knowledge can be applied. Because R1 has no defined
knowledge roles, the way relevant pieces of knowledge are
chosen cannot be explicitly expressed. The problem-solving
method provides no vocabulary for an expert to describe the
various roles knowledge will play in the performance of a
task. Knowledge has been represented in R1 in various ways;
regularities, to the extent they exist, have gone unnoticed.
One has to know R1 well to modify its behavior in some
desired fashion. Since R1 now has so much knowledge, gain-

ing such familiarity has become more and more formidable.
It is thus hard to communicate to the variety of people

adding knowledge to R1 what is required of them. Rl’s
problem-solving method is just a problem-solving inclina-
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tion that has to be further specified by the knowledge it
uses.

Rime’s approach to configuration 

The configuration task Rime is being groomed for is iden-
tical to R1’s task. But Rime currently has only about an

eighth of the knowledge R1 has. Rime’s competence is in the
area of unibus configuration (which was R1’s earliest area of

expertise) where it can configure three of the twelve system
types that R1 can configure.

The problem-solving method. The primary problem-
solving method used by Rime has been derived from work
done on Rl-Soar”—an experiment in knowledge-intensive

programming using a general problem-solving architecture
called Soar.l2 The major difference between R1-Soar and
Rime is that for Rime Soar’s general problem-solving
method has been tailored for tasks that can be solved by a

strongly recognition-driven problem-solver. Also, Rime has
several “auxiliary methods,” not described in this article,
that are useful in a variety of special circumstances.

Problem—solving in Rime (as in Rl-Soar) is done in‘

problem-spaces. A problem-space consists of a set of opera-
tors and pieces of knowledge that indicate the conditions
under which these operators might appropriately be applied.

A problem-space is the arena within which part of a com-
plex operator from a parent problem-space is implemented.
Rime’s problem spaces serve much the same function that
subtasks do for R1; each problem space corresponds to a

part of the configuration task that expert configurers have
named. The difference between R1 and Rime is that Rime’s

problem-solving method imposes an additional level of
organization on its knowledge. Within each problem-space
there are six roles for knowledge to play: propose-operator,

reject-operator, evaluate-operator, apply-operator, recognize-
success, and recognize-failure. Rime’s primary problem-
solving method is defined in terms of these knowledge roles.
Before this method is described, some discussion of each of
these roles is appropriate.

Propose-operator. Propose-operator knowledge suggests
what operators might solve the problem at hand under the
current set of circumstances; it is also knowledge of the rela-
tive static desirablity of those operators. For example, three
operators that might be proposed in the configure—unibus
problem space are the configure-module, the configure—
backplane, and the configure-bus-repeater operators. Each is
sometimes appropriately applied. The configure-module and
configure-backplane operators, if applicable, are always to
be preferred to the configure-bus-repeater operator. The
choice between configure-module and configure-backplane
is dictated by a variety of situational cues.

Reject-operator. Reject-operator knowledge is used to
reject inapplicable operators proposed by propose-operator
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knowledge. For example, the configure-module operator
might be rejected because of insufficient power of a particu-
lar type. The principal reason for separating propose-type
knowledge from reject-type knowledge is to allow additional
information to become available (the reasons why certain
operators are rejected) which in turn can make it possible to
select a more appropriate operator.

Evaluate-operator. Here the task is to favor one of the
proposed operators on the basis of whatever domain-specific
considerations are relevant. A piece of knowledge favors one
proposed operator over another under some specific set of
circumstances. For example, the configure—module operator
would be preferred to the configure-backplane operator if
the pinning type of the next module to be configured is the
same as the pinning type of the next available slot in the
backplane being filled.

Apply-operator. Apply-operator knowledge defines the
actions that are to be performed when some operator is
applied. For example, when the configure-module operator
is applied, the boards comprising the module must be
associated with particular slots in the backplane.

Recognize-success. Recognize-success knowledge indicates
how to determine when a subtask has been satisfactorily
completed. For example, if all modules have been configured
then there is nothing more to do in the configuration-
module problem-space.

