
GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1 of 1123

Wolfgang Rankl Wolfgang Effing

GOOG-lOl 1

GOOGLE LLC V. RFCYBER CORP. / Page 1 of 1123

Smart Card
Handbook
Third Edition

Wolfgang Rankl and Wolfgang Effing
Giesecke & Devrient GmbH, Munich, Germany

Translated by
Kenneth Cox

Kenneth Cox Technical Translations, Wassenaar, The Netherlands

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 2 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 3 of 1123

GOOG- 101 1

GOOGLE LLC V. RFCYBER CORP. / Page 3 of 1123

Smart Card
Handbook

Third Edition

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 4 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 5 of 1123

GOOG- 101 1

GOOGLE LLC V. RFCYBER CORP. / Page 5 of 1123

Smart Card
Handbook
Third Edition

Wolfgang Rankl and Wolfgang Effing
Giesecke & Devrient GmbH, Munich, Germany

Translated by
Kenneth Cox

Kenneth Cox Technical Translations, Wassenaar, The Netherlands

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 6 of 1123

First published under the title Handbuch der Chipkarten by Carl Hanser Verlag
C© Carl Hanser Verlag, Munich/FRG, 2002

All rights reserved.

Authorized translation from the 4th edition in the original German language

published by Carl Hanser Verlag, Munich/FRG.

Copyright C© 2003 John Wiley & Sons Ltd, Baffins Lane, Chichester

West Sussex, PO19 1UD, England

National 01243 779777

International (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs

and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,

London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the

Permissions Department,

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to

permreq@wiley.co.uk, or faxed to (+44) 1243 770571.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the

understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is

required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic

books.

Library of Congress Cataloging-in-Publication Data

Rankl, W. (Wolfgang)

[Handbuch der Chipkarten. English]

Smart card handbook / Wolfgang Rankl and Wolfgang Effing. – 3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-470-85668-8 (alk. paper)

1. Smart cards–Handbooks, manuals, etc. I. Effing, W. (Wolfgang) II. Title.

TK7895.S62R3613 2003

006 – dc22 2003062750

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85668-8

Typeset in 10/12pt Times by TechBooks, New Delhi, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry

in which at least two trees are planted for each one used for paper production.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 7 of 1123

Contents

Preface to the Third Edition xiii
Symbols and Notation xv
Program Code Conventions xvii
Abbreviations xix

1 Introduction 1
1.1 The History of Smart Cards 2
1.2 Application Areas 5

1.2.1 Memory cards 6
1.2.2 Microprocessor cards 6
1.2.3 Contactless cards 8

1.3 Standardization 9

2 Types of Cards 15
2.1 Embossed Cards 15
2.2 Magnetic-stripe Cards 16
2.3 Smart Cards 18

2.3.1 Memory cards 19
2.3.2 Microprocessor cards 20
2.3.3 Contactless smart cards 21

2.4 Optical Memory Cards 23

3 Physical and Electrical Properties 27
3.1 Physical Properties 27

3.1.1 Card formats 28
3.1.2 Card components and security features 31

3.2 The Card Body 38
3.2.1 Card materials 40
3.2.2 Chip modules 42

3.3 Electrical Properties 52
3.3.1 Electrical connections 53
3.3.2 Supply voltage 55

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 8 of 1123

vi Contents

3.3.3 Supply current 58
3.3.4 External clock 60
3.3.5 Data transmission 60
3.3.6 Activation and deactivation sequences 61

3.4 Smart Card Microcontrollers 62
3.4.1 Processor types 66
3.4.2 Memory types 70
3.4.3 Supplementary hardware 80

3.5 Contact-type Cards 91
3.6 Contactless Cards 93

3.6.1 Close-coupling cards: ISO/IEC 10536 101
3.6.2 Remote-coupling cards 107
3.6.3 Proximity integrated circuit(s) cards: ISO/IEC 14 443 108
3.6.4 Vicinity integrated circuits cards (ISO/IEC 15 693) 153
3.6.5 Test methods for contactless smart cards 153

4 Informatic Foundations 155
4.1 Structuring Data 156
4.2 Coding Alphanumeric Data 161

4.2.1 7-bit code 161
4.2.2 8-bit code 161
4.2.3 16-bit code (Unicode) 163
4.2.4 32-bit code (UCS) 163

4.3 SDL Notation 164
4.4 State Machines 165

4.4.1 Basic theory of state machines 166
4.4.2 Practical applications 166

4.5 Error Detection and Correction Codes 169
4.5.1 XOR checksums 171
4.5.2 CRC checksums 172
4.5.3 Reed–Solomon codes 174
4.5.4 Error correction 174

4.6 Data Compression 176
4.7 Cryptology 177

4.7.1 Symmetric cryptographic algorithms 182
4.7.2 Asymmetric cryptographic algorithms 189
4.7.3 Padding 199
4.7.4 Message authentication code and cryptographic checksum 201

4.8 Key Management 202
4.8.1 Derived keys 202
4.8.2 Key diversification 203
4.8.3 Key versions 203
4.8.4 Dynamic keys 203
4.8.5 Key parameters 204
4.8.6 Key management example 206

4.9 Hash Functions 208

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 9 of 1123

Contents vii

4.10 Random Numbers 210
4.10.1 Generating random numbers 211
4.10.2 Testing random numbers 213

4.11 Authentication 216
4.11.1 Symmetric unilateral authentication 218
4.11.2 Symmetric mutual authentication 219
4.11.3 Static asymmetric authentication 222
4.11.4 Dynamic asymmetric authentication 223

4.12 Digital Signatures 225
4.13 Certificates 229

5 Smart Card Operating Systems 233
5.1 Historical Evolution of Smart Card

Operating Systems 234
5.2 Fundamentals 237
5.3 Design and Implementation Principles 242
5.4 Completion 245
5.5 Memory Organization 249
5.6 Smart Card Files 252

5.6.1 File types 254
5.6.2 File names 257
5.6.3 File selection 261
5.6.4 EF file structures 263
5.6.5 File access conditions 267
5.6.6 File attributes 270

5.7 File Management 271
5.8 Sequential Control 279
5.9 Access to Resources in Accordance with

ISO/IEC 7816-9 280
5.10 Atomic Operations 288
5.11 Open Platform 290
5.12 Downloadable Program Code 293
5.13 Executable Native Code 296
5.14 Open Platforms 302

5.14.1 Java Card 303
5.14.2 Multos 322
5.14.3 Basic Card 323
5.14.4 Windows for Smart Cards 323
5.14.5 Linux 324

5.15 The Small-OS Smart Card Operating System 326

6 Smart Card Data Transmission 371
6.1 The Physical Transmission Layer 373
6.2 Answer to Reset (ATR) 377

6.2.1 ATR characters 379
6.2.2 Practical examples of ATRs 389

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 10 of 1123

viii Contents

6.3 Protocol Parameter Selection (PPS) 392
6.4 Data Transmission Protocols 396

6.4.1 Synchronous data transmission 397
6.4.2 The T = 0 transmission protocol 403
6.4.3 The T = 1 transmission protocol 409
6.4.4 The T = 14 transmission protocol (Germany) 419
6.4.5 The USB transmission protocol 420
6.4.6 Comparison of asynchronous transmission protocols 421

6.5 Message Structure: APDUs 421
6.5.1 Structure of the command APDU 422
6.5.2 Structure of the response APDU 424

6.6 Securing Data Transmissions 425
6.6.1 The authentic mode procedure 429
6.6.2 The combined mode procedure 430
6.6.3 Send sequence counter 432

6.7 Logical Channels 434

7 Smart Card Commands 435
7.1 File Selection Commands 439
7.2 Read and Write Commands 442
7.3 Search Commands 450
7.4 File Manipulation Commands 452
7.5 Identification Commands 453
7.6 Authentication Commands 457
7.7 Commands for Cryptographic Algorithms 462
7.8 File Management Commands 468
7.9 Commands for Managing Applets 474

7.10 Commands for Completing the Operating System 474
7.11 Commands for Hardware Testing 477
7.12 Commands for Data Transmission Protocols 481
7.13 Database Commands: SCQL 482
7.14 Commands for Electronic Purses 486
7.15 Commands for Credit and Debit Cards 489
7.16 Application-Specific Commands 490

8 Security Techniques 491
8.1 User Identification 491

8.1.1 Testing a secret number 493
8.1.2 Biometric methods 498

8.2 Smart Card Security 510
8.2.1 A classification of attacks and attackers 511
8.2.2 Attacks and defensive measures during development 517
8.2.3 Attacks and defensive measures during production 520
8.2.4 Attacks and defense measures while the card is in use 521

9 Quality Assurance and Testing 565
9.1 Card Body Tests 566

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 11 of 1123

Contents ix

9.2 Microcontroller Hardware Tests 573
9.3 Evaluating and Testing Software 574

9.3.1 Evaluation 575
9.3.2 Test methods for software 581
9.3.3 Dynamic testing of operating systems and applications 589

10 The Smart Card Life Cycle 597
10.1 The Five Phases of the Smart Card Life Cycle 598
10.2 Phase 1 of the Life Cycle in Detail 600

10.2.1 Generating the operating system and producing the chip 600
10.2.2 Producing card bodies without integrated coils 612
10.2.3 Producing card bodies containing integrated coils 621
10.2.4 Combining the card body and the chip 628

10.3 Phase 2 of the Life Cycle in Detail 630
10.4 Phase 3 of the Life Cycle in Detail 638
10.5 Phase 4 of the Life Cycle in Detail 650
10.6 Phase 5 of the Life Cycle in Detail 652

11 Smart Card Terminals 655
11.1 Mechanical Properties 660
11.2 Electrical Properties 663
11.3 Security Technology 665
11.4 Connecting Terminals to Higher-Level Systems 667

11.4.1 PC/SC 667
11.4.2 OCF 671
11.4.3 MKT 672
11.4.4 MUSCLE 672

12 Smart Cards in Payment Systems 673
12.1 Payment Transactions using Cards 674

12.1.1 Electronic payments with smart cards 674
12.1.2 Electronic money 679
12.1.3 Basic system architecture options 681

12.2 Prepaid Memory Cards 684
12.3 Electronic Purses 685

12.3.1 The CEN EN 1546 standard 685
12.3.2 Common Electronic Purse Specifications (CEPS) 701
12.3.3 Proton 702
12.3.4 The Mondex system 703

12.4 The EMV Application 708
12.5 The Eurocheque System in Germany 714

13 Smart Cards in Telecommunications 723
13.1 Survey of Mobile Telecommunication Systems 727

13.1.1 Multiple-access methods 727
13.1.2 Cellular technology 730

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 12 of 1123

x Contents

13.1.3 Cell types 732
13.1.4 Bearer services 733

13.2 The GSM System 735
13.2.1 Specifications 737
13.2.2 System architecture and components 740
13.2.3 Important data elements 741
13.2.4 The subscriber identity module (SIM) 745
13.2.5 General Packet Radio System (GPRS) 786
13.2.6 Future developments 787

13.3 The UMTS System 789
13.4 Microbrowsers 794
13.5 The Wireless Identification Module (WIM) 802
13.6 Public Card Phones in Germany 804

14 Sample Applications 811
14.1 Contactless Memory Cards for Air Travel 811
14.2 Health Insurance Cards 814
14.3 Electronic Toll Systems 819
14.4 Digital Signatures 822
14.5 The PKCS #15 Signature Application 833
14.6 The FINEID Personal Identification Card 840
14.7 Tachosmart 840

15 Application Design 843
15.1 General Information and Characteristic Data 843

15.1.1 Microcontrollers 843
15.1.2 Applications 846
15.1.3 System considerations 848
15.1.4 Compliance with standards 850

15.2 Formulas for Estimating Processing Times 850
15.3 Timing Formulas for Typical Smart Card Commands 858
15.4 Typical Command Processing Times 860
15.5 Application Development Tools 864
15.6 Analyzing an Unknown Smart Card 868
15.7 Life-Cycle Models and Process Maturity 870

15.7.1 Life-cycle models 874
15.7.2 Process maturity 882

15.8 The Course of a Smart Card Project 885
15.9 Design Examples for Smart Card Applications 886

15.9.1 An electronic purse system for arcade games 888
15.9.2 Access control system 890
15.9.3 Testing the genuineness of a terminal 894

16 Appendix 897
16.1 Glossary 897
16.2 Related Reading 985

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 13 of 1123

Contents xi

16.3 Literature 985
16.4 Annotated Directory of Standards and Specifications 994
16.5 Coding of Data Objects 1030

16.5.1 Data objects compliant with ISO/IEC 7816-4 1030
16.5.2 Data objects compliant with ISO/IEC 7816-6 1031
16.5.3 Data objects for chip manufacturers as specified by ISO/IEC 7816-6 1032

16.6 Registration Authorities for RIDs 1032
16.7 Selected RIDs 1032
16.8 Trade Fairs, Conferences and Conventions 1033
16.9 World Wide Web Addresses 1034

16.10 Characteristic Data and Tables 1044
16.10.1 ATR interval 1044
16.10.2 ATR parameter conversion tables 1044
16.10.3 Determining the data transmission rate 1046
16.10.4 Sampling times for serial data 1046
16.10.5 The most important smart card commands 1047
16.10.6 Summary of utilized instruction bytes 1051
16.10.7 Smart card command coding 1053
16.10.8 Smart card return codes 1056
16.10.9 Selected chips for memory cards 1058

16.10.10 Selected microcontrollers for smart cards 1060

Index 1067

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 14 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 15 of 1123

GOOG- 101 1

GOOGLE LLC V. RFCYBER CORP. / Page 15 of 1123

Preface to the Third Edition

The English version of the Smart Card Handbook has now reached its third edition. In com-
parison with the previous edition, it has been considerably expanded and thoroughly updated
to represent the current state of the technology. In this book, we attempt to cover all aspects
of smart card technology, with the term ‘technology’ intentionally being understood in a very
broad sense.

As in previous editions, we have remained true to our motto, ‘better one sentence too many
than one word too few’. We have described this ever-expanding subject in as much detail as
possible. Even more examples, drawings and photographs have been added to make it easier
to understand complicated relationships. The glossary has been enlarged to include many new
terms covering all essential concepts related to smart cards, and it has been enhanced with
cross-references. In many cases, it can provide a quick introduction to a particular subject.
Altogether, these additions, extensions and improvements have resulted in a book that is more
than three times as large as the first edition.

Here we can make a small comparison. Modern smart card operating systems currently
comprise 120,000 lines of source code, which roughly corresponds to two books the size of
the present edition. Even if you are not familiar with programming, you can readily appreciate
how sophisticated these operating systems have become.

These small, colorful plastic cards with their semiconductor chips continue to spread from
their original countries, Germany and France, throughout the world. In the coming years, this
technology can be expected to outstrip all others, especially since it is still in its infancy and
there is no end or consolidation in sight.

Smart card technology progresses in leaps and bounds, and we attempt to keep pace by
publishing a new edition of the Smart Card Handbook every two to three years. The Smart
Card Handbook represents the present state of technical knowledge, and in areas that are
presently undergoing rapid change, we indicate possible paths of evolution. If certain things
come to be seen differently at a later date, we can only remark that no one knows what the
future will bring. Despite this, or perhaps just because of this, we welcome all comments,
suggestions and proposed improvements, so that this book can continue to cover the subject of
smart cards as completely as possible. Here we would like to explicitly thank the many attentive
and interested readers who have pointed out unclear or ambiguous passages and errors. Once
again, an errata list for this edition will be made available at www.wiley.co.uk/commstech/.

We would also like to thank our many friends and colleagues who have repeatedly offered
valuable (and occasionally somewhat uncomfortable) suggestions for making this book better

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 16 of 1123

xiv Preface

and more complete. We would particularly like to thank Hermann Altschäfl, Peter van Elst,
Klaus Finkenzeller, Thomas Graßl, Michael Schnellinger, Harald Vater and Dieter Weiß, as
well as Kathryn Sharples at Wiley for her helpful support and Kenneth Cox for the translation.

Munich, June 2002
Wolfgang Rankl

[Rankl@gmx.net], [www.wiley.co.uk/commstech/]

Wolfgang Effing
[WEffing@gmx.net]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 17 of 1123

Symbols and Notation

General

� In accordance with ISO standards, the least-significant bit is always designated 1, rather
than 0.

� In accordance with common usage, the term ‘byte’ refers to a sequence of eight bits and is
equivalent to the term ‘octet’, which is often used in international standards.

� Length specifications for data, objects and all countable quantities are shown in decimal
form, in agreement with the usual practice in smart card standards. All other values are
usually shown as hexadecimal numbers and identified as such.

� The prefixes ‘kilo’ and ‘mega’ have the values of 1024 (210) and 1,048,576 (220), respectively,
as is customary in the field of information technology.

� Depending on the context, binary values may not be explicitly identified as such.

� Commands used with smart cards are printed in upper-case characters (for example: SELECT
FILE).

Representation of characters and numbers

42 decimal value
'00' hexadecimal value
◦0◦, ◦1◦ binary values
''ABC'' ASCII value
Bn byte number n (for example: B1)
bn bit number n (for example: b2)
Dn digit number n (for example: D3)

Logical functions

|| concatenation (of data elements or objects)
⊕ logical XOR operation

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 18 of 1123

xvi Symbols and Notation

∧ logical AND operation
∨ logical OR operation
a ∈ M a is an element of the set M
a /∈ M a is not an element of the set M
{a, b, c} the set of elements a, b, c

Cryptographic functions

enc Xn (K; D) encryption using the algorithm X and an n-bit key, with the key
K and the data D [for example: enc DES56 ('1 . . . 0'; 42)]

dec Xn (K; D) decryption using the algorithm X and an n-bit key, with the key
K and the data D [for example: dec IDEA128 ('1 . . . 0'; 42)]

S := sign Xn (K; D) generating the signature S using the algorithm X and an n -bit key,
with the key K and the data D [for example: sign RSA512 ('1 . . . 0';
''Wolf'')]

R := verify Xn (K; S) verifying the signature S using the algorithm X and an n-bit key,
with the key K [for example: verify RSA512 ('1 . . . 9'; 42)]

Result = OK/NOK

References

See: ‘. . . ’ This is a cross-reference to another location in the book.
See also: ‘. . . ’ This is a cross-reference to another location in the book where

more information on the subject can be found.
[. . .] This is a reference to a World Wide Web site listed in the

Appendix.
[X Y] This is a cross-reference to additional literature or standards listed

in the Appendix. The format is:
X ∈ {surname of the first-named author}
Y ∈ {last two digits of the year of publication}

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 19 of 1123

Program Code Conventions

The syntax and semantics of the program code used in this book are based on the standard
dialects of Basic. However, the use of explanations in natural language within a program
listing is allowed, in order to promote the understandability of the code. Naturally, although
this makes it easier for the reader to understand the code, it means that it is not possible
to automatically convert the code into machine code. This compromise is justified by the
significant improvement in readability that it provides.

:= assignment operator
::= definition operator
=, !=, <, <=, >, => comparison operators
+, −, ×, / arithmetic operators
NOT logical not
AND logical and
OR logical or
|| concatenation operator (e.g., coupling two byte strings)

end-of-line marker for multiline instructions
// . . . comment

IO Buffer variable (printed in italics)
Label: jump or call location (printed in bold)
GOTO . . . jump
CALL . . . function call (subroutine call)
RETURN return from a function (subroutine)

IF . . . THEN . . . decision, type 1
IF . . . THEN . . . ELSE . . . decision, type 2

SEARCH (. . .) search in a list; search string in parentheses
STATUS query the result of a previously executed function call

STOP terminate a process
LENGTH (. . .) calculate the length
EXIST test for presence (for example: an object or data element)

WITH . . . starts the definition of a variable or object as a reference
END WITH ends the definition of a variable or object as a reference

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 20 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 21 of 1123

GOOG- 101 1

GOOGLE LLC V. RFCYBER CORP. / Page 21 of 1123

Abbreviations

3DES triple DES (see glossary)
3GPP Third Generation Partnership Project (see glossary)
3GPP2 Third Generation Partnership Project 2 (see glossary)

A3, A5, A8 GSM algorithm 3, 5, 8 (see glossary)
AAM application abstract machine
ABA American Bankers’ Association
ABS acrylonitrile butadiene styrene
AC access conditions (see glossary)
ACD access control descriptor
ACK acknowledge
ACM accumulated call meter
ADF application dedicated file
ADN abbreviated dialing number
AES Advanced Encryption Standard (see glossary)
AFI application family identifier
AFNOR Association Française de Normalisation (see glossary)
AGE Autobahngebührenerfassung [motorway toll collection]
AGE automatische Gebührenerfassung [automatic toll collection]
AID application identifier (see glossary)
AM access mode
Amd. Amendment
AMPS Advanced Mobile Phone Service (see glossary)
AND logical AND operation
ANSI American National Standards Institute (see glossary)
AoC Advice of Charge
AODF authentication object directory file
APACS Association for Payment Clearing Services
APDU application protocol data unit (see glossary)
A-PET amorphous polyethylene terephthalate
API application programming interface (see glossary)
AR access rules
ARM advanced RISC machine

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 22 of 1123

xx Abbreviations

ARR access rule reference
ASC application-specific command
ASCII American Standard Code for Information Interchange
ASIC application-specific integrated circuit
ASK amplitude shift keying (see glossary)
ASN.1 Abstract Syntax Notation 1 (see glossary)
AT attention
ATM automated teller machine
ATQA answer to request, type A
ATQB answer to request, type B
ATR answer to reset (see glossary)
ATS answer to select
ATTRIB PICC selection command, type B
AUX auxiliary

B2A business-to-administration (see glossary)
B2B business-to-business (see glossary)
B2C business-to-consumer (see glossary)
Basic Beginners All Purpose Symbolic Instruction Code
BCD binary-coded digit
Bellcore Bell Communications Research Laboratories
BER Basic Encoding Rules (see glossary)
BER-TLV Basic Encoding Rules – tag, length, value
BEZ Börsenevidenzzentrale [electronic purse clearing center for

Geldkarte]
BGT block guard time
BIN bank identification number
bit binary digit
BPF basic processor functions
BPSK binary phase-shift keying (see glossary)
BS base station
BWT block waiting time

CA certification authority (see glossary)
CAD chip accepting device (see glossary)
CAFE Conditional Access for Europe (EU project)
CAMEL Customized Applications for Mobile Enhanced Logic
CAP card application (see glossary)
C-APDU command APDU (see glossary)
CAPI crypto API (application programming interface)
CASCADE Chip Architecture for Smart Card and Portable Intelligent

Devices

CASE computer-aided software engineering
CAT card application toolkit
CAVE Cellular Authentication, Voice Privacy and Encryption
CBC cipher block chaining

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 23 of 1123

Abbreviations xxi

CC Common Criteria (see glossary)
CCD card-coupling device
CCD charge-coupled device
CCITT Comité Consultatif International Télégraphique et Téléphonique

(now ITU) (see glossary)
CCR chip-card reader
CCS cryptographic checksum (see glossary)
CD committee draft
CDF certificate directory file
CDM card-dispensing machine
CDMA code division multiple access (see glossary)
CEN Comité Européen de Normalisation (see glossary)
CENELEC Comité Européen de Normalisation Eléctrotechnique [European

Committee for Electronics Standardization]
CEPS Common Electronic Purse Specifications, (previously: Common

European Purse System) (see glossary)
CEPT Conférence Européenne des Postes et Télécommunications (see

glossary)
CFB cipher feedback
CGI common gateway interface
CHV cardholder verification
CICC contactless integrated circuit card
CID card identifier
CISC complex instruction set computer
CLA class
CLK clock
CLn cascade level n, type A
CMM capability maturity model (see glossary)
CMOS complementary metal-oxide semiconductor
CMS card management system
COS chip operating system (see glossary)
COT chip-on-tape (see glossary)
CRC cyclic redundancy check (see glossary)
CRCF clock rate conversion factor
CRT Chinese remainder theorem
CRT control reference template
Cryptoki cryptographic token interface
CSD circuit-switched data
C-SET Chip-SET (secure electronic transaction)
CT chipcard terminal
CT card terminal
CT cascade tag, type A
CT cordless telephone
CT-API chipcard terminal (CT) API (see glossary)
CTDE cryptographic token data element
CTI cryptographic token information

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 24 of 1123

xxii Abbreviations

CTIO cryptographic token information object
CVM cardholder verification method
CWT character waiting time

D divisor
DAD destination address
DAM DECT authentication module (see glossary)
DAM draft amendment
D-AMPS Digital Advanced Mobile Phone Service (see glossary)
DAP data authentication pattern
DB database
DBF database file
DBMS database management system
DC/SC Digital Certificates on Smart Cards
DCODF data container object directory file
DCS digital cellular system
DEA data encryption algorithm (see glossary)
DECT Digital Enhanced Cordless Telecommunications (previously:

Digital European Cordless Telecommunications) (see glossary)
DER Distinguished Encoding rules (see glossary)
DES Data Encryption Standard (see glossary)
DF dedicated file (also often: directory file) (see glossary)
DFA differential fault analysis (see glossary)
DFÜ Datenfernübertragung [data telecommunications]
DIL dual in-line
DIN Deutsche Industrienorm [German industrial standard]
DIS draft international standard
DLL dynamic link library
DMA direct memory access
DO data object
DoD US Department of Defense
DOM document object model
DOV data over voice
DPA differential power analysis (see glossary)
dpi dots per inch
DR divisor receive (PCD to PICC)
DRAM dynamic random-access memory (see glossary)
DRI divisor receive integer (PCD to PICC)
DS divisor send (PICC to PCD)
DSA digital signature algorithm
DSI divisor send integer (PICC to PCD)
DTAUS Datenträgeraustausch [data storage medium exchange]
DTD document type definition
DTMF dual-tone multiple-frequency
DVD digital versatile disc
DVS Dateiverwaltungssystem [file management system]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 25 of 1123

Abbreviations xxiii

E end of communication, type A
EBCDIC extended binary-coded decimal interchange code
EC elliptic curve
ec Eurocheque
ECB electronic codebook
ECBS European Committee for Banking Standards (see glossary)
ECC elliptic curve cryptosystems (see glossary)
ECC error correction code (see glossary)
ECDSA elliptic curve DSA
ECML Electronic Commerce Modeling Language
ECTEL European Telecom Equipment and Systems Industry
EDC error detection code (see glossary)
EDGE Enhanced Data Rates for GSM and TDMA Evolution (see glos-

sary)
EDI electronic data interchange
EDIFACT electronic data interchange for administration, commerce and

transport
EEPROM, E2PROM electrically erasable programmable read-only memory (see glos-

sary)
EF elementary file (see glossary)
EFF Electronic Frontier Foundation
EFI EF internal
EFTPOS electronic fund transfer at point of sale
EFW EF working
EGT extra guard time, type B
EMV Europay, MasterCard, Visa (see glossary)
EOF end of frame, type B
EPROM erasable programmable read-only memory (see glossary)
ESD electrostatic discharge
ESPRIT European Strategic Programme of Research and Development in

Information Technology (EU project)
ETS European Telecommunication Standard (see glossary)
ETSI European Telecommunications Standards Institute (see glossary)
etu elementary time unit (see glossary)

f following page

FAR false acceptance rate
FAT file allocation table (see glossary)
FBZ Fehlbedienungszähler [error counter, key fault presentation

counter, retry counter] (see glossary)
fC frequency of operating field (carrier frequency)
FCB file control block
FCC Federal Communications Commission
FCFS first-come, first-serve
FCI file control information
FCOS flip chip on substrate

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 26 of 1123

xxiv Abbreviations

FCP file control parameters
FD/CDMA frequency division / code division multiple access (see glossary)
FDMA frequency division multiple access (see glossary)
FDN fixed dialing number
FDT frame delay time, type A
FEAL fast data encipherment algorithm
FET field-effect transistor
ff following pages
FID file identifier (see glossary)
FIFO first in, first out
FINEID Finnish Electronic Identification Card
FIPS Federal Information Processing Standard (see glossary)
FMD file management data
FO frame option
FPGA field-programmable gate array (see glossary)
FPLMTS Future Public Land Mobile Telecommunication Service (see glos-

sary)
FRAM ferroelectric random-access memory (see glossary)
FRR false rejection rate
FS file system
fS frequency of subcarrier modulation
FSC frame size for proximity card
FSCI frame size for proximity card integer
FSD frame size for coupling device
FSDI frame size for coupling device integer
FSK frequency-shift keying
FTAM file transfer, access and management
FWI frame waiting time integer
FWT frame waiting time
FWTTEMP temporary frame waiting time

gcd greatest common denominator
GF Galois fields
GGSN gateway GPRS support node
GND ground
GP Global Platform (see glossary)
GPL GNU public license
GPRS General Packet Radio System (see glossary)
GPS Global Positioning System
GSM Global System for Mobile Communications (previously: Groupe

Spécial Mobile) (see glossary)
GTS GSM Technical Specification
GUI graphical user interface

HAL hardware abstraction layer (see glossary)
HBCI Home Banking Computer Interface (see glossary)
HiCo high coercivity

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 27 of 1123

Abbreviations xxv

HLTA Halt command, type A
HLTB Halt command, type B
HSCSD high-speed circuit switched data
HSM hardware security module
HSM high-security module
HSM host security module
HTML hypertext markup language
HTTP hypertext transfer protocol
HV Vickers hardness
HW hardware

I/O input/output
I2C inter-integrated circuit
IATA International Air Transport Association
IBAN international bank account number
I-block information block
ICC integrated-circuit card (see glossary)
ID identifier
IDEA international data encryption algorithm
IEC International Electrotechnical Commission (see glossary)
IEEE Institute of Electrical and Electronics Engineers
IEP intersector electronic purse
IFD interface device (see glossary)
IFS information field size
IFSC information field size for the card
IFSD information field size for the interface device
IIC institution identification codes
IMEI international mobile equipment identity
IMSI international mobile subscriber identity
IMT-2000 International Mobile Telecommunication 2000 (see glossary)
IN intelligent network
INF information field
INS instruction
INTAMIC International Association of Microcircuit Cards
IP Internet protocol
IPES Improved Proposed Encryption Standard
IrDA Infrared Data Association
ISDN Integrated Services Digital Network (see glossary)
ISF internal secret file
ISIM IP security identity module
ISO International Organization for Standardization (see glossary)
IT information technology
ITSEC Information Technology Security Evaluation Criteria (see glos-

sary)
ITU International Telecommunications Union (see glossary)
IuKDG Informations- und Kommunikations-Gesetz [German Information

and Communications Act]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 28 of 1123

xxvi Abbreviations

IV initialization vector
IVU in-vehicle unit

J2ME Java 2 Micro Edition
JCF Java Card Forum (see glossary)
JCRE Java Card runtime environment (see glossary)
JCVM Java Card virtual machine (see glossary)
JDK Java development kit (see glossary)
JECF Java Electronic Commerce Framework
JIT just in time
JTC1 Joint Technical Committee One
JVM Java virtual machine

K key
Kc ciphering key
KD derived key
KFPC key fault presentation counter
Ki individual key
KID identifier key
KM master key
KS session key
KVK Krankenversichertenkarte [German medical insurance card]

LA location area
LAN local-area network
Lc command length
LCSI life cycle status indicator
Le expected length
LEN length
LFSR linear-feedback shift register
LIFO last in, first out
LND last number dialed
LOC lines of code
LoCo low coercivity
LRC longitudinal redundancy check
LSAM load secure application module
lsb least significant bit
LSB least significant byte

M month
MAC message authentication code / data security code (see glossary)
MAOS multi-application operating system
MBL maximum buffer length
MBLI maximum buffer length index
MCT multifunctional card terminal (see glossary)
ME mobile equipment
MEL Multos Executable Language
MExE mobile station execution environment (see glossary)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 29 of 1123

Abbreviations xxvii

MF master file (see glossary)
MFC multi-function card, multifunctional smart card
MIME Multipurpose Internet Mail Extensions
MIPS million instructions per second
MLI multiple laser image
MM moduliertes Merkmal [modulated feature]
MMI man–machine interface
MMS multimedia messaging service
MMU memory-management unit
MOC matching-on-chip
MOO mode of operation
MOSAIC Microchip On-Surface and In-Card
MOSFET metal-oxide semiconductor field-effect transistor
MoU Memorandum of Understanding (see glossary)
MS mobile station
msb most significant bit
MSB most significant byte
MSE MANAGE SECURITY ENVIRONMENT
MTBF mean time between failures
MUSCLE Movement for the Use of Smart Cards in a Linux Environment

NAD node address
NAK negative acknowledgement
NBS US National Bureau of Standards (see glossary)
NCSC National Computer Security Center (see glossary)
NDA nondisclosure agreement
NIST US National Institute of Standards and Technology (see glossary)
nok not OK
NPU numeric processing unit (see glossary)
NRZ non-return to zero
NSA US National Security Agency (see glossary)
NU not used
NVB number of valid bits

OBU onboard unit
ODF object directory file
OFB output feedback
OID object identifier
OOK on/off keying
OP Open Platform (see glossary)
OR logical OR operation
OS operating system
OSI Open Systems Interconnections
OTA Open Terminal Architecture
OTA over-the-air (see glossary)
OTASS over-the-air SIM services
OTP one-time password

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 30 of 1123

xxviii Abbreviations

OTP one-time programmable
OTP Open Trading Protocol
OVI optically variable ink

P1, P2, P3 parameter 1, 2, 3
PA power analysis
PB procedure byte
PC personal computer
PC polycarbonate
PC/SC personal computer / smart card (see glossary)
PCB protocol control byte
PCD proximity coupling device (see glossary)
PCMCIA Personal Computer Memory Card International Association
PCN personal communication networks
PCS personal communication system
PDA personal digital assistant
PES proposed encryption standard
PET polyethylene terephthalate
PETP partially crystalline polyethylene terephthalate
PGP Pretty Good Privacy
PICC proximity ICC (see glossary)
PIN personal identification number
PIX proprietary application identifier extension
PKCS public-key cryptography standards (see glossary)
PKI public-key infrastructure (see glossary)
PLL phase-locked loop
PLMN public land mobile network (see glossary)
PM person–month
POS point of sale (see glossary)
POZ POS ohne Zahlungsgarantie [POS without payment guarantee]
PP protection profile (see glossary)
PPM pulse position modulation
PPC production planning and control
PPS protocol parameter selection
prEN pre Norme Européenne [preliminary European standard]
prETS pre European Telecommunication Standard
PrKDF private key directory file
PRNG pseudorandom number generator (see glossary)
PROM programmable read-only memory
PSAM purchase secure application module
PSK phase shift keying
PSO PERFORM SECURITY OPERATION
PSTN public switched telephone network (see glossary)
PTS protocol type selection
PTT Postes Télégraphes et Téléphones [post, telegraph and telephone]
Pub publication

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 31 of 1123

Abbreviations xxix

PUK personal unblocking key (see glossary)
PuKDF public key directory file
PUPI pseudo-unique PICC identifier
PVC polyvinyl chloride
PWM pulse width modulation

RAM random-access memory (see glossary)
R-APDU response APDU (see glossary)
RATS request to answer to select
REJ reject
REQA request command, type A
REQB request command, type B
RES resynchronization
RF radio frequency
RFC request for comment
RFID radio frequency identification
RFU reserved for future use
RID record identifier
RID registered application provider identifier
RIPE RACE (EU project) integrity primitives evaluation
RIPE-MD RACE integrity primitives evaluation message digest
RISC reduced instruction set computer
RND random number
RNG random number generator
ROM read-only memory (see glossary)
RS Reed–Solomon
RSA Rivest, Shamir and Adleman cryptographic algorithm
RTE runtime environment
R-UIM removable user identity module (see glossary)

S start of communication
S@T SIM Alliance Toolbox
S@T SIM Alliance Toolkit
S@TML SIM Alliance Toolbox Markup Language
SA security attributes
SA service area
SAD source address
SAGE Security Algorithm Group of Experts
SAK select acknowledge
SAM secure application module (see glossary)
SAT SIM Application Toolkit (see glossary)
SC security conditions
SC smart card
SCC smart card controller
SCMS smart card management system
SCOPE Smart Card Open Platform Environment (see glossary)
SCP Smart Card Platform

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 32 of 1123

xxx Abbreviations

SCQL structured card query language
SCSUG Smart Card Security Users Group
SDL specification and description language
SDMA space division multiple access (see glossary)
SE security environment (see glossary)
SECCOS Secure Chip Card Operating System (see glossary)
SEIS Secured Electronic Information in Society
SEL select code
SELECT select command
SEMPER Secure Electronic Marketplace for Europe (EU project)
SEPP secure electronic payment protocol
SET secure electronic transaction (see glossary)
SFGI start-up frame guard time integer
SFGT start-up frame guard time
SFI short file identifier (see glossary)
SGSN serving GPRS support node
S-HTTP secure hypertext transfer protocol
SigG Signaturgesetz [German electronic signature act] (see glossary)
SigV Signaturverordnung [German electronic signature ordinance]

(see glossary)
SIM subscriber identity module (see glossary)
SIMEG Subscriber Identity Module Expert Group (see glossary)
SKDF secret key directory file
SM secure messaging
SM security mechanism
SMD surface mounted device (see glossary)
SMG9 Special Mobile Group 9 (see glossary)
SMIME Secure Multipurpose Internet Mail Extensions
SMS short message service (see glossary)
SMSC short message service center
SMS-PP short message service point to point
SOF start of frame
SPA simple power analysis (see glossary)
SQL structured query language
SQUID superconducting quantum interference device
SRAM static random-access memory (see glossary)
SRES signed response
SS supplementary service
SSC send sequence counter
SSL secure socket layer
SSO single sign-on (see glossary)
STARCOS Smart Card Chip Operating System (product of G+D)
STC sub technical committee
STK SIM Application Toolkit (see glossary)
STT secure transaction technology
SVC stored value card (product of Visa International)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 33 of 1123

Abbreviations xxxi

SW software
SW1, SW2 status word 1, 2
SWIFT Society for Worldwide Interbank Financial Telecommunications

T tag
TAB tape-automated bonding
TACS Total Access Communication System
TAL terminal application layer
TAN transaction number (see glossary)
TAR toolkit application reference
tbd to be defined
TC trust center (see glossary)
TC technical committee
TC thermochrome
TCOS Telesec Card Operating System
TCP transport control protocol
TCP/IP Transmission Control Protocol / Internet Protocol
TCSEC Trusted Computer System Evaluation Criteria (see glossary)
TD/CDMA time division / code division multiple access (see glossary)
TDES triple DES (see glossary)
TDMA time division multiple access (see glossary)
TETRA Trans-European Trunked Radio (see glossary)
TLS transport layer security
TLV tag, length & value (see glossary)
TMSI temporary mobile subscriber identity
TOE target of evaluation (see glossary)
TPDU transmission protocol data unit (see glossary)
TRNG true random number generator (see glossary)
TS technical specification
TTCN tree-and-tabular combined notation
TTL terminal transport layer
TTL transistor-transistor logic
TTP trusted third party (see glossary)

UART universal asynchronous receiver/transmitter (see glossary)
UATK UIM Application Toolkit
UCS Universal Character Set (see glossary)
UI user interface
UICC universal integrated circuit card (see glossary)
UID unique identifier
UIM user identity module (see glossary)
UML unified modeling language (see glossary)
UMTS Universal Mobile Telecommunication System (see glossary)
URL uniform resource locator (see glossary)
USAT USIM application toolkit (see glossary)
USB universal serial bus
USIM universal subscriber identity module (see glossary)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 34 of 1123

xxxii Abbreviations

USSD unstructured supplementary services data
UTF UCS transformation format
UTRAN UMTS radio access network

VAS value-added services (see glossary)
Vcc supply voltage
VCD vicinity coupling device
VEE Visa Easy Entry (see glossary)
VKNR Versichertenkartennummer [subscriber card number for German

medical insurance]
VLSI very large scale integration
VM virtual machine (see glossary)
VOP Visa Open Platform (see glossary)
Vpp programming voltage
VSI vertical system integration

W3C World Wide Web Consortium
WAE wireless application environment
WAN wide-area network
WAP wireless application protocol (see glossary)
WCDMA wideband code division multiple access (see glossary)
WDP wireless datagram protocol
WfSC Windows for Smart Cards
WG working group
WIG wireless Internet gateway
WIM wireless identification module (see glossary)
WML wireless markup language (see glossary)
WORM write once, read multiple
WSC Windows for Smart Cards
WSP wafer-scale package
WSP wireless session protocol
WTAI wireless telephony application interface
WTLS wireless transport layer security
WTP wireless transport protocol
WTX waiting time extension
WTXM waiting time extension multiplier
WUPA wakeup command, type A
WUPB wakeup command, type B
WWW World Wide Web (see glossary)

XML extensible markup language (see glossary)
XOR logical exclusive-OR operation

Y year

ZKA Zentraler Kreditausschuss [Central Loans Committee] (see glos-
sary)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 35 of 1123

1
Introduction

This book has been written for students, engineers and technically minded persons who want
to learn more about smart cards. It attempts to cover this broad topic as completely as possible,
in order to provide the reader with a general understanding of the fundamentals and the current
state of the technology.

We have put great emphasis on a practical approach. The wealth of pictures, tables and refer-
ences to real applications is intended to help the reader become familiar with the subject rather
more quickly than would be possible with a strictly technical presentation. This book is thus
intended to be useful in practice, rather than technically complete. For this reason, descriptions
have been kept as concrete as possible. In places where we were faced with a choice between
technical accuracy and ease of understanding, we have tried to strike a happy medium. When-
ever this proved to be impossible, we have always given preference to ease of understanding.

The book has been written so that it can be read in the usual way, from front to back.
We have tried to avoid forward references as much as possible. The designs of the individual
chapters, in terms of structure and content, allow them to be read individually without any loss
of understanding. The comprehensive index and the glossary allow this book to be used as a
reference work. If you want to know more about a specific topic, the references in the text and
the annotated directory of standards will help you find the relevant documents.

Unfortunately, a large number of abbreviations have become established in smart card
technology, as in so many other areas of technology and everyday life. This makes it particularly
difficult for newcomers to become familiar with the subject. We have tried to minimize the
use of these cryptic and frequently illogical abbreviations. Nevertheless, we have often had
to choose a middle way between internationally accepted smart card terminology used by
specialists and common terms more easily understood by laypersons. If we have not always
succeeded, the extensive list of abbreviations at the front of the book should at least help
overcome any barriers to understanding, which we hope will be short-lived. An extensive
glossary in the final chapter of the book explains the most important technical concepts and
supplements the list of abbreviations.

An important feature of smart cards is that their properties are strongly based on interna-
tional standards. This is fundamentally important with regard to the usually compulsory need
for interoperability. Unfortunately, these standards are often difficult to understand, and in

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 36 of 1123

2 Introduction

some critical places they require outright interpretation. Sometimes only the members of the
associated standardization group can explain the intention of certain sections. In such cases,
the Smart Card Handbook attempts to present the understanding that is generally accepted in
the smart card industry. Nevertheless, the relevant standards are still the ultimate authority, and
in such cases they should always be consulted.

1.1 THE HISTORY OF SMART CARDS

The proliferation of plastic cards started in the USA in the early 1950s. The low price of the
synthetic material PVC made it possible to produce robust, durable plastic cards that were
much more suitable for everyday use than the paper and cardboard cards previously used,
which could not adequately withstand mechanical stresses and climatic effects.

The first all-plastic payment card for general use was issued by the Diners Club in 1950.
It was intended for an exclusive class of individual, and thus also served as a status symbol,
allowing the holder to pay with his or her ‘good name’ instead of cash. Initially, only the more
select restaurants and hotels accepted these cards, so this type of card came to be known as a
‘travel and entertainment’ card.

The entry of Visa and MasterCard into the field led to a very rapid proliferation of ‘plastic
money’ in the form of credit cards. This occurred first in the USA, with Europe and the rest of
the world following a few years later. Today, credit cards allow travelers to shop without cash
everywhere in the world. A cardholder is never at a loss for means of payment, yet he or she
avoids exposure to the risk of loss due to theft or other unpredictable hazards, particularly while
traveling. Using a credit card also eliminates the tedious task of exchanging currency when
traveling abroad. These unique advantages helped credit cards become rapidly established
throughout the world. Many hundreds of millions of cards are produced and issued annually.

At first, the functions of these cards were quite simple. They served as data storage media that
were secure against forgery and tampering. General information, such as the card issuer’s name,
was printed on the surface, while personal data elements, such as the cardholder’s name and the
card number, were embossed. Many cards also had a signature panel where the cardholder could
sign his or her name for reference. In these first-generation cards, protection against forgery was
provided by visual features, such as security printing and the signature panel. Consequently,
the system’s security depended quite fundamentally on the quality and conscientiousness of the
persons responsible for accepting the cards. However, this did not represent an overwhelming
problem, due to the card’s initial exclusivity. With the increasing proliferation of card use,
these rather rudimentary features no longer proved sufficient, particularly since threats from
organized criminals were growing apace.

Increasing handling costs for merchants and banks made a machine-readable card necessary,
while at the same time, losses suffered by card issuers as the result of customer insolvency
and fraud grew from year to year. It became apparent that the security features for protection
against fraud and manipulation, as well as the basic functions of the card, had to be expanded
and improved.

The first improvement consisted of a magnetic stripe on the back of the card, which allowed
digital data to be stored on the card in machine-readable form as a supplement to the visual
information. This made it possible to minimize the use of paper receipts, which were previously
essential, although the customer’s signature on a paper receipt was still required in traditional
credit card applications as a form of personal identification. However, new approaches that did

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 37 of 1123

1.1 The History of Smart Cards 3

not require paper receipts could also be devised. This made it possible to finally achieve the
long-standing objective of replacing paper-based transactions by electronic data processing.
This required a different method to be used for user identification, which previously employed
the user’s signature. The method that has come into widespread general use involves a secret
personal identification number (PIN) that is compared with a reference number. The reader
is surely familiar with this method from using bank machines (automated teller machines).
Embossed cards with magnetic stripes are still the most commonly used types of cards for
financial transactions.

However, magnetic-stripe technology has a crucial weakness, which is that the data stored
on the stripe can be read, deleted and rewritten at will by anyone with access to the neces-
sary equipment. It is thus unsuitable for storing confidential data. Additional techniques must
be used to ensure confidentiality of the data and prevent manipulation of the data. For example,
the reference value for the PIN could be stored in the terminal or host system in a secure en-
vironment, instead of on the magnetic stripe. Most systems that employ magnetic-stripe cards
thus use online connections to the system’s host computer for reasons of security, even though
this generates significant costs for the necessary data transmissions. In order to reduce costs,
it is necessary to find solutions that allow card transactions to be executed offline without
endangering the security of the system.

The development of the smart card, combined with the expansion of electronic data-
processing systems, has created completely new possibilities for devising such solutions.
Enormous progress in microelectronics in the 1970s made it possible to integrate data storage
and processing logic on a single silicon chip measuring a few square millimetres. The idea of
incorporating such an integrated circuit into an identification card was contained in a patent
application filed by the German inventors Jürgen Dethloff and Helmut Grötrupp as early as
1968. This was followed in 1970 by a similar patent application by Kunitaka Arimura in Japan.
However, the first real progress in the development of smart cards came when Roland Moreno
registered his smart card patents in France in 1974. It was only then that the semiconductor
industry was able to supply the necessary integrated circuits at acceptable prices. Nevertheless,
many technical problems still had to be solved before the first prototypes, some of which con-
tained several integrated circuit chips, could be transformed into reliable products that could
be manufactured in large numbers with adequate quality at a reasonable cost. Since the basic
inventions in smart card technology originated in Germany and France, it is not surprising that
these countries played the leading roles in the development and marketing of smart cards.

The great breakthrough was achieved in 1984, when the French PTT (postal and telecom-
munications services agency) successfully carried out a field trial with telephone cards. In
this field trial, smart cards immediately proved to meet all expectations with regard to high
reliability and protection against manipulation. Significantly, this breakthrough for smart cards
did not come in an area where traditional cards were already used, but in a new application.
Introducing a new technology in a new application has the great advantage that compatibility
with existing systems does not have to be taken into account, so the capabilities of the new
technology can be fully exploited.

A pilot project was conducted in Germany in 1984–85, using telephone cards based on
several technologies. Magnetic-stripe cards, optical-storage (holographic) cards and smart
cards were used in comparative tests. Smart cards proved to be the winners in this pilot
study. In addition to a high degree of reliability and security against manipulation, smart
card technology promised the greatest degree of flexibility for future applications. Although
the older but less expensive EPROM technology was used in the French telephone card chips,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 38 of 1123

4 Introduction

more recent EEPROM chips were used from the start in the German telephone cards. The latter
type of chip does not need an external programming voltage. An unfortunate consequence is
that the French and German telephone cards are mutually incompatible. It appears that even
after the introduction of the euro, French and German telephone cards will remain unusable in
each other’s country of origin for at least a while.

Further developments followed the successful trials of telephone cards, first in France and
then in Germany, with breathtaking speed. By 1986, several million ‘smart’ telephone cards
were in circulation in France alone. The total rose to nearly 60 million in 1990, and to several
hundred million worldwide in 1997. Germany experienced similar progress, with a time lag
of about three years. These systems were marketed throughout the world after the successful
introduction of the smart card public telephone in France and Germany. Telephone cards
incorporating chips are currently used in more than 50 countries.

The integrated circuits used in telephone cards are relatively small, simple and inexpensive
memory chips with specific security logic that allows the card balance to be reduced while
protecting it against manipulation. Microprocessor chips, which are significantly larger and
more complex, were first used in large numbers in telecommunications applications, specifi-
cally for mobile telecommunications. In 1988, the German Post Office acted as a pioneer in this
area by introducing a modern microprocessor card using EEPROM technology as an authoriza-
tion card for the analog mobile telephone network (C-Netz). The reason for introducing such
cards was an increasing incidence of fraud with the magnetic-stripe cards used up to that time.
For technical reasons, the analog mobile telephone network was limited to a relatively small
number of subscribers (around one million), so it was not a true mass market for microproces-
sor cards. However, the positive experience gained from using smart cards in the analog mobile
telephone system was decisive for the introduction of smart cards into the digital GSM network.
This network was put into service in 1991 in various European countries and has presently
expanded over the entire world, with over 600 million subscribers in more than 170 countries.

Progress was significantly slower in the field of bank cards, in part due to their greater com-
plexity compared with telephone cards. These differences are described in detail in the follow-
ing chapters. Here we would just like to remark that the development of modern cryptography
has been just as crucial for the proliferation of bank cards as developments in semiconductor
technology.

With the general expansion of electronic data processing in the 1960s, the discipline of
cryptography experienced a sort of quantum leap. Modern hardware and software made it
possible to implement complex, sophisticated mathematical algorithms that allowed previously
unparalleled levels of security to be achieved. Moreover, this new technology was available
to everyone, in contrast to the previous situation in which cryptography was a covert science
in the private reserve of the military and secret services. With these modern cryptographic
procedures, the strength of the security mechanisms in electronic data-processing systems
could be mathematically calculated. It was no longer necessary to rely on a highly subjective
assessment of conventional techniques, whose security essentially rests on the secrecy of the
procedures used.

The smart card proved to be an ideal medium. It made a high level of security (based
on cryptography) available to everyone, since it could safely store secret keys and execute
cryptographic algorithms. In addition, smart cards are so small and easy to handle that they
can be carried and used everywhere by everybody in everyday life. It was a natural idea to
attempt to use these new security features for bank cards, in order to come to grips with the
security risks arising from the increasing use of magnetic-stripe cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 39 of 1123

1.2 Application Areas 5

The French banks were the first to introduce this fascinating technology in 1984, following
a trial with 60,000 cards in 1982–83. It took another 10 years before all French bank cards
incorporated chips. In Germany, the first field trials took place in 1984–85, using a multi-
functional payment card incorporating a chip. However, the Zentrale Kreditausschuss (ZKA),
which is the coordinating committee of the leading German banks, did not manage to issue a
specification for multifunctional Eurocheque cards incorporating chips until 1996. In 1997, all
German savings associations and many banks issued the new smart cards. In the previous year,
multifunctional smart cards with POS functions, an electronic purse and optional value-added
services were issued in all of Austria. This made Austria the first country in the world to have
a nationwide electronic purse system.

An important milestone for the future worldwide use of smart cards for making payments
was the completion of the EMV specification, which was a product of the joint efforts of
Europay, MasterCard and Visa. The first version of this specification was published in 1994.
It contained detailed descriptions of credit cards incorporating microprocessor chips, and it
guaranteed the mutual compatibility of the future smart cards of the three largest credit card
organizations.

Electronic purse systems have proven to be another major factor in promoting the interna-
tional use of smart cards for financial transactions. The first such system, called Danmønt, was
put into operation in Denmark in 1992. There are currently more than 20 national systems in
use in Europe alone, many of which are based on the European EN 1546 standard. The use of
such systems is also increasing outside of Europe. In the USA, where smart-card systems have
had a hard time becoming established, Visa experimented with a smart-card purse during the
1996 Olympic Summer Games in Atlanta. Payments via the Internet offer a new and promising
application area for electronic purses. However, the problems associated with making small
payments securely but anonymously throughout the world via the public Internet have not
yet been solved in a satisfactory manner. Smart cards could play a decisive role in providing
an answer to these problems. Besides this, smart cards could plan an important role in in-
troducing electronic signatures. Several European countries have initiated the introduction of
electronic signature systems after a legal basis for the use of electronic signatures was provided
by approval of a European directive regarding electronic signatures in 1999.

As the result of another application, almost every German citizen now possesses a smart
card. When health insurance cards incorporating chips were introduced, more than 70 million
smart cards were issued to all persons enrolled in the national health insurance plan. Presently,
smart cards are being used in the health-care sector in many countries.

The smart card’s high degree of functional flexibility, which even allows programs for new
applications to be added to a card already in use, has opened up completely new application
areas extending beyond the boundaries of traditional card uses.

Smart cards are also being used as ‘electronic tickets’ for local public transport in many
cities throughout the world. Contactless smart cards are usually used for such applications,
since they are particularly convenient and user friendly.

1.2 APPLICATION AREAS

As can be seen from the historical summary, the potential applications for smart cards are
extremely diverse. With the steadily increasing storage and processing capacities of available
integrated circuits, the range of potential applications is constantly being expanded. Since it is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 40 of 1123

6 Introduction

impossible to describe all of these applications in detail within the confines of this book, a few
typical examples must serve to illustrate the basic properties of smart cards. This introductory
chapter is only meant to provide an initial overview of the functional versatility of these cards.
Several typical applications are described in detail in Chapters 12, 13 and 14.

To make this overview easier to follow, it is helpful to divide smart cards into two categories:
memory cards and microprocessor cards.

1.2.1 Memory cards

The first smart cards used in large quantities were memory cards for telephone applications.
These cards are prepaid, with the value stored electronically in the chip being decreased by the
amount of the call charge each time the card is used. Naturally, it is necessary to prevent
the user from subsequently increasing the stored value, which could easily be done with a
magnetic-stripe card. With such a card, all the user would have to do is record the data stored
at the time of purchase and rewrite them to the magnetic stripe after using the card. The card
would then have its original value and could be reused. This type of manipulation, known
as ‘buffering’, is prevented in smart phone cards by security logic in the chip that makes it
impossible to erase a memory cell once it has been written. The reduction of the card balance
by the number of charge units used is thus irreversible.

This type of smart card can naturally be used not only for telephone calls, but also whenever
goods or services are to be sold against prior payment without the use of cash. Examples
of possible uses include local public transport, vending machines of all types, cafeterias,
swimming pools, car parks and so on. The advantage of this type of card lies in its simple
technology (the surface area of the chip is typically only a few square millimeters), and hence
its low cost. The disadvantage is that the card cannot be reused once it is empty, but must be
discarded as waste – unless it ends up in a card collection.

Another typical application of memory cards is the German health insurance card, which
has been issued since 1994 to all persons enrolled in the national health insurance plan. The
information previously written on the patient’s card is now stored in the chip and printed or
laser-engraved on the card. Using a chip for data storage makes the cards machine-readable
using simple equipment.

In summary, memory-type smart cards have limited functionality. Their integrated security
logic makes it possible to protect stored data against manipulation. They are suitable for use
as prepaid cards or identification cards in systems where low cost is a primary consideration.

1.2.2 Microprocessor cards

As already noted, microprocessor cards were first used in the form of bank cards in France.
Their ability to securely store private keys and execute modern cryptographic algorithms made
it possible to implement highly secure offline payment systems.

Since the microprocessor built into the card is freely programmable, the functionality of
microprocessor cards is restricted only by the available storage space and the capacity of
the processor. The only limits to the designer’s imagination when implementing smart card
systems are thus technological, and they are extended enormously with each new generation
of integrated circuits.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 41 of 1123

1.2 Application Areas 7

Following a drastic reduction in the cost of smart cards in the early 1990s due to mass
production, new applications have been introduced year after year. The use of smart cards
with mobile telephones has been especially important for their international proliferation.
After being successfully tested in the German national C-Netz (analog mobile telephone net-
work) for use in mobile telephones, smart cards were prescribed as the access medium for
the European digital mobile telephone system (GSM). In part, this was because smart cards
allowed a high degree of security to be achieved for accessing the mobile telephone network.
At the same time, they provided new possibilities and thus major advantages in marketing
mobile telephones, since they made it possible for network operators and service providers
to sell telephones and services separately. Without the smart card, mobile telephones would
certainly not have spread so quickly across Europe or developed into a worldwide industry
standard.

memory
capacity
(bytes)

100

1 000

10 000

100 000

1 000 000

10 000 000

100 000 000

• public card phones
medical insurance cards•

• mobile telephones (GSM, UMTS)
electronic payment systems

 (electronic purses, credit and debit cards)
•

• secure Internet
e-commerce•

• data encryption
digital signatures•

• patient data
 storage

• health cards
personal identity cards
flextime logging

•
•

Figure 1.1 Typical smart card application areas, showing the required storage capacity and arithmetic
processing capacity

Possible applications for microprocessor cards include identification, access control sys-
tems for restricted areas and computers, secure data storage, electronic signatures and elec-
tronic purses, as well as multifunctional cards incorporating several applications in a single

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 42 of 1123

8 Introduction

card. Modern smart-card operating systems also allow new applications to be loaded into
a card after it has already been issued to the user, without compromising the security of
the various applications. This new flexibility opens up completely new application areas.
For example, personal security modules are indispensable if Internet commerce and pay-
ments are to be made trustworthy. Such security modules could securely store personal keys
and execute high-performance cryptographic algorithms. These tasks can be performed in
an elegant manner by a microprocessor with a cryptographic coprocessor. Specifications
for secure Internet applications using smart cards are currently being developed through-
out the world. Within a few years, we can expect to see every PC equipped with a smart-card
interface.

In summary, the essential advantages of microprocessor cards are large storage capacity, the
ability to securely store confidential data and the ability to execute cryptographic algorithms.
These advantages make a wide range of new applications possible, in addition to the tradi-
tional bank card application. The potential of smart cards is by no means yet exhausted, and
furthermore, it is constantly being expanded by progress in semiconductor technology.

1.2.3 Contactless cards

Contactless cards, in which energy and data are transferred without any electrical contact
between the card and the terminal, have achieved the status of commercial products in the last
few years. Presently, both memory cards and microprocessor cards are available as contactless
cards. Although contactless microprocessor cards can usually work at a distance of only a few
centimeters from the terminal, contactless memory cards can be used up to a meter away from
the terminal. This means that such cards do not necessarily have to be held in the user’s hand
during use, but can remain in the user’s purse or wallet.

Contactless cards are thus particularly suitable for applications in which persons or objects
should be quickly identified. Sample applications are:

� access control,

� local public transportation,

� ski passes,

� airline tickets,

� baggage identification.

However, there are also applications where operation over a long distance could cause problems
and should thus be prevented. A typical example is an electronic purse. A declaration of intent
on the part of the cardholder is normally required to complete a financial transaction. This
confirms the amount of the payment and the cardholder’s agreement to pay. With a contactless
card, this declaration takes the form of inserting the card in the terminal and confirming the
indicated amount using the keypad. If contactless payments over relatively long distances were
possible, a ‘con artist’ could remove money from the electronic purse without the knowledge of
the cardholder. Dual-interface cards (sometimes called ‘combicards’) offer a possible solution
to this problem. These cards combine contact and contactless interfaces in a single card. Such

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 43 of 1123

1.3 Standardization 9

a card can communicate with the terminal via either its contact interface or its contactless
interface, according to what is desired.

There is great interest in contactless cards in the field of local public transportation. If
the smart cards presently used in payment systems, which are generally contact-type cards,
can have their functionality extended to include acting as electronic tickets with contactless
interfaces, transportation operators could use the existing infrastructure and cards of the credit
card industry.

1.3 STANDARDIZATION

The prerequisite for the worldwide penetration of smart cards into everyday life, such as their
current use in Germany in the form of telephone cards, health insurance cards and bank cards,
has been the creation of national and international standards. Due to the special significance
of such standards, in this book we repeatedly refer to currently applicable standards and those
that are in preparation. Why are standards so important for expanding the use of smart cards?

A smart card is normally one component of a complex system. This means that the interfaces
between the card and the rest of the system must be precisely specified and matched to teach
other. Of course, this could be done for each system on a case-by-case basis, without regard to
other systems. However, this would mean that a different type of smart card would be needed
for each system. Users would thus have to carry a separate card for each application. In order
to avoid this, an attempt has been made to generate application-independent standards that
allow multifunctional cards to be developed.

Since the smart card is usually the only component of the system that the user holds in his
or her hand, it is enormously important with regard to the recognition and acceptance of the
entire system. Nonetheless, from a technical and organizational perspective, the smart card
is usually only the tip of the iceberg, since complex systems (which are usually networked)
are quite often hidden behind the card terminal, and it is these systems that make the services
possible in the first place.

Let us take telephone cards as an example. In technical terms, they are fairly simple objects.
By themselves, they are almost worthless, except perhaps as collector’s items. Their true
function, which is to allow public telephones to be used without coins, can be realized only
after umpteen thousand card phones have been installed throughout a region and connected to a
network. The large investments required for this can only be justified if the long-term viability
of the system is ensured by appropriate standards and specifications. Standards are also an
indispensable prerequisite for multifunctional smart cards used for several applications, such
as telephony, electronic purses, electronic tickets and so on.

What are standards

This question is not as trivial as it may appear at first glance, since the terms ‘standard’ and
‘specification’ are often used fairly indiscriminately. To make things clear, let us consider the
ISO/IEC definition:

Standard: a document that is produced by consensus and adopted by a recognized organization,
and which, for general and recurring applications, defines rules, guidelines or features for

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 44 of 1123

10 Introduction

activities or their results, with the objective of achieving an optimum degree of regulation in a
given context.

