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Abstract
Machine learning offers a principled approach for developing sophisticated, auto-
matic, and objective algorithms for analysis of high-dimensional and multimodal
biomedical data. This review focuses on several advances in the state of the art that
have shown promise in improving detection, diagnosis, and therapeutic monitoring of
disease. Key in the advancement has been the development of a more in-depth under-
standing and theoretical analysis of critical issues related to algorithmic construction
and learning theory. These include trade-offs for maximizing generalization perfor-
mance, use of physically realistic constraints, and incorporation of prior knowledge
and uncertainty. The review describes recent developments in machine learning, fo-
cusing on supervised and unsupervised linear methods and Bayesian inference, which
have made significant impacts in the detection and diagnosis of disease in biomedicine.
We describe the different methodologies and, for each, provide examples of their ap-
plication to specific domains in biomedical diagnostics.
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INTRODUCTION

Machine learning, a subdiscipline in the field of artificial intelligence (AI), focuses on
algorithms capable of learning and/or adapting their structure (e.g., parameters) based
on a set of observed data, with adaptation done by optimizing over an objective or cost
function. Machine learning and statistical pattern recognition have been the subject
of tremendous interest in the biomedical community because they offer promise for
improving the sensitivity and/or specificity of detection and diagnosis of disease, while
at the same time increasing objectivity of the decision-making process. However, the
early promise of these methodologies has resulted in only limited clinical utility,
perhaps the most notable of which is the use of such methods for mammographic
screening (1, 2). The potential impact of, and need for, machine learning is perhaps
greater than ever given the dramatic increase in medical data being collected, new
detection, and diagnostic modalities being developed and the complexity of the data
types and importance of multimodal analysis. In all of these cases, machine learning
can provide new tools for interpreting the high-dimensional and complex datasets
with which the clinician is confronted.

Much of the original excitement for the application of machine learning to
biomedicine originated from the development of artificial neural networks (ANNs)
(e.g., see 3), which were often proclaimed to be “loosely” modeled after computation
in the brain. Although in most cases such claims for brain-like computation were
largely unjustified, one of the interesting properties of ANNs was that they were
shown to be capable of approximating any arbitrary function through the process of
learning (also called training) a set of parameters in a connected network of simple
nonlinear units. Such an approach mapped well to many problems in medical image
and signal analysis and was in contrast to medical expert systems such as Mycin (4)
and INTERNIST (5), which, in fact, were very difficult and time consuming to con-
struct and were based on a set of rules and prior knowledge. Problematic with ANNs,
however, is the difficulty in understanding how such networks construct the desired
function and thus how to interpret the results. Thus, often such methods are used as
a “black box,” with the ANN producing a mapping from input (e.g., medical data) to
output (e.g., diagnosis) but without a clear understanding of the underlying mapping
function. This can be particularly problematic in clinical medicine when one must
also consider merging the interpretation of the computer system with that of the
clinician because, in most cases, computer analysis systems are seen as adjunctive.

As the field of machine learning has matured, greater effort has gone into de-
veloping a deeper understanding of the theoretical basis of the various algorithmic
approaches. In fact, a major difference between machine learning and statistics is that
machine learning is concerned with theoretical issues such as computational complex-
ity, computability, and generalization and is in many respects a marriage of applied
mathematics and computer science.

An area in machine learning research receiving considerable attention is the fur-
ther development and analysis of linear methods for supervised and unsupervised
feature extraction and pattern classification. Linear methods are attractive in that
their decision strategies are easier to analyze and interpret relative to nonlinear
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Biomarkers: anatomic,
physiologic, biochemical, or
molecular parameters
associated with the presence
and severity of specific
disease states

classification and regression functions, for example, constructed by ANNs. In ad-
dition, a linear model can often be shown to be consistent, at least to first order, with
underlying physical processes, such as image formation or signal acquisition. Finally,
linear methods tend to be computationally efficient, and can be trained online and in
real time.

Particularly important for biomedical applications has been the development
of methods for explicitly incorporating prior knowledge and uncertainty into the
decision-making process. This has led to principled methods based on Bayesian infer-
ence, which are well suited for incorporating disparate sources of noisy measurements
and uncertain prior knowledge into the diagnostic process.

This review describes recent developments in machine learning, focusing on su-
pervised and unsupervised linear methods and Bayesian inference, which have made
significant impact in the detection and diagnosis of disease in biomedicine. We de-
scribe the different methodologies and, for each, provide examples of their application
to specific domains in biomedical diagnostics.

BLIND SOURCE SEPARATION

Two important roles for machine learning are (a) extraction of salient structure in the
data that is more informative than the raw data itself (the feature extraction problem)
and (b) inferring underlying organized class structure (the classification problem).
Although strictly speaking the two are not easily separable into distinct problems, we
consider the two as such and describe the state of the art of linear methods for both.
In this section we focus on unsupervised methods and application of such methods
for recovering clinically significant biomarkers.

Linear Mixing

There are many cases in which one is interested in separating, or factorizing, a set
of observed data into two or more matrices. Standard methods for such factorization
include singular value decomposition (SVD) and principal component analysis (PCA)
(6). These methods have been shown to satisfy specific optimality criteria, for example,
PCA being optimal in terms of minimum reconstruction error under constraints of
orthogonal basis vectors. However, in many cases these criteria are not consistent
with the underlying signal/image-formation process and the resultant matrices have
little physical relevance. More recently, several groups have developed methods for
decomposing a data matrix into two matrices in which the underlying optimality
criteria and constraints yield more physically meaningful results (7–14).

