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Abstract

Purpose of review Although deep learning represents an exciting platform for the devel-

opment of risk stratification models, it is challenging to evaluate these models beyond

simple statistical measures of success, which do not always provide insight into a model’s

clinical utility. Here we propose a framework for evaluating deep learning models and

discuss a number of interesting applications in light of these rubrics.
Recent findings Data scientists and clinicians alike have applied a variety of deep learning

techniques to both medical images and structured electronic medical record data. In many

cases, these methods have resulted in risk stratification models that have improved

discriminatory ability relative to more straightforward methods. Nevertheless, in many

instances, it remains unclear how useful the resulting models are to practicing clinicians.
Summary To be useful, deep learning models for cardiovascular risk stratification must not

only be accurate but they must also provide insight into when they are likely to yield

inaccurate results and be explainable in the sense that health care providers can under-

stand why the model arrives at a particular result. These additional criteria help to ensure

that the model can be faithfully applied to the demographic for which it is most accurate.
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Introduction

Accurate risk stratification remains a central theme in all
stages of the care of patients with cardiovascular disease.
Indeed, the likelihood that any patient will benefit from
a given therapeutic intervention is a function, in part, of
the risk associated with the intervention itself versus the
risk that the patient will have an adverse event if no
intervention is performed. Informed clinical decision
making necessitates gauging patient risk using available
clinical information.

A number of societal guidelines recommend the use
of validated risk scores in the initial evaluation of pa-
tients with suspected coronary disease [1–3]. The use of
accurate risk scores helps to ensure that patients who are
at high risk of adverse outcomes are quickly identified
and assigned a therapy that is appropriate for their level
of risk. Nevertheless, risk stratification is far from a
perfect science, and risk scores often fail to identify
patients at high risk of inimical outcomes. This problem
is made more apparent in light of the fact that a relative
minority of patients with cardiovascular disease experi-
ence the gravest adverse outcomes. Moreover, while the
prevalence of adverse events in high-risk populations is,
by definition, large, the absolute number of events is
also large in patients who are predicted to be low risk
using traditional risk prediction metrics. This low risk-

high number dilemma is frequently encountered in many
areas of cardiovascular clinical research [4]. As such,
adequately identifying patient subgroups who are truly
at high risk of adverse events remains a clear unmet
clinical need. Novel methods are therefore needed to
realize the full potential of clinical risk stratification
from existing clinical observations. Machine learning
and deep learning, in particular, holds the potential to
robustly identify high-risk patient subgroups, suggest
personalized interventions that can reduce a given pa-
tient’s risk, and help ensure that appropriate resources
are allocated to those patients who are in the most need.

In this review, we do not strive to review all of the
relevant literature in the area of deep learning in cardio-
vascular medicine. Indeed, this review is written for the
practicing clinician and strives to provide intuitive ex-
planations for how deep learning models actually work
and where they are most applicable. As the use of these
models becomes ubiquitous in the clinical arena, it will
be important for health care providers to critically eval-
uate them in order to determine the clinical usefulness
of any given machine learning approach. Our goal is to
provide a general framework for understanding what
advantages these models hold and what considerations
limit their broad applicability.

Conventional approaches to risk stratification

The termmachine learning is believed to have been originated by Arthur Samuel,
an engineer and scientist who pioneered artificial intelligence in 1959 [5]. He
described it as “programing computers to learn from experience.” There are diverse
examples of machine learning in the clinical literature, including straightforward
approaches like logistic regression and Cox proportional hazards modeling and
more esoteric techniques like deep learning, which is described in the next section.
Indeed, the former methods have actually been a part of the clinical literature for
some time [6–8]. Therefore, while the term machine learning has only recently
entered the medical lexicon, a number of existing clinical risk scores were devel-
oped and refined using approaches that fall under this umbrella term. The
exorbitant list of such models is too lengthy to exhaustively review here. Instead,
we focus on some approaches that are commonly used to assess patient risk.

One of the earliest models for quantifying the risk of adverse cardiovascular
outcomes was developed by Killip et al. in 1967, where 250 patients were
divided into four simple classes of increasing severity of illness, ranging from
no clinical signs of heart failure to cardiogenic shock [9]. The primary goal of
this study was to trial an improved workflow for cardiac intensive care, but the
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data collected over the course of study revealed patterns in patient survival
based on their class (now called the Killip class). The utility of these classes for
identifying high risk patients has been born out in a number of studies, and
these classes remain a part of the clinical assessment of patients who present
with an acute myocardial infarction.

Over time, more sophisticated statistical techniques have been used to
develop more sophisticated risk stratification models. Both the Framingham
risk score—which quantifies the risk of adverse events (death from coronary
heart disease, nonfatal MI, angina, stoke, transient ischemic attack, intermittent
claudication, and heart failure) in patients who had no prior history of cardiac
disease—and the Global Registry of Acute Coronary Events (GRACE)
score—which quantifies all-cause mortality in patients who present with an
ACS—were developed using Cox proportional hazards regression [10, 11].
Another class of risk scores, developed from and named for the Thrombolysis
in Myocardial Infarction (TIMI) study groups, was developed specifically for
patients who present with symptoms consistent with an acute coronary syn-
drome. Here, features that were discriminatory with respect to the combined
outcome of all-cause mortality, new or recurrent MI, or severe recurrent ischemia
in their cohort were selected using logistic regression. Seven features were selected
in the final model. To use the risk score itself, the physician simply counts the
number of features that are present to estimate the short-term risk of either
mortality after a myocardial infarction post ST segment elevation MI or a com-
bined outcome of all-cause mortality, new or recurrent MI, or severe recurrent
ischemia requiring revascularization post non-ST segment elevation ACS [12, 13].