Note: standards should be based on the established results of science, technology and experi-
ence, and their objective should be the promotion of optimized benefits for society.

International standards should thus help make life easier and increase the reliability and use-
fulness of products and services. In order to avoid confusion, ISO/IEC have also defined the
term ‘consensus’ as follows:

Consensus: general agreement, characterized by the absence of continuing objections to es-
sential elements on the part of any significant portion of the interested parties, and achieved by
a procedure that attempts to consider the views of all relevant parties and address all counter-
arguments.

Note: consensus does not necessarily mean unanimity.

Although unanimity is not required for consensus, the democratic process naturally takes
time. This is in particular due to the fact that it is necessary to consider not only the views of the
technical specialists, but also the views of all relevant parties, since the objective of a standard
is the promotion of optimum benefits for the whole of society. Hence, the preparation of an ISO
or CEN standard usually takes several years. A frequent consequence of the slowness of this
process is that a small group of interested parties, such as commercial firms, generates its own
specification (‘industry standard’) in order to hasten the development of new systems. This is
particularly true in the field of information technology, which is characterized by especially
fast development and correspondingly short innovation cycles. Although industry standards
and specifications have the advantage that they can be developed significantly faster than
‘true’ standards, they carry the risk of ignoring the interests of the parties that are not involved
in their development. For this reason, ISO attempts to create possibilities for retroactively
incorporating significant publicly accessible specifications into international standards.

What does ISO/IEC mean?

The ISO/IEC standards are especially significant for smart cards, since they define the basic
properties of smart cards. What lies behind the abbreviations ‘ISO’ and ‘IEC’? ‘ISO’ stands
for the International Organization for Standardization, while ‘IEC’ stands for the International
Electrotechnical Commission.

The International Organization for Standardization (ISO) is a worldwide association of
around 100 national standards agencies, with one per country. ISO was founded in 1948 and
is a non-national organization. Its task is to promote the development of standards throughout
the world, with the objective of simplifying the international exchange of goods and services
and developing cooperation in the fields of science, technology and economy. The results of
the activities of ISO are agreements that are published as ISO standards.

Incidentally, ‘ISO’ is not an abbreviation (the abbreviation of the official name would
of course be ‘IOS’). The name ‘ISO’ is derived from the Greek word isos, which means
‘equal’ or ‘the same’. The prefix iso-, derived from the Greek isos, is commonly used in

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 45 of 1123

1.3 Standardization 11

the three official languages of ISO (English, French and Russian), as well as in many other
languages.

As already noted, the members of ISO are the national standards bodies of the individual
countries, and only one such body per country is allowed to be a member. The member
organizations have four basic tasks, as follows:

� to inform potentially interested parties in their own countries about relevant activities and
possibilities of international standardization,

� to form national opinions on a democratic basis and represent these opinions in international
negotiations,

� to set up a secretariat for ISO committees in which the country has a particular interest,

� to pay the country’s financial contribution in support of the central ISO organization.

The IEC is a standardization organization whose scope of activity covers the areas of
electrical technology and electronics. The first card standards were published by the IEC.
After the introduction of smart cards, a difference of focus arose between the ISO and the IEC.
In order to avoid duplication of effort, standards are developed in joint technical committees
and published as ISO/IEC standards.

How is an ISO standard generated?

The need for a standard is usually reported to a national standards organization by an industrial
sector. The national organization then proposes this to ISO as a new working theme. If the
proposal is accepted by the responsible working group, which consists of technical experts
from countries that are interested in the theme, the first thing that is done is to define the
objective of the future standard.

After agreement has been reached with regard to the technical aspects to be considered in
the standard, the detailed specifications of the standard are discussed and negotiated among the
various countries. This is the second phase in the development of the standard. The objective
of this phase is to arrive at a consensus of all participating countries, if possible. The outcome
of this phase is a ‘Draft International Standard’ (DIS).

The final phase consists of a formal vote on the proposed standard. Acceptance of a standard
requires the approval of two-thirds of the ISO members that actively participated in drafting
the standard, as well as three-quarters of all members participating in the vote. Once the text
has been accepted, it is published as an ISO standard.

To prevent standards from becoming outdated as the result of ongoing development, ISO
rules state that standards should be reviewed, and if necessary revised, after an interval of at
most five years.

Cooperation with the IEC and the CEN

ISO is not the only international standards organization. In order to avoid duplication of effort,
ISO cooperates closely with the IEC (International Electrotechnical Commission). The areas

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 46 of 1123

12 Introduction

of responsibility are defined as follows: the IEC covers the fields of electrical technology and
electronics, while ISO covers all other fields. Combined working groups are formed to deal
with themes of common interest, and these groups produce combined ISO/IEC standards. Most
standards for smart cards belong to this category.

ISO and the European standardization committee CEN (Comité Européen de Normalisation)
also agree on rules for the development of standards that are recognized as both European and
international standards. This leads to time and cost savings.

International standardization of smart cards

International standards for smart cards are developed under the auspices of ISO/IEC, and on
the European level by the CEN. The major industrial countries are represented in all relevant
committees, and they generally also maintain ‘mirror’ committees in the form of national
working groups and voting committees. In Germany, this responsibility is borne by the DIN.
Figure 1.2 shows an overview of the structure of the relevant ISO and IEC working groups and
the standards for which they are responsible.

ISO

TC 68
Banks

SC 6
Transaction cards

JTC1
Information Technology

SC17
IC Cards & related devices

WG5
messages &
data contents

WG1
physical properties

& test methods
ISO/IEC 7810
ISO/IEC 7811
ISO/IEC 7813

ISO/IEC 10 373

WG7
security

architecture
ISO 10 202
ISO 11 568

WG4
ICC with contacts

ISO/IEC 7816

WG5
registration

ISO/IEC 7812

WG8
contactless ICC
ISO/IEC 10 536
ISO/IEC 14 443
ISO/IEC 15 693

WG9
optical cards and

equipment
ISO/IEC 11 694

IEC

Figure 1.2 Overview and organization of the working groups for international smart card standards

As can be seen, there are two technical committees that are concerned with the standardiza-
tion of smart cards. The first is ISO TC68/SC6, which is responsible for the standardization of
cards used in the financial transaction area, while the second is ISO/IEC JTC1/SC17, which is
responsible for general applications. This division has historical roots, since the first interna-
tional applications were for identification cards used for financial transactions. The number of
applications has naturally increased enormously since then, so the general standards, which are

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 47 of 1123

1.3 Standardization 13

looked after by the SC17 committee, have taken on greater significance. The standards specifi-
cally related to financial transactions can thus be regarded as a subset of the general standards.
Brief descriptions of the standards listed in Figure 1.2, including their current status, can be
found in Chapter 16, ‘Appendix’.

Within CEN, the general subject of smart cards is dealt with by the TC224 committee
(‘Machine-readable Cards, Related Device Interfaces and Procedures’). The activities of CEN
complement those of ISO. ISO standards are adopted as CEN standards where possible, which
means they must be translated into the three official CEN languages (English, French and
German). They may also be enlarged or reduced as necessary to comply with specific European
conditions. The CEN working groups also produce application-specific standards, which would
not be possible as such within ISO.

An additional European standardization body, the European Telecommunications Standards
Institute (ETSI), has made a significant contribution to the widespread international use of
smart cards. ETSI is the standardization body of the European telecommunications companies
and telecommunication industry. The GSM 11.11 family of standards specifies the interface
between the smart card (referred to as the ‘subscriber identity module’ (SIM) in the GSM
system) and the mobile telephone. This family of standards is based on the ISO/IEC standards.
With the international proliferation of GSM systems beyond the boundaries of Europe, the
ETSI standards have become highly important for the smart card industry.

After more than 20 years of standardization effort, the most important basic ISO standards for
smart cards are now complete. They form the basis for further, application-specific standards,
which are currently being prepared by ISO and CEN. These standards are based on prior
ISO standards in the 7810, 7811, 7812 and 7813 families, which define the properties of
identification cards in the ID-1 format. These standards include embossed cards and cards
with magnetic stripes, which we all know in the form of credit cards.

Compatibility with these existing standards was a criterion from the very beginning in the
development of standards for smart cards (which are called ‘integrated circuit(s) cards’, or
‘ICC’, in the ISO standards), in order to provide a smooth transition from embossed cards
and magnetic-stripe cards to smart cards. Such a transition is possible because all functional
components, such as embossing, magnetic stripes, contacts and interface components for con-
tactless interfaces, can be integrated into a single card. Of course, a consequence of this is that
the integrated circuits, which are sensitive electronic components, are exposed to high stresses
during the embossing process and recurrent impact stresses when the embossed characters are
printed onto paper. This makes heavy demands on the packaging of the integrated circuits and
the manner in which they are embedded in the card.

A summary of the currently available standards, with brief descriptions of their contents,
can be found in the Appendix.1

In the last few years, an increasing number of specifications have been prepared and pub-
lished by industrial organizations and other non-public groups, with no attempt being made
to incorporate them into the standardization activities of ISO. The argument most commonly
offered for this manner of working is that the way ISO operates is too slow to keep pace
with the short innovation cycles of the informatics and telecommunication industries. Since

1 See Section 16.4, ‘Annotated Directory of Standards and Specifications’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 48 of 1123

14 Introduction

frequently only a few companies are involved in drafting these ‘industry standards’, there is
a large risk that the interests of smaller companies, and especially the interests of the gen-
eral public, will be ignored in the process. It is a major challenge to the future of ISO to
devise a working method that can safeguard general interests without hampering the pace of
innovation.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 49 of 1123

2
Types of Cards

As already mentioned in the Introduction, smart cards are the youngest member of the family of
identification cards using the ID-1 format defined in ISO standard 7810, ‘Identification Cards –
Physical Characteristics’. This standard specifies the physical properties of identification cards,
such as flexibility and temperature resistance, as well as the dimensions of three different card
formats: ID-1, ID-2 and ID-3. The smart card standards (ISO 7816-1 ff) are based on ID-1
cards, millions of which are used nowadays for financial transactions.

This chapter provides an overview of various types of cards in the ID-1 format, since a
combination of various functions is of particular interest for many applications, especially
when the cards currently used in an existing system (such as magnetic-stripe cards) are to
be replaced by smart cards. In such cases, it is usually not possible to replace the existing
infrastructure (such as magnetic-stripe card terminals) by a new technology overnight.

The solution to this problem generally consists of issuing cards with both magnetic stripes
and chips, for use during a transition period. Such cards can be used with both types of terminals
(old and new). Naturally, new functions that are only possible with a chip cannot be used with
a terminal that only supports magnetic-stripe cards.

2.1 EMBOSSED CARDS

Embossing is the oldest technique for adding machine-readable features to identification cards.
The embossed characters on the card can be transferred to paper using simple, inexpensive de-
vices, and they can also be easily read visually (by humans). The nature and location of the em-
bossing are specified in the ISO 7811 standard (‘Identification Cards – Recording Technique’).
This standard, which is divided into five parts, deals with magnetic stripes as well as embossing.

ISO 7811 Part 1 specifies the requirements for embossed characters, including their form,
size and embossing height. Part 3 defines the precise positioning of the characters on the
card and defines two separate regions, as shown in Figure 2.1. Region 1 is reserved for the
card’s identification number, which identifies the card issuer as well as cardholder. Region 2
is reserved for additional data relating to the cardholder, such as his or her name and address.

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 50 of 1123

16 Types of Cards

At first glance, transferring information by printing from embossed characters may appear
quite primitive. However, the simplicity of this technique has made worldwide proliferation of
credit cards possible, even in developing countries. The exploitation of this technology requires
neither electrical energy nor a connection to a telephone network.

region 1

region 2 D
A

E
F

B

Figure 2.1 Embossing locations according to ISO 7811-3. Region 1 is reserved for the ID number
(19 characters), and region 2 is reserved for the cardholder’s name and address (4 × 27 characters).
A = 21.42 ± 0.12 mm, B = 10.18 ± 0.25 mm, D = 14.53 mm, E = 2.41−3.30 mm, F = 7.65 ± 0.25 mm

2.2 MAGNETIC-STRIPE CARDS

The fundamental disadvantage of embossed cards is that their use creates a flood of paper
receipts, which are expensive to process. One remedy for this problem is to digitally encode
the card data on a magnetic stripe located on the back of the card. The magnetic stripe is read
by pulling it across a read head, either manually or automatically, with the data being read and
stored electronically. No paper is required to process the data.

Parts 2, 4 and 5 of ISO standard 7811 specify the properties of the magnetic stripe, the coding
technique and the locations of the magnetic tracks. The magnetic stripe may contain up to three
tracks. Tracks 1 and 2 are specified to be read-only tracks, while track 3 may also be written to.

Although the storage capacity of the magnetic stripe is only about 1000 bits, which is not
very much, it is nevertheless more than sufficient for storing the information contained in
the embossing. Additional data can be read and written on track 3, such as the most recent
transaction data in the case of a credit card.

The main drawback of magnetic-stripe technology is that the stored data can be altered
very easily. Manipulating embossed characters requires at least a certain amount of manual
dexterity, and such manipulations be easily detected by a trained eye. By contrast, the data
recorded on the magnetic stripe can be altered relatively easily using a standard read/write
device, and it is difficult to afterwards prove that the data have been altered. Furthermore,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 51 of 1123

2.2 Magnetic-stripe Cards 17

magnetic-stripe cards are often used in automated equipment in which visual inspection is not
possible, such as cash dispensers. A potential criminal, having obtained valid card data, can
easily use duplicated cards in such unattended machines without having to forge the visual
security features of the cards.

5.54 mm

2.92 mm

82.55 mm

15.82 mmtrack 1
track 2

track 3

Figure 2.2 Location of the magnetic stripe on an ID-1 card. The data region of the magnetic stripe is
intentionally not extended to the edges of the card, since the use of hand-operated card readers causes
rapid wear at the ends of the stripe

upper edge
of card

region for
magnetic material

5.66
8.46

12.52

track 3

track 2

track 1 11.768,
978.97

Figure 2.3 Locations of the individual tracks on an ID-1 card (all dimensions in mm)

Manufacturers of magnetic-stripe cards have developed various means to protect the
data recorded on the magnetic stripe against forgery and duplication. For example, German
Eurocheque cards contain an invisible, unalterable code in the body of the card, which effec-
tively makes it impossible to alter or duplicate the data on the magnetic stripe. However, such
techniques require a special sensor in the card terminal, which considerably increases the cost
of the terminal. For this reason, none of these techniques has so far succeeded in becoming
internationally established.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 52 of 1123

18 Types of Cards

Table 2.1 Standard features of the three tracks on a magnetic-stripe card, as specified in ISO 7811

Feature Track 1 Track 2 Track 3

Amount of data 79 characters max 40 characters max 107 characters max
Data coding 6-bit alphanumeric 4-bit BCD 4-bit BCD
Data density 210 bpi (8.3 bit/mm) 75 bpi (3 bit/mm) 210 bpi (8.3 bit/mm)
Writing not allowed not allowed allowed

2.3 SMART CARDS

The smart card is the youngest and cleverest member of the family of identification cards in the
ID-1 format. Its characteristic feature is an integrated circuit embedded in the card, which has
components for transmitting, storing and processing data. The data can be transmitted using
either contacts on the surface of the card or electromagnetic fields, without any contacts.

Smart cards offer several advantages compared with magnetic-stripe cards. For instance, the
maximum storage capacity of a smart card is many times greater than that of a magnetic-stripe
card. Chips with more than 256 kB of memory are currently available, and this figure will
multiply with each new chip generation. Only optical memory cards, which are described in
the next section, have greater capacities.

However, one of the most important advantages of smart cards is that their stored data can be
protected against unauthorized access and manipulation. Since the data can only be accessed
via a serial interface that is controlled by an operating system and security logic, confidential
data can be written to the card and stored in a manner that prevents them from ever being read
from outside the card. Such confidential data can be processed only internally by the chip’s

Smart cards (cards with chips)

chip type data transmission method

with contacts

contactless

with security logic

with coprocessor

without coprocessor

without security logic

memory chip

micocontroller chip

dual interface

Figure 2.4 Classification chart for cards containing chips according to the type of chip used and the
method used for data transmission

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 53 of 1123

2.3 Smart Cards 19

processing unit. In principle, both hardware and software mechanisms can be used to restrict
the use of the storage functions of writing, erasing and reading data and tie them to specific
conditions. This makes it possible to construct a variety of security mechanisms, which can
also be tailored to the specific requirements of a particular application. In combination with the
ability to compute cryptographic algorithms, this allows smart cards to be used to implement
convenient security modules that can be carried by users at all times, for example in a purse or
wallet. Some additional advantages of smart cards are their high level of reliability and long life
compared with magnetic-stripe cards, whose useful life is generally limited to one or two years.

The fundamental characteristics and functions of smart cards are specified in the ISO 7816
family of standards, which are described in detail in the following chapters.

Smart cards can be divided into two groups, which differ in both functionality and price:
memory cards and microprocessor cards.

2.3.1 Memory cards

Figures 2.5 and 2.6 show architectural block diagrams of memory cards.

access logic application data

I/O
clock

control
Vcc

GND

address
and

security
logic

EEPROM

ROM

identification data

Figure 2.5 Typical architecture of a contact-type memory card with security logic. The figure shows
only basic energy and data flows and is not a detailed schematic diagram

The data needed by the application are stored in the memory, which is usually EEPROM.
Access to the memory is controlled by the security logic, which in the simplest case consists only
of write protection or erase protection for the memory or certain memory regions. However,
there are also memory chips with more complex security logic that can also perform simple
encryption. Data are transferred to and from the card via the I/O port. Part 3 of the ISO 7816
standard defines a special synchronous transfer protocol that allows the chip implementation
to be particularly simple and inexpensive. However, some smart cards use the I2C bus, which
is commonly used for serial-access memories.

The functionality of memory cards is usually optimized for a particular application. Al-
though this severely restricts the flexibility of the cards, it makes them quite inexpensive.
Memory cards are typically used for prepaid telephone cards and health insurance cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 54 of 1123

20 Types of Cards

access logicclock generator application data

identification data

memory chip

I/O
clock

control

Vcc
GND

address &
security

logic
EEPROM

ROM

modulator + demodulator
+ anti-collision mechanism

voltage regulator
+ reset generator

RF interface

aerial

Figure 2.6 Typical architecture of a memory card with security logic and a contactless interface. The
figure shows only basic energy and data flows and is not a detailed schematic diagram

2.3.2 Microprocessor cards

The heart of the chip in a microprocessor card, as the name suggests, is a processor, which is
usually surrounded by four additional functional blocks: mask ROM, EEPROM, RAM and an
I/O port. Figure 2.7 shows the architecture of a typical device of this type.

working memory
coprocessor
+ processor

data memory and
operating system

routines
operating system

I/O
CLK
RST
Vcc
GND

RAM

CPU

NPU

EEPROM

ROM

Figure 2.7 Typical architecture of a contact-type microprocessor card with a coprocessor. The figure
shows only basic energy and data flows and is not a detailed schematic diagram

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 55 of 1123

2.3 Smart Cards 21

The mask ROM contains the chip’s operating system, which is ‘burned in’ when the chip is
manufactured. The content of the ROM is thus identical for all the chips of a production run,
and it cannot be changed during the chip’s lifetime. The EEPROM is the chip’s non-volatile
memory. Data and program code can be written to and read from the EEPROM under the
control of the operating system. The RAM is the processor’s working memory. This memory
is volatile, so all the data stored in it are lost when the chip’s power is switched off. The
serial I/O interface usually consists only of a single register, via which data are transferred bit
by bit.

Microprocessor cards are very flexible in use. In the simplest case, they contain a program
optimized for a single application, so they can only be used for this particular application.
However, modern smart card operating systems allow several different applications to be
integrated into a single card. In this case, the ROM contains only the basic components of
the operating system, with the application-specific part of the operating system being loaded
into the EEPROM only after the card has been manufactured. Recent developments even
allow application programs to be loaded into a card after it has already been personalized
and issued to the cardholder. Special hardware and software measures are used to prevent
the security conditions of the individual applications from being violated by this capability.
Special microprocessor chips with high processing capacities and large memory capacities,
which are optimized for such use, are now available.

2.3.3 Contactless smart cards

Electrical connections with contact-type smart cards are made via the eight contacts specified
in the ISO 7816 Part 1 standard. The reliability of contact-type smart cards has been steadily
improved over the past years as the result of experience accumulated in manufacturing such
cards. The failure rate of telephone cards within their one-year service life, for instance,
is currently significantly less than one in a thousand. Nevertheless, contacts are one of the
most frequent sources of failure in electromechanical systems. Disturbances can be caused by
factors such as contamination and contact wear. In mobile equipment, vibrations can cause
brief intermittent contacts. Since the contacts on the surface of the card are directly connected
to the inputs of the integrated circuit chip embedded in card, there is a risk that the chip may
be damaged or destroyed by electrostatic discharge. Static charges of several thousand volts
are by no means rare.

These technical problems are elegantly avoided by contactless smart cards. In addition to its
technical advantages, contactless-card technology offers card issuers and cardholders a range
of new and attractive potential applications. For instance, contactless cards do not necessarily
have to be inserted into a card reader, since there are systems available that work at a range of
up to one meter. This is a great advantage in access-control systems where a door or turnstile
has to be opened, since the access authorization of a person can be checked without requiring
the card to be removed from a purse or pocket and inserted into a reader. One major application
area for this technology is local public transport, which requires a large number of people to
be identified in the shortest possible time.

However, contactless technology is also advantageous in systems that do require deliberate
insertion of the card into a reader, since it does not matter how the card is inserted in the reader.
This contrasts with magnetic cards or cards with contacts, which work only with a specific card

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 56 of 1123

22 Types of Cards

working memory
coprocessor
+ processorclock generator

data memory +
operating system

routines
operating system

microcontroller

I/O
CLK
RST
Vcc
GND

RAM

CPU

NPU

EEPROM

ROM

modulator + demodulator
+ anti-collision mechanism

voltage regulator
+ reset generator

RF interface

aerial

Figure 2.8 Typical architecture of a microprocessor card with a coprocessor and a contactless interface.
The figure shows only basic energy and data flows and is not a detailed schematic diagram

orientation. Freedom from orientation restrictions simplifies use and thus increases customer
acceptance.

A further interesting variation on using contactless cards involves a ‘surface terminal’. In
this case, the card is not inserted into a slot, but simply placed on a marked location on the
surface of the card reader. In addition to simplicity of use, this solution is attractive because
it significantly reduces the risk of vandalism (for example, forcing chewing gum or superglue
into the card slot).

For card marketing, contactless technology offers the advantage that no technical compo-
nents are visible on the card surface, so visual design is not constrained by magnetic stripes
or contacts. However, this advantage comes at the price of more complex terminals with
correspondingly higher prices. Another disadvantage is that several different systems for con-
tactless smart cards have been standardized and marketed, further increasing the complexity
of terminals that must be compatible with all standardized cards.

Manufacturing technology for the mass production of contactless cards has matured to the
point that high-quality products are available at prices that do not significantly differ from
those of comparable contact-type cards. Up to now, contactless cards have predominantly
been used in local public transportation systems, in which they serve as electronic tickets in
modern electronic-fare systems. Most of the systems presently in use employ single-function
cards containing inexpensive chips with hard-wired security logic. However, there is a growing
demand for incorporating value-added services in electronic tickets. Multifunction cards with
integrated microprocessors are thus being used increasingly often, with the payment function
most commonly being implemented using the conventional contact-based technique in order
to utilize existing infrastructures, such as electronic purse systems. These new multifunction

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 57 of 1123

2.4 Optical Memory Cards 23

working memory
coprocessor
+ processor

data memory +
operating system

routines
operating system

microcontroller

I/O
CLK
RST
Vcc
GND

RAM

CPU

NPU

EEPROM

ROM

voltage regulator
+ reset generator

RF interface

aerial

clock generator

modulator + demodulator
+ anti-collision mechanism

contacts

Figure 2.9 Typical architecture of a microprocessor card with a coprocessor and both contactless and
contact interfaces. The figure shows only basic energy and data flows and is not a detailed schematic
diagram

cards have both contact and contactless coupling elements and are called ‘dual-interface cards’
or ‘combicards’.

The technology and operating principles of contactless smart cards are described in detail
in Section 3.6, ‘Contactless Smart Cards’.

2.4 OPTICAL MEMORY CARDS

For applications where the storage capacity of smart cards is insufficient, optical cards that can
store several megabytes of data are available. However, with current technology these cards
can be written only once and cannot be erased.

The ISO/IEC 11 693 and 11 694 standards define the physical characteristics of optical
memory cards and the linear data-recording technique used with such cards.

Combining the large storage capacity of optical memory cards with the intelligence of smart
cards leads to interesting new possibilities. For example, data can be written in encrypted form
to the optical memory, with the key being securely stored in the private memory of the chip.
This protects the optically stored data against unauthorized access.

Figure 2.11 shows the typical layout of an optical smart card with contacts, a magnetic
stripe and an optical storage region. It can be seen that the area available for optical storage

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 58 of 1123

24 Types of Cards

microcontroller

I/O
CLK
RST
Vcc
GND

RAM

CPU

NPU

EEPROM

ROM

clock
generator

memory chip

I/O
clock

control

Vcc
GND

address
and

security
logic

EEPROM

ROM

modulator + demodulator
+ anti-collision mechanism

voltage regulator
+ reset generator

RF interface

aerial

EEPROM

contacts

Figure 2.10 Typical architecture of a dual-interface card, which is a combination of a contactless
memory card and a contact-type microprocessor card. The figure shows only basic energy and data flows
and is not a detailed schematic diagram

reference edge

magnetic stripe

optical region

chip
reference edge

refrerence track

CY
D

X X

Figure 2.11 Location of the optical storage area on an ID-1 card according to ISO/IEC 11 694-2.
C = 9.5−49.2 mm, D = 5.8 ± 0.7 mm, X = 3 mm max with PWM or 1 mm max with PPM, Y =
1 mm min with PWM (Y < D) or 4.5 mm max with PPM (PWM = pulse-width modulation, PPM =
pulse-position modulation)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 59 of 1123

2.4 Optical Memory Cards 25

Figure 2.12 A typical optical memory card with a net storage capacity (with error correction) of
approximately 4 MB. The raw capacity (without error correction) is approximately 6 MB

Figure 2.13 An optical memory card with a storage capacity of approximately 32 MB that can be read
by a CD-ROM drive

is limited by the contacts for the chip, which naturally reduces the total storage capacity. The
magnetic stripe is located on the rear of the card.

Up to now, use of optical memory cards has been severely limited by the high cost of
equipment for reading and writing this type of card. One application for optical memory cards
is recording patient data in the medical sector, since their large storage capacity allows even
X-ray images to be stored on a card.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 60 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 61 of 1123

GOOG- 101 1

GOOGLE LLC V. RFCYBER CORP. / Page 61 of 1123

3
Physical and Electrical Properties

The card body of a smart card inherits its fundamental properties from its predecessor, the
familiar embossed card, which still dominates the market in the credit card sector. Technically
speaking, such cards are simple plastic structures that are personalized by being embossed with
a variety of user features, such as the name and number of the cardholder. Later versions of
these cards were provided with a magnetic stripe to enable simple machine processing. When
the idea of implanting a chip in the card first arose, this existing type of card was used as the
basis and a microcontroller was embedded in the body of the card. Many standards relating
to the card’s physical properties are thus not specific to smart cards, but apply equally well to
magnetic-stripe and embossed cards.

3.1 PHYSICAL PROPERTIES

If you hold a smart card in your hand, the first thing you notice is its format. After this, you
might see that it has set of contacts, although a contactless smart card may not have any
visible electrical interface. The next feature to catch your eye might be a magnetic stripe,
embossing or a hologram. All these features and functional components form part of the
physical characteristics of a smart card.

Most of the physical characteristics are actually purely mechanical in nature, such as the
format of the card and its resistance to bending or twisting. These characteristics are familiar
to every user from personal experience. In practice, however, physical properties such as
sensitivity to temperature or light and resistance to moisture are also important.

The interaction between the body of the card and the implanted chip must also be considered,
since only the combination of the two components makes a functional card. For instance, a
card body designed for use at high ambient temperatures is of little benefit if its embedded
microcontroller does not share this property. These two components must individually and
collectively meet all of the relevant requirements, since otherwise high failure rates can be
expected in use.

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 62 of 1123

28 Physical and Electrical Properties

3.1.1 Card formats

Small cards with the typical smart card dimensions of 85.6 mm by 54 mm have been in use
for a very long time. Almost all smart cards are produced in this format, which is certainly the
most familiar. It is designated ID-1, and its size is specified in the ISO 7810 standard. This
standard originated in 1985 and thus has nothing to do with smart cards as we know them
today, as can easily be seen from the abbreviation ‘ID’, which stands for ‘identification’. This
standard simply describes an embossed plastic card with a magnetic stripe that is intended to
be used for the identification of a person. When it was written, no one had thought of putting
a chip into the card. The presence of a chip and location of its contacts on the card were only
defined several years later in other standards.

With the variety of cards available today, which are used for all possible purposes and have a
wide range of dimensions, it is often difficult to determine whether a particular card is actually
an ID-1 smart card. In addition to the embedded chip, one of the best identifying features is
the thickness of the card. If this measures 0.76 mm and the card contains a microcontroller, it
can be considered to be a smart card in the sense of the ISO standard.

The conventional ID-1 format has the advantage of being very easy to handle. The card’s
format is specified such that it is not too large to be carried in a wallet, but not so small that it
is easily lost. In addition, the card’s flexibility makes it more convenient than a rigid object.

Nevertheless, this format does not always meet the demands of modern miniaturization.
Some mobile telephones weigh only 200 g and are not much bigger than a packet of tissues.
It thus became necessary to define a smaller format in addition to the ID-1 format, in order to
address the needs of small terminal devices. The card used in such devices can be very small,
since it is usually inserted into the device only once and remains there for good. The ID-000
format was defined for this purpose, and it bears the descriptive name ‘plug-in’. This format is
presently only used with GSM mobile telephones, which have very little room for a card and
do not require the card to be frequently exchanged.

However, the fact that cards in the ID-000 format are inconvenient to handle, both in
production and by end users, led to the development of an additional format. This format is
designated ID-00, or ‘mini-card’. Its dimensions are approximately halfway between those of
ID-1 and ID-000 cards. This type of card is more convenient to handle and cheaper to produce,
for instance because it is easier to print. However, the ID-00 definition is fairly new, and this
format has not yet become established either nationally or internationally.

The formats are defined in the relevant standards in a way that simplifies measuring the card
dimensions. For instance, the height and width of an ID-1 card must be such that it fits between
two concentric rectangles as shown in Figure 3.1 (ignoring the rounded corners), which have
the following dimensions:

� external rectangle: width: 85.72 mm (3.375 inches)
height: 54.03 mm (2.127 inches)

� internal rectangle: width: 85.46 mm (3.365 inches)
height: 53.92 mm (2.123 inches)

The thickness must be 0.76 mm (0.03 inch), with a tolerance of ±0.08 mm (±0.003 inch). The
corner radii and the card’s thickness are defined conventionally. Based on these definitions, an
ID-1 card’s dimensions can be represented as shown in Figure 3.2.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 63 of 1123

3.1 Physical Properties 29

external rectangle

ID-1 format

internal rectangle

Figure 3.1 Definition of the dimensions of an ID-1 format card

R = 3.18 mm

85.6 mm

54 mm

0.76 mm

Figure 3.2 The ID-1 format. Thickness: 0.76 mm ± 0.08 mm; corner radius: 3.18 mm ± 0.30 mm.
The dimensions shown indicate the size of the card excluding tolerances

The ID-000 format is also defined using two concentric rectangles. Since this format origi-
nated in Europe (based on the GSM mobile telephone system), the basic dimensions are metric.
The bottom right-hand corner of a plug-in card is cut off at an angle of 45˚, as shown in Figure
3.3, in order to facilitate correct insertion of the card into the card reader.

The dimensions of the two rectangles for the ID-000 format are:

� external rectangle: width: 25.10 mm
height: 15.10 mm

� internal rectangle: width: 24.90 mm
height: 14.90 mm

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 64 of 1123

30 Physical and Electrical Properties

3 mm

3 mm

15 mm

0.76 mm

Figure 3.3 The ID-000 format. Thickness: 0.76 mm ± 0.08 mm; corner radius: 1 mm ± 0.10 mm;
corner: 3 mm ± 0.03 mm. The dimensions shown indicate the size of the card excluding tolerances

The ID-00 format is also based on metric measurements. Its maximum and minimum
dimensions are defined by two concentric rectangles with the following dimensions:

� external rectangle: width: 66.10 mm
height: 33.10 mm

� internal rectangle: width: 65.90 mm
height: 32.90 mm

66 mm

R = 3.18 mm

33 mm

0.76 mm

Figure 3.4 The ID-00 format. Thickness: 0.76 mm ± 0.08 mm; corner radius: 3.18 mm ± 0.30 mm.
The dimensions shown indicate the size of the card excluding tolerances

The relative sizes of the ID-1, ID-00 and ID-000 formats are shown in Figure 3.5. Cards
in the smaller formats can be produced from the larger versions by punching them from the
body of a larger-format card. This is especially important for card manufacturers, since it
allows the production process to be optimized and made more economical using a uniform
ID-1 format. For instance, card manufacturers commonly produce card blanks in only one
format (preferably ID-1), embed modules in them and fully personalize them. Depending on
the specific application of the cards so produced, such cards can be trimmed to the desired
format in a subsequent production step.

Alternatively, the format may be modified later by the customer. This has become com-
mon practice with cards for mobile telephones. The customer receives an ID-1 card that is
prepunched such that it can be converted into an ID-000 card by breaking a small card free
from the larger card body. In another technique, the ID-000 card is completely punched free
from the ID-1 body and attached to the surrounding portion using single-sided tape on the
side without contacts. The customer can thus ‘produce’ a card whose format fits his or her
equipment, while the manufacturer only has to produce and supply one card format.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 65 of 1123

3.1 Physical Properties 31

ID-1ID-00ID-000

16.40 mm

6.25 mm

Figure 3.5 Relative sizes of the ID-1, ID-00 and ID-000 formats

Figure 3.6 Example of a mobile telephone card in ID-1 format, which the user can convert into an
ID-000 card if necessary by pressing out the smaller-format card

However, the usual card format still has some disadvantages for some applications. In such
situations, other form factors can be used, such as a USB plug with an integrated smart card
microcontroller. The logical behavior of such smart card variants is generally fully equivalent
to that of the usual forms.

3.1.2 Card components and security features

Since smart cards are primarily used to provide authorization for specific actions or identify
cardholders, security features on the card body are often needed in addition to the embedded
chip. Since the authenticity of the card may be verified by humans as well as by machines,
many security features are based on visual features. However, some security features employ
a modified smart card microcontroller and thus can only be verified by a computer. In contrast
to the security features used with microcontrollers, the usual features for human verification of

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 66 of 1123

32 Physical and Electrical Properties

Figure 3.7 Example of a smart card with a different form factor. This photo shows a USB plug with a
soldered-in smart card microcontroller and the necessary interface components, which has been opened
up to reveal its internal components

the authenticity of a card are not based on cryptographic procedures (such as mutual authen-
tication). Instead, they are primarily based on using secret materials and production processes
or using processes whose mastery requires a large amount of effort or considerable expertise,
or that are technically difficult.

Particularly in the area of new card components, there is considerable potential for new
developments in the near future with regard to the integration of additional components such
as keypads, displays, solar cells and batteries.

Figure 3.8 Inlay foil for a super smart card. The actual smart card microcontroller can be seen at the
left, connected to the contact below it. The contact pads for a display are located at the lower left. The
driver IC for the display is located to the right of the contact pads, with four large contacts for the battery
above it. The contacts for a pushbutton switch can be seen at the lower right, with various components
for the interface adapter located to the left (Source: Giesecke & Devrient)

Signature panels

A very simple way to identify the cardholder is to use a signature panel attached to the card,
as is common with credit cards. Once such a panel has been signed, it cannot be altered, so it

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 67 of 1123

3.1 Physical Properties 33

Figure 3.9 Early laboratory prototype of a super smart card for an electronic purse system using
contactless cards. A pushbutton switch for confirming transactions can be seen at the upper left, with two
solar cells in the middle to supply power. A five-digit display for showing the purse balance and other
data is located at the upper right (Source: Giesecke & Devrient)

is erasure-proof. A very fine colored pattern printed on the panel makes any attempt to cover
the panel immediately apparent. The signature panel is permanently bonded to the card body
by using a hot-gluing process to attach a printed paper strip to the card. Alternatively, the
signature panel may be part of the top layer of the card, which is laminated into the card when
it is assembled.

Guilloche patterns

A somewhat more complicated technique is to place a foil printed with guilloche patterns under
the transparent outer layer of the card. Guilloche patterns are decorative patterns consisting
of very fine interwoven lines, usually round or oval, such as are found on some bank notes
and share certificates. These patterns have such fine structures that they can presently only be
produced by printing processes, and are thus difficult to copy.

Microtext

Another technique that is based on the security provided by fine printed line structures is using
microtext lines. These appear be plain lines to the naked eye, but they can be recognized as
text using a loupe. Like guilloche patterns, microtext cannot be photocopied.

Ultraviolet text

In order not to affect the visible layout of the card, control characters or control numbers can be
printed on the card using ink that is only visible under ultraviolet light. However, this technique
provides only relatively limited protection against forgery.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 68 of 1123

34 Physical and Electrical Properties

Barcodes

For storing a small amount of data, a barcode can be printed on the surface of the card using
laser engraving or thermal-transfer printing. The advantage of barcodes is that they can be
automatically read at close range using optical equipment. The barcodes used on smart cards
include not only the widely use one-dimensional type, but also two-dimensional barcodes in
the form of stacked or matrix barcodes. A two-dimensional matrix barcode, such as PDF 417
for example, can easily encode up to 1000 bytes, and if an integrated Reed–Solomon code is
used for error correction, the data can be recovered even when up to 25 percent of the barcode
area is unreadable.

Holograms

A hologram integrated into the card is a security feature that by now is familiar to all card
users. The security of holograms is primarily based on the fact that they are produced by only
a few companies in the world and that they are not readily available.

The holograms used for smart cards are called ‘embossed’ holograms. Since they can
be viewed using diffuse reflected daylight, they are also referred to as ‘white-light reflection
holograms’. By contrast, a conventional transmission hologram must be viewed using coherent
laser light. Supplementary security features that can only be seen with laser light are sometimes
integrated into the hologram as well. In order to produce an embossed hologram, it is necessary
to first generate a master hologram using the conventional holographic technique. A master
embossing stamp is then prepared from the master hologram using a transfer process. The
embossing stamp contains the microstructures that will produce the subsequent embossed
holograms. Daughter stamps are prepared from the master stamp using electroplating processes,
and these daughter stamps are used to emboss the hologram structure in plastic films. These
films are then coated with a layer of vaporized aluminum to produce the well-known white-light
reflection holograms.

The hologram is permanently bonded to the card body, so it cannot be removed without
destroying it. This can be done using either a lamination process or the ‘roll-on’ process. In
the latter process, a hologram located on a carrier film is pressed onto the card by a heated
roller. The carrier film is then pulled off, and the hologram remains permanently welded to the
plastic card body. A third process that is used is the ‘hot-stamping’ process, which is similar
to the roll-on process except that a heated stamp is used instead of a heated roller.

Kinegrams

Kinegrams, which are popularly called ‘3-D images’, are made in the same way as holograms.
The viewer sees an image that changes abruptly when the viewing angle is changed. Kinegrams
are just as hard to forge as holograms, and they have the advantage that they are more quickly
recognized by the viewer and thus can be verified more quickly.

Multiple laser image (MLI)

A multiple laser image is a sort of kinegram that is very similar to a simple hologram. It uses
an array of lenses pressed into the surface of the card, some of which have been blackened by

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 69 of 1123

3.1 Physical Properties 35

a laser. The main difference between an MLI and a hologram is that card-specific information
is shown in the small MLI image. For instance, this technique can be used to mark the name
of the cardholder on an individual card in the form of a kinegram.

Laser engraving

Darkening a special plastic layer by heating it with a laser beam is called laser engraving, or
simply ‘lasing’. In contrast to embossing, this is a secure way to write data on an individual
card, such as the cardholder’s name and the card number. It is secure because the necessary
equipment and the knowledge of how to use it are not readily available.

laser engraving directly
on the upper surface

laser engraving
underneath the overlay foil

Figure 3.10 Cross-section of laser engraving in a card (not to scale). Laser engraving can take place
either on the surface of the card or in an internal layer below a cover foil that is transparent to the laser
light

Two different methods are used for laser engraving: vector engraving and raster engrav-
ing. In the vector method, the laser beam is directed along its path without interruption. This
is very well suited to writing characters and has the advantage of being quick. In the raster
technique, by contrast, a large number of adjacent points are blackened to produce an image,
similar to the operation of an ink-jet or dot-matrix printer. This method is primarily used
to place a picture on the card. Although it has the advantage of high resolution, which al-
lows details to be reproduced well, it has the disadvantage of being very time-consuming.
For instance, it takes approximately 10 seconds to laser-engrave a standard-quality passport
photograph.

Embossing

Another way to add user data to a card is to emboss characters onto the card. This is done by
hammering metal letter punches against the card. In principle, this process works the same
way as a mechanical typewriter. Nowadays, the only benefit of embossing is that the embossed
characters can easily be transferred to preprinted forms using carbon paper. However, this is
very important in practical use, since this is still the most widely used method of paying with
a credit card.

It is very easy to manipulate embossed characters, since the plastic can easily be flattened by
moderately heating the embossed characters (using an iron, for example). In order to counter

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 70 of 1123

36 Physical and Electrical Properties

this, one of the embossed characters is often placed on top of the hologram, which will be
destroyed if it is heated.

Thermochrome displays

There are certain applications in which it is desirable to occasionally change the text and
image(s) printed on the card. A good example is a student identification card in the form of a
smart card that must be renewed twice a year. Ideally, it should be possible to visually read the
expiry date without having to use any special equipment. This means that it must be printed
on the card, rather than just being stored in the chip. A similar example is an electronic purse
smart card, which requires using a card reader to show the current balance of the ‘money’
stored in the card.

Smart cards with microcontroller-driven displays are currently technically possible, but
they are still too expensive for large-scale use. A thermochrome display (TC display) is a
simple alternative that has some drawbacks compared with ‘real’ display, but is inexpensive
and already available. A TC display is a supplementary card component on which characters
and images can be reversibly printed (printed and subsequently reprinted) using a special card
reader.

The technical operating principle is relatively simple. The thermochrome strip consists of
a thin film (10–15 µm) of a temperature-sensitive material laminated to the card. This material
darkens when it is heated to 120 ◦C. A printing head with a resolution of 200 or 300 dpi, such
as is used in thermal-transfer and dye-sublimation printers, is used to heat individual points on
the thermochrome strip to form characters or an image. This darkened material can be changed
back to a nearly transparent state by heating the entire strip, which amounts to erasing the strip.

The thermochrome process is currently the only economical manner to present time-varying
information to the user on the surface of the card such that it can be read without using any
special equipment. Its major disadvantages are that it is subject to fraud and that it requires a
special card reader with a built-in thermochrome printer.

The MM technique

In 1979, the German banking industry decided to include a machine-readable security feature
in all German Eurocheque (EC) cards. After various potential methods were tested, the MM
technique (developed by the firm GAO) was selected as the security process for these cards.
This security feature is still used in all German Eurocheque cards, even though they are now
equipped with microcontroller chips. The objective of this security feature was, and still is, to
prevent unauthorized copying or modification of the magnetic-stripe data.

The MM technique is a typical example of a secret and very effective security feature. It has
been used for two decades in millions of cards. Its basic structure is summarized in an article
by Siegfried Otto [Otto 82].

The name ‘MM technique’ comes from the German term moduliertes Merkmal (modulated
feature), which can be understood to refer to a machine-readable substance that is incorporated
in the interior of the card body [Mayer 96]. A card is verified by reading its MM code using a
special sensor and passing the code to a security module called the ‘MM box’. The MM box

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 71 of 1123

3.1 Physical Properties 37

magnetic-
stripe data

MM check value from
the magnetic stripe

MM code

" = " ?

card is
authentic

card is not
authentic

MM procedure

Yes No

Figure 3.11 Operating principle for verifying the genuineness of a German Eurocheque card using
the MM technique. The security module, or ‘MM box’, protects the MM procedure and the subsequent
comparison, so only a yes/no result is reported to the higher level system

also receives the complete content of the magnetic stripe, in particular the MM check value,
which is also stored on the magnetic stripe. Inside the MM box, a one-way function based
on the DES algorithm is used to calculate a value from the magnetic-stripe data and the MM
code. If the result of this calculation is the same as the MM check value, it can be concluded
that the magnetic-stripe data matches the card.

If a valid set of magnetic-stripe data is written onto a blank card, this will be detected by
the fact that the blank card does not have any MM feature. Copying the magnetic-stripe data
from one EC card to another EC card will also be detected, since the MM check value will be
incorrect. The MM feature is invisible, and the details of how it works and exactly where it is
located in the card are secret. In addition, it is produced using materials and technology that
are not commercially available.

A MM box is built into every German bank machine (ATM), as well as some POS terminals.
These devices can thus check whether the magnetic-stripe data matches the card. The technique
itself is not defined in any standard, and it is used only in Germany. Thanks to it, the magnetic
stripes of German Eurocheque cards are protected against copying, which nowadays does not
otherwise present any technical difficulties.

Security features

A large number of visual security features were developed in the period between the massive
use of cards without chips and the introduction of smart cards. During this period, such features

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 72 of 1123

38 Physical and Electrical Properties

were the only way to verify the genuineness of the cards. The embedded microcontroller in the
new type of card, and the cryptographic procedures that it makes possible, have diminished
the importance of these features. They are nevertheless still very important whenever the
genuineness of a card must be verified by a person instead of a machine, since a person cannot
access the chip without special equipment.

Here we can only describe the most essential and best-known security features used with
cards in a highly condensed form. There are many other types of features, such as invisible
markings that can only be seen with IR or UV illumination, magnetic codes and special
printing processes using rainbow-colored inks. These features are technically very interesting,
but unfortunately there is not enough room to describe all of them.

In the future, security features will be found not only on the cards but also in the chips.
It is conceivable that ‘security’ chips could could be used in the same way that bank-note
paper is now used. Genuine bank notes cannot be printed without using real bank-note paper,
which has specific features to show that it is genuine. In order to incorporate similar security
features into chips, special chips with specifically modified hardware are necessary. A terminal
can then measure the modification, which constitutes the ‘feature’ of the chip, and judge the
genuineness of the chips from the result.

As an example of a hardware feature, suppose that computation of a fast cryptographic
algorithm is implemented in supplementary hardware in a certain chip. The time required to
compute a particular value could be made so short, due to the hardware implementation of
the algorithm, that it would not be possible to perform the same computation using a software
emulation in a different chip in an equally short time. A terminal could thus distinguish this
chip from other chips by making a simple timing measurement.

There are now chips available with hardware features similar or identical to what has just
been described. Naturally, they are not freely available, just as bank-note paper is not freely
available. Of course, such hardware features are only suitable for very large-scale applications,
due to the high cost of developing chip-specific hardware. The consequence of this, which is
that such chips are almost invariably available from only one manufacturer with no possibility
of an alternate source, is difficult for many card producers to accept. However, hardware-based
security is an important component of the security architecture of a smart card system, and it
is unfortunately not available for free.

3.2 THE CARD BODY

The materials, construction and production of the body of the card are effectively determined
by the card’s functional components, as well as by the stresses to which it is subjected during
use. Typical functional components include:

� magnetic stripe

� signature panel

� embossing

� imprinting of personal data via laser beam (text, photo, fingerprint)

� hologram

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 73 of 1123

3.2 The Card Body 39

Card components

card body

chip

signature panel

security features

magnetic stripe

labeling

low coercitivity (LoCo)

high coercitivity (HiCo)

wood

paper

embossing

laser engraving

thermal transfer

thermal dye sublimation

hologram

kinegram

MM

UV marking

plastic

thermochrome

Figure 3.12 Classification scheme for card components

� security printing

� invisible authentication features (e.g. fluorescence)

� chip with contacts or other coupling elements

Clearly, even a relatively small card, only 0.76 mm thick, must sometimes contain a large
number of functional components. This places extreme demands on the quality of the materials
used and the manufacturing process. The minimum requirements relating to card robustness
are specified in ISO standards 7810, 7813 and 7816 Part 1. The requirements essentially relate
to the following areas:

� ultraviolet radiation

� X-ray radiation

� surface profile of the card

� mechanical robustness of the card and contacts

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 74 of 1123

40 Physical and Electrical Properties

� electromagnetic susceptibility

� electrostatic discharges

� temperature resistance

The ISO/IEC 10373 standard specifies test methods for many of these requirements, to enable
users and card manufacturers to objectively test card quality. The bending and twisting tests
are particularly important for smart cards, since the chip, which is as fragile and brittle as
glass, is a delicate foreign object in the elastic card. Special structural features are required to
protect it against the mechanical stresses produced by bending and twisting the card. Chapter
9 contains a detailed list of tests and the methods used to perform them.

3.2.1 Card materials

The first material employed for ID cards, which is still widely used, is polyvinyl chloride (PVC),
an amorphous thermoplastic material. It is the least expensive of all the available materials,
easy to process and suitable for a wide range of applications. It is used throughout the world
for credit cards. Its drawbacks are a limited lifetime, due to physical deterioration, and limited
resistance to heat and cold. PVC is used in sheet form to manufacture cards, since injection
molding is not possible. The worldwide production of PVC was around 13 million metric
tons in 1996, of which 35,000 metric tons (0.27 %) were used for cards. PVC is considered to
be environmentally hazardous, since the feedstock, vinyl chloride, is a known carcinogen. In
addition, if it is burned, hydrochloric acid and (under unfavorable conditions) possibly dioxins
are released. In addition, heavy-metal compounds are often used as stabilizers. Nonetheless,
PVC is still by far the most widely used material for cards. This is primarily due to its low
price and good processing characteristics. However, it used less and less each year due to
its undesirable environmental properties. Many card issuers have decided not to use PVC for
reasons of environmental policy.

To avoid the drawbacks of PVC, acrylonitrile butadiene styrene (ABS) has been used
for some time to make cards. It is also an amorphous thermoplastic that is distinguished
by its stability and resistance to temperature extremes. Consequently, it is often used for
cards for mobile telephones, which for obvious reasons may be subjected to relatively high
temperatures. ABS can be processed both in sheet form and by injection molding. Its ma-
jor drawbacks are limited ink acceptance and low weathering resistance. Although the feed-
stock for ABS production, benzene, is a carcinogen, ABS has no other known environmental
drawbacks.

For applications in which extreme stability and durability are required, polycarbonate (PC)
is used. It is typically used for identity cards, and it is incidentally the base material for
compact discs and DVDs. Due to its high thermal stability, relatively high temperatures are
needed to apply holograms or magnetic stripes using the hot-stamp process. This can easily
cause problems, due to the limited thermal stability of the materials being applied. The main
drawbacks of polycarbonate are its low degree of resistance to scratching and very high cost
compared with other card materials. A further drawback is that phosgene and chlorine are
needed for the production of polycarbonate, and both of these materials are environmentally

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 75 of 1123

3.2 The Card Body 41

C C

H

H Cl

H CH3

PVC

n n

PC

PET

CH3

C O O... C

O

O... (CH2 CH)2 nC

O

O

n

...C

O

ABS CH CH CH CH CH

CN

CH2 CH2 CH2 CH2 CH2

CN

......

Figure 3.13 Structural formulae of the most important materials used for card bodies

problematical. Polycarbonate cards can be easily recognized by the characteristic ‘tinny’ sound
they produce when dropped on a hard surface.

An environmentally friendly material that is mainly used as a PVC substitute is polyethy-
lene terephthalate (PET), which has been used for a relatively long time to make packaging
materials. It is commonly known as polyester. This thermoplastic material is used in smart
cards in both its amorphous form (A-PET) and its crystalline form (PETP). Both types are
suitable for processing in sheet form, as well as by injection molding. However, PETP is dif-
ficult to laminate, which makes additional processing steps necessary in the manufacturing
process.

Numerous attempts have been made to find new or better materials for card bodies besides
the usual materials (PVC, ABS, PC and PET). One example is cellulose acetate, which although
having good environmental properties, has up to now proven to be poorly suited to the mass
production of cards. Truly different materials, such as paper, have been frequently discussed,
but as yet they have never been used in any significant quantity. The requirements imposed on
cards, in terms of cost, durability and quality, are after all very high, and they can presently
only be met by plastics.

In 1996 and 1997, Danmønt1 conducted a field trial using around 600 cards that, while
they did not represent a real alternative to plastic card bodies, were at least an interesting (or
amusing) idea. The cards were laminated from eight layers of birch wood, each 0.1 mm thick.
These cards did not meet the requirements of the various tests specified in ISO 10 373, such as
those for bending and twisting, and they were naturally not suitable for embossing. However,
around 90 % of their users expressed a positive reaction and said that they experienced no
problems with their cards. Unfortunately, a birchwood card is not especially innovative from
an environmental perspective, since the layers must be laminated using a plastic adhesive and
the usual printing processes are required.

1 See [a la Card 97]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 76 of 1123

42 Physical and Electrical Properties

Table 3.1 Summary of the characteristics of the standard materials for card bodies.2 The
relative cost is based on the cost of PVC

Characteristic PVC ABS PC PET

Primary use credit cards cellular-telephone
cards

identification
cards

health-
insurance
cards

Principal feature inexpensive thermally stable durable environmentally
friendly

Temperature range 65–95 ◦C 75–100 ◦C <160 ◦C <80 ◦C
Cold tolerance moderate high moderate moderate
Mechanical

stability
good good good very good

Embossing good poor good good
Printing good moderate moderate moderate
Hot stamping (e.g.

holograms)
good good difficult good

Laser engraving yes poor good good
Typical lifetime ≈2years ≈3years ≈5years ≈3years
Share of

worldwide card
production
(1998)

85 % 8 % 5 % 2 %

Relative cost 1 2 7 2.5
Environmental

aspects
stabilizers

contain
heavy
metals

burning
may
release
dioxins

base material
benzene is a
carcinogen

burning may
release prussic
acid

phosgene and
chlorine
needed for
production

burning does
not release
dangerous
materials

the most
environ-
mentally
friendly
material

burning does
not release
dangerous
materials

Special features negative
public
image

low resistance
to scratching

3.2.2 Chip modules

The most important component of a smart card is naturally the chip. Of course, this very
fragile component cannot be simply laminated to the surface of the card like a magnetic stripe.
Instead, it needs a sort of enclosure to protect it from the rough everyday life of the card. This
enclosure is the called the chip module. In addition to protection from ambient conditions,

2 Based in part on [Houdeau 97, Grün 96]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 77 of 1123

3.2 The Card Body 43

chips for contact-type smart cards need six or eight contacts, which provide power to the chip
and allow data communications with the terminal. A portion of the module’s surface serves to
provide these electrical contacts to the outside world. Naturally, the chip module should be as
inexpensive as possible.

A wide variety of module designs have been devised in the course of the development
of smart cards in order to meet these two technical requirements – protection of the fragile
semiconductor chip and provision of contact surfaces. The most important of these are shown
in Figures 3.14 and 3.15.

Module types

chip-on-flex lead frame
chip-on-
surfaceTAB

Figure 3.14 Classification of the various types of chip modules

Figure 3.15 These examples illustrate the evolution of the chip-on-flex process, starting with one of
the first eight-contact chip-on-flex modules at the upper left and proceeding to contemporary modules
with six or eight contacts

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 78 of 1123

44 Physical and Electrical Properties

3.2.2.1 Electrical connections between the chip and the module

Electrical connections are required between the chip inside the module and the contacts on the
outside of the module. Presently, two processes are primarily used for this. In the wire-bonding
process, an automatic bonding machine attaches gold wires with a diameter of only a few
micrometers between the chip and the rear surfaces of the contacts. The wires are electrically
attached to the chip and the module using ultrasonic welding. With this process, the contact
arrangement on the top surface of the chip is always opposite that of module. This has been
a standard process in the semiconductor industry for some time, and it can be readily used
for mass-producing chip modules. However, each chip must be electrically connected to the
module by five wires, which naturally costs time and money.

The die-bonding process was developed to further reduce the cost of fitting chips into
modules. In this process, the electrical connections between the chip and module are not made
with wires. Instead, the connections are made by mechanically attaching the chip to the rear
surface of the module.

Figure 3.16 Photograph of the contact zone between a bonding wire and a bonding pad of a smart card
microcontroller, magnified 1000 times (Source: Giesecke & Devrient)

3.2.2.2 TAB modules

Tape-automated bonding (TAB) was a standard process for large-volume chip packaging at the
beginning of the 1990s, but it is presently not commonly used, since it has become technically
obsolescent and too expensive. It is described here primarily for the sake of completeness.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 79 of 1123

3.2 The Card Body 45

Figure 3.17 View of the electrical connections between a smart card microcontroller (bottom) and the
chip module (top), magnified 400 times (Source: Giesecke & Devrient)

A chip module produced using the TAB process is shown in Figure 3.18. The special feature
of this process is that metallic bumps are first electrically attached to the pads of the chip, and
the leads of the carrier film are then soldered to these bumps. The solder connections are so
sturdy that no additional support is required for the chip, which hangs from its leads. The active
surface of the chip is protected against ambient conditions by an encapsulation material. The
advantages of the TAB process are the mechanical strength of the connections to the chip and
the low profile of the module. However, these advantages come at the price of higher costs
compared with other module preparation processes.

chip

encapsulation

conductor

card body

chip contact contact surface

Figure 3.18 Cross-section of a chip module using the TAB process

Fitting a TAB module into a smart card is not easy, since the module must be taken into
account in preparing the lamination foils for the card. Before the layers are laminated, suitable
openings are punched in them, and the chip module is then inserted. The chip module is
subsequently welded to the body of the card during the lamination process. This process
provides a highly reliable bond between the chip module and the card body. It is nearly
impossible to remove the chip from the card without destroying the card.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 80 of 1123

46 Physical and Electrical Properties

Figure 3.19 A TAB module ready for embedding in a smart card (left), and a TAB module fitted in a
smart card (right)

printed
overlay foil

printed
overlay foil

core foil

core foil
TAB module

Figure 3.20 Inserting a TAB module during the lamination process

3.2.2.3 Chip-on-flex modules

Currently, the chip-on-flex module with wire-bonded contacts is the most widely used type of
module. The construction of such a module is shown in cross-section in Figure 3.21. With this
process, an opening into which the chip module can be glued is milled into the finished card
body.

The carrier material is a flexible circuit board made of fiberglass-reinforced epoxy resin
with a thickness of 120 µm. The contacts are formed from a layer of copper laminated onto the
carrier, with a thickness of 35 or 75 µm. The contact surfaces are electroplated with gold in a
later process step to protect them against processes that could adversely affect their electrical
conductivity, such as oxidation. Holes are punched into the carrier to receive the chips and
wire bonds. The chips, which are around 200 µm thick, are taken from the sawn wafer by a

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 81 of 1123

3.2 The Card Body 47

pick-and-place robot and fitted into the openings in the circuit board. Next, the chip contacts
are connected to the rear surfaces of the contacts using bonding wires a few micrometers in
diameter. Finally, the chip and the bonding wires are encapsulated in a blob of synthetic resin to
protect them against ambient conditions. The total thickness of the finished module is typically
around 600 µm.

chip

adhesive foil

empty spacecard body encapsulation

wire bondcontact surface

gluing surface

Figure 3.21 Cross-section of a chip-on-flex chip module

step 1: tape with
empty modules

step 3: dice
bonded

step 4: dice
encapsulated

Figure 3.22 The four main process steps in the production of chip-on-flex modules

The advantage of this process is that it is largely based on a standard process used in the
semiconductor industry for fitting chips in standard packages. It does not require as much
specialized experience as the TAB process, so it less expensive. This process also lends itself
well to producing very complex card bodies with many active components. This is because
defective card bodies can be separated from the rest before the expensive chip modules have
been fitted. The disadvantage of this process is that the thickness and the surface dimensions
of the chip module are significantly greater that those of a TAB module, since not only the chip

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 82 of 1123

48 Physical and Electrical Properties

but also the bonding wires must be covered by the protective encapsulation. This is particularly
disadvantageous, in that the standard smart card thickness of 0.76 mm does not leave a lot of
room for overly thick modules.

module gluing surface

card body
cavity

Figure 3.23 Inserting the chip module in a milled opening in the card body

Figure 3.24 Front and rear views of chip-on-flex modules on 35-mm tape. The five openings in the
carrier circuit board, for the bonding wires that make the electrical connections to the chip, can be clearly
seen in the rear view

Figure 3.25 Front and rear views of a chip-on-flex module for a dual-interface card

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 83 of 1123

3.2 The Card Body 49

3.2.2.4 Lead-frame modules

Technically, the TAB and chip-on-flex processes leave something to be desired, since they both
provide little scope for reducing production costs. In the TAB process, producing the card body
is very costly due to the characteristics of the module, while in the chip-on-flex process, the
complexity of the module and the use of wire bonding lead to unfavorable production costs.
These problems led to the development of a new type of module, the lead-frame module, which
is mechanically just as robust as TAB and chip-on-flex modules but has lower production costs.
The structure of a lead-frame module is relatively simple. The contacts, which are stamped
from a gold-plated copper alloy, are held together by a plastic mold body. The chip is placed
onto the lead frame by a pick-and-place robot and then connected to the backs of the contacts
using wire bonding. Next, the chip is covered by a protective blob of opaque epoxy resin,
usually black. The lead-frame process is currently one of the least expensive processes for
making chip modules, without any accompanying reduction in the mechanical robustness of
the modules.

chip

adhesive foil

empty spacecard body encapsulation

wire bondcontact

gluing surface

Figure 3.26 Cross-section through a lead-frame chip module

Figure 3.27 Stamped-out lead-frame module with the two coil connections for a contactless smart card,
with a match for comparison

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 84 of 1123

50 Physical and Electrical Properties

Figure 3.28 Lead-frame modules for contactless smart cards, arranged in pairs on a 35-mm tape. The
two empty locations for modules that have been stamped out can be seen at the top

Figure 3.29 Lead-frame modules for smart cards with contacts, arranged in pairs on a 35-mm tape

3.2.2.5 The chip-on-surface process

For chips with relatively small surface areas, a process available since the mid-1990s offers a
technically very interesting alternative to the usual process of fitting chips into modules. With
the MOSAIC (Microchip on Surface and in Card) process, developed by Soliac [Sligos], no
module is needed for the chip, since it is located directly in the card body.