Assume a set of observations is the result of a linear combination of latent sources.
Such a linear mixing is quite common in signal and image acquisition/formation,
at least to a first approximation, and is consistent with underlying physical mixing
process, ranging from electroencephalography (15) to acoustics (16). Given X as a
matrix of observations (M rows by N columns) the linear mixing equation is

X = AS, (1)
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where A is the set of mixing coefficients and S is a matrix of sources. Depending
on the modality, the columns of X and S are the coordinate system in which the
data is represented (i.e., time, space, wavelength, frequency, etc.). The challenge is to
recover both A and S simultaneously given only the observations X. This problem
is often termed blind source separation (BSS) because the underlying sources are
not directly observed and the mixing matrix is not known. BSS methods have been
applied to many fundamental problems in signal recovery and deconvolution (17).
Most methods that have been developed attempt to learn an unmixing matrix W,
which when applied to the data X yields an estimate of the underlying sources (up to
a scaling and permutation),

Ŝ = WX. (2)

Consider the case when one assumes the rows of S (i.e., the source vectors) are random
variables that are statistically independent. This implies that the joint distribution of
the sources factors,

P (s1, . . . , s L) = P (s1)P (s2) . . . P (s L), (3)

where L indicates the number of underlying sources (with each s i a row in S), and
P (.) is the probability density function. In most cases L is not known and represents
a hyperparameter that must be set or inferred. BSS methods that exploit statistical
independence in their optimality criteria are termed independent component analysis
(ICA) (see 18 for review). Several approaches have been developed to recover inde-
pendent sources, the methods distinguished largely by the objective function they
employ, e.g., maximum likelihood (19), maximum a posteriori (9), information max-
imization (20), entropy estimation (21), and mean-field methods (22). In the case of
time series, or other types of ordered data, one can also exploit other statistical criteria
such as the nonstationarity and utilize simultaneous decorrelation (16, 23–25). Parra
& Sajda (15) formulate the problem of BSS as one of solving a generalized eigenvalue
problem, where one of the matrices is the covariance matrix of the observations and
the other is chosen based on the underlying statistical assumptions on the sources.
This view unifies various approaches in simultaneous decorrelation and ICA, together
with PCA and supervised methods such as common spatial patterns (CSP) (26).

The attractive property of these decomposition methods is that the recovered
components often result in a natural basis for the data, in particular, if one considers
some general properties of natural signals. For example, the marginal statistics of
many natural signals (or filtered versions of the signals) are highly non-Gaussian (27,
28). Since, by the central limit theorem, linear mixtures of non-Gaussian random
variables will result in marginal statistics that are more closely Gaussian, recovering
the independent components captures the generative or natural axes of the mixing
process.

Nonnegative Matrix Factorization

One particularly useful method for factoring the data matrix X under very general
and physically realistic constraints is the nonnegative matrix factorization (NMF)
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algorithm (7). The basic idea of the NMF algorithm is to construct a gradient descent
over an objective function that optimizes A and S, and, by appropriately choosing
gradient stepsizes, to convert an additive update to a multiplicative one. For example,
assuming Gaussian noise, one can formulate the problem of recovering A and S in
Equation 1 as a maximum likelihood estimation,

AML, SML = argmax p(X | A, S)

A, S

= argmax
1√

2πσ
e− ‖X−AS‖2

2σ2

A, S

subject to: A ≥ 0, S ≥ 0, (4)

where σ is the deviation of the Gaussian noise and (AS) its mean.
Maximizing the likelihood is equivalent to minimizing the negative log-likelihood,

and Equation 4 can be written as,

AML, SML = argmin(− log p(X | A, S))

A, S

= argmin‖X − AS‖2

A, S

subject to: A ≥ 0, S ≥ 0. (5)

One can compute the gradients of the negative log-likelihood function and construct
the additive update rules for A and S,

Ai,m ← Ai,m + δi,m[(XST)i,m − (ASST)i,m]

Sm,λ ← Sm,λ + ηm,λ[(ATX)m,λ − (ATAS)m,λ]. (6)

Note that there are two free parameters, which are the step sizes of the updates. Lee
& Seung (29) have shown that by appropriately choosing the step sizes, δi,m = Ai,m

(ASST )i,m
,

ηm,λ = Sm,λ

(ATAS)m,λ
, the additive update rule can be formulated as a multiplicative update

rule, with X = AS being a fixed point. The multiplicative update rules for A and S
therefore become

Ai,m ← Ai,m
(XST)i,m

(ASST)i,m

Sm,λ ← Sm,λ

(ATX)m,λ

(ATAS)m,λ

, (7)

where convergence of these update rules is guaranteed (29). By formulating the up-
dates as multiplicative rules in Equation 7, we can ensure nonnegative A and S, given
that both are initialized to be nonnegative and the observations, X, are nonnegative.

An intuitive understanding of NMF via geometrical considerations can be de-
veloped. The manifold of possible solutions specified by the linear mixing equation
and nonnegativity constraints represent an M-dimensional polygonal cone spanned
by the M rows of S. Nonnegativity constraints require that the row vectors of S,
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