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Abstract

Human heartbeat intervals are known to have nonlinear and nonstationary dynamics. In this paper,
we propose a model of R—R interval dynamics based on a nonlinear VVolterra—Wiener expansion
within a point process framework. Inclusion of second-order nonlinearities into the heartbeat model
allows us to estimate instantaneous heart rate (HR) and heart rate variability (HRV) indexes, as well
as the dynamic bispectrum characterizing higher order statistics of the nonstationary non-Gaussian
time series. The proposed point process probability heartbeat interval model was tested with synthetic
simulations and two experimental heartbeat interval datasets. Results show that our model is useful
in characterizing and tracking the inherent nonlinearity of heartbeat dynamics. As a feature, the fine
temporal resolution allows us to compute instantaneous nonlinearity indexes, thus sidestepping the
uneven spacing problem. In comparison to other nonlinear modeling approaches, the point process
probability model is useful in revealing nonlinear heartbeat dynamics at a fine timescale and with
only short duration recordings.
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The human heartbeat is regulated by the autonomic nervous system, and as a result, heart rate
(HR) and heart rate variability (HRV) measurements extracted from the ECG are important
quantitative markers of cardiovascular control [1]. A healthy heart is influenced by multiple
neural and hormonal inputs that result in variations of the interbeat interval duration.
Specifically, various nonlinear neural interactions and integrations occur at the neuron and
receptor levels, and underlie the complex output of structures such as the sinoatrial (SA) node
in response to changing levels of sympathetic and vagal activities [55]. The complex nature of
heartbeat dynamics has been widely considered and discussed in cardiovascular literature.
Although detailed physiology behind these complex dynamics has not been completely
clarified, several nonlinearity measures of HRV have been pointed out as important quantifiers
of complexity of cardiovascular control and have been proved to be of important prognostic
value in aging and diseases [4], [25], [26].[46], [58], [60], [62].

Many physiological signals are known to be nonlinear and nonstationary. In biomedical
engineering, various nonlinear indexes, such as the Lyapunov exponent, the fractal exponent,
or the approximate entropy (ApEn), have been proposed to characterize the nonlinear behavior
of the underlying physiological system (e.g., [2]). It has been suggested that such nonlinearity
indexes might provide informative indicators for diagnosing cardiovascular or brain diseases.
Notably, some difficulties have been often encountered when validating these indexes, such
as the presence of noise or artifact, the limited size of data samples, or the low sampling rate
of the observed signals. All these issues shall be kept in mind when new statistical indexes are
estimated from real signals recorded from a nonlinear system.

In characterizing the nonlinear heartbeat dynamics, both linear and nonlinear system
identification methods have been applied to R—R interval series [19], [20], [61]. Examples of
higher order characterization for cardiovascular signals, include nonlinear autoregressive (AR)
models, VVolterra—Wiener series expansion, and Volterra—Laguerre models [2], [32], [33],
[36]. Several authors have demonstrated the feasibility and validity of nonlinear AR models,
suggesting that future HR dynamics studies should put greater emphasis on nonlinear analysis
[19], [20], [31], [61]. However, none of these models have included nonlinear elements in a
framework based on a precise statistical characterization of the heartbeat generation process,
and all of mentioned studies used either beat series (tachograms) or discretionarily interpolated
R-R time series instead of deriving model estimates. In this paper, we apply nonlinear modeling
to heartbeat dynamics using a point process paradigm. The point process theory is a powerful
statistical tool able to characterize the probabilistic generative mechanism of the heartbeat at
each moment in time, thus allowing for estimation of instantaneous HR and HRV measures
[71, [8]. Furthermore, inclusion of second-order nonlinear terms to the point process model
offers an opportunity to monitor dynamic higher order spectra indexes [39], [40].