The MOSAIC process is suitable for chips whose surface area is around 1 mm2. This
presently limits its application to pure memory chips, since microcontrollers are still too large
for this process. The process works as follows: first, a laser is used to remove material from
the location where the chip is to be placed, and then the chip is glued into this recess. In

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 85 of 1123

3.2 The Card Body 51

the next step, a conductive silver paste is silk-screened onto the surface of the chip and the
card body, thus forming contact surfaces and connecting them to the chip at the same time.
In the final step, the chip and the leads to the contacts are covered with a non-conductive
lacquer. This provides electrical insulation and protects them against external ambient
conditions.

1st step: using a
laser drill, make a
cavity for the chip

2nd step: place the
chip in the cavity

3rd step: silk screen
printing with conductive ink

4th step: overprinting
with insulating ink

Figure 3.30 The four stages in the production of a smart card using the chip-on-surface process

Figure 3.31 A memory chip with an edge length of 0.5 mm (0.25 mm2 area) and ISO/IEC 7816-3
contact surfaces, fitted to a telephone card along with its contacts using the chip-on-surface process

As can clearly be seen from the figure, the chip-on-surface process is highly suitable for mass
production of large numbers of cards, since it essentially consists of only a brief laser milling
of the card body and two printing processes. However, this process requires an extremely
precise printing process to ensure that the contacts for the chip are located correctly. Up to
now, the card body has been primarily made of polycarbonate, which is especially suitable for
the chip-on-surface process. The production capacity for finished cards lies in the region of
5000 pieces per hour per machine.

Another process is the flip-chip process in which the chip is placed with its face against the
rear surface of the module and electrically bonded, after which the assembled module is filled
with a casting resin. This type of low-cost module is usually referred to as FCOS (flip-chip on
substrate).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 86 of 1123

52 Physical and Electrical Properties

chip
filler

card body

chip contact on the
face of the chip with
electrical connection

contact surfacechip

Figure 3.32 Cross-section of a chip module made using the flip-chip process

3.3 ELECTRICAL PROPERTIES

The electrical properties of smart cards depend solely on the embedded microcontroller, since
it is the only component of the card with an electrical circuit. This situation will undoubtedly
change in the future with the addition of other components to cards, such as displays, keypads
and the like, but it will take some time before these new types of smart cards are widely
used.

The application that from the very beginning has imposed many rigid requirements on the
electrical properties of smart cards is mobile telecommunications using the GSM system. This
system, which features an extremely large variety of technically different types of terminal
devices made by an equally large variety of manufacturers, which must work with a variety of
card types that is at least as large, has for a long time imposed extremely severe requirements.
Due to the large number of smart cards used in the GSM system, the electrical characteristics
specified for GSM cards have become general guidelines for all manufacturers of smart card
microcontrollers. It can be assumed that nearly all new microcontrollers for smart cards will
comply with the general electrical parameters of the relevant GSM specifications, since they
otherwise would be practically unsellable in the telecommunications market.

In the early days of smart card technology, quite often the primary consideration was that the
implanted microcontroller was functional, and less attention was paid to its general electrical
properties, such as current consumption. At that time, the applications were almost exclusively
closed, and they used a single type of card with a terminal specifically designed to match
that type of card. The electrical properties of the smart card were relevant only in the sense
that they had to be constant, since the terminal was designed to work with a particular type of
microcontroller. However, the present situation is completely different. With current large-scale
applications, in which various types of smart cards must work together with many different
types of terminals, it is an unavoidable requirement that all of the cards that are used are either
electrically identical or at least behave uniformly within clearly defined electrical regions.

The general international basis for the electrical properties of smart cards is the ISO/IEC
7816-3 standard and its associated amendment (Amd. 1). The amendment will be incorpo-
rated into the standard in the next major revision and thus disappear as a separate document.
This standard specifies all of the fundamental electrical requirements for smart cards, such
as the voltage ranges, maximum current consumption and the activation and deactivation
sequences.

As usual with international standards, ISO/IEC 7816-1 provides a range of options that in
many cases is too extensive for practical use. This allowed supplementary industry standards

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 87 of 1123

3.3 Electrical Properties 53

voltage0 MHz

0 V

clock frequency

1 MHz

2 MHz

3 MHz

4 MHz

5 MHz

6 MHz

1 V 2 V 3 V 4 V 5 V 6 V

Class C
(1.8-V ICC)

Class B
(3-V ICC)

Class A
(5-V ICC)

Figure 3.33 Comparison of the three possible classes of fixed voltage and clock frequency ranges as
specified in ISO/IEC 7816-3 and ISO/IEC 7816-3 Amd. 1

to become established in the form of EMV 2000 for financial transactions and GSM 11.11,
GSM 11.12, GSM 11.18 and TS 102.221 for telecommunications applications. These industry
standards by no means compete with the ISO/IEC 7816-1 standard, but instead complement
it with meaningful restrictions arising from practical smart card applications using millions of
issued cards.

The distinction between smart cards used for financial transactions and smart cards used for
telecommunications came about because certain requirements proved to have fundamentally
different natures in these two application areas. For example, in the financial transactions
area the current consumption and voltage range parameters are fully non-critical, since the
terminals used for such applications are connected to the public power network. The situation
in the telecommunications area is completely different, since every milliwatt counts when
the objective is to achieve the longest possible operating time for a battery-powered mobile
telephone. Consequently, the requirements for the least possible current consumption and low
supply voltages are highly important in this application area.

Table 3.2 provides a summary of the most important electrical requirements of the essential
international standards and industry standards. More detailed information is provided in the
following sections.

3.3.1 Electrical connections

Smart cards have either six or eight contacts on the front side, which form the electrical interface
between the terminal and the microcontroller in the card. All electrical signals are passed via
these contacts. However, according to ISO/IEC 7816-2, two of the eight contacts (C4 and C8)
are reserved for the auxiliary contacts AUX1 and AUX2, which can be used in the future for
interfaces such as USB. Presently, some smart card modules have only six contacts, since this

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 88 of 1123

54 Physical and Electrical Properties

Table 3.2 Summary of three electrical parameters (voltage, current and clock rate) for the most
important international and industrial standards for smart cards. The tolerance ranges for the maximum
current can be found in the relevant standards

Standard and class Voltage Clock rate Maximum current

ISO/IEC 7816-3 and ISO/IEC 7816-3 Amd. 1
Class A 5 V ± 10 % ⇒ 4.5–5.5 V 1–5 MHz 60 mA at 5 MHz
Class B 3 V ± 10 % ⇒ 2.7–3.3 V 1–5 MHz 50 mA at 4 MHz
Class C 1.8 V ± 10 % ⇒ 1.62–1.98 V 1–5 MHz 30 mA at 4 MHz
Class A, B and C,

with clock stopped
0.5 mA (clock stop)

EMV 2000 5 V ± 10 % ⇒ 4.5–5.5 V 1–5 MHz 50 mA for all clock rates

GSM 11.11
5-V SIM

5 V ± 10 % ⇒ 4.5–5.5 V 1–5 MHz 10 mA (operating)
200 µA at 1 MHz (idle)
200 µA (clock stop)

GSM 11.12
3-V SIM

3 V ± 10 % ⇒ 2.7–3.3 V 1–5 MHz 6 mA at 3.3 V / 5 MHz
(operating)
200 µA at 1 MHz (idle)
100 µA (clock stop)

GSM 11.18
1.8-V SIM

1.8 V ± 10 % ⇒ 1.62–1.98 V 1–5 MHz 4 mA at 1.8 V / 5 MHz
(operating)
200 µA at 1 MHz (idle)
100 µA (clock stop)

TS 102.221
Class A, from reset to

application selection
5 V ± 10 % ⇒ 4.5–5.5 V 1–5 MHz 10 mA at 5 MHz (operating)

200 µA at 1 MHz (idle)

Class A, during an
application-specific
session

60 mA at 5 MHz

Class B, from reset to
application selection

3 V ± 10 % ⇒ 2.7–3.3 V 1–5 MHz 7.5 mA at 5 MHz or
6 mA at 4 MHz (operating)
200 µA at 1 MHz (idle)

Class B, during an
application-specific
session

50 mA at 5 MHz

Class C, from reset to
application selection

1.8 V ± 10 % ⇒ 1.62–1.98 V 1–5 MHz 5 mA at 5 MHz (operating)
4 mA at 4 MHz (operating)
200 µA at 1 MHz (idle)

Class C, during an
application-specific
session

30 mA at 5 MHz

slightly reduces manufacturing costs. However, they have the same functionality as modules
with eight contacts.

The contacts are numbered sequentially from top left to bottom right. Figure 3.34 shows
the ISO designations and electrical assignments of the eight defined contacts.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 89 of 1123

3.3 Electrical Properties 55

Vcc Vcc

RST RST

CLK CLK

AUX1

C1

C2

C3

C4

GND GND

Vpp Vpp

I/O I/O

AUX2

C5

C6

C7

C8

Figure 3.34 Electrical assignments and numbering of smart card contacts, per ISO 7816-2

Until the late 1980s, it was necessary to apply an external voltage to program and erase
the EEPROM, since the microcontrollers then in use did not have charge pumps. Contact C6
was reserved for this purpose. However, since the early 1990s it has been standard practice
to generate this voltage directly in the chip using a charge pump, so this contact is no longer
used. Nevertheless, it cannot be employed for some other function, as this would conflict with
the ISO standard. Thus, every smart card has a contact that has no real function, but which
must still be present. Since the programming voltage contact lies between two others that are
necessary for the operation of the card, it cannot simply be eliminated. This somewhat reduces
the drawback of having a superfluous contact.

Table 3.3 Contact designations and functions according to ISO 7816-2

Contact Designation Function

C1 Vcc Supply voltage
C2 RST Reset input
C3 CLK Clock input
C4 AUX1 Supplementary contact (Auxiliary 1)
C5 GND Ground
C6 Vpp Programming voltage (long since no longer used)
C7 I/O Input/output for serial communications
C8 AUX2 Supplementary contact (Auxiliary 2)

3.3.2 Supply voltage

The supply voltage for smart cards was originally 5 volts, with a maximum tolerance of ±10 %.
This voltage, which is the same as that used for conventional TTL circuits, was the standard
value for all commercial smart cards and all applications.

As with other semiconductor components, increasingly smaller structure widths of semi-
conductor components and the need for reduced current consumption has made it necessary to
markedly reduce the operating voltage range. This has been given extra impetus by the mobile
telephone sector. The market-driven demand for reducing the weight of mobile telephones
required changing from 6-V batteries to 3-V types, and since all other components for mobile
telephones were available in 3-V technology, for a while the smart card was the only compo-
nent in a mobile telephone that still needed 5 V. Consequently, an expensive voltage converter

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 90 of 1123

56 Physical and Electrical Properties

was needed to provide electrical power to the smart card, resulting in an avoidable extra
cost.

Consequently, in the international standards the voltage range for smart cards was first
extended to 3–5 V with a tolerance of ±10 %. This yields an effective range of 2.7 V to 5.5 V.
However, it can already be foreseen that this extension will be insufficient. Consequently, the
revised version of ISO/IEC 7816-3 and ISO/IEC 7816-3 Amd. 1 will again be revised in the
relatively near future to permit smart cards using a supply voltage of 1.8 V with a tolerance of
±10 %.

The extended voltage range does not pose a problem for the microprocessor or most types of
memory, particularly since the core voltage for semiconductors built with 0.13-µm technology
is usually only 1.8 V. However, EEPROMs are also integrated into smart card microcontrollers.
These EEPROMs and their associated charge pumps form the greatest obstacle to low-voltage
smart cards. Nevertheless, with a certain amount of technical ingenuity it is certainly possible
to integrate EEPROMs and their charge pumps into microcontrollers that can work over a
supply voltage range of 1.62 to 5.5 V.

The ISO/IEC 7816-3 standard and its amendment define three classes for characterizing
the voltage ranges of smart cards. Class A covers the voltage range of 5 V ±10 %, Class B
covers the range of 3 V ±10 % and Class C covers the range of 1.8 V ±10 %. All three classes
can be used individually or in any desired combination. For instance, if a smart card meets
the requirements for both Class A and Class B, it can be used with both 5-V and 3-V supply
voltages. However, it must be borne in mind that the range between 3.3 V and 4.5 V lies outside
the specified ranges, so the smart card need not necessarily be able to operate in this range.
Nevertheless, smart cards can usually be used without any problems between the upper and
lower limits of the specified voltage ranges.

The ISO/IEC 7816-3 standard imposes yet another equally important requirement, which
is that under no circumstances may the microcontroller of a smart card be damaged if the card
is powered from voltage not supported by the microcontroller. This is an essential requirement
for ensuring the upward compatibility of new types of smart cards with older types of terminals.
The objective is to eliminate the possibility that using a 3-V card in a 5-V terminal, for example,
could destroy the IC in the card.

The three possible voltage ranges defined by ISO/IEC 7816-3 and ISO/IEC 7816-3 Amd. 1
have not yet been used in the area of smart cards for financial transactions. In this area, the
original operating voltage of 5 V ± 10 % still prevails, since stationary terminals can easily
provide a voltage of 5 V without additional technical components.

The situation for smart cards used in the telecommunications area is completely different.
In this area, smart cards that can be used only with 5-V supplies (‘5-V-only cards’) have fully
disappeared. Since the end of the 1990s, 3 V has become the standard operating voltage for
GSM devices. In the area of the new UMTS mobile telephone network, it is already clear that
there will not be any mobile telephones that support 5 V, with the 3-V supply voltage being
supported only for reasons of compatibility. In the medium term, the future standard operating
voltage will be 1.8 V.

The ISO/IEC 7816-3 standard specifies a particular procedure for selecting the supply
voltage, which essentially amounts to trying the voltages for each of the three classes in turn.
As soon as the terminal can receive an ATR, it analyzes the ATR to see whether the smart
card prefers a particular class. If so, the terminal initiates a new activation sequence using the
desired class. If the ATR does not include any information about the voltage range, the smart

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 91 of 1123

3.3 Electrical Properties 57

start

terminate

set electrical
paremeters

for class

1

1

activation
sequence with
value for class

ATR received?

valid ATR?

ATR indicates
desire fora
particular

class?

end

deactivation
seqeunce

all possible
classes tried?

set electrical
parameters for

next class

wait at least
10 ms

terminate

set electrical
parameters for
desired class

2

2

2

no

yes

yes

no
desired class

already
being used?

desired class
possible?

yes

terminate

no

deactivation
sequence

no

use ICC with
current

parameters
3

3

Figure 3.35 Flow chart showing the actions taken by a terminal when selecting the operating voltage
based on the classes specified in ISO/IEC 7816-3 and ISO/IEC 7816-3 Amd. 1. With mobile end-user
equipment, the process is usually started using the lowest supply voltage

card will be used with the voltage with which the first ATR could be received. The selection
procedure is shown in the form of a flow chart in Figure 3.35.

It is already certain that an additional voltage class will be introduced in the future to allow
a supply voltage of 1.2 V. Particularly in the light of the steadily decreasing structure widths

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 92 of 1123

58 Physical and Electrical Properties

of semiconductor devices, in the medium term this could become a typical operating voltage
for microcontrollers.

3.3.3 Supply current

The card’s microcontroller obtains its supply voltage, and thus its supply current, via contact
C1. According to the GSM 11.11 specification, this current may not exceed 10 mA. The current
must lie below a certain value to allow the hardware in the terminal to be designed to supply
a corresponding maximum current. The first version of the ISO/IEC 7816-3 standard in 1989
specified a maximum current of 200 mA with a 5-V supply voltage and 5-MHz clock, but even
then that was too much. Since that time, the values have been significantly reduced and made
dependent on the various supply voltage classes.

The most important factor is that the current consumption of a microcontroller is directly
proportional to both the applied clock frequency and the supply voltage. It is also somewhat
dependent on the temperature of the microcontroller. The current version of ISO/IEC 7816-3
specifies a maximum current of 60 mA for voltage class A (5 V) at a maximum clock frequency
of 5 MHz and a maximum ambient temperature of 50 ◦C.

With regard to smart cards for financial transactions, in the EMV 2000 specification the
ISO/IEC 7816-3 value for the maximum current is reduced from 60 mA to 50 mA, but there
are no other significant supplementary restrictions. In the telecommunications sector, current
consumption has been a critical factor since the very beginning. Consequently, in this sector are
there is a complicated set of rules specifying the maximum current as a function of the clock
rate and operating state of the smart card. A detailed presentation of the maximum current for
the various voltage classes is given in Table 3.2.

A technically interesting innovation has been introduced for smart cards that conform
to the USIM specification. Here two different operating states are specified with regard to
current consumption. The first state encompasses the time from the reset until selection of
the application, while the second state comprises the subsequent application-specific session.
The maximum allowable current consumption in the first state is significantly lower than in
the second state. Furthermore, the mobile telephone can use an application-specific data object
to determine the current demand of the currently selected application. This is because the
current consumption of a smart card is considerably higher when its numeric coprocessor
or internal frequency multiplier is enabled in order to achieve higher performance. With this
mechanism, it would at least be theoretically possible to have a mobile telephone use only those
‘smart applications’ whose current consumption it can adequately support. Unfortunately, the
corresponding USIM specification does not include any procedure to allow a mobile telephone
and a smart card to negotiate the maximum available current, as with PPS. With the current
version of the specification, the only option available to a mobile telephone if its smart card
demands too much current is to deactivate the smart card.

Modern microcontrollers for smart cards have current consumptions on the order of 350 µA
per megahertz of clock frequency. Using this value, we can write the following formula for the
current consumption of a microcontroller as a function of the applied clock frequency or the
clock frequency generated inside the chip:

I = f

2.875
• mA

MHz

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 93 of 1123

3.3 Electrical Properties 59

This formula is useful for making initial estimates, but it must be remembered that the current
consumption depends not only on the clock frequency, but also on the supply voltage, the
temperature and of course the type of chip.

With a supply voltage of 5 V and an assumed current consumption of 60 mA, a smart
card has a power consumption of 300 mW. This value is so low that there is no need to be
concerned about overheating of the chip while it is operating, even though this amount of
power is dissipated over an area of approximately 20 mm2.

All smart card microcontrollers have one or more special power-saving modes. The operat-
ing principle of such modes is based on disabling all of the functional components of the chip
that are not being used. In principle, only the interrupt logic of the I/O interface, the processor
registers and the RAM need to remain energized in order to save the current operating state.
In practice, the processor often remains energized as well, but the ROM and EEPROM are
switched off. When the microcontroller is in this sleep mode, or idle state, its current con-
sumption drops dramatically, since most parts of the chip are isolated from the supply voltage.
In addition to this sleep mode, many smart card microcontrollers support another mode in
which the applied clock can be switched off, called the ‘clock stop mode’. The main purpose
of this mode is to allow the hardware components in the terminal that generate the clock to
be switched off, which makes this mode particularly attractive for battery-operated terminal
devices. According to ISO/IEC 7816-3, the maximum allowable current in the sleep mode
with the clock stopped is 500 µA for all three classes. Even this value is too high for the mobile
telecommunications area. For instance, GSM 11.11 specifies an upper limit of 200 µA for 5-V
smart cards at a clock frequency of 1 MHz.

current consumption

clock rate

0 mA

2 mA

4 mA

6 mA

8 mA

10 mA

0 MHz 1 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Figure 3.36 Microcontroller current consumption versus clock frequency in the normal operating mode
(not the sleep mode). The current consumption in the sleep mode with the clock applied is also linearly
dependent on the clock frequency and is approximately 50 µA at 5 MHz, depending on the microcontroller
type

Another important detail regarding the supply current causes severe headaches for ter-
minal manufacturers who choose to ignore it. All current microcontrollers employ CMOS

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 94 of 1123

60 Physical and Electrical Properties

technology. Under certain conditions, large short-circuit current can occur briefly during tran-
sistor switching processes. These produce current spikes that are many times greater than the
nominal operating current, with durations in the nanosecond range. These spikes can also
occur when the EEPROM charge pump switches on. If the terminal cannot supply such large
currents during these short intervals, the supply voltage will drop below the permitted value.
This can produce a write error in the EEPROM or trigger the undervoltage detector in the
chip.

For this reason, references to such spikes can now be found in practically every relevant
standard and specification. For instance, ISO/IEC 7816-3 requires power sources for class-A
(5-V) cards to be able to handle spikes with a maximum duration of 400 ns and a maximum
amplitude of 100 mA. Assuming a triangular spike, this amounts to a charge of 20 nA–s that
must be supplied. This requirement can be met in a simple manner by connecting a 100-nF
ceramic capacitor between circuit ground and the supply voltage line very close to the contacts
for the card.

3.3.4 External clock

Smart card processors usually do not have internal clock generators. An externally supplied
clock is therefore necessary. This clock also provides the reference for data transmission rates.
According to ISO/IEC 7816-3 and most other standards and specifications, the duty factor of
the clock must be 50 %. The usual tolerance is a duty factor range of 40 to 60 %.

The clock signal applied to the contact is not necessarily the same as the internal clock
provided to the processor. Some microcontrollers have a clock multiplier or divider that may
optionally be inserted between the external and internal clocks. The clock divider frequently
has a division factor of 2, so the internal clock rate is only half of the external clock rate.
This is partly due to the characteristics of the chip hardware and partly because it allow
oscillators already present in terminals to be used as the source of the clock signal for the
chip.

Most smart card microcontrollers allow the clock signal to be switched off when the CPU
is in the sleep mode. In this case, switching off the clock means holding the clock line at a
defined level. Depending on the preference of the chip manufacturer, the ‘off’ level may be
either high or low.

Since smart cards draw only a few microamperes from the clock line, switching off the
clock may at first glance appear somewhat curious. Nevertheless, the amount of power saved
within the terminal is substantial, so it can be worthwhile in certain applications.

3.3.5 Data transmission

If an error occurs during data transmission, it may happen that the terminal and the card
attempt to send data at the same time. This results in a data collision on the connecting I/O
line. Quite apart from the problems this causes at the application level, at the physical level
it could produce currents in the I/O line that might be large enough to destroy the interface
components. To prevent damage to the semiconductors in such an event, the I/O line in the
terminal is tied to the +5-V level via a 20-k� pull-up resistor, as shown in Figure 3.37. In

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 95 of 1123

3.3 Electrical Properties 61

combination with the agreed convention of never sending an active 5-V level, this avoids any
problems that might occur if the two parties attempted to drive the data line to two different
levels as the result of a communications error. Whenever the I/O line has to be set to a +5-V
level during communications, the party in question simply switches its output to a high-
impedance state (tri-state level), and the line is raised to the +5-V level by the pull-up resistor
alone.

+ 5 V

terminal smart card

data

GND

Figure 3.37 The circuit of the I/O channel between the terminal and the smart card

3.3.6 Activation and deactivation sequences

All smart card microcontrollers are protected against electrostatic charges and potentials on
the contacts. In order to avoid undefined states, precisely specified activation and deactivation
sequences are prescribed, and they must be strictly adhered to. This is also reflected in the
relevant part of ISO/IEC 7816-3. These sequences define the electrical aspects of activating
and deactivating the card and have nothing to do with the sequence of establishing mechanical
contact with the card, which is anyhow not specified. Nevertheless, mechanical contact is
first made with the ground contact of the card as an intelligent precaution in order to ensure
well-defined electrical connection and disconnection.

As shown in Figure 3.38, the electrical ground connection must be made first, followed
by the supply voltage connection. After this comes the clock connection. If an attempt were
made to connect the clock before the supply voltage, for example, the microcontroller would
try to draw its entire supply current via the clock line. This could irreversibly damage the chip,
causing complete functional failure. A faulty deactivation sequence could also have similar
effects on the microcontroller.

When the microcontroller is operating, it can be reset via the reset line. This requires a low
level to be first applied to this line, with the actual reset being initiated by the subsequent rising
edge. Such a reset during operation is called a warm reset, as in other computer systems. By
contrast, a cold reset is one that occurs when all the supply lines are switched as specified in
the ISO standard.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 96 of 1123

62 Physical and Electrical Properties

t

Reset

Vcc

t

GND

t

Clock

I/O

t 2 1t

t

t
undefined region

Figure 3.38 Smart card activation and deactivation sequences according to ISO/IEC 7816-3. The in-
tervals t1 and t2 lie in the ranges 400/ f ≤ t1 ≤ 40, 000/ f and t2 ≤ 200/ f

3.4 SMART CARD MICROCONTROLLERS

From an informatics perspective, the central component of a smart card is the microcontroller
embedded under the contacts. It controls, initiates and monitors all of the card’s activities.
The microcontrollers that have been specially designed and developed for this purpose are
complete computers in their own right. This means that they contain processors, memory and
interfaces to the outside world.

bonding pads

charge pump

EEPROM

CPU NPU

busses

I/O

ROM

RAM

bonding pads

Figure 3.39 Possible arrangement of the essential functional components on the die of a simple smart
card microcontroller

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 97 of 1123

3.4 Smart Card Microcontrollers 63

Figure 3.40 Photograph of a PC 83C852 smart card microcontroller with the following functional
components (from top left to bottom right): ROM, EEPROM, processor with coprocessor and RAM.
This chip has an area of 22.3 mm2 and contains 183,000 transistors. Although this chip is no longer
produced, it clearly shows the arrangement of the functional components on the die (Source: Philips)

The most important functional components of a typical smart card microcontroller are
the processor, the address and data buses and the three types of memory (RAM, ROM
and EEPROM). The chip also has an interface unit that provides serial communication
with the outside world. This interface should not be imagined to be a complex functional
unit that can independently transmit and receive data. In the simplest case, the serial in-
terface is just a location that can be addressed by the CPU and is connected to the I/O
contact.

In addition, some manufacturers provide special processors on the chip that act as a sort
of mathematical coprocessor, although the functions provided by these components are lim-
ited to exponential and modulus operations on integers. Both of these operations are fun-
damental and necessary elements of public-key encryption procedures, such as the RSA
algorithm.

The semiconductor technologies that are presently commonly used to produce smart card
microcontrollers work with structure widths of around 0.25 µm, 0.18 µm and 0.13 µm, which
definitely lie in the range of the smallest currently achievable structure widths.

Microcontrollers used in smart cards are not standard, widely available components.
Instead, they have been specifically developed for this purpose, and they are not used
in other applications. There are several important reasons for this, which are described
below.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 98 of 1123

64 Physical and Electrical Properties

Figure 3.41 Relative sizes of functionally identical smart card microcontrollers before and after chip-
area reduction (‘shrink processing’). At the far left is an SLE 44C80 in 1-µm technology, with a surface
area of 21.7 mm2. To its right is an SLE 44C80S in 0.8-µm technology, with a surface area of 10 mm2.
The three gray rectangles show the relative sizes this smart card microcontroller would have if fabricated
in 0.5-µm, 0.35-µm and 0.13-µm technologies (Photos: Infineon Technologies)

Manufacturing costs

The surface area of the microcontroller on the silicon wafer is one of the decisive factors with
regard to manufacturing costs. A large chip area leads to more complicated packaging in the
module, and thus increased costs. The chip area is thus kept as small as possible.

Furthermore, many commercially available standard devices include functions that are not
needed in smart cards. Since these functions take up extra space on the wafer, they can be deleted
from chips designed for smart cards. Although only a small reduction in the manufacturing cost
per chip is achieved by such efforts to minimize the chip size, these small savings add up to a
significant amount when a large number of chips are produced. This justifies the modifications
to the chip design.

Functionality

Due to the need to integrate all the functional components of a computer into a single silicon
chip, the available number of suitable semiconductor devices is extremely limited. Given the
requirements of a minimum chip area, 5-V or 3-V supply voltage and a serial interface on the
chip, all standard devices are effectively ruled out. In addition, the chip must contain a memory
that can be written and erased but that does not require a permanent power supply for data
retention (EEPROM or Flash EEPROM).

Security

Since smart cards are primarily used in security-related areas that require both passive and
active security features in the chip, developing chips specially designed for this purpose is an
unavoidable necessity.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 99 of 1123

3.4 Smart Card Microcontrollers 65

Figure 3.42 An ST16623 smart card microcontroller with the following functional components (from
left to right): ROM, EEPROM, CPU and RAM. Although this chip is no longer manufactured, it clearly
shows the arrangement of the individual functional components on the die
(Source: ST Microelectronics)

Chip area

The size of the microcontroller die strongly affects the fragility of the chip. A larger die is
more likely to break when the card is bent or twisted. Consider a telephone card carried in a
wallet, for instance: the bending stresses on the card and the embedded chip are enormous.
Even the finest hairline crack in the chip is sufficient to render it useless. Therefore, most card
manufacturers impose an upper limit of about 25 mm2 on the chip area and demand that the
layout be as nearly possible square, in order to minimize the risk of fracture.

Availability

The security policy of many card manufacturers is that the microcontrollers they use are not
available on the open market. This makes it considerably more difficult to analyze the chip’s
hardware, since a potential attacker normally does not have access it.

However, this position has been seriously weakened by the general availability of pro-
grammable smart cards, such as Java Card types, and it is generally no longer defensible for
standard applications.

Limiting the types of microcontrollers used to only a few specialized types (and consequently
only a few manufacturers) has the disadvantage that the card manufacturer is highly dependent

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 100 of 1123

66 Physical and Electrical Properties

EEPROM

CPU address / data / control bus

timer

RAM

RNGUART/
USB

DES/
TDES RSA/EC

detectorsPLLreset interrupt

MMU CRC

Figure 3.43 The essential functional logic units of a high-performance smart card microcontroller

on the chip suppliers. If a semiconductor manufacturer experiences production problems, it is
not possible to quickly switch to a different device.

3.4.1 Processor types

The processors used in smart cards are not special designs, but instead proven devices that
have been used in other areas for a long time. In this industry, it is not usual to develop new
processors for special application areas, since this is generally too expensive. In addition, it
would yield a completely unfamiliar processor, for which no suitable function libraries and
development tools would be available from producers of operating systems.

Additionally, smart card processors must be extremely reliable. It is therefore better to rely
on older type processors that have been proven in practice, rather than experimenting with the
latest developments of semiconductor manufacturers. The aerospace industry, which is very
interested in functional security, uses only components that are one or two generations behind
the current state of the art, for the same reasons.

The transistor was invented at the Bell labs in 1947. Intel brought out the first microprocessor
in 1971, with the type designation ‘4004’. It contained 2300 transistors and had a clock
frequency of 108 kHz, 45 machine instructions, 604 bytes of address space and a 4-bit data
bus, yielding a processing capacity of 0.06 MIPS. Since then, the development of integrated
microprocessor components has made huge strides. This is clearly shown by recent products,
such as the 32-bit Pentium IV processor with 42 million transistors on 217 mm2 in 0.13-µm
technology and a 2-GHz clock rate. However, the most technologically advanced processors
are not used in smart cards, for the reasons that have just been stated. A total of 200,000
transistors is typical for an IC with a midrange processing capacity.

Smart card microcontrollers at the lower end of the performance scale usually have an
addressable memory in the range of 6 KB to 30 KB. Under these conditions, using an 8-bit
memory bus does not impose any significant restrictions. The processors used generally have a
CISC (complex-instruction-set computer) architecture, which means that they require several
clock cycles to execute machine instructions and usually have very large instruction sets. The
address range of the 8-bit processors is most often 16 bits, which allows up to 65,536 bytes
to be addressed. The processor instruction sets are based on either the Motorola 6805 or Intel
8051 architecture. The semiconductor manufacturer may add supplementary instructions to
the standard instruction set. Such instructions usually involve additional options for 16-bit

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 101 of 1123

3.4 Smart Card Microcontrollers 67

memory addressing, which exists only in the most rudimentary form in the two instruction sets
that form the basis for the instruction sets of smart card processors.

Processors in the 8-bit families are also available with extensions that allow them to address
additional memory banks, in order to surmount the 64-kB limit. Access to such memory banks is
controlled via special registers that map the memory banks into a specific memory region, where
they can be accessed by the processor. However, this type of non-linear memory addressing has
significant drawbacks. For instance, the relatively complex distribution of program code over
several memory banks significantly complicates the software, thus increasing the likelihood
of errors. Additional memory is also needed for bank switching functionality. Consequently,
memory space expansion using memory banks is primarily a makeshift remedy that is used
while awaiting the transition to processors with larger bit widths.

common
memory region

switch to
memory bank 1

memory bank 1

memory bank 2

switch to
memory bank 2

swap
register (1)

(2)

(3)
(4)

(5)(6)

Figure 3.44 Basic arrangement of a memory divided into several banks and the associated program
flow. This example shows two subroutines located in two different memory banks being called from a
common memory region. The numbers in parentheses indicate the sequence of events in the process

The 16-bit processors include several derivatives of existing 8051 architectures, as well as
company-specific designs, such as the Renesas H8, Philips XA and Samsung CALM devices.
Incidentally, for a long time the H8 was the only 16-bit processor for smart card microcontrollers
with a RISC-like architecture and a corresponding instruction set (‘RISC’ stands for ‘reduced-
instruction-set computer’).

At the upper end of the performance scale for smart card microcontrollers, both 16-bit and
32-bit types are now available. The development trend is quite clearly heading in the direction
of 32-bit processors. Such processors are urgently needed in this performance class, in order to
handle large memories (exceeding the 64-kB boundary) and above all to satisfy the enormous
processing appetites of modern interpreter-based smart card operating systems, such as Java

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 102 of 1123

68 Physical and Electrical Properties

45

Figure 3.45 An SLE 66CX160S smart card microcontroller with an area of 21 mm2, fabricated in
0.6-µm technology with 32 kB of ROM, 16 kB of EEPROM and 1280 bytes of RAM. The two unlabeled
regions on the left-hand side of the chip are the numeric coprocessor and the peripheral components (timer,
random-number generator and CRC coprocessor). The five bonding pads for the electrical connections
to the module contacts can be clearly seen in the photo (Photo: Infineon Technologies)

Card. The key selection criteria for processors include code density, power dissipation and
resistance to attacks.

Among the 32-bit processors, company-specific types are presently becoming established,
but two processor cores used in typical microcontroller markets have also gained an entry into
the smart card realm. They are the MIPS [MIPS] and ARM [ARM] processors.

The first step into the 32-bit league was taken in 1993 with the European CASCADE (‘Chip
Architecture for Smart Card and portable intelligent Devices’) project. One objective of this
project was to provide a high-performance processor for smart cards. The project selected the
ARM 7M RISC processor, which is often used in portable equipment such as video cameras
and PDAs.3 It has a 32-bit architecture and can run at up to 20 MHz with a 3-V supply voltage,

3 Based on [Peyet 97]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 103 of 1123

3.4 Smart Card Microcontrollers 69

while drawing only 40 mA. In 0.8-µm technology, the ARM 7 core has an area of 5.9 mm2

(3.12 × 1.9 mm), with the associated arithmetic processor for the usual public-key algorithms
(RSA, DSA and EC) occupying an additional 2 mm2. The processor has both supervisor and
user modes, and thus supports partitioning of the operating-system code and application code.
Since originally being selected, the ARM 7 has been optimized for smart card applications,
and in the form of the SC 100 (‘secure core’) it has been built into smart card microcontrollers
by various semiconductor manufacturers. The next evolutionary step is a dedicated smart card
variant of the ARM 9, with the type designation SC 200. A similar situation exists with the
MIPS processors, which were also originally developed for other application areas.

Although 32-bit processors take up significantly more die space than 8-bit processors using
the same technology, due to their wider buses and more complex internal structures, they
will be used in increasing numbers in future smart card applications. The processing power
that they offer is indispensable for these applications, so the disadvantages of greater power
consumption and increased chip area can be accepted as the price of progress. Of course,
8-bit processors will not die out in the foreseeable future, since they provide a solid basis for
inexpensive chips at the lower end of the performance scale.

Figure 3.46 Bond-out version of an SLE88CX720P 32-bit smart card microcontroller without final
chip shielding. This microcontroller was fabricated in 0.22-µm technology and has 240 kB of ROM, 80
kB of EEPROM and 8 kB of RAM (Photo: Infineon Technologies)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 104 of 1123

70 Physical and Electrical Properties

3.4.2 Memory types

Besides the processor, the most important components of a microcontroller are various types of
memory, which serve to store program code and data. Since smart card microcontrollers must
be complete computers, they exhibit a characteristic division of memory into RAM, ROM and
EEPROM. The exact division depends very strongly on the chip’s ultimate application area.
In any case, an effort is always made to keep the RAM and EEPROM as small as possible,
since they require the most space per bit.

ROM

10 µm 20 µm 40 µm20 µm

EEPROMEPROM RAMFlash
EEPROM

human
scalp hair

FRAM

14 µm 14 µm14 µm

Figure 3.47 Comparison of the die area of a single bit cell for various types of memory. The dimensions
shown here are approximate and relate to 0.8-µm technology. For comparison, the diameter of the first
planar transistor in 1959 was 764 µm [Buchmann 96, Stix 96], the diameter of the dot at the end of each
sentence in this book is 400 µm, the resolution limit of the human eye is 40 µm, the size of a bacterium
is 0.4–2 µm and the size of a DNA double helix is 0.1 µm

In the case of multiapplication smart cards, which can manage several applications at the
same time, the most commonly used chips have a ROM capacity that is roughly twice as
large as that of the EEPROM, in order to provide enough room to store the complex operating
system code. For single-application smart cards, microcontrollers are selected whose EEPROM
capacity is only slightly larger than the volume of the application data. All variable application
data, along with some parts of the operating system, can thus be stored in EEPROM in order
to make optimum use of the EEPROM, which takes up a relatively large amount of space on
the die and is thus expensive.

Integrating three different types of semiconductor memory into a single silicon die is a
technically difficult task requiring a significant number of production steps and exposure
masks. The different types of memory also occupy markedly different areas, due to their
different structures and operating principles. For example, a RAM cell occupies about four
times as much space as an EEPROM cell, which in turn occupies four times as much space as
a ROM cell. This is why smart card microcontrollers have so little RAM, with 4 kB of RAM
already considered to be large. If you consider that 16 kB of EEPROM or 64 kB of ROM can
be put into the same area, you can understand why.

A new type of memory technology for smart cards has become available relatively recently.
This is called ‘Flash’ EEPROM, and it permits write and erase access times that are much
shorter than with previously available types of EEPROM. The cell size is approximately half
of that of a conventional EEPROM, depending on the particular design.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 105 of 1123

3.4 Smart Card Microcontrollers 71

Memory types for smart card micocontrollers

volatile memory non-volatile memory

ROMRAM

PROM

EPROM

EEPROM

Flash EEPROM

FRAM

Figure 3.48 Classification chart for smart card microcontroller memories. Generally speaking, PROM
and EPROM are no longer used in modern microcontrollers. FRAM is only starting to be used in smart
cards

Table 3.4 Memory types used in smart card microcontrollers. For comparison, the area of
the dot at the end of each sentence in this book is 125,660 µm2

Type of memory Number of possible Write time per Typical cell size with
write/erase cycles memory cell 0.8-µm technology

Volatile memory
RAM unlimited ≈ 70 ns ∼= 1700 µm2

Non-volatile memory
EEPROM 100,000–1,000,000 3–10 ms ≈400 µm2

EPROM 1 (not UV-erasable) ≈50 ms ≈200 µm2

Flash EEPROM ≈10, 000 ≈10 µs ≈200 µm2

FRAM ≈1010 ≈100 ns ≈200 µm2

PROM 1 ≈100 ms —
ROM 0 — ≈100 µm2

The following three numeric examples illustrate these size relationships:

� A simple laser printer works at a resolution of 600 dpi (dots per inch), which means that
the minimum possible dot size is 42.6 µm. Also, the dot at the end of this sentence has a
diameter of 400 µm. If you wanted to print with a resolution equal to a 0.8-µm structure
width, which is still used in semiconductor technology, you need a printer with a resolution
of 32,000 dpi!

� High-capacity hard disk drives can store up to 11.6 billion bits per square inch. Under the
idealized assumption that each bit occupies a square area, this yields an edge length of
0.24 µm for each bit cell. A ROM cell of a smart card microcontroller made using 0.8 µm
technology requires 1700 times as much area for a single bit!

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 106 of 1123

72 Physical and Electrical Properties

� With a CD-ROM, the situation is different. In this case, the storage density is 7.3 MB/cm2.
This corresponds to an edge length of 1.4 µm for single bit cell, assuming square cells.
This is around 80 times less than the area occupied by a ROM cell in 0.8µm technology.
With DVDs (digital versatile disks), a density of 50.5 MB/cm2 is possible. A single bit thus
occupies the area of a square with an edge length of 0.5 µm, which is 400 times smaller than
a single ROM bit cell in 0.8-µm technology.

Table 3.5 Typical surface area distribution for a smart card
microcontroller

Type of component or memory Surface area

CPU and NPU 20 %
ROM 10 %
EEPROM 45 %
RAM 15 %
Miscellaneous 10 %

ROM (read-only memory)

As the name implies, this type of memory can only be read and cannot be written. No supply
voltage is needed to retain data, since the data are ‘hard-wired’ in the memory.

A smart card’s ROM contains most of the operating system routines, as well as various test
and diagnostic functions. These programs are built into the chip by its manufacturer when it
is made. This is done by preparing a ROM mask from the program code and then using this
mask to ‘burn’ the program into the chip using lithographic processes. In this case the data,
which are the same for all chips of a production run, can only be entered into the ROM during
manufacturing.

Figure 3.49 Basic functional structure of a ROM

PROM (programmable read-only memory)

PROM is not used in smart card microcontrollers, though it could offer several advantages. In
contrast to ROM, PROM need not be programmed during manufacturing, but can be written
shortly before the chip is fitted into its module. PROM also does not need any supply voltage

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 107 of 1123

3.4 Smart Card Microcontrollers 73

to retain data. The main reason for not using PROM is that programming a PROM requires
access to the address, data and control buses. This is precisely what should not be possible
with smart cards, because it would allow data to not only be written but also read out. Since
the memory holds confidential data, using PROM is strictly prohibited.

EPROM (erasable programmable read-only memory)

EPROM was often used in the early years of smart card technology, since at that time it was the
only type of memory that could retain data without a supply voltage and could also be written
(although only once per bit). However, since an EPROM can only be erased using UV light, it
cannot be erased in a smart card. This is why EPROM no longer has any practical significance.

The only meaningful use for EPROM is to irreversibly store a chip number during semicon-
ductor production, but this can now be realized using a special type of non-erasable EEPROM.

Figure 3.50 Photo of a ROM cell at 1000× enlargement (left) and 11,200× enlargement (right)
(Source: Giesecke & Devrient)

EEPROM (electrically erasable programmable read-only memory)

EEPROM, which is technically more complex than ROM or RAM, is used in smart cards for all
data and programs that need to be modified or erased at some time. Functionally, an EEPROM
corresponds to the hard disk of a PC, since it retains data in the absence of power and the data
can be altered as necessary. EEPROM is thus non-volatile memory.

In principle, an EEPROM cell is a tiny capacitor that can be charged or discharged. The
charge state can be interrogated by sensing logic. A charged capacitor represents a logic 1,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 108 of 1123

74 Physical and Electrical Properties

while a discharged capacitor represents a logic 0. In order to store one data byte, eight of these
small capacitors are needed, along with suitable sensing circuitry.

The erased state of the EEPROM cell is the critical factor with regard to writing to the
cell. In most types of EEPROM, the erased state is ˚1˚. An EEPROM has the property that an
individual cell can only be programmed from its erased state to its unerased state, which in
this example is ˚0˚. If an EEPROM cell is already in the ˚0˚ state, an entire EEPROM page
must be erased in order to restore that bit to the ˚1˚ state. The algorithm that is usually used
for an EEPROM write routine is described in Listing 3.1.

Listing 3.1 Pseudocode of a routine for writing complete EEPROM pages. If multiple pages or only
part of a page is to be written, this routine should be nested in a higher-level routine. A similar
procedure should be used if a write retry routine must be called in the event of an error. Here the erased
state of the EEPROM is'FF', and the written state is'00'

UpdateEEPROM:
// NewData: data to be written
// StoredData: stored data

Entry point for writing data to an EEPROM
page

IF (NewData = StoredData) THEN
(GOTO UpdateEEPROM Exit)

If the data already stored in the EEPROM page
are the same as the new data, exit the function.

WorkData := NewData XOR StoredData Following the XOR operation, the differences
between the stored data and the new data can
be seen as set bits in the variable WorkData.

WorkData := WorkData AND NewData The AND operation causes the variable
WorkData to be non-zero if the EEPROM page
must be erased before the write process.

IF (WorkData <> 0) THEN
(Erase EEPROM Page
IF (StoredData <>'FF') THEN

(GOTO UpdateEEPROM Errror Exit))

If the variable WorkData is non-zero, the
EEPROM page must be erased before the
write operation. After this operation, a test is
made to see if the EEPROM page was
successfully erased.

Write EEPROM Page with NewData
IF (StoredData <> NewData) THEN

(GOTO UpdateEEPROM Errror Exit)

The EEPROM page can now be written.
Afterwards, a check is made to see whether
the data were successfully written to the
EEPROM.

Update EEPROM Exit:
RETURN

The function has completed successfully.

Update EEPROM Error Exit:
RETURN

An error occurred during execution of the
function.

Figure 3.52 shows the cross-section of an EEPROM cell. The actual structure is somewhat
more complicated, but this simplified diagram is a very useful aid to comprehension.

In order to understand how an EEPROM cell works, you need to understand its semicon-
ductor background. In its simplest form, an EEPROM cell is essentially a modified field-effect
transistor (MOSFET) built on top of a silicon substrate. A MOSFET is formed by first creating
a source and a drain in the substrate and then placing a control gate between them. The current

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 109 of 1123

3.4 Smart Card Microcontrollers 75

Figure 3.51 Photo of an EEPROM cell at 1000× enlargement (left) and 4000× enlargement (right)
(Source: Giesecke & Devrient)

gate
floating gate
tunnel oxide layer

substrate (p-doped)

doped

drain (n-doped)
channel
source (n-)

Figure 3.52 Cross-section of the semiconductor structure of an EEPROM cell

flowing from the source to the drain can be controlled by applying a potential to this gate.
As long as no potential is present on the gate, no current can flow, since there are two diode
junctions (n–p and p–n) between the source and the drain. If a positive potential is applied to
the gate, electrons are drawn towards it from the substrate, forming an electrically conducting
channel between the source and the drain. The FET is then conductive, and a current can flow.

In an EEPROM cell, an additional ‘floating’ gate is located between the control gate and
the substrate. It is not connected to any external voltage source, and the separation between
it and the substrate is very small, on the order of 10 nm. The floating gate can be charged or
discharged via the substrate using the tunnel effect (Fowler–Nordheim effect), which allows
charge carriers to penetrate thin oxide layers that act as insulators. This requires a sufficiently
large potential difference across this oxide layer, which is called the tunnel-oxide layer. Current
flow from the source to the drain is controlled by the charge on the floating gate. This means
that the state of this gate can be interpreted as a logic 0 or a logic 1 according to whether a
current can flow through the gate.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 110 of 1123

76 Physical and Electrical Properties

To charge the floating gate, a high positive voltage is applied to the control gate. This creates
a large potential difference between the substrate and the floating gate, which in turn causes
electrons to tunnel through the oxide layer to the floating gate, with a current that can be
measured in picoamperes. The negative charge on the floating gate produces a high threshold
voltage between the source and the drain, which means that the field-effect transistor is blocked.
No current can flow between the source and the drain. Storing electrons in the floating gate is
thus equivalent to storing data.

charging the EEPROM cell

high threshold voltage
(FET is blocked)

Figure 3.53 Charging an EEPROM cell

discharging the EEPROM cell the EEPROM cell is discharged

low threshold voltage
(FET conducts)

Figure 3.54 Discharging an EEPROM cell

The potential needed to charge the EEPROM cell is about 17 V at the control gate, which is
reduced to about 12 V at the floating gate by capacitive coupling. However, since smart card
microcontrollers work with a supply voltage of only 1.8–5 V, a charge pump is needed to pro-
duce the necessary voltage. In principle, the charge pump is a cascaded voltage-multiplier
circuit. It generates an output voltage of about 25 V from the low input voltage, which
yields a voltage close to the necessary level of 17 V after stabilization. Depending on the
structure of the cell, charging an EEPROM cell requires from 2 to 10 ms per memory page
(1–32 bytes).

To erase an EEPROM cell, a negative voltage is applied to the control gate. This causes
the electrons to leave the floating gate and return to the substrate. The EEPROM cell is then

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 111 of 1123

3.4 Smart Card Microcontrollers 77

5 V

charging the capacitors of the charge pump

≈ 25 V ≈ 25 V

filter / buffer capacitor

Figure 3.55 This schematic diagram shows the operating principle of a charge pump circuit during
charging (left) and discharging (right). These processes are repeated at a high frequency, causing the
charge pump to produces a slightly pulsating DC voltage at its output.

discharged and the threshold voltage between the source and the drain is low, so the FET
conducts.

The floating gate can also be discharged by heat or energetic radiation (such as X-rays or UV
light), which causes it to return to its ‘secure’ state. This state is of fundamental significance
in the design of smart card operating systems, since security barriers can be breached by
deliberately altering ambient conditions if the secure state of the EEPROM is not used to
store critical data. Depending on the technical implementation of an EEPROM cell, the secure
state can correspond to a logic 0 or a logic 1. This is specific to each type of smart card
microcontroller, and it should be confirmed with the manufacturer if necessary.

EEPROM is one of the few types of semiconductor memory having a limited number of
access cycles. It can be read any number of times, but it can be programmed only a limited
number of times. The reason for this limitation can be found in its semiconductor structure.
The life expectancy of an EEPROM depends strongly on the nature, thickness and quality
of the tunnel-oxide layer between the floating gate and the substrate. Since this layer must
be produced very early in the fabrication process, it is exposed to strong thermal stresses in
subsequent fabrication steps. This may cause damage to the oxide layer, which in turn affects
the useful life of the EEPROM cell. During fabrication, and every time the cell is written,
the tunnel-oxide layer absorbs electrons that are not subsequently released. These ‘trapped’
electrons are located close to the channel between the source and the drain, and once they
reach a certain number they have a stronger effect on the threshold potential than the charge
stored in the floating gate. When this happens, the EEPROM cell has reached the end of its
useful life. Although it can still be written, the charge on the floating gate has only a minimal
effect on the characteristics of the channel between the source and the drain, so the threshold
potential always remains the same. The number of possible write/erase cycles varies greatly,
depending on structural details. Typical values range from 100,000 to 1,000,000 cycles over the
entire range of operating temperature and voltage. At room temperature and using an optimum
supply voltage, values that are 10 to 50 times greater can be achieved.

When an EEPROM cell is approaching the end of its life, its data retention time decreases.
The retention time can range from hours to minutes or even seconds. The more exhausted the
EEPROM becomes, i.e., the more electrons that have been absorbed by the tunnel oxide layer,
the shorter is the retention time.

A charged floating gate loses charge over time, due to insulation losses and quantum-
mechanical effects. The time required for this to become noticeable can range from 10 to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 112 of 1123

78 Physical and Electrical Properties

charge in the
EEPROM cell

increasing threshold value
for detecting a written bit,
due to electron enrichment
of the tunnel oxide layer

time1 year 10 years 100 years

Figure 3.56 Displacement of the discharge curve of an EEPROM cell as a function of the number of
executed program/erase cycles

100 years. In this regard, it is interesting to note that a charged floating gate holds 100,000
to 1,000,000 electrons, depending on the implementation. Currently, all semiconductor man-
ufacturers guarantee data retention for 10 years. In order to increase this value, the contents
of EEPROM cells can be periodically refreshed by reprogramming. However, this is only
worthwhile when the data must be stored for a long time.

Flash EEPROM (Flash electrically erasable programmable read-only memory)

Flash EEPROM, which is often simply called ‘Flash memory’, shares the property of non-
volatility with regular EEPROM. This means that it retains data in the absence of a supply
voltage. It is very similar to EEPROM in its construction and operation. The basic differ-
ence between a Flash EEPROM and a normal EEPROM is in the writing process, which
is based on hot-electron injection instead of the Fowler–Nordheim (tunneling) effect. ‘Hot’
electrons are fast electrons produced by a high potential difference between the source and
the drain. Some of these electrons penetrate the tunnel-oxide layer, due to the influence of
a positively charged control gate, and are stored in the floating gate. This reduces the writ-
ing time to around 10 µs, which is a considerable improvement on the value of 2–10 ms for
a regular EEPROM. The name ‘Flash’ comes from this extremely short programming time.
Another advantage is that the programming voltage is only 12 V, compared with 17 V for
EEPROMs.

There are several smart card microcontrollers with Flash EEPROM, which is primarily
used in smart card microcontrollers as a replacement for mask-programmed ROM. Using a
microcontroller with Flash EEPROM can reduce the development time of a smart card project
by several months, since this eliminates the need to generate ROM masks.

Unfortunately, it is extremely difficult to make semiconductor devices having EEPROM
and Flash EEPROM on the same chip. Consequently, in practice a microcontroller with Flash
EEPROM usually does not contain any regular EEPROM. Instead, the EEPROM is replaced
by a Flash EEPROM of around 8 kB, which has the smallest possible page size in order to
minimize the impact on the smart card operating system. The page size of the Flash memory
used to replace the ROM is generally significantly larger (e.g., 64–128 bytes), since the routines
stored in this memory are written only rarely. When the chip is fabricated, a boot loader is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 113 of 1123

3.4 Smart Card Microcontrollers 79

Figure 3.57 An AT89SC168 smart card microcontroller with Flash EEPROM. The functional compo-
nents at the top are (from left to right) the logic unit, RAM and CPU. The EEPROM charge pump and
Flash EEPROM can be seen at the bottom (from left to right) (Source: Atmel)

stored in a small ROM to allow the smart card manufacturer to load program code and data
into the Flash EEPROM.

Current Flash EEPROM cells have a guaranteed data retention period of at least 10 years,
at least 100,000 write/erase cycles and typical page sizes of 8–128 bytes.

There are a few isolated smart card microcontrollers that have unusually large memories,
frequently on the order of 1–2 MB. They are always fabricated using Flash memories with
page sizes of up to 64 kB. This yields significant area savings with regard to the address and
control lines, so memories of this size can be realized in chips having the maximum possible
area of 25 mm2.

FRAM (ferroelectric random-access memory)

FRAM is a new development in semiconductor technology. Despite its name, FRAM is not
volatile like RAM, but instead retains its content without a supply voltage. This type of memory
exploits the properties of ferroelectric materials in order to store data. Its cell structure is similar
to that of EEPROM, but with a ferroelectric material located between the control gate and the
floating gate.

FRAM is potentially ideal for smart card memory, since it has very desirable properties as
a data storage medium. Only 5 V is needed for programming, the programming time is around
100 ns and the maximum number of programming cycles is around one trillion. The integration
density is similar to that of Flash EEPROM. However, FRAM has two disadvantages. The
first is a limited number of read cycles, which makes a type of refresh cycle necessary. The
second, which is more significant, is that producing FRAMs involves processing steps that

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 114 of 1123

80 Physical and Electrical Properties

Figure 3.58 Cross-section of a FRAM cell in 0.35-µm technology. The light horizontal bands are
aluminum metallization layers, and the dark vertical bars are interconnections (‘vias’) between the
layers. The trapezopidal horizontal area at the lower right is the actual FRAM cell. The width of the cell
is approximately 1.5 µm (Source: Fujitsu)

are difficult to master. Up to now, little effort has been made to use this technology in smart
card microcontrollers. However, this could change in a few years, since FRAM technology
possesses all the features needed to allow it to completely supplant EEPROMs, which are
presently used almost exclusively.

RAM (random-access memory)

In smart cards, RAM is the memory used to hold data that are stored or altered during a session.
The number of accesses is unlimited. RAM needs a power supply in order to operate. If power
is switched off or fails temporarily, the content of the RAM is undefined.

A RAM cell consists of several transistors, connected such that they work as a bistable
multivibrator. The state of this multivibrator represents the stored value of one bit in the RAM.
The RAM used in smart cards is static (SRAM), which means that its contents do not have to be
periodically refreshed. It is thus not dependent on an external clock, in contrast to dynamic RAM
(DRAM). It is important for the RAM to be static, since it must be possible to stop the clock
signal to a smart card. With dynamic RAM, this would cause the stored information to be lost.

3.4.3 Supplementary hardware

There are some requirements specific to smart cards that cannot be fully satisfied using software
and thus must be satisfied by supplementary hardware, since they cannot be satisfied using the
hardware of conventional microcontrollers. Consequently, the various manufacturers of smart
card microcontrollers offer a wide range of supplementary functions in the form of on-chip
hardware.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 115 of 1123

3.4 Smart Card Microcontrollers 81

The most commonly used components for supplementary functions are described below.
These components do not necessarily have to all be present in any particular microcontroller.
The components that are present depend strongly on the target application, among other things.
For example, it would be economically unreasonable to integrate an RSA coprocessor into
a microcontroller whose target application uses only symmetric cryptographic algorithms.
Nevertheless, there are a few commercially available microcontrollers that include nearly all
of the components described below.

Another aspect of supplementary functionality with regard to smart card microcontrollers
relates to the general subject of security. Chapter 8, ‘Security Techniques’, contains extensive
descriptions of supplementary functions implemented in hardware that are primarily intended
to counter possible attacks. Consequently, here we describe only those components whose
primary purpose is not enhancing security against attacks.

Hardware-based data transmission (UARTs)

The only communications between a smart card and the outside world take place via a bi-
directional serial interface. Originally, data transmission and reception via this interface were
controlled exclusively by operating system software, without any hardware support. This re-
quires very complex software, and it creates additional potential sources of software errors.
However, the main problem is that the speed of software-based data transmission is limited,
since the speed of the processor is limited. With current processors, the upper limit is rep-
resented by a divider value (clock rate conversion factor) of around 30, which yields a data
transmission rate of approximately 115 kbit/s with a 3.5-MHz clock.

If higher communication speeds are desired or required, it is necessary to use either internal
clock multiplication or a UART (universal asynchronous receiver–transmitter) component. As
the name suggests, such a component is a general-purpose component for transmitting and
receiving data independent of the processor. It is not limited by the speed of the processor, nor
does it need software for communicating at the byte level. Of course, the upper layers of the
data transmission protocol still must be present in the smart card in the form of software, but
the lowest layer is implemented in hardware in the UART.

Current UARTs can generally work with divider values smaller than 372, in line with
ISO/IEC 7816-3, and some of them can transmit and receive data with divider values as small
as 1. There is a wide range of implementations of this function. Some UARTs can transmit
and receive only single bytes, and only support byte retransmission according to the T = 1
protocol in the event of a transmission error. With such UARTs, all the processor has to do is to
supply the necessary data to the UART on time and read it from the UART on time. Reception
of a complete byte can be signaled to the processor by a flag or interrupt. All more advanced
UARTs can transmit or receive multiple bytes in succession. The highest level of technical
capability is presently provided by UARTs that can directly transmit data from the RAM or
store received data in the RAM using direct memory access (DMA), without the intervention
of the processor and in parallel with the other activities of the processor.

It has been technically feasible to implement UARTs in smart card microcontrollers since
the origin of smart cards, but until the end of the 1990s, transmission and reception routines
implemented in ROM software required less physical area on the silicon than a functionally
equivalent UART component. Since the total surface area is a decisive cost factor for smart card

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 116 of 1123

82 Physical and Electrical Properties

microcontrollers, for a long time nearly all semiconductor manufacturers rejected the hardware
approach. However, conditions have changed with increasing integration density. UARTs with
a wide range of capabilities are now standard components of all smart card microcontrollers.

Many new types of microcontrollers also allow a USB interface to be placed on the chip as
an optional component, in addition to a UART. With such an interface, it would be possible to
exchange data with a terminal using the USB protocol with hardware support. Unfortunately,
up to now it is effectively not possible to use this USB hardware extension, since USB on smart
cards is not yet covered by any standard, which means that it is impossible to guarantee the
mutual compatibility of smart cards and terminals.

Timers and watchdogs

Timers in smart card microcontrollers are connected to the internal processor clock or UART
clock (which counts etu’s) via a configurable divider. They usually have a counting range of
16 or (more rarely) 32 bits. Using a timer, the number of clock pulses from the Start command
to the End command can be measured without involving the processor. Most timers can also
be used in the reloadable mode, in which they count down from a predefined value and trigger
an interrupt when the count reaches zero, after which the counter is automatically reset to the
initial value and continues counting.

A watchdog is also often present in the microcontroller. In principle, a watchdog is a timer
that must be regularly reset by an explicit processor instruction, in order to prevent it from
timing out after a present interval and triggering a reset. A watchdog allows the processor
to be reset to a defined state after a definable maximum interval if it becomes trapped in an
endless loop. The primary typical application for watchdogs is in the autonomous controller
environment, where they are highly useful. However, they are not of much use for smart cards,
partly because the software is (hopefully) extremely reliable and partly because the terminal
can always interrupt the processor if it lands in an endless loop. Consequently, watchdogs are
generally not used in smart card microcontrollers.

Internal clock multiplication and generation

The demands on the processing power of smart cards are constantly increasing. This applies to
the processor as well as components that support cryptographic algorithms. One way to meet
these demands is to simply increase the frequency of the clock applied to the microcontroller,
since processing power is proportional to the clock rate. Doubling the clock rate thus doubles the
performance of the processor. However, for reasons of compatibility with applicable standards,
it is generally not possible to increase clock rate above 5 MHz.

To get around this restriction, the internal clock frequency of the microcontroller can be
increased by using a clock multiplier. This is technically realized using a phase-locked loop
(PLL) circuit, which is a well-proven technique, or an RC oscillator. For instance, a smart card
connected to an external 5-MHz clock can be operated internally at 20 MHz, which provides
significant benefits with regard to computation times for complex cryptographic algorithms or
running a Java virtual machine.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 117 of 1123

3.4 Smart Card Microcontrollers 83

Nevertheless, when clock multiplication or an internal clock generator is used, it must be
remembered that a higher clock rate causes a proportional increase in current consumption.
As a rule, the relationship between clock frequency and current consumption is linear, which
means that quadrupling the clock frequency (for example) also quadruples the current con-
sumption. Particularly with battery-operated terminals, increased current consumption is not
desirable.

