
Automated Test Oracles for GUls

Atif M. Memon
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260
atif@cs.pitt.edu

Martha E. Pollack t
Dept. of Computer Science

and Intelligent Systems
Program

University of Pittsburgh
Pittsburgh, PA 15260

pollack@cs.pitt.edu

Mary Lou Sofia t
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260
soffa@cs.pitt.edu

ABSTRACT
Graphical User Interfaces (GUIs) are critical components of
today's software. Because GUIs have different character-
istics than tradit ional software, conventional testing tech-
niques do not apply to GUI software. In previous work, we
presented an approach to generate GUI test cases, which
take the form of sequences of actions. In this paper we de-
velop a test oracle technique to determine if a GUI behaves
as expected for a given test case. Our oracle uses a formal
model of a GUI, expressed as sets of objects, object proper-
ties, and actions. Given the formal model and a test case,
our oracle automatical ly derives the expected state for ev-
ery action in the test case. We represent the actual state of
an executing GUI in terms of objects and their properties
derived from the GUI ' s execution. Using the actual s tate ac-
quired from an execution monitor, our oracle automatical ly
compares the expected and actual states after each action
to verify the correctness of the GUI for the test case. We
implemented the oracle as a component in our GUI testing
system, called Planning Assisted Tes ter for grapHical user
interface .Systems (PATHS), which is based on AI planning.
We experimentally evaluated the practicality and effective-
ness of our oracle technique and report on the results of
experiments to test and verify the behavior of our version of
the Microsoft WordPad's GUI.

Keywords
GUI testing, GUI Test Oracles, Automated Oracles.

*Partially supported by the Andrew Mellon Pre-doctoral
Fellowship.

tpar t ia l ly supported by the Air Force Office of Scien-
tific Research (F49620-98-1-0436) and NSF (IRI-9619579).
Effective Sep 1, 2000: Department of Electrical Engi-
neering and Computer Science, University of Michigan.
pollackm~eecs, umich, edu
SPaxtially supported by NSF (CCR 9808590 and EIA
9806525).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT 2000 (FSE-8) 11/00 San Diego, CA, USA
© 2000 ACM 188N 1-58113-205-0/00/0011 ...$5.00

1. INTRODUCTION
Graphical User Interfaces (GUIs) are critically important
components of most current software [11]. As with all soft-
ware, the behavior of a GUI, as well as the underlying code,
needs to undergo extensive testing to help ensure that it
behaves correctly. Although extensive research has been
devoted to testing conventional software, the resulting tech-
niques and approaches are not applicable when test ing GUIs,
because GUIs have special characteristics. Thus, testing
technology for GUIs requires new approaches. In a previous
paper, we described an approach to automatical ly generate
test cases, which are sequences of actions, for GUIs by using
Artificial Intelligence planning techniques [9]. In this paper,
we focus on the problem of automatically determining, given
a test case, whether a GUI behaves correctly.

The characteristics of GUIs present special challenges when
verifying a GUI ' s behavior [12, 10, 24]. Many of these chal-
lenges s tem from the fact that GUIs are event-based systems.
With conventional software, a test case usually consists of
a single set of inputs, and the expected result is the out-
put that results from completely processing that input. The
form of the output can be readily specified, e.g., as the val-
ues of a certain set of variables. With GUIs, the input is an
entire action sequence, where the effect of each action may
depend upon the effects of its previous actions. There is no
specific output: rather, each action affects the s ta te of the
GUI. Moreover, comparison of the expected and actual GUI
states cannot wait until the entire action sequence has been
executed. Instead, it is necessary to verify the s ta te of the
GUI after the execution of each action; otherwise, incorrect
GUI behavior for one action may result in a s tate in which
future actions in the sequence cannot be executed at all.