The paper is organized as follows. Section Il presents some background on nonlinear system
identification by Volterra—Wiener series expansion. Section |11 gives a brief exposition of
probabilistic point process model theory for heartbeat intervals, derives the instantaneous HR
and HRYV indexes, and reviews the adaptive point process filtering algorithm as well as the
goodness-of-fit tests. Section IV is devoted to the instantaneous higher order spectral analysis
and derivation of the dynamic bispectrum estimate, as well as the nonlinearity test for R-R
interval series. Section V describes the synthetic data generated to test the models, as well as
two experimental heartbeat datasets. Section VI presents the experimental results on all datasets
using the point process models, discussing model selection, nonlinearity assessment,
performance comparison, and irregularity characterization. Finally, discussions and conclusion
are given in Section VII.
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The Volterra series expansion, based on the Volterra theorem, is a general method for nonlinear
system modeling and identification [36]. In functional analysis, a Volterra series denotes a
functional expansion of a dynamic, nonlinear, and time-invariant function. The Volterra series
allows for representation of a wide range of nonlinear systems. Because of its generality,
Volterra series expansion has been widely used in nonlinear modeling in engineering and
physiology [2], [31], [36]. For instance, computational procedures based on a comparison of
the prediction power of linear and nonlinear models of the Volterra—Wiener form have been
applied to measure the complex dynamics of the heartbeats [6]. However, it shall be pointed
out that all of these nonlinear models used only raw R—R intervals without modeling the point
process nature of the heartbeats.

Consider a nonlinear single-input and single-output systemy = g(x). According to the Volterra
series theory, the nonlinear system can be expanded by a (finite or infinite) set of kernel
expansion terms

M-1 M-1M-1

'(r):ko+Zk1 (m)x(t—m)+Z Zkg(m,n)x(f—m)x(l—n)+---

m=0 m=0 n=0 (1)

where M is the memory of the nonlinear system. Equation (1) only includes up to the second-
order nonlinear term in the Volterra series expansion; however, inclusion of higher order terms
is possible. The Volterra kernels {kg,kq,k»,...,} describe the dynamics of the system, each of
which is associated with Volterra coefficients at different kernel orders and different time lags.
Estimation of the Volterra coefficients is generally performed by computing the coefficients
of an orthogonalized series, and then recomputing the coefficients of the original Volterra
series. A common method is based on the least squares optimization [36]. In this paper, we
apply a point process adaptive filtering approach to recursively estimate the time-varying
Volterra coefficients.

Il1l. Heartbeat Interval Point Process Model

A random point process is a random element whose values are “point patterns” on a set, where
a point pattern is specified as a locally finite counting measure [23]. Specifically in the time
domain, a simple 1-D point process consists of series of binary (0 and 1) observations, where
the variables 1 marks the occurrence times t € [0,00) of the random events. Mathematically, we
let N(t) define a continuous-time counting process, and let its differential dN(t) denote a
continuous-time indicator function, where dN(t) = 1, when there is an event (such as the
ventricular contraction) or dN(t) = 0, otherwise. Point process theory has been widely used in
modeling various types of random events (e.g., eruptions of earthquakes, queueing of
customers, spiking of neurons, etc.) where the timing of the events are of central interest.
Bearing a similar spirit, the point process theory has been used for modeling human heartbeats
[71,[8],[16]. The point process framework primarily defines the probability of having a
heartbeat event at each moment in time. A parametric formulation of the probability function
allows for a systematic, parsimonious estimation of the parameter vector in a recursive way
and at any desired time resolution. Instantaneous indexes can then be derived from the
parameters in order to quantify important features as related to cardiovascular control
dynamics.
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Suppose we are given a set of R-wave events {“J} j=1detected from the ECG, let RR; = uj —

Uj—1 > 0 denote the j'" R-R interval, or equivalently, the waiting time until the next R -wave
event. By treating the R-wave as discrete events, we may develop a point process probability
model in the continuous time domain [7].

Assuming history dependence, the probability distribution of the waiting time t—u; until the
next R-wave event follows an inverse Gaussian model:

3 Ot —uj— g :
o0 (29’3)-exp[_ [1 uj— (t)]] (,>“j)’

2 (I - uj)ugR (1)

where u; denotes the previous R-wave event occurred before time t, urg(t) represents the first-
moment statistic (mean) of the distribution, and 6 > 0 denotes the shape parameter of the inverse
Gaussian distribution, whose role is to model the tail shape of the distribution (when 6 — o,
the inverse Gaussian distribution becomes more like a Gaussian distribution). As p(t) indicates
the probability of having a beat at time t given that a previous beat has occurred at uj and
urr(t) can be interpreted as signifying the most probable moment when the next beat could
occur. By definition, p(t) is characterized at each moment in time, at the beat as well as in-
between beats. We can also estimate the second-moment statistic (variance) of the inverse

