
Machine Learning, 56, 89–113, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Correlation Clustering∗

NIKHIL BANSAL nikhil@cs.cmu.edu
AVRIM BLUM avrim@cs.cmu.edu
SHUCHI CHAWLA shuchi@cs.cmu.edu
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Editors: Nina Mishra and Rajeev Motwani

Abstract. We consider the following clustering problem: we have a complete graph on n vertices (items), where
each edge (u, v) is labeled either + or − depending on whether u and v have been deemed to be similar or different.
The goal is to produce a partition of the vertices (a clustering) that agrees as much as possible with the edge labels.
That is, we want a clustering that maximizes the number of + edges within clusters, plus the number of − edges
between clusters (equivalently, minimizes the number of disagreements: the number of − edges inside clusters
plus the number of + edges between clusters). This formulation is motivated from a document clustering problem
in which one has a pairwise similarity function f learned from past data, and the goal is to partition the current
set of documents in a way that correlates with f as much as possible; it can also be viewed as a kind of “agnostic
learning” problem.

An interesting feature of this clustering formulation is that one does not need to specify the number of clusters
k as a separate parameter, as in measures such as k-median or min-sum or min-max clustering. Instead, in our
formulation, the optimal number of clusters could be any value between 1 and n, depending on the edge labels.
We look at approximation algorithms for both minimizing disagreements and for maximizing agreements. For
minimizing disagreements, we give a constant factor approximation. For maximizing agreements we give a PTAS,
building on ideas of Goldreich, Goldwasser, and Ron (1998) and de la Vega (1996). We also show how to extend
some of these results to graphs with edge labels in [−1, +1], and give some results for the case of random noise.

Keywords: clustering, approximation algorithm, document classification

1. Introduction

Suppose that you are given a set of n documents to cluster into topics. Unfortunately, you
have no idea what a “topic” is. However, you have at your disposal a classifier f (A, B) that
given two documents A and B, outputs whether or not it believes A and B are similar to
each other. For example, perhaps f was learned from some past training data. In this case,
a natural approach to clustering is to apply f to every pair of documents in your set, and
then to find the clustering that agrees as much as possible with the results.

Specifically, we consider the following problem. Given a fully-connected graph G with
edges labeled “+” (similar) or “−” (different), find a partition of the vertices into clusters
that agrees as much as possible with the edge labels. In particular, we can look at this in

∗This research was supported in part by NSF grants CCR-0085982, CCR-0122581, CCR-0105488, and an IBM
Graduate Fellowship.

1
APPLE 1085

Apple v. AliveCor
IPR2021-00972

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

90 N. BANSAL, A. BLUM, AND S. CHAWLA

terms of maximizing agreements (the number of + edges inside clusters plus the number
of − edges between clusters) or in terms of minimizing disagreements (the number of −
edges inside clusters plus the number of + edges between clusters). These two are equivalent
at optimality but, as usual, differ from the point of view of approximation. In this paper
we give a constant factor approximation to the problem of minimizing disagreements, and
a PTAS1 for maximizing agreements. We also extend some of our results to the case of
real-valued edge weights.

This problem formulation is motivated in part by a set of clustering problems at Whizbang
Labs (Cohen & McCallum, 2001; Cohen & Richman, 2001, 2002) in which learning algo-
rithms were trained to help with various clustering tasks. An example of one such problem,
studied by Cohen and Richman (2001, 2002) is clustering entity names. In this prob-
lem, items are entries taken from multiple databases (e.g., think of names/affiliations of
researchers), and the goal is to do a “robust uniq”—collecting together the entries that cor-
respond to the same entity (person). E.g., in the case of researchers, the same person might
appear multiple times with different affiliations, or might appear once with a middle name
and once without, etc. In practice, the classifier f typically would output a probability, in
which case the natural edge label is log(Pr(same)/Pr(different)). This is 0 if the classifier
is unsure, positive if the classifier believes the items are more likely in the same cluster,
and negative if the classifier believes they are more likely in different clusters. The case of
{+, −} labels corresponds to the setting in which the classifier has equal confidence about
each of its decisions.

What is interesting about the clustering problem defined here is that unlike most clustering
formulations, we do not need to specify the number of clusters k as a separate parameter.
For example, in min-sum clustering (Schulman, 2000) or min-max clustering (Hochbaum
& Shmoys, 1986) or k-median (Charikar & Guha, 1999; Jain & Vazirani, 2001), one can
always get a perfect score by putting each node into its own cluster—the question is how
well one can do with only k clusters. In our clustering formulation, there is just a single
objective, and the optimal clustering might have few or many clusters: it all depends on the
edge labels.