An elegant solution to this problem is provided by ‘intelligent power management’ in the
microcontroller, which involves communicating the maximum allowable current consumption
to the control logic of the PLL. This logic then adjusts the PLL to operate in a frequency range
that avoids exceeding the prescribed maximum current consumption, without any involvement
by the processor. For instance, if the power-hungry NPU is switched into the processing loop,
the internal clock frequency will be automatically reduced to prevent the current consumption
from rising above the permissible value. Unfortunately, there is a small difficulty with this
solution, which is that the specifications for smart cards for GSM and UMTS telecommuni-
cations (presently) prohibit the use of free-running oscillators in smart card microcontrollers.
This prohibition is based on fear of possible interference with the other circuitry in the mobile
telephone. As long as these portions of the specifications continue to exist, it is not possible to
use either a continuously adjustable internal clock frequency or an oscillator that is completely
independent of the applied clock signal. However, these specifications do allow clock rate
multipliers to be used, as long as the internal and external clock rates have a fixed relationship
governed by predefined multiplication factors.

Processor speed is not the only bottleneck in smart cards. Data transmission rates, which are
specified in the standards, and EEPROM write and erase times do not benefit from increased
clock rates. This somewhat limits the advantage of increasing the clock rate. Nevertheless, it
can be highly beneficial to use a smart card with an elevated internal clock rate for certain
applications, particularly considering that the amount of additional circuitry (and thus area)
required on the chip is small. For this reason, nearly all new types of smart card microcontrollers
have internal clock multiplication capability.

external
clock

overfrequency
detector

overfrequency
indication

underfrequency
indication

underfrequency
detector

PLL
oscillator

CPU/system
clock

NPU clock

timer clock

PLL clock

control logic

divider 1

divider 2

divider 3

Figure 3.59 Block diagram of a possible internal clock multiplication circuit using a PLL oscillator
followed by a divider to supply clock signals to the various microcontroller components. The clock for
the NPU is often taken directly from the PLL without any division. If there are several timers in the
microcontroller, each one usually has its own individually configurable predivider

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 118 of 1123

84 Physical and Electrical Properties

DMA (direct memory access)

DMA components have been used for a long time in the PC realm. DMA makes it possible
to copy or exchange data between two or more memory regions at high speed, independent of
the processor and in part in parallel with the other activities of the processor. It is often also
possible to independently fill a certain memory region with a predefined value. The main effect
of a DMA unit is to offload the processor and thus allow certain routines to be fashioned more
simply. Up to now, high-performance DMA components have been sporadically available in
smart card microcontrollers.

Hardware-based memory management, firewalls and memory management
units (MMUs)

The latest smart card operating systems allow executable machine code to be downloaded
directly to the card.4 This code, which can then be run using a special command, can be
used for purposes such as executing a cryptographic function only known to the card issuer.
However, it is in principle not possible to prevent such downloaded code from including a
function for reading out secret data from the memory. Operating system manufacturers have
been very careful to maintain the confidentiality of their system architectures and program
code. The same is also true of secret keys and algorithms in various applications in the card.
The public availability of such confidential information would have fatal consequences for
an application provider. One administrative solution is to have every new program tested by
an independent organization. However, even this cannot guarantee complete security, since a
program that is not the same as the one that was tested could later be substituted for the certified
program, or the program might be so secret that nobody other than the application provider is
allowed to know about it.

One acceptable solution to this impasse is to equip the smart card microcontroller with
a memory management unit (MMU). Such a unit monitors the memory boundaries of the
current application program while it is running. The permitted memory region is defined
by an operating system routine before the application is called, and it cannot be altered by
the application program while it is running. This ensures that the application is completely
encapsulated and cannot access memory areas forbidden to it. The barriers formed in this
manner are called ‘firewalls’, in analogy to walls used for fire protection in buildings. If an
application attempts to access another memory region from within a region demarcated by
firewalls, it will fundamentally be prevented from doing so, and in addition any such attempt
usually triggers an interrupt so the violation can be immediately detected.

Presently, very few smart card microcontrollers have MMUs, although they have been used
for years in many other areas. Nonetheless, the importance of this supplementary hardware
will greatly increase in the future, since it is the only practical way to securely isolate several
applications sharing a single smart card.

Another aspect of MMUs is their ability to relocate physically addressable memory regions
to any desired location within the logical memory space of the processor. To a certain extent,

4 See also Section 5.10, ‘Smart Card Operating Systems with Downloadable Program Code’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 119 of 1123

3.4 Smart Card Microcontrollers 85

operating system
program code

application
program code

(EEPROM)

working memory
for the application

(RAM)
set address regions
that are allowed for
application access

call the application
program code

 operating system
program functions

channel for
application calls

channel and dispatcher
for function calls

EEPROM, starting address
of the application

RAM, initial address for
application accesses

RAM, final address for
application accesses

EEPROM, final address
of the application

A

B

Figure 3.60 Schematic representation of the operating principles of a hardware-based memory man-
agement unit (MMU) in a smart card microcontroller. Process ‘A’ shows a call to an operating-system
function that is channeled via the MMU and controlled by a task dispatcher. ‘B’ is an example of a
write–read access to an application memory area demarcated by the MMU

this considerably simplifies the memory management function of the smart card operating
system, as well as making it possible to enforce strict isolation of applications with regard
to memory space. Furthermore, if downloadable native code is used, the MMU can be used
to relocate it to a suitable memory area, thus eliminating the need to use the operating system
to manually relocate the executable code.

There is a critical factor that must be considered when using an MMU in a smart card
operating system. With the current state of the technology, all MMUs used in various types of
microcontrollers are specifically designed for the microcontroller in question. Although this
allows the operation and space requirements of the MMU to be optimized, it comes at the
price of portability of the object code. In practice, the particular type of MMU that is used
has significantly greater consequences for the operating system than the type of processor
that is used. Consequently, MMUs are used only very reluctantly in combination with smart
card operating systems for large-scale applications, which must of necessity support several
different hardware platforms.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 120 of 1123

86 Physical and Electrical Properties

logical address space MMU
(memory management unit)

physical address space

operating
system

application 1

application 2

RAM

ROM

'0000''0000'

'07FF'

'08FF'

'6FFF'

'8000'

'FD00'

'1000'

'03FF'

'5FFF'

'0000'

'0000'
EEPROM

start address || length

start address || length

start address || length

start address || length

start address || length

start address || length

start address || length

Figure 3.61 Schematic representation of the operating principles of hardware-based memory manage-
ment (MMU) in a smart card microcontroller with regard to the arrangement of logical and physical
address spaces. This example shows an operating system and two applications that share the physically
available memory via the MMU. For each of these software components, the MMU translates its physical
address space into to a logical address space starting at'0000'

CRC (cyclic redundancy check) calculation unit

CRC codes are still frequently used to secure data or programs by means of an error detection
code. Calculating a CRC in software is relatively slow, due to the large number of bit manip-
ulations required, and the calculation can be readily implemented in hardware on the silicon
of the microcontroller. For this reason, there are microcontrollers for smart cards that have
hardware-based CRC calculation units. Naturally, with such units it must be possible to select
the usual generator polynomials and seed values.

Random number generator (RNG)

Random numbers are frequently needed in smart cards for generating keys and authenticating
smart cards and terminals. For reasons of security, they should be genuine random numbers
rather than pseudo-random numbers, as are commonly produced by typical software-based
random number generators. All new smart card microcontrollers have hardware random number
generators that produce true random numbers.

However, the quality of the numbers produced by such generators must be immune to being
adversely affected by external influences, such as temperature or supply voltage. The hardware

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 121 of 1123

3.4 Smart Card Microcontrollers 87

RND 1

random number
generator

RND 2 RND 3 ... RND n

random
number

Figure 3.62 Example of a random number generator whose outputs are constantly written to a ring
buffer, from which they can be requested as necessary. The gray rectangles mark random numbers that
have already been read once and cannot be requested again. This sort of buffer arrangement is used in
some types of low-speed random number generators

may use such external influences to assist in generating random numbers, but it must not be
possible to predict the generated random numbers by purposefully manipulating one or more
of these parameters.

This is very difficult to implement in silicon, so a different approach is taken. The random
number generator takes various logic states of the processor, such as the clock signal and the
contents of the memory, and applies them to a linear feedback shift register (LFSR) clocked
by a signal that is also generated using several different parameters. In some cases, this clock
can have a frequency several times that of the processor. If the CPU reads the content of
this random number generator, it obtains a relatively good random number that cannot be
ascertained from outside in a deterministic manner. The quality of the random number so
obtained can be improved by supplementary procedures and algorithms. However, what is
important here is that the hardware-based random number generator must basically provide
good random numbers that can withstand the usual tests5 (e.g., FIPS 140–2).

Java accelerator

Within only two years, Java Card has established itself as an industry standard for executable
program code in smart cards. However, since the Java VM must interpret the bytecode rather
than directly execute it, there is an unavoidable loss of execution speed compared with native
machine instructions, which can be directly executed by the processor. However, the widespread
use of Java in smart cards makes it attractive for semiconductor manufacturers to devise
remedies for this processing speed problem. Presently, two different approaches are being
pursued.

In the first approach, large portions of the Java VM are incorporated into the smart card
microcontroller as dedicated hardware components that supplement the actual processor. This
technique thus goes in the direction of picoJava, which means in the direction of a real IC that

5 The quality of random numbers is treated in overview in Section 4.10.2, ‘Testing random numbers’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 122 of 1123

88 Physical and Electrical Properties

can directly process Java bytecode. This solution has two drawbacks, which are that the Java
processor takes up additional space, besides that occupied by the regular processor, and that a
full implementation of a Java VM is relatively costly. The advantage of this solution is its high
execution speed.

In the second approach, the instruction set of the processor is extended to include typical Java
machine instructions. This allows bytecodes supplied by the software VM to be immediately
processed by the extended processor. This variant is implemented using a processor lookup table
containing CPU microinstruction sequences corresponding to the bytecodes to be emulated.
The advantage of this solution relative to the first one is that it requires less additional space
on the chip, although its execution speed is somewhat lower.

Coprocessors for symmetric cryptographic algorithms

Up to now, DES has been used as the standard cryptographic algorithm for financial transaction
systems and telecommunications applications. This large market potential made it worthwhile
for semiconductor manufacturers to fit smart card microcontrollers with their own DES calcu-
lation units. In principle, this is not particularly difficult, since DES was originally designed
to be primarily implemented in hardware. The largest problem in marketing DES calculation
units in microcontrollers is not technical, but instead relates to export restrictions, since in
many countries components with fast, hardware-based DES encryption are subject to a variety
of export regulations.

The advantages of DES calculation units for smart card microcontrollers can be clearly
seen by examining their performance figures. At 3.5 MHz, they can achieve times on the order
of 75 µs for a simple DES operation and 150 µs for a triple-DES operation with two keys.
The calculation time decreases linearly as the clock rate is increased. Besides this, a DES
calculation unit does not require significantly more chip area than that occupied by the ROM
code for a software DES implementation, so it does not increase the size of the die.

In the future, besides DES coprocessors there will also be special coprocessors for AES in
smart card microcontrollers, usually supporting all three possible key lengths (128, 196 and
256 bytes). This is technically just as feasible as a DES coprocessor, since the AES algorithm
is also relatively easy to implement in hardware.

Coprocessors for asymmetric cryptographic algorithms

For calculations in the realm of public-key algorithms, such as RSA and elliptic-curve algo-
rithms, there are specially developed arithmetic units that are placed on the silicon along with
the usual functional components of a smart card microcontroller. These arithmetic units are
only capable of performing several basic calculations that are necessary for these types of
algorithms, namely exponentiation and modulo calculations using large numbers. The speed
of these components, which are optimized for these two arithmetic operations, is due to their
very broad architectures (up to 140 bits). In their particular application area, some of them can
even outperform a powerful PC.

The arithmetic unit is called by the processor, which either passes the data directly or passes
a pointer to the data and then issues an instruction to start the processing. After the task has

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 123 of 1123

3.4 Smart Card Microcontrollers 89

been completed and the result has been stored in RAM, control of the chip is returned to
the processor. In general, these coprocessors can process all key lengths up to 1024 bits for
the RSA algorithm, and in the medium term this will increase to 2048 bits. For elliptic curves,
the usual capacity is up to 160 bits, with 210 bits to come in the future.

Error detection and correction in EEPROM

The essential limitation on the useful life of a smart card is imposed by the EEPROM, with its
technically limited number of possible write/erase cycles. One way to relax this limitation is to
use software to calculate error correction codes for certain heavily used regions of EEPROM,
so that errors can be corrected. It is also possible to implement error correction codes using
hardware circuitry on the chip. In this way, EEPROM errors can be detected and corrected (as
long as they are not too extensive) in a manner that is transparent to the software.

Naturally, additional EEPROM is necessary to store the codes. Since good error correction
codes take up a relatively large amount of memory, the designer is confronted with a strategic
decision: good error detection demands extra memory – up to 50 % of the memory to be
protected. What’s more, the memory for the error correction mechanism can only be used for
this purpose. Although lower performance error correction requires less additional memory,
its usefulness is highly questionable.

There are a few microcontrollers on the market that have EEPROM error detection and
correction implemented in hardware, but they may require extra memory amounting to as
much as half the volume of the memory to be protected to be used for the protection codes. As
a result, the amount of EEPROM available to the user may not be particularly large. However,
the useful life of an EEPROM secured using this mechanism is several times the usual value.

Chip hardware extensions

If the chip hardware must be extended for a particular reason, considerable expenditures of
development effort and costs are required on the part of the manufacturer. There are only
two ways to implement customer-specific hardware: it can be built in silicon on the basis of
an existing chip family, or it can be built as a two-chip system, with all of the associated
drawbacks.

There is an acceptable solution to this problem in the form of a compromise that incorporates
elements of both of these options. A chip with the new hardware unit can be glued directly to
the existing chip and electrically connected to it by bonding wires. This solution benefits from
the fact that most smart card microcontrollers have several I/O ports, and one of these ports
can be used to communicate with the additional chip. The thickness of the resulting sandwich
construction is not significantly greater than that of a normal chip, since the silicon substrates
can be ground away more than usual to make them thinner. A sandwich chip can thus be built
into a standard module without additional effort or costs.

This technique is ideal for satisfying customer-specific needs for additional hardware with-
out expensive redesign. An existing chip can be combined with a new unit, which may for
instance have a special serial interface for testing the security features of other chips. It is
also possible to fit a special ASIC containing a secret cryptographic algorithm into the card.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 124 of 1123

90 Physical and Electrical Properties

chip 1

chip 2
wire bond to a
module contact

wire bond between
the two chips

contact surface adhesive to join
the chips together

Figure 3.63 Cross section of a chip module containing two different chips electrically interconnected
via bonding wires

This method is not cost-effective for large production quantities (in the range of millions of
pieces), since in such cases it is worthwhile to develop special chips. However, for small to
medium piece counts, sandwich chips are a very effective solution for prototype series or special
applications, such as security modules for terminals or smart cards for pay-TV decoders.6

Vertical system integration (VSI) and face-to-face

Another technique used to extend chip hardware by combining semiconductor technologies
that are incompatible on a single chip is vertical system integration (VSI), in which two or

Figure 3.64 Cross-sectional photograph of a VSI stack. The two through contacts between the two
stacked dies can be easily recognized (Source: Giesecke & Devrient)

6 See also [Kuhn]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 125 of 1123

3.5 Contact-type Cards 91

more dies that have been ground thin are bonded together mechanically to form a stack, with
the individual dies also being electrically interconnected by through contacts (‘vias’) formed
using semiconductor fabrication processes. Using VSI, the available chip area can be increased
in units of the original area in a very elegant manner. With two stacked dice, twice the original
area is available, and with four dice there is four times as much area. It is possible to achieve
not only a significant increase in the amount of available memory, but also a considerable
improvement in chip security. This is because it is presently effectively impossible to access
a chip sandwiched between two other dice using analytical equipment of the type used in the
semiconductor industry without destroying the surrounding chips.

A simpler variant of VSI, which in principle can be scaled up as much as desired, is the
face-to-face arrangement of two chips. Here the electrical connections are made by extremely
precise positioning of the two chips, with their upper surfaces (faces) touching.

VSI and face-to-face chip bonding both allow significantly better extensions of chip hard-
ware to be realized than what can be achieved by interconnecting two chips using wire bonds.

3.5 CONTACT-TYPE CARDS

The main difference between a smart card and other types of cards is the embedded micro-
controller. If contacts are used for the power supply and data transmission functions, electrical

C1

C2

C3

C4

C5

C6

C7

C8

top edge of card

left edge of card

I

II

III

IV

ABCDE FGH

Figure 3.65 The positions of the contacts relative to the card body outline (drawing not to scale)

I 10.25 mm maximum A 19.23 mm minimum
II 12.25 mm minimum B 20.93 mm minimum
III 17.87 mm maximum C 21.77 mm maximum
IV 19.87 mm minimum D 23.47 mm minimum

E 24.31 mm maximum
F 26.01 mm minimum
G 26.85 mm maximum
H 28.55 mm minimum

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 126 of 1123

92 Physical and Electrical Properties

2 mm

1.7 mm

Figure 3.66 Minimum contact dimensions as specified in ISO 7816-2

connections are required. These consist of six or eight gold-plated contacts, which can be seen
on every standard smart card. The locations of these contacts with respect to the card body,
and their sizes, are specified by the ISO 7816-2 standard.

In France, a national standard generated by AFNOR was already in use long before ISO
7816-2 was issued. It specifies a slightly higher location for the contacts than the ISO standard.
This location is also included in the ISO standard as a ‘transitional contacts location’, but the
standard recommends that this location not be used in the future. However, since there are still
many cards in France that use the ‘transitional’ position, it is not likely that it will disappear
quickly.

The absolute position of the contact field is in the upper left corner of the card body. The
is clearly shown in dimensioned drawing shown in Figure 3.65. The minimum dimensions of
any contact are 1.7 mm by 2 mm (height by width). The maximum dimensions of any contact
are not specified, but they are of course limited by the fact that the individual contacts must be
electrically isolated from each other.

Figure 3.67 The various possible arrangements for the chip, embossing field and magnetic stripe,
according to the ISO 7816-2 standard

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 127 of 1123

3.6 Contactless Cards 93

Figure 3.68 An example of a card with a chip, magnetic stripe, signature area and embossing (Source:
Giesecke & Devrient)

The position of the module within the card body is specified in the standard. The locations
of the magnetic stripe area and the area reserved for embossing are also exactly specified (see
ISO 7811). All three of these components may be present on a single card. However, in this
case the following mutual relationships must be taken into account: (a) if only a chip and an
embossing field are present, they may be located on the same side or on opposite sides of the
card; (b) if a magnetic stripe is also present, it and the embossing area must be located on
opposite sides of the card.

3.6 CONTACTLESS CARDS

As already described in Section 2.3.3, contactless cards do not require any electrical connection
between the smart card and the card terminal in order to transfer energy and data over a short
distance. The most important advantages of the contactless card technology are described in
Section 2.3.3. In this section we examine the technology and operating principles of contactless
cards in more detail. The techniques used with contactless cards for transferring energy and
data are not new. They have been common knowledge for many years in radio-frequency
identification (RFID) systems, which have been used for a variety of applications, such as
animal implants and transponders for electronic anti-start systems for vehicles. There are
many techniques for identifying persons or objects at short or even long distances based on
radio techniques, and in particular on radar techniques. Among the large variety of technical
possibilities, only a small number are suitable for use in smart cards in the ID-1 format (to
which we restrict our attention), since all of the functional components must be housed in a
flexible card that is only 0.76 mm thick. For instance, fitting flexible batteries into the card
body remains an unsolved problem for mass-produced cards. Although flexible batteries with
suitable thickness are now available, there is no experience with using such batteries in the field
or in mass production. Consequently, we are still limited to passive techniques in which the
energy to power the card must be extracted from the electromagnetic field of the card terminal.
This limits the useful range to around 1 m.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 128 of 1123

94 Physical and Electrical Properties

To make it easier to understand the variety of techniques used, they can be classified
according to various parameters. One possibility is to classify them according to the method
used to transfer energy and data. The most commonly used methods are transmission using
radio waves or microwaves, optical transmission, capacitive coupling and inductive coupling.
Capacitive and inductive coupling are best suited to the flat shape of a smart card lacking an
internal source of power. The systems presently available on the market utilize these methods
exclusively, which are also the only ones considered in the relevant group of ISO/IEC standards
(10 536, 11 443 and 15 693). Consequently, in this book we limit ourselves to these methods.

Just as with contact-type smart cards, a system using contactless cards consists of at least
two components, namely a card and a compatible terminal. The terminal can act as a reader or
a reader/writer, according to the technology used. As a rule, the terminal includes an additional
interface, via which it can communicate with a background system.

The following four functions are necessary to allow a contactless card to communicate with
a terminal:

� energy transfer to the card for powering the integrated circuit

� clock signal transfer

� data transfer to the smart card

� data transfer from the smart card.

terminal
contactless
smart card

power

clock

data

data

Figure 3.69 The necessary energy and data transfers between a terminal and a contactless smart card

Many different concepts based on experience with RFID systems have been developed to
satisfy these requirements. Most of them are specifically designed for particular applications.
For instance, there is a considerable difference between systems where the cards are only a
few millimeters away from the terminal in normal use and systems where the cards can by
up to a meter away from the terminal. Naturally, when many different solutions specifically
designed and optimized for particular applications are developed, they are inevitably mutually
incompatible.

Inductive coupling

Inductive coupling is presently the most widely used technique for contactless smart cards. It
can be used to transfer both energy and data. Various requirements and constraints, such as
radio licensing regulations, have resulted in a variety of actual implementations.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 129 of 1123

3.6 Contactless Cards 95

Figure 3.70 Basic construction of a contactless smart card with inductive coupling

With some applications, such as access control, it is sufficient to only be able to read the data
stored in the cards, which makes technically simple solutions possible. Due to their low power
consumption (a few tens of microwatts), the usable range of such cards extends to approximately
one meter. Their memory capacity is usually only several hundred bits. If data must also be
written, the power consumption rises to more than 100 µW. As a consequence, the range is
limited to around 10 cm in the writing mode, since licensing restrictions prevent the emitted
power of the writing equipment from being arbitrarily increased. The power consumption of
microprocessor cards is even greater and is typically 100 mW. The distance from the terminal
is thus even more restricted.

Figure 3.71 Inlay foil for a contactless smart card with inductive coupling using an etched coil

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 130 of 1123

96 Physical and Electrical Properties

Independent of their range and power consumption, all cards that employ inductive cou-
pling work on the same principle. One or more coils (usually with large enclosed areas) are
incorporated into the card body to act as coupling components for energy and data transfers,
along with one or more chips.

Energy transfer

Almost without exception, contactless smart cards are used passively. This means that all of
the energy needed for operating the chip in the smart card must be transferred from the reader
to the card.

This energy transfer is based on the principle of a loosely coupled transformer. A strong
high-frequency magnetic field is generated by a coil in the terminal in order to transfer the
energy. The most commonly used frequencies are <135 kHz and 13.56 MHz, which correspond
to wavelengths of 2400 m and 22 m, respectively. The wavelengths of the electromagnetic fields
are thus several times greater than the distance from the card to the terminal, which means
that the card is located in the near field of the terminal. This allows the loosely coupled
transformer model to be used. If a contactless card is brought close to the terminal, a portion
of the terminal’s magnetic field passes through the coil in the card and induces a voltage Ui in
this coil. This voltage is rectified to provide power to the chip. Since the coupling between the
coils in the terminal and the card is very weak, the efficiency of this arrangement is very low.
A high current level is thus required in the terminal coil to achieve the necessary field strength.
This is achieved by connecting a capacitor CT in parallel with the coil LT, with the value of
the capacitor chosen such that the coil and capacitor form a parallel-resonant network whose
resonant frequency matches the frequency of the transfer signal.

UG

LT LC Ui

I0

Ri

CT

terminal smart card

~
C1 C2 chip

Figure 3.72 Using inductive coupling to supply energy to a smart card

Coil LC and capacitor C1 in the card also form a resonant circuit with the same resonant
frequency. The voltage induced in the card is proportional to the signal frequency, the number
of windings of coil LC and the enclosed area of the coil. This means that the number of turns
needed for the coil drops with increasing signal frequency. At 125 kHz, it is 100 to 1000 turns,
while at 13.56 MHz it is only 3 to 10.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 131 of 1123

3.6 Contactless Cards 97

Data transfer

For transferring data from the terminal to the card, all known digital modulation techniques
can be used. The most commonly used techniques are:

� ASK (amplitude-shift keying)

� FSK (frequency-shift keying)

� PSK (phase-shift keying).

ASK and PSK are usually used, since these are especially easy to demodulate.
In the other direction, from the smart card to the terminal, a type of amplitude modulation

is used. It is generated by using the data signal to digitally alter a load in the card (load
modulation). If a smart card tuned to the resonant frequency of the terminal is brought into the
near field of the terminal, it draws energy from this field as previously described. This causes the
current I0 in the coupling coil of the terminal to increase, which can be detected as an increased
voltage drop across an internal resistor Ri. The smart card can thus vary (amplitude modulate)
the voltage U0 in the terminal by varying the load on its coil, for example by switching the
load resistor R2 into and out of the circuit as shown in Figure 3.73. If the switching of resistor
R2 is controlled by the data signal, the data can be detected and evaluated in the terminal.

U

LCLT

G

U0

I0

Ri

R1

data

terminal smart card

R2

~

Figure 3.73 A sample circuit illustrating the principle of load modulation, which is used in contactless
smart cards for data transmission

Due to the low degree of coupling between the coils in the terminal and the card, the
voltage variations induced in the terminal by load modulation are very small. In practice,
the amplitude of the usable signal is only a few millivolts. This can only be detected using
sophisticated circuitry, since it is overlaid by the significantly larger signal (around 80 dB)
transmitted by the terminal. However, if a subcarrier frequency is employed with a frequency
of fs, the received data signal appears in the terminal as two sidebands at the frequencies
fc ± fs. These can be isolated from the significantly stronger terminal signal by filtering
with a bandpass filter and then amplified. After this, they can readily be demodulated. The

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 132 of 1123

98 Physical and Electrical Properties

-80 dB

0 dB

Frequency ff
H

Voltage U

terminal
carrier signal

modulated
sideband

modulated
sideband

sc

f = 13.56 Mhzc

13.56 MHz - f sc13.56 MHz + f

Figure 3.74 Load modulation using a subcarrier produces two sidebands separated from the transmis-
sion frequency of the terminal by the value of the subcarrier frequency fs. The information is contained
in the sidebands of the two subcarrier sidebands, which are produced by modulation of the subcarrier
(based on Klaus Finkenzeller [Finkenzeller 02])

disadvantage of modulation with a subcarrier is that it requires significantly more bandwidth
than direct modulation. It can thus only be used in a limited number of frequency bands.

Capacitive coupling

If the distance between the card and the terminal is very small, it is possible to transfer data
using capacitive coupling. With this type of coupling, conductive surfaces are incorporated

~

coupling surface
of the terminal

coupling surface
of the card

electrical
field

chip

Figure 3.75 Operating principle of capacitive coupling. The coupling arises from the alternating elec-
trical field between two parallel, electrically conductive surfaces in the card and terminal

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 133 of 1123

3.6 Contactless Cards 99

into the card body and the terminal such that they act as the plates of a capacitor when the
card is inserted in the terminal or placed on the terminal. The capacitance that can be obtained
essentially depends on the sizes of the coupling surfaces and their separation. The maximum
size is thus limited by the dimensions of the card, while the minimum separation is determined
by the insulation required between the coupling surfaces. With an acceptable level of cost and
effort, a usable capacitance of several tens of picofarads can be obtained. This is insufficient
for transferring enough energy to power a microprocessor. Consequently, this method is used
only for data transmission, with the operating power being transferred inductively. This mixed
method has been standardized in ISO/IEC 10 536 for ‘close coupling cards’, and it is fully
described in Section 3.6.1. As its name says, this method is limited to small coupling distances.

Collision avoidance

When contactless cards are used, there is always a possibility that two or more cards may be
located in the range of a terminal at the same time. This is especially true for systems with
large effective ranges, but it can even happen with systems with relatively small ranges – for
instance, two cards might be lying on top of each other and thus be activated concurrently
by the terminal. All cards within range of a particular terminal will attempt to respond to
commands from the terminal. However, simultaneous data transmissions will unavoidably
cause interference and loss of data if suitable countermeasures are not taken. The technical
methods used to ensure interference-free data exchanges with multiple cards within the effective
range of a card terminal are called collision-avoidance methods or anticollision methods.

card 3

card 2

card 1

terminal

Figure 3.76 Concurrent operation of several cards within the range of a terminal (multiple access)
requires using an anticollision method to ensure interference-free data exchanges

Exchanging data between many mobile units and a base station is a frequently encountered
situation in communications engineering, and it is referred to as ‘multiple access’. A typical

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 134 of 1123

100 Physical and Electrical Properties

Anticollision methods

SDMA
(space division multiple access)

TDMA
(time division multiple access)

FDMA
(frequency division multiple access)

CDMA
(code division multiple access)

Figure 3.77 The four types of anticollision methods

example is a mobile telephone network, in which all users located in a particular radio cell
concurrently access a single base station. Numerous methods have been developed to allow the
signals of the individual users to be distinguished from each other. These anticollision methods
can be classified into four types, as shown in Figure 3.77.

Space division multiple access (SDMA) attempts to limit or scan the operational area of a
terminal in such a way that only one card can be acquired at any given time. Since this method
requires very complicated and correspondingly expensive aerials, it is not used for contactless
cards.

With time division multiple access (TDMA), measures are taken to ensure that the individual
cards have different timing behavior so that they can be separately identified and individually
addressed by the terminal. This is the most commonly used method, and it has many variants.
Two of them, which are standardized in ISO/IEC 14 433-3 for ‘proximity cards’, are described
extensively in Section 3.6.3.

With frequency division multiple access (FDMA), different carrier frequencies are pro-
vided concurrently for multiple transmission channels. However, this technique is technically
complicated and thus expensive. Consequently, it is not used for contactless cards. The same
considerations also apply to code division multiple access (CDMA).

The present state of standardization

Given the many different techniques used by various manufacturers, standardization (which
was initiated in 1988 by ISO/IEC) proved to be difficult and time consuming, as was expected.
The responsible working group had the task of defining a standard for contactless cards that is
largely compatible with other standards for identification cards. This means that a contactless
card can also have other functional components, such as a magnetic stripe, embossing and
chip contacts. This allows contactless cards to also be used in existing systems that employ
other technologies. As already described, the technical options for transferring energy and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 135 of 1123

3.6 Contactless Cards 101

data without using contacts essentially depend on the desired distance between the card and
the terminal for reading and writing data. It was therefore not possible to create a single
standard that provides a single technical solution to all the requirements arising from various
applications.

Presently, three different standards describing three different reading ranges have been com-
pleted. Each of these standards in turn permits various technical solutions, since the members
of the standardization committee could not agree on a single solution. In order to achieve
interoperability among the various options, card terminals must support all of these options.

Table 3.6 Completed ISO/IEC standards for contactless smart cards

Standard Type of contactless smart card Range

ISO/IEC 10 536 Close-coupling card Up to approx. 1 cm
ISO/IEC 14 443 Proximity coupling card (PICC) Up to approx. 10 cm
ISO/IEC 15 693 Vicinity coupling card (VICC) Up to approx. 1 m

Standardization started with ‘close-coupling’ cards (ISO/IEC 10536), since the micropro-
cessors available at that time had relatively high power consumption, making energy transfer
over a relatively large distance impossible. The essential parts of this standard have been com-
pleted and approved and are described in the following section. In use, this type of card offers
only minimal advantages compared with normal contact-type cards, since it must be inserted
into a terminal or at least precisely placed on a surface of a card terminal. Furthermore, the
structure of the card is complex, which results in high manufacturing costs. Consequently, up
to now this type of system has hardly established a significant position in the market.

3.6.1 Close-coupling cards: ISO/IEC 10536

In the ISO/IEC 10536 standard for close-coupling cards, this application is designated as ‘slot
or surface operation’, which expresses the fact that in use the card must be inserted into a slot
or laid on a marked surface of the terminal. The ISO/IEC 10536 standard , which bears the
title ‘Identification Cards – Contactless Integrated Circuit(s) Cards’, consists of four parts:

� Part 1: Physical characteristics

� Part 2: Dimension and location of coupling areas

� Part 3: Electronic signals and reset procedures

� Part 4: Answer to reset and transmission protocols.

Parts 1 through 3 have already become international standards, while Part 4 is still in prepara-
tion. The important ingoing requirements for these standards were the following:

� extensive compatibility with ISO 7816

� operation with arbitrary orientation of the card to the reader

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 136 of 1123

102 Physical and Electrical Properties

� transfer carrier frequency between 3 and 5 MHz

� bidirectional data transmission with inductive or capacitive coupling

� card power consumption less than 150 mW (adequate for microprocessor chips).

Part 1 of the standard defines the physical characteristics of the card. Essentially the same
requirements are imposed as for contact-type smart cards, particularly with regard to bending
and twisting. One difference is in the tolerance to electrostatic discharge. Since a contactless
card does not require any conductive path between the card surface and the integrated circuit
embedded in the card body, it is largely insensitive to damage from ESD. A test voltage of
10 kV is thus specified in the standard, compared with 1.5 kV for cards with contacts.

Part 2 of the standard specifies the locations and dimensions of the coupling components.
Since it was not possible to agree on a single method, both capacitive and inductive coupling

3

1 1

2 2 2 2

Figure 3.78 The arrangement of the coupling components of a contactless smart card: (1) coupling
coils in the card body, (2) capacitive coupling surfaces in the card body and (3) a set of contacts for the
chip

5 5 5 5

4 4

4 4

Figure 3.79 The arrangement of the coupling components in a terminal for contactless smart cards:
(4) coupling coils in the terminal, (5) capacitive coupling surfaces in the terminal

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 137 of 1123

3.6 Contactless Cards 103

components are defined in such a way that both can be implemented together in a sin-
gle card or terminal. Examples of this are shown in Figures 3.78 and 3.79. The chosen
arrangement is intended to ensure orientation independence with suitable excitation in the
terminal.

Part 3 of the standard, published in 1996, is the most important part to date. It describes the
modulation methods to be used for capacitive and inductive data transmission, since agree-
ment on a single method could not be achieved. A terminal that complies with the standard
must therefore support both methods, and both methods may be implemented in a single
card.

Energy transfer

Energy is transferred by a sinusoidal alternating magnetic field with a frequency of 4.9152 MHz,
which passes through one or more inductive coupling surfaces, depending on how many
coupling coils are present in the card. The terminal must generate all four fields.

Alternating magnetic fields F1 and F2,which pass through areas H1 and H2, have a mutual
phase difference of 180 degrees, as do fields F3 and F4, which pass through areas H3 and
H4. The phase difference between fields F1 and F3 and between F2 and F4 is 90 degrees.
Each magnetic field is strong enough to transfer at least 150 mW to the card. However, the card
should not consume more than 200 mW. This complicated definition of the magnetic fields is
necessary to achieve the same data transfer characteristics for four different card orientations,
as explained below.

E1 E2 E3 E4

H1 H3

H2 H4

26.30 mm

31.80 mm

37.30 mm

48.30 mm

53.80 mm

59.30 mm

15.12 mm

26.99 mm

38.86 mm

Ex

9 mm

12 mm

Hx

11 mm

5 mm

Figure 3.80 Locations and sizes of the coupling areas in the contactless card and the terminal

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 138 of 1123

104 Physical and Electrical Properties

3.6.1.1 Inductive data transfer

Different types of modulation are used for data transmission in the two directions.

Data transmission from the card to the terminal

For data transmission from the card to the terminal, a 307.2 kHz subcarrier is first generated
using load modulation (see Figure 3.81), with a load variation of at least 10 %. Data modulation
is achieved by switching the phase of the subcarrier by 180 degrees, producing two phase states
that can be interpreted as logic 1 and logic 0. The initial state after the magnetic field has been
established is defined to be logic 1. This initial state (interval t3 in Figure 3.84) remains stable
for at least 2 ms. Following this, every subcarrier phase shift represents a reversal of the logic
state, yielding non-return to zero (NRZ) coding. The data transmission rate, at least for the
ATR, is 9600 bits per second.

+ H

- H

1 1 1 0 0 0 0 0 0 1 1 0 0

t

phase changes

subcarrier carrier frequency

φ180°

φ0°

Figure 3.81 Operating principle of phase modulation for data transmission with a contactless smart
card. The upper diagram shows the alternating magnetic field, and the associated phase states are shown
in the lower diagram. The carrier frequency is 4.9152 MHz, and the subcarrier frequency is 307.2 kHz

Data transmission from the terminal to the card

To transfer data from the terminal to the card, the four alternating magnetic fields F1 through
F4, which pass through coupling surfaces H1 through H4, are phase modulated using
phase-shift keying (PSK). This causes the phase of all four fields to simultaneously shift by
90 degrees. In this way, two phase states A and A'are defined. Depending on the orientation
of the card relative to the terminal, this yields two different constellations of phase states, as
shown in Figures 3.82 and 3.83.

Since the card must work in all four possible orientations with respect to the terminal, the
initial state (intervals t2 and t3 in Figure 3.84) is interpreted as a logic 1, regardless of which

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 139 of 1123

3.6 Contactless Cards 105

State A'90°

90°

 F1

 F3

F1

F3

φ

φφ

φ

State A

φF1

 = - 90°φ φF3 F1 = - 90°φ φF3 F3

'

'

 = + 90°φ φF1 F1
''

Figure 3.82 The first phase modulation variant for data transmission with a contactless chip card. The
four arrows represent phase vectors

State A'90°

90°

 F1

 F3

F1

F3

φ

φφ

φ'

State A

' φF1

 = + 90°φ φF3 F1 = + 90°φ φF3 F3
'

 = - 90°φ φF1 F1
'

Figure 3.83 The second phase modulation variant for data transmission with a contactless chip card.
The four arrows represent phase vectors

of the indicated alternatives is actually present. Following this, every phase change represents
a reversal of the logic state, which again produces an NRZ encoding.

3.6.1.2 Capacitive data transfer

For capacitive data transmission from the card to the terminal, one pair of coupling surfaces
is used, depending on the orientation of the card relative to the terminal – either E1 and E2
or E3 and E4 as shown in Figure 3.80. The other pair of coupling surfaces can be used for
data transmission in the opposite direction. Since the card sends the ATR via one particular
pair of coupling surfaces, the terminal can recognize the relative orientation of the card. The
maximum potential difference between a pair of coupling surfaces is limited to 10 V, but it must
at least exceed the minimum differential voltage of the receiver (± 300 mV). Differential NRZ
encoding is used for data transmission. The transmitter generates the encoding by reversing the
voltage between surfaces E1 and E2 or E3 and E4. The state representing a logic 1 is again
established in interval t3 (see Figure 3.84). Following this, every polarity reversal represents a
change in the logic state.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 140 of 1123

106 Physical and Electrical Properties

energy field

t

t

communications
to the contactless
smart card

communications
from the contactless
smart card

active

inactive

tt 0 t 2

Figure 3.84 Timing diagram for data transmission with a contactless smart card according to ISO/IEC
10536 3. Here t0 ≥ 8 ms, t1 ≤ 0.2 ms, t2 = 8 ms, t3 = 2 ms and t4 ≤ 30 ms

Initial state and answer to reset (ATR)

In order for the terminal to unambiguously determine the type of data transmission and the
orientation of the card at the beginning of a data exchange, certain time intervals must be
defined for initiating energy and data transfers. Figure 3.84 shows the constraints and values
for the reset recovery time t0, power-up time t1, initialization time t2, stable logic state time t3
and answer to reset time t4.

Minimum reset recovery time: t0

If a reset is to be produced by switching the energy-transfer field off and back on, the time
between switching the field off and then on again, during which no energy is transferred, must
be equal to or greater than 8 ms.

Maximum power-up time: t1

The time required for the energy-transfer field produced by the terminal to be established must
be less than or equal to 0.2 ms.

Initialization time: t2

The initialization time, which is the time allowed for the card to attain a stable operating state,
is 8 ms.

Stable logic state time: t3

Prior to the Answer to Reset, the logic state is held at the logic 1 level for 2 ms. During this
interval, the card and the terminal are set to logic 1 for inductive data transmission.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 141 of 1123

3.6 Contactless Cards 107

Maximum response time for ATR: t4

The card must start sending the ATR before 30 ms have elapsed. The card can use the
ATR to indicate that the conditions for subsequent operation must be changed with re-
gard to energy level, data transmission rate or the frequency of the fields. The ‘maneuver-
ing room’ provided here can be utilized according to the requirements of the application.
For instance, a significantly higher data transmission rate can be selected for a time-critical
application.

3.6.2 Remote-coupling cards

The term ‘cards with remote coupling’ encompasses smart cards that can transmit data over a
distance of a few centimeters to approximately one meter from the terminal. This capability is
of great significance for all applications in which data should be exchanged between the card
and the terminal without requiring the card user to take the card in his or her hand and insert
it into a terminal. Some sample applications are:

� access control

� vehicle identification

� electronic driver’s licenses

� ski passes

� airline tickets

� electronic purses

� baggage identification.

The variety of applications suggests that there are a large number of possible technical im-
plementations. In the preparation of the standards, an attempt was made to limit the number

Remote coupling cards

proximity coupling cards (PICC)
ISO/IEC 14 443
typical range 10 cm

vicinity coupling cards (VICC)
ISO/IEC 15 693
typical range 1 m

Figure 3.85 For remote-coupling cards, the ISO/IEC standards distinguish between proximity cards
and vicinity cards

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 142 of 1123

108 Physical and Electrical Properties

of technical variants, with only mixed success. International standards ISO/IEC 14 443 and
ISO/IEC 15 633 cover the ranges of up to 10 cm and 1 m, respectively.

3.6.3 Proximity integrated circuit(s) cards: ISO/IEC 14 443

The ISO/IEC 14 443 standard, which is titled ‘Identification cards – Contactless integrated
circuit(s) cards – Proximity cards’, describes the properties and operation modes of contact-
less smart cards with a range of approximately 10 cm. The amount of energy that can be
transferred over this range is sufficient to power a microprocessor. In order to allow this type
of card to be used with existing infrastructures for contact-type cards, they often have con-
tacts in addition to the coupling components for contactless operation, so that they can be
used with or without contacts as desired. This type of card is called a ‘dual-interface card’ or
‘combicard’.

The ISO/IEC 14 443 standard consists of the following parts:

� Part 1: Physical characteristics

� Part 2: Radio frequency power and signal interface

� Part 3: Initialization and anticollision

� Part 4: Transmission protocol.

Physical characteristics

The physical characteristics of proximity cards, which are defined in Part 1 of the ISO/IEC
standard for proximity integrated circuit cards (PICCs), essentially correspond to the
requirements specified for smart cards with contacts. It is to be expected that in use, proximity
cards will be exposed to electromagnetic fields corresponding to those intended to be used
for the operation of other types of cards that comply with standards such as ISO/IEC 10 536
or ISO/IEC 15 693. The cards must not suffer permanent damage as the result of exposure
to such fields or the environmental stress of normal ambient electromagnetic fields. In order
to ensure this, the standard specifies maximum values for stresses due to alternating electric
and magnetic fields that the cards must withstand without damage. It is the task of the
semiconductor manufacturer to design the chips such that they meet these requirements.

Radio-frequency power and signal interface

Proximity cards work on the principle of inductive coupling. Operating power and data are both
transferred using an alternating magnetic field generated by the card terminal. In the ISO/IEC
14 443 standard, the card terminal is called a ‘proximity coupling device’ (PCD). For the sake
of readability, in the following description the more general term ‘terminal’ and ‘PCD’ are
used interchangeably.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 143 of 1123

3.6 Contactless Cards 109

6

8

4

2

0
0.1

Hmax

Hmin

H(x)

x

Am

m

Figure 3.86 Typical magnetic field strength characteristic of a terminal for proximity cards (PCD)

The transmission frequency of the PCD is set to fC = 13.56 MHz ±7 kHz, with a magnetic
field strength H of at least 1.5 A/m and at most 7.5 A/m (effective value). The typical field
strength versus distance is shown in Figure 3.86.

The range of the system can be estimated from the field strength of the PCD and the
activation field strength of a proximity card (PICC). With the typical field strength curve
shown in Figure 3.86 and an assumed PICC activation field strength of 1.5 W/m, we obtain a
range of approximately 10 cm.

Signal and communication interface

Two different communication interfaces are defined in the ISO/IEC 14 443 standard, which
are designated Type A and Type B. The reason for standardizing two different methods was
not technical, but rather that at the time that ISO/IEC 14 443 was being prepared, various
designs from different manufacturers were already in existence. As is often the case with
standardization, the differing interests of the persons involved made it impossible for them
to agree on a single method, although that would have been technically desirable. The two
methods mentioned above were agreed on as a compromise, and they were published as an
international standard in June 2001. Even with the already existing methods, it is necessary for
card terminals to support both methods in order to achieve full interoperability with all cards
meeting the ISO/IEC 14 433 standard, since the cards generally support only one of the two
standard methods.

While a terminal is waiting to detect a proximity card, it must periodically switch back
and forth between the two communications methods. This allows it to recognize both Type-A
and Type-B cards. Once the PCD has recognized a card, it continues to use the appropriate
communications method until the card is deactivated by the terminal or leaves the working
range of the terminal.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 144 of 1123

110 Physical and Electrical Properties

t

5 %
5 %

60 %

60 %

t2

t1 t3

t4

90 %

90 %

100 %

100 %

110 %

110 %

H/Hinitial

carrier amplitude envelope

Figure 3.87 Specification of the blanking interval (gap) according to ISO/IEC 14 433-2. The maximum
duration of the gap is limited to 3 µs in order to interrupt the energy supply to the card as briefly as possible.
Here 2.0 µs ≤ t1 ≤ 3.0 µs; 0.5 µs ≤ t2 ≤ t1 if t1 > 2.5 µs, or 0.7 µs ≤ t2 ≤ t1 if t1 ≤ 2.5 µs; and 0 µs
≤ t4 ≤ 0.4 µs

3.6.3.1 Type-A communications interface

With Type-A cards, data transmission takes place in both directions at a bit rate of fC/128
(≈106 kbit/s).

Data transmission from the terminal to the card

Digital amplitude modulation (100 % ASK) with modified Miller coding is used for data
transmission from the PCD to the card, with the length of the blanking interval (gap) being
limited to 3 µs. This relatively short blanking interval makes it easier to provide a steady supply
of energy to the card. The exact specification of the length of the blanking interval and its rise
and decay characteristics are shown in Figure 3.87.

The card recognizes the end of the pause during interval t4, which means after the magnetic
field has reached 5 % of HINITIAL and before it exceeds 60 % of HINITIAL. Overshoots must be
limited to HINITIAL ± 10 %.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 145 of 1123

3.6 Contactless Cards 111

t

0 0 0 11

Figure 3.88 Coding of a bit sequence transmitted from the terminal to the card for a Type-A communi-
cations interface with 100 % ASK and modified Miller coding at 106 kbit/s. The figure shows the voltage
at the terminal aerial

An example of the coding of a bit sequence using modified Miller coding is shown in
Figure 3.88. The following coding rules apply here:

• logic 1: blanking interval after half the bit interval

• logic 0: no blanking, with the following exceptions:

• if there are two or more logic 0 states in succession, there is a
blanking interval at the start of the bit interval

• if the first bit of a protocol frame is a 0, it is represented by a
blanking interval at the start of the bit interval

• start of a message: blanking interval at the start of a bit interval

• end of a message: logic 0 followed by one bit with no blanking interval

• no data: no blanking interval for the duration of at least two bits.

Data transmission from the card to the terminal

The bit rate for data transmission from the card to the terminal is also fC/128 (≈106 kbit/s).
Load modulation with a subcarrier is used, which means that the subcarrier is generated by
switching a load inside the card. The frequency of the subcarrier is specified to be fS = fC/16
(≈847 kHz). The subcarrier is modulated by switching the subcarrier on and off (on–off keying,
or OOK) using Manchester coding. An example of the coding of a bit sequence is shown in
Figure 3.89.

The coding is defined as follows:

• logic 1: the carrier is modulated by the subcarrier
during the first half of the bit interval

• logic 0: the carrier is modulated by the subcarrier
during the second half of the bit interval

• start of a message: the carrier is modulated by the subcarrier
during the first half of the bit interval

• end of a message: the carrier is not modulated for one-bit interval

• no data: no subcarrier modulation.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 146 of 1123

112 Physical and Electrical Properties

t

0 0 0 11

Figure 3.89 Load modulation for data transmission from the card to the terminal using a subcarrier at
a frequency of fC/16(≈847 kHz) and Manchester coding with a bit rate of 106 kbit/s and OOK. The
figure shows the voltage on the card coil

3.6.3.2 Type-B communications interface

Data transmission from the terminal to the card

With Type-B cards, ASK modulation with a modulation index of 10 % (–2 %, +4 %) is used
for data transmission from the PCD to the card. In contrast to the Type-A method, in which
continuity of the energy supply is assured by very short blanking intervals, with the Type-B
method it is assured by the small modulation index, which is defined such that at least 86 %
of the carrier field is always available. The bit rate is again fC/128 (≈106 kbit/s). The exact
form of Type-B modulation is shown in Figure 3.90.

t

hr

hf

y

y

carrier amplitude envelope

a
b

tr tf

Figure 3.90 Type-B carrier modulation. A continuous supply of energy is made possible by the small
modulation index (10 %). Here tf, tr ≤ 2 µs, y = 0.1 · (a – b) and hf, hr ≤ 0.1 · (a – b)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 147 of 1123

3.6 Contactless Cards 113

t

0 0 0 11

Figure 3.91 Coding of a bit sequence from the terminal to the card for a Type-B communications
interface with 10 % ASK, NRZ coding and a bit rate of 106 kbit/s. The figure shows the voltage on the
terminal aerial

Simple non-return to zero (NRZ) bit coding is used, with the following coding rules:

� logic 1: high carrier amplitude

� logic 0: low carrier amplitude.

Data transmission from the card to the terminal

With the Type-B method, load modulation with a subcarrier is also used for data transmission
from the card to the terminal. The frequency of the subcarrier is again fC/16 (≈847 kHz). In
contrast to Type A, the subcarrier is modulated by shifting the phase by 180 degrees (binary
phase-shift keying, or BPSK), again using a bit rate of fC/128 (≈106 kbit/s) and NRZ coding.
In order to have an unambiguous initial state, the following sequence must be observed at the
start of each protocol frame:

� No subcarrier is generated during a guard time interval TRO > 64/ fS following reception
of data from the terminal.

� After the guard time, the card generated the subcarrier with no phase shifting for a syn-
chronization time interval TR1 > 80/ fS. The phase during this interval is defined to be the
reference phase φ0.

The initial phase φ0 is defined to be logic 1, so the first phase shift means a change from a
logic 1 to a logic 0. The following rules apply to the remainder of the data transmission:

� logic 1: φ0

� logic 0: φ0 + 180◦

3.6.3.3 Initialization and anticollision (ISO/IEC 14 433-3)

When a proximity card comes within the working range of a terminal, communications be-
tween the card and the terminal must first be established. It may happen that the terminal
is already communicating with another card, or that several cards are concurrently present

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 148 of 1123

114 Physical and Electrical Properties

t

0

180° phase shifts

0 0 11

Figure 3.92 Coding of a bit sequence from the card to the terminal for a Type-B communications
interface with a subcarrier of fC/16 (≈847 kHz), BPSK, NRZ coding and a bit rate of 106 kbit/s. The
figure shows the voltage on the coil in the card

within the working range of the terminal. Means must be provided to allow interference-free
communication with a single card or a specific group of cards to occur under such conditions.

Establishing communications between a card and a terminal and the anticollision methods
to be used for selecting a individual card are described in Part 3 of ISO/IEC 14 433. Due to the
use of different modulation methods, Type-A and Type-B cards also have different protocol
frames and anticollision methods.

Type-A initialization and anticollision

A dynamic binary search algorithm is used to initialize and select Type-A cards. With this
method, it is necessary for the terminal to be able to recognize a data collision at the bit
level. As explained below, the Manchester coding used here makes bitwise collision detection
possible (see Figure 3.97). However, this requires all cards within the working range of the
terminal to transmit their data synchronously.

If a proximity card comes into the field of a terminal, the microprocessor in the card
is supplied with power, and following the power-on reset the card enters the Idle state. In
this state, the card is only allowed to respond to a REQA (Request Type-A) command or a
WUPA (Wake-up Type-A) command. All other commands transmitted by the terminal for
communicating with any other Type-A or Type-B cards already present within the working
range of the terminal must be ignored in order to avoid interfering with these communications.
The state diagram shown in Figure 3.93 shows all possible states that can be assumed by a
Type-A card during the initialization and anticollision phase.

As already mentioned, the card enters the Idle state after the power-on reset. The standard
requires the card to enter the Idle state within 5 ms after it receives adequate operating power
from the terminal’s field. In the Idle state, the card awaits further commands. It changes to the
Ready state when it recognizes a REQA or WUPA command, but it ignores all other commands.

In order to ensure a high level of reliability for recognizing the REQA and WUPA com-
mands, they are transferred using special short frames. All other commands except anticollision
commands are transmitted using standard frames. Special frames called ‘bit-oriented anticol-
lision frames’ are defined for the anticollision commands.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 149 of 1123

3.6 Contactless Cards 115

IDLEHALT

switched off

REQA,
WUPA

WUPA

REQA,
WUPA,
nAC,
nSELECT,
HLTA,
error

REQA,
WUPA,
nAC,
nSELECT,
HLTA,
error

REQA,
WUPA,

AC,
nAC,

SELECT,
nSELECT,

error

AC,
nAC,
SELECT,
nSELECT,
HLTA,
error

REQA,
AC,
nAC,
SELECT,
nSELECT,
HLTA,
error

reset

SELECTSELECT

DESELECT

ACAC

HLTAHLTA

enter ISO/IEC 14 443-4

READYREADY*

ACTIVEACTIVE*

ISO/IEC 14 443-3

REQA,
WUPA,

AC,
nAC,

SELECT,
nSELECT,

error

Figure 3.93 State diagram of a Type-A PICC during the initialization and anticollision phase. The
abbreviations are explained in the text

Short frames

As already mentioned, short frames are only used for the initialization commands. A short
frame consists of nine bits in the following sequence:

� one message start bit

� seven data bits starting with the least significant bit (lsb first)

� one message stop bit.

The coding rules for the start and end bits and the data bits are described in Section 3.6.3.1.

b1 b2 b3 b4 b5 b6 b7 ES

lsb msb

first transmitted bit

Figure 3.94 Structure of a short frame

Table 3.7 shows the coding of the REQA and WUPA commands, which are the only types
of commands transmitted using short frames.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 150 of 1123

116 Physical and Electrical Properties

Table 3.7 Coding of the REQA and WUPA commands, which use the short-frame format with
seven data bits

b7 b6 b5 b4 b3 b2 b1 Meaning

0 1 0 0 1 1 0 '26'= REQA
1 0 1 0 0 1 0 '52'= WUPA
0 1 1 0 1 0 1 '35'= optional timeslot method
1 0 0 x x x x '40'–'4F'= proprietary
1 1 1 1 x x x '78'–'7F'= proprietary

all other values RFU

The REQA and WUPA commands are transmitted by the terminal to determine whether
any cards are present within the working range of the terminal (see Figure 3.93).

Standard frames

Standard frames are used for regular data exchanges. A standard frame consists of:

� start of message

� n × (8 data bits + odd-parity bit), with n ≥ 1

� end of message.

b1 b1b2 b2b3 b3 b7b4 b4 b8b5 b5 Pb6 b6 Eb7 b7b8 b8P PS

first transmitted bit end of communications

n x (8 data bits + 1 parity bit)

1st byte parity 2nd byte nth byte

Figure 3.95 Structure of a standard frame

When the card changes to the Ready state, it transmits an Answer to Request, Type A
(ATQA) after a precisely defined frame delay time (see Figure 3.98). An ATQA consists of
two bytes, and due to the uniquely specified frame delay time, all ATQA messages are sent
synchronously by all addressed cards. Figure 3.96 show the coding of the ATQA message.

When the terminal receives an ATQA, it recognizes that at least one card is present within
its working range. It then initiates the anticollision procedure, which also allows it to read the
Type-A unique identifier (UID), by transmitting a SELECT command. If the terminal is able to
determine the complete identifier, it transmits a SELECT command containing this identifier.
The card with the corresponding identifier confirms this command by transmitting a SELECT
Acknowledge (SAK) message and changes to the Active state. In the Active state, the card can
communicate using higher level protocols (such as those defined in ISO/IEC 14 443-4).

The card can be put into the Halt state by transmitting a HLTA command (Halt Command
Type A). The card can also be put into the Halt state by means of special commands belonging to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 151 of 1123

3.6 Contactless Cards 117

b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1

msb lsb

RFU proprietary
coding

UID
size

RFU anticollision frame
only one bit = 1

00: UID size = single
01: UID size = double
10: UID size = triple
11: UID size = RFU

Figure 3.96 Coding of ATQA. All RFU bits must be set to 0. Bits 9–12 can be used to indicate other,
non-standardized methods. One of bits b1–b5 must be set to 1. Bits b7 and b8 indicate the size of the
UID

higher level protocols. In the Halt state, the card only responds to a WUPA (Wake-Up Type A)
command, to which it responds by transmitting an ATQA (Answer to Request, Type A) and
changing to the Ready* state. The Ready* state is similar to the Ready state. The conditions
for changing to the Active* state are shown in Figure 3.93.

In detail, the procedure used for collision avoidance and determining the identifier works as
follows. If two or more cards are concurrently in the Ready state and located within the working
range of a terminal, they react simultaneously to a SELECT command from the terminal by each
transmitting a portion of their different identifiers. This is done using a special bit-oriented
frame, which allows the direction of data transmission between the terminal and the cards
to be reversed after an arbitrary number of data bits have been transmitted. If several cards
transmitting different data are present, the terminal will receive the data superimposed on each
other, and it can detect a collision by the fact that this superimposition will cause the carrier
to be modulated by the subcarrier for the full duration of one or more of the bit intervals. This
is an irregular state, since the Manchester coding used requires a pulse edge to always occur
within each bit interval. Figure 3.97 illustrates how this irregular state is produced.

In order for the terminal to be able to detect a collision at the bit level, all cards in the
Ready state that are located within the working range of the terminal must respond to an
ANTICOLLISION command at exactly the same time. To ensure this, the timing requirements
imposed on the terminal and the card for exchanging frames are precisely specified in ISO/IEC
14 433-3.

Frame delay time (FDT)

The time between the end of the final pause transmitted by the terminal at the end of a message
and the leading edge of the modulation pulse for the start bit transmitted by the card is designated
the ‘frame delay time PCD to PICC’, which is abbreviated as FDT. This interval is defined in
Figure 3.98. There are two different cases, depending on whether the final data bit transmitted
by the terminal is a logic 1 or a logic 0.

For the REQA/WUPA, ANTICOLLISION and SELECT commands, the value of n is set
to 9, which means that FDT is 1236/ fC or 1172/ fC. This causes all cards within the working
range of the terminal to respond synchronously to these commands, which are used in the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 152 of 1123

118 Physical and Electrical Properties

card 1

card 2

decoded
data

undefined states (collision)

sum of signals
at the terminal

1

1

1

1

0

x

1

1

1

1

1

1

1

1

1

0

0

0

0

1

x

Figure 3.97 Collision of two bit sequences with Manchester coding (Type A). With an interference-free
transmission, the carrier is always modulated by the subcarrier during only one half of each bit interval. If
different bits are superimposed, modulation is present for the entire duration of the bit interval, allowing
the terminal to detect a collision

final data bit
transmitted by terminal

end of message (E)

end of message (E)

logic 1

logic 0

start of message (S)

start of message (S)

first modulation for
new message

128/fc

128/fc

128/fc

256/fc

256/fc

FDT = (n x 128 + 84) / fc

FDT = (n x 128 + 20) / fc

Figure 3.98 Frame delay time PCD to PICC (FDT)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 153 of 1123

3.6 Contactless Cards 119

anticollision loop. This makes it possible to detect collisions at the bit level. For all other
commands, n ≥ 9.

The time between the final modulation pulse transmitted by the card and the first pause
signal transmitted by the terminal is designated the ‘frame delay time PICC to PCD’. This
time is not significant for collision detection at the bit level. Consequently, it is not precisely
specified in the standard. The only requirement is that it must be equal to or greater than
1172/ fC.

In addition, the minimum time between two successive REQA commands is specified to be
7000/ fC. This time is designated the ‘request guard time’.

As can be seen in the following sections, if there are several PICCs within the working
range of the terminal, it may be necessary for the terminal to execute the anticollision loop
many times before it can address a specific card. In order to avoid spending an excessive
amount of time executing this loop, a special bit-oriented frame is used for the anticollision
(AC) command, which is a special form of the SELECT command. This type of frame, which
is called a ‘bit-oriented anticollision frame’, is described below.

Bit-oriented anticollision frame

If the terminal (PCD) detects a collision, it responds by transmitting bit-oriented anticollision
frames, which have the same structure as standard seven-byte frames but are divided into two
parts. The first part is used to transfer data from the PCD to the PICC, while the second part is
used to transfer data in the opposite direction, from the PICC to the PCD. The relative lengths
of the two parts vary in successive executions of the anticollision loop. The sum of the number
of data bits in the two parts is always 56. The following rules apply to the lengths of the two
parts:

� Rule 1: the total number of data bits is 56.

� Rule 2: the minimum length of Part 1 is 16 data bits.

� Rule 3: the maximum length of Part 1 is 55 data bits.

Consequently, Part 2 has a minimum length of one data bit and a maximum length of 40 data
bits.

The frame can be divided between the two parts at any desired location, which means that
the division may also be located within a data byte. In this case, no parity bit is appended to
the first part of the divided byte, and the parity bit of the second part of the byte is ignored
by the PCD. Two examples of anticollision frames are shown in Figure 3.99.

