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1. Introduction

Machine learning (ML) algorithms are being adopted to analyze
medical data in specialties like radiology, oncology, and cardiol-

ogy, promising faster interpretation with accuracy close to
doctors’ diagnostics.[1] The next frontier in computing

technology is to bring these powerful
algorithms to implantable medical devices,
which requires automation of real-time
life-saving therapeutic decisions without
the physician's presence. An example is
the need for improved medical solutions
for life-saving cardiac defibrillation thera-
pies, that can detect bioelectric anomalies
(e.g., cardiac arrhythmias) and act on this
data locally for real-time therapy delivered
within tens of seconds or minutes since
the onset of life-threatening ventricular
fibrillation (VF). The statistics put this chal-
lenging technological need in perspective:
ventricular arrhythmias such as VF are
responsible for over 700 000 sudden
cardiac deaths a year in the USA and
Europe.[2] VF is a common, life-threatening
arrhythmia characterized by chaotic
asynchronous electrical activity of the
cardiac muscle, which results in death
within 10minutes.

Individual differences in physiological
mechanisms, anatomic and genetic deter-

minants, and etiologies of various arrhythmias impact the course
of treatment. Ablation therapy, while promising, remains a work
in progress. Therefore, on average, defibrillation therapy deliv-
ered by implantable cardioverter defibrillators (ICDs) remains
the most effective treatment as antiarrhythmic drugs have lim-
ited efficacy and can be associated with adverse side effects.
Implants have to be biocompatible, organ conformal, and small
enough to minimize the tissue damage and be capable of inde-
pendent autonomous operation without external intervention.
Low power is an essential characteristic to avoid the heat damage
to the tissue and prolong the lifetime of the embedded battery for
many years without recharging.[3] Currently, most volume of the
ICD has been occupied by batteries, which has limited the
volume reduction and the computing capacity. ICD has local
computing based on a microprocessor to detect and differentiate
arrhythmia to offer different treatments, but the resolution
provided by ICD is really low typically limited to only one or a
couple of sensors; as such, the ability to detect arrhythmia
wavefronts is non-existent. The data can be read wirelessly by
the physician during periodic checkups. Increasing the sensing
resolution is desired but the local computing capacity has to also
be increased which is difficult due to power constraints. Wireless
data transmission for processing of data outside of the body is
not a viable solution either, as real-time data transfer between
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Artificial intelligence algorithms are being adopted to analyze medical data,

promising faster interpretation to support doctors’ diagnostics. The next frontier

is to bring these powerful algorithms to implantable medical devices. Herein, a

closed-loop solution is proposed, where a cellular neural network is used to

detect abnormal wavefronts and wavebrakes in cardiac signals recorded in

human tissue is trained to achieve >96% accuracy, >92% precision, >99%

specificity, and >93% sensitivity, when floating point precision weights are

assumed. Unfortunately, the current hardware technologies for floating point

precision are too bulky or energy intensive for compact standalone applications in

medical implants. Emerging device technologies, such as memristors, can

provide the compact and energy-efficient hardware fabric to support these efforts

and can be reliably embedded with existing sensor and actuator platforms in

implantable devices. A distributed design that considers the hardware limitations

in terms of overhead and limited bit precision is also discussed. The proposed

distributed solution can be easily adapted to other medical technologies that

require compact and efficient computing, like wearable devices and lab-on-chip

platforms.

RESEARCH ARTICLE

www.advintellsyst.com

Adv. Intell. Syst. 2022, 2200032 2200032 (1 of 16) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