To get a feel for this problem, notice that if there exists a perfect clustering, i.e., one
that gets all the edges correct, then the optimal clustering is easy to find: just delete all
“−” edges and output the connected components of the graph remaining. In Cohen and
Richman (2002) this is called the “naive algorithm”. Thus, the interesting case is when no
clustering is perfect. Also, notice that for any graph G, it is trivial to produce a clustering
that agrees with at least half of the edge labels: if there are more + edges than − edges, then
simply put all vertices into one big cluster; otherwise, put each vertex into its own cluster.
This observation means that for maximizing agreements, getting a 2-approximation is easy
(note: we will show a PTAS). In general, finding the optimal clustering is NP-hard (shown
in Section 3).

Another simple fact to notice is that if the graph contains a triangle in which two edges
are labeled + and one is labeled −, then no clustering can be perfect. More generally, the
number of edge-disjoint triangles of this form gives a lower bound on the number of dis-
agreements of the optimal clustering. This fact is used in our constant-factor approximation
algorithm.

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CORRELATION CLUSTERING 91

For maximizing agreements, our PTAS is quite similar to the PTAS developed by de la
Vega (1996) for MAXCUT on dense graphs, and related to PTASs of Arora, Karger, and
Karpinski (1999) and Arora, Frieze, and Kaplan (2002). Notice that since there must exist
a clustering with at least n(n − 1)/4 agreements, this means it suffices to approximate
agreements to within an additive factor of εn2. This problem is also closely related to work
on testing graph properties of Goldreich, Goldwasser, and Ron (1998), Parnas and Ron
(2002), and Alon et al. (2000). In fact, we show how we can use the General Partition
Property Tester of Goldreich, Goldwasser, and Ron (1998) as a subroutine to get a PTAS
with running time O(neO((1

ε
)

1
ε)). Unfortunately, this is doubly exponential in 1

ε
, so we also

present an alternative direct algorithm (based more closely on the approach of de la Vega
(1996)) that takes only O(n2eO(1

ε
)) time.

Relation to agnostic learning. One way to view this clustering problem is that edges
are “examples” (labeled as positive or negative) and we are trying to represent the target
function f using a hypothesis class of vertex clusters. This hypothesis class has limited
representational power: if we want to say (u, v) and (v, w) are positive in this language,
then we have to say (u, w) is positive too. So, we might not be able to represent f perfectly.
This sort of problem—trying to find the (nearly) best representation of some arbitrary target
f in a given limited hypothesis language—is sometimes called agnostic learning (Kearns,
Schapire, & Sellie, 1994; Ben-David, Long, & Mansour, 2001). The observation that one
can trivially agree with at least half the edge labels is equivalent to the standard machine
learning fact that one can always achieve error at most 1/2 using either the all positive or
all negative hypothesis.

Our PTAS for approximating the number of agreements means that if the optimal clus-
tering has error rate ν, then we can find one of error rate at most ν + ε. Our running time is
exponential in 1/ε, but this means that we can achieve any constant error gap in polynomial
time. What makes this interesting from the point of view of agnostic learning is that there
are very few problems where agnostic learning can be done in polynomial time.2 Even for
simple classes such as conjunctions and disjunctions, no polynomial-time algorithms are
known that give even an error gap of 1/2 − ε.

Organization of this paper. We begin by describing notation in Section 2. In Section 3 we
prove that the clustering problem defined here is NP complete. Then we describe a constant
factor approximation algorithm for minimizing disagreements in Section 4. In Section 5,
we describe a PTAS for maximizing agreements. In Section 6, we present simple algorithms
and motivation for the random noise model. Section 7 extends some of our results to the
case of real-valued edge labels. Finally, subsequent work by others is briefly described in
Section 8.

2. Notation and definitions

Let G = (V, E) be a complete graph on n vertices, and let e(u, v) denote the label (+ or −)
of the edge (u, v). Let N+(u) = {u} ∪ {v : e(u, v) = +} and N−(u) = {v : e(u, v) = −}
denote the positive and negative neighbors of u respectively.

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

92 N. BANSAL, A. BLUM, AND S. CHAWLA

We let OPT denote an optimal clustering on this graph. In general, for a clustering C, let
C(v) be the set of vertices in the same cluster as v. We will use A to denote the clustering
produced by our algorithms.

In a clustering C, we call an edge (u, v) a mistake if either e(u, v) = + and yet u �∈ C(v),
or e(u, v) = − and u ∈ C(v). When e(u, v) = +, we call the mistake a positive mistake,
otherwise it is called a negative mistake. We denote the total number of mistakes made by
a clustering C by mC , and use mOPT to denote the number of mistakes made by OPT.

For positive real numbers x , y and z, we use x ∈ y ± z to denote x ∈ [y − z, y + z].
Finally, let X̄ for X ⊆ V denote the complement (V \ X).