Commands used in the anticollision loop

As already indicated by the state diagram in Figure 3.93, the following commands may be
used during initialization and in the anticollision loop:

� REQA (Request command, Type A)

� WUPA (Wake-Up command, Type A)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 154 of 1123

120 Physical and Electrical Properties

11001001

11001001

S

S

S

10100100

10100100

1

1

0

0

0 0

0x

0

0

0

0

00100010

00100010

1

1

E

E

E

01001100

01001

00001000

00001000100

11010101

11010101

10110011

10110011

SEL

first transmitted bit

first transmitted bit

‘93’

NVB

‘25’

uid0

anticollision frame, part 1: PCD to PICC

‘32’

uid1

‘10’

uid2

‘AB’

uid3

anticollision frame, part 2: PICC to PCD

‘CD’

BCC

‘44’

Figure 3.99 Two examples of bit-oriented anticollision frames. In the first example, the frame is divided
after a full byte, while in the second example it is divided after the fifth bit of a data byte

� ANTICOLLISION

� SELECT

� HLTA (Halt command, Type A).

The ANTICOLLISION and SELECT commands

The ANTICOLLISION and SELECT commands are used in the anticollision loop. As can be
seen in Figure 3.99, these commands consist of the following data fields:

� SEL (select code; 1 byte)

� NVB (number of valid bits; 1 byte)

� 0–40 data bits for the identifier (UID), depending on the value of NVB.

The unique identifier (UID) may consist of 4 bytes (single size), 7 bytes (double size) or
10 bytes (triple size).

Table 3.8 Possible sizes for the unique identifier (UID)

Cascade level UID size Number of UID bytes

1 Single 4
2 Double 7
3 Triple 10

The UID may be a fixed number or a random number generated by the card. With double-
and triple-size identifiers, a cascade tag is transmitted as the first byte for cascade levels 1 and
2. The cascade tag is coded as'88'. In a single-size UID, the first byte is not allowed to have
the value'88'.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 155 of 1123

3.6 Contactless Cards 121

Table 3.9 Coding of the SEL, which shows the current cascade level of the terminal

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

1 0 0 1 0 0 1 1 '93': cascade level 1 selected
1 0 0 1 0 1 0 1 '95': cascade level 2 selected
1 0 0 1 0 1 1 1 '97': cascade level 3 selected
1 0 0 1 all values other than RFU

those listed above

At most four data bytes can be transmitted from the PCD within an ANTICOLLISION
or SELECT command (see Figure 3.99). If the card has a double- or triple-size identifier, it
indicates this fact to the terminal in the SAK (Select Acknowledge) by setting the cascade bit,
and it remains in the Ready state. The terminal will then start the anticollision procedure anew
in order to ascertain bytes 5 though 7 of the UID. With a triple-size identifier, the anticollision
procedure must be executed a third time to ascertain bytes 8 through 10. The terminal uses the
SELECT command to inform the card of its current cascade level, in order to indicate which
part of the UID is being requested (see Table 3.9).

This process is illustrated in Figure 3.100 in the form of a flow chart.
If the NVB byte does not specify 40 bits, the command is an ANTICOLLISION command

and the card remains in the Ready or Ready* state. Once the terminal has ascertained the
full UID, it sends a SELECT command with NVB ='70', which means that 40 data bits are
specified. A CRC A checksum formed in accordance with ISO/IEC 13 239 is appended to this
command. The computation of this checksum is described in the informational Annex A of
ISO/IEC 14 433-3 by means of an example. If the card is addressed using a SELECT command
with its full identifier, it changes from the Ready state to the Active state, or from the Ready*
state to the Active* state (see Figure 3.93), and then transmits SAK (Select Acknowledge) to
indicate that the UID is complete. The codings of NVB (number of valid bits) and SAK are
shown in Tables 3.10 and 3.11.

The procedure executed in the anticollision loop is shown in Figure 3.102 in the form of a
flow chart for the terminal. This loop must be executed at every cascade level as long as the
full UID is not known to the terminal.

To illustrate the selection process, Figure 3.103 shows an example in which two cards are
within range of the terminal. In this example, card 1 (PICC 1) has a single-size UID with a
value of'10' for uid0, while card 2 (PICC 2) has a double-size UID.

The terminal initiates the selection process by transmitting a REQA command. All cards
within range of the terminal respond to this command. In this example, PICC 1 responds with
an ATQA in which an anticollision bit frame is indicated by bit b1 being set and a single-size
UID is indicated by bits b7 and b8 being cleared. PICC 2 also indicates an anticollision bit
frame by setting bit b1 in its ATQA and indicates that it has a double-size UID by setting bit
b7.

In the next step, the actual anticollision loop starts at cascade level 1. The terminal transmits
an ANTICOLLISION command with a Select code of'93', which indicates an anticollision
frame for cascade level 1. The value of '20' for NVB (number of valid bits) means that the
terminal is not sending any portion of the cascade level 1 UID. Each card within range of

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 156 of 1123

122 Physical and Electrical Properties

receive ATQA

send REQA

no

start

test ATQA

proprietary frames
and protocols

test SAK

increment
cascade level

execute anticollision
loop for bit frame

select
cascade level 1

contiinue with
ISO/IEC 14 4443-4

commands and protocols

proprietary
commands and

protocols

UID complete, PICC
not compliant with
ISO/IEC 14 443-3

UID complete,
PICC compliant with
ISO/IEC 14 443-3

1

UID not
complete

1

bit-oriented
anticollision frame

proprietary
anticollision
frame

Figure 3.100 Flow chart for the process of selecting a particular card. After the terminal has transmitted
a SELECT command, all cards in the Idle state respond simultaneously with ATQA

SAK

lsb lsb

CRC_A

msb msb

1st byte 2nd & 3rd bytes

Figure 3.101 Format of SAK (Select Acknowledge). SAK is transmitted by the card when NVB
indicates 40 data bits and these bits match the UID of the card

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 157 of 1123

3.6 Contactless Cards 123

Table 3.10 Coding of NVB (number of valid bits). The upper four bits are called the
‘byte count’ and indicate the number of complete data bytes (including SEL and NVB)
transmitted by the terminal. The lower four bits are called the ‘bit count’ and indicate the
number of bits of any incomplete byte transmitted by the terminal

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 0 1 0 x x x x byte count = 2
0 0 1 1 x x x x byte count = 3
0 1 0 0 x x x x byte count = 4
0 1 0 1 x x x x byte count = 5
0 1 1 0 x x x x byte count = 6
0 1 1 1 x x x x byte count = 7
0 1 0 0 x x x x byte count = 8
x x x x 0 0 0 0 bit count = 0
x x x x 0 0 0 1 bit count = 1
x x x x 0 0 1 0 bit count = 2
x x x x 0 0 1 1 bit count = 3
x x x x 0 1 0 0 bit count = 4
x x x x 0 1 0 1 bit count = 5
x x x x 0 1 1 0 bit count = 6
x x x x 0 1 1 1 bit count = 7

Table 3.11 Coding of SAK (Select Acknowledge)

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

x x x x x 1 x x Cascade bit set:: UID incomplete
x x 1 x x 0 x x UID complete, PICC complies with

ISO/IEC 14 443-4
x x 0 x x 0 x x UID complete, PICC does not comply

with ISO/IEC 14 443-4

the terminal thus responds with its full cascade level 1 UID. The first bit collision occurs at
bit b4. The terminal recognizes this bit collision and sends a new ANTICOLLISION command,
this time containing the first three bits of the CL1 UID, which were received without errors,
followed by a ˚1˚, and consequently with a value of'24'assigned to NVB. The first four bits
now match the first four bits of the CL1 UID of card 2, but not the first four bits of the CL1 UID
of card 1. Consequently, only card 2 responds with the remaining 36 bits of its CL1 UID. Since
the terminal now knows the complete CL1 UID of card 2, it transmits a SELECT command for
card 2, which responds with a SAK (Select Acknowledge) with the cascade bit (b3) set. From
this, the terminal recognizes that the UID is not yet complete, so it increments the cascade
level.

The terminal now sends a new ANTICOLLISION command with a Select code (SEL)
indicating an anticollision bit frame and cascade level 2. NVB is set to'20' in order to request

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 158 of 1123

124 Physical and Electrical Properties

Table 3.12 The steps of the anticollision algorithm. The numbering corresponds to Figure 3.102

Step 1 The terminal specifies the select code (SEL) for the cascade level.
Step 2 The terminal sets the NVB byte (number of valid bits) to'20'. This indicates that the

terminal will not transmit any part of the UID, which means that every card within the
working range of the terminal will transmit its complete CLn UID (the portion of the
UID for cascade level n).

Step 3 The terminal transmits an ANTICOLLISION command containing SEL and NVB.
Step 4 All cards within range of the terminal respond with their CLn UIDs.
Step 5 If several cards with different identifiers are within range of the terminal, a collision

will occur. If no collision occurs, steps 6 through 10 are skipped.
Step 6 The terminal determines the bit position of the first collision.
Step 7 The terminal assigns a value to NVB that indicates the number of valid bits of the CLn

UID. The valid bits are the portion of the CLn UID that was received before the
collision occurred, followed by a ˚0˚ or ˚1˚.

Step 8 The terminal transmits an ANTICOLLISION command containing SEL, NVB and the
valid bits.

Step 9 All cards whose corresponding portion of their CLn UID matches the valid bits
transmitted by the terminal transmit the remaining bits of their CLn UIDs.

Step 10 If a collision occurs again, steps 6 through 9 are repeated.
Step 11 When no more collisions occur, the terminal sets NVB to'70'. This means that the

terminal will transmit the complete CLn UID.
Step 12 The terminal transmits a SELECT command containing SEL, NVB and the complete

CLn UID, followed by the CRC A checksum.
Step 13 The card whose identifier matches the CLn UID responds with SAK.
Step 14 If the UID is complete, the card transmits a SAK with the cascade bit cleared and

changes from the Ready state to the Active state, or from the Ready* state to the
Active* state.

Step 15 The terminal checks whether the cascade bit is set in order to decide whether an
additional anticollision loop must be executed at a higher cascade level.

the complete CL2 UID from the card. Card 2 responds to this command with all 40 bits of
its CL2 UID. The terminal can now transmit a SELECT command containing all of the bits
of the CL2 UID, to which the card responds with a SAK in which cascade bit b3 is not set,
indicating that its UID is complete. Card 2 now changes from the Ready state to the Active
state, in which it can receive commands for higher level protocols.

Type-B initialization and anticollision

Type-B proximity cards use a ‘dynamic slotted ALOHA procedure’ for selection. In this
procedure, cards within the working range of a terminal transmit their data to the terminal in
predefined time slots. The time slots are selected randomly, and the number of slots can be
determined by the terminal. If only a few slots are provided and significantly more cards are
present in the working range of the terminal than the number of available slots, the probability
that a card can transmit its data without interference is small. In such situations, interference-
free data transmission can generally only occur if each time slot is used by only one card, or in

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 159 of 1123

3.6 Contactless Cards 125

NVB := '20'

SEL :=
code (cascade level)

start of
anticollision

loop

collision?

receive UID Cln

transmit command
ANTICOLLISION

[SEL || NVB]

NVB := '70'

transmit command
SELECT

[SEL || NVB || UID
CLn || CRC_A]

receive SAK

end of
anticollision

loop

no

NVB := '20' + coll

transmit command
ANTICOLLISION

[SEL || NVB ||
UID CLn]

coll := position of first
collision

1

1

yes

step 1

step 2

step 3

step 4

step 5

step 6

step 7

step 8

step 9

step 10

step 11

step 12

step 13

Figure 3.102 Flow chart of the anticollision loop as seen by the terminal. The step numbers (‘Step 1’,
Step 2’ etc.) refer to the algorithm steps listed in Table 3.12

the event that a slot is used by more than one card, if one of these cards is significantly closer
to the terminal than the others, so the signal levels for its data prevail at the terminal. Although
increasing the number of slots increases the probability of interference-free transmission, it
has the disadvantage of increasing the amount of time required to execute the polling loop,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 160 of 1123

126 Physical and Electrical Properties

REQA

PCD to PICC PICC to PCD

SEL

SEL

SEL

SEL

SEL

‘93’

‘26’

‘93’

‘95’

‘93’

‘95’

‘20’

‘24’

‘20’

‘70’

‘70’

0001

0001 0001

0000 1000

1000 0000 0000 0000

1000 0010 0000 0000

0001

xx1x xxxx

xx0x xxxx

0001 0001

NVB

NVB

NVB

NVB

NVB

CT

uid3

uid0

uid4

uid1

uid5

uid2

uid6

BCC

BCC

CRC_A

CRC_A

CRC_A

CRC_A

ATQA

uid0

CT

uid1

uid0

uid4uid3

SAK

SAK

uid0

uid2

uid1

uid5

uid1

uid3

uid2

uid6

uid2

BCC

BCC

BCC

BCC

ATQA

PICC #1

PICC #1

PICC #2

PICC #2

PICC #2

PICC #2

PICC #2

PICC #2

first collision at bit position 4

request

anticollision loop, cascade level 1

anticollision loop, cascade level 2

Figure 3.103 Sample initialization and anticollision sequence for Type-A cards. For the sake of sim-
plicity, only the essential elements of the communications are shown

since each card must wait for the duration of all of the time slots provided for cards that might
be within range of the terminal.

To make it easier to understand this procedure, which is specified in ISO/IEC 14 433-3,
we will first explain it using a simplified example before describing it in detail. The terminal

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 161 of 1123

3.6 Contactless Cards 127

needs two commands to execute this algorithm:

• REQUEST This command causes every card within the working range of the
terminal to transmit its identifier in a subsequent time slot. In our
example, four time slots will be provided.

• SELECT This command transmits a previously determined identifier to cards
within the range of the terminal, causing the card with the matching
identifier to be activated. Cards having other numbers remain passive
and respond only to REQUEST or SELECT commands with
matching identifiers.

When the terminal is in the operational state, it periodically transmits REQUEST commands.
Here we assume that six cards having identifiers 1 through 6 are concurrently brought within the
working range of the terminal. All six cards recognize the next REQUEST command, and they
select time slots at random for transmitting their identifiers to the terminal (see Figure 3.104).
In this example, collisions occur in time slots 1 and 3, while identifiers 2 and 3 are transmitted
without interference in time slots 2 and 4. The terminal can now select one of these two cards
using a SELECT command, and then communicate with the selected card without any further
collisions.

collision

1

321 4

2

3

4

5

6

time slot

card 1

card 2

card 3

card 4

card 5

card 6

Figure 3.104 Example anticollision process for Type-B contactless smart cards. Collisions occur in
time slots 1 and 3, so only identifiers 2 and 3 are transmitted without interference. This example is
explained in detail in the text

When communication with the selected card is terminated, the terminal can search for
other cards by again transmitting REQUEST commands. If it does not receive any error-free
identifiers on the first attempt, it repeats the REQUEST command until it receives a valid
identifier.

Now that the basic principle of this anticollision procedure has been explained, we can give
our detailed attention to the commands and the timing behavior of the cards and the terminal,
as specified in ISO/IEC 14 433-3 for Type-B cards. This standard defines a set of commands
that allow various types of anticollision loops to be implemented. This gives users a certain
amount of freedom for system optimization.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 162 of 1123

128 Physical and Electrical Properties

Formats and timing specifications for characters and frames

The terminal and the cards transmit data bytes in the form of characters, with several char-
acters grouped into frames. For error detection, a 2-byte CRC checksum (CRC B) computed
according to ISOIEC 13 239 is appended to the characters in the frame. An example of the
computation of CRC B is given in Annex B of ISOIEC 14 443-3.

Each character consists of one start bit (logic 0) followed by eight data bits (with the least
significant bit first) and one stop bit (logic 1).

start bit

b1 b2 b3 b4 b5 b6 b7 b8

data byte stop bit

logic 1

logic 0

t10 etu

Figure 3.105 Character format

Each pair of characters is separated by a gap called the ‘extra guard time’ (EGT), which
allows the transmitter and receiver to prepare for the next character. For data transmission to
the card, this guard time ranges from 0 to 57 µs, while in the opposite direction it ranges from
0 to 19 µs.

Several characters are grouped together to form frames for transmission in each direction. A
frame starts with a start of frame (SOF) character, followed by the characters to be transmitted
and ending with an end of frame (EOF) character. The SOF character consists of a single
falling edge followed by 10 etu of logic 0, with a rising edge in the eleventh etu, followed by
a logic 1 for at least 2 and at most 3 etu.

start bit

S b1 b2
no (sub)carrier
modulation

≥ ≤12 etu, 14 etu

≥ ≤10 etu, 11 etu ≥
≤

2 etu
 3 etu

 first character

Figure 3.106 Timing of the start of frame (SOF) character

The EOF character also begins with a falling edge, followed by 10 etu of logic 0 and a rising
edge within the eleventh etu.

To prevent the transmission protocol from ‘hanging’ in the event of an error, and to provide
the card with defined minimum and maximum times for its internal activities, the times between
two frames transmitted in opposite directions are specified in the standard. After the card has
recognized the EOF of a frame transmitted by the terminal, it waits for the duration of the
guard time (TR0) before generating the unmodulated subcarrier. After waiting for the duration
of the synchronization time (TR1), the card starts to modulate the subcarrier. The minimum

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 163 of 1123

3.6 Contactless Cards 129

final
character

transition

no (sub)carrier
modulation

≥ ≤10 etu, 11 etu

Figure 3.107 Timing of the end of frame (EOF) character

value for TR0 is 64/ fS , while the maximum value in an anticollision loop (for an ATQB) is
256/ fS . For all other types of frames, the maximum value is calculated using the formula

TR0max = (256/ fS) × 2FWI

The value of FWI ranges from 0 to 14 and is supplied to the terminal in the ATQB. The minimum
value of the synchronization time (TR1) is 80/ fS, and the maximum value is 200/ fS.

PCD

PICC

TR0 TR1

final
character

unmodulated carrierEOF

SOFunmodulated
subcarrier on

subcarrier off

Figure 3.108 Definition of the guard time (TR0) and synchronization time (TR1)

Once the terminal recognizes the end of a frame transmitted by the card, it waits for an
interval of at least 32/ fS before starting to send a new frame. During this interval, the card
switches off the subcarrier within 2 etu of the end of the transmitted frame.

PICC subcarrier

PICC data

PCD ≥ 10 etu + 32/fs

 2 etu≤final character undefinedEOF

SOF

fs on fs off
fs
decay

Figure 3.109 Definition of the waiting time between a frame transmitted by the card and the following
frame transmitted by the terminal. The card switches off the subcarrier only after the end of the EOF
character

Card selection procedure

If a Type-B card enters the working range of a terminal, the microprocessor in the card is
supplied with power and enters the Idle state following the power-on reset. Just like Type-A

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 164 of 1123

130 Physical and Electrical Properties

deactivated

AFI match?

select R

send ATQB

noN = 1?

wait for ATTRIB or
HLTB match

send response to
ATTRIB

send response to
HLTB

ACTIVE

HALT

wait for
slot marker match

REQB or
WUPB

yes

yes
Option 2

Option 1

slot marker match

REQB oder
WUPB

HLTB matchATTRIB match

DESELECT

1

WUPB

1

1

1

REQB or
WUPB

R=1

idle

ready and
requested

ready and
declared

active

halted

anticollision

deactivated

wait for
REQB or WUPB

R > 1

no

Figure 3.110 State diagram of a Type-B smart card according to ISO/IEC 14 443

cards, Type-B cards must enter the Idle state within 5 ms of receiving sufficient operating
power from the field of the terminal. In the Idle state, the card is not allowed to send any
frames. Instead, it must wait to receive a valid REQB or WUPB command. These commands
contain a parameter indicating the number of time slots used by the terminal, along with an
application family identifier (AFI) that can be used to prescribe a specific application group.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 165 of 1123

3.6 Contactless Cards 131

This produces a type of preselection, since only those cards whose applications belong to the
indicated ‘application family’ will respond.

The REQB / WUPB command

The terminal transmits the REQB / WUPB command to determine whether any Type-B cards
are present within its working range. The WUPB command is specifically used to wake up any
cards that may be in the Halt state. A REQB / WUPB command consists of an anticollision
prefix (APf) with a value of '05', followed by the AFI byte, a parameter byte (PARAM)
indicating the number of available time slots and two CRC-B bytes.

APf AFI PARAM CRC B

1 byte 1 byte 1 byte 2 bytes

Figure 3.111 Format of the REQB/WUPB command

Table 3.13 Coding of the Application Family Identifier (AFI) byte

AFI AFI Meaning Comments and sample
upper nibble lower nibble applications

'0' '0' All families and subfamilies No application preselection
X '0' All subfamilies of family X Application preselection
X Y Only subfamily Y of family X
'0' Y Only proprietary subfamily Y
'1' '0', Y Transportation Local public transport, busses,

airlines, etc.
'2' '0', Y Financial sector Electronic purses, banks,

retail trade etc.
'3' '0', Y Identification Access control, etc.
'4' '0', Y Telecommunications Public telephone network,

GSM, etc.
'5' '0', Y Medical
'6' '0', Y Multimedia Internet services, etc.
'7' '0', Y Games
'8' '0', Y Data storage Portable files, etc.
'9'–'F' '0', Y RFU

After a card has received a valid REQB command, it checks to see whether it supports the
applications identified by the AFI. If it does, it evaluates the PARAM byte in order to obtain
the value of N , which specifies the number of available slots. The card is now in the Ready
Requested state.

If N = 1, the card transmits an ATQB (Answer to Request, Type B) and switches to
the Ready Declared state. If N > 1, the card generates a random number R with a uniform
distribution over the range of 1 to N . If R = 1, the card transmits an ATQB (Answer to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 166 of 1123

132 Physical and Electrical Properties

Table 3.14 Coding of the PARAM byte. Bit b4 = 0 marks a REQB command (all cards
in the Idle or Ready states respond to this command). Bit b4 = 1 marks a WUPB
command (all cards in the Idle, Ready or Halt states respond to this command)

b8 b7 b6 b5 b4 b3 b2 b1

RFU REQB/WUPB N (number of slots)

Table 3.15 Coding of N (number of slots). The
probability that a card responds in the first time slot is
1/N . If only one time slot is used, the probability that a
card responds in this slot depends on the value of N

b3 b2 b1 N

0 0 0 20 = 1
0 0 1 21 = 2
0 1 0 22 = 4
0 1 1 23 = 8
1 0 0 24 = 16
1 0 1 RFU
1 1 X RFU

Request, Type B) and switches to the Ready Declared state. If R > 1, two different options
are provided in the standard in order to support two different algorithms:

Option 1: This option is for cards that do not support selecting specific time slots. At
this point, the card returns to the Idle state. It cycles through this loop
repeatedly until R = 1 occurs by chance (‘probabilistic approach’) or the
terminal sets the value of N to 1. This option does not actually use a
time-slot method in the true sense, since only one time slot is used. This
option is easy to implement and adequate for systems in which only a few
cards are concurrently present within the working range of the terminal.

Option 2: This option is for cards that support time slot selection. In this case, the card
waits until it receives a Slot Marker command with a matching time slot
number (slot number = R) before transmitting an ATQB and switching to
the Ready Declared state.

The Slot Marker command

The terminal sends a Slot Marker command at the start of each time slot. The format of this
command is shown in Figure 3.112.

The coding of the ‘anticollision prefix byte’ (APn) is APn ='n5', where n is the number
of the following slot. Slot Marker commands may be transmitted in any desired order; they do
not have to be transmitted in increasing order of slot number.

After the Slot Number command has been transmitted, the terminal waits for an interval
of TR0max = 256/ fS before checking to see whether a card has started to transmit an ATQB.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 167 of 1123

3.6 Contactless Cards 133

APn CRC B

1 byte 2 bytes

Figure 3.112 Format of the Slot Marker command

Table 3.16 Coding of the slot
number in anticollision prefix
byte n (APn)

n Slot number

0001 2
0010 3
0011 4
.

1110 15
1111 16

If the terminal does not detect an ATQB, it can immediately transmit the next Slot Marker
command.

ATQB (Answer to Request, Type B)

The format of ATQB, which is sent in response a REQB/WUPB or Slot Marker command, is
shown in Figure 3.113.

APa PUPI Application Data Protocol Info CRC B

'50' 4 bytes 4 bytes 3 bytes 2 bytes

Figure 3.113 Format of ATQB (Answer to Request, Type B)

ATQB contains information regarding important parameters of the smart card, which the
terminal needs in order to select the card. The pseudo-unique PICC identifier (PUPI) is the
identification number of the PICC for the anticollision loop. This may be a number that
is permanently assigned to the card, or it may be a random number generated by the card
following power-on reset.

The Application Data field contains information about the applications present in the card.
This information allows the terminal to select the desired card if several cards are present within
its working range. The meaning of the application data parameter depends on the content of the
application data coding (ADC) parameter in the Protocol Info field (described below), which
specifies whether the ‘CRC B compressing method’ or proprietary coding is used.

If the CRC B compressing method is used, the Application Data field is formatted as shown
in Figure 3.114.

The Protocol Info field shows important parameters supported by the card. These parameters
allow the terminal to optimally adapt itself to the performance capacity of the card for the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 168 of 1123

134 Physical and Electrical Properties

AFI CRC B (AID) Number of applications

1 byte 2 bytes 1 byte

Figure 3.114 Format of the Application Data field. The coding of the AFI parameter is given in
Table 3.13. It indicates the family of the application for a multiapplication card. CRC B (AID) is the
ISO/IEC 7816-5-compliant CRC B checksum of the application identifier (AID) of an application in
the card corresponding to the AFI sent in the REQB / WUPB command. The Number of Applications
field indicates the number of additional applications present in the card. The upper nibble of this byte
indicates the number of applications corresponding to the AFI, where'0'means ‘no applications’ and'F'
means ‘15 or more applications’. The lower nibble indicates the total number of applications present in
the card, with the same meaning ('0'= ‘no applications’,'F'= ‘15 or more applications’)

subsequent application protocol or adapt itself to cards that do not meet all the requirements
of the standard.

Byte 1 Byte 2

Bit Rate capability Max Frame Size Protocol Type FWI ADC FO

8 bits 4 bits 4 bits 4 bits 2 bits 2 bits

Figure 3.115 Format of the Protocol Info field

Tables 3.17 and 3.18 show the coding of the individual fields of the Protocol Info field.

Table 3.17 Coding of the FO (frame option) parameter

b2 b1 Meaning

1 x PICC supports NAD
x 1 PICC supports CID

Table 3.18 Coding of the ADC (application data coding)
parameter

b4 b3 Meaning

0 0 Proprietary application data coding
0 1 Application coded as described in the text

The frame waiting time integer (FWI) specifies the maximum amount of time needed by the
card to start transmitting a response after it has fully received a command from the terminal.
If a card does not respond within this interval, the terminal can assume that communications
with the card have been interrupted. The frame waiting time (FWT) is calculated using the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 169 of 1123

3.6 Contactless Cards 135

following formula:

FWT = (256 × 16/ fC) × 2FWI

The value of FWI lies between 0 and 14, with 15 being reserved for future use (RFU). The
following minimum and maximum values for the frame waiting time can be calculated using
this formula:

� minimum value (FWI = 0): FWTmin ≈ 302 µs

� minimum value (FWI = 14): FWTmax = 4949 ms

The Protocol Type field indicates whether the card supports the ISO/IEC 14 443-4 trans-
mission protocol. The coding of this field is shown in Table 3.19.

Table 3.19 Protocols supports by the card. All other values are reserved for
future use (RFU)

b4 b3 b2 b1 Meaning

0 0 0 1 PICC supports ISO/IEC 14 443-4
0 0 0 0 PICC does not support ISO/IEC 14 443-4

In the Max Frame Size field, the card indicates the maximum frame size it can receive. This
is limited by the size of the receive buffer in the card’s RAM. Inexpensive chips typically have
only a small amount of RAM, so they can only receive small frames. The Bit Rate capability
field indicates the data transmission rates supported by the card, as shown in Table 3.21.

Table 3.20 Maximum frame size capacity of the card

Max Frame Size code in ATQB 0 1 2 3 4 5 6 7 8 9–F

Maximum frame size (bytes) 16 24 32 40 48 64 96 128 256 RFU>256

Table 3.21 Bit rates supported by the card. All other values are reserved for future use (RFU)

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 0 0 0 0 0 0 0 PICC supports only 106 kbit/s in both directions
1 X X X 0 X X X The same bit rate in both directions
X X X 1 0 X X X PICC to PCD: 1 etu = 64/ fC, 212 kbit/s supported
X X 1 X 0 X X X PICC to PCD: 1 etu = 32/ fC, 424 kbit/s supported
X 1 X X 0 X X X PICC to PCD: 1 etu = 16/ fC, 847 kbit/s supported
X X X X 0 X X 1 PCD to PICC: 1 etu = 64/ fC, 212 kbit/s supported
X X X X 0 X 1 X PCD to PICC: 1 etu = 32/ fC, 424 kbit/s supported
X X X X 0 1 X X PCD to PICC: 1 etu = 16/ fC, 847 kbit/s supported

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 170 of 1123

136 Physical and Electrical Properties

As already mentioned, the card changes to the Ready Declared state after it transmits its
ATQB (see Figure 3.111). In this state, the card responds only to the REQB/WUPB, ATTRIB
and HLTB commands. It responds to a REQB/WUPB command in the same way as when it
is in the Idle state.

If the card recognizes a valid ATTRIB command in which the PUPI matches the PUPI
of the card, it transmits an Answer to ATTRIB frame and changes to the Active state. If the
PUPI parameters do not match, the card remains in the Ready Declared state and waits for
an ATTRIB command with the proper PUPI. The card responds to an appropriate HALTB
command (containing the proper PUPI) by transmitting an Answer to HALTB and changing
to the Halt state.

In the Active state, the card has a card identifier (CID) that is assigned to it by the ATTRIB
command. As a result, it is in a higher protocol layer and responds to suitable application
commands having the proper CID and correct CRC B checksum. Special commands belonging
to this higher protocol layer can put the card into the Idle or Halt state. When it is in the Active
state, the card is not allowed to respond to REQB/WUPB, Slot Marker and ATTRIB commands.

In the Halt state, the card is passive and can only be reset to the Idle state by a valid WUPB
command with the proper PUPI.

Format and coding of the ATTRIB command

The ATTRIB command is transmitted by the terminal to the card and contains information
needed to select a card. It also contains information regarding the parameters supported by
the terminal for subsequent communications and those required by the card for error-free
communications. This includes parameters such as the minimum value of the guard time
(TR0), the minimum value of the synchronization time (TR1), whether the card can suppress
SOF and/or EOF to accelerate communications, the maximum frame size and selection of the
optimum bit rate.

'1D' Identifier Param 1 Param 2 Param 3 Param 4 Higher Layer Inf. CRC B
(PUPI)

1 byte 4 bytes 1 byte 1 byte 1 byte 1 byte 0 or more bytes 2 bytes

Figure 3.116 Format of the ATTRIB command. ‘Identifier’ contains the value of the PUPI, which is
sent by the card in the ATQB. The format of Param 1 is shown in Figure 3.117

b8 b7 b6 b5 b4 b3 b2 b1

Minimum TR0 Minimum TR1 EOF SOF RFU

Figure 3.117 Format of Parameter 1

The value of the ‘Minimum TR0’ parameter defines the minimum time that the card must
wait before responding to a command received from the terminal. This is the time needed by
the terminal to switch from transmit mode to receive mode, which depends on the performance
of the terminal.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 171 of 1123

3.6 Contactless Cards 137

Table 3.22 Coding of the Minimum TR0 parameter

b8 b7 Minimum TR0

0 0 Default value
0 1 48/ fS

1 0 16/ fS

1 1 RFU

The value of the ‘Minimum TR1’ parameter defines the minimum delay between the ac-
tivation of the subcarrier and the start of data transmission (see Figure 3.107). The terminal
needs this time for synchronization with the card.

Table 3.23 Coding of the Minimum TR1 parameter

b6 b5 Minimum TR1

0 0 Default value
0 1 64/ fS

1 0 16/ fS

1 1 RFU

Bits b3 and b4 indicate to the terminal whether the card supports suppression of EOF and/or
SOF from the card to the terminal in order to reduce communications overhead. This capability
is optional for the card.

Table 3.24 SOF utilization

b3 SOF required

0 yes
1 no

Table 3.25 EOF utilization

b4 EOF required

0 yes
1 no

The lower nibble of Parameter 2 (bits b4–b1) specifies the maximum size of a frame that can
be received from the terminal. The upper nibble is used to select the bit rates in both directions.
The terminal can make this choice, since it already knows the bit rates supported by the card
from the ATQB.

The lower nibble of Parameter 3 is used to confirm the protocol type. The coding corresponds
to that shown in Table 3.19. The upper nibble is set to '0'. All other values are reserved for
future use.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 172 of 1123

138 Physical and Electrical Properties

Table 3.26 Coding of bits b4–b1 in Parameter 2, which specify the maximum frame size

Max Frame Size code in ATTRIB 0 1 2 3 4 5 6 7 8 9–F

Maximum frame size (bytes) 16 24 32 40 48 64 96 128 256 RFU>256

Table 3.27 Coding of bits b8–b5 in Parameter 2, which select the transmission bit rate

b8 b7 b6 b5 Meaning

0 0 x x PICC to PCD: 1 etu = 128/ fC, bit rate is 106 kbit/s
0 1 x x PICC to PCD: 1 etu = 64/ fC, bit rate is 212 kbit/s
1 0 x x PICC to PCD: 1 etu = 32/ fC, bit rate is 424 kbit/s
1 1 x x PICC to PCD: 1 etu = 16/ fC, bit rate is 847 kbit/s
x x 0 0 PCD to PICC: 1 etu = 128/ fC, bit rate is 106 kbit/s
x x 0 1 PCD to PICC: 1 etu = 64/ fC, bit rate is 212 kbit/s
x x 1 0 PCD to PICC: 1 etu = 32/ fC, bit rate is 424 kbit/s
x x 1 1 PCD to PICC: 1 etu = 16/ fC, bit rate is 847 kbit/s

Parameter 4 also consists of two parts. The lower nibble is called the ‘card identifier’ (CID)
and defines the logical number of the addressed card, with a range of 0 to 14. The value 15 is
reserved for future use. The card identifier is specified by the terminal and is unique for each
active card. If the card does not support CID, a value of'0' is used. The upper nibble is set to
'0'. All other values are reserved for future use.

The ‘Higher-Layer Inf’ field can be used to transfer any desired higher level commands.
The ability to process such commands is optional for the card.

Response to the ATTRIB command

The card responds to every valid ATTRIB command (having the proper PUPI and correct
CRC B checksum) as shown in Figure 3.118.

Byte 1 Bytes 2–n

MBLI CID Higher-layer response CRC B

1 byte Optionally 0 or more bytes 2 bytes

Figure 3.118 Format of the response to an ATTRIB command

If the terminal receives a valid response to an ATTRIB command (one having the same
CID and a correct CRC B checksum), it knows that card selection was successful. The lower
nibble of the first byte in the response (bits b4–b1) contains the CID. The upper nibble of the
first byte (bits b8–b5) is called the ‘maximum buffer length index’ (MBLI). The card uses the
MBLI to tell the terminal the maximum size of its input buffer. This allows the terminal to
avoid causing the input buffer of the card to overflow by sending too many chained frames. If

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 173 of 1123

3.6 Contactless Cards 139

MBLI is set to 0, the card does not provide any information about the size of its internal buffer.
If MBLI is greater than 0, the maximum internal buffer length (MBL) can be calculated using
the following formula:

MBL = (PICC maximum frame size) × 2(MBL−1)

The card sends its maximum frame size parameter to the terminal in the ATQB. When the
terminal transmits chained frames, it must ensure that the cumulative length does not exceed
the value of MBL.

The HLTB command

The HLTB command is used to place a card in the Halt state, so that it no longer responds
to REQB commands. After responding to this command, the card ignores all subsequent
commands except WUPB.

'50' Identifier CRC B

1 byte 4 bytes 2 bytes

Figure 3.119 Format of the HLTB command

The Identifier parameter contains the PUPI of the card to be placed in the Halt state. The format
of the card’s response to a valid HLTB command is shown in Figure 3.120.

'00' CRC B

1 byte 2 bytes

Figure 3.120 Format of the response to a HLTB command

Example of an anticollision sequence with three Type-B cards

The standard gives the developer the freedom to implement various types of anticollision
strategies. This corresponds to the basic function of a standard, which is to make interoperability
possible while providing as much latitude as possible for implementation in order to avoid
hindering technical progress. An example of an anticollision sequence is shown in Figure
3.121. This example, which is also contained in the annex to the standard, serves to illustrate
the processes and commands described in the previous section. It makes no claim to being a
technically superior implementation.

3.6.3.4 Data transmission protocol (ISO/IEC 14 433-4)

A half-duplex block transmission protocol that is tailored to the specific requirements of a
contactless system is defined in Part 4 of ISO/IEC 14 433-4. This protocol is largely based on

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 174 of 1123

140 Physical and Electrical Properties

Start of anticollision sequence:
transportation application, AFI = ‘10’
number of slots (N) = 1

PICC with transportation application
AFI match
N = 1

PICC with health-care application
no AFI match
wait for next REQB/WUPB

multiapplication PICC
AFI match
N = 1

transmit REQB

transmit ATQB

transmit ATQB

PCD

PCD

PICC1

PICC2

PICC3

PICCs

PICC with transportation application
AFI match
select random R between 1 and N

R = 2 so wait for slot marker 2,

PICC with health-care application
no AFI match
wait for next REQB/WUPB

PICC1

PICC2

collision detected
change number of slots:: N=4

transmit REQB

PCD

Figure 3.121 Example of an anticollision sequence with three Type-B cards (Part 1 of 2)

the T = 1 protocol defined in the ISO/IEC 7816-3 standard, which is widely used throughout
the world. This simplifies the implementation of dual-interface cards, since they anyhow must
support a contact-type transmission protocol.

For Type-A cards, the standard defines an activation sequence that must be executed
before starting the actual protocol. During this sequence, parameters for the subsequent data
transmission are specified and exchanged between the terminal and the card. These parameters

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 175 of 1123

3.6 Contactless Cards 141

Depending on the application,
the PCD now has the choice of
selecting PICC3 without sending
any additional slot markers,
sending additional slot markers
or ...
In this example, the PCD
continues sending slot markers.

PICC with transportation application
AFI match
R = 2, so transmit in slot 2

PICC with health-care application
wait for next REQB / WUPB

multiapplication PICC
wait for HLTB or ATTRIB

transmit REQB

transmit ATQB

transmit ATQB

PCD

PICC1

PICC2

PICC3

PICC with transportation application
AFI match
select random R between1 and N
R = 1, so transmit in slot 1

PICC3

The PCB now has two PICC
responses. In this example, it
continues to send slot markers.

The PCB decides to select PCC1
(transportation application) using
the ATTRIB command. It could
also use the HLTB command to
stop PICC3.

transmit slot marker for slot 3: no response
transmit slot marker for slot 4: no response

PCD

PCD

PCD PICCs

Figure 3.121 Example of an anticollision sequence with three Type-B cards (Part 2 of 2)

relate to things such as the bit rate in each direction and the required waiting times between
frames.

Type-B cards do not need any special activation sequence. They can immediately initiate
the actual data transmission protocol after being selected. With such cards, the necessary
parameters for data transmission are specified and exchanged during the initialization and
selection processes, as described in the previous section.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 176 of 1123

142 Physical and Electrical Properties

Protocol activation for Type-A cards

After a Type-A PICC has been successfully selected, as previously described, the terminal
executes an activation sequence as illustrated by the flow chart shown in Figure 3.122.

receive ATQA

send REQA

1

no

field on

ATS present?
(i.e., is

ISO/IEC 14 443-4
supported?)

use
ISO/IEC 14 443-4

protocol?

anticollision
 loop

receive ATS

send RATS

PPS supported?

parameters
 to be changed?

send PPS request

receive PPS response

exchange
transparent data 1

send WUPA

send HLTA

 no

send DESELECT
request

receive DESELECT
response

no

no

yes

yes

ISO/IEC 14 443-3

ISO/IEC 14 443-4

Figure 3.122 Activation of a Type-A card by a terminal

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 177 of 1123

3.6 Contactless Cards 143

From the SAK (Select Acknowledge) transmitted by the card at the end of the anticollision
loop, the terminal can recognize whether the card supports the standard data transmission
protocol. If it does not, the terminal issues a HLTA command to place the card in the Halt state.
If the protocol defined in ISO/IEC 14 433-4 is supported, the terminal sends a RATS (request
for answer to select) command to the card. The RATS command and the ATS (answer to reset)
returned by the card are used to exchange data and parameters in order to determine the data
transmission options supported by the card and the terminal. Following this, the values of the
modifiable parameters can be selected using PPS (protocol and parameter selection) to make
optimum use of the capabilities of the card and the terminal. In order to make inexpensive,
technically simple implementations possible, default values are defined for the modifiable
parameters. In the simplest case, the card supports only these default values. In this case, the
PPS sequence is unnecessary, and the terminal can immediately start exchanging data using
the block protocol after receiving the ATS.

Request for answer to select (RATS)

The RATS command contains a parameter byte specifying the maximum frame size that the
terminal can receive (‘frame size for proximity coupling card’, or FSDI) and the card identifier
(CID) assigned to the card for the duration of its active state. Starting with the reception of the
RATS command, the card uses this CID as its logical identifier.

'E0' Parameter CRC A

1 byte 1 byte 2 bytes

Figure 3.123 Format of the RATS (Request for Answer to Select) command

b8 b7 b6 b5 b4 b3 b2 b1

FSDI CID

Figure 3.124 Format of the Parameter byte of the RATS command. The CID defines the logical number
of the addressed card and has a range of 0 through 14; 15 is reserved for future use. FSDI codes the
maximum frame size (FSD) that the terminal can receive

Table 3.28 Coding of bits b8–b5 of the Parameter byte of the RATS command

FSDI 0 1 2 3 4 5 6 7 8 9–F

FSD (bytes) 16 24 32 40 48 64 96 128 256 RFU>256

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 178 of 1123

144 Physical and Electrical Properties

Answer to Select (ATS)

A Type-A card responds to a RATS command with an Answer to Select (ATS). The ATS
identifies the set of parameters supported by the card. These parameters may include:

� the maximum frame size

� the bit rates in both directions supported by the card

� the waiting time between frames

� the specific frame guard time

� support for NAD and CID.

Default values are specified for cards that do not offer any selection of parameters. In the
simplest case, which is when only the default values are supported, the ATS consists of only
the length byte and the CRC bytes.

TL

T1,
T2,
...,
Tk

TA1
FSCI

TL>1

TC1

T0 b1 ... b4 b7b6b5 b8

TB1

CRC 1

CRC 2

Figure 3.125 Format of ATS

Table 3.29 The data elements of the ATS and their
designations according to ISO/IEC 14 433-4

Data element Designation

TL Length byte
T0 Format byte
TA1, TB1, TC1 Interface bytes
T1, T2, . . . Tk Historical bytes
CRC1, CRC2 Cyclic redundancy check

Length byte The length byte (TL) indicates the number of bytes transmitted in the ATS,
including the TL byte but excluding the two CRC bytes. The length of the ATS is not allowed

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 179 of 1123

3.6 Contactless Cards 145

to exceed the maximum frame length (FSD) given in the RATS command. This means that the
maximum value of TL is not allowed to be greater than FSD – 2.

Format byte If the length given in TL is greater than 1, the format byte (T0) is sent next. T0
consists of three parts, as follows:

� The most significant bit (b8) has a value of 0. The value 1 is reserved for future use.

� Bits b7–b5 indicate the presence of subsequent interface bytes TC1, TC2 and TC3.

� The lower nibble (b4–b1) is called the ‘frame size for proximity card integer’ (FSCI). It
codes the value of ‘frame size for proximity card’ (FSC), which is the maximum frame size
that can be received by the card. The default value for FSCI is 2, which corresponds to a
maximum frame size of 32 bytes.

Table 3.30 Coding of the format byte (T0)

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 . Set to 0 (1 is RFU)
0 1 X X TC1 transmitted
0 X 1 X TB1 transmitted
0 X X 1 TA1 transmitted
0 X X X X Maximum frame size (FSCI)

Table 3.31 Coding of bits b4–b1 of the FSCI parameter

FSCI 0 1 2 3 4 5 6 7 8 9–F

FSC (bytes) 16 24 32 40 48 64 96 128 256 RFU>256

TA1 interface byte The TA1 interface byte consists of four parts, as follows:

� The most significant bit (b8) indicates whether different divider values can be used for the
two transmission directions. The value of the etu (elementary time unit, equal to the duration
of one bit) is determined by the divider D according to the formula 1 etu = 128 ÷ (D × fC).
The initial value of D is 1, which yields an etu value of 128/ fC.

� Bits b7–b5, which are called ‘divisor send’ (DS), specify the bit rates supported by the card
for data transmission from the card to the terminal.

� Bit b4 is set to 0. The value 1 is RFU.

� Bits b3–b1, which are called ‘divisor receive’ (DR), specify the bit rates supported by the
card for data transmission from the terminal to the card.

The divider values are selected by the terminal in the subsequent PPS command.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 180 of 1123

146 Physical and Electrical Properties

Table 3.32 Coding of the TA1 interface byte

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 0 Different values of D are supported for
data transmissions in the two directions

1 0 Only one value of D is supported for data
transmissions in the two directions

. . . 1 0 DS = 8 is supported

. 1 . . . 0 DS = 4 is supported

. 1 0 DS = 2 is supported

. 0 1 DR = 8 is supported

. 0 . . . 1 . . . DR = 4 is supported

. 0 1 DR = 2 is supported

TB1 interface byte The TB1 interface byte is used to transfer parameters that define the frame
waiting time and the start-up frame guard time. Consequently, the TB1 interface byte consists
of two parts, as follows:

� The upper nibble (b8–b5) is called the ‘frame waiting time integer’ (FWI) and determines
the frame waiting time (FWT). The meaning and calculation of the frame waiting time are
described in the next section.

� The lower nibble (b4–b1) is called the ‘start-up frame guard time integer’ (SFGI) and is
used to calculate the start-up frame guard time (SFGT). The SFGT is the time needed by the
card after transmission of the ATS before it is ready to receive the next frame. The value 15
is RFU. The value 0 means that the card does not need any particular SFGT. With a value
ranging from 1 through 14, the SFGT is calculated using the formula:

SFGT = (256 × 16/ fC) × 2SFGI

The default value of SFGI is 0, and its maximum value (SFGTMAX) is approximately 4949 ms.

b8 b7 b6 b5 b4 b3 b2 b1

FWI SFGI

Figure 3.126 Format of the TB1 interface byte

TC1 interface byte The TC1 interface byte indicates special protocol options. It consists of
the following parts:

� The six most significant bits (b8–b3) are set to'0'. All other values are RFU.

� Bits b2 and b1 indicate which optional fields in the prologe field are supported by the card
(see the next section). The terminal is not obliged to actually transmit all fields that are
supported, so it may omit one or more fields. However, fields that are not supported by

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 181 of 1123

3.6 Contactless Cards 147

the card may not be transmitted by the terminal to the card under any circumstances. The
default value for bit b2 is 1, and the default value for b1 is 0. These values mean that CID
is supported and NAD is not supported.

Table 3.33 Coding of the TC1 interface byte

b8 b7 b6 b5 b4 b3 b2 b1

0 0 0 0 0 0 b2 = 1 means that CID b1 = 1 means that NAD
(card identifier) is supported (node address) is supported

Historical bytes The historical bytes (T1 through Tk) are optional. Their contents are defined
in ISO/IEC 7816-4 (see also Section 6.2, ‘Answer to Reset (ATR)’). The maximum possible
number of historical bytes can be determined from the maximum length of the ATS.

Protocol and parameter selection

If the card indicates in the ATS that it supports modifiable parameters, the terminal can change
the parameters for the subsequent protocol by using the PPS (protocol and parameter selection)
command. If the card does not support any modifiable parameters, it is not required to support
the PPS command (see Figure 3.122). In this case, the protocol will continue with unaltered
parameters.

If we assume that the card has indicated in the ATS that it supports modifiable parameters,
the terminal can now evaluate whether it wants to utilize the modification options indicated by
the card. If so, it transmits a PPS Request command having the structure shown in Figure 3.127.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

PPSS PPS0 PPS1 CRC1 CRC2

Parameter 0 indicates Parameter 1 codes
start byte

whether PPS1 is present DRI and DSI

Figure 3.127 Format of the PPS Request (protocol and parameter selection request) command

Start byte The start byte (PPSS) consists of two parts:

� The upper nibble (b8–b5) is set to'D' to identify the PPS. All other values are RFU.

� The lower nibble (b4–b1), which is called the ‘card identifier’ (CID), defines the logical
number of the addressed card.

Parameter 1 Parameter 1 indicates which of the possible values of DS and DR in the TA1
interface byte have been selected. This determines the transmission rates for subsequent data
transmissions.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 182 of 1123

148 Physical and Electrical Properties

Table 3.34 Coding of Parameter 1 (PPS1)

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 0 0 0 DSI DRI DRI and DSI code the divisor D

Table 3.35 Coding of D by DRI and DRS

DRI / DSI 0 0 0 1 1 0 1 1

D 1 2 4 8

Protocol and parameter selection response

The card confirms correct reception of the protocol and parameter selection request by means
of a protocol and parameter selection response, which consists of only the PPSS start byte and
the two checksum bytes (CRC 1 and CRC 2). After this, the terminal and the card use only the
selected parameters for data transmission.

Activation frame waiting time

In order to avoid unnecessarily long waiting times in case of transmissions errors, ISO/IEC
14 433-4 specifies the maximum time between when a Type-A card receives the end of a frame
and when it sends a response. This time is called the ‘activation frame waiting time’, and it
is set to 65,536/ fC (≈4833 µs). If a card does not respond within this interval, the terminal
knows that communications with the card are impaired.

Error detection and correction

In a system using contactless cards, it must be expected that errors will occur more often during
data transmission than is usual with contact-type cards. For example, with contact-type cards
it is relatively uncommon for a card to be removed from a terminal while it is communicating
with the terminal. With contactless cards, interruptions to communications can occur more
often, since the cards are free to move within the working range of the terminal during use and
can unintentionally leave the working range. It is thus important to have methods available that
allow such interruptions to be recognized as quickly as possible and allow communications to
be resumed in a state that is as well defined as possible.

In order to avoid having every type of error completely interrupt communications and force
re-initiation of the entire process, ISO/IEC 14 433-4 defines rules for error detection and
correction during the protocol activation phase for Type-A cards. Rather than describe these
rules in detail, we refer you to the appropriate section of the standard, where they are presented
in an illustrative manner.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 183 of 1123

3.6 Contactless Cards 149

Half-duplex protocol in accordance with ISO/IEC 14 433-4

The transmission protocol defined in Part 4 of ISO/IEC 14 433-4 takes into account the special
requirements imposed by the use of contactless cards. For instance, it allows a terminal to
communicate with several cards in parallel.

Like the T = 1 protocol for contact-type cards, this protocol supports a clean separation
of layers in accordance with the OSI reference model. Separation of layers means that data
belonging to a higher level layer are transmitted completely transparently with respect to lower
lever layers. This protocol is based on the frames defined for both types of cards (Type A and
Type B) in Part 3 of the standard. Four layers are distinguished:

� the physical layer (byte transmission in accordance with 14 433-3)

� the data link layer (for exchanging data blocks in accordance with 14 433-3)

� the session layer (coupled to the data link layer in order to minimize overhead)

� the application layer (where the commands are processed).

This block-oriented protocol starts after the activation sequence has been completed. The
terminal is entitled to make the first transmission. This means that after the activation sequence,
the card must wait until it receives a block from the terminal. The card responds to each block
that it receives by transmitting a response block within a defined frame waiting time. After
the response block has been sent, the terminal again holds transmit authorization and the card
switches back to reception mode. Communications continue in this manner, with transmit
authorization alternately held by the terminal and the card.

The protocol allows several cards to be concurrently activated by a terminal. It can switch
back and forth among several cards without having to spend time deactivating a card and
activating another card each time it switches cards.

As already mentioned, the probability of errors in data transmissions is higher in systems
using contactless cards than in comparable systems using contact-type cards. It is thus espe-
cially important for communications between the terminal and the card to take place in the
shortest possible time. The data transmission rate, which has a default value of 106 kbit/s, is rel-
atively high compared with the default value of 9.6 kbit/s for the T = 0 and T = 1 transmission
protocols.

Block structure

Each transmission block consists of a leading prolog field, an optional information field and a
trailing epilog field. The information field contains data for the application layer.

There are three different types of blocks:

� Information blocks, which are used for the transparent exchange of data belonging to the
application layer.

� Reception confirmation blocks (R blocks), which do not contain information fields and serve
to indicate positive or negative confirmation of reception.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 184 of 1123

150 Physical and Electrical Properties

epilogue fieldinformation fieldprologue field

error detection code

FSD / FSC

PCB

1 byte 1 byte 1 byte 2 bytes

CID NAD INF EDC

Figure 3.128 Block structure

� System blocks (S blocks), which are used to exchange control data for the protocol. Two
types of S blocks are defined: WTX, which is an S block for extending the frame waiting
time and has a single-byte information field, and DESELECT, which is an S block with no
information field that is used to place the card in the Halt state.

Prologue field The prologue field consists of the protocol control byte (PCB), an optional
card identifier (CID) and an optional node address (NAD). The coding of the protocol control
byte is shown in Table 3.36.

Table 3.36 Coding of a the protocol control byte (PCB)

S-block PCB
Bit I-block PCB R-block PCB

DESELECT WTX

b8 0 1 1 1
b7 0 0 1 1
b6 0 (1 is RFU) 1 0 1
b5 1 = chaining 0 = ACK, 1 = NAK 0 1
b4 1 = CID follows 1 = CID follows 1 = CID follows
b3 1 = NAD follows 0 (no NAD) 0 (no NAD)
b2 1 1 (0 is RFU) 1 (0 is RFU)
b1 block number block number 0 (1 is RFU)

Card identifier (CID) The card identifier field is used to identify a particular card, and it also
contains information about the power supplied to the card. The most significant two bits (b8
and b7) indicate the power level provided to the card by the terminal. Bits b6 and b5 are set to
0, with 1 being reserved for future use. Bits b4–b1 code the card identifier.

b8 b7 b6 b5 b4 b3 b2 b1

Power level indication 0 (1 = RFU) 0 (1 = RFU) CID

Figure 3.129 Format of the card identifier field

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 185 of 1123

3.6 Contactless Cards 151

The coding of CID is defined in the PPS command for Type-A cards and in the ATTRIB
command for Type-B cards. The following rules apply to evaluating the CID field:

� A card that does not support CID ignores all blocks containing a CID.

� A card that supports CID responds to blocks containing its CID by sending back its CID. It
ignores blocks that contain other CIDs, and it responds to any block containing a CID of 0
by returning a block with no CID.

These rules allow the terminal to communicate concurrently with several active cards without
having to deactivate cards that are not being addressed.

Table 3.37 Coding of the power level indication

b8 b7 Meaning

0 0 The card does not support power level indication
0 1 The amount of power is insufficient for full functionality
1 0 Adequate power for full functionality
1 1 More than adequate power for full functionality

Node address (NAD) The third byte of the prologue field is called the ‘node address’. The
node address is used to establish and address certain types of logical connections between the
card and the terminal. Node addresses are used in the same manner as for contact-type cards.
They are defined in ISO/IEC 7816-3 and described in Chapter 6.

Information field (INF) In I blocks, the information field acts as a container for data for the
application layer. The content of this field is transferred fully transparently. In S blocks, the
information field is used to control extending the frame waiting time.

Frame waiting time (FWT)

In order to achieve a defined termination of communications with a non-responding card in
the shortest possible time, a ‘frame waiting time’ (FWT) is defined. It corresponds to the
block waiting time of the T = 1 protocol for contact-type cards. The frame waiting time is
the maximum interval between the end of a frame transmitted by the terminal and the start of
the response frame from the card. If this interval expires without a response from the card, the
terminal assumes that there is a malfunction in the card and reacquires transmit authorization
in order to initiate error-detection mechanisms. As previously described, the ATS for Type-A
cards contains the value of the frame waiting time integer (FWI) in the TB1 interface byte.
The frame waiting time can be calculated from the FWI using the following formula:

FWT = (256 × 16 ÷ fC) × 2FWI

For Type-B cards, the FWI is defined in the ATQB (Answer to Request, Type B). The minimum
value of FWT, which is obtained when the value of FWI is 0, is approximately 302 µs. The
maximum value of FWT (FWTMAX), which is obtained when the value of FWI is 14, is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 186 of 1123

152 Physical and Electrical Properties

approximately 4949 ms. The normal command processing time of the card must be taken into
account when selecting the frame waiting time. If the value of the frame waiting time is set too
large, it will take longer for the terminal to detect that a card is not responding. In practice, cards
can respond relatively quickly to most commands, but a few commands, such as commands
involving the computation of a cryptographic algorithm, require significantly more time to
execute. In order to avoid having to use a long frame waiting time for all commands just to
accommodate such cases, there is a mechanism for extending the waiting time. This allows
the card to request an extension of the frame waiting time for an individual command.

Extending the frame waiting time

To request an extension of the FWT, the card transmits a special S block called ‘S(STX)
request’. It receives a corresponding ‘S(WTX) response’ from the terminal to confirm the
request. The terminal is not allowed to deny such a request.

The length of the extension to the frame waiting time is sent to the terminal using one byte
in the information field of the S(WTX) S block. The new, temporary frame waiting time for
processing the current command is obtained by multiplying this value by the frame waiting time.

b8 b7 b6 b5 b4 b3 b2 b1

Power level indication WXTM (1–59; 0 and 60–63 are RFU)

Figure 3.130 Format of the INF field of an S(WTX) request

b8 b7 b6 b5 b4 b3 b2 b1

WXTM

Figure 3.131 Format of the INF field of an S(WTX) response

The temporary frame waiting time (FWTTEMP) is measured starting with the end of the
S(WTX) response sent by the terminal. It is calculated using the following formula:

FWTTEMP = FWT × WTXM

If the formula yields a result greater than FWTMAX (≈4949 ms), the value of FWTMAX must
be used instead of the calculated value of FWTTEMP.

Block chaining

The chaining function allows either one of the communicating parties to transmit data blocks
that are too big to fit within a single frame by partitioning the data into several I frames sent in
succession. Each of these chained I blocks has a length that is less than or equal to the frame
length specified by FSC or FSD, as appropriate.

When block chaining is used, the sender sets the chaining bit in the protocol control byte
(PCD) of the first block of the chain. This indicates to the recipient that the block chaining

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 187 of 1123

3.6 Contactless Cards 153

function is being used and that the subsequent block contains chained data. If the recipient
receives the first block of the chain correctly, it indicates correct reception and its readiness
to receive the next block by returning an R block with the same block number as the block it
just received. The next block can then be sent. This back-and-forth exchange of I blocks and
R blocks continues until the sender transmits an I block in which the chaining bit is not set.
On receiving this block, the recipient knows that all of the application-layer data have been
received, so it can process this data block and send the associated response.

Deactivating a card

When data transmission between the terminal and the card is completely finished, the terminal
places the card in the Halt state by sending it a DESELECT command, which is transmitted
using an S block. The card responds to this command with an S(DESELECT) response block
and enters the Halt state.

Error handling

The block transmission protocol has error-detection mechanisms that are similar to those of
the T = 1 protocol and allow resynchronization at various levels in case of transmission errors.
The exact rules for the protocol processes can be found in Part 4 of ISO/IEC 14 433. Extensive
examples of error-free protocol processes and error handling can also be found in the Annex
to the standard.

3.6.4 Vicinity integrated circuits cards (ISO/IEC 15 693)

The ISO/IEC 15 693 standard, whose exact title is ‘Identification cards – Contactless integrated
circuit(s) cards - Vicinity cards’, describes the properties and operating modes of contactless
smart cards having a range up to 1 m. This type of card is preferred for applications such as
access control, since a range of around 1 m means that it is not necessary for the card to be held
in the user’s hand. Instead, it can remain in the user’s pocket, purse or other location. Up to
now, this standard has not found widespread use in smart card systems, so we omit providing
an extensive description of it here.

3.6.5 Test methods for contactless smart cards

The ISO/IEC 10 373 standard contains a compilation of all test methods for ID cards with
and without chips. ISO/IEC 10 373 consists of seven parts, as shown below. As can be seen
from this following list, three parts of this standard contain special test methods for contactless
cards.

� Part 1: General characteristics tests

� Part 2: Cards with magnetic stripes

� Part 3: Integrated circuit(s) cards with contacts and related devices

� Part 4: Close-coupled cards

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 188 of 1123

154 Physical and Electrical Properties

� Part 5: Optical memory cards

� Part 6: Proximity cards

� Part 7: Vicinity cards.

3.6.5.1 Part 4: Test methods for close-coupling smart cards

This part of the standard describes methods for testing the physical interfaces of contactless
close-coupling smart cards compliant with ISO/IEC 10 536. Test aids in the form of reference
coils and capacitive coupling surfaces are defined for use in measuring energy and data transfers
between the terminal and the smart card and verifying conformance with the values specified
in the standard (ISO/IEC 10 536).

3.6.5.2 Part 6: Test methods for proximity-coupling smart cards

Part 6 of the standard describes methods for testing the physical interfaces of contactless
proximity-coupling smart cards compliant with ISO/IEC 14 433. The test aids necessary for
this purpose, which consist of a calibration coil, a test setup for measuring load modulation
and a reference card, are defined in the standard. Test methods for the following properties of
the card or terminal are described in the standard:

� the resistance of the card to damage by electrostatic discharge

� the amplitude of the load modulation and the functionality of the card within its defined
modulation region, as described in the basic standard

� the strength of the field generated by the terminal

� the modulation index and transient behavior (rise and fall times, overshoots etc.) of the signal
generated by the terminal.

It must be noted that the small amplitude of the load modulation signal means it is difficult
to make accurate and reproducible measurements of this signal, and it is to be hoped that
suitable measurement equipment will soon be commercially available. Until such time, it is
advisable to request assistance from suppliers of cards and/or terminals and agree on terms
and conditions of delivery at an early date.

3.6.5.3 Part 7: Test methods for vicinity-coupling smart cards

Part 7 of the standard describes methods for testing the physical interfaces of vicinity-coupling
smart cards compliant with ISO/IEC 15 693. The test aids and methods largely correspond to
those in Part 6 of the standard. The only difference is in the construction of the reference card,
due to the different subcarrier frequency.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 189 of 1123

4
Informatic Foundations

‘A smart card is a small computer in credit-card format with no man–machine interface’. This
statement expresses an essential fact, which is that in contrast to all other types of cards, the
specific properties of smart cards are determined by the microcontroller integrated into the
card.