Regression modeling has found a role for quantifying patient risk in other
disorders apart from ischemic heart disease. Pocock et al., for example, performed
a meta-analysis of heart failure patients from 30 different studies, amounting to
39,372 patients. They used multivariable piecewise Poisson regression methods
to identify features that are predictive of mortality at 3 years. These features were
then converted into an integer risk calculator, called the Meta-analysis Global
Group in Chronic Heart Failure (MAGGIC) score, with higher values correspond-
ing to greater risk [14]. Similarly, the Seattle Heart Failure Model was developed
on a cohort of 1125 patients, using a multivariate Cox proportional hazards
model. This model provides estimates for 1-, 2-, and 3-year mortalities [15, 16].

Logistic regression and proportional hazard models are advantageous because
they are easy to interpret: each clinical feature in themodel has an associatedweight
that corresponds to how important that feature is for the model arriving at a
particular result. However, suchmodels are relatively simple and cannot necessarily
capture complex mechanisms relating observations and outcomes of interest.

What is deep learning?

The diverse, nonuniform terminology in the medical literature unfortunately
tends to obfuscate the meaning of the term “deep learning.” Deep learning is a
subfield of machine learning that strives to find powerful abstract representa-
tions of data using complex artificial neural networks (ANNs) that are then used
to accomplish some prespecified task. While these abstract data representations
are powerful ways to describe clinical data, they are difficult to comprehend and
explain; that is why they are, indeed, “abstract.”
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ANNs correspond to a class of machine learning algorithms whose algorith-
mic structure is inspired by structure of the human brain and how it is believed
that humans compute [17, 18]. A neural network consists of interconnected
artificial neurons that pass information between one another. A typical ANN
contains an input layer, which contains several artificial neurons that take
clinically meaningful data as input. The input layer then passes the clinical data
to other inner, or “hidden,” layers, each of which performs a series of relatively
simple computations. At each layer, more abstract representations of the input
data are obtained. Eventually, the information is passed to an output layer that
yields a clinically meaningful quantity (Fig. 1).

Deep learning models, in practice, correspond to neural networks that
contain several hidden layers. These models, originally referred to as multilayer
perceptrons, were popularized in the early 1980s for applications such as image
and speech recognition, then receded in popularity in favor of simpler, easier to

Fig. 1. In our applications, a neural network acts as a function that takes some observations as input and produces some prediction

of outcomes as the output (a). This function is generated by adding many simple functions (represented by circular nodes that

process information), each of which takes all the outputs of the previous layer as its input, which renders a network “fully

connected” (b). These simple functions are strictly increasing and include parameters (w!
ið Þ
; b

ið Þ for each node), which are
chosen by training the network (c). Each layer can be though of an abstraction of the data, which is eventually
separable in the last layer if the model works well. The output of the last layer is the probability of an adverse
event, which a clinician may use to inform her clinical decisions (d).
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train, and perhaps more explainable models [19, 20]. In recent years, however,
deep neural network (DNN) learning has resurged dramatically both because of
the availability of so-called “big data” and the development of computational
methods that facilitate the training of large neural networks. In many of today’s
applications, these networks can be quite large, having on the order of 105–106

artificial neurons andmillions of modifiable parameters. Parenthetically, as the
size of clinical datasets is typically much smaller, care must be taken when
implementing these models to ensure that they are not overtrained.

While the structure of ANNs, and DNNs in particular, are inspired by the
structure of neurons in the human brain, these models are best thought of as
universal function approximators. Indeed, it has been mathematically proven
that any continuous function on compact spaces can be represented by a neural
network, under certain constraints [21, 22]. These models therefore form an
efficient platform for generating functions that model complex relationships
between patient characteristics/features and outcomes. This highlights an im-
portant difference between DNNs and simpler methods like logistic regression,
which models the relationship between outcomes (i.e., the logarithm of the
odds ratio) and patient features as a linear function. By contrast, a DNN
corresponds to a complex, highly nonlinear function that takes patient infor-
mation as input (including medical images) and outputs the corresponding
outcome. An additional advantage of DNNs is that they can use input data in
“raw” form, with little preprocessing.

Deep learning models can, in principle, capture complex, nonlinear, rela-
tionships between patient features and outcomes and therefore necessarilymeet
the first criteria. However, because these models generate abstract representa-
tions of the input data, it can be very difficult to understandwhat themodel has
learned and consequently why the model arrives at a particular result. More-
over, understanding when the model will fail—i.e., which patients are most
likely to be associated with an incorrect prediction—can be just as challenging.

Evaluating deep learning risk models

Standard performance metrics, such as the area under the receiver operating
characteristic curve (AUC), accuracy, and the sensitivity/specificity, provide
useful information for gauging how a risk model will perform, on average.
Nevertheless, these metrics do not by themselves offer any interpretative in-
sights, nor do they help the user understand how themodel will perform on any
individual patient. The upshot being that conventional statistical metrics of
success are not always sufficient to determine the clinical utility of a deep
learning model.

When evaluating applications of machine learning to medical problems,
there are particular criteria that must be considered given our current under-
standing of human physiology and the reality of medical practice (Fig. 2). In
addition to having a level of performance that ensures that it will perform well,
on average, on the population of interest, ideally a good algorithmic solution
should also:

1. Provide information about potential failure modes; i.e., indicate when it is
likely to yield a false result;
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