1
APPLE 1065 

Apple v. AliveCor 
IPR2021-00971

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


the implant and the external world requires a significant amount

of power, even increasing the volume of the implant while intro-
ducing delays and additional security risks. That is why these sys-

tems have focused mostly on local real-time signal processing.
However, due to the low resolution for sensing and therapy,

high-energy biphasic shocks are needed to effectively terminate

life-threatening high-frequency arrhythmias. These high-energy
shocks can lead to myocardial damage and associated comorbid-

ities and it is a painful and traumatic experience for patients,

especially when delivered inappropriately when arrhythmia is
not present due to poor sensing. On the other hand, multipulse

therapy (MPT) utilizes well-timed trains of low-energy electric
pulses. Experiments on animal and human heart tissue showed

that when appropriately timed, MPT significantly decreases the
high-energy defibrillation threshold by almost an order of mag-

nitude. Moreover, recent first-in-human clinical trial demon-
strated safety and efficacy of MPT in patients with atrial

fibrillation,[4] which is not possible with current high-energy

ICDs due to pain and discomfort caused by high-energy shocks.
However, as it is administered also through transvenous leads,

the issue of low resolution remains.
To study the mechanisms of arrhythmias and develop suitable

MPT for clinical use, high-definition electrically or optically

mapped electrocardiograms (ECG) data must be used, which
requires a large number of sensors to map the cardiac tissue sur-

face. High-definition ventricular arrhythmia sensing integrated

with electrotherapy is an emerging concept enabled by organ-
conformal electronics platforms. Prototype organ-conformal

electronic platforms have been developed with noncontact
sensors and actuators and tested in vivo[5] but have limited

resolution. Increasing the density of sensors and actuators is
underway,[6] promising a personalized electrotherapy solution

to terminate life-threatening tachycardias with two orders of
magnitude less energy than a typical shock.[7] Such platforms

could be used to predict fibrillatory wavefronts and enable their

prevention using high-definition sensing and ultralow-energy
electrotherapy that does not cause pain and discomfort.

The high definition is a critical requirement as multiple rotors

can be simultaneously present in the myocardium[8] during an
arrhythmia event and generate the seemingly chaotic pattern

on the electrocardiogram that is the hallmark of atrial and
ventricular fibrillation. The ventricular fibrillation rotors can

be identified based on individual wavefronts, and wavebreaks

are represented by phase singularities. The wavefront is defined
as isolines of the phase that terminate either at boundaries or at

singular points with the phase field (phase singularities[9]).
Although the exact data resolution needed to extract these chaotic

wavefronts is still under investigation, we estimated that>10 000
sensors, sampled at !500Hz with 12-bit digitization, can pro-

duce an accurate map for the entire human heart. Such a system
would produce >60MB s"1 of data which must be processed in

milliseconds, an insurmountable task for serial computation,

especially on microprocessors of miniature implantable devices
with limited energy resources. Real-time smart and energy-

efficient computation is needed to process the data and trigger
the local activation of actuators. To our knowledge, no organ

conformal electronics platform has embedded computing
for local data interpretation and millisecond decision-making,

as needed for real-time life-saving therapy such as arrhythmia

electrotherapy.
In this work, we propose the use of distributed computing

neural network algorithms which are hardware mappable, to pro-

vide high classification sensitivity, specificity, accuracy, and pre-
cision in determining the challenging spatiotemporal dynamics

of cardiac electrical signals. Artificial neural networks can pro-
cess a large amount of data in a parallel fashion and “learn”

its patterns. As their name suggests, artificial neural networks

are inspired by biological brain and can provide intelligent
computing solutions. Deep learning techniques, such as

convolutional neural networks, have been demonstrated to
perform with >93% accuracy for the classification of ECG

heartbeats.[10–12] These complex networks can be used for clas-
sification of heartbeat by heartbeat of data obtained from bedside

ECG recording equipment, but they have yet to be applied in cur-
rent low-resolution ICDs that shock the entire heart due to

computational complexities and limited microprocessor capabil-

ities.[13] However, for new types of high-definition organ-
conformal platforms, they are impractical to physically realize

due to their complexity for a large number of recording channels
and also unsuitably centralized for the spatiotemporal tracking of

wavefronts and wavebreaks as needed for precise therapy by dis-
tributed electric field. To our knowledge, no neural network algo-

rithm has been proposed for the identification of wavefronts.
This work describes a distributed computing algorithm based

on cellular neural networks that is readily mappable to memristor-
based hardware circuitry and could enable a closed-loop solution