The primary function of the plastic body of the card is to carry the microcontroller. Of course,
other components may be present in addition to the microcontroller, but they are not essential
to the actual smart card functions. A basic understanding of certain aspects of informatics is
necessary to understand the characteristics of these small computers and the IT mechanisms
based on them.

Our intention here is not to convey expert knowledge. That is anyhow not necessary for
understanding the basic features of the procedures and techniques used with smart cards. The
basic knowledge that this chapter offers provides a fully adequate level of comprehension.
Consequently, the information presented here delves into the technical details only to the
extent necessary to understand fundamental relationships.

Nearly half of this chapter is dedicated to cryptographic procedures used in the field of
smart cards. Until a few years ago, the subject of cryptography was surrounded by a veil
of secrecy and ignorance. However, this situation has changed dramatically in recent years,
and there is now an extensive literature on this subject. As with the sections of this chapter
that deal with the general aspects of information technology, here we provide only the basic
information necessary for understanding cryptographic algorithms and protocols. For more
detailed information, we refer you to the well-known books on this subject, such as those by
Bruce Schneier [Schneier 96] and Alfred Menezes [Menezes 97]. A further rich source of
information on cryptography is the World Wide Web, where you will find the home pages
of several research institutes (such as [GMD]), standards organizations (such as [ETSE, IEC,
ISO]), agencies (such as [BSI, NSA]), companies (such as [Certicom, Counterpane, R3, RSA]),
associations (such as [CCC, Teletrust]) and individuals with an interest in the subject (such as
[Gutmann]).

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 190 of 1123

156 Informatic Foundations

4.1 STRUCTURING DATA

Storing or transmitting data unavoidably requires an exact definition of the data in question
and their structure. Only then is it possible to subsequently recognize and interpret the data
elements. Fixed-length data structures with non-modifiable sequences regularly cause systems
to ‘collapse’. The best example of this is the conversion of the many different European
currencies to the euro. All systems and data structures with fixed currency definitions had to be
upgraded at considerable cost. The same difficulties manifest themselves in many smart card
applications. Fixed data structures that need to be extended or shortened sooner or later give
rise to considerable effort and expense.

However, the problem of structuring data has been around for a long time, and there is an
adequate choice of methods that can be used to solve the problem. One method that is very
popular in the world of smart cards, and which is coming into more general use in informatics,
comes from the field of data transmission. It is called Abstract Syntax Notation 1, or ASN.1
for short. This is a coding-independent description of data objects, originally developed for
transmitting data between different computer systems. An alternative to ASN.1 would be using
extensible markup language (XML) to structure data, but up to now this method has not gained
a foothold in real applications in the smart card world.

In principle, ASN.1 is a sort of artificial language that is suitable for describing data and
data structures, rather than programs. The syntax is standardized in ISO/IEC 8824, and the
coding rules are defined by ISO/IEC 8825. Both of these standards were developed from
Recommendation X.409 of the CCITT.

Describing ASN.1 in detail would require a book on its own, so here we only address a few
essential aspects in order to give a general ideal of how it works. For further information, we
suggest you consult the relevant literature, such as Walter Gora [Gora 98].

ASN.1 has a number of elementary (‘primitive’) data types and composite (‘constructed’)
data types. It is also possible to extend the syntax of ASN.1 using macros in order to obtain
any desired enhancements to ASN.1. Listings 4.1 through 4.3 show some simple examples of
how ASN.1 can be used, including defining and coding data.

Table 4.1 Some of the data types used in ASN.1

Data type Sort Meaning

BOOLEAN Primitive Boolean value: yes/no
INTEGER Primitive Negative and positive integers
OCTET STRING Primitive Byte sequence (one byte = one 8-bit octet)
BIT STRING Primitive Bit sequence
SEQUENCE Constructed Several components combined to form a new data type

The basic idea of coding data using ASN.1 is to prefix each data object with a unique label
and information about its length. The rather complex syntax of the description language also
allows users to define their own data types and nest data objects. The original idea, which
was to create a generally valid syntax that could form the basis for data exchange between
fundamentally different computer systems, is scarcely used in smart cards. Currently, only
a very small part of the available syntax is used in this area, mainly due to the very limited
memory capacity of smart cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 191 of 1123

4.1 Structuring Data 157

Listing 4.1 A simple example of data type definition using ASN.1

SC Controller ::= SEQUENCE { Definition of a new data type for SC Controller.
Name IA5String, The name of the microcontroller is an ASCII string.
CPUType CPUPower, CPUType refers to the definition of CPUPower.
NPU BOOLEAN, Boolean value as a yes/no assertion regarding

whether a coprocessor (NPU) is present.
EEPROMSize INTEGER, The size of the EEPROM is an integer value.
RAMSize INTEGER, The size of the RAM is an integer value.
ROMSize INTEGER} The size of the ROM is an integer value.

CPUPower ::= ENUMERATED { Definition of a new data type for CPUPower as an
enumerated type.

8Bit (8), Possible selection value for the 8-bit CPU type.
16Bit (16), Possible selection value for the 16-bit CPU type.
32Bit (32)} Possible selection value for the 32-bit CPU type.

Listing 4.2 The data definitions from Listing 4.1, filled with data for a particular microcontroller

SuperXS SC Controller ::= { Specific instance of the SC-Controller data type
with the data for SuperXS.

Name ''XS 8 Bit'', The name of the microcontroller is ‘XS 8 Bit’.
CPUType 8, This is an 8-bit CPU.
NPU true, No coprocessor (NPU) is present.
EEPROMSize 1024, The size of the EEPROM is 1024 bytes.
RAMSize 256, The size of the RAM is 256 bytes.
ROMSize 8192} The size of the ROM is 8192 bytes.

Listing 4.3 The data for a particular microcontroller from Listing 4.2, coded using the ASN.1 BER

'30 1C' Tag'30'for a string with a length of 28 bytes
('1C').

'16 08 58 53 20 38 20 42
69 74'

Tag'16'for an IA5 string with a length of 8 bytes
('08') and a content of'58 53 20 38 20 42 69 74'
(=''XS 8 Bit'').

'0A 01 08' Tag'0A'for an enumerated data type with a length
of 1 byte ('01') and a content of'08'.

'01 01 FF' Tag'01'for a Boolean data type with a length of
1 byte ('01') and a content of'FF', which
corresponds to the value'true'.

'02 02 04 00' Tag'02'for an integer data type with a length of
2 bytes ('02') and a content of'04 00'(1024).

'02 02 01 00' Tag'02'for an integer data type with a length of
2 bytes ('02') and a content of'01 00'(256).

'02 02 20 00' Tag'02'for an integer data type with a length of
2 bytes ('02') and a content of'02 00'(8192).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 192 of 1123

158 Informatic Foundations

The Basic Encoding Rules (BER) for ASN.1 are defined in the ISO/IEC 8825 standard. Data
objects created according to these rules are called BER-TLV-coded data objects. A BER-coded
data object has a label (called a ‘tag’), a length field and the actual data part, with an optional
end marker. Certain bits in the tag are predefined by the coding rules. The actual structure is
shown in Figure 4.1. The Distinguished Encoding Rules (DER) form a subset of the BER.
These coding rules specify, among other things, the coding of the length information, which
may be one, two or three bytes long. A basic summary of the BER and DER can be found in
Burton Kaliski [Kaliski 93].

ASN.1 objects are coded using the classic TLV structure, in which ‘T’ (tag) denotes the
object’s label, ‘L’ (length) refers to its length and ‘V’ (value) is the actual data. The first field
of a TLV structure is the tag for the data object in the following V field. To avoid the need for
each user to define his or her own tags, which would open the door to incompatibility, there
are standards that define tags for various, frequently used data structures. ISO/IEC 7816-6,
for example, defines tags for objects used in general industrial applications, ISO/IEC 7816-4
defines tags for secure messaging, and EMV also defines several other tags. It is by no means
the case that a given tag is universally used for the same type of data element, but a process of
standardization is essentially taking place.

1 ... 2 bytes 1 ... 3 bytes n bytes

tag
T TLV object

length
L

value
V

Figure 4.1 The principle of BER-based TLV coding according to ANS.1

The two most significant bits of the tag encode the class of the following data object. The
class indicates the general type of the data object. The universal class indicates general data
objects, such as an integers and character strings. The application class indicates that the data
object belongs to a particular application or standard (e.g. ISO/IEC 7816-6). The other two
classes, context-specific and private, fall under the heading of non-standardized applications.

The bit following the two class bits indicates whether the tagged object is constructed from
other data objects. The five least-significant bits are the actual label. Since this can have a value
of only 0 through 30, due to its limited address space, it is possible to point to the following
byte by setting all five bits to 1. All values from 31 to 127 are allowed in the second byte. Bit 8
of the second byte is a pointer that is reserved for future use, so it cannot presently be used.
The required number of length bytes is shown in Table 4.3.

The standard also defines the term ‘template’. A template is a data object that serves as a
container for other data objects. ISO/IEC 7816-6 defines the tags for possible data objects in
the domain of industry-wide applications of smart cards. ISO 9992-2 covers the domain of
smart card financial transactions.

This method of data encoding has several characteristics that are particularly useful in the
field of smart cards. Since the available memory space is generally never enough, using data
objects based on ASN.1 can produce considerable space savings. TLV encoding makes it
possible to transfer and store variable-length data without a lot of complications. This allows

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 193 of 1123

4.1 Structuring Data 159

Table 4.2 ASN.1 tag coding

Byte 1 b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 0 Universal class
0 1 Application class
1 0 Context-specific class
1 1 Private class
... ... 0 Primitive data object
... ... 1 Constructed data object
... X X X X X Tag code (0–30)
... 1 1 1 1 1 Pointer to the following

byte (byte 2), which
specifies the tag code

Byte 2 b8 b7–b1 Meaning

0 31–127 Tag code

Table 4.3 Structure of the DER length field in ASN.1

Byte 1 Byte 2 Byte 3 Meaning

0–127 — — One byte is needed for these length values
'81' 128–255 Two bytes are needed for these length values
'82' 256–65,535 Three bytes are needed for these length values

memory to be used very economically. This is illustrated in Figure 4.2, which shows the TLV
encoding of a name.

'57' || '6F' || '5C' || '66' || '67' || '61' || '6E' || '67''85' '08'

tag length value

first name "Wolfgang"
length of the first name
tag for first names

Figure 4.2 TLV encoding of the name ‘Wolfgang’

Subsequent extensions to data structures can be undertaken very easily with ASN.1, since all
that is necessary is to insert additional TLV-coded data objects into the existing data structure.
Full compatibility with the previous version is retained as long as the previous TLV objects
are not deleted. The same is true of new versions of data structures in which changes have
been made with respect to the previous coding. This is a straightforward process that only
requires modifications to the tags. It is equally simple to represent the same data using different
codings. Collectively, these advantages explain why the ASN.1 syntax, based on TLV coding,
is particularly popular in the smart card industry.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 194 of 1123

160 Informatic Foundations

TC C CV

length of the constructed data object

value of the constructed data object
data objects(= additional [primitive])

tag for a constructed data object

L

TP1 P1 P1 P2 P2 P2 P3 P3 P3T TL L LV V V

Figure 4.3 Basic scheme for forming constructed TLV-coded data structures from several primitive
TLV-coded data objects. The indices ‘C’ and ‘P’ stand for ‘constructed’ and ‘primitive’

The main disadvantage of ASN.1 data objects is that the administrative data overhead is
rather high if the volume of user data is small. For example, if the user data is only one byte,
two additional bytes (tag and length) are still needed for its administrative data. However, the
larger the volume of the user data, the more favorable is the relationship. The ASN.1 structured
data in the German health insurance card form a good example of this. There are between 70
and 212 bytes of user data. The administrative data amount to 36 bytes, which means that the
administrative overhead ranges from 17 to 51 %.

We can recapitulate all the above with a further example. Suppose we wish to store surnames,
given names and titles in a file with a transparent data structure. Irrespective of the proper ASN.1
description, the TLV-coded data will have the structure shown in Figure 4.4. The tags used in
this example have been freely chosen and thus do not correspond to any relevant standard.

"Manfred"

"Manfred"

"Manfred"

"Meier"

"Meier"

"Meier"

"Ing."

"Ing."

"Ing."

'85'

'84'

'87'

'87'

'85'

'85'

'84'

'87'

'84'

'07'

'04'

'05'

'05'

'07'

'07'

'04'

'05'

'04'

T

T

T

T

T

T

T

T

T

L

L

L

L

L

L

L

L

L

V

V

V

V

V

V

V
version 1

version 2

version 3

V

V

Figure 4.4 An example of sequence independence within a TLV structure

When evaluating this data structure, the computer compares the first tag with all tags known
to it. If it finds a match, then it recognizes the first object as a given name. It reads the length
of this object from the next byte. The subsequent bytes are then the actual object, i.e. the given

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 195 of 1123

4.2 Coding Alphanumeric Data 161

name. This is followed by the next TLV object, whose first byte is the tag for a surname. The
computer recognizes this using exactly the same process as for the first object.

If it becomes necessary to extend the data structure, e.g. by adding a title, a new type of data
object can simply be inserted into the existing structure. The insertion point is unimportant.
The extended structure remains fully compatible with the previous version, since the new type
of data object receives its own tag and is thus unambiguously identified. Programs that only
know the old tags will not be upset by the new one, since they do not recognize it and thus
automatically skip it. Other programs that do know the new tag can evaluate it, but even if the
old structure is used, they will not experience any problems.

4.2 CODING ALPHANUMERIC DATA

The alphanumeric data in the files and data objects of smart cards can be stored in a wide
variety of formats. In part, this is a result of intensive memory space optimization measures
and a lack of general agreement among the various applications and specifications, and in part
it is due to the triumphant progress of smart cards in countries outside of Western Europe,
which have their own alphabets. In such situations, the original 7- and 8-bit character sets must
be replaced by more powerful coding schemes for alphanumeric data.

4.2.1 7-bit code

A total of 128 (27) characters can be represented using a 7-bit code. The most widely used
international 7-bit code, which is commonly known as the ASCII (American Standard Code
for Information Interchange) code, is specified in ISO/IEC 646. The importance of ASCII has
been steadily decreasing for many years, since the number of characters it can represent is
much too small.

4.2.2 8-bit code

The most commonly used 8-bit code (28 = 256 characters) is derived from the 7-bit ASCII code
and is standardized in ISO/IEC 8859. It consists of two 7-bit code tables specifying control
characters and printable characters. The lower order table is identical to the 7-bit ASCII table
and is always the same. The higher order table can vary to accommodate a country-specific
character set. Probably the best-known higher-order code table is Latin 1, which contains the
characters specific to the countries of Western Europe. Latin 2, by contrast, contains the special
characters for the East European countries. ISO/IEC 8859 consists of 16 parts in total, which
define a series of higher order code tables for the character sets of various languages.

The characters of the Latin 1 code table in ISO/IEC 8869 are also found in a slightly modified
coding in DOS as ‘Code Table 850’ according to the IBM register, in the form of ‘PC ASCII’
and as ‘ANSI code’ under Windows.

EBCDIC (‘extended binary coded decimal interchange code’), which is widely used in
mainframe computers, is not used with smart cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 196 of 1123

162 Informatic Foundations

Table 4.4 The 7-bit standard character table specified for the GSM system by GSM 03.38, which is
based on the ASCII character set. Each character is shown at the top center of each cell, with the 7-bit
code in decimal notation at the bottom left and hexadecimal notation at the bottom right. The
following abbreviations are used: CR = carriage return, LF = line feed, SP = space

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 197 of 1123

4.2 Coding Alphanumeric Data 163

Table 4.4 (Cont.)

4.2.3 16-bit code (Unicode)

Codes with a width of 16 bits allow 65,546 (216) characters to be represented. The only
example of such a code is Unicode, which was developed as a private initiative by the Unicode
Consortium [Unicode] as an industry standard.

The first 256 Unicode characters are identical to ISO/IEC 8859 Latin 1, so there is at least
upward compatibility in this part of the character coding. Although the number of characters
that can be represented with a 16-bit code is sufficient to represent the characters of the most
important living languages, it is unfortunately not sufficient to represent all existing characters.

To compensate for this, a sort of escape sequence (‘surrogate pairs’) has been incorpo-
rated into the 16-bit character code in the current version of Unicode (3.0). This allows a
supplementary byte to be used, so that up to one million characters can be represented.

4.2.4 32-bit code (UCS)

Unicode was originally limited to 65,536 characters. Although this limitation does not cause
problems in everyday use, it can be avoided by using an extended character coding scheme.
ISO/IEC 10 646 specifies a 32-bit code called the ‘Universal Character Set’ (UCS), which
allows 4,294,967,296 (232) characters to be represented, although only half of the available
codes (2,147,483,648) are actually used.

The four bytes of the UCS are called (in decreasing order of significance) group, level, row
and cell. USC thus consists of 256 groups of 256 levels, each of which has 256 rows of 256
cells. A level thus specifies 65,546 characters. The lowest level, which is Group 0, Level 0, is
called the ‘basic multilingual plane’ (BMP) and is identical to Unicode. The lowest row, which

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 198 of 1123

164 Informatic Foundations

is Group 0, Level 0, Row 0, thus automatically corresponds to the character set of ISO/IEC
8859 Latin 1, and the first 128 characters are thus identical to the ASCII code.

This can be illustrated using a brief example. The letter''A'' is coded as'30' in 7-bit ASCII
and 8-bit ISO/IEC 8859 Latin 1. Since the first 256 characters of Unicode are identical to
ISO/IEC 8859 Latin 1, the letter''A'' is coded as'00 30' in 16-bit Unicode and as'00 00 00
30' in 32-bit UCS. UCS is the only character coding scheme that allows all characters of all
living and dead languages to be coded using unique numerical values. Consequently, UCS is
the most important coding scheme for future use, despite its memory requirement of four bytes
per character.

There are three commonly used schemes, called ‘UCS transition formats’ (UTFs), for
translating the codes of 32-bit UCS and 16-bit Unicode characters. UTF-8 translates characters
into variable-length byte strings whose least-significant seven bits correspond to ASCII. UTF-
16 uses 16 bits for coding and thus corresponds to the BMP of UCS, which also uses two bytes
for coding. UTF-16 is also referred to as ‘UTF-2’, since it uses two bytes for coding. UTF-32
corresponds to the usual four-byte representation of UCS, for which reason it is also referred
to as ‘UCS-4’.

7-bit code (ASCII)

8-bit code (ISO/IEC 8859)

16-bit code (Unicode)

32-bit code (UCS)

1891617242532

group level row cell

7

18

18

18

1

18

18

18

18

18

18

Figure 4.5 The relationships between the internationally most commonly used 7-, 8-, 16- and 32-bit
codes for alphanumeric characters

4.3 SDL NOTATION

This book uses SDL notation to describe states and state transitions. For some years, this
approach has been used ever more frequently in the smart card domain to describe state-oriented
mechanisms, such as those used for communication protocols. ‘SDL’ stands for ‘Specification
and Description Language’, and it is described in detail in CCITT Recommendation Z.100.

SDL notation is similar to the notation used in standard flowcharts. However, it does not
describe program flows, but instead states and state transitions. SDL diagrams are constructed
using standardized individual symbols interconnected by lines. The flow is always from top
left to bottom right, so the lines connecting individual symbols do not need arrowheads to
identify their start and end points.1

In simplified form, the notation can be regarded as a description of a system consisting of
a certain number of processes, where each process is a state machine. If a state machine is
in a stable state, it can receive a signal from outside. Depending on the data it receives, the

1 For a detailed example of an SDL diagram, see Section 6.4.2, ‘The T = 0 transmission protocol’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 199 of 1123

4.4 State Machines 165

machine may then attain a specific new state. Additional actions may occur between the initial
and final states, such as receiving and transmitting data or computing a value.

Figure 4.6 shows the 10 symbols used in this book. They are a selection from a much
larger set defined in Z.100, but they suffice as a basic set for use with smart cards. The Start
symbol (1) denotes the beginning of a process. Most SDL diagrams begin with this symbol.
The Task symbol (2) indicates a specific activity, which is described by text within the box.
With this symbol, there is no additional detailed description in the form of a subroutine. The
Decision symbol (3) allows a query during a state transition, to which the answer may be ‘yes’
or ‘no’. The Label symbol (4) marks a link to another SDL diagram and is primarily used to
divide large diagrams into several smaller diagrams.

The Input (5) and Output (6) symbols represent interfaces to the outside world. The exact
input and output parameters are described inside the symbol. The State symbol (7) is used to
describe a state. The state attained at each stage is indicated by this symbol.

The final three symbols describe subroutines. The Subroutine symbol (8) indicates that
the content of this box is described in more detail elsewhere. The Subroutine start (9) and
Subroutine end (10) symbols delimit the detailed description of a subroutine.

7

8

2

3

1

6

4

5

9

10

Figure 4.6 The SDL notation symbols used in this book, which are compliant with CCITT Z.100:

1 – Start 5 – Input 8 – Subroutine
2 – Task 6 – Output 9 – Subroutine start
3 – Decision 7 – State 10 – Subroutine end
4 – Label

4.4 STATE MACHINES

A state machine is a type of automaton. A common example of an automaton is a vending
machine, into which you insert a coin and then press a button. After this, you can open
a compartment and remove your selection. In slightly more abstract terms, this automaton
defines a chain of events involving various state transitions. In the initial state, the automaton
waits for money to be inserted. Any other action, such as pressing a button, will not cause
anything to happen. Only the insertion of a coin causes a transition from the initial state to the
‘money inserted’ state. The next transition occurs as a result of pressing the button, following
which the automaton allows a compartment to be opened.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 200 of 1123

166 Informatic Foundations

In informatics, state machines can be very effectively visualized using graphs or Petri
networks. These are not only useful for modeling state machines; they can also be used to
investigate certain properties of the systems they describe. The objectives are to identify any
deadlocks that may occur in the process and ensure correct command processing.

4.4.1 Basic theory of state machines

The objective of this section is to provide an introduction to state diagrams, which are used to
describe smart card applications, and a general explanation of how to interpret them.

A state diagram is a type of graph that represents a set of states and the interrelationships of
these states. The states are shown as nodes, and their relationships are shown as lines. If a line
indicates a direction, which means that it has an arrowhead at one end, it is called a ‘directed
line’ and the graph is a ‘directed graph’. The arrow indicates the direction in which a state
transition can take place. The actual placement of the nodes and lines in the graph plays no part
in the interpretation of the diagram. A sequence of nodes connected by lines is called a path. If
the first and last nodes are the same and there is more than one node, the path is called a loop.

This is only a very small part of graph theory, but it is essentially all we need to be able to
describe states and their associated state machines in smart card applications.

directed arrow
= state transition

node
 = state

cycle

graph

Figure 4.7 Examples of two different representations of state diagrams. On the left is a directed state
diagram, and on the right an equivalent SDL diagram

4.4.2 Practical applications

An additional advantage of microprocessor cards compared with simple memory cards is that
the command sequences can be specified in advance. It is thus possible to precisely specify
all commands in terms of their parameters and sequence. In combination with object-oriented
access authorization for files, this provides additional protection against unauthorized access.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 201 of 1123

4.4 State Machines 167

Table 4.5 Description of the state diagram of Figure 4.6 in tabular form

State after State before transition
transition

1 2 3 4 5

1 — — — — —
2 A — — — E
3 — B — — —
4 — — C — —
5 — — — D —

state 1

initial state

final state

event B event B

event C

event D

event E

event A event A

event C

event D

state 2

state 2

state 1

state 2.1 state 2.2

Figure 4.8 Two sample state diagrams using UML notation. The diagram on the left shows a simple
sequential state flow, while the diagram on the right shows a state diagram with substates

However, the possibilities offered by smart cards in this respect vary greatly. Simple operating
systems usually cannot manage state machines, while with modern operating systems it is even
possible to define application-specific state machines that work with command parameters.

A typical example of a simple state machine is provided by the two commands needed to
authenticate a terminal. The first command asks the card for a random number. This activates
a state machine that accepts only an authentication command as the next command. If the card
receives this command, the process completes and all other types of command are allowed.
If the card receives any command other than an authentication command, the state machine
generates an error message and the process is aborted. The command sequence must then be
restarted from the beginning.

Such simple state machines have several major advantages in smart cards. Since they are
limited to very few commands in a rigidly defined sequence, they require little memory space
and program overhead. In many applications, it is sufficient to protect file contents using object-
oriented access mechanisms, without imposing any other restrictions on command sequences.
Only a few procedures, such as authentication, must follow prescribed sequences. This can be
implemented with very little memory using simple state machines.

These simple state machines can be extended to verify all commands, along with all of
their parameters, within a defined graph before they are executed. Depending on how the
state machine is constructed, under certain conditions it may be possible to dispense with

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 202 of 1123

168 Informatic Foundations

X

command response

L1

1

L2L1

L2

command

response

X

Figure 4.9 An example of a simple smart card state machine with two states, ‘X’ and ‘1’

object-oriented file access protection, since the state machine can perform all the necessary
checks before a command is actually executed. Of course, an error in the state diagram could
have fatal consequences for the security of the system. As it is very difficult to verify the com-
plete absence of errors in the state diagrams of complex state machines, file access protection is
still used in practice. Correctly describing all of the processes and commands present on a smart
card is very time-consuming, so it is often necessary to do this empirically to a certain extent.

Now that we have described the advantages of state machines, we must mention their draw-
backs. Implementing a state machine with the required capabilities is very time-consuming in
terms of both design and subsequent programming. Since a state machine is controlled by the
stored representation of a graph, a considerable amount of program memory is needed just to
hold a state machine, since the graph must be stored in memory in addition to the actual state
machine. The amount of memory space naturally depends on the complexity of the graph to be
executed. The amount of information contained in a graph having many states and a correspond-
ing number of transitions can be very large relative to typical smart card memory capacities.

State machines for smart cards are addressed by the ISO/IEC 7816-9 standard. It describes
‘access control descriptors’ (ACDs), which define the commands that are permitted in a specific
state, along with their associated parameters. A smart card operating system can monitor hard-
coded state machines using these ACDs.

In order to illustrate the capabilities of a state machine in summary form, Figure 4.10 shows
the state diagram for a small application. Its operation is described below.

After a reset, the smart card is in the initial state, denoted by 1. In this state, every file in the
directory may be selected using SELECT FILE; this does not cause a state transition. All other
commands except PIN verification (VERIFY) are prohibited, and the card responds to such
commands with an error message. After successful verification of the PIN, the state machine
changes to state 2.

Two commands are permitted in state 2. The first path leads via SELECT FILE to state 3,
where the selected file may be read. The second path originating from state 2 leads to state 4
after the terminal requests a random number from the card (ASK RANDOM). From here, any
command other than EXTERNAL AUTHENTICATE leads back to the initial state (1). When

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 203 of 1123

4.5 Error Detection and Correction Codes 169

1

2

B

3

E C

4

F

1 3

D

5

G

5

H

L1

L1

1

A

Figure 4.10 Example of a smart card state machine with the following states and transitions:

1 – initial state 2 & 4 – intermediate states 3 & 5 – final states

A – SELECT FILE E – ASK RANDOM
B – VERIFY F – all commands except G
C – SELECT FILE G – EXTERNAL AUTHENTICATE
D – READ BINARY H – SELECT FILE / UPDATE BINARY

the terminal has been successfully authenticated, the card reaches state 5. In this state, according
to the diagram, files may be selected and written using SELECT FILE and UPDATE BINARY.

In this diagram, states 3 and 5 cannot be exited during a session, so they represent the two
end states. A transition to state 1 is only possible via a card reset. This is not shown in the
diagram, since the ‘awareness’ of every state machine is limited to its current session. No
information at all is transferred from one session to the next within the state machine.

4.5 ERROR DETECTION AND CORRECTION CODES

Whenever data are transmitted or stored, it should be possible to detect any changes to the
data. In particular, stored programs must be protected against corruption, since a single altered
bit of program code could ruin the program or modify its execution to such an extent that
it no longer provides the required functions. The EEPROM memory used in smart cards is
especially sensitive to external influences, such as heat and voltage fluctuations. Consequently,
the sections that perform security-related functions must be protected so that undesired changes
can be detected by the operating system and their negative effects can be avoided.

Very sensitive file contents, such as program code, keys, access conditions, pointer structures
and the like, must be protected against alteration. Error detection codes (EDCs) are used for

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 204 of 1123

170 Informatic Foundations

this purpose. The probability of detecting a change in a memory region protected by an EDC
depends on the type of code used. Error correction codes (ECCs) are an extension of error
detection. They make it possible to not only detect errors in the protected data, but to also
correct errors to a limited extent

EDC EDCdata data

EDC generation EDC generation

generating an
error detection code (EDC)

testing an
error detection code (EDC)

no= ?

data not
altered

data
altered

yes

Figure 4.11 The basic processes for generating and checking an error detection code (EDC)

All of these codes work on the principle of assigning a checksum to the protected data.
The checksum is usually stored along with the protected data. It is computed using a generally
known algorithm, not a secret one. The data can be checked for changes as necessary by using
the EDC. This is done by comparing the stored checksum with one computed anew.

A particular aspect of error detection and correction is that it utilizes a wide variety of
mathematical procedures. Some of these provide a higher degree of protection for the more
significant bits, in order to reduce adverse effects on numerical values as much as possible. In
most cases, however, using such algorithms enormously increases the complexity and size of
the program code. It is thus more common to use procedures in which error detection does not
distinguish between the upper and lower parts of a byte, but instead operates on the byte as a
whole.

Error detection and correction codes are very similar to message authentication codes
(MACs) and cryptographic checksums (CCSs). However, there is a fundamental difference.
EDC and ECC checksums can be computed and checked by anyone. In contrast, the computa-
tion of a MAC or CCS requires a secret key, since these codes are designed to protect against
manipulation of the data instead of against accidental corruption.

The most widely known type of error detection code is doubtless the parity bit, which
is appended to each byte in many data transmission protocols and some types of memory
modules. Before computing a parity bit, you must decide whether to use even or odd parity.
With even parity, the parity bit is chosen such that the total number of ‘1’ bits in the data byte
plus the parity bit is an even number. With odd parity, this total is an odd number.

If two bits in a byte are simultaneously wrong, the parity will not change and no error will
be detected. Another drawback of parity-based error detection is the relatively large overhead
of one parity bit for every eight data bits. This represents an additional memory load of 12.5 %.
Furthermore, it is very difficult to work with supplementary parity bits when the memory is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 205 of 1123

4.5 Error Detection and Correction Codes 171

1

parity bitdata byte

0 0 1 1 0 1 0 1

Figure 4.12 Example of error detection using a supplementary odd parity bit

organized in bytes, since this requires significant program overhead. This is why parity bits are
not used for error detection in smart card memories. Other methods, such as XOR and CRC
checksums, are better suited to this task.

4.5.1 XOR checksums

An XOR checksum, which is also known as a longitudinal redundancy check (LRC) due to how
it is computed, can be obtained very simply and very quickly. These are both important criteria
for error detection codes used in smart cards. In addition, the algorithm can be implemented
extremely easily. Besides protecting data stored in memory, XOR checksums are typically used
for data transmission (e.g., ATR with the T = 1 transmission protocol). An XOR checksum is
computed by performing consecutive logical XOR operations on all data bytes. In other words,
byte 1 is XOR-ed with byte 2, the result of this is XOR-ed with byte 3 and so on.

’41’ ’00’

XORdata

’46’ || ’72’ || ’61’ || ’6E’ || ’7A’

 check

Figure 4.13 Computing and checking an XOR checksum

If the checksum is placed directly after the data and a new checksum is computed using
both the data and the first checksum, the result is'00'. This is the simplest way to verify that
the data and the checksum still have their original values and thus are uncorrupted.

The primary advantage of XOR checksums is that they can be computed quickly using a
simple algorithm. The algorithm is so simple that its assembler code is only 10 to 20 bytes long.
One reason for this is that the XOR operation is directly available in all processors as a machine
instruction. In addition, an algorithm for XOR checksum computation must be implemented
in almost every smart card operating system, due to the requirements of various ISO standards
relating to data transmission using the T = 1 protocol. This algorithm can be used for other
purposes without any additional overhead.

Unfortunately, XOR checksums also suffer from several serious drawbacks, which consid-
erably limit their practical application. They are in principle not very secure. For example,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 206 of 1123

172 Informatic Foundations

they do not allow the interchange of two bytes within the overall data to be detected. Also,
multiple errors can occur at the same position in several bytes and cancel each other out. The
consequence of all this is that XOR checksums are mainly used for data transmission; they
are used only to a very limited extent to verify the consistency of memory contents. XOR
checksums can be computed very quickly, since specific machine instructions for this purpose
are generally available. With a typical 8-bit smart card microcontroller clocked at 3.5 MHz, a
rate of 1 µs/byte can be achieved, which corresponds to a throughput of 1 MB/s.

4.5.2 CRC checksums

The CRC method (cyclic redundancy check) also comes from the field of data communications,
but it is significantly better than the XOR method. Still, a CRC checksum is also only an error
detection code, so it cannot be used for error correction. The CRC method has been used for
a long time in data transmission protocols, such as Xmodem, Zmodem and Kermit, and it is
widely used in hard disk drive controllers in a hardware implementation. It is based on the
CCITT V.41 recommendation. An additional standard for CRC checksums is ISO/IEC 13 329.

A CRC-16 checksum is generated by a 16-bit cyclic feedback shift register, while a 32-bit
shift register is used to generate a CRC-32 checksum. The following description refers only
to the CRC-16 checksum, since this is the most commonly used CRC checksum method for
smart cards. The feedback in the shift register is determined by a generating polynomial. In
mathematical terms, the data to be checked are represented as a large number, which is divided
by the generating polynomial. The remainder from this division is the checksum. The CRC-16
method (that is, a 16-bit CRC) should only be used with data volumes up to 4 kB, since the
error detection probability drops sharply beyond this point. However, this restriction can easily
be circumvented by dividing the data into blocks that are no larger than 4 kB. Alternatively,
a CRC-32 method (32-bit CRC checksum) can be used, which allows single-bit errors to be
detected in up to 4 GB of data.

Table 4.6 Commonly used generator polynomials for CRC-16 computation

Designation Generator polynomial

CRC CCITT V.41, ISO/IEC 3309 G(x) = x16 + x12 + x5 + 1
CRC-16 G(x) = x16 + x15 + x2 + 1
CRC-12 G(x) = x12 + x11 + x3 + x2 + x + 1

With a CRC checksum, it is always necessary to know the generating polynomial as well as
the initial value for the shift register, since otherwise the computation cannot be reproduced.
In the overwhelming majority of cases (e.g. ISO 3309), the initial value for the shift register is
zero, but several data transmission protocols (such as CCITT Recommendation X.25) set all
bits to 1.

The computation of a CRC checksum, as illustrated in Figure 4.14, proceeds as follows:
(a) the 16-bit CRC register is set to its initial value; (b) the data bits are fed into the feedback
shift register one after the other, starting with the least-significant bit; and (c) the feedback
(which represents the polynomial division) takes place via bitwise logical XOR operations on

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 207 of 1123

4.5 Error Detection and Correction Codes 173

CRC checksum (LSB) CRC checksum (MSB)

data1 n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data input

Figure 4.14 Calculating a CRC-16 checksum with a generator polynomial G(x) = x16 +
x12 + x5 + 1. The data and the CRC register are both shown as bits

the CRC bits. After all data bits have been fed into the register, the computation is complete
and the content of the 16 bits is the desired CRC checksum.

CRCdata

'46' || '72' || '61' || '6E' || '7A' 'E5 80'

Figure 4.15 Sample computation of a CRC checksum using the generator polynomial G(x) = x16 +
x12 + x5 + 1 and an initial value of'0000'

A CRC checksum can be verified by again calculating the CRC checksum of the data and
comparing the result with the checksum provided with the data. If they are the same, it follows
that the data and the checksum have not been altered.

The major advantage of CRC checksums is that they provide reliable error detection, even
with multiple errors. Only very few methods can achieve this. In addition, in contrast to the
XOR method, CRC allows interchanged data bytes to be detected, since byte order definitely
plays a role in checksum generation via the feedback shift register. However, it is very difficult
to specify exact detection probabilities for such errors, since they are very dependent on the
locations of the errors within the bytes in question.

The CRC algorithm is relatively simple, and the amount of code needed to implement it
thus matches the needs of small smart card memories. Its greatest drawback is the slowness
of the computation, since the algorithm requires the data to be shifted bit by bit. The CRC
checksum algorithm was originally designed for hardware implementation, and this has a strong
detrimental effect when it is implemented in software. The throughput of a CRC-16 routine
is lower than that of an XOR checksum routine by a factor of around 200. A typical figure is
0.2 ms/byte at a 3.5-MHz clock frequency, which corresponds to a throughput of 5000 byte/s.
Computing a CRC checksum for a 10-kB smart card ROM would thus require around 2 seconds.

Many types of microcontrollers have a special component for hardware-assisted generation
of CRC checksums for definable memory regions. The rates that can thereby be achieved can
be as high as one byte per clock cycle. For a microcontroller clocked at 5 MHz without an
internal clock divider, this would yield a throughput of 5 MB/s.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 208 of 1123

174 Informatic Foundations

4.5.3 Reed–Solomon codes

In 1960, the mathematicians Irving S. Reed and Gustave Solomon published a paper with the
title ‘Polynomial Codes over Certain Finite Fields’, which forms the basis for what has become
one of the most widely used methods for error detection and correction. Reed–Solomon codes
(RS codes), which are named after their inventors, are used for error detection and correction
for data storage (e.g. bar codes, DAT, CD and DVD) and data transmission (e.g. DSL, satellite
communications and space probes).

Reed–Solomon codes are block-oriented error correction codes (ECCs) that can also correct
burst errors. They are computed using the arithmetic of finite bodies (Galois fields, or GF). The
characteristics of a Reed–Solomon code, in terms of the number of detectable and correctable
errors for a specific data length, can be adapted to a particular application via the choice of
generator polynomial.

For several years now, Reed–Solomon codes have been used by various smart card operating
systems for error detection, and quite rarely for error correction, in order to secure data stored
in EEPROM. The generator polynomials used are matched to the properties of EEPROM
storage with regard to the occurrence of burst errors, thus yielding significantly more secure
error detection than what is possible using the CRC method.

For example, with an RS code using a 28 GF and two supplementary bytes in addition to
the data to be protected, it is possible to detect two incorrect bytes or correct one incorrect
byte. With three supplementary bytes, three incorrect bytes can be detected or one incorrect
byte can be corrected, and with four supplementary bytes, four incorrect bytes can be detected
or two incorrect bytes can be corrected. The size of the executable code in 8051 assembler is
approximately 100 bytes, and the computation rate is approximately 10 ms/byte at 3.57 MHz.
RS codes are also quite suitable for implementation in hardware.

4.5.4 Error correction

If it is necessary to not only detect changes in memory regions, but also to correct them
if possible if they result from errors, error correction codes must be used. Since computing
such codes is costly in terms of program code, using them to protect smart card memory is
problematic. Furthermore, the algorithms in question are usually designed to correct only low
error rates. Since EEPROM memory in smart cards is page-oriented, a whole page usually
fails in the event of an error, so only methods that are capable of correcting burst errors are
worth considering. Consequently, a different approach is taken for error correction.

The technically simplest solution is to store the data in multiple, physically separate memory
pages and use a majority-vote procedure when reading the data. Triple storage is commonly
used, together with a 2-of-3 vote. A less memory-intensive variation of this method is to store
the data in two locations with EDC checksum protection for each location. The occurrence of
a memory error can be detected by checking the two EDC values. This also allows the memory
region where the error occurred to be identified. The region with no detected error must then
contain the valid data, which can be restored to the faulty region.

Of course, a significant amount of extra memory is needed for these error correction methods,
but for small quantities of data it is still well within acceptable limits. The main advantage is
that no complicated, code-intensive algorithm is needed to evaluate the data.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 209 of 1123

4.5 Error Detection and Correction Codes 175

As an alternative to protection by multiple data storage, it is possible to use an error correction
algorithm, such as the Reed–Solomon algorithm. This is particularly suitable for use with clus-
tered errors, such as may occur in smart cards due to page failures. The algorithm occupies a few
hundred bytes of memory when programmed in assembly language, and the size of the ECC data
depends primarily on probability with which errors must be detected and/or properly corrected.

ECC ECCdata data

ECC generation

corrected data

ECC evaluation

generating an
error correction code (ECC)

evaluating an
error correction code (ECC)

possibility of
erroneous
error correction

Figure 4.16 The basic principle of using an error correction code (ECC)

Several basic remarks are in order here with regard to using error correction methods in
smart cards. At first glance, it may be tempting to use these methods to correct errors that occur
in the EEPROM. However, the presumed data security is bought at the price of several serious
drawbacks. The required amount of memory space is enormous, and the time required to write
data to memory also increases considerably, since data must be stored in multiple locations.
Algorithms that can correct clustered errors on the scale at which they typically occur with
page-based EEPROMs are complicated and require a large amount of memory space for the
EDCs. However, there is an even more serious fundamental drawback. Even when an error
correction algorithm is used, errors can in principle still be present in the corrected data, since
the algorithm works properly only up to a certain number of errors. If an operating system
corrects memory errors automatically, in principle it is never possible to be certain that the
correction was made properly.

For example, suppose that automatic error correction is applied to the balance in an electronic
purse. The system operator can never be sure of what will happen to the credited amounts in
the event of an error. The balance may be corrected properly, but there is a certain probability
that it will be too high or too low after the correction. In this regard, it must be remembered
that smart cards are inexpensive mass-produced articles, which can simply be replaced if they
are faulty.

As a rule, when problems occur with data contents, a higher level system that allows human
intervention must decide what to do. For example, on the first instance of an error occurring in
a smart card purse, the cardholder’s balance will most likely be manually restored. However, if
the error recurs repeatedly, the system operator will be much less forthcoming with regard to
the cardholder, since there is a possibility that the EEPROM has been fraudulently manipulated.
This cannot be handled by an error correction code in the card; instead, the system administrator
must intervene.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 210 of 1123

176 Informatic Foundations

4.6 DATA COMPRESSION

As is well known, the amount of memory available in a smart card is severely limited. Conse-
quently, the desire to improve this situation by using data compression repeatedly arises among
application providers.

There are certain hurdles that must be overcome before data compression can be used. The
algorithm must not take up too much memory space, and in particular it must require very little
RAM. In addition, an acceptable compression speed should be achieved. The compression
factor is not all that important, since the data volume is always only a few hundred bytes
at most. The methods that are frequently used for smart cards are run-length encoding and
variable-length encoding.

With run-length encoding, a contiguous string of identical data objects is replaced by the
combination of a repetition count and the object (such as a character) to be repeated. With
variable-length encoding, the frequency of occurrence of characters having a fixed length (e.g.,
one byte) is analyzed, and the most frequently occurring characters are replaced by characters
with shorter lengths (Huffman algorithm). Less frequently occurring characters are encoded
using longer codes.

With static variable-length encoding, replacements are made using a previously defined
table. The dynamic version of variable-length encoding first analyzes the frequency distribution
of the characters in the original data and then constructs a replacement table based on the
results of this analysis. A third variation is adaptive variable-length encoding, in which the
replacement table is continuously updated during the compression process to achieve optimum
compression.

Both dynamic and adaptive variable-length encoding are out of the question for smart cards,
due to the complexity of their algorithms and their large memory requirements. Run-length
encoding and static variable-length encoding are thus the only real alternatives for use in
smart cards. The algorithm for run-length encoding does not need much program code, but
it has the drawback that it can only be used with repetitive data. Image data, for example,
are particularly suitable, since images often contain large areas with the same value. Keys for
symmetric cryptographic algorithms would be completely unsuitable for compression with
this algorithm, since they have the characteristics of random numbers.

Static variable-length encoding is the second compression method used with smart cards.
It is quite suitable for files containing telephone directory information, for instance, since the
structure of the stored data is known and the replacement table can be permanently built into
the algorithm. Telephone numbers consist of only the numerals 0 through 9 and a few special
characters, such as ‘*’ and ‘#’. If only capital letters are allowed for names, the replacement
table only has to accommodate the 26 characters of the alphabet. Furthermore, certain letters
occur significantly less often in names than do others, which also affects the encoding. With
telephone directories, a memory space reduction of 30 % (compared with the uncompressed
data) can certainly be achieved, although this does not take into account the memory occupied
by the compression algorithm.

However, certain things must be considered with regard to data compression for smart cards.
Ideally, data compression should be performed in the operating system in a manner that is fully
transparent to the outside world, such that uncompressed data can be read and written in the
usual way using standard commands. Compression can also only be applied to certain types of
data. The results of attempting to compress program code and keys are usually unsatisfactory.
This must be taken into account in the design of the application, since otherwise the anticipated

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 211 of 1123

4.7 Cryptology 177

tables tables

data compressed data

compressed data data

compression
algorithm

decompression
algorithm

generating
compressed data

decompressing
compressed data

Figure 4.17 The basic principle of data compression for stored data

reduction in memory space can (in the worst case) turn into a need for even more memory as
the result of ‘compression’.

For all of these reasons, data compression has been used only sparingly in smart cards up
to now. In special applications, such as telephone directories in cards used in the telecommu-
nications sector, compression algorithms are sometimes used. With general-purpose operating
systems and applications in which the structure of the data is not known in advance, using
data compression does not produce satisfactory results. It should thus be avoided, due to the
additional memory space required by the compression algorithm.

4.7 CRYPTOLOGY

In addition to their function as data storage media, smart cards are also used as authorization
media and encryption modules. As a result, cryptography achieved a central significance in the
early days of smart cards. Nowadays, the procedures and methods of this discipline are firmly
established components of smart card technology.

Cryptology can be split into two areas of activity, namely cryptography and cryptanalysis.
Cryptography is the study of the methods used for encrypting and decrypting data, while
cryptanalysis is concerned with attempting to break existing cryptographic systems.

Cryptology

cryptography cryptanalysis

Figure 4.18 The two subdivisions of cryptology are cryptography and cryptanalysis

In the smart card realm, the practical use of existing cryptographic procedures and meth-
ods represents the principal task and primary application area with regard to cryptography.
Consequently, here we concentrate more on the practical aspects of cryptography than on the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 212 of 1123

178 Informatic Foundations

theoretical aspects. However, we do not entirely neglect the application of the procedures and
the basic features of their theoretical foundations.

The four objectives of cryptography are maintaining the secrecy of messages (confidential-
ity), ensuring the integrity and the authenticity of messages and ensuring the binding force
(non-repudiation) of messages. These objectives are mutually independent, and they place
different demands on the system in question. Confidentiality means that only the intended
recipient of a message can decrypt its contents. Authenticity means that the recipient can
verify that the received message has not been altered in the course of being transmitted. Non-
repudiation means that the sender can verify that a certain recipient has received a particular
message, which means that the message has binding force.

Objectives of cryptography

confidentiality

integrity

authenticity

bindingness

Figure 4.19 Classification of the four independent objectives of cryptography

The notation used in this book for cryptographic procedures is illustrated in Figures 4.20
and 4.21. The terms and principles described below form the basis for cryptology and are a
prerequisite for understanding the procedures described in the rest of this section.

In simplified terms, there are three types of data in encryption technology. The first is
plaintext, which is unencrypted data. Encrypted data is referred to as ciphertext. Finally there
is a key, one or more of which is required for encryption and decryption. These three types of
data are processed by an encryption algorithm. The algorithms that are currently used in smart
cards are generally block-oriented, which means that the plaintext and ciphertext can only be
processed in packets with fixed lengths (such as 8 bytes with DES).

Modern cryptographic algorithms are generally based on Kerckhoff’s principle. This prin-
ciple, which is named after Auguste Kerckhoff (1835–1903), says that the entire security
of an algorithm should be based only on the secrecy of the key, and not on the secrecy of
the cryptographic algorithm. The consequence of this generally known but often-disregarded
principle is that many algorithms used in the civil sector have been published, and in part also
standardized.

The opposite of Kerckhoff’s principle is the principle of security by concealment. With this
principle, the security of a system is based on the idea that a would-be attacker does not know
how the system works. This principle is very old, and it is still frequently used even today.
However, you should take care not to develop a cryptographic system (or any other system)
based on this principle alone. Up to now, every system based on this principle alone has been
broken, usually in a very short time. In our information society, it is generally not possible to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 213 of 1123

4.7 Cryptology 179

key

encryption plaintext ciphertext

key

decryption ciphertext plaintext

key

one-way function for
computing a signature
or hash value

text hash value or signature

Figure 4.20 The symbols used in this book for cryptographic algorithms

keep the technical details of a system secret for a long time, and that is precisely what this
principle requires.

Of course, the consequences of the unintentional interception of messages can most certainly
be limited by using concealment. This principle is thus repeatedly used in combination with
Kerckhoff’s principle. In many large systems, it is also incorporated as a supplementary security
level. Since the security of modern, published cryptographic algorithms is primarily based only
on the limiting processing capacity of current computers, concealing the procedure that is used
increases the level of protection against attacks.

If you rely only on the protection provided by the assumption that a potential attacker does
not have access to sufficient processing power, you may be quickly overtaken by the rapid
pace of technical progress. Statements such as ‘it would take a thousand years to break this
cryptographic system’ are unreliable, since they are based on currently available processing
capacities and algorithms. They cannot take future developments into account, since such de-
velopments are generally unknown. The arithmetic processing capacities of processors double
around every 18 months, which means that the capacity per processor has increased by a factor
of approximately 25,000 over the last 25 years.

Recently, the increased degree of networking of computers has created another option
for mounting serious attacks on keys or cryptographic systems. For instance, a request to
help break a DSS key, if posted on the Internet, would be forwarded to millions of users
by the snowball effect. If only 1 % of all current users2 participated in such an action, the
potential attacker would have access to a parallel computer composed of 300,000 individual
computers.

Cryptographic algorithms are divided into two types: symmetric and asymmetric. This
division is based on the key that is used. Here ‘symmetric’ means that the algorithm uses
the same key for encryption and decryption. By contrast, asymmetric algorithms (which were

2 In the summer of 2001, it was assumed that there were around 500 million users of the Internet

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 214 of 1123

180 Informatic Foundations

encryption

plaintext
key
encrypt
ciphertext

ciphertext
signature
decrypt
plaintext

decryption PT = dec (S; CT)

text
secret key
sign (decrypt)
signature

signing SIG = sign (SK; T)

Figure 4.21 The notation used in this book for cryptographic procedures

postulated in 1976 by Whitfield Diffie and Martin E. Hellman) use different keys for encryption
and decryption.

A term that often comes up in connection with cryptographic algorithms is the magnitude
of the key space. This refers to the number of possible keys that can be used with a particular
cryptographic algorithm. A large key space is one of several criteria for a secure cryptographic
algorithm.

A requirement that has only recently become prominent with regard to the technical imple-
mentation of cryptographic algorithms in smart cards is freedom from noise. In this context,
this means that the execution time of the algorithm must not depend on the key or the plaintext
and ciphertext. If this requirement is not met, it could be possible to discover the key in a
relatively short time, which would mean that the entire cryptographic system was broken.

In cryptology, there is a strong distinction between the theoretical and practical security
of a system or an algorithm. A system is theoretically secure if an attacker, given unlimited
time and technical resources, cannot break the system. This means that even if an attacker
would need 100 years and the aid of several supercomputers to break a system, it could not
be considered to be theoretically secure. If a system cannot be broken when the attacker
has only a limited amount of time and technical resources, it is considered to be practically
secure.

A cryptographic system can assure the confidentiality and/or authenticity of a message. If
the system has been broken, this means that confidentiality and/or authenticity are no longer
guaranteed. If an attacker can discover the secret key of an encryption algorithm, for example,
he can then decrypt data that have been protected by being encrypted, in order to learn their
content and modify them as desired.

Several different methods of attack can be used to break the key of a cryptographic algorithm.
In a ‘ciphertext-only’ attack, the attacker knows only the ciphertext and attempts to determine

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 215 of 1123

4.7 Cryptology 181

Cryptographic techniques

protocols and
procedures

cryptographic
algorithms

hash functions

miscellaneous

symmetric

asymmetric

DES

IDEA

DSA

elliptic curves

Diffie-Hellman

SHA-1

random numbers

block encryption
modes

CBC

ECB

Fiat-Shamir
SCA 85

zero-knowledge

blind signatures

challenge-response

RIPE-MD

RSA
MD5

key generation

DES-based

AES

Figure 4.22 Classification chart for cryptographic techniques used in the smart card area

the key or plaintext from the ciphertext. A more promising method of attack is the ‘known-
plaintext’ attack, which involves the attacker knowing several plaintext–ciphertext pairs for a
secret key. The ‘chosen-plaintext’ and ‘chosen-ciphertext’ attacks require the attacker to be
able to generate his own plaintext–ciphertext pairs. If this is possible, the likelihood of success
is improved, since the secret key can be discovered experimentally.

Manipulation options
for an attacker

modify (part of) a message

delete (part of) a message

insert (part of) a message

Figure 4.23 Classification of the various manipulation options available to an attacker

Discovering a key by trial and error (a ‘brute-force’ attack) is naturally the least sophisticated
method of attack. With this method, an attempt is made to find out the correct key by employing
a large amount of processing capacity to test all possible keys with a know plaintext–ciphertext
pair. Obviously, a processing capacity in the supercomputer range is normally a prerequisite
for this method. Statistically seen, on average half of the possible keys must be tested before
the right one is found. Naturally, a large key space considerably increases the difficulty of such
an attack.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 216 of 1123

182 Informatic Foundations

Fundamental cryptographic attacks

known plain text attack

cipher text only attack

chosen cipher text attack

chosen plain text attack

chosen key attack

Figure 4.24 Classification of the basic methods of cryptographic attack

4.7.1 Symmetric cryptographic algorithms

Symmetric cryptographic algorithms are based on the principle of performing encryption and
decryption using the same secret key – hence the designation ‘symmetric’.

The DES algorithm

The best-known and most widely used type of symmetric cryptographic algorithm is the
Data Encryption Algorithm (DEA). It was developed by IBM in collaboration with the NBS
(US National Bureau of Standards) and published in 1977 as the US FIPS 46 standard. The
standard that describes the DEA is generally referred to as the DES (Data Encryption Standard).
Consequently, the Data Encryption Algorithm is often (but not entirely correctly) called the
DES algorithm.

Since this algorithm is of course fashioned according to Kerckhoff’s principle, it could be
published without losing any of its security. However, even today not all of the development
criteria have been made known, which repeatedly leads to assumptions regarding possible
methods of attack and the possible presence of ‘trap doors’. However, up to now all attempts
to break the algorithm on this basis have failed.

Two important principles for a good encryption algorithm were incorporated into the design
of the DES algorithm. These are the principles of confusion and diffusion, as first proposed
by C. Shannon. The confusion principle states that the statistics of the ciphertext should affect
the statistics of the plaintext in a manner that is so complex that an attacker can derive no
advantage from them. The diffusion principle states that each bit of the plaintext and each bit
of the key should affect as many bits of the ciphertext as possible.

DES, which is a symmetric block encryption algorithm, does not expand the ciphertext.
This means that the plaintext and ciphertext blocks have the same size. The block size is 64
bits (8 bytes), which is also the length of the key, although only 56 of these bits are used as the
actual key. The key contains eight parity bits, which reduces the available key space. The 64
bits of the key are numbered consecutively from left (msb) to right (lsb). Bits 8, 16, 24, . . . ,
64 are the parity bits. The parity is always odd. Due to the parity bits, the key space is 256,
which means that there are approximately 7.2 × 1016 possible keys. At first glance, a key space
with 72,057,594,037,927,936 possible keys may appear very large, but the limited size of its

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 217 of 1123

4.7 Cryptology 183

ciphertext

secret key

plaintext plaintext

secret key

encryption
(key; plaintext)enc

decryption
(key; ciphertext)dec

Figure 4.25 Operating principle of a symmetric cryptographic algorithm for encrypting and decrypting
data. The DES is a typical example of this type of cryptographic algorithm

key space is actually the main weakness of the DES algorithm.3 Given the steadily increasing
processing capacity of modern computers, a key space of this size is already considered to be
too small for a secure cryptographic algorithm. If a plaintext–ciphertext pair is available, it is
easy to test all possible keys if the key space is too small.

 key

'A8' 'A7' 'A6' 'A5' 'A4' 'A3' 'A2' 'A1'

ciphertext

'F5' '0B' '37' 'AE' 'A8' 'F9' 'AA' 'B4'

plaintext

'57' '6F' '6C' '66' '67' '61' '6E' '67'

Figure 4.26 The operation of the DES algorithm for encrypting data

If a plaintext–ciphertext pair is obtained by tapping the communications between a terminal
and a smart card, a brute-force attack can be mounted by encrypting the plaintext using all
possible keys. The correct key can be determined by comparing all of the resulting ciphertexts
with the previously obtained ciphertext. This procedure can very easily be executed using
several parallel processors. Each of the processors tests only the relatively small portion of
the key space assigned to it. A sample calculation can illustrate the amount of time needed for
such a brute-force attack. The fastest currently available DES components require 64 ns for a
complete block encryption.4 If 10,000 such computation modules are assembled in parallel,
each one can independently test a small part of the key space. Assuming that on average only
half of the key space must be searched to find the correct key, the processing time can be
calculated as follows:

((256 × 64 ns) ÷ 10,000) × 0.5 ≈ 64 h

In 1993, Michael Wiener published plans for a million-dollar computer that could test all
the DES keys of a given plaintext–ciphertext pair within seven hours [Wiener 93]. In 1998, a

3 To get a feeling for the size of this large number, you might enjoy considering the following comparison. The mass
of the earth is roughly 5.974 × 1027 grams. Based on this value, the number of electrons, protons and neutrons that
make up the earth can be taken to be around 1052. If only a single elementary particle were needed to store a bit,
then at most 1052 bits could be stored in a memory with the mass of the earth

4 Using a DEC gate array built with gallium-arsenide technology that operates in the ECB and CBC modes

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 218 of 1123

184 Informatic Foundations

similar concept, called ‘DES Cracker’, was implemented by the Electronic Frontier Foundation
(EFF) at a cost of approximately US $ 250,000. The DES Cracker can test approximately 88.8
billion keys per second, and in a public test it took 56 hours to determine an unknown key
[EFF 98]. The biggest problem with the use of DES is that its key space has become too
small over time. Consequently, the triple-DES algorithm is used almost exclusively for new
applications.

A full description of the exact implementation of the DES algorithm is far beyond the scope
of this book, and it is not necessary for understanding the subject. If you are interested in
having more detailed information, consult FIPS Publication 46, Carl Meyer [Meyer 82] or
Bruce Schneier [Schneier 96]. However, one significant detail must be mentioned. The DES
was designed as an encryption algorithm that can easily be implemented in hardware. There
are presently many smart card microcontrollers with a DES hardware module. However, if
it is necessary to implement DES in a smart card in software, it will occupy around 1 kB of
assembler code, even in a highly optimized version. The size of a DPA-resistant version is
approximately 2 kB. Its computational speed is consequently rather low.

Typical computation times for encryption and decryption using a smart card, with compar-
ison values for using a PC and a hardware integrated circuit, are shown in Table 4.7. These
numbers can vary depending on the actual implementation, and they take into account only
the pure processing time for DES encryption or decryption of an 8-byte block, assuming that
all registers are already loaded. As a general rule, it can be assumed that DES implemented in
hardware is approximately 150 times faster than DES in software.

Keys for the DES algorithm can be generated using a random number generator that produces
an 8-byte random number, which is then checked against the four weak and 12 semi-weak
keys. If the computed value does not match any of these easily broken keys, the parity bits are
computed and the result is a DES key.

Table 4.7 Typical DES computation times (8-byte block)

Implementation Computation time / throughput

Smart card, 3.5-MHz clock, software implementation 17.0 ms / 3.8 kbit/s
Smart card, 3.5-MHz clock and DES processing unit 112 µs / 571 kbit/s
Smart card, 3.5-MHz clock and triple-DES processing unit 130 µs / 492 kbit/s
Smart card, 4.9-MHz clock, software implementation 12.0 ms / 5.3 kbit/s
Smart card, 4.9-MHz clock and DES processing unit 80 µs / 800 kbit/s
Smart card, 4.9-MHz clock and triple-DES processing unit 93 µs / 688 kbit/s
PC (80486, 33 MHz) 30 µs / 2.1 MB/s
PC (Pentium, 90 MHz) 16 µs / 4 MB/s
PC (Pentium, 200 MHz) 4 µs / 16 MB/s
DES integrated circuit 64 ns / 100 MB/s

IDEA algorithm

There are many other symmetric cryptographic algorithms besides DES. Here we consider
only the International Data Encryption Algorithm (IDEA) as a representative example. It was
developed by Xuejia Lai and James L. Massey, and it was published in 1990 as the ‘proposed

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 219 of 1123

4.7 Cryptology 185

encryption standard’ (PES). It was improved in 1991, and for a short while the improved
version was known as the ‘improved proposed encryption standard’ (IPES), but nowadays
it is commonly known as IDEA. The development criteria and internal construction of this
algorithm have been fully published, so Kerckhoff’s principle is satisfied. However, IDEA is
subject to patent restrictions, which was formerly also the case with the RSA algorithm.

IDEA, like DES, is a block-oriented cryptographic algorithm, and it also uses 8-byte
plaintext and ciphertext blocks. In contrast to the DES algorithm, the key length is 16
bytes (2 × 8 bytes). This provides a significantly larger key space, with a size of 2128 ≈
3.4 × 1038. In regular decimal notation, the number of possible keys for the IDEA is exactly
340,282,366,920,938,463,463,374,607,431,768,211,456.

Due to its structure, IDEA is compatible with DES except for its extended key length. It
is also compatible with triple-DES systems, which use keys that are 2 × 56 bits long, which
means that changing the algorithm used does not affect the lengths of the keys or the input and
output data blocks. Of course, compatibility in this regard does not mean that DES-encrypted
data can be decrypted using the IDEA. In general, IDEA is considered to be a very good
cryptographic algorithm. It has also been widely distributed in the form of the public-domain
program PGP (Pretty Good Privacy) from Philip Zimmermann, which is used for secure data
transmission.

There are only a few smart card implementations of IDEA. The amount of memory space
needed for the program is around 1000 bytes. Typical computation times for encryption and
decryption are somewhat less than for DES. However, in the development of IDEA, it was
assumed that the computations would be executed by a 16-bit processor. Since most smart
cards still have 8-bit processors, the speed advantage in comparison with DES is not as great
as might be expected. Table 4.8 lists typical values for IDEA operations on an 8-byte block,
assuming that previously computed keys are available.

