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ABSTRACT 
Events are used as a fundamental abstraction in programs ranging 
from graphical user interfaces (GUis) to systems for building cus­
tomized network protocols. While providing a flexible structuring 
and execution paradigm, events have the potentially serious draw­
back of extra execution overhead due to the indirection between 
modules that raise events and those that handle them. This pa­
per describes an approach to addressing this issue using static opti­
mization techniques. This approach, which exploits the underlying 
predictability often exhibited by event-based programs, is based on 
first profiling the program to identify commonly occurring event 
sequences. A variety of techniques that use the resulting profile in­
formation are then applied to the program to reduce the overheads 
associated with such mechanisms as indirect function calls and ar­
gument marshaling. In addition to describing the overall approach, 
experimental results are given that demonstrate the effectiveness 
of the techniques. These results are from event-based programs 
written for X Wmdows, a system for building GUis, and Cactus, 
a system for constructing highly configurable distributed services 
and network protocols. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors-compilers; opti­
mization 

General Terms 
Profiling, Events, Handlers, Performance 

1. INTRODUCTION 
Events are increasingly being used as a fundamental abstraction 

for writing programs in a variety of contexts. They are used to 
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structure user interaction code in GUI systems [8, 18], form the 
basis for configurability in systems to build customized distributed 
services and network protocols [4, 9, 16], are the paradigm used for 
asynchronous notification in distributed object systems [19], and 
are advocated as an alternative to threads in web servers and other 
types of ~ystem code [20, 23]. Even operating system kernels can 
be viewed as event-based systems, with the occurrence of interrupts 
and system calls being events that drive execution. 

The rationale behind using events is multifaceted. Events are 
asynchronous, which is a natural match for the reactive execution 
behavior of GUis and operating systems. Events also allow the 
modules raising events to be decoupled from those fielding the 
events, thereby improving configurability. In short, event-based 
programming is generally more flexible and can often be used to 
realize richer execution semantics than traditional procedural or 
thread-oriented styles. 

Despite these advantages, events have the potentially serious dis­
advantage of extra execution overhead due to the indirection be­
tween modules that raise and handle events [5, 14]. Typically, there 
is a registry that maps an event to a collection of handlers to be exe­
cuted when the event occurs. Because these handlers are not known 
statically-and may in fact change dynamically-they are invoked 
indirectly. Depending on the system, the number and type of the 
arguments passed to the handler may also not be known, requiring 
argument marshaling. Finally, there may be repeated work, e.g., 
initialization or checking of shared data structures, across multiple 
handlers for a given event. All these extra costs can be surprisingly 
high-our experiments indicate that they can account for up to 20% 
of the total execution time in some scenarios. 

This paper describes a collection of static optimizations designed 
to reduce the overhead of event-based programs. Our approach ex­
ploits the underlying predictability of many event-based programs 
to generate an event profile that is conceptually akin to a path profile 
through the call graph of the program. These profiles are then used 
to identify commonly encountered events, as well as the collec­
tion of handlers associated with each event and the order in which 
they are executed. This information is then used to optimize event 
execution by, for example, merging handlers and chaining events. 
The techniques are specific to event-based programs, ~ince stan­
dard optiprization techniques are largely ineffective in this con­
text. For/example, conventional static analysis techniques cannot 
generally discover the connections between events and handlers 
let alone optimize away the associated overheads. Dynamic opti~ 
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mization systems such as Dynamo [2] can be used in principle, but 
they focus primarily on lightweight optimizations such as improv­
ing locality and instruction-cache usage in an effort to keep runtime 
overheads low. In contrast, the optimizations we consider are sub­
stantially more heavyweight, and-in the context of event-based 
programs-offer correspondingly greater benefits. Our techniques 
are specifically designed to improve execution on small mobile de­
vices, where resource constraints make any reduction in 'overhead 
valuable. / 

The remainder of the paper is organized as follows. Section 2 
describes a general model for event-based programs. This is fol­
lowed in section 3 by a description of our approach to optimizing 
such programs, including our profiling scheme and the collection 
of optimization techniques based on these profiles. Section 4 gives 
experimental results that demonstrate the potential improvements 
for three different examples. The first two, a video application and 
a configurable secure communication service, are built using Cac­
tus, a system for cons~cting highly configurable distributed ser­
vices and network protocols, that supports event-based execution 
[ 10, 12). The third is a cl ient side tool that uses X Windows, a 
popular system for building GUis [18) . This is followed by discus­
sions of possible extensions in section 5 and related work in section 
6. Finally, section 7 offers conclusions. 

