
JUL O ~ 2uC

Proceedings of t11W1c---

ACM SIGPLAN 2002 Conference
on

Programming Language
'

Design and Implementation®

(PLDl'02)

Berlin, Germany

June 17-19, 2002

Sponsored by the

Association for Computing Machinery
Special Interest Group on Programming Languages

(ACM SIGPLAN)

GOOGLE EXHIBIT 1039
GOOGLE v. NEONODE

IPR2021-01041
Page 1 of 13 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The Association for Computing Machinery
1515 Broadway

New York, New York 10036

Copyright © 2002 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital
or hard copies of portions of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyright for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax+ 1 (212) 869-0481 or <permissions@acm.org>.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously
published by ACM. If you have written a work that has been previously published by ACM in any journal
or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this
work to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the
work, the author(s), and where and when published.

ACM ISBN: 1-58113-463-0

Additional copies may be ordered prepaid from:

ACM Order Department
PO Box 11405
New York, NY 10286-1405

Phone: 1-800-342-6626
(US and Canada)
+ 1-212-626-0500
(all other countries)
Fax: +1-212-944-1318
E-mail: acmhelp@acm.org

ACM Order Number 548020
Printed in the USA

ii

GOOGLE EXHIBIT 1039
GOOGLE v. NEONODE

IPR2021-01041
Page 2 of 13 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

This material may be protected by Copyright law (Title 17 U.S. Code)

Profile-Directed Optimization of Event-Based Programs

Mohan Rajagopalan Saumya K. Debray
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USA

{rnohan, debray}@cs.arizona.edu

Matti A. Hiltunen Richard D. Schlichting
AT&T Labs-Research

180 Park Avenue
Florham Park, NJ 07932, USA

{hiltunen, rick}@research.att.com

ABSTRACT
Events are used as a fundamental abstraction in programs ranging
from graphical user interfaces (GUis) to systems for building cus­
tomized network protocols. While providing a flexible structuring
and execution paradigm, events have the potentially serious draw­
back of extra execution overhead due to the indirection between
modules that raise events and those that handle them. This pa­
per describes an approach to addressing this issue using static opti­
mization techniques. This approach, which exploits the underlying
predictability often exhibited by event-based programs, is based on
first profiling the program to identify commonly occurring event
sequences. A variety of techniques that use the resulting profile in­
formation are then applied to the program to reduce the overheads
associated with such mechanisms as indirect function calls and ar­
gument marshaling. In addition to describing the overall approach,
experimental results are given that demonstrate the effectiveness
of the techniques. These results are from event-based programs
written for X Wmdows, a system for building GUis, and Cactus,
a system for constructing highly configurable distributed services
and network protocols.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors-compilers; opti­
mization

General Terms
Profiling, Events, Handlers, Performance

1. INTRODUCTION
Events are increasingly being used as a fundamental abstraction

for writing programs in a variety of contexts. They are used to

Permission to make digital or hard copies of all or part of this work for .
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLD/'02 June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM l-58113-463-0/02/0006 ... $5.00.

106

structure user interaction code in GUI systems [8, 18], form the
basis for configurability in systems to build customized distributed
services and network protocols [4, 9, 16], are the paradigm used for
asynchronous notification in distributed object systems [19], and
are advocated as an alternative to threads in web servers and other
types of ~ystem code [20, 23]. Even operating system kernels can
be viewed as event-based systems, with the occurrence of interrupts
and system calls being events that drive execution.

The rationale behind using events is multifaceted. Events are
asynchronous, which is a natural match for the reactive execution
behavior of GUis and operating systems. Events also allow the
modules raising events to be decoupled from those fielding the
events, thereby improving configurability. In short, event-based
programming is generally more flexible and can often be used to
realize richer execution semantics than traditional procedural or
thread-oriented styles.