Recognize-failure. Recognize-failure knowledge indicates
how to determine when the current approach to performing
a subtask is not going to succeed. For example, no space
remaining in the backplane currently being filled indicates
that more space must be identified before the task can be
finished.

Just as Rl always selects the next piece of knowledge to
apply from among those pieces of knowledge associated
with the currently active subtask, so Rime selects the next

piece of knowledge to apply from among the knowledge
associated with the currently active problem space. But
whereas there was little more to say about how R1 selects
knowledge, Rime’s problem-solving method is substantially
better specified. R1 and Rime use essentially the same
knowledge to perform their tasks, but because Rime’s

method makes the roles that knowledge can play explicit, it
is easier to talk (and think) about how Rime uses its knowl-
edge and about what knowledge it needs to perform its
tasks. Whenever it performs a subtask, Rime always
sequences one or more times through a series of steps.
Within each step, there is never any issue of what action to
perform next because the method was designed to eliminate
all control issues inside steps. Thus, although Rime ordinar—
ily has many rules that are satisfied at any given time, it
never matters in what order the satisfied rules are executed.

FALL 1986

Within any step, any of the rules that are satisfied can be
executed in any order. When no rules are satisfied, control
moves to the next step.

Step I: Propose candidate operators (propose-operator
and reject-operator). Step 5 of Rime’s method (below)
applies the operator that has been selected; if this operator is
complex, its application becomes a problem to be solved in
another problem-space. Rime’s first step in the new problem-
space is to propose operators that are relevant to the current
situation and to reject those whose pre-conditions are not
satisfied. Rime can be sure at the end of this step that all of
the operators that could plausibly be applied are available
for consideration.

Step 2: Eliminate obviously inferior candidates. Rime’s

second step is to try to prune some of the candidate opera-
tors. If there are candidate operators whose preconditions
are all satisfied, any operators whose preconditions are not
all satisfied are pruned. If there are candidate operators
whose preference class is lower than the preference class of
other candidate operators, those operators in the lower

preference class are pruned.

Step 3.‘ Evaluate the remaining candidates (evaluate-
operator). During the third step, Rime compares the candi—
date operators that remain after the second step with one
another. Each circumstance that suggests that one of the
operators is less appropriate than another results in the less
appropriate operator being pruned. At the end of this step,
all of the evidence that Rime has that allows it to dis-

criminate among the candidate operators has been taken
into account.

Step 4: Select one operator. In Step 4, if more than one
candidate remains, Rime selects one of the candidates at
random.

Step 5: Perform the actions associated with that operator
(apply-operator). Rime’s fifth step is to apply the operator
selected in the previous step. If the operator can be realized
within the current problem-space, whatever actions are per-
formed to realize this operator are performed during this
step. If the operator is complex and can only be realized by
invoking another problem-space, the problem-space in which
the selected operator can be realized is invoked.

Step 6: Quit if there is nothing more to do (recognize-
success and recognize-failure). In the sixth step, Rime looks
for evidence that it has done all that can be done for now in

the current problem-space. If it recognizes that it has done
everything it can, control returns to Step 5 in the parent
problem-space.

Step 7: Iterate. If Rime finds itself at the seventh step, it
knows that it is appropriate to iterate through the steps
again, and so it goes to Step I.
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Figure 1. An overview of Sear.

Why it’s easier to add knowledge to Rime. The problem-
solving method used by Rime provides more direction to
someone adding knowledge than does Rl’s method. This is
in part because Rime’s method integrates explicin defined
knowledge roles and in part because the person adding the
knowledge can specify the conditions under which one piece
of knowledge should be applied in preference to another.

Knowledge must be added in such a way that the new

knowledge interacts well with existing knowledge. A limited
number of clearly defined knowledge roles make adding
knowledge easier because there is less uncertainty in the
mind of the person adding the knowledge about how and
when knowledge gets used. Each rule is responsible for some
aspect of the system’s behavior. Rules that have the same
knowledge role interact minimally; rules with different roles
have well-defined interactions. Thus there is less danger that
adding a piece of knowledge will result in some unwanted
behavior because of some unexpected interaction with exist-
ing pieces of knowledge.