The above challenges suggest the need to develop an auto-
mated oracle that answers the question of whether a GUI
executing under a test case behaves as expected. The au-
tomation should occur both in the derivation of the expected
states and the comparison of the expected and actual states.
The development of an automated test oracle for GUIs has
certain requirements. First, we need a way of modeling the
GUI 's intended behavior so that we can automatical ly de-
rive its expected state during the execution of a test case.
In order to model the GUI ' s intended behavior, we need to
develop a representation of the GUI elements and actions.
Second, we need to represent the state of the executing GUI
in a form that is suitable for comparison wi th the expected

30

CONFIGIT 10071f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Formal ~.
GUI

Model

Test Case
t

[........................... ~] gun #~o
i ~fExpected-state~ { ,~form'ff~nfrom

" | Generator | executing GU1

i [~[r^ . .~ '~ . L iAc~al{ l~xecuuon {
i._O..t~l ~ ' | I Stat~ ~ Monitor J

J ±

Verdict

Figure 1: An Overview of the GUI Oracle.

state description. Finally, we need to design a mechanism
to automatical ly compare the expected state with the state
of the executing GUI.

In this paper, we present a technique to develop an auto-
mated GUI test oracle. An overview of the oracle is shown
in Figure 1. The oracle uses a formal model that is de-
veloped by the oracle designer from the GUI specifications.
The model is composed of the GUI objects and a set of prop-
erties for those objects. GUI actions are represented in the
model by their preconditions and effects. The oracle auto-
matically derives the expected state using the model and the
actions from a test case. Likewise, the actual state is also
described by a set of objects and properties typically found
in a GUI toolkit or specialized GUI language. The oracle
obtains the actual s tate information from an execution mon-
itor. A verifier in the oracle then automatically compares
the two states and determines if the GUI is performing as
expected. We implemented our technique in our GUI testing
system PATHS (the Planning Assisted Tester for graphical
user interface S.ystems), and show how we were able to facil-
i tate automation of the GUI test oracle by exploiting the AI
planning-based tools already present in PATHS. We experi-
mentally evaluated the oracle on a version of Microsoft Word
Pad and provide t iming results that establish the feasibility
of our approach.

In particular, the important contributions of the method
presented in this paper include the following.

• We define a formal model of a GUI derived from spec-
ifications that is useful in testing. In this paper we
demonstrate its usefulness in developing oracles.

• Our oracle is general in that it will work for any GUI
as long as an appropriate model can be established.
The oracle is also portable across platforms since it
depends on properties that can be acquired from GUI
toolkits or special programming language features.

• The technique allows reuse of operator definitions that
commonly appear across GUIs. These definitions can
be maintained in a library and reused to help develop
oracles for GUIs.

• We show our oracle creation process as a natural exten-
sion of our already implemented planning-based test-
case generation system. We reuse the planning oper-
ators defined for test-case generation and apply them
in a unique way to create oracles.

In the next section, we describe our GUI model. In Sec-
tion 3, we show how this model is used to determine the

expected state sequence of the GUI for a test case. In Sec-
tion 4, we show how to compare the expected state informa-
tion with the executing GUI ' s actual state. In Section 5, we
demonstrate how the oracle is used in test ing an example
GUI. Section 6 describes our implementat ion and presents
experimental results. We present related work in Section 7
and concluding remarks in Section 8.

2. MODELING THE GUI
We begin by describing how a GUI can be formally modeled,
and then show how that model can be used to compute
expected states of the GUI.

2.1 Objects and Properties
We model a GUI as a set of objects, (window, menu, but-
ton, text, etc.), a set of properties of those objects (back-
ground color, font, is-open, etc.), and a set of actions that
change the properties of certain objects (set-background-
color, etc.). Each GUI will use certain types of objects with
associated properties; at any specific point in time, the GUI
can be described in terms of the specific objects, or GUI
elements that it currently contains, and the current values
of their properties.

More formally, we model a GUI at a particular time t as:

its objects O = {oi, o2, ... , ore}, i.e., the objects the
GUI currently contains, and
the properties P = {pl, p2 , pl} of those objects.
Each property p~ is an ni-ary Boolean relation, for
ni _> I, where the first argument is an object Ol E O.
If n~ > 1, the last argument may be either an object or
a property value, and all the intermediate arguments
are objects. The property value is a constant drawn
from a set associated wi th the property in question:
for instance, the property "background-color" has an
associated set of values, (white, yellow, pink, etc.}.
We assume a distinguished set of properties, the ob-
j ec t types, which are unary relations, e.g., %¢indow"
or "button".

Thus we might specify the state of a (extraordinarily sim-
ple) GUI at some particular t ime by noting that it currently
has two window objects, w17 and w29, for which the following
properties hold: window(wl7), window(w29), background-
color(wl7, red), is-cmcrent(wl7). The state of a GUI
at a particular time is everything that is currently true of
it. So a description of the state would contain information
about the types of all the objects currently extant in the
GUI, as well as all of the properties of each of those objects.