Despite these advantages, events have the potentially serious dis­
advantage of extra execution overhead due to the indirection be­
tween modules that raise and handle events [5, 14]. Typically, there
is a registry that maps an event to a collection of handlers to be exe­
cuted when the event occurs. Because these handlers are not known
statically-and may in fact change dynamically-they are invoked
indirectly. Depending on the system, the number and type of the
arguments passed to the handler may also not be known, requiring
argument marshaling. Finally, there may be repeated work, e.g.,
initialization or checking of shared data structures, across multiple
handlers for a given event. All these extra costs can be surprisingly
high-our experiments indicate that they can account for up to 20%
of the total execution time in some scenarios.

This paper describes a collection of static optimizations designed
to reduce the overhead of event-based programs. Our approach ex­
ploits the underlying predictability of many event-based programs
to generate an event profile that is conceptually akin to a path profile
through the call graph of the program. These profiles are then used
to identify commonly encountered events, as well as the collec­
tion of handlers associated with each event and the order in which
they are executed. This information is then used to optimize event
execution by, for example, merging handlers and chaining events.
The techniques are specific to event-based programs, ~ince stan­
dard optiprization techniques are largely ineffective in this con­
text. For/example, conventional static analysis techniques cannot
generally discover the connections between events and handlers
let alone optimize away the associated overheads. Dynamic opti~

GOOGLE EXHIBIT 1039
GOOGLE v. NEONODE

IPR2021-01041
Page 3 of 13 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

mization systems such as Dynamo [2] can be used in principle, but
they focus primarily on lightweight optimizations such as improv­
ing locality and instruction-cache usage in an effort to keep runtime
overheads low. In contrast, the optimizations we consider are sub­
stantially more heavyweight, and-in the context of event-based
programs-offer correspondingly greater benefits. Our techniques
are specifically designed to improve execution on small mobile de­
vices, where resource constraints make any reduction in 'overhead
valuable. /

The remainder of the paper is organized as follows. Section 2
describes a general model for event-based programs. This is fol­
lowed in section 3 by a description of our approach to optimizing
such programs, including our profiling scheme and the collection
of optimization techniques based on these profiles. Section 4 gives
experimental results that demonstrate the potential improvements
for three different examples. The first two, a video application and
a configurable secure communication service, are built using Cac­
tus, a system for cons~cting highly configurable distributed ser­
vices and network protocols, that supports event-based execution
[10, 12). The third is a cl ient side tool that uses X Windows, a
popular system for building GUis [18) . This is followed by discus­
sions of possible extensions in section 5 and related work in section
6. Finally, section 7 offers conclusions.

2. EVENT-BASED PROGRAMS
While event-based programs differ considerably depending on

the specifics of the underlying programming model and notation,
their architectures have a number of broad underlying similarities.
Because of this, the optimizations described in this paper are gen­
erally applicable to most such systems. This section presents a
general model for event-based system~ in order to provide a com­
mon framework for discussion. As examples, we describe how both
Cactus and the X Windows system map into the model.

2.1 Components
Our general model consists of three main components: events,

handlers that specify the reaction to an event, and bindings that
specify which handlers are to be executed when a specific event
occurs.

Events. Events abstract the asynchronous occurrence of stimuli
that must be dealt with by a program. Mouse motion, button click,
and key press are examples of such events in a user interface con­
text, while receiving a packet from the network and message pass­
ing are examples in a systems context. In addition to such external
events, an event-based program may use internal events that are
generated and processed within the program. The set of events used
in the event system may be fixed or the system may allow programs
to define new events. Basic events may be composed into complex
events. For example, two basic button click events within a short
time period can be defined to sonstitute a double-click event.

Handlers. Handlers direct the response of the program to event­
based stimuli. Specifically, a handler is a section of code that
specifies the actions to be performed when a given event occurs.
Typically, handlers have at least one parameter, the event that was
raised; other parameters may be passed through variable argument
lists or through shared data structures. The decoupling provided
by the event mechanism allows handlers to be developed indepen­
dently from other handlers in the program.