Configuration knowledge acquisition 

Sear—a knowledge collector and organizer. For RI and
perhaps many other large expert systems, the problem of
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knowledge acquisition can be more appropriately viewed as
the problem of knowledge maintenance. Sear is a knowledge
maintainer that presupposes a problem-solving method—the
method used by Rime. Figure I shows an overview of Sear.

Its major components are an interviewer and a rule genera-
tor. The interviewer elicits domain knowledge from a knowl-
edge engineer or a domain expert and puts it into an
intermediate representation. The purpose of the intermedi-
ate representation is to provide a storehouse of domain

knowledge in a declarative form. The Sear rule generator
converts the intermediate representation into OPSS rules

that “proceduralize” the knowledge; that is, the knowledge
is represented in a way that tailors its usefulness to a
problem-solving method so that there is no need to search

the knowledge-base when solving a problem.‘ The explana-
tion facility is independent of the expert system since access
to knowledge in a declarative form is required for adequate
explanation.

To give a sense of how Sear can assist the knowledge-base
maintainer, we will focus on two of the roles that knowledge
can play in Rime: rejecting an operator and applying an
operator. We first identify the knowledge the rule generator
puts in the rules that play each of these roles. We then indi-
cate how much of that knowledge Sear. needs to elicit from
the user and how much is given by the knowledge role.

Each rule that Sear generates consists of condition ele-
ments and action elements. Condition elements are patterns
or templates that match objects defined by attribute-value
pairs; action elements can create or modify objects. The left
hand side of a rule that rejects an operator consists of a con-
dition element that identifies the role of the rule, a descrip-
tion of the operator to be rejected, and typically three or
four more condition elements that define a class of situa-

tions in which it would be inappropriate to apply the opera-
tor. The right hand side of the rule is a single action element

that tags the operator with the reason it is being rejected. An
apply-operator rule has a condition element that identifies

the role of the rule, and it typiwa has at least three or four
condition elements that are instantiated by the objects to be
operated on by the rule. There are several action elements,
each of which somehow modifies the current state.

Although there is a significant amount of variation in the
form of rules that play the same role, the fact that the
knowledge in these rules will be put to the same use allows

Sear, given a small part of some piece of knowledge, to form
strong expectations about what the rest of the knowledge
will be. In the case of reject—operator rules, Sear bases its
expectations primarily on two pieces of information: the
relevant problem-space and the knowledge role. In the exam-
ple in Figure 2, the five prompts indicate what information

‘lt is perhaps worth noting that for people who find the concept of knowl-
edge tailored to a single problem-solving method too limiting (and surely
single-method problem-solvers are shallow—no matter what the method),
Sear's intermediate representation could be the source of many different sets
of rules, each set tailored to a different method and the sets collectively
providing substantial robustness. (But see Lenat.”)
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PROBLEM-SPACE: CONFIGURE-MODULE
ROLE: REJECT-OPERATOR

MODULE: HEX-SLOTS-REQUIRED
RESTRICTION: SCOPE SLOTS
OPERATOR: REASON SLOT-SPACE HEX

(P CONFIGURE-MODULE:REJECT:300A:REJECT-FOR—SPACE

(GOAL TACTIVITY—PHASE CURRENT TSTEP PROPOSE—OPERATOR TPROBLEM—SPACE CONFIGURE-MODULE)
{ (OPERATOR TACTIVITY—PHASE PENDING TSTATUS PROPOSED fIOKEN < TOKEN>

TPROBLEM-SPACE CONFIGURE-MODULE) < OPERATOR > }
(MODULE TACTIVITY—PHASE CURRENT TTOKEN < TOKEN >

THEX—SLOTS-REQUIRED { < HEX-SLOTS—REQUIRED > < > NIL})
(CONTAINER TCAPACITY—PHASE CURRENT TCLASS BACKPLANE TTOKEN <BACKPLANE-TOKEN >)
(RESTRICTION TTOKEN < BACKPLANE-TOKEN> TSCOPE SLOTS