2. EVENT-BASED PROGRAMS 
While event-based programs differ considerably depending on 

the specifics of the underlying programming model and notation, 
their architectures have a number of broad underlying similarities. 
Because of this, the optimizations described in this paper are gen­
erally applicable to most such systems. This section presents a 
general model for event-based system~ in order to provide a com­
mon framework for discussion. As examples, we describe how both 
Cactus and the X Windows system map into the model. 

2.1 Components 
Our general model consists of three main components: events, 

handlers that specify the reaction to an event, and bindings that 
specify which handlers are to be executed when a specific event 
occurs. 

Events. Events abstract the asynchronous occurrence of stimuli 
that must be dealt with by a program. Mouse motion, button click, 
and key press are examples of such events in a user interface con­
text, while receiving a packet from the network and message pass­
ing are examples in a systems context. In addition to such external 
events, an event-based program may use internal events that are 
generated and processed within the program. The set of events used 
in the event system may be fixed or the system may allow programs 
to define new events. Basic events may be composed into complex 
events. For example, two basic button click events within a short 
time period can be defined to sonstitute a double-click event. 

Handlers. Handlers direct the response of the program to event­
based stimuli. Specifically, a handler is a section of code that 
specifies the actions to be performed when a given event occurs. 
Typically, handlers have at least one parameter, the event that was 
raised; other parameters may be passed through variable argument 
lists or through shared data structures. The decoupling provided 
by the event mechanism allows handlers to be developed indepen­
dently from other handlers in the program. 

Bindings. Bindings determine which handlers are executed when a 
specific event occurs. The binding between an event and a hander is 
often provided using some type of runtime bind operation, although 
the binding may also be predefined and fixed. Most systems allow 
multiple handlers to be bound to a single event and a handler to be 
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bound to more than one event. An event is ignored if no handlers 
are bound to the event. The execution order of multiple handlers 
bound to the same event may be important. Bindings may be static, 
i.e., remain the same throughout the execution of the program, or 
dynamic, i.e., may change at runtime. Figure 1 illustrates bindings. 

Even! A 

Evenl B 

Event C 

Even! D 

Figure 1: Event bindings 

Bindings are maintained in a registry that maps each event to 
a list of handlers. The registry may be implemented as a shared 
data structure like the table shown in the figure, or each list may 
be maintained as a part of an event data structure. For distributed 
systems where handlers may be on distinct physical machines, the 
registry may be implemented using either a centralized or decen­
tralized approach. 

2.2 Execution 
The handlers bound to an event are executed when the event oc­

curs. An event may occur because the program receives some exter­
nal stimulus (external event) or because some program component 
raises the event (internal event). An execution environment or run­
time system is typically responsible for detecting or receiving exter­
nal stimuli and activating the corresponding events. As a result, we 
say these events are raised implicitly, whereas events directly acti­
vated by a program component are raised explicitly. Timed events 
are events that are activated at a specified time or after a specified 
delay. 

We identify two major types of event activation: synchronous 
activation and asynchronous activation. With synchronous activa­
tion, the specified handlers are executed to completion before the 
activator continues execution. With asynchronous activation, the 
activator continues execution without any guarantees as to when 
the handlers are executed. The different types of event activation 
have specific uses in event-based systems. Synchronous activation 
can be used for internal events when the event activator needs to 
know when the processing of a message has completed before con­
tinuing its own processing. Synchronous activation can be used 
for external events when the runtime system needs to ensure that 
such events are executed sequentially without interleaving. Asyn­
chronous activation can be used when none of these requirements 
apply. 

The overall picture of the event-based program to be optimized 
then consists of a program that reacts to stimuli from its environ­
ment, such as user actions or messages. These stimuli are con­
verted into events. Each event may have multiple handlers bound 
to it and handlers may activate other events synchronously or asyn­
chronously. Thus, the occurrence of an event may lead to the ac­
tivation of a chain of handlers and other events and, in turn, their 
handlers. Events can also be generated by the passage of time (e.g., 
timeouts). The type of event activation has implications on our 
optimization techniques. For example, since the handlers for a syn­
chronous activation are executed when the event is raised, an opti­
mization that replaces the activation call with calls to the handlers 
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Figure 2: Cactus composite protocol 

bound to the event at that time results in a correct transformation. 
Similarly, it is easy to see that sequences of nested synchronous ac­
tivations can be readily optimized. The specific optimization tech­
niques and their limitations are discussed below in section 3. 