Bindings. Bindings determine which handlers are executed when a
specific event occurs. The binding between an event and a hander is
often provided using some type of runtime bind operation, although
the binding may also be predefined and fixed. Most systems allow
multiple handlers to be bound to a single event and a handler to be

107

bound to more than one event. An event is ignored if no handlers
are bound to the event. The execution order of multiple handlers
bound to the same event may be important. Bindings may be static,
i.e., remain the same throughout the execution of the program, or
dynamic, i.e., may change at runtime. Figure 1 illustrates bindings.

Even! A

Evenl B

Event C

Even! D

Figure 1: Event bindings

Bindings are maintained in a registry that maps each event to
a list of handlers. The registry may be implemented as a shared
data structure like the table shown in the figure, or each list may
be maintained as a part of an event data structure. For distributed
systems where handlers may be on distinct physical machines, the
registry may be implemented using either a centralized or decen­
tralized approach.

2.2 Execution
The handlers bound to an event are executed when the event oc­

curs. An event may occur because the program receives some exter­
nal stimulus (external event) or because some program component
raises the event (internal event). An execution environment or run­
time system is typically responsible for detecting or receiving exter­
nal stimuli and activating the corresponding events. As a result, we
say these events are raised implicitly, whereas events directly acti­
vated by a program component are raised explicitly. Timed events
are events that are activated at a specified time or after a specified
delay.

We identify two major types of event activation: synchronous
activation and asynchronous activation. With synchronous activa­
tion, the specified handlers are executed to completion before the
activator continues execution. With asynchronous activation, the
activator continues execution without any guarantees as to when
the handlers are executed. The different types of event activation
have specific uses in event-based systems. Synchronous activation
can be used for internal events when the event activator needs to
know when the processing of a message has completed before con­
tinuing its own processing. Synchronous activation can be used
for external events when the runtime system needs to ensure that
such events are executed sequentially without interleaving. Asyn­
chronous activation can be used when none of these requirements
apply.

The overall picture of the event-based program to be optimized
then consists of a program that reacts to stimuli from its environ­
ment, such as user actions or messages. These stimuli are con­
verted into events. Each event may have multiple handlers bound
to it and handlers may activate other events synchronously or asyn­
chronously. Thus, the occurrence of an event may lead to the ac­
tivation of a chain of handlers and other events and, in turn, their
handlers. Events can also be generated by the passage of time (e.g.,
timeouts). The type of event activation has implications on our
optimization techniques. For example, since the handlers for a syn­
chronous activation are executed when the event is raised, an opti­
mization that replaces the activation call with calls to the handlers

GOOGLE EXHIBIT 1039
GOOGLE v. NEONODE

IPR2021-01041
Page 4 of 13 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Top AP!

Micro-protocols Events

DESPrivacy

KeyeclMD5Integrity

RSAAuthenticity

ClientKeyDistribution

Bottom AP!

Figure 2: Cactus composite protocol

bound to the event at that time results in a correct transformation.
Similarly, it is easy to see that sequences of nested synchronous ac­
tivations can be readily optimized. The specific optimization tech­
niques and their limitations are discussed below in section 3.

2.3 Example Systems
Cactus. Cactus is a system and a framework for constructing

configurable protocols and services, where each service property
or functional component is implemented as a separate module [10].
As illustrated in figure 2, a service in Cactus is implemented as a
composite protocol, with each service property or other functional
component implemented as a micro-protocol. A customized in­
stance of the composite protocol is constructed simply by choosing
the appropriate set of micro-protocols. A micro-protocol is struc­
tured as a collection of event handlers that correspond to the han­
dlers in our general event-based model. A typical micro-protocol
consists of two or more event handlers. Events in Cactus are user­
defined. A typical composite protocol uses 10-20 different events
consisting of a few external events caused by interactions with soft­
ware outside the composite protocol and numerous internal events
used to structure the internal processing of a message or service
request. Each event typically has multiple event handlers. As a re­
sult, Cactus composite protocols often have long chains of events
and event handlers activated by one event. Section 4 gives concrete
examples of events used in a Cactus composite protocol.