There are several points that should be noted about our
description of properties. First, properties are relations, not
functions, and so there may sometimes be multiple values for
the same property of a given object. For example, there may
be multiple objects in a window. Next, properties as we have
defined them are f l u e n t s [8], i.e., relations which are true in
some situations (or states of the world) and not others. An
everyday example of a fluent is the relation president (US,
C l i n t o n) , with the obvious meaning, where the state it is
evaluated in is the state of the real world. Our fluents are
evaluated with respect to a s tate of the GUI. Finally, note
that a fluent may be undefined in some states, for example,

31

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

p r e s i d e n t (U S , Dole) in the s ta te of the world in the year
1567, or b a c k g r o u n d - c o l o r (w 2 4 , b l u e) in the s ta te of a
GUI immedia te ly af ter window w24 has been destroyed.

In practice, we can de te rmine the set of object types and
propert ies for our GUI model in several different ways. One
approach would be manual examina t ion of the GUI: we look
at it, and wri te down all t he object types and propert ies we
can discover. This approach is prone to incompleteness, es-
peciaUy since GUIs may have hidden propert ies t ha t must
be checked dur ing verification. For example, the tab order
of windows in a G U I (the order in which windows receive
input focus when the Tab key is pressed) is a proper ty t ha t
is not visible. A second approach is to derive the objects
and proper t ies direct ly from the GUI ' s specifications, which
will describe t h e m ei ther direct ly or implici t ly wi th in the
descript ions of G U I actions. A th i rd approach is to examine
the language or toolki t used to develop a par t icular GUL For
example, if t he G U I was developed using the Java language,
t hen the GUI objects would be instances of the s w i n g GUI
components of the J ava swing package, and the propert ies
would correspond to the ins tance variables (also called da t a
members in C + +) of each object . Visual p rogramming envi-
ronments provide a more direct interface to properties. For
example, Bor land ' s C + + Builder presents the propert ies as
a tab le for the current ly selected object.

The th i rd approach can lead to a larger set of object types
and proper t ies t h a n does the second. This is because the
set of object types and proper t ies made available by a lan-
guage or toolki t may not all be used in the cons t ruct ion
of a par t icular GUI. For example, one might use Bor land 's
C + + builder to const ruct a s imple GUI in which the user
is not pe rmi t t ed to man ipu la te the text color, and in which
the text color does not influence the execution of any o ther
action. (In fact, Microsoft 's No tePad is like this.) Thus, if
one establishes the set of propert ies from the GUI ' s specifi-
cations, t ex t color will not be amongst the propert ies mod-
eled, whereas if one establ ishes it from the toolki t used for
development, text color will be included as a proper ty in
the model. We thus dis t inguish between the complete set
of proper t ies for a GUI, which are all those t h a t would be
identified by our th i rd (language/ toolki t -based) approach,
and the reduced set, which includes only those t h a t would
be identified by our second (specifications-based) approach.
Note t h a t the reduced set is always a (possibly improper)
subset of the complete set of properties.

2.2 Actions
The s t a t e of a GU I is not stat ic; act ions are used to change
it over t ime. We model act ions as s ta te t ransducers , i.e., we
define an act ion as follows:

D e f i n i t i o n : The actions A = {al , a% . . . , an} associated
wi th a GUI are funct ions from one s t a t e of the GUI to
ano ther s t a t e of the GUI. []

Act ions may be parameter ized, e.g., s e t - b a c k g r o u n d - c o l o r (
w, x) . Whenever the act ion s e t - b a c k g r o u n d - c o l o r (w19,
y e l l o w) is executed in a s ta te in which window w19 is
open, the background color of w19 should become y e l l o w
(or s tay y e l l o w if i t a l ready was), and no o ther proper-
t ies of the world should change. This example i l lustrates
tha t , typically, act ions can only be executed in some states;

set-background-color(w19, yellow)cannot be executed
when window w19 is not open.