2.3 Example Systems 
Cactus. Cactus is a system and a framework for constructing 

configurable protocols and services, where each service property 
or functional component is implemented as a separate module [ 10]. 
As illustrated in figure 2, a service in Cactus is implemented as a 
composite protocol, with each service property or other functional 
component implemented as a micro-protocol. A customized in­
stance of the composite protocol is constructed simply by choosing 
the appropriate set of micro-protocols. A micro-protocol is struc­
tured as a collection of event handlers that correspond to the han­
dlers in our general event-based model. A typical micro-protocol 
consists of two or more event handlers. Events in Cactus are user­
defined. A typical composite protocol uses 10-20 different events 
consisting of a few external events caused by interactions with soft­
ware outside the composite protocol and numerous internal events 
used to structure the internal processing of a message or service 
request. Each event typically has multiple event handlers. As a re­
sult, Cactus composite protocols often have long chains of events 
and event handlers activated by one event. Section 4 gives concrete 
examples of events used in a Cactus composite protocol. 

The Cactus runtime system provides a variety of operations for 
managing events and event handlers. In particular, operations are 
provided for binding an event handler to a specified event (bind) 
and for activating an event (raise). Event handler binding is com­
pletely dynamic. Events can be raised either synchronously or 
asynchronously, and an event can also be raised with a specified 
delay to implement time-driven execution. The order of event han­
dler execution can be specified if desired. Arguments can be passed 
to handlers in both the bind and raise operations. Other operations 
are available for unbinding handlers, creating and deleting events, 
halting event execution, and canceling a delayed event. Handler 
execution is atomic with respect to concurrency, i.e., a handler i~ 
executed to completion before any other handler is started unless it 
voluntarily yields the CPU. Cactus does not directly support com­
plex events, but such events can be implemented by defining a new 
event and having a micro-protocol raise this event when the condi­
tions for the complex event are satisfied. 

The X Window system. X is a popular GUI framework for Unix 
systems. The standard architecture of an X based system is shown 
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in figure 3. The X server is a program that runs on each system 
supporting a graphics display and is responsible for managing de­
vice drivers. Application programs, also called X clients, may be 
local or remote to the display system. X servers and X clients use 
the X-protocol for communication. X clients are typically built on 
the Xlib libraries using toolkits such as Xt, GTK, or Qt. X clients 
are implemented as a collection of widgets, which are the basic 
building blocks of X applications. 

An X event is defined as "a packet of data sent by the server to 
the client in response to user behavior or to window system changes 
resulting from interactions between windows" [18]. Examples of 
X events include mouse motion, focus change, and button press. 
These events are recognized through device drivers and relayed to 
the X server, which in turn conveys them to X clients. The Xlib 
framework specifies 33 basic events. X clients may choose to re­
spond to any of these based on event masks that are specified at 
bind time. Events are also used for communication between wid­
gets. Events can arrive in any order and are queued by the X client. 
Event activation in X is similar t9 synchronous activation in the 
general model. 

The X architecture has three mechanisms for handling events: 
event handlers, callback functions, and action procedures. All these 
map to handlers in the general model and are used to specify differ­
ent granularities of control. Event handlers, the most primitive, are 
simply procedures bound to event names. Callback functions and 
action procedures are more commonly used high-level abstractions. 
One difference between the three mechanisms relates to scope­
actions have global scope in an X client, while the scope of event 
handlers and callbacks is restricted to the widget in which they are 
defined. Another difference is their execution semantics. An event 
handler can be bound to multiple events in such a way that it is ex­
ecuted when any of the associated events occur. A callback func­
tion, on the other hand, is bound to a specific callback name, and 
all functions bound to a name are executed when the correspond­
ing callback is issued. Actions provide an additional level of in­
direction, where a mapping is created first between an event and 
the action name, and then between the action name and the action 
procedure. 

In addition to these three, X has a number of other mechanisms 
that can be broadly classified as event handling, namely timeouts, 
signal handlers, and input handlers. Each of these mechanisms 
allows the program to specify a procedure to be called when a given 
condition occurs. For all these handler types, X provides operations 
for registering the handlers and activating them. 

3. OPTIMIZATION APPROACH 
Compiler optimizations are based on being able to statically pre­

dict aspects of a program's runtime behavior using either invariants 
that always hold at runtime (i.e., based on dataflow analysis) or as­
sertions that are likely to hold (i.e., based on execution profiles) . 
Event-based systems, in contrast, are lai:iely unpredictable in their 
runtime behavior due to the uncertainties associated with the be-

Devices X - Client Application 
Device rivers 

X-Server XI Toolkit Qt 

XLib 

X-Protocol 

Figure 3: Architecture of X Window systems 
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