The Cactus runtime system provides a variety of operations for
managing events and event handlers. In particular, operations are
provided for binding an event handler to a specified event (bind)
and for activating an event (raise). Event handler binding is com­
pletely dynamic. Events can be raised either synchronously or
asynchronously, and an event can also be raised with a specified
delay to implement time-driven execution. The order of event han­
dler execution can be specified if desired. Arguments can be passed
to handlers in both the bind and raise operations. Other operations
are available for unbinding handlers, creating and deleting events,
halting event execution, and canceling a delayed event. Handler
execution is atomic with respect to concurrency, i.e., a handler i~
executed to completion before any other handler is started unless it
voluntarily yields the CPU. Cactus does not directly support com­
plex events, but such events can be implemented by defining a new
event and having a micro-protocol raise this event when the condi­
tions for the complex event are satisfied.

The X Window system. X is a popular GUI framework for Unix
systems. The standard architecture of an X based system is shown

108

in figure 3. The X server is a program that runs on each system
supporting a graphics display and is responsible for managing de­
vice drivers. Application programs, also called X clients, may be
local or remote to the display system. X servers and X clients use
the X-protocol for communication. X clients are typically built on
the Xlib libraries using toolkits such as Xt, GTK, or Qt. X clients
are implemented as a collection of widgets, which are the basic
building blocks of X applications.

An X event is defined as "a packet of data sent by the server to
the client in response to user behavior or to window system changes
resulting from interactions between windows" [18]. Examples of
X events include mouse motion, focus change, and button press.
These events are recognized through device drivers and relayed to
the X server, which in turn conveys them to X clients. The Xlib
framework specifies 33 basic events. X clients may choose to re­
spond to any of these based on event masks that are specified at
bind time. Events are also used for communication between wid­
gets. Events can arrive in any order and are queued by the X client.
Event activation in X is similar t9 synchronous activation in the
general model.

The X architecture has three mechanisms for handling events:
event handlers, callback functions, and action procedures. All these
map to handlers in the general model and are used to specify differ­
ent granularities of control. Event handlers, the most primitive, are
simply procedures bound to event names. Callback functions and
action procedures are more commonly used high-level abstractions.
One difference between the three mechanisms relates to scope­
actions have global scope in an X client, while the scope of event
handlers and callbacks is restricted to the widget in which they are
defined. Another difference is their execution semantics. An event
handler can be bound to multiple events in such a way that it is ex­
ecuted when any of the associated events occur. A callback func­
tion, on the other hand, is bound to a specific callback name, and
all functions bound to a name are executed when the correspond­
ing callback is issued. Actions provide an additional level of in­
direction, where a mapping is created first between an event and
the action name, and then between the action name and the action
procedure.

In addition to these three, X has a number of other mechanisms
that can be broadly classified as event handling, namely timeouts,
signal handlers, and input handlers. Each of these mechanisms
allows the program to specify a procedure to be called when a given
condition occurs. For all these handler types, X provides operations
for registering the handlers and activating them.

3. OPTIMIZATION APPROACH
Compiler optimizations are based on being able to statically pre­

dict aspects of a program's runtime behavior using either invariants
that always hold at runtime (i.e., based on dataflow analysis) or as­
sertions that are likely to hold (i.e., based on execution profiles) .
Event-based systems, in contrast, are lai:iely unpredictable in their
runtime behavior due to the uncertainties associated with the be-

Devices X - Client Application
Device rivers

X-Server XI Toolkit Qt

XLib

X-Protocol

Figure 3: Architecture of X Window systems

GOOGLE EXHIBIT 1039
GOOGLE v. NEONODE

IPR2021-01041
Page 5 of 13 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