We use the no ta t ion sj = [s~, a] to denote t h a t s j is the
s ta te resul t ing from the execution of act ion a in s t a t e si.
We can s t r ing actions together into sequences. We will say
t h a t al ; a 2 ; . . . ; an is a legal act ion sequence f o r in i t ia l s ta te
so iff there exists a sequence of s tates, so; s l , . . . ; sn such
t h a t si = [s~-l,a~] for i = 1 , . . . ,n . Ex tend ing the no ta t ion
above, we use s j = [s i ,a l ;a2; . . .an] , where a l ; a ~ ; . . . ;an
is a legal act ion sequence, to denote t h a t s j is the s t a t e
t h a t results from execut ing the specified sequence of act ions
s ta r t ing in s ta te s~.

D e f i n i t i o n : A G U I t e s t c a s e is a pair < so, a l ; a2; • .. an > ,
consist ing of an init ial s t a t e and a legal sequence of ac-
t ions for t h a t state. []

We model act ions using the i r descr ipt ions in the G U I spec-
ifications: af ter all, the purpose of verif ication is to ensure
t h a t the implementa t ion of the act ions ma tches the expected
behavior promised in the specifications. In the next section,
we provide fur ther detai ls abou t model ing actions.

3. DERIVING EXPECTED STATE
We can now see how the model of the GUI can in principle
be used to de termine the expected s t a t e of a G U I af ter the
complete or par t ia l execut ion of any tes t case. Recall t h a t
actions are modeled as s t a t e t ransducers . For any tes t case
< so, a l ; a2; •. • an >, the sequence of s t a tes s l ; s2; • • • sn such
t h a t si = [s~-l ,al] for i = 1 , . . . , n represents the expected
s ta te of the GUI after each act ion is executed, s t a r t ing in so.
The quest ion is how, in practice, to compute these expected
states.

I t is of course infeasible to give exhaust ive specifications of
the s ta te mapp ing for each action: in principle, as there
is no l imit to the number of objects a G U I can conta in at
any point in t ime, there can be infinitely m a n y s ta tes of
the G U I 3 Thus, we adopt the technique of model ing G U I
actions using operators, which specify the i r precondi t ions
and effects:

D e f i n i t i o n : An o p e r a t o r is a 3-tuple < N a m e , Precondi-
tions, Effects> where:

• Name identifies an act ion and its parameters .
• P r e c o n d i t i o n s is a set of posi t ive ground l i terals 2

p (a r g l , . . . , a rgn) , where p is an n-ary proper ty
(i.e., p E P) .

• E l f e c t s is also a set of posit ive or negat ive ground
li terals p(arg l , . . . , argn) , where p is an n-ary prop-
er ty (i.e., p E P) .

[]

1Of course in practice, the re are memory l imits on the ma-
chine on which the GUI is running, and hence only finitely
many s ta tes actual ly possible, bu t the n u m b e r of possible
s ta tes will be extremely large.
2A li teral is a sentence wi thou t conjunct ion, d is junct ion or
implication; a l i teral is ground when all of i ts a rguments are
bound; and a posit ive l i teral is one t h a t is no t negated. I t
is s t ra ightforward to generalize the account given here to
handle par t ia l ly ins t an t i a t ed literals. However, i t needlessly
complicates the presenta t ion for th i s paper.

32

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

We wri te Pre(Op) and EJy(Op) to represent the set of pre-
condi t ions and effects, respectively, for operator Op. An
opera tor is applicable in any s ta te si in which all the literals
in Pre(Op) are true. In the resul t ing s ta te s j , all of the pos-
i t ive l i terals in Eff(Op) will be true, as will all the literals
t h a t were t rue in si except for those t h a t appear as negative
l i terals in Eff(Op). T he scheme for encoding operators we
use is the same as wha t is s tandard ly used in the AI plan-
n ing l i te ra ture [14, 22, 23]; the persistence assumption bui l t
into the me thod for comput ing the result s t a te is called the
STRIPS assumption. A complete formal semantics for op-
erators making the STRIPS assumpt ion has been developed
by Lifschitz [7].

The STRIPS-s ty le of encoding operators also makes it fairly
easy to derive result s t a te sj = [si, a], via simple addi t ions
and deletions to the list of relat ions representing s ta te si.