Figure 1. Distributed computing for electrical wavefront determination:

Proposed technology using integrated network of sensors, computing

chiplets distributed in a cellular neural network architecture, and actuators

that will allow high-definition mapping, interpretation, and therapeutic

response in a closed-loop fashion.
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that includes spatially distributed sensing, data processing, and
any required actuation for therapy (Figure 1). The cellular neural
network maps well to a spatiotemporally distributed architecture
and would enable a high-speed high-data-throughput computing
solution. Any other type of neural network, for example, a multi-
layer perceptron or a convolutional neural network, would require
hardware implementation in a single chip which would have to be
connected to a multitude of sensors and actuators, with density
limitations due to the interconnects. This proposed cellular neural
network architecture was chosen as most suitable because it takes
advantage of its natural tiled organization to easily map it to a dis-
tributed network of identical computing chiplets, as shown in
Figure 1. We consider a chiplet to be a small integrated circuit
(IC) of submillimeter dimensions that contains a well-defined
subset of functionality and is designed to be combined with
other chiplets in the organ-conformal platform. Each chiplet
implements a cell unit of the cellular neural network, processing
only local sensor information from itself and its neighbors and
providing an output only to its local actuator.

The size, area, and power constraints are particularly impor-
tant for this application. Emerging computing technologies, like
memristor crossbars,[14] have significant potential in the More-
than-Moore era, promising orders of magnitude better energy
efficiency and compact implementation[15,16] of use in novel com-
puting systems for implantable devices. A memristor commonly
uses metal/insulator/metal sandwich structures, which include
two layers of electrodes and an intermediate layer of memristive
functional material, which is called the insulator.[17,18]Memristor
devices can be fabricated as small as 2 nm, and[19] their resistance
transition characteristics are closely associated with their electro-
des and the switching materials. The device needs “forming” to
create filamentary path(s) in the insulator and then reversibly set
and reset to program the device to a desired conductance state
between low (OFF) and high (ON) states. Thanks to its ionic
transport, the programmed state is retained without static power
dissipation. Memristor devices can be integrated with comple-
mentary metal–oxide–semiconductor (CMOS) control circuitry
as dense matrices (crossbars) of artificial synapses to implement
vector matrix multiplication using Ohm's law,[14,20–22] which is a
fundamental operation in neural networks. This behavior ena-
bles a natural solution for the implementation of templates
for the proposed cellular neural network computing, to be
integrated directly with sensors and actuators. This approach allows
for flexibility, requiring the design of only one chiplet and its tape-out
in as many samples as needed for the size of the network at hand.
The proposed solution can be used to develop the next-generation
implantable devices that can provide low-energy therapy, thanks to
high-resolution sensing, local computing, and precise actuation.

The remainder of the article is organized as follows. Section 2
describes the methodological details, the data obtained from
human cardiac tissue, as well as the algorithm and the perfor-
mance metrics used. Section 3 introduces the evaluation of
the proposed methodology on the dataset, considering the opti-
mization of hyperparameters such as the learning rate, weight
initialization, binarization, as well as the impact of noise and
quantization in the input and templates on the inference results.
Section 4 concludes with a discussion of the algorithmic results
and their potential mapping to a memristor-based hardware
implementation.

2. Experimental Section

2.1. Data Gathering and Preprocessing

This study utilized representative data obtained from a deiden-

tified donor human heart from the Washington Regional
Transplant Community (Church Falls, VA). The study was

approved by the Institutional Review Board at the George
Washington University.