Table 4.8 Typical IDEA computation times (8-byte block)

Implementation Computation time

Smart card with 3.5-MHz clock, software implementation 12.3 ms
Smart card with 4.9-MHz clock, software implementation 8.8 ms
PC (80386, 33 MHz) 70 µs
PC (Pentium Pro, 180 MHz) 4 µs
IDEA integrated circuit 370 ns

AES algorithm

The amount of processing capacity available at the end of the 1990s, as the result of tech-
nical progress and the international networking of computers, was sufficient to allow even
ambitious private individuals with organizational abilities to mount successful brute-force at-
tacks on the DES algorithm. As a result, the future viability of DES became so questionable
that the relevant national authorities increasingly devoted their attention to specifying a new
symmetrical cryptographic algorithm as the official successor to DES. In light of the never
fully extinguished doubts about the integrity of DES arising from the fact that not all of the
design criteria were made available for public inspection, in 1997 the US National Institute

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 220 of 1123

186 Informatic Foundations

of Standards and Technology (NIST) requested the international cryptographic community to
submit possible successors to DES, accompanied by all associated documentation, to the NIST
for a sort of competitive evaluation. In 1998, the NIST announced that there were 15 candidates
for the Advanced Encryption Standard (AES) and published all of the documentation so that
it could be studied with regard to informatics and cryptanalytical aspects by the US National
Security Agency (NSA), research institutes, experts and interested parties. Following detailed
investigations of these methods and broad public discussion of the results, a candidate for the
successor to the DES algorithm was announced by the NIST in 2000.5 This algorithm was
developed by the Belgian cryptologists Joan Daemen and Vincent Rijmen and was already
known as the Rijndael algorithm prior to the announcement of the competition.

AES is a symmetric block encryption algorithm with a block length of 128 bits (16 bytes)
that can be used with three different key lengths: 128 bits (16 bytes), 192 bits (24 bytes) and 256
bits (32 bytes). It is thus referred to as AES-128, AES-192 or AES-256, depending on the key
length. AES can be implemented in hardware logic, and good software implementations are also
possible using relatively low-performance 8-bit processors as well as high-performance 16-
and 32-bit processors. Furthermore, it can be used throughout the world free of licensing fees,
and according to the official pronouncement its anticipated useful life is more than 20 years.
AES is standardized by FIPS 197, which is available free of charge via the Internet [NIST].

The size of the key space of the AES algorithm with a 128-bit key is approximately 3.4×1038

(2128), which makes it a factor of 4.7 × 1021 greater than the key space of DES with a
56-bit key. The large key space obtained with a key length of only 128 bits enormously
increases the difficulty of attacks involving successively testing all possible keys. The software
implementation of AES in a DPA-resistant form in a smart card occupies approximately 4 kB
of ROM.

Table 4.9 Typical computation times for AES using a 128-bit key (16-byte block)

Implementation Computation time

Smart card, 16-bit CPU, 4.9-MHz clock, software implementation; encryption 20 ms
Smart card, 16-bit CPU, 4.9-MHz clock, software implementation; decryption 25 ms

Operating modes for block-oriented encryption algorithms

The DES algorithm, like every block-oriented encryption algorithm, can be used in four differ-
ent operating modes that are standardized in ISO 8372. Two of these operating modes, the CFB
and OFB modes, are especially suitable for sequential text with no block structure. The other
two, the ECB and CBC modes, are based on a block size of 8 bytes. These two block-oriented
modes are most commonly used in smart card applications.

The basic operating mode of the DES algorithm is designated as the ECB (electronic code
book) mode. In this mode, 8-byte plaintext blocks are independently encrypted using a single
key. This is the DES algorithm in its pure form, without extensions.

5 A good summary of the selection process and selection criteria can be found in [Nechvatal 00]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 221 of 1123

4.7 Cryptology 187

...

plaintext block 1

key

plaintext block 2 plaintext block 3

ciphertext block 1 ciphertext block 2 ciphertext block 3

1 11

1

Figure 4.27 Data encryption with a block-oriented encryption algorithm operating in the ECB mode.
Decryption is performed in a similar manner

The second block-oriented mode is known as the CBC (cipher block chaining) mode. In
this mode, a data string consisting of several blocks is chained using XOR operations during
the encryption such that each block becomes dependent on the block preceding it. This makes
it possible to reliably detect interchanging, adding or deleting encrypted blocks. This is not
possible with the ECB mode. If the plaintext blocks are suitably structured (with sequence
counters in their headers or initialization vectors), a consequence of CBC chaining is that even
identical plaintext blocks are converted into non-identical ciphertext blocks. This makes the
cryptanalysis of intercepted data much more difficult, since codebook analysis (for example)
is not possible.

The first plaintext block is XOR-ed with an initialization vector (often called an IV), and
then encrypted with the DES algorithm. The result is the ciphertext, which is in turn XOR-ed
with following plaintext block. The process continues in this manner with the following blocks.
As a rule, the initialization vector is preset to null. However, in some systems, a session-specific
random number is written to the initialization vector as a substitute for a temporary key. This
number must naturally be known when the data are subsequently deciphered.

...

plaintext block 1 plaintext block 2 plaintext block 3

ciphertext block 1 ciphertext block 2 ciphertext block 3

initialization vector

1 11

key 1

Figure 4.28 Data encryption with a block-oriented encryption algorithm operating in the CBC mode.
Decryption is performed in a similar manner

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 222 of 1123

188 Informatic Foundations

Multiple encryption

In addition to the four operating modes of a block-oriented encryption algorithm, another
variation is also used to improve security. However, it is actually only used with the DES
algorithm, due to the small key space of this algorithm. In principle, it can be used with any
block-oriented encryption algorithm that is not a group. If an encryption method has the group
property, double encryption using two different keys will not increase the level of security,
since the same result could be obtained by single encryption using a third key. The size of
the key space is not increased by double encryption using an algorithm that has the group
property, since an attacker would only have to discover the third key in order to obtain the
result previously obtained by double encryption using two different keys:

ciphertext = enc (key 2; (enc (key 1; plaintext))

Since DES is not a group, the result of double DES encryption using two different keys
fundamentally cannot be duplicated by single encryption using a third key.

However, in 1981 Ralph C. Merkle and Martin E. Hellman published a method of attack
called the ‘meet-in-the-middle’ attack [Merkle 81], which can be used very successfully against
every type of double encryption using a block-oriented encryption algorithm. It presupposes
that the attacker knows several plaintext–ciphertext pairs. The operating principle of this attack
is based on computing all possible encryptions of the plaintext using the first of the two keys,
followed by decrypting the known result (the ciphertext) with every possible second key. The
set of results from the first process is then compared with the set of results from the second
process. If a match can be found, there is a certain probability that the two keys have been
discovered. The level of confidence that the correct key has been found can be increased by
making the same comparisons using additional known plaintext–ciphertext pairs. As can be
seen, the amount of effort required for this attack is not significantly greater that the amount of
effort needed for a normal attack that requires the entire key space to be searched. Consequently,
cascaded double encryption is not used with the DES algorithm.

The process that is used instead is called triple-DES. In this mode, three sequential CBC-
mode DES operations are performed using alternating encryption and decryption. Blocks that
have been encrypted in this manner are decrypted by reversing the order of the operations (in
other words: decryption, encryption and then decryption). If all three keys are the same, the
result of the alternating encryption and decryption operations is the same as that obtained by a
single encryption. This is the reason for not using a sequence of three encryption operations.

If the three DES operations using three keys are applied directly to each plaintext block in
turn, the process is referred to as ‘DES in the inner CBC mode’. If instead the plaintext is first
completely encrypted using the first key and the result is then further encrypted in a similar
manner, the process is referred to as ‘DES in the outer CBC mode’. The outer CBC mode is
more resistant to attack and is therefore generally recommended [Schneier 96].

The triple-DES algorithm has several other names, such as TDES, DES-3, 3-DES and 2-
DES. Actually, the terms ‘triple-DES’ and ‘3-DES’ only mean that three 56-bit keys are used.
If the first and third keys are the same, this is called 2-DES, but if the three keys are all different,
the designation 3-DES is often used. The key length must always be stated with triple DES in
order to unambiguously specify the algorithm.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 223 of 1123

4.7 Cryptology 189

key 1 key 2 key 3

plaintext plaintextciphertext

key 1 key 2

encryption
decryption

encryption decryption
encryption

decryption

key 3

encryption decryption

Figure 4.29 Operating principle of data encryption using triple-DES in the outer CBC mode. Key 1
is normally chosen to be the same as key 3, so the effective key length is 2 × 56 bits (112 bits). Less
commonly, three independent keys are used, yielding a key length of 3 × 56 bits (168 bits)

The triple-DES algorithm is significantly more secure than sequential double encryption us-
ing two different keys, since the meet-in-the-middle attack is not effective against this method.
Three 56-bit keys are needed instead of only one, but the first and third keys are usually
the same. This yields a key length of 2 × 56 bits. This means that this procedure is data-
compatible with the normal DES algorithm and that it imposes no additional costs except for
the doubled key size. This in particular is one of the main reasons for the widespread use of
triple-DES in smart cards. It is primarily used for deriving keys and protecting very sensitive
data, such as when transferring keys, due to its improved level of security compared with single
encryption.

4.7.2 Asymmetric cryptographic algorithms

In 1976, Whitfield Diffie and Martin E. Hellman described the idea of developing an encryption
algorithm based on two different keys [Diffie 76]. One of these keys was to be public, the other
secret or ‘private’. This would allow persons to encrypt a message using the public key, with
only the owner of the private key being able to decrypt it. This in turn would eliminate the
problems associated with exchanging and distributing secret symmetric keys. In addition,
it would for the first time make certain other processes possible, such as generating digital
signatures that can be verified by everyone.

private
key

public
key

plaintextplaintext ciphertext

Figure 4.30 Encryption and decryption using a public-key algorithm

The RSA algorithm

Two years later, Ronald L. Rivest, Adi Shamir and Leonard Adleman presented an algorithm
that met the above-mentioned criteria [Rivest 78]. This algorithm, which is called the RSA

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 224 of 1123

190 Informatic Foundations

Table 4.10 Summary of symmetric and asymmetric cryptographic algorithms used in smart cards,
with their input and output parameters

Name Type Plaintext length Ciphertext length Key length

DES Symmetric 8 bytes 8 bytes 56 bits
Triple DES Symmetric 8 bytes 8 bytes 2 × 56 bits
(with two keys) (112 bits)
Triple DES Symmetric 8 bytes 8 bytes 3 × 56 bits
(with three keys) (168 bits)
IDEA Symmetric 8 bytes 8 bytes 128 bits
AES Symmetric 8 bytes 16 bytes 128 bits

(16 bytes)
192 bits
(24 bytes)
256 bits
(32 bytes)

RSA Asymmetric 512 bits (512 bytes) 512 bits
(64 bytes) (64 bytes) (64 bytes)
768 bits 768 bits 768 bits
(96 bytes) (96 bytes) (96 bytes)
1024 bits 1024 bits 1024 bits
(128 bytes) (128 bytes) (128 bytes)
2048 bits 2048 bits 2048 bits
(256 bytes) (256 bytes) (256 bytes)
4096 bits 4096 bits 4096 bits
(512 bytes) (512 bytes) (512 bytes)

DSS (512 bits) Asymmetric 20 bytes 20 bytes (64 + 20) bytes

algorithm after the initials of its inventors, is the best-known and most versatile asymmetric
encryption algorithm presently in use. Its very simple operating principle is based on the
arithmetic of large integers. The two keys are generated from two large prime numbers.6

The encryption and decryption processes can be expressed mathematically as follows:

encryption: y = xe mod n

decryption: x = yd mod n

where x = plaintext

y = ciphertext

e = public key

6 Whitfield Diffie and Martin E. Hellman discovered the principle of public-key algorithms, while Ronald L. Rivest,
Adi Shamir and Leonard Adleman produced the first implementation. However, public-key algorithms had already
been discovered several years earlier in the field of military cryptography. In the period 1969–1973, James Ellis,
Clifford Cocks and Malcolm Williamson, working at the British Government Communication Headquarters
(GCHQ), developed both the principle of public-key algorithms and the asymmetric encryption algorithm now known
as the RSA algorithm, several years before they were discovered by civilians. Unfortunately, these cryptologists
were pledged to secrecy and were not allowed to publish anything about their work until after 1997 [Levy 99]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 225 of 1123

4.7 Cryptology 191

d = private key

n = public modulus = p · q

p, q = secret prime numbers

Before being encoded, the plaintext block must be padded to the appropriate block size,
which varies in the RSA algorithm according to the length of the key used. Encryption itself
is performed by exponentiation of the plaintext followed by a modulo operation. The result
of this process is the ciphertext. This can only be decoded if the private key is known. The
decryption process is analogous to the encryption process.

The security of the algorithm is thus based on the difficulty of factoring large numbers. It
is quite easy to compute the public modulus from the two prime numbers by multiplication,
but it is very difficult to decompose the modulus into its two prime factors, since there is no
effective algorithm for this operation.

The RAM capacity of smart cards is not sufficient for performing exponential operations
on large numbers as required for encryption and decryption, since the numbers become very
large before being subjected to the modulo operation. For this reason, modular exponentiation
is used, which means that the intermediate result of the calculation never exceeds the value
of the modulus. For example, if the value of x2 mod n must be calculated, the expression
(x·x) mod n is not evaluated directly, since the intermediate result (x · x) would be excessively
large before being reduced by the modulo operation. Instead, the expression ((x mod n) ·
(x mod n)) mod n is evaluated, which yields the same mathematical result. The advantage of
this is that it requires significantly fewer calculations and less memory, since the intermediate
results are immediately reduced in size.

An additional way to increase the speed of the RSA algorithm is to use the Chinese remainder
theorem for the calculations.7 Of course, a prerequisite for using the Chinese remainder theorem
is that both of the secret prime numbers p and q are known, which means that it can only be
used for decryption (which means for signing).

The private key should be as long as possible, since this impedes attempts to break the code.
Public and private keys may have different lengths, and in fact this is usually the case, since the
time required to verify a digital signature can be considerably reduced by making the public
key as short as possible. The fourth Fermat number is frequently used as a public key. This
prime number has the value of 216 + 1 = 65537, and due to its small size it is very well suited
to quickly verifying digital signatures. The numbers 7 and 17 are likewise used.

Table 4.11 Typical public keys for the RSA algorithm

Public key Remarks

2 = ◦10◦ The only even prime number; used for the Rabin
procedure

3 = (21 + 1) = ◦11◦ The smallest odd prime number
17 = (24 + 1) = ◦1 0001◦ —
65537 = (216 + 1) = ◦1 0000 0000 0000 0001◦ The fourth Fermat number F4

7 For additional information regarding both procedures, see [Simmons 92, Schneier 96]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 226 of 1123

192 Informatic Foundations

If an attacker succeeds in factoring the public modulus into its two prime components, he
could then reproduce the entire encryption process. With a small value, such as 33, it is easy
to factor the modulus, but there is presently no fast algorithm that can be used to factor large
numbers. If the values of both prime factors can be found, the system is thereby broken, since
the private key is then known.8

Consequently, a requirement for RSA keys is that they are sufficiently long. A length of
512 bits (64 bytes) is presently considered to be the lower limit. In any case, keys with a length
of 768 bits (96 bytes) and 1024 bits (128 bytes) are presently used. In the coming years, the
first 2048-bit (256-byte) key will come into use. The amount of computational effort needed
for encryption and decryption increases with the key length. This increase is not linear, but
instead approximately exponential.

Smart card microcontrollers, with their 8-bit CPUs, are normally not capable of performing
an RSA computation in less than a few minutes. However, there are now microcontrollers with
arithmetic coprocessors that have been specially developed for fast exponentiation. With such
coprocessors, it is possible to perform RSA computations in an acceptable length of time with
reasonable software overhead. The size of the code for a hardware-supported 512-bit RSA
algorithm is around 300 bytes. Around 1 kB of assembler code in the smart card is needed
for 768-bit and 1024-bit keys. As can be seen from Table 4.12, even with a 512-bit key the
number of possible prime numbers is so large that collisions between two different key pairs
will never occur.9

Table 4.12 Typical RSA key lengths with characteristic parameters. The ratio NS/PN indicates the
relationship between the number of non-prime numbers and the number of prime numbers. The
reciprocal of this is the probability that a random number in the number space is a prime. This is very
important with regard to the length of time that is required to generate an RSA key

Key length Maximum Size of the Number of prime NS/PN
number number space (NS) numbers in the
of digits number space (PN)

8 bits (1 byte) 3 256 54 ≈ 4.7
40 bits (5 bytes) 13 ≈ 1.1 × 1012 ≈ 3.9 × 1010 ≈ 28
512 bits (64 bytes) 155 ≈ 1.3 × 10154 ≈ 3.8 × 10151 ≈ 342
768 bits (96 bytes) 232 ≈ 1.6 × 10231 ≈ 2.9 × 10228 ≈ 552
1024 bits (128 bytes) 309 ≈ 1.8 × 10308 ≈ 2.5 × 10305 ≈ 720
2048 bits (256 bytes) 617 ≈ 3.2 × 10616 ≈ 2.3 × 10613 ≈ 1391
4096 bits (512 bytes) 1234 ≈ 1.0 × 101233 ≈ 2.5 × 101229 ≈ 4000

However, one of the strengths of the RSA algorithm is that it is not limited to a particular
key length, in contrast to algorithms such as DES. If increased security is needed, longer keys

8 As early as the summer of 1994, a 426-bit key was broken in eight months using approximately 1600 computers
connected via the Internet. The total amount of computation amounted to 5000 MIPS-years. A 100-MHz Pentium
processor, for comparison, has a capacity of 50 MIPS. In 19991, a 512-bit key was successfully factored in seven
months using 292 networked computers

9 The largest number that can be represented with 512 bits is 2512 – 1, or in full: 13,407,807,929,942,597,
099,574,024,998,205,846,127,479,365,820,592,393,377,723,561,443,721,764, 030,073,546,976,801,874,298,166,
903,427,690,031,858,186,486,050,853,753,882,811,946,569,946,433, 649,006,084,095

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 227 of 1123

4.7 Cryptology 193

can be used without modifying the algorithm. The RSA algorithm is thus scaleable. However,
computation time and amount of memory space needed must be kept in mind, since even 768-
bit keys are presently still considered to be secure. With current factoring algorithms, a good
rule of thumb is that increasing the key length by 15 bits doubles the effort of computing the
factors.10 Andrew Odlyzko [Odlyzko 95] provides an excellent summary of the internationally
available and required processing capacity for factoring integers.

Although the RSA algorithm is very secure, it is rarely used to encrypt data, due to its long
computation time. It is primarily used in the realm of digital signatures, where the benefits of
an asymmetric procedure can be fully realized. The greatest drawback of the RSA algorithm
with regard to smart cards is the amount of memory space required for the key. The complexity
of the key generation process also causes problems in certain cases.

Widespread use of the RSA algorithm is restricted by patent claims that have been made
in several countries and by major import and export restrictions imposed on equipment that
employs this algorithm. Smart cards with RSA coprocessors fall under these restrictions, which
considerably hinders their use internationally.

Table 4.13 Sample computation times for RSA encryption and decryption as a function of key
length. The indicated values are in part subject to considerable variation, since they are strongly
dependent on the microcomputer used, the bit structure of the key and the use of the Chinese
remainder algorithm (which can only be used for signing)

Implementation Mode 512 bits 768 bits 1024 bits 2048 bits

Smart card without NPU, Signing 20 min — — —
8-bit CPU, 3.5 MHz clock
Smart card without NPU, Signing 6 min — — —
8-bit CPU, 3.5 MHz clock
(with Chinese remainder theorem)

Smart card with NPU, Signing 308 ms 910 ms 2.0 s —
3.5 MHz clock
Smart card with NPU, Signing 84 ms 259 ms 560 ms —
3.5 MHz clock
(with Chinese remainder theorem)

Smart card with NPU, Signing 220 ms 650 ms 1.4 s —
4.9 MHz clock
Smart card with NPU, Verifying — — 1.04 s —
3.5 MHz clock
Smart card with NPU, Signing 60 ms 185 ms 400 ms —
4.9 MHz clock
(with Chinese remainder theorem)

Smart card with NPU and PLL Verifying 60 ms 185 ms 400 ms —
PC (Pentium, 200 MHz) Signing 12 ms 46 ms 60 ms
PC (Pentium, 200 MHz) Verifying 2 ms 4 ms 6 ms
RSA integrated circuit Signing 1.6 ms — —

10 As of January 1998, the largest known prime number had 909,256 digits and a value of 23,402,377 – 1

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 228 of 1123

194 Informatic Foundations

Generating RSA keys

Keys for the RSA algorithm are generated using a simple process. The following is a small
worked-through example:

1. First, select two prime numbers p and q: p = 3; q = 11

2. Next, calculate the public modulus: n = p · q = 33

3. Calculate the temporary variable z for use during
key generation: z = (p − 1) · (q − 1)

4. Calculate a public key e which satisfies the conditions
e < z and gcd (z, e) = 1 (that is, the greatest common
denominator of z and e is 1). Since there are several
numbers that meet these conditions, select one of them: e = 7

5. Calculate a private key d that satisfies the condition
(d · e) mod z = 1: d = 3

This completes the computation of the keys. The public and private keys can now be tested for
encryption and decryption using the RSA algorithm, as illustrated in the following numeric
example:

1. Use the number ‘4’ as the plaintext x (x < n): x = 4

2. Encrypt the text: y = 47 mod 33 = 16

2. The result of the calculation is the ciphertext y: y = 16

3 Decrypt the ciphertext: x = 163 mod 33 = 4

The result of decrypting the ciphertext is again the original plaintext, as expected.
In actual practice, key generation is more laborious, since it is very difficult to test large

numbers to determine if they are prime. The well-known sieve of Eratosthenes cannot be used
here, since it requires prior knowledge of all prime numbers smaller than the number being
tested. This is practically impossible for numbers as large as 512 bits. Consequently, probabilis-
tic tests are used to determine the likelihood that the selected number is a prime number. The
Miller–Rabin test and the Solovay–Strassen test11 are typical examples of such tests. To avoid
having to use these time-consuming tests more than necessary, randomly generated candidate
numbers are first tested to see if they have any small prime factors. If the randomly generated
number can be exactly divided by a small prime number, such as 2, 3, 5 or 7, it obviously
cannot be a prime number. Once it has been determined that the number to be tested does not
have any small prime factors, a prime number test such as the Miller–Rabin test can be used.
The principle of this test is illustrated in Figure 4.31 and described in detail in the appendix of
the IEEE 1363 standard.12

11 The procedure and the algorithm are described by Alfred Menezes [Menezes 97]
12 Many tips and criteria that must be taken into account for the generation of prime numbers can be found in an

article by Robert Silverman [Silverman 97]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 229 of 1123

4.7 Cryptology 195

start

compute
public key e

1

compute
public modulus

n := p * q

generate odd-valued
random number RND

compute
private key d

end

p := RND no. 1
q := RND no. 2

test RND against
small prime numbers

RND ≈ prime
number?

Miller-Rabin test
with RND

RND ≈ prime
number?

yes

yes

two prime
numbers

generated?

1

yes

no

no

no

Figure 4.31 Basic procedure for generating RSA keys for use in smart cards

The algorithms for generating RSA keys have a special feature, which is that the time
required to generate a key pair (a public key together with a private key) is only statistically
predictable. This means that it is only possible to say that there is a certain probability that
key generation will take a given amount of time. A definitive statement such as ‘. . . will take x
seconds’ is not possible, due to the need to run the prime number test on the random number.
The time required to perform this test is not deterministically predictable.

The DSS algorithm

In mid-1991, the NIST (US National Institute of Standards and Technology) published the
design of a cryptographic algorithm for adding signatures to messages. This algorithm, which
has since been standardized in the US (FIPS 186), has been named the Digital Signature
Algorithm (DSA), and the standard that describes it is called the Digital Signature Standard
(DSS). The DSA and RSA algorithms are the two most widely used procedures for generating
digital signatures. The DSA algorithm is a modification of the El Gamal procedure. The
background for the standardization of this algorithm is that a procedure was wanted that could
be used to generate signatures but not to encrypt data. For this reason, the DSA algorithm is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 230 of 1123

196 Informatic Foundations

0 s 10 s 20 s 30 s 40 s 50 s 60 s 70 s 80 s 90 s 100 s

time required to generate a key

probability

Figure 4.32 Typical time behavior of a probabilistic algorithm for generating key pairs for the RSA
algorithm. The vertical axis shows the probability that a given amount of time will be required to generate
a 1024-bit key in a smart card. Consequently, key generation takes 50 s on average in this example. The
total area under the curve has a probability of 1

Table 4.14 Examples of the time required to generate a pair of public and private keys for the
asymmetric RSA cryptographic algorithm. Exact times cannot be given, since the duration of the key
generation process depends on whether the generated random numbers are prime, among other things

Generating a public/private key pair Typical time Possible time
for the RSA algorithm

Smart card, 512-bit key, 3.5 MHz 6 s ≈ 1 s to ≈ 20 s
Smart card, 1024-bit key, 3.5 MHz 14 s ≈ 6 s to ≈ 40 s
Smart card, 2048-bit key, 3.5 MHz 80 s ≈ 6 s to ≈ 40 s
PC (Pentium, 200 MHz), 512-bit key 0.5 s —
PC (Pentium, 200 MHz), 1024-bit key 2 s —
PC (Pentium, 200 MHz), 2048-bit key 36 s —

more complicated than the RSA algorithm. However, it has been shown that it is possible to
encrypt data using this algorithm [Simmons 98].

In contrast to the RSA algorithm, the security of the DSS algorithm does not depend on
the problem of factoring large numbers, but rather on the discrete logarithm problem. The
expression y = ax mod p can be computed quickly, even with large numbers. However, the
reverse process, which is calculating the value of x for given values of y, a and p, requires a
very large amount of computational effort.

With all signature algorithms, the message to be signed must first be reduced to a predefined
length using a hash algorithm. The NIST therefore published a suitable algorithm for use with
the DSS algorithm. This is named SHA-1 (Secure Hash Algorithm).13 This variant of the
MD5 hash algorithm generates a 160-bit hash value from a message of any arbitrary length.
Computations for the DSS algorithm, like those for the RSA algorithm, are performed using
only integers.

13 See Section 4.9, ‘Hash Functions’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 231 of 1123

4.7 Cryptology 197

To compute a signature with the DSA algorithm, the following global values must first be
determined:

p (public): prime number with a length of 512 to 1024 bits, evenly divisible by 64
q (public): 160-bit prime factor of (p – 1)
g (public): g = h(p–1)/q

where h is an integer satisfying the conditions h < p –1 and g > 1

The private key x must satisfy the following condition:

x < q

The public key y is computed as follows:

y = gx mod p

Once all of the necessary keys and numbers have been determined, the message m can be
signed as follows:

Generate a random number k, where k < q: k
Compute the hash value of m: H (m)
Calculate r : r = (gk mod p) mod q
Calculate s: s = k–1 (H (m) + x · r) mod q

The two values r and s are the digital signature of the message. With the DSS algorithm, the
signature consists of two numbers, instead of only one number as with the RSA algorithm.

The signature is verified as follows:

Calculate w: w = s–1 mod q
Calculate u1: u1 = (H (m) · w) mod q
Calculate u2: u2 = (r · w) mod q
Calculate v: v = ((gu1 · yu2) mod p) mod q

If the condition v = s is satisfied, the message m has not been altered and the digital signature
is authentic.

In practice, the RSA algorithm has achieved more widespread use than the DSS algorithm,
which up to now has seen only very limited use. The original idea of standardizing a signature
algorithm that cannot be used for encryption, which led to the DSS algorithm, has largely come
to nothing. The complexity of this algorithm also discourages its widespread use. Nonetheless,
for many institutions the fact that the standard exists and the political pressure to generate
signatures using the DSS and SHS represent strong arguments in its favor.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 232 of 1123

198 Informatic Foundations

Table 4.15 Examples of computation times for the DSA algorithm as a function of the clock rate,
divided into the times required for verifying (encrypting) and generating (decrypting) a signature.
These values are subject to considerable variation, since they depend strongly on the bit structure of the
key. The computation time can be reduced by precomputation

Implementation Verifying a Generating a
512-bit signature 512-bit signature

Smart card with 3.5-MHz clock 130 ms 70 ms
Smart card with 4.9-MHz clock 90 ms 50 ms
PC (80386, 33 MHz) 16 s 35 ms

Using elliptic curves as asymmetric cryptographic algorithms

In addition to the two well-known asymmetric cryptographic algorithms, RSA and DSA, there
is a third type of cryptography that is used for digital signatures and key exchanges in the realm
of smart cards. It is based on elliptic curves (EC).

In 1985, Victor Miller and Neal Koblitz independently proposed the use of elliptic curves for
constructing asymmetric cryptographic algorithms. The properties of elliptic curves are well
suited to such applications, and in the course of the following years, practical cryptographic
systems based on these proposals were developed. In general, they are usually referred to as
elliptic curve cryptosystems (ECC).

Elliptic curves are sets of smooth curves that satisfy the equation y2 = x3 + ax + b within a
finite three-dimensional space. No point is allowed to be a singularity. This means, for instance,
that 4a2 + 27b2 �= 0. In the realm of cryptography, the finite spaces GF(p), GF(2n) and GF(pn)
are used, where p is a prime number and n is a positive integer greater than 1.

The mathematics of cryptographic systems based on elliptic curves are relatively difficult.
For this reason, you are referred to the book by Alfred Menezes on the subject [Menezes 93].
The very comprehensive IEEE 1363 public-key cryptography standard and the ISO/IEC 15946
series of standards dealing with elliptic curves also provide good synopses of elliptic curves
and other asymmetric cryptographic techniques.

The major advantages of asymmetric cryptographic systems based on elliptic curves are
that they require much less computational capacity than systems such as RSA (for instance),
and that the same level of cryptographic strength can be attained with significantly shorter
keys. For example, roughly the same amount of computation is required to break an ECC
algorithm with a 160-bit key as an RSA algorithm with a 1024-bit key. Similarly, an ECC
algorithm with a 256-bit key corresponds to an RSA algorithm with a 2048-bit key, while an
ECC algorithm with a 320-bit key roughly corresponds to an RSA algorithm with a 5120-bit
key. This cryptographic strength and the relatively small size of the keys are precisely the
reasons why ECC systems are found in the realm of smart cards.

The arithmetic processing components of modern-day smart card microcontrollers generally
support ECC, which means that a relatively high computational speed is available. As with the
RSA algorithm, the key length is an important characteristic of these asymmetric cryptographic
algorithms.

Interestingly enough, cryptographic systems based on elliptic curves require so little pro-
cessing capacity that they can even be implemented in microcontrollers lacking coprocessors.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 233 of 1123

4.7 Cryptology 199

Some typical times for generating and verifying signatures are shown in Table 4.16. An 8-bit
microcontroller clocked at 3.5 MHz without a coprocessor requires approximately one second
to generate a 160-bit ECC key pair using a look-up table approximately 10 kB in size. This
time can be reduced to 200 ns using a coprocessor.

Table 4.16 Sample processing times for cryptographic algorithms based on elliptic curves in GF(p).
The remarkably good times for smart cards without coprocessors are achieved using table look-up to
accelerate certain time-intensive computations (table size approximately 10 kB)

Implementation Generating a Verifying a
135-bit signature 135-bit signature

Smart card, 3.5-MHz clock and 8-bit processor 1 s 4 s
Smart card, 3.5-MHz clock and numeric coprocessor 150 ms 450 ms
PC (Pentium III, 500 MHz) 10 ms 20 ms

One factor limiting the use of elliptic curves for asymmetric cryptographic algorithms is that
they are regarded as a relatively new discovery in the cryptographic world, even though they
have been known for a long time. It will no doubt take some time until the use of ECC systems
becomes commonplace in the cautious world of cryptographers and smart card application
designers, despite the fact that cryptographic systems based on elliptic curves presently offer
the highest level of security per bit relative to all other asymmetric methods.

4.7.3 Padding

In smart cards, the DES algorithm is primarily used in the two block-oriented modes (ECB
and CBC). However, since the data communicated to the card do not always fit exactly into a
certain number of blocks, it is occasionally necessary to fill up a block. Filling up a data block
so that its length is an exact multiple of a given block size is called padding.

The recipient of a padded data block has a problem after the data have been decrypted,
since he does not know where the actual data stop and the padding bytes start. One solution
to this would be to state the length of the message at the beginning of the message, but this
would change the structure of the message, which is generally undesirable. It would also be
especially onerous with data that do not always have to be encrypted, since in this case no
padding would be needed and thus no length as well. In many cases, therefore, the structure
of the message may not be changed.

This means that a different method must be used to identify the padding bytes. The algorithm
defined in the ISO/IEC 9797 standard is described here in detail as an example, although there
are a variety of other methods available. The most significant bit (msb) of the first padding byte
following the useful data is set to 1. This byte thus has the hexadecimal value'80'. If additional
padding bytes are needed, they have the value'00'. The recipient of the padded message thus
searches from the beginning to the end of the message for a byte with the msb set to 1, or for
the value '80'. If such a byte is found, the recipient knows that this byte and all subsequent
bytes are padding bytes and not part of the message.

In this regard, it is important for the recipient to know whether messages are always padded
or padded only if necessary. If padding only takes place when the length of the data to be

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 234 of 1123

200 Informatic Foundations

user data

binary

hexadecimal

padding

...

... '80' || '00' || '00' || ...

°1000 0000 0000 ... °

Figure 4.33 Data padding according to ISO/IEC 9797, Method 2

encrypted is not an integer multiple of the block length, the recipient must take this into
account. Consequently, there is often an implicit understanding that padding always takes
place, which of course has the disadvantage that occasionally an unnecessary block of padding
data must be encrypted, transferred and decrypted.

In some applications, only the value '00' is used for padding. This is because this value
is normally used for padding in MAC computations, and using only one padding algorithm
reduces the size of the program code. Of course, in this case the application must know the
exact structure of the data to allow it to distinguish between user data and padding.

Table 4.17 Typical padding methods using in the smart card realm. The data to be padded are
designated as ‘data’

Padding format Description

ISO/IEC 9797 This padding format is used for generating MACs and for encryption
Method 1: the data to be padded are padded using'00'
Formal representation: data || n ×'00'
Method 2:'80'is appended to the data to be padded, which are then padded

using'00'
Formal representation: data ||'80'|| n ×'00'

ISO/IEC 9796-2 This padding method is used for digital signatures. The data to be padded are
appended to a bit sequence starting with ◦11◦ and ending with ◦1◦ , with a
number of ◦0◦ characters in between as needed for padding, and the tag'BC'
is appended to the data. In addition, a random number can be integrated into
the padding sequence in order to individualize the data to be padded

Formal representation with bytewise padding:'60'|| n ×'00'||'01'|| data ||
'BC'

Formal representation with bytewise padding and individualized data:
'60'|| n ×'00'||'01'|| RND || data ||'BC'

PKCS #1 The Type 1 version of this padding format is used for digital signatures, while
the Type 2 version is used for generating MACs and encryption. The data to
be padded are preceded by a tag and a fixed value or random number having
the length necessary for the padding

Formal representation, Type 1:'00'||'01'|| n ×'FF'||'00'|| data
Formal representation, Type 2:'00'||'02'|| n × RND ||'00'|| data

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 235 of 1123

4.7 Cryptology 201

4.7.4 Message authentication code and cryptographic checksum

The authenticity of a message is far more important than its confidentiality. The term ‘authen-
ticity’ means that the message has not been altered or manipulated, and is thus genuine. To
ensure authenticity, a ‘message authentication code’ (MAC) is computed and appended to the
message before it is sent to the recipient. The recipient can then compute the MAC for the
message and compare it with the received MAC. If the two values match, the message has not
been altered during its journey.

message MAC

Figure 4.34 The usual arrangement of the message and the message authentication code (MAC)

A cryptographic algorithm with a secret key is used to generate a MAC. This key must be
known to both parties to the communication. In principle, a MAC is a sort of error detection
code (EDC), which can naturally only be verified if the associated secret key is known. For this
reason, the term ‘cryptographic checksum’ (CCS) is also used (as well as some other terms),
but technically a CCS is fully identical to a MAC. In general, the difference between the two
terms is that ‘MAC’ is used for data transmission and ‘CCS’ is used for all other applications.
The term ‘signature’ is often encountered as an equivalent to ‘MAC’. However, this is not the
same as a ‘digital signature’, since the latter is generated using an asymmetric cryptographic
algorithm.

In principle, any cryptographic algorithm can be used to compute a MAC. In practice, how-
ever, the DES algorithm is used almost exclusively. This algorithm is used here to demonstrate
the process (see Figure 4.35).

If the message is encrypted using the DES algorithm in the CBC mode, each block is linked
to its previous block. This means that the final block depends on all previous blocks. This final
block, or a portion of it, represents the MAC of the message. However, the actual message
remains in plaintext, rather than being transmitted in encrypted form.

enc (message)

secret
key

message

message

message ready for transmission

MAC

Figure 4.35 Example of a MAC computation process

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 236 of 1123

202 Informatic Foundations

There are a few important conditions relating to generating a MAC using the DES algorithm.
If the length of the message is not an exact multiple of eight bytes, it must always be extended,
which generally involves padding. However, in most cases only the value '00' is used for
padding (in line with ANSI X.99 – Message Authentication). This is allowed in this case
because there must be prior agreement regarding the length and location of the MAC within
the message. The actual MAC consists of the left-most (most significant) four bytes of the
final block produced by CBC-mode encryption. However, the padding bytes are not sent when
the message is transmitted. This limits the data to be transmitted to the protected data and the
appended MAC.

4.8 KEY MANAGEMENT

The sole objective of all administrative principles relating to keys for cryptographic algorithms
is to minimize the consequences to the system and the smart card application if one or more
secret keys become known to unauthorized persons. If it could be guaranteed that the keys
would always remain secret, a single secret key for all smart cards would be sufficient. However,
it is impossible to guarantee such secrecy.

Using the security-enhancing principles described here for keys used with cryptographic
algorithms causes the number of keys to increase dramatically. If all of the principles and
methods described in this section are implemented in a single smart card, the keys will usually
take up more than half of the memory available for application data.

However, it is not always necessary to use every possible principle and method, depending
on the application. For example, there is no need to support multiple generations of keys if the
card is valid for only a limited length of time, since the additional administrative effort and
memory space cannot be justified.

4.8.1 Derived keys

Since smart cards, in contrast to terminals, can be taken home by anyone and possibly subjected
to thorough and painstaking analysis, they are naturally exposed to the most severe attacks. If
no master key is present in the card, the consequences of a successful attempt to read out the
card contents can be minimized. Consequently, the keys that are found in the card are only
those that have been derived from a master key.

Derived keys are generated using a cryptographic algorithm. The input values are a card-
specific feature and a master key. The triple-DES or AES algorithm is usually used. For the
sake of simplicity, the card number is usually used as the specific feature. This number, which
is generated when the card is manufactured, is unique in the entire system and can be used
throughout the system to identify the card.

Derived keys are thus unique. One function that can be used to generate derived keys, as
illustrated in Figure 4.36, is:

derived key = enc (master key; card number)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 237 of 1123

4.8 Key Management 203

master key

card number
card-specific,
derived key

Figure 4.36 A possible method for generating a derived, card-specific symmetric key from the card
number and a master key

4.8.2 Key diversification

In order to minimize the consequences of a key being compromised, a separate key is often
used for each cryptographic algorithm. For example, different keys can be used for signatures,
secure data transmission, authentication and data encrypting. For each type of key, there must
be a separate master key from which the individual keys can be derived.

4.8.3 Key versions

It is normally not adequate to employ only one key generation for the full lifetime of a smart
card. For example, suppose that a master key could be computed as the result of a successful at-
tack. In this case, all application vendors would have to shut down their systems and card issuers
would have to replace all their cards. The resulting loss would be enormous. Consequently, all
modern systems include the possibility of switching to a new key generation.

Switching to a new generation of keys may be forced by the fact that a key has been
compromised, but it can also take place routinely at a fixed or variable interval. The result of
a switch is that all of the keys in the system are replaced by new ones, without any need for
the cards to be recalled. Since the master keys are located in the terminals and the higher level
parts of the system, a secure data exchange is all that is needed to provide new, confidential
keys to the terminals.

4.8.4 Dynamic keys

In many applications, and in particular in the area of data transmission security, it is common
practice to use dynamic keys. Such keys are also called ‘temporary keys’ or ‘session keys’.
To generate a dynamic key, one of the two communicating parties first generates a random
number, or some other value for use in a specific session, and passes it to the other party.
The further course of the process depends on whether cryptographic algorithms used are only
symmetric or also asymmetric.

Dynamic keys with symmetric cryptographic algorithms

For procedures that use only symmetric cryptographic algorithms, the random number gener-
ated by one of the two parties is sent as plaintext to the other party. The smart card and the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 238 of 1123

204 Informatic Foundations

terminal then encrypt this number using a derived key. The result, as shown in Figure 4.37, is
a key that is valid only for one particular session.

dynamic key = enc (derived key; random number)

derived key

random number dynamic key

Figure 4.37 A possible way to generate a dynamic key using a random number and a derived key

The main advantage of dynamic keys is that they are different for each session, which makes
attacks significantly more difficult. However, care must be taken when a dynamic key is used
to generate a signature, since the dynamic key will also be needed to verify the signature. This
key can only be generated using the same random number as was used when the signature was
created. This means that whenever a dynamic key is used for a signature, the random number
used to generate the key must be retained for use in verification, which means it must be stored.

The ANSI X 9.17 standard proposes a different method for generating derived and dynamic
keys. Although it is somewhat more complicated than the previously described method, it is
widely used in financial transaction systems. This method requires two inputs: a value Ti that
is independent of the time or session and a key KeyGen that is reserved for generating new keys.
The resulting initial key Keyi can be used to compute as many additional keys as desired. This
key generation method has the additional advantage that it cannot be computed in reverse; in
other words, it is a one-way function:

Keyi+1 = enc (KeyGen; enc (KeyGen; (Ti XOR Keyi)))

Exchanging dynamic keys using an asymmetric cryptographic algorithm

Figures 4.38 and 4.39 show procedures for generating and subsequently exchanging a sym-
metric dynamic key for message encryption. An asymmetric cryptographic algorithm, such as
RSA or DES, is used for key exchange. A similar process is used in PGP, for example, which
uses the IDEA and RSA algorithms. The basic advantage of this hybrid process is that the
actual encryption of large volumes of data can be performed using a symmetric cryptographic
algorithm, which has significantly higher throughput than an asymmetric algorithm.

4.8.5 Key parameters

A mechanism that is as simple as possible is needed to allow the key stored in the card to be
externally addressed. The smart card operating system must also always ensure that the key
can only be used for its intended purpose. For instance, it must prevent an authentication key
from being used for encrypting data. Besides the intended use, the key number must be known

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 239 of 1123

4.8 Key Management 205

asymmetric
public key

generate key
from a

random number

message

symmetric
key

encrypted
key

encrypted
message

Figure 4.38 Sample procedure for key exchange using a combination of symmetric and asymmetric
cryptographic algorithms. An encrypted dynamic symmetric key is first generated and then exchanged
between two parties using an asymmetric cryptographic algorithm. The generation and exchange of the
key pair for the asymmetric cryptographic algorithm, which takes place separately and in advance, is not
shown

asymmetric
private key

message

symmetric
key

encrypted
key

encrypted
message

Figure 4.39 Sample procedure for key exchange using a combination of symmetric and asymmet-
ric cryptographic algorithms. A previously encrypted dynamic symmetric key is recovered using an
asymmetric cryptographic algorithm. The generation and exchange of the key pair for the asymmetric
cryptographic algorithm, which takes place separately and in advance, is not shown

for it to be addressed. This number is the actual reference to the key. In addition, the version
number is also needed to address a specific key.

Some smart card operating systems cause a retry counter associated with the key to be incre-
mented each time a failure occurs in some activity that uses the key, such as an authentication.
This can be used to quite reliably prevent the key value from being fished out by repeated trials,
although this type of an attack does not represent a serious risk due to the long processing
times in the card. If the retry count reaches its maximum value, the key is blocked and cannot
be further used. The retry counter is reset to zero if the attempt to use the key is successful.
Such a mechanism must always be used with great care, since an incorrect master key in a
terminal could easily lead to massive card failures. A retry counter can normally only be reset
using a special terminal, and the identity of the cardholder must be verified before this is done.

Some systems prohibit the reuse of old versions of keys. This is accomplished by providing
the key with a ‘disable’ field that is activated as soon as a new key with the same key number
is addressed.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 240 of 1123

206 Informatic Foundations

Table 4.18 Typical key parameters stored in a smart card

Data object Remarks

Key number Key reference number; unique within the key file.
Version number Version number of the key; which may affect key derivation.
Application purpose Identifies the cryptographic algorithms and the procedures with

which the key may be used.
Disable Allows the key to be temporarily or permanently disabled.
Retry counter This counter keeps track of non-successful attempts to use the key

with a cryptographic procedure.
Maximum retry count If the retry count reaches the maximum count, the key is blocked.
Key length —
Key The actual key.

4.8.6 Key management example

Here we would like to describe an example of key management for a system based on smart
cards. The objective is to further illustrate the previously described principles by means of an
easily understood general example. Compared with this example, large real systems frequently
have arrangements that are much more complex, with several structural layers. Small systems
often have no key hierarchy at all, since a secret global key is used for all cards. The system
presented here occupies a middle position between systems with very simple structures and
large systems, and thus represents a good example.

In the example shown in Figure 4.40, the keys for loading and paying can be used with
an electronic purse. They use symmetric cryptographic procedures. These keys are evidently
important within the system, since they are relatively well protected by the described key
hierarchy. The individual derivation functions are not shown in detail here, but the DES or
triple-DES algorithm could always be used for them. The lengths of the keys are also not dealt
with in detail, but they certainly may vary. The keys at the top of the hierarchy are normally
derived using more powerful cryptographic functions than those used at the lower level keys,
for reasons of security.

The key at the top of the hierarchy is called the general master key. There is only one such
key for an entire generation of keys. A generation could remain valid for a year, for example,
and be replaced in the following year by a new generation, which means a new generation of
the general master key. The general master key is the most sensitive key of the system with
regard to security. If it becomes known, all of the keys of its generation can be computed,
and the system is broken for one generation. The general master key may be generated from a
random number. It is also conceivable to base the general master key on the values shown by
dice thrown by several independent persons, each of whom consequently knows only part of
the value of the key. The general master key should never be completely known by any single
person, and its generation must under no circumstances be reproducible.

A master key for each function is separately derived from the general master key. These keys
may be used for loading or paying with an electronic purse, for example. A one-way function,
such as a modified triple-DES algorithm, is used in our example to derive the separate master
keys for the various functions. This makes it impossible to compute the general master key from

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 241 of 1123

4.8 Key Management 207

general
master key

master key

derived
key

dynamic key

data for first
key derivation

data for second
key derivation

data for third
key derivation

one key for
each generation

one key for
each function

one key for
each Smart Card

one key for
each session

Figure 4.40 An example of a key hierarchy in a system based on smart cards and using symmetric
cryptographic algorithms

a master key by applying the procedure in reverse. If a one-way function is not used to derive
the master keys, the general master key could be computed if, despite all security measures, a
master key becomes known and the derivation parameters are also known. A one-way function
is used here because it is assumed that in this imaginary purse system, the master keys will
be located in the security modules of local terminals. This means that with regard to system
security, they are much more endangered than the general master key, which never leaves the
background system.

The derived keys form the next level in the key hierarchy. These are the keys that are located
in the smart cards. Each card contains a set of derived keys, which are classified according to
their functions and generations. If such a card is used at a terminal, the terminal can compute the
derived key for itself, based on the parameters used to derive the key in question. Naturally, the
terminal first reads the derivation parameters from the card. Once the derived key is available,
the following step is to compute the dynamic key, which is specific to a particular session. This
key is valid only for the duration of a single session. The duration of a session ranges from a
few hundred milliseconds to a few seconds in most smart card applications. A dynamic key is
no longer used after the end of the session.

This example system may appear complicated at first glance, but it is relatively simple
compared with real systems. The objective of the example is to show exactly how all the
keys in a system can be generated. It also implicitly shows what measures must be taken if a
key becomes known. If the general master key becomes known, a switch to a new generation
must be made if the system is to continue to be used without concerns about security risks.
By contrast, if a derived key becomes known, all that is necessary is to block the card in
question; any other key management changes would surely be inappropriate. Of course, all of
these measures presume that the reason why one or more keys have become known can be
determined, so that it can be prevented in the future.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 242 of 1123

208 Informatic Foundations

general
master keys

for generation 1

master keys
for loading

master keys
for paying

derived keys
for paying

all keys
in the system

... ...

derived keys
for loading

... ...
Figure 4.41 Examples of keys for an electronic purse system with two functions: loading and paying.
Only the stored keys are shown here; keys that are dynamically generated for individual sessions have
been omitted to simplify the diagram

Given this key hierarchy, it is evident that very many keys must be generated and stored
in the smart cards. Of course, it is always possible to assign several functions to a single key
in order to save memory space. It is also quite conceivable to use a different structure for the
key hierarchy, which naturally strongly depends on the system for which the key management
system is developed.

4.9 HASH FUNCTIONS

Even powerful computers require a great deal of time to compute a digital signature. In addition,
large documents would need many signatures, since the document to be signed cannot be
arbitrarily long. A trick is therefore used. The document is first compressed to a much shorter
fixed length, and then the signature of the compressed data is computed. It does not matter
whether the compression can be reversed, since the signature can always be reproduced from
the original document. The functions used for this type of computation are called one-way
hash functions.

Generally speaking, a one-way hash function is a function that derives a fixed-length value
from a variable-length document in a manner such that this value represents the original content
of the document in a compressed form and cannot be used to reconstruct the original document.
In the smart card domain, these functions are used exclusively to compute the input values for
digital signatures. If the length of the document is not a multiple of the block length used by
the hash function, it must be padded appropriately.

For a hash function to be effective, it must exhibit certain properties. The result must have
a fixed length, so that it can be readily used by signature algorithms. Since large quantities of
data normally have to be processed, the hash function must have a high throughput. It must also
be easy to compute the hash value. By contrast, it should be difficult, or better yet impossible,
to derive the original document from a known hash value. Finally, the hash function must
be collision-resistant. This means that for a given document, it should not be easy to find a
second document that yields the same hash value. Nevertheless, there certainly will be other

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 243 of 1123

4.9 Hash Functions 209

documents with the same hash value. This is only natural, since all possible messages, ranging
in length from null to infinity, are represented by a set of hash values having the same fixed
length. An unavoidable consequence of this is that collisions will occur. That is why the term
‘collision-resistant’ is used, rather than ‘collision-free’.

What is the effect of a collision? There will be two different documents with the same hash
value, and thus the same digital signature. This will have the fatal consequence of making the
signature worthless, since it would be possible to alter the document without anyone being
able to detect the fact. This is precisely what is involved in one of the two typical attacks on
hash functions, which consists of systematically searching for a second document that has
the same hash value as the original document. If the content of this document makes sense,
the digital signature derived from the hash value is discredited. Since the two documents are
interchangeable, the signature is worthless. After all, it makes an enormous difference whether
a house purchase contract is for €10,000 or €750,000.

The second type of attack on a hash value is somewhat subtler. In this case, two documents
with identical hash values but different contents are prepared in advance. This is not particularly
difficult, considering all the special symbols and extensions available in the character set. The
result is that a single digital signature is valid for both documents, and it is impossible to prove
which document was originally signed.

Finding two documents with the same hash value is not as difficult as it might seem. It
is possible to exploit the birthday paradox, which is well known in statistical theory. This
paradox involves two questions. The first question is: how many people must be in a room for
the probability to be greater than 50 % that one of them has the same birthday as the person
asking the question. The answer can be easily found, since it is only necessary to compare the
birthday of the questioner with the birthday of everyone else in the room. There must be at
least 183 (365 ÷ 2) people in the room.

The second question reveals the paradox, or better, the surprising result of this comparison.
This question is: how many people must be in a room for the probability to be greater than 50 %
that two people in the room have the same birthday. The answer is only 23 people. The reason
is that although only 23 people are present, this represents a total of 253 pairs for comparing
birthdays. The probability that two people have the same birthday is based on these pairs.

Precisely this paradox is utilized in attacking a hash function. It is much easier to create
two documents that have the same hash value than it is to modify a document until it yields a
given hash value. The consequence is that the results of hash functions must be large enough
to successfully foil both types of attack. Most hash functions thus produce values that are at
least 128 bits long, which is presently generally considered to be adequate with regard to the
two types of attack just described.

Many different hash functions have been published up to now, and some of them are also
defined in standards. However, these functions are frequently modified as a consequence of
the discovery of a successful form of attack. Table 4.19 provides a short summary of the hash
functions currently in common use. Unfortunately, a description of their internal operation is
beyond the scope of this book.

The ISO/IEC 10118-2 standard specifies a hash function based on an n-bit block-encryption
algorithm (e.g. DES). With this algorithm, the length of the hash value may be n or 2n bits.
The MD4 (message digest 4) hash function (presently rarely used) and its successor MD5 were
published by Ronald L. Rivest in 1990–1991. They are based on a standalone algorithm, and
both functions generate a 128-bit hash value. In 1992, the NIST published a hash function

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 244 of 1123

210 Informatic Foundations

Table 4.19 Summary of commonly used hash functions

Name Input block size Hash value length

ISO/IEC 10118-2 n bits (e.g. 64 or 128 bits) n or 2n bits (e.g., 64 or 128 bits)
MD4 512 bits 128 bits
MD5 512 bits 128 bits
MDC-4 64 bits 128 bits
RIPEMD-128 512 bits 128 bits
RIPEMD-160 512 bits 160 bits
SHA-1 512 bits 160 bits

for the DSS algorithm that is known as SHA. After the discovery of certain weaknesses, it
was modified, and the resulting function has been known since mid-1995 as SHA-1. It is also
standardized under the name FIPS 180–1.

Since data transmission to smart cards is generally slow, the hash function is performed in
the terminal or in a computer connected to the terminal. This drawback is balanced by the fact
that this makes the hash function interchangeable. Besides, in most cases, memory limitations
prevent hash functions from being stored in the cards. The program size is in almost every case
around 4 kB of assembler code. The throughput of typical hash functions is very high relative
to the demands placed on them. With an 80386 computer running at 33 MHz, it is usually at
least 300 kB/s, and it lies in the range of 4 to 8 MB/s with a 200-MHz Pentium PC.

4.10 RANDOM NUMBERS

Random numbers are repeatedly needed in connection with cryptographic procedures. In the
field of smart cards, they are typically used to ensure the uniqueness of a session during
authentication, as padding for data encryption and as initial values for send sequence counters.
The length of the random number needed for these functions usually lies in the range of 2 to
8 bytes. The maximum length naturally comes from the block size of the DES algorithm.

The security of all these procedures is based on random numbers that cannot be predicted or
externally influenced. The ideal solution would be a hardware-based random number generator
in the card’s microcontroller. However, this would have to be completely independent of
external influences, such as temperature, supply voltage, radiation and so on, since otherwise
it could be manipulated. That would make it possible to compromise certain procedures whose
security relies on the randomness of the random numbers. Current random number generators
in smart card microcontrollers are generally based on linear feedback shift registers (LFSRs)
driven by voltage-controlled oscillators.

Even with the current level of technological development, it is difficult to construct a
random number generator immune to external influences (a ‘true random-number genera-
tor’, or TRNG) in silicon on a microcontroller die. Consequently, operating system designers
frequently take recourse to software implementations. These yield pseudo-random number
generators (PRNGs), most of which produce very good (that is, random) random numbers.
Nevertheless, they do not generate truly random numbers, since the numbers are computed

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 245 of 1123

4.10 Random Numbers 211

using strictly deterministic algorithms and thus can be predicted if the algorithm and its input
values are known. This is why they are called ‘pseudo-random numbers’.

It is also very important to ensure that the cards of a production batch generate different
sequences of random numbers, so that the random numbers produced by one card cannot be
inferred from those produced by another card from the same batch. This is achieved by entering
a random number as the seed number (starting value) for the random number generator when
the operating system is completed in each card.

4.10.1 Generating random numbers

There are many different ways to generate random numbers using software. However, since
the memory capacity of smart cards is very limited and the time needed to perform the compu-
tation should be as short as possible, the number of options is severely restricted. In practice,
essentially only methods that utilize functions already present in the operating system are used,
since they require very little additional program code.

Naturally, the quality of the random numbers must not be adversely affected if a session is
interrupted by a reset or by removing the card from the terminal. In addition, the generator must
be constructed such that the sequence of random numbers is not the same for every session.
This may sound trivial, but it requires at least a write access to the EEPROM to store a new seed
number for the next session. The RAM is not suitable for this purpose, since it needs power
to retain its contents. One possible means of attack would be to repeatedly generate random
numbers until the EEPROM cells holding the seed number fail. Theoretically, this would cause
the same sequence of random numbers to then occur in every session, which would make them
predictable and thus give the attacker an advantage. This type of attack can easily be averted by
constructing the relevant part of the EEPROM as a ring buffer and blocking all further actions
once a write error occurs.

Another very important consideration for a software random number generator is to ensure
that it never runs in an endless loop. This would result in a markedly shorter repeat cycle for
the random numbers. It would then be easy to predict the numbers, and the system would be
broken.

Almost every smart card operating system includes an encryption algorithm for authentica-
tion. It is an obvious idea to use this as the basis for a random number generator. In this regard,
it is important to realize that a good encryption algorithm mixes the plaintext as thoroughly as
possible, so that the plaintext cannot be derived from the ciphertext without knowledge of the
key. A principle known as the avalanche criterion says that, on average, changing one input bit
should change half of the output bits. This property can be usefully exploited for generating
random numbers. The exact structure of the generator depends on the specific implementation.

Figure 4.42 illustrates a possible arrangement. This generator uses the DES algorithm with
a block length of 8 bytes, with the output value being fed back to the input. Naturally, any other
encryption algorithm could also be used. The generator works essentially as follows. The value
of a ring buffer element is encrypted by DES using a key unique to the card. The ciphertext
so produced is the 8-byte random number. This number, when XORed with the previous
plaintext, provides the new entry for the EEPROM ring buffer. The generator then moves to the
following entry in the cyclic ring buffer. This relationship can be expressed mathematically as
RNDn := f (key, RNDn–1).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 246 of 1123

212 Informatic Foundations

card-specific key

cyclic ring buffer

random
number

Figure 4.42 Sample architecture of a DES pseudo-random number generator for smart card operating
systems. This generator is primarily designed to minimize the number of write accesses to the EEPROM

When the smart cards are completed, a card-specific DES key is stored in each card, and at
the same time random seed numbers are entered into the ring buffer, which for example could
be a 12 × 8 buffer. The seed numbers ensure that each card produces a unique sequence of
random numbers. A 12-stage ring buffer increases the life span of the generator by a factor
of 12. Assuming that the EEPROM is guaranteed to have 100,000 write cycles, this generator
can produce at least 1,200,000 8-byte random numbers.

Erasing and writing eight bytes in the EEPROM takes about 14 ms (2 × 2 × 3.5 ms), and
executing the DES algorithm takes about 17 ms at 3.5 MHz if it is implemented in software.
The remaining processing time is negligible. The card thus needs around 31 ms to generate
a random number. However, if the DES algorithm is computed in hardware (at a typical rate
of 0.1 ms/block), a random number could be generated in only 14.4 ms using the described
method.

Figure 4.43 shows another example of a pseudo-random number generator. This generator
is initialized every time the card is reset, which is the only time a write access to the EEPROM
occurs. Only RAM accesses are used for the subsequent generation of random numbers, which
makes this generator relatively fast. However, the disadvantage of this is that the generator uses a
few bytes of RAM for the duration of the session. The statistical quality of this pseudo-random
number generator is not very good, but it is adequate for normal smart card authentication
procedures. The primary consideration with such procedures is to avoid generating random
numbers with short repeat cycles, since that would allow authentication to be compromised by
replaying messages from previous sessions.

The FIPS 140-2 standard recommends that security modules check their built-in random
number generators after every reset using statistical tests. Only after these tests have been suc-
cessfully completed should the random number generator be released for further use. Current
commonly used smart card operating systems rarely include such capability, since it is assumed
that due to the deterministic nature of the pseudo-random number generator, the statistics of
the generated random numbers will not change significantly.

The number of proposals, standards and designs for pseudo-random number generators
is simply overwhelming. Some well-known examples are the generators in the X9.17 stan-
dard, FIPS 186, the proposals in the Internet RFC 1750 and the arrangements shown by Bruce
Schneier [Schneier 96], Peter Gutmann [Gutmann 98a] and Benjamin Jun [Jun 99]. The guiding

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 247 of 1123

4.10 Random Numbers 213

card-specific
key

random
number

initialization after
smart card reset

random number generation

EEPROM counter

EEPROM counterRAM counter = 0

RAM

+1

+1

Figure 4.43 Sample architecture of a DES pseudo-random number generator for smart card operating
systems. This generator is faster than the one shown in Figure 4.42, since only one EEPROM write cycle
is needed per session. The quality of the random numbers it produces is adequate for normal smart card
applications (authentication using the challenge–response procedure)

principle for a random number generator should always be to keep it as simple and easily un-
derstandable as possible. Only then is it possible to assess its characteristics and thus determine
its quality.

4.10.2 Testing random numbers

After a random number generator has been implemented, it is generally necessary to test the
quality of the numbers it produces. Fundamentally, there should be a nearly equal number of
ones and zeros in the generated random numbers. However, it is not enough to simply print
out a few numbers and compare them. Random numbers can be mathematically tested using
standard statistical procedures. It is self-evident that a large number of 8-bit random numbers
will be needed for such testing. Between 10,000 and 100,000 random numbers should be
generated and analyzed in order to arrive at reasonably reliable results. The only way to test
this many numbers is to use computerized testing programs.

When evaluating the quality of the random numbers, it is also necessary to investigate
the distribution of the generated numbers. If this is very uneven, with certain values strongly
favored, then exactly these regions can be used for purposes of prediction. This means that
Bernoulli’s theorem should be satisfied as closely as possible. This theorem states that the
occurrence of a particular number, independent of what has come before it, depends only on
the probability of occurrence of the number itself. For example, the probability that a 4 appears
when a die is thrown is always 1/6, independent of whatever number appeared on the previous
throw. This is also referred to as ‘event independence’.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 248 of 1123

214 Informatic Foundations

The period of the random numbers, which is the number of random numbers generated
before the series repeats itself, is also very important. It must naturally be as long as possible,
and in any case longer than the lifetime of the random number generator. In this way, the
possibility of attacking the system by recording all random numbers generated for a complete
period can be excluded in a quite simple and reliable manner.