For example, if we were to define an operator for the s e t - b a c -
k g r o u n d - c o l o r action, then we would get the following op-
era tor definition:

N a m e : set-background-color(wX: window, Col:
Color)

Preconditions: is-current (wX), background-col-
or(wX, oldCol), oldCol ~ Col

Effects: background-color(wX, Col)

Going back to our s imple example of the GUI in which the
following propert ies were true: window(wl7) , window(w29),
background-color(wlT, red), is-curren~(wl7). If we ap-
plied the above operator , w i th variables bound as s e t - b a c k -
g r o u n d - c o l o r (w17, b l u e) , we would get the following
state: window(wlT), window(w29), background-color(wiT,
blue), is-current (w17), i.e., the background color of win-
dow w17 would change from red to blue.

The next state is obtained from the current state Sc and the
operator's effects e as follows:

1. Delete all literals in Sc that unify with a negated literal
in e, and

2. add all positive literals in e.

Thus, using a formal model of a GUI, we can derive the ex-
pected state , given an init ial s ta te and a sequence of actions.

Given t h a t GUI specifications can describe the intended be-
havior of act ions in t e rms of the i r precondit ions and effects
[5, 4], i t is relatively s t ra ight forward for the tes t designer to
construct operators for the GUI model. In fact, as we will
see later, the operators can also be used in other aspects of
test ing.

4. STATE COMPARISON
We have jus t described how to model a GUI and use t h a t
model to derive the expected state. Now we tu rn to the
quest ion of how to compare t h a t informat ion to the actual
state.

The simplest approach is manual comparison. One manual ly
executes a tes t case, and after each step, manual ly compares
the appearance of the GUI w i th the expected s ta te at t h a t

time. Manual verification has at least two problems: (1)
it is labor intensive, and (2) often the GUI s t a t e includes
"hidden" propert ies t h a t are not visually accessible.

Our goal is therefore to au toma te the process of ex t rac t ing
actual GUI s t a t e informat ion in a form t h a t is su i tab le for
comparison wi th the expected s t a t e description. We define
an execution monitor to be a process t ha t , given an exe-
cut ing GUI, re turns the current values of all t he proper t ies
in the complete set for the GUI. Once the ac tual values of
propert ies for an element or e lements are known, the verifier
can compare t hem against the expected values, to de te rmine
if they are equal. We, therefore define the verifier to be a
process t ha t compares the expected s t a t e of the GUI wi th
the actual s t a t e and re turns a verdict of equal or not equal.

The remaining question, then, is wha t proper t ies should be
compared dur ing the verification process. The re are several
possible answers to th is question, and the decision amongst
t h e m establishes the level of testing performed:
C h a n g e d - P r o p e r t i e s V e r i f i c a t i o n : Here, compar ison is

made only for those proper t ies t h a t were expected to
change as a result of the immedia te ly preceding action.
T h a t is, if act ion a was jus t executed, only the proper-
ties t h a t are included in Eft(a) are compared against
thei r expected values. Al though efficient, th is level of
tes t ing will fail to detec t changes to proper t ies t h a t
change when they are not expected to change. For ex-
ample, if t he background color of a window changes,
bu t i t was not expected to change, t he error would go
unnoticed.

R e l e v a n t - P r o p e r t i e s V e r i f i c a t i o n : Here, all the proper-
ties in the reduced proper ty set (see Section 2.1 above)
are checked. Recall t h a t the reduced proper ty set in-
cludes all the propert ies t h a t the current GUI is ever
supposed to access. This is, thus, a much more ex-
tensive level of tes t ing t h a n changed-proper t ies verifi-
cation, but it may still fail when some GUI proper ty
P changed in the execut ing GUI, bu t P was not a
par t of the GUI specification. For example, consider a
GUI for a plain- text editor, e.g., MS NotePad in which
users cannot change the text color. I f some act ion in
the tes t case has the un in tended effect of changing the
text color, t hen this error would go unnot iced, since
the color informat ion was not encoded in the expected
state.

C o m p l e t e - P r o p e r t i e s V e r i f i c a t i o n : Here, a check is made
for all the propert ies t h a t a language or toolki t pro-
vides for a GUI. Recall t h a t the verifier has access to
the complete set of properties. The only problem is
the absence of an expected s ta te to compare against
all these addi t ional properties. The current ly available
expected s ta te encodes only the reduced proper ty set.
To address th is problem, before the tes t case is exe-
cuted, a baseline complete expected state of the GUI is
created. Dur ing test-case execution, the comparisons
are done between the GUI!s actual s t a t e and the up-
da ted complete expected state.