The experimental apparatus and procedures are explained in

detail in the study by Aras et al.[23] Briefly, the ventricular tissue
was prepared as a wedge with average dimension of 7 cm# 3.5 cm

(Figure 2a). The tissue was then mounted in a temperature-

controlled, pressure-controlled, and an oxygenated optical
mapping setup (Figure 2a). Optical action potentials were

mapped from !7 cm# 7 cm field of view using a MiCAM05
(SciMedia, CA) CMOS camera (100# 100 pixels) and sampled

at 1 KHz sampling rate.
The dataset consisted of 1000 optical mapping images of the

epicardium tissue recorded at 1 kHz sampling rate with a size of

100# 50 pixels. 800 images were used for training and 200 for
testing. The dataset included complete recordings of several

fibrillation events, enabling the analysis of various wavefront pat-

terns during fibrillation as part of this work. Optical recordings
were used because they provide higher-resolution mapping than

flexible electrode arrays. However, these results were directly
applicable to electrically recorded data, as shown in Figure 2b,c.[24]

Studies into the resolution required to extract any possible chaotic
rotors in human tissue are still under investigation and higher-

resolution setups are being developed.
Analysis in the phase domain was typically done for such stud-

ies, as the wavefront propagation and the singularities could be
easily detected in the phase domain. The time domain optical raw

data recorded by the cameras was preprocessed to transform it
into the phase domain with a scale between"π and π through the

Hilbert transform.[25] The Hilbert transform is an efficient signal
analysis method for nonstationary time series, especially in deter-

mining the instantaneous frequency of time-varying signals,
such as ventricular arrhythmias. Detection of these subtle fre-

quency changes and potentially recognizing the initiation and/

or termination of VT/VF is very important in understanding
the mechanisms of arrhythmia. Given a real-time function

x(t), its Hilbert transform was defined as[26]

bxðtÞ ¼ H½xðtÞ( ¼ xðtÞ)
1

πt
¼

1

π

Z
þ∞

"∞

xðτÞ

t" τ
dτ (1)

Figure 3a shows a raw optical signal and Figure 3b shows its

phase-domain equivalent that was further preprocessed before
looking at the wavefront. More details are presented in

prior work.[23] A wavefront was located at the edge of phase
∅ðtÞ ¼ π (red) and phase ∅ðtÞ ¼ "π (blue) on the blue side.

The wavefronts were labeled manually because the noise and

the undesirable artifacts of the pacing electrode might affect
the precision of the labels and affect the training results

afterwards. For each data sample, a corresponding phase map
3b and its wavefront mapping 3c served as input and desired

output, respectively, for the neural network core.
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(b)(a)

(c)

Figure 2. Data gathering. a) Human left ventricular tissue wedge and experimental setup. b) Simultaneous optical and electrical cardiac mapping.

c) Corresponding representative electrical and optical signals. Figure 2b,c are reproduced with permission.[24] Copyright 2022, American Heart Association.

(c)

(d)

(b)(a)

Figure 3. Data preprocessing. a) Example of raw optical phase map (100# 50 pixels) recorded during VF in the human heart preparation showing the

influence of the pacing electrode on the obtained signal. b) Example of Hilbert-transformed optical phase map. A subset (70# 35 pixels) was selected to

avoid network confusion due to pacing electrode effects. c) Example of input data used for training and its labeling. d) Example of input data used for

testing and its labeling.
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Due to the unavoidable interrupts during the hour-long
experiments and the underlying condition of the available
human heart tissue, noise was an inevitable occurrence in the
dataset. Noise is regarded as the irregular small section of pixels
rapidly changing in the range from π to"π, as well as the value of
pixel remaining constant throughout the measurement. The pac-
ing electrode could also introduce significant artifacts due to its
large size, needed to provide mechanical robustness during
insertion into the rather stiff human cardiac muscle tissue. To
avoid these unwanted effects, the data was cropped to 70# 35
pixels and the pixels containing the pacing electrode were
removed, as shown in 3b vs. 3c.