THEX-SLO'I‘S-REMAINING {> = < HEX-SLOTS-REQUIRED> < > NIL})

(MODIFY <OPERATOR> TSTATUS REJECTED TREASON < SLOT—SPACE> TREASON-QUALIFIER HEX))

IF THE ACTIVE PROBLEM-SPACE IS THE ONE IN WHICH MODULES ARE CONFIGURED
AND A MODULE HAS BEEN PROPOSED
AND IT REQUIRES MORE HEX SLOTS THAN ARE AVAILABLE IN THE BACKPLANE BEING FILLED

THEN REJECT THE IDEA OF CONFIGURING THAT MODULE

Figure 2. A sample reject-operator rule.

Sear asked the user for in this particular situation; the rest
of the figure shows the OPSS rule Sear created on the basis

of that information and an English translation of the rule.
The rule illustrates how much can be inferred by Sear given
just a rudimentary understanding of the computer system
configuration domain and an indication of the role the

knowledge will play. Sear’s knowledge of the configuration

domain is currently limited to a small collection of quite
general heuristics; for example, Sear knows that particular
kinds of containers are ordinarily associated with particular
kinds of objects. When Sear is told that the problem-space is
the one in which modules are configured and that the
knowledge role is reject-operator, it can create a goal ele-
ment. It knows, since the rule concerns configuring mod-
ules, that the operator to be rejected is likely to have
configureomodule as its problem-space. It also knows that
the rule will need an element that matches some module, so
it prompts for the attributes of module that are relevant to
the decision to reject. When Sear is told that hex-slots-
required is a relevant consideration, it assumes that there will

be a corresponding restriction element that requires hex-
slots-remaining to be less than hex-slots—required and
prompts for the scope of that element. It also assumes that
the restriction is associated with the backplane currently
being filled. Sear asks for the reason the operator is to be
rejected and then creates an action element to modify the
rule.

In the case of apply-operator rules, Sear bases its expecta-
tions primarily on the same two pieces of information: the
relevant problem-space and the knowledge role. In the exam-
ple in Figure 3, the five prompts indicate what information
Sear asked for. Here, all that Sear needs to determine to

generate a rule is how the backplane that is being configured
and the box that it will occupy will be changed when the
operator is applied. When Sear is told that the problem-
space is the one in which backplanes are configured and that
the knowledge role is apply-operator, it can create a goal ele-
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ment and also can create the appropriate operator element.
Sear knows, since the problem-space has to do with con-
figuring backplanes and the knowledge role is apply-
operator, that the rule is likely to extend its understanding of
the partial configuration involving the box and the back-
plane. Given the actions specified by the user, it infers that

the rule will need to match the element describing the box’s
role in the resulting partial configuration, the element
describing the box, the element containing information
about the backplane’s position in the box, and the element
describing the backplane.

Rime’s future. R1 in its current form is an extremely suc—
cessful expert system. It can configure almost all of Digital’s
PDP—ll and VAX-ll computer systems, and knowledge
engineers continue to extend the knowledge base to handle
new products as well as add new functionality. But both of
these tasks are becoming increasingly difficult. R1 consists
of about 4000 production rules and a database of 10,000

component descriptions. As R1 continues to grow, the main-
tenance task could well become impossible. Thus there are
strong reasons to consider rebuilding R1 using Sear.

However, the work we have done so far on Rime does not
provide a clear picture of how much effort would be
required to rebuild R1, nor does it tell us how much easier
the new system would be to maintain. Rime currently con-
sists of only about 250 rules and can configure only three
system types. There is some reason to think that Rime’s

knowledge is more densely represented than Rl’s knowledge;
part of not having a clear understanding of the roles knowl-
edge plays in R1 is that redundancy creeps into the system.
However, on the basis of the work that has been done on

Rime so far, it seems unlikely that Rime’s knowledge could
be more than twice as dense as Rl’s. Of more concern than

the relative size of R1 and Rime is how to extract knowledge
from R] and convert that knowledge into Rime rules. R1
rules represent configuration knowledge accumulated over
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