In practice, the tes t designer can choose a combina t ion of
the above levels of test ing. For example, the verifier can per-
form changed-propert ies verification af ter each tes t act ion
and complete-propert ies verification af ter every 10 actions.

33

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

a a al ?
~ SelectFUe('f4,doc')]

F i g u r e 2: T h e E x a m p l e G U I .

We now have all the necessary mechanisms to develop an
au toma ted tes t oracle for GUIs.

5. A GUI EXAMPLE
In th is sect ion we show, t h rough an example, how a G U I is
tes ted using an au toma ted tes t oracle.

F igure 2 presents a small par t of the Microsoft WordPad ' s
GUI. This G U I can be used for loading text from files, ma-
n ipu la t ing the t ex t (by cu t t ing and past ing) and then saving
the tex t in ano the r file. A t the highest level, the GUI has a
pull-down menu wi th two act ions (F i l e and E d i t) . The GUI
user can execute the GUI act ions to make other elements
available. For example clicking on F i l e opens a menu wi th
New, Open, Save and SaveAs actions. Edit opens a menu
wi th Cut, Copy, and P a s t e actions. Open and SaveAs open
windows wi th several more actions. These act ions are used
to t raverse t he di rectory hierarchy and select a file. T h e up
b u t t o n moves up one level in the directory hierarchy and
clicking on files and directories is used to select files or enter
subdirector ies respectively. The window is closed by clicking
on e i ther Open or Cance l .

We assume t h a t the GUI ' s tes t cases are given. Recall t ha t
we defined a tes t case as a pair (So, al ; a2; a3; ...; a ,) , where
So is the ini t ial s t a t e and al;a2;a3;...;a,~ is an act ion se-
quence. Consider, for example, the sequence of act ions to
be applied to our version of the WordPad software shown
in Figure 3. This sequence of act ions t ransforms the G U I
from the ini t ial s t a t e So shown in Figure 4(a) to the one
shown in 4(b). Figure 4(a) shows a collection of files s tored
in a directory hierarchy. W h e n the act ions are executed on
the GUI, the new document shown in Figure 4(b) is created
and t hen stored in file f$.doc in the /Root/Latex/Samples
directory.

5.1 The Oracle Designer
To tes t the above GUI, an Oracle Designer uses the GUI
specifications to develop a formal model of the GUI. T h e

Figure 3: A n A c t i o n Sequence for our Vers ion o f the
WordPad Software

P r o p e r t y
in
contains

contains file
cur rentFi le
cur ren tFont

font

i sCurrent

onScreen

selectedFile
selectedText

Args
File, Text
ParentDir,
Dir
Dir, File
File
Font,
Style,
Size
Text,
Font,
Style,
Size
Dir

Text

File
Text

Semant i c s
File conta ins Text
FarentDir conta ins Dir

Dir conta ins File
T h e cur ren t file is File
T h e cur ren t font is
Font, style is Style, and
size is Size
Text is in Font, Style,
and Size

Dir is the cur ren t direc-
tory
Text is displayed on the
screen
File is selected
Text is h ighl ighted

Table 1- S o m e Propert ies , the ir Parameters , and
Semant ics .

rest of the process, i.e., der iving an expected s t a t e sequence
for each tes t case, execut ing the tes t case, ex t rac t ing the
actual s tate , and verifying i ts ou tcome of t h e tes t case is
handled automatical ly.

The first s tep in deriving the expected s t a t e is for the oracle
designer to use the G U I specifications to identify the prop-
erties of the elements of the GUI. T h e semant ics of some
propert ies used in th is example are shown in Table 1. The
columns show the proper ty name, the parameters , and the
semant ics of each property. T h e oracle designer t hen rep-
resents the ini t ial s t a t e (Figure 4) in t e rms of the identi-
fied propert ies as shown in Figure 5. T h e ini t ia l s t a t e de-
scribes the file s t ruc tu re (using the proper t ies c o n t a i n s ()
and c o n t a i n s F i l e ()) , and t h e contents of the file f l .doc us-
ing the proper ty i n () . Addi t iona l proper t ies are used to
describe the fonts, current file, and the cur ren t directory.

By using the act ions described in the specifications, the ora-
cle designer defines the precondi t ions and effects of t he oper-
ators. Figure 6 shows an example of an opera to r called Open,

34
5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