2.2. Cellular Neural Networks

Given the tight requirements for high speed and low-power
hardware, the cellular neural network is a promising topology
for distributed computing, based on a fixed number of intercon-
nected processing units called “cells.” Each unit, for example,
unit ij at row i and column j, could be implemented by a
computing chiplet, processing only local information from itself
and its neighbors, with small size and energy requirements. The
inputs uijðtÞ at time t were fed into the network and outputs yijðtÞ

were obtained. The output of a processing cell ij was determined
by the state of the cell xijðtÞ according to Equation (2).

yijðtÞ ¼ ðjxijðtÞ þ 1j " jxijðtÞ " 1jÞ (2)

The state of cell ij at time t was calculated using the differential
equation (3) taking into consideration all the cells in the neigh-
borhood of size M#N. This work included only the nearest
neighbors (neighborhood size¼ 3# 3) to keep the results map-
pable to a potential compact hardware implementation.
However, the neighborhood could include further away neigh-
bors, for example, a neighborhood of size 7# 7 included one
central cell and 48 neighbors.

dxijðtÞ

dt
¼" xijðtÞþ

X

1 ≤ i ≤ M
1 ≤ j ≤ N

amnymnðtÞþ
X

1 ≤ i ≤ M
1 ≤ j ≤ N

bmnumnðtÞþ I

(3)

In Equation (3), the inputs umn and outputs ymn of its cell and
neighboring cells were weighted via the matrix elements amn and
bmn of two matrices A and B of sizeM andN. The matrix A linked
the outputs ymn to the state x via its elements amn, while template
B similarly linked the inputs umn to the state x, respectively.
These matrices were called templates and were used repeatedly
for each cell. Training the network means determining the values
of templates A and B and of bias I.

Several algorithms were used for training these networks,
including, random weights change,[27] Kalman filters,[28] genetic
algorithms,[29] and backpropagation.[30] The random weight
change[27] is a hardware-friendly algorithm for on-chip training
on a wide range of tasks, but it involves large number of training
epochs to obtain accurate templates. Kalman filters have been
used to obtain accurate output from the inaccurate input infor-
mation, minimizing the mean of squared error by estimating the

inner states of any dynamic process.[30] Genetic algorithms have

been shown to train the network with desirable accuracy and
robustness, but the evaluation of the fitness functions is

computationally very expensive.[29]

We have defined a training algorithm based on backpropaga-
tion and batch updates robust to template nonidealities.

Following initialization, the network will calculate the corre-
sponding error for each image in the batch. The templates A,

B, and bias I will be updated after each batch calculation. The

process was repeated for all images in the training dataset to min-
imize the error between the obtained wavefront map output and

the desired output. The network took several epochs to converge
and several performance metrics, as shown in the next section,

could be used to track the convergence.
For the case of the typical adapted stochastic gradient descent

backpropagation training algorithm, the error was calculated

based on

eij½k( ¼
1

2
ðdij " y)ij½k(Þ (4)

where y)ij½k( is the output calculated by the algorithm at iteration k

and dij is the desired cell output according to the image label. The

templates A, B, and bias I are updated based on

amn½kþ 1( ¼ amn½k( þ ηΔamn½k( (5)

bmn½kþ 1( ¼ bmn½k( þ ηΔbmn½k( (6)

I½kþ 1( ¼ I½k( þ ηΔI½k( (7)

with the updates of Δ weights

Δamn½k( ¼
1

MN

X

1 ≤ i ≤ M
1 ≤ j ≤ N

eij½k(y
)
iþm"2,jþn"2½k( (8)

Δbmn½k( ¼
1

MN

X

1 ≤ i ≤ M
1 ≤ j ≤ N

eij½k(uiþm"2,jþn"2½k( (9)

ΔI½k( ¼
1

MN

X

1 ≤ i ≤ M
1 ≤ j ≤ N

eij½k( (10)

where m and n are the row and column indices, respectively, of

the templates A and B. η is the learning rate, typically a small
number always >0, that defines the range of weight updates

in each iteration. As seen in Equation (8), the update Δamn½k(
for the feedback template A was calculated via the weighted

sum of the error and the desired output for each cell. A similar

updateΔbmn½k(was calculated for control template B based on the
error and the respective input. The bias I was also updated

accordingly based on the average error of each cell to increase
the performance of the network.

To improve the wall-clock time, we used batch training as

defined by
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