Gaussian distribution as o>, (t) =4, (1) /6. The use of an inverse Gaussian distribution to
characterize the R-R intervals' occurrences is motivated by the fact that if the rise of the
membrane potential to a threshold initiating the cardiac contraction is modeled as a Gaussian
random walk with drift, then the probability density of the times between threshold crossings
(the R-R intervals) is indeed the inverse Gaussian distribution [7]. In [16], we have compared
heartbeat interval fitting point process models using different probability distributions, and
found that the inverse Gaussian model achieved the overall best fitting results. The parameter
URR(t) denotes the instantaneous R—R mean that can be modeled as a generic function of the
past (finite) R-R values prr(t)=g(RRt-1,RRt—2,...,RR¢-p), Where RRy_j denotes the previous
j" R-R interval occurred prior to the present time t. In our previous work [8], [14], [16], the
history dependence is defined by expressing the instantaneous mean prg(t) as a linear
combination of present and past R-R intervals (in terms of an AR model), i.e., function g is
linear. Here, we propose to include the nonlinear terms of past R-R intervals by defining the
instantaneous RR mean as follows:

p 9 4q
o () =a0 (1) + ) ai ()RR i+ )" > " bia (1) (RR,_ — <RR>;) (RR,-1 — <RR>)

i=1 k=1 I=1 (2)

h

where <RR>r:1/th: RRi—k. Here the coefficients ag(t),{ai(t)}, and {by(t)} correspond to
the time-varying zero-, first-, and second-order Volterra kernel coefficients. The zero order
coefficient ag accounts for the nonzero mean of the R—R series. Equation (2) can be interpreted
as a discrete Volterra—Wiener series with degree of nonlinearity d = 2 and memory h = max
{p. q} [6]. As uRRr(t) is defined in a continuous time fashion, we can obtain an instantaneous
R-R mean estimate at a very fine timescale (with an arbitrarily small bin size A), which requires
no interpolation between the arrival times of two beats. Given the proposed parametric model,
the nonlinear indexes of the HR and HRV will be defined as a time-varying function of the

parameters &(t)=[ao(t),a1(t),--..ap(t),b11(1),---,bgq(t),0()].
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B. Instantaneous Indices of HR and HRV

HR is defined as the reciprocal of the R-R interval. For t measured in seconds, a new variable
r=c(t-u;)~ 1 (where ¢ = 60 s/min) can be defined in beats per minute (bpm). By the change-of-

=z
T variables formula, the HR probability p(r)=p(c(t—uy) 1) is given by
T
; o]
> p(r) o p(), ®
c
—*
3
_ and the mean and the standard deviation of HR r can be derived [7], [8], as given by uyr and
Qz, standard deviation og, respectively
-]
c
n ~-1 ~-1
s Hyp=H +6 4
=

=2+ 0)1 16 o
b where 1 =c "\, and g —1¢.
I
o It is known from point process theory [7], [8], [13] that the conditional intensity function (CIF)
3; A(t) is related to the interevent probability p(t) with a one-to-one relationship
c
g' A(t) ={’—(’).
© 1- fulp () dr (6)
<
)
-]
7 The estimated CIF can be used to evaluate the goodness-of-fit of the proposed probability
= model for the heartbeat interval point process probability model. The quantity A(t)A yields
=l approximately the probability of observing a beat during the [t,t + A) interval in the sense that

[23]
A0 =1 Pr{N (t++A) — N (t) =1|H,}
A A

zZ where H; denotes all of available history information (subject to causality) up to time t.
I
'g C. Adaptive Point Process Filtering
> In order to track the unknown parameters of vector & in a nonstationary environment, we can
=1 recursively estimate them via adaptive point process filtering [8]. Upon time discretization, we
g have the following equation updates at discrete-time index k:
QZJ Eie—1=Ek-11k-1 )
>
c
(%)
Q
= Pip-1=Pr-1p-1+W (8)
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