3. NP-completeness

In this section, we will prove that the problem of minimizing disagreements, or equivalently,
maximizing agreements, is NP-complete. It is easy to see that the decision version of this
problem (viz. is there a clustering with at most z disagreements?) is in NP since we can easily
check the number of disagreements given a clustering. Also, if we allow arbitrary weights
on edges with the goal of minimizing weighted disagreements, then a simple reduction from
the Multiway Cut problem proves NP-hardness—simply put a −∞-weight edge between
every pair of terminals, then the value of the multiway cut is equal to the value of weighted
disagreements. We use this reduction to give a hardness of approximation result for the
weighted case in Section 7.

We give a proof of NP hardness for the unweighted case by reducing the problem of
Partition into Triangles GT11 in Garey and Johnson (2000) to the problem of minimizing
disagreements. The reader who is not especially interested in NP-completeness proofs
should feel free to skip this section.

The Partition into Triangles problem is described as follows: Given a graph G with n = 3k
vertices, does there exist a partition of the vertices into k sets V1, . . . , Vk , such that for all
i , |Vi | = 3 and the vertices in Vi form a triangle.

Given a graph G = (V, E), we first transform it into a complete graph G ′ on the same
vertex set V . An edge in G ′ is weighted +1 if it is an edge in G and −1 otherwise.

Let A be an algorithm that given a graph outputs a clustering that minimizes the number of
mistakes. First notice that if we impose the additional constraint that all clusters produced by
A should be of size at most 3, then given the graph G ′, the algorithm will produce a partition
into triangles if the graph admits one. This is because if the graph admits a partition into
triangles, then the clustering corresponding to this triangulation has no negative mistakes,
and any other clustering with clusters of size at most 3 has more positive mistakes than
this clustering. Thus we could use such an algorithm to solve the Partition into Triangles
problem.

We will now design a gadget that forces the optimal clustering to contain at most 3
vertices in each cluster. In particular, we will augment the graph G ′ to a larger complete
graph H , such that in the optimal clustering on H , each cluster contains at most 3 vertices
from G ′.

The construction of H is as follows: In addition to the vertices and edges of G ′, for every
3-tuple {u, v, w} ⊂ G ′, H contains a clique Cu,v,w containing n6 vertices. All edges inside

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CORRELATION CLUSTERING 93

these cliques have weight +1. Edges between vertices belonging to two different cliques
have weight −1. Furthermore, for all u, v, w ∈ G ′ each vertex in Cu,v,w has a positive edge
to u, v and w, and a negative edge to all other vertices in G ′.

Now assume that G admits a triangulation and let us examine the behavior of algorithm
A on graph H . Let N = n6(n

3).

Lemma 1. Given H as input, in any clustering that A outputs, every cluster contains at
most three vertices of G ′.

Proof: First consider a clustering C of the following form:

1. There are (n
3) clusters.

2. Each cluster contains exactly one clique Cu,v,w and some vertices of G ′.
3. Every vertex u ∈ G ′ is in the same cluster as Cu,v,w for some v and w.

In any such clustering, there are no mistakes among edges between cliques. The only
mistakes are between vertices of G ′ and the cliques, and those between the vertices of G ′.
The number of mistakes of this clustering is at most n7((n

2) − 1) + (n
2) because each vertex

in G ′ has n6 positive edges to (n
2) cliques and is clustered with only one of them.

Now consider a clustering in which some cluster has four vertices in G ′, say, u, v, w and
y. We show that this clustering has at least n7((n

2) − 1) + n6

2 mistakes. Call this clustering
X . Firstly, without loss of generality we can assume that each cluster in X has size at most
n6 + n4, otherwise there are at least �(n10) negative mistakes within a cluster. This implies
that each vertex in G ′ makes at least (n

2)n6 − (n6 + n4) positive mistakes. Hence the total
number of positive mistakes is at least n7((n

2) − 1) − n5. Let Xu be the cluster containing
vertices u, v, w, y ∈ G ′. Since Xu has at most n6 + n4 vertices, at least one of u, v, w, y
will have at most n4 positive edges inside Xu and hence will contribute at least an additional
n6 − n4 negative mistakes to the clustering. Thus the total number of mistakes is at least
((n

2) − 1)n7 − n5 + n6 − n4 ≥ n7((n
2) − 1) + n6/2. Thus the result follows.

The above lemma shows that the clustering produced by A will have at most 3 vertices
of G in each cluster. Thus we can use the algorithm A to solve the Partition into Triangles
problem and the reduction is complete.

4. A constant factor approximation for minimizing disagreements

As a warm-up to the general case, we begin by giving a very simple 3-approximation to the
best clustering containing two clusters. That is, if the best two-cluster partition of the graph
has x mistakes, then the following algorithm will produce one with at most 3x mistakes.

Let OPT(2) be the best clustering containing two clusters, and let the corresponding clus-
ters be C1 and C2. Our algorithm simply considers all clusters of the form {N+(v), N−(v)}
for v ∈ V . Of these, it outputs the one that minimizes the number of mistakes.

Theorem 2. The number of mistakes of the clustering output by the algorithm stated above
is at most m A ≤ 3mOPT(2).

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