There are many statistical tests for investigating the randomness of events, but in practice,
we can limit ourselves to a few simple tests whose results are easily interpreted. There are also
many publications on the subject of testing for randomness [Knuth 97, Menezes 97], as well
as corresponding standards [FIPS 141-2, RFC 1750]. One test that is simple to set up and easy
to interpret is to count the number of times that each byte value occurs in a large number of
random numbers. If the results are displayed graphically as shown in Figure 4.44, they give a
good indication of the distribution of the numbers.

numerical value of the random number

frequency of
occurrence

computed and measured
average value

8
10
12
14
16
18
20
22
24
26
28
30
32
34

0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 4.44 Statistical distribution of a series of 5000 single-byte random numbers. This is also referred
to as the spectral distribution over one byte. These numbers were generated by a typical smart card pseudo-
random number generator. Based on purely mathematical considerations, each of the possible values (in
the range of 0–255) should occur 19.5 times

If such a diagram is used to investigate 8-byte random numbers, the values plotted on the
horizontal axis must still be single-byte or at most two-byte numbers, since the number of
samples needed for a statistical analysis would otherwise become extremely large. A good
guideline is that every random number should occur approximately four to 10 times for each
value in order to obtain reasonably reliable results. In this way, it is possible to quickly see
whether the random numbers that have been generated fully exploit the possible bandwidth of
the byte. If certain values are strongly favored, this offers an attacker a possible starting point.

Unfortunately, this test does not say anything about the order in which the random numbers
occur, but only something about their distribution. For example, it would be possible for a
‘random number’ generator to output numbers cyclically from 0 to 255. This would yield an
outstandingly uniform distribution, but the numbers would be completely predictable. Other
tests must be used to assess this quality criterion for random numbers.

Another practical test that yields a simple and quick estimate of the quality of a series of
random numbers is to compress the series using a file-compression program. According to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 249 of 1123

4.10 Random Numbers 215

Shannon, the degree of compression that is possible is inversely related to the randomness of
the set of generated numbers.

A significantly more robust test is the very well-known χ2 test. Although it tests the same
aspect as the previously described graphic test for even-statistical distribution, it is significantly
more exact because it is performed using a mathematical procedure [Bronstein 96]. If the
random numbers are assumed to be evenly distributed, the median value and standard deviation
can be calculated. The deviation from a normal distribution can then be determined based on
a χ2 distribution. From this, it is possible to state a numerical value for the distribution of the
random numbers.

However, this test cannot be used to draw any conclusions regarding the sequence in which
the random numbers occur. Other statistical tests can be used to verify the randomness with
which the numbers occur [Knuth 97], such as the Serial Test, which analyzes the periods of
patterns that occur in the random numbers. Similarly, the Gap Test analyzes the intervals over
which patterns do not occur. The Poker Test should also be used to evaluate the χ2 distribution
of patterns that do occur, and the Coupon Collector Test should be used to evaluate the χ2

distribution of patterns that do not occur.
The Spectral Test, which investigates the relationship between each random number and

the next following number, also has a certain amount of relevance [Knuth 97]. In the two-
dimensional version of this test, random numbers and their immediate successors are plotted
in an X–Y coordinate system, as shown in Figure 4.45. The three-dimensional version requires
the successor to the successor number in addition, as well as a third axis (the Z axis). N -
dimensional spectral tests can be performed in a similar manner, but for understandable reasons,
they must dispense with graphical representation.

At a minimum, the above-mentioned tests must be performed and analyzed in order to
achieve a reliable and definitive evaluation of a random number generator. Additional calcu-
lations and tests can be used to confirm the results so obtained. Only in this way is it possible
to make a reasonably correct assessment of the quality of a set of random numbers.

0
20
40
60
80

100
120
140
160
180
200
220
240

20

numerical value of the random number

subsequent
random number

40 60 80 100 120 140 160 180 200 220 240

Figure 4.45 Graphic representation of the distribution of successor values of 5000 single-byte random
numbers, corresponding to a spectral test. The nearly uniform distribution of the successor values can be
seen at a glance from the regular pattern. The numbers were generated by a typical smart card pseudo-
random number generator

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 250 of 1123

216 Informatic Foundations

Of course, considering the areas in which random numbers are used in smart card applica-
tions, an overly sophisticated random number generator is usually not justified. For instance,
the effect on security of being able to predict the random numbers used for authentication
would be very slight, since no attack is possible without knowledge of the private key used to
encrypt the random number.

A more serious problem would, however, arise if it were possible to manipulate the random
number generator, for example so that it would always generate the same sequence of random
numbers. In this case, an attack based on replaying the numbers would be not only possible but
also successful. This would also be true if the period of the random numbers were very short.
In each individual case, the primary conditions that the random numbers must satisfy must
be carefully considered, since this naturally affects the random number generator. Although a
supreme effort here may lead to very high-quality random numbers, it also usually results in
increased use of memory space, which is particularly limited in smart cards.

Table 4.20 Summary of standard statistical tests for random numbers

Test and reference Remarks

Coupon collector test [Knuth 97] χ 2 distribution of the non-occurrence of
Poker test [Menezes 97] patterns in a series of random numbers.
Frequency test [Knuth 97, Menezes 97] Counting the number of ones in a series of random

numbers.
Gap test [Knuth 97] Investigating the patterns that do not occur in a

series of random numbers.
Long run test per FIPS 140-2 Investigating whether a series of ones and zeros with

a length of 34 bits occurs in a series of random
numbers that is 20,000 bits long.

Monobit test per FIPS 140-2 Counting the number of ones in a series of random
numbers that is 20,000 bits long.

Poker test [Knuth 97] χ 2 distribution of the occurrence of patterns in a
series of random numbers.

Poker test per FIPS 140–1 Counting 4-bit patterns in a series of random
Serial test [Menezes 97] numbers that is 20,000 bits long.
Runs test per FIPS 140-1 Investigating maximum length of a series of all ones

or all zeros in a series of random numbers that is
20,000 bits long.

Serial test [Knuth 97] Investigating the patterns that occur in a series of
random numbers.

Spectral test [Knuth 97] Investigating the distribution of successor values of
random numbers.

4.11 AUTHENTICATION

The purpose of authentication is to verify the identity and genuineness of a communications
partner. Translated into the world of smart cards, this means that the card or the terminal
determines whether its communications partner is a genuine terminal or a genuine smart card,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 251 of 1123

4.11 Authentication 217

respectively. For the sake of clarity, the term ‘identification’ is consistently used in this book
to refer to verifying the authenticity of persons, although in principle it falls under the general
concept of authentication.

Authentication requires the communicating parties to share a common secret that can be
verified by means of an authentication procedure. Such a procedure is significantly more secure
than a pure identification procedure, such as a PIN test. In the latter case, all that happens is
that a secret (the PIN) is sent to the card, which confirms its genuineness if it is correct. The
drawback of this procedure is that the secret is sent as plaintext to the card, which means that
an attacker could easily come to know the secret (the PIN).

By contrast, with an authentication procedure it is not possible to discover the common
secret by tapping the communications channel, since the secret does not have to be sent openly
via the interface. A distinction is also made between static and dynamic authentication. In
a static procedure, the same (static) data are always used for the authentication. A dynamic
procedure, by contrast, is constructed such that it is protected against being attacked by re-
entering data recorded during a previous session. This is because each authentication is based
on different data when dynamic authentication is used.

There is also a fundamental difference between unilateral and mutual authentication pro-
cedures. A unilateral authentication, if it is successful, establishes the authenticity of one of
the two communications partners. Mutual authentication, when successful, establishes the
authenticity of both of the communications partners.

Authentication procedures based on cryptographic algorithms and used with smart cards
can be further classified into symmetric and asymmetric procedures. Currently, the procedures
used with smart cards are almost exclusively symmetric. Due to their slow execution speeds,
asymmetric procedures, which means those based on the RSA algorithm or similar algorithms,
do not yet have any practical significance with regard to smart cards systems. However, it can be
foreseen that this will change in the future. In any case, the operating principle of asymmetric
procedures is the same as that of symmetric procedures.

Authentication

methodalgorithm procedureparticipants

dynamicmutual

static challenge-response

asymmetric

unilateralsymmetric

Figure 4.46 Classification of authentication procedures used with smart card systems

There are several standards relating to the authentication of equipment. The ISO/IEC 9798
standard is the most prominent of these. Part 2 of this standard describes symmetric procedures,
while Part 3 describes asymmetric procedures. Fundamentally, the five parts of the ISO/IEC
9798 standard form an outstanding compilation of the commonly used authentication proce-
dures, including symmetric, asymmetric, MAC-based and zero-knowledge-based procedures.

The principle of authentication in the field of smart cards is always based on a challenge–
response procedure. In this procedure, one of the communications partners first asks the other
one a randomly generated question (the challenge). The second partner computes an answer

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 252 of 1123

218 Informatic Foundations

using an algorithm and sends the answer (the response) back to the first one. Naturally, the
algorithm is preferably an encryption using a shared secret key that represents the common
secret of the two communications partners.

4.11.1 Symmetric unilateral authentication

A unilateral authentication serves to assure one party of the trustworthiness of the other party
to a communication. For it to be possible, both parties must have a shared secret, the knowledge
of which is verified by the authentication procedure. This secret is the key for an encryption
algorithm, and the entire security of the authentication procedure depends on this key. If the
key should become known, an attacker could authenticate himself just as readily as a genuine
communications partner.

The principle of unilateral authentication with a symmetric cryptographic algorithm is
illustrated in Figure 4.47. For the sake of clarity, it is assumed that the terminal authenticates
a smart card. This means that the terminal determines whether the smart card is trustworthy.

enc (key; random number)

random number

key

" = " ?

smart card
authenticated

smart card not
authenticated

noyes

key

random
number

TerminalSmart Card

Figure 4.47 Working principle of unilateral authentication with a symmetric cryptographic algorithm.
This example shows the authentication of a smart card by a terminal, which can be implemented using
the INTERNAL AUTHENTICATE command of the ISO/IEC 7816-4 standard

The terminal generates a random number and sends it to the smart card. This is the challenge.
The smart card encrypts the random number it receives, using a key known to both the card
and the terminal. The security of the procedure depends on this key, since only the possessor
of the secret key can generate the correct response to be sent to the terminal. The card then
returns the result of the encryption to the terminal. This is the response to the challenge. The

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 253 of 1123

4.11 Authentication 219

terminal uses the secret key to decrypt the encrypted random number it has received, and then
compares the result with the random number it originally sent. If the two numbers match, the
terminal knows that the smart card is authentic.

This procedure cannot be attacked by replaying a challenge or response that has been
intercepted from an earlier session, since a different random number is generated for each
session. The only type of attack with a moderately good chance of success would be to
systematically search for the secret key. Since the challenge and response are simply a plaintext–
ciphertext pair, the secret key could be discovered using a brute-force attack.

If all the cards for a given application have the same key and this key becomes known,
the entire system will be discredited. In order to avoid exactly this possibility, in practice only
card-specific keys are used as a matter of principle. This means that every card has an individual
key, which may be derived from a non-secret feature of the card. This specific feature can be
the serial number of the chip, which is written to the chip when it is manufactured, or some
other number that is specific to each card.

In this case, the terminal requests the chip number from the smart card in order to compute the
card-specific key. The chip number is specific to the card and unique within the system, so there
is no other card in the system that matches this card. The value of the card-specific secret key is
a function of the card number and the master key, which is known to the terminal. In practice,
a portion of the card number is encrypted using the master key, and the result is used as the
card-specific authentication key. A DES or triple-DES algorithm can be used for the encryption.

It must of course be borne in mind that if the master key (which is known only to the
terminal) becomes compromised, the entire system will be compromised, since all card-specific
authentication keys can be computed using the master key. The master key must therefore be
securely stored in the terminal (in a security module, for example), and, if possible, it should
be actively erasable in case of an attack.

Once the terminal has computed the necessary authentication key for the card, the usual
challenge–response procedure occurs. The smart card receives a random number, encrypts it
using its individual key and returns the result to the terminal. The terminal executes the reverse
function of the computation performed by the card and compares the two results. If they match,
the terminal and the smart card have a common secret, which is the secret card-specific key,
and the smart card has been authenticated by the terminal.

In this case, the authentication process is somewhat time-intensive due the use of the DES
algorithm (to the extent that it is implemented in software) and the data transmission from and
to the card. This can cause problems in some applications. Given certain assumptions, we can
roughly calculate the time required to perform a unilateral authentication. We assume that the
smart card has a 3.5-MHz clock, uses the T = 1 transmission protocol, has a divisor of 372
and uses a DES algorithm that takes 17 ms per block. Without going into details, we assume
that the internal routines in the smart card take 9 ms. This simplifies the calculation without
significantly distorting the result, which is shown in Table 4.21. As can clearly be seen from
this calculation, a single authentication takes around 65 ms. This will not usually cause any
time-related problems in an application.

4.11.2 Symmetric mutual authentication

The principle of mutual authentication is based on dual unilateral authentication. In principle,
two successive unilateral authentications could also be used, one for each of the communicating

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 254 of 1123

220 Informatic Foundations

Table 4.21 Calculation of the processing time within a smart card for a unilateral authentication,
taking data transmission times into account

Command Data transmission Computation Total

INTERNAL AUTHENTICATE 38.75 ms + 26 ms = 64.75 ms
(DES in software)

INTERNAL AUTHENTICATE 38.75 ms + 0.08 ms = 38.83 ms
(DES in hardware)

parties, in order to achieve mutual authentication. However, since the communications overhead
must be kept as low as possible to minimize the time required by the process, a procedure that
interleaves the two unilateral authentication processes has been defined. This also increases
the security of the procedure, since it is much more difficult for an attacker to intervene in the
communications process.

Before the terminal can compute the card-specific authentication key from the card number,
it first needs the card number. After the terminal has received this number, it computes the
specific authentication key for this card. It then requests a random number from the card,
and at the same time it generates a random number itself. The terminal then swaps the two
random numbers and concatenates them, after which it encrypts the resulting number using
the authentication key. Finally, it sends the resulting ciphertext to the card. The objective of
reversing the random numbers is to allow the challenge and response to be distinguished from
each other.

The card can decrypt the received block and check whether the random number it previ-
ously sent to the terminal matches the number it received in return. If this is the case, the
smart card knows that the terminal possesses the secret key. This authenticates the terminal
with respect to the card. Next, the smart card swaps the two random numbers, encrypts the
resulting number using the secret key and sends the resulting ciphertext block back to the
terminal.

The terminal decrypts the received block and compares the random number it previously
sent to the card with the one it has received in return. If they match, the smart card has been
authenticated with respect to the terminal. This completes the mutual authentication process,
and the terminal and the smart card both know that the other is trustworthy.

To minimize the communications time, the smart card can return the random number to-
gether with its card number. This is particularly attractive when mutual authentication takes
place between a smart card and a background system. In this case, the card is directly addressed
by the background system, with the terminal being ‘transparent’. The data transmission rate in
such situations is often very low, so the communications process must be streamlined as much
as possible.

In order to illustrate the considerable amount of time required for a mutual authentication
compared with a unilateral authentication, we can again make a sample calculation. The basic
assumptions are the same as for the calculation of the time required for unilateral authentication
(see Table 4.21). The results are shown in Tables 4.22 (for software implementations) and 4.23
(for hardware implementations). As can be seen, mutual authentication takes nearly three times
as long as unilateral authentication.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 255 of 1123

4.11 Authentication 221

card number

GET CHIP NUMBER

ASK RANDOM

random number

enc (key; terminal random number || smart card random number)

enc (key; smart card random number || terminal random number)

Smart Card Terminal

Figure 4.48 Mutual authentication using a card-specific key and a symmetric cryptographic algorithm.
The illustrated procedure corresponds to a mutual authentication of a smart card and a terminal as
implemented in the ISO/IEC 7816-8 AUTHENTICATE command

Table 4.22 Estimated time required for a smart card to perform mutual authentication if random
number generation and DES computation are implemented in software, including data transmission
time. It is assumed that derived keys are not used, so GET CHIP NUMBER is not necessary

Command Data transmission Computation Total

ASK RANDOM 28.75 ms 26 ms
MUTUAL AUTHENTICATE 68.75 ms 95 ms

———– ———
97.50 ms + 121 ms = 218.50 ms

Table 4.23 Estimated time required for a smart card to perform mutual authentication if random
number generation and DES computation are implemented in hardware, including data transmission
time. It is assumed that derived keys are not used, so GET CHIP NUMBER is not necessary

Command Data transmission Computation Total

ASK RANDOM 28.75 ms 0.08 ms
MUTUAL AUTHENTICATE 68.75 ms 0.16 ms

———– ———-
97.50 ms + 0.24 ms = 97.74 ms

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 256 of 1123

222 Informatic Foundations

4.11.3 Static asymmetric authentication

Only a few smart card microcontrollers have arithmetic processing units that can be used to
execute the RSA algorithm. This is mainly because such capability would take up additional
space on the chip, which would increase its price.

However, the fact that a supplementary asymmetric authentication procedure would offer
increased protection, since it requires an attacker to break two cryptographic algorithms instead
of only one, often makes its use attractive. The problem presented by the absence of a suitable
arithmetic processing unit on the card can be dealt with by the expedient of using static
authentication of the card by the terminal. This only requires verification within the terminal,
and an additional security module in the terminal does not significantly increase its overall cost.
This solution is thus much more economical than the use of special smart card microcontrollers.
In addition, this procedure is mush faster, since only one asymmetric encryption is required,
as opposed to two in the case of dynamic asymmetric authentication.

The price of this compromise is reduced security of the authentication procedure. With a
static procedure, there is naturally no protection against replaying previous data. This is why it
is used only as a supplementary verification of the authenticity of the card, which has already
been verified using a dynamic symmetric procedure.

The procedure works essentially as follows. When each smart card is personalized, card-
specific information is entered into the card. This can for example be a card number, as well as
the name and address of the cardholder. This information does not change during the lifetime
of the card. As part of the personalization of the card, the digital signature of this information
is computed using a secret key. This key is used globally in the system. When the card is used
at a terminal, the terminal reads the signature and the signed data from a file in the card. The
terminal has the public key, which is valid for all cards in the system, and it can use this key
to encrypt the signature it has read and then compare the result with the data it has read from
the card. If these two values match, the card has been authenticated by the terminal.

Smart Card Terminal

data

datasignature

public
key

" = " ?

data
authentic

data not
authentic

noyes

Figure 4.49 Operating principle of static, asymmetric unilateral authentication of a smart card by a
terminal using a global key

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 257 of 1123

4.11 Authentication 223

The procedure illustrated in Figure 4.49, in addition to lacking protection against replaying
data, has yet another drawback, which is that a global key is used to generate and verify the
signature. Although the key in the terminal does not need to be protected, since it is public,
global keys (which are the same for all cards) should fundamentally not be used in a large
system. If such a key is broken, or if it becomes known for any other reason, authentication
is rendered worthless in the entire system. This means that it is necessary to introduce card-
specific key pairs for static authentication.

However, this presents a problem with the memory capacity of the terminals, since each
terminal must hold all available public keys for signature verification. Even in a medium-sized
system, such as one with one million smart cards, this would require each terminal to have
128 MB of memory for key storage, assuming 1024-bit RSA keys. This would increase the
price of the terminals to a level that would not be acceptable to system operators.

When symmetric methods are used, it is quite easy to derive the card-specific keys from
a master key.14 This is not possible with asymmetric methods, due to the way the keys are
generated. Consequently, a different approach is taken when card-specific keys are required.
The public key for the verification of the signature is stored in the card, along with the signature.
In the system of the previous example, the amount of memory needed to store the public keys
is still 128 MB, but this is now distributed in 128-byte packets over one million cards. The
terminal thus reads the public key from a file in the smart card and can then use it to verify the
signature. This avoids the problem of having to store all the public keys of the system in every
terminal.

However, an attacker could now generate a key pair and use these keys to sign the information
in a counterfeit card. The terminal would read the public key and conclude that the card was
genuine. A refinement of the procedure just described is therefore required. This consists of
signing the combination of the public key and the card-specific key stored in each card, using
a global secret key. This signature is then stored in each card.

The terminal now works as follows. It first reads the public and card-specific keys from the
card and then tests the authenticity of the card-specific key using the global public key. If the
card-specific key is authentic, the terminal then reads the actual data and verifies them using
the public key stored in the smart card. This procedure is shown in Figure 4.50.

These two procedures are already used in some systems, and they will certainly be used
increasingly in the coming years. However, as soon as the inclusion of an arithmetic processing
unit for asymmetric cryptographic algorithms does not significantly increase the price of a smart
card microcontroller, these two procedures will lose a lot of their significance. Their biggest
disadvantage is the absence of protection against replaying data from earlier sessions. Although
this can be partially compensated by the use of various tricks, such as reusing signed data in
subsequent symmetric cryptographic algorithms, it is still not possible to match the level of
protection provided by dynamic authentication procedures.

4.11.4 Dynamic asymmetric authentication

All of the previously described static asymmetric procedures have certain disadvantages. These
can be eliminated by making the authentication dynamic, which provides protection against

14 See also Section 4.8.1, ‘Derived keys’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 258 of 1123

224 Informatic Foundations

TerminalSmart Card

public key

public keysignature

data

data
signature

global
public key

" = " ?

public key
authentic

public key
not authentic;
abort

noyes

" = " ?

data
authentic

noyes

1

1

Figure 4.50 Operating principle of static, asymmetric unilateral authentication of a smart card by a
terminal using a card-specific key

the re-entry of data intercepted from earlier sessions. The usual practice is to use a random
number as the input value for a cryptographic algorithm. Of course, this means that the card
must contain an arithmetic processing unit that can execute the asymmetric cryptographic
algorithm.

Figure 4.51 illustrates a unilateral authentication using a global public key. If card-specific
authentication keys are required, the procedure for the storage and authentication of card-
specific public keys described in Section 4.11.3 is necessary.

As with symmetric authentication, the terminal generates a random number and sends this
to the smart card. The card decrypts the random number using the secret key15 and then sends
the result back to the terminal. The terminal holds the global public key, and it uses this key to

15 Using encryption to generate signatures comes from the convention that with an asymmetric cryptographic algo-
rithm, the secret key is always used for decryption and the public key for encryption. The convention of using the
public key for encryption goes back to the origins of the RSA procedure. One of the ideas at that time was to allow
the RSA procedure to be used by agents operating in hostile territory to encrypt information to be kept secret. All
that is needed to allow agents’ reports to be sent back to headquarters in encrypted form is the RSA algorithm and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 259 of 1123

4.12 Digital Signatures 225

encrypt the random number that it has received. If the result of this computation is the same
as the random number that was previously sent to the card, the card has been authenticated by
the terminal.

dec (secret key; random number)

random number random
number

Smart Card Terminal

public
key

" = " ?

smart card
authenticated

smart card not
authenticated

noyes

secret
key

Figure 4.51 Operating principle of dynamic, asymmetric unilateral authentication of a smart card by a
terminal

The basic features of a mutual authentication procedure for the smart card and the ter-
minal are analogous to the unilateral procedure that has just been described. However, a
mutual authentication requires a relatively long time, due to the large amount of data that must
be exchanged and the time-consuming asymmetric encryption algorithm. Consequently, it is
presently used very rarely.

4.12 DIGITAL SIGNATURES

Digital signatures, which are often referred to as ‘electronic signatures’, are used to establish
the authenticity of electronically transmitted messages or electronic documents. Verification
of the signature can be used to determine whether the message or document has been altered.

a public key. The messages can then be decrypted at headquarters in friendly territory using the private key. The
main advantage of this arrangement is the ease of key distribution, since in principle agents can be given their keys
without employing security measures. Even if a key becomes known, nobody would be able to decrypt messages
that had been encrypted using the key, since this requires the private key. This initial strongly military application of
the RSA algorithm forms the historical basis for the still valid convention that the public key is used for encryption
and the private key for decryption

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 260 of 1123

226 Informatic Foundations

A signature has the property that it can be correctly produced by only one single individual,
but it can be verified by anyone who receives the message – or at least, by any recipient who
has previously seen the signature, or who has a copy available for comparison. This is also
the essential characteristic of a digital signature. Only one person or one smart card can ‘sign’
a document, but everyone can verify whether the signature is genuine. Given this required
characteristic, asymmetric cryptographic techniques represent the ideal starting point.

The message or document to be signed is usually at least several thousand bytes long. In order
to keep the computation time for generating the cryptographic checksum within acceptable
limits, the checksum is not computed over the entire data string. Instead, a hash value for the
data string is first produced. Hash functions16 are, simply stated, one-way functions for data
compression. This compression is not reversible, which means that the original data cannot be
reconstructed from the compressed data. Since the computation of a hash value is very fast,
hash functions are an ideal aid for computing digital signatures.

The term ‘digital signature’ is usually only used in connection with asymmetric crypto-
graphic algorithms, since the separation of the public and private keys makes such algorithms
very suitable for use with digital signatures. Nonetheless, ‘signatures’ based on symmetric
cryptographic methods are often used in practice. However, with such signatures it is only
possible to verify the authenticity of a document if the secret key used to generate the signature
is known. Such a ‘signature’ is thus actually not a signature in the true sense of the word, but
it is often referred to as such in practice. The term ‘digital’ is in this case omitted, to indicate
the type of procedure used.

Digital signature

appendix message recovery

Figure 4.52 Classification of the two basic digital signature formats

From an informatics perspective, there are two different ways to attach a signature to a
message. The first is a form of cryptographic checksum for a given data string, similar to
a MAC (message authentication code), with the signature appended to the actual message
(digital signature with appendix). This has the advantage that the message can be completely
read without requiring prior verification of the signature. However, the drawback is that the
size of the message is increased by the length of the signature, which can certainly be a
consideration in the case of smart cards. This drawback can be avoided by using the second
method for attaching a digital signature to a message, which is called ‘digital signature with
message recovery’. In this method, the hash value of the actual message is first appended to the
message, following which an input block for the digital signature algorithm is formed starting
at the end of the resulting data string. This means that the digitally signed message is increased
in size only by the length of the hash value, but it cannot be completely read until the digital
signature has been verified.

16 See also Section 4.9, ‘Hash functions’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 261 of 1123

4.12 Digital Signatures 227

The procedure for generating a digital signature with appendix can be quite easily portrayed.
First, a hash algorithm is used to form a hash value from the content of the message, which may
for example be a file produced by any arbitrary word-processing program. This hash value is
decrypted using an asymmetric cryptographic algorithm, such as RSA in the example shown
in Figure 4.53. The result of this computation is the actual signature, which is appended to the
message.

RSA decryption

message message + signature

private
key

hash
algorithm

hash value
of the
message

Zaphod B.

0101010101

This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.

This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.

This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.

Figure 4.53 Signing a message with the RSA algorithm by appending the generated signature to the
message (digital signature with appendix)

The signed message can now be sent via a non-secure path to the recipient. The recipient
separates the signature from the message and then compresses the message using the same hash
algorithm. The digital signature is encrypted using the public key of the RSA algorithm, and
the result is compared with the result of the hash computation. If both values are the same, the
message has not been altered while underway; otherwise, either the message or the signature
has been altered during transmission. In the latter case, authenticity is no longer assured, and
it cannot be assumed that the content of the message is unaltered.

The task of the smart card in this scenario is very simple. It stores at minimum the private
RSA key, and it decrypts the hash value formed from the message, which means that it generates
the signature. Everything else, such as generating the hash value or subsequently verifying the
signature, can in principle be performed equally well by a PC.

Still, the ideal situation would be for the smart card to receive the message via its interface,
compute the hash value and then send the signed message back to the terminal. Verification of
the signature could also be performed by the smart card. This procedure is naturally no more
secure than just computing the signature, but it is significantly more ‘application-friendly’.
This is because hash algorithms and RSA keys can be changed by simply exchanging the
smart card, without any need to alter programs or data in the PC.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 262 of 1123

228 Informatic Foundations

RSA decryption

message message + hash value signed message

private key

hash
algorithm

hash value of
the message

0101010101

0101010101

00 11 00 11 00

This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.

This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.

This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.

Figure 4.54 Signing a message with the RSA algorithm by incorporating the message and a hash value
formed from the message in the signature (digital signature with message recovery)

hash value
of the message

hash
algorithm

Zaphod B.

RSA encryption

public key

" = " ?

signature
genuine

signature
false

noyes

0101010101

message + signature

This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.

Figure 4.55 Verifying a message that has been signed using the RSA algorithm with the signature
appended to the message (digital signature with appendix)

In these two examples, the keys used to generate and verify digital signatures are global,
which means that they are the same for every smart card in a particular system. If a different
arrangement should be used for security reasons, so that each card has its own key for digital
signatures, a scheme such as that described in Section 4.11.3 must be used.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 263 of 1123

4.13 Certificates 229

hash value
of the message

hash
algorithm

0101010101

RSA encryption

public key

message + hash value

0101010101

signed message

This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.

00 11 00 11 00

" = " ?

signature
genuine

signature
false

noyes

This is a short message.
This is a short message.
This is a short message.
This is a short message.

This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message.
This is a short message

.This is a short message.

Figure 4.56 Verifying a message that has been signed using the RSA algorithm, in which a part of the
message is used for the signature (digital signature with message recovery)

The RSA algorithm is not the only one that can be used to produce digital signatures.
There is also a cryptographic procedure that has been specially developed for this application,
namely the DSA (Digital Signature Algorithm). It was first proposed by the NIST (US National
Institute of Standards and Technology) in 1991. Signatures can be both generated and verified
using the DSA. In contrast to the RSA algorithm, it is largely designed such that it cannot be
used for data encryption and decryption, although this has now been shown to not be true.
Compared with the strong export restrictions applicable to the RSA algorithm and algorithms
based on elliptic curves, such a feature would represent a major advantage for international
use and/or export.

4.13 CERTIFICATES

With regard to the use of digital signatures, one is rather quickly confronted with a problem
that must not be underestimated. Anyone who wants to verify the digital signature of a message
needs the appropriate public key. However, the public key cannot be simply sent without any
protection, since otherwise the recipient cannot verify the authenticity of the key. The public
key must therefore be signed by a trustworthy body so that its authenticity can be verified. This
body is called a certification authority (CA). The combination of a public key that has been
signed by a certification authority, the accompanying digital signature and certain additional
parameters is called a certificate.

There is also another body involved in this process, which is the trust center (TC). A
trust center generates and manages certificates and associated blacklists, and it can optionally
generate keys for digital signature cards. As a rule, a trust center also maintains a public

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 264 of 1123

230 Informatic Foundations

directory of certificates, so that anyone who wants to verify a signed message can request the
associated signed public key from the center, for example via the Internet.

A certificate contains not only the signed public key, but also a large number of additional
parameters and options, since it must be possible to verify the public key of a certificate without
any further information. From this, it follows that among other things, the algorithms used to
generate the hash value and the signature must be clearly specified. In principle, everyone
who signs documents could specify his or her own certificate structure. Of course, this would
make it impossible to exchange certificates. This would generally rob such certificates of their
meaning, since exchangeability is an essential characteristic of a certificate.

sign

directory

verify

signed
public
key (S)

signed
public
key (S)

message
authentic

private
key (S)

 message

sign

public
 key (S)

message

verify

public

authentic

certification authority (CA)

signer (S)

verifier (V)

public
 key (S)

not authentic

private
key (CA)

public
key (CA)

signed key (S)

message
not authentic

Figure 4.57 Data flow diagram of the basic processes for generating and verifying a transmitted message
using a certificate. The certificate, which is generated by a certification authority, contains the public key
of the signer and the signature of the certification authority

In order to insure that this sort of cooperation actually can take place, there are standards
that specify the structure of certificates. The best known of the relevant standards is X.509,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 265 of 1123

4.13 Certificates 231

which specifies the structure and coding of certificates. It has also entered the ranks of ISO/IEC
standards as ISO/IEC 9594-8

The comprehensive X.509 standard is a framework in which the structure of certificates
is defined in unambiguous terms. It forms the basis for many digital signature applications.
Some examples are the Secure Socket Layer (SSL) Internet security mechanism and the Privacy
Enhanced Mail (PEM), Secure Multipurpose Internet Mail Extensions (SMIME) and Secure
Electronic Transaction (SET) applications.

ASN.1 is consistently used in X.509 to describe certificates, and the widely known TLV
coding scheme is used in accordance with the Distinguished Encoding Rules (DER) for the
actual coding.17 Some of the objects that may be included in a certificate are listed in Table 4.24.
A brief introduction and summary of the subject of X.509 certificates can be found in a paper
by Peter Gutmann [Gutmann 98b].

Table 4.24 Typical content of an X.509 certificate

Data element and X.509 designation Explanation

Version Identifies the version of X.509 that defines the data elements
of this certificate. This is usually version 3.

Serial number The serial number of the certificate. This must be issued by
the issuer of the certificate, so that it is unique.

Signature algorithm identifier Identifies the cryptographic algorithm used for the digital
signature.

Issuer name The name of the issuer of the certificate. The spelling of
this name is unique, according to the X.500 standard.

Term of validity The period for which the certificate is valid.
Subject name The name of the entity whose public key should be

recognized as authentic based on this certificate.
According to the X.500 standard, the spelling of this
name is unique

Public key The subject entity’s public key, which should be recognized
as authentic based on this certificate.

Signature The digital signature formed from the data of the certificate.

Many optional data fields for a wide variety of applications are defined in the X.509 standard.
For example, it is easily possible to include several public keys in a single certificate and have
them signed by different certification agencies. This can result in certificates that contain
several kilobytes of data, which can cause problems if a smart card is to be used to verify the
certificate. Of course, this scheme can also be used to generate items such as complementary
certificates and tree-structured certificate hierarchies. A typical X.509 certificate in a smart
card normally has a size of approximately 1 kB.

17 See also Section 4.1, ‘Structuring Data’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 266 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 267 of 1123

GOOG- 101 1

GOOGLE LLC V. RFCYBER CORP. / Page 267 of 1123

5
Smart Card Operating Systems

It may seem presumptuous to refer to the few thousand or ten thousand bytes of program
code in a smart card microprocessor as an operating system, but the name is fully justified.
According to the German DIN 44300 standard, an operating system is no more and no less than
‘the programs of a digital computer system that together with the properties of the computing
system form the basis for the possible operating modes of the digital computing system, and
which in particular control and monitor program execution’.

The term ‘operating system’ is thus not automatically limited to enormous programs and
data volumes. Instead, it is completely independent of size, since it only refers to functionality.
You should not automatically associate the term ‘operating system’ exclusively with multi-
megabyte programs for PCs and Unix computers. These operating systems are designed just
as specifically for a particular man–machine interface, which uses a monitor, keyboard and
mouse, as smart card operating systems are designed to work with the bidirectional serial
interface to the terminal.

Ultimately, the decisive factor for an operating system is its functionality, which results
from the interaction of mutually compatible and interdependent library routines. The fact
that an operating system provides an interface between the computer hardware and the actual
application software is also important, since it makes it unnecessary for the application software
to directly address the hardware. This is a significant benefit, since it provides the application
software with a certain amount of portability, even though this is often very limited.

At the beginning of the 1990s, there were very few true smart card operating systems. This
was in part due to the very limited memory capacity of smart card microcontrollers at the time.
The usual situation then was not so much an operating system as a well-structured collection of
library routines in ROM, which were used as necessary for a particular application when the card
was completed. The structures of these systems were largely monolithic and could be modified
only at considerable expense. The next generation was already built in the form of a layered op-
erating system, and present-day systems still have this structure, with innumerable refinements.

One of the first true smart card operating systems was STARCOS, which was developed by
Giesecke & Devrient [GD] and the Gesellschaft für Mathematik und Datanverarbeitung. This
operating system, whose development began in 1990, allowed several applications to be stored,
used and managed independently in a single smart card, even at that relatively early date.

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 268 of 1123

234 Smart Card Operating Systems

In the course of time, the term COS (card operating system) has become accepted through-
out the world as a designation for a smart card operating system. It often forms part of the
name of the operating system, as with ‘STARCOS’ and ‘MPCOS’. Presently, there are more
than a thousand companies that produce general-purpose and application-specific smart card
operating systems. A number of examples are listed in Table 5.1.

Table 5.1 Some examples of smart card operating systems from various
producers, with references to their WWW addresses. This is only an incomplete
selection

Operating system name Producer

GemXplore, GPK, MPCOS Gemplus [Gemplus]
STARCOS, STARSIM, STARDC Giesecke & Devrient [GD]
Multos Maosco [Maosco]
AuthentIC, SIMphonic Oberthur [Oberthur]
Micardo Orga [Orga]
Cyberflex, Multiflex, Payflex Schlumberger [Schlumberger]
CardOS Siemens [Siemens]
TCOS Telesec [Telesec]

It is conceivable that a consolidation of smart card operating systems, with their various
features and functions, could occur in the next few years. This would have the same effect as with
PCs, which nowadays all use a ‘uniform’ operating system. Whether this will actually happen
with smart card operating systems remains to be seen, since in this case the external conditions
are less favorable to a uniform solution. Extremely severe requirements with regard to security
and software quality, a shortage of memory capacity and the demand for confidentiality of the
operating system software, taken together, certainly have the potential to make it impossible
to produce a universal smart card operating system that satisfies everyone’s wishes, at least in
the foreseeable future.

In this chapter, we attempt to shed some light on the features and varieties of modern smart
card operating systems, based on various specifications, standards and descriptions of software
for smart cards.

5.1 HISTORICAL EVOLUTION OF SMART CARD
OPERATING SYSTEMS

The evolution of operating systems for smart cards has passed through the same stages as
for all other computer systems. The original special-purpose programs for single applications
were repeatedly generalized and extended. The end result was a structured, general-purpose
operating system that is easy to use.

From a modern perspective, the programs for smart card microcontrollers that existed at
the beginning of the 1980s, at the start of this evolution, cannot be considered to be true
operating systems. They were nothing more than application programs embedded in the ROM
of a chip. However, since manufacturing mask-programmed microcontrollers is expensive and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 269 of 1123

5.1 Historical Evolution of Smart Card Operating Systems 235

time-consuming, the demand for general-purpose kernel routines grew very quickly. Special-
purpose application programs stored in EEPROM could then be built on top of these routines,
using them as necessary. However, this also increased the demand for memory, which led some
companies to move in the opposite direction, back to special software for specific applications.

However, a steadily increasing market demand for individually tailored solutions, which
continues to exist, has more or less forced producers of operating systems to design their
programs to meet this demand. Presently, the individualized approach with specially developed
ROM software is only used for applications involving a very large number of cards. General-
purpose operating systems based on standard commands are the norm, since in principle they
can be used for any type of application. If this is not possible for some reason, these operating
systems are at least designed so that they can be modified to meet the requirements of any
particular application with a minimum of time and effort.

The ‘historical’ development of smart card operating systems from 1980 to the present can
be very well illustrated by the smart cards used in the German mobile telephone networks.
The smart cards used since 1987 in the C-Netz (the German precursor of the GSM, or D-Netz)
have an operating system that is optimized for this application. The modifications include a
custom transmission protocol, special commands and a file structure specially adapted to the
application. All in all, this type of card certainly has a complete operating system, but it is
totally tailored for use in the C-Netz. The essential components of the application based on this
operating system were tailored to the special requirements of the library-oriented operating
system and its underlying hardware.

The next step was the transition from a special solution to a somewhat more open oper-
ating system architecture. One representative of this is the first GSM card, whose design is
significantly more open and multifunctional. When GSM smart cards were specified, there
were already proposed standards for the command sets and data structures of smart cards,
which meant that the cornerstone had been laid for compatibility among various operating
systems. Starting from this basis, further developments came step by step. Applications based
on this operating system are largely independent of the hardware and are based on the various
interfaces of the operating system.

application

library-based
operating system

monolithic
operating system

layered
operating system

application application

operating
system operating system

operating system

hardware hardware hardware

Figure 5.1 Schematic representation of the historical development of smart card operating systems. Up
to around 1991, newly developed operating systems were library-based. They were gradually replaced
by monolithic operating systems up until around 1998. Monolithic operating systems have now been
replaced by layered operating systems. For the sake of simplicity, each of the diagrams shows only one
application

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 270 of 1123

236 Smart Card Operating Systems

Modern operating systems for GSM have functions such as memory management, mul-
tiple file trees and state machines, which brings them very close to the features provided
by multiapplication operating systems. They can manage several applications independently
while preventing interaction among the applications. Most of them also have very complex
state machines and a large command set, and some of them support several data transmission
protocols.

Even these operating systems do not represent the end of the evolution. Smart cards for
mobile telephones are taking on more and more of the functions of the telephone itself, such as
driving the display and polling the keypad. In order to provide the maximum possible flexibility,
it is necessary to break with what has up to now been a rigid fundamental principle in the smart
card world. A modern smart card operating system must be able to run third-party program
code in the card. With smart card operating systems, it goes without saying that this will not
have any detrimental effect on the functionality or security of any other applications in the
card. All modern smart card operating systems have a layered structure, with only the bottom

Table 5.2 Source code size and characteristic code metrics of typical smart card operating systems for
the GSM telecommunications application. Adding Java Card capability to the operating system dating
from 2002 would increase the size of the source code by approximately 180,000 lines

Type of smart card OS for GSM OS for GSM OS for GSM OS for GSM
operating system circa 1990, circa 1997, circa 1996, circa 2002,

in assembler in assembler in C in C

Functionality GSM 11.11, GSM 11.11, GSM 11.11, GSM 11.11,
administrative administrative administrative GSM 11.14, WIM,
commands commands, commands 3 microbrowsers,

OTA administrative
commands, OTA

Microcontroller 6 kB ROM 16 kB ROM 16 kB ROM 196 kB ROM
specifications 3 kB EEPROM 8 kB EEPROM 8 kB EEPROM 68 kB EEPROM

128 bytes RAM 256 bytes RAM 256 bytes RAM 4096 bytes RAM
Total size of
linked object code 10 kB + 0.3 kB 16 kB + 0.8 kB 16 kB + 0.8 kB 190 kB + 4.9 kB

(ROM + EEPROM)
Lines of source code 1 ≈10,000 ≈22,000 ≈12,000 ≈120,000

(including comments)
Number of

source code files 22 14 37 184
Number of subroutine

calls (assembler) or ≈470 ≈930 ≈115 ≈900
functions (C)

Number of returns ≈95 ≈35 ≈205 ≈1500
Number of constants ≈360 ≈250 ≈100 ≈150
Number of branches

(assembler) or ≈200 ≈560 ≈1100 ≈3100
IF statements (C)

1In 2000, the largest known software program was Windows 2000, with 29 million lines of source code.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 271 of 1123

5.2 Fundamentals 237

layers being dependent on the hardware. The hardware is increasingly abstracted in the layers
built on top of these lower layers.

In the foreseeable future, it is certainly possible for the evolution of smart card operating
systems to lead (via several intermediate steps) to an international quasi-standard for general-
purpose operating systems, as has already occurred with many other types of operating systems.
It may take a while, but sooner or later a certain industry standard comes to predominate, and
competitors in the market must support it as the ‘least common denominator’ if they wish to
continue to operate successfully. Such a standard does not yet exist in the smart card world,
but the first signs of one can already be seen. The basis for this, in contrast to the PC world
for example, is formed by international standards and specifications. These are primarily
the ISO/IEC 7816 family of standards, the UICC specifications (TS 102.221) and the EMV
specifications.

5.2 FUNDAMENTALS

Smart card operating systems, in contrast to commonly known operating systems, do not
include user interfaces or the possibility of accessing external memory media. This is because
they are optimized for completely different functionality. Security during program execution
and protected access to data have the highest priority. Due to the limitations imposed by
the amount of available memory, smart card operating systems have a very small amount
of program code, which normally lies in the range of 3–250 kB. The lower limit relates
to special applications, while the upper limit relates to multiapplication operations systems,
some of which have interpreters for downloadable program code. However, the average memory
requirement is around 64 kB for operating systems that do not support downloadable third-party
program code.

The program modules are written as ROM code. This limits the programming techniques
that can be used, since many techniques typically used with RAM program code (such as self-
modifying code) are not possible with ROM code. The fact that the code is in ROM also explains
why no changes at all are possible once the microcontroller has been programmed and manu-
factured. Correcting an error is thus extremely expensive and takes 10 to 12 weeks. If the smart
cards have already been issued, errors can only be corrected by a large-scale recall campaign,
which could destroy the reputation of a system using smart cards. ‘Quick and dirty’ program-
ming is thus clearly out of the question. Consequently, the amount of time spent on testing and
quality assurance is usually significantly greater than the amount of time spent on programming.

These operating systems must not only have a very small number of errors, they must also be
very reliable and robust. They must not allow their functionality, and above all their security, to
be impaired by any command coming from the outside world. System crashes or unpredictable
responses to an erroneous command or the failure of a page of EEPROM must never occur
under any circumstance.

From the perspective of operating system design, it is an unfortunate fact that the implemen-
tation of certain mechanisms is influenced by the hardware that is used. Above all, the secure
state of the EEPROM has a small but noticeable effect on the design of the operating system.
For example, all retry counters must be designed such that their maximum value corresponds
to the erased state of the EEPROM. If this were not the case, it would be possible to reset
a counter to its initial value by (for example) intentionally switching off power to the card

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 272 of 1123

238 Smart Card Operating Systems

while it is writing a new value to the retry counter. This is because the EEPROM must be
erased before certain types of write operations. If the power can be switched off exactly at the
time between erasing the EEPROM and writing the new value, the portion of the EEPROM
used for the retry counter would be in the erased state. If the operating system were designed
incorrectly, this would amount to resetting the retry counter to its initial value. This type of
attack can be countered by properly coding the counter, as just described, or by making the
process of writing the retry counter an atomic operation. The situation with regard to the retry
counter and the secure (lowest energy) state of the EEPROM is similar. The retry counter must
be coded such that its maximum count corresponds to the secure state of the EEPROM. If this
were not the case, it would be possible to reset the retry counter (by locally heating certain
EEPROM cells, for example). These are only two examples of hardware dependences in the
design of a smart card operating system; there are many others. For reasons of security, a smart
card operating system must be closely coupled to the hardware of the microcontroller used.
Consequently, it can never be fully hardware-independent.

There is also another aspect to the concept of a secure operating system. ‘Trap doors’ and
other types of hidden access points for system programmers are frequently found in large
operating systems, in which they are perfectly normal features. However, they must be totally
excluded in smart card operating systems. There must not be any possibility that someone could
use some mechanism to bypass the operating system and (for example) obtain unauthorized
read access to a file.

Another aspect that should not be underestimated is the required processing capacity. The
cryptographic functions present in the operating system must execute in very short lengths of
time. It is thus common to expend weeks of painstaking effort to optimize the algorithms in
question in assembler code.

Due to the hardware platforms used and the required level of reliability, it is obvious that
there is no place for multitasking capability in smart card operating systems. However, the
limitation to a single executing task also restricts the use of security processes that monitor
operating system components with regard to process execution and constraints.

In summary, the primary tasks of a smart card operating system are the following:

� transferring data to and from the smart card

� controlling the execution of commands

� managing files

� managing and executing cryptographic algorithms

� managing and executing program code.

Command processing

Command processing in smart cards that do not support downloadable program code is typically
organized as shown in Figure 5.2. The smart card receives each command via the serial I/O
interface. The I/O manager performs error detection and correction procedures as necessary,
fully independent of the other, higher level layers. After a command has been completely

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 273 of 1123

5.2 Fundamentals 239

received without errors, the secure messaging manager must decrypt the message or test its
integrity. If secure data transmission is not used, this manager is completely transparent to both
the command and the response.

After this processing, the next higher level, which is the command interpreter, attempts to
decode the command. If this is not possible, the return code manager is called. It generates a
suitable return code and sends it back to the terminal via the I/O manager. It may be necessary
to design the return code manager in an application-specific fashion, since the return codes
are not necessarily the same for all applications. If the command can be decoded, the logical
channel manager determines which channel has been selected, switches to the state of this
channel and invokes the state machine if no error occurs.

The state machine checks whether the command, in combination with its accompanying
parameters, is permitted in the current state of the smart card. If it is, the program code of the
application command that processes the received command is executed. If the command is
prohibited in the current state, or if its parameter values are not allowed, the terminal receives
a message to this effect via the return code manager and the I/O manager.

If it is necessary to access a file while processing the command, this occurs only via the
file manager, which converts all logical addresses into physical addresses within the chip. The
file manager also monitors all addresses with regard to region boundaries and tests access
conditions for the file in question.

The file manager utilizes a lower level memory manager, which performs all management
functions for the physically addressed EEPROM. This ensures that this program module is the
only one that uses physical addresses, which significantly increases the portability and security
of the entire operating system.

command interpreter

secure messaging mgr

logical channel mgr

program code
interpreter

application command

state machine file manager

memory manager

return code manager

EEPROMNPU

MMUI/O manager cryptographic library

I/O interface

Figure 5.2 Command processing within a smart card operating system. The level of hardware abstrac-
tion increases from the bottom to the top in this figure. The program code interpreter is optional

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 274 of 1123

240 Smart Card Operating Systems

send bit

send byte

send block

receive bit

receive byte

receive block

protocol state machine

data flow

Figure 5.3 The portion of the command processing sequence performed within the I/O manager of a
smart card operating system

A central return code manager is responsible for generating the return code. It always pro-
duces the complete response sent to the calling routine. This level is responsible for managing
and generating the return codes used in all other parts of the operating system.

Since smart card operating systems usually utilize cryptographic functions, there is normally
also a dedicated library of cryptographic functions separate from the rest of the operating sys-
tem. This library serves all other modules as a central point of departure for using cryptographic
functions.

In addition to these levels, an interpreter or verification routine for executable files may be
present in the region above the application command level. It monitors the programs contained
in these files and runs or interprets them. The exact design and implementation depends on
whether there are actually any files with executable code present, and on whether the stored
code is machine code for the processor or code to be interpreted. This subject is described in
detail in Section 5.10, ‘Smart Card Operating Systems with Downloadable Program Code’.

Smart card profiles

In contrast to the realm of PC operating systems, the memory space of smart cards is so severely
limited that in many cases not all of the standard commands and file structures are implemented.
Consequently, ‘profiles’ for smart cards are included in the two relevant standards for general-
purpose operating systems (EN 726-3 and ISO/IEC 7816-4). Each profile defines a subset of
the commands and file structures of the standard in question.

A smart card that matches a certain profile must at least incorporate the defined subset
for that profile. However, the descriptions of the profiles are contained in appendices in both
standards and are designated ‘informational’ instead of normative. They thus represent only
recommendations to operating system designers. The five profiles defined in the ISO/IEC
7816-4 standard are summarized in Table 5.3.

Commercial smart card operating systems normally support various types of smart card
microcontrollers with various amounts of memory. Consequently, there are in practice also
operating system profiles that specify certain ranges of functions, depending on the chip type.
These profiles within an operating system are normally designed such that applications can
migrate relatively easily, at least from a smaller memory to a larger one, without any changes
to commands or file structures.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 275 of 1123

5.2 Fundamentals 241

Table 5.3 Brief descriptions of the smart card profiles defined in the ISO/IEC 7816-4 standard. The
listed file structures and commands represent the minimum requirement for each profile

Profile Description

M File structures: �transparent
�linear fixed

Commands: �READ BINARY, UPDATE BINARY
without implicit selection; maximum length 256 bytes
�READ RECORD, UPDATE RECORD without
implicit selection
�SELECT FILE with explicit specification of the FID
�VERIFY
�INTERNAL AUTHENTICATE

N as Profile M, with the supplementary use of a DF name for SELECT FILE

O File structures: �transparent
�linear fixed
�linear variable
�cyclic

Commands: �READ BINARY, UPDATE BINARY
without implicit selection; maximum length 256 bytes
�READ RECORD, UPDATE RECORD
without implicit selection
�APPEND RECORD
�SELECT FILE
�VERIFY
�INTERNAL AUTHENTICATE
�EXTERNAL AUTHENTICATE
�GET CHALLENGE

P File structures: � transparent
Commands: �READ BINARY, UPDATE BINARY

without implicit selection; maximum length 64 bytes
�SELECT FILE with explicit specification of the DF name
�VERIFY
�INTERNAL AUTHENTICATE

Q Data transmission: �secure messaging
File structures: �—
Commands: �GET DATA

�PUT DATA
�SELECT FILE with explicit specification of the DF name
�VERIFY
�INTERNAL AUTHENTICATE
�EXTERNAL AUTHENTICATE
�GET CHALLENGE

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 276 of 1123

242 Smart Card Operating Systems

5.3 DESIGN AND IMPLEMENTATION PRINCIPLES

As is well known, design errors first manifest themselves in the implementation stage, where
they result in costs that are several times greater than those for a better design with fewer errors.
However, errors are a fact of life in all software projects. In order to minimize such errors, it is
recommended to observe several principles during the design and implementation of a smart
card operating system.

Due to its functional specification, a smart card operating system is a secure operating system
designed to manage information and above all keep information confidential. In addition, it
is normally not possible to make any changes at all to the software once it is in use. The
first principle follows directly from these considerations. A smart card operating system must
be extremely reliable, which means it must have an extremely small number of errors. Total
elimination of errors is in reality never achievable, since even the smallest smart card operating
systems are too large for all of the capabilities of their internal processes to be completely
tested.

However, strict modular design makes a decisive contribution to the discovery and elimi-
nation of any errors that may be present at the implementation stage. This modularity, which
strongly increases the reliability of the operating system, need not necessarily result in large
increase in the volume of program code. An additional benefit of a modular design is that
any system crashes that may occur generally do not affect the system’s security as strongly
as with highly optimized program code occupying less memory. With a modular design, the
consequences of any errors remain localized, and the operating system as a whole is more
robust and more stable.

The fact that the software most often must be implemented in assembler makes it more
prone to errors. A design based on individual, fully testable modules strongly contributes to
detecting programming errors in a timely manner and limiting the scope of their effects, due
to use of defined interfaces. The layered operating system architecture shown in Figure 5.1 is
a consequence of this modular approach. The increased amount of planning and programming
effort that this requires is offset, at least financially, by the fact that testing and verification are
significantly easier. For this reason, almost all current operating systems have an architecture
essentially equivalent to the one described here.

The method usually used to design an operating system is based on the module–interface
concept. In the design process, the tasks of the operating system and the application are
broken down as much as possible into functions, and these functions are then incorporated
into modules. Once the interfaces to the modules have been exactly defined, the individual
modules can be programmed, possibly by several persons. In the ideal case, the first version
of the implementation is platform-independent, which means that it does not yet depend on
the characteristics of the microcontroller that is used. After this version has been completely
tested, the necessary adaptations to the microcontroller can be made.

Since the amount of program code for a smart card operating system is relatively small,
this very pragmatic approach can be used without any major problems. Its advantages, which
are the relatively small amount of planning that is needed and the possibility of dividing
the programming tasks among several persons, along with reusability of the program code,
yield the maximum benefits here. The drawbacks of this approach, which are the difficulty
of demonstrating the correctness of the system and the fact that changes to the system may
strongly affect many modules, must be balanced against its benefits.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 277 of 1123

5.3 Design and Implementation Principles 243

The development of software for smart card operating systems is moving away from pro-
gramming entirely in assembler. Many recent projects have been executed from the very
beginning in the high-level language C, which is relatively close to the hardware. However, the
kernel of the operating system is still based on machine-dependent assembler routines, with
all higher level modules, such as the file manager, the state machine and the command inter-
preter, being programmed in C. This significantly reduces the development time and makes the
code more portable and more reusable. Above all, using a high-level language markedly im-
proves the testability of the software. The improved, more easily understood program structure
provided by a high-level language also yields a distinctly lower error rate.

Figure 5.4 An example of the simulation of a smart card microcontroller in a typical development
environment for the C and assembler programming languages. The source code pane is at the top left,
with various processor registers being shown at the top right. A memory map of the RAM is shown at
the bottom right, and the command lines for controlling the simulator are shown at the bottom left. This
simulator allows the software developer to monitor all the functions of the microcontroller and intervene
at every stage of program execution (Source: Keil)

Unfortunately, the program code generated by a C compiler, even if it is highly optimized,
occupies 20 to 40 % more space in ROM than equivalent code in assembler for the same
functionality. In addition, the speed of a C implementation is marginally lower than an as-
sembler implementation. However, this is only critical for cryptographic algorithms and the
data transmission protocol, since the other parts of the smart card operating system software
normally do not contain time-critical processes.

The greatest problem with C programming is not necessarily the extra memory space
needed in the ROM or reduced execution speed, but the amount of RAM that is used. This

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 278 of 1123

244 Smart Card Operating Systems

type of memory is extremely limited in smart cards, and it has the further disadvantage that
it takes up the most space per bit on the chip. This is the main reason why high-level lan-
guages have up to now been used rather sparingly in programming smart card operating
systems.

Table 5.4 Some examples of typical memory usage for smart card operating system
functions implemented in assembler

Function Required program memory

CRC algorithm ≈50 bytes
File management (MF, 2 DF levels, EF and 4 EF structures) ≈1200 bytes
DES algorithm (not SPA/DPA-resistant) ≈1200 bytes
DES algorithm (SPA/DPA-resistant) ≈2000 bytes
EEPROM write ≈150 bytes
RSA algorithm (with NPU) ≈300 bytes
Data transmission protocol T = 0 ≈500 bytes
Data transmission protocol T = 1 ≈1200 bytes

Since smart cards are used in application areas in which security is a very important factor,
the card issuer and/or application supplier must have considerable trust in the integrity of
producer of the operating system. The latter has every opportunity to take unfair advantage of
the entire system by means of deliberately introduced security gaps. For example, consider an
electronic purse in a smart card whose load command has been manipulated such that under
certain conditions the purse can be reloaded without authorization. Such scenarios are the
reason why only a few operating system producers have become established up to now. The
risk that an ostensibly secure operating system contains a Trojan horse is significantly greater
if it comes from a small, unknown vendor than if it comes from one of the well-known firms
in the field.

Nevertheless, there has recently been an increasing effort to evaluate smart card operating
systems according to the ITSEC or its successor, Common Criteria, in order to achieve a higher
level of comprehensibility and security with regard to such scenarios.1 This occurs either on
the initiative of the producer or in response to the demands of major card issuers, whose
objective with such an evaluation is to achieve an increased level of confidence that there are
no significant errors in the program code. Checking for deliberately introduced Trojan horses
during an evaluation would probably be of limited use, since there is practically no limit to the
number of ways a Trojan horse can be incorporated into a program.

Up to now, the usual evaluation levels for smart card operating systems have been ITSEC
E3 and E4. Level E6 is also occasionally demanded or provided. It must be borne in mind
that an evaluation of a complete smart card operating system at the E4 level can cost around
€300,000. The obligation to repeat the evaluation after any modifications to the program code
comes on top of this, although a re-evaluation is of course less costly than an initial evaluation.
This is essentially why only relatively few smart card operating systems can boast ITSEC

1 See also Section 9.3, ‘Evaluating and Testing Software’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 279 of 1123

5.4 Completion 245

evaluations. More commonly, evaluations are performed by testing agencies without using the
ITSEC. In such cases, testing is limited to a thorough review of the design criteria, the source
code and the documentation. For example, this is a fundamental requirement for operating
systems used in German Eurocheque cards.

5.4 COMPLETION

The life cycle of a smart card operating system passes through two major stages – that before
completion and that after completion. In the stage before the card is completed, in which the
microcontroller comes from the semiconductor plant with an empty EEPROM, all parts of
the program run in ROM. No data are read from the EEPROM, nor is any code run from the
EEPROM. If an error in the ROM code that makes completion impossible is discovered at this
time, the entire batch of microcontrollers must be destroyed, since the chips are unusable.

To minimize the likelihood of such a situation, it would be possible to have the ROM
contain only a small routine for loading the EEPROM, and load the actual operating system
into the EEPROM. However, the chip area per bit is four times as much with EEPROM as with
ROM, which means that such an approach would excessively increase the cost of the chip. For
purely economic reasons, therefore, as much of the code as possible must be located in ROM.
Consequently, all of the core operating system routines, as well as substantial parts of the rest
of the operating system, are stored completely in the ROM. Only a few jumps to the EEPROM
are provided for use in the completed version.

Some operating systems run completely in ROM even after completion, with only data
being stored in the EEPROM, in order to keep the size of the relatively expensive EEPROM
as small as possible. Of course, minimizing the area used by the memory comes at the price
of major limitations on the flexibility of the operating system.

In the completion process, the code in the ROM is adapted to the actual application. The
ROM code can be regarded as a large library that is interconnected and expanded to form a func-
tional application by the code in the EEPROM. In addition, almost all operating systems allow
program code for additional commands or special cryptographic algorithms to be loaded into
the EEPROM during completion. This has nothing to do with any executable files that may be
present, since the contents of such files can be downloaded at a later time, such as when the card
is personalized. The routines that are entered into the card during completion are completely
integrated into the operating system and can be utilized directly by the operating system.

In order to complete a smart card operating system in the EEPROM, unilateral or mutual
authentication between the smart card and the outside world is necessary. There are many
different methods that can be used for this. Figure 5.6 shows a typical example that uses
a simple but relatively flexible approach. The producer of the smart card operating system
incorporates a secret value in the ROM code for the microcontroller, which is thus specific
to this ROM version of the operating system. During chip fabrication, the semiconductor
manufacturer writes a secret key to the EEPROM, which may have a different value for each
fabrication batch. After this, if the ROM and EEPROM keys are known, a cryptographic
algorithm can be used to compute an authentication value for smart card completion. The
operating system can be completed only after successful authentication.

This method allows batch-specific authentication to be performed. For instance, if an oper-
ating system producer provides only one authentication value to a card manufacturer, the latter

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 280 of 1123

246 Smart Card Operating Systems

ROM

...

...

...

...

EEPROM

routine n

jump
table

routine n+1

routine n+2

Figure 5.5 Routines in ROM can be interconnected by a link table that is stored in the EEPROM when
the operating system is completed

EEPROM key

ROM key

chip number

authentication value 1

authentication value 2

Figure 5.6 A possible procedure for dividing and deriving the secret key for authentication prior to
completion of the smart card operating system. Authentication value 1 is specific to a batch of smart card
microcontrollers, while authentication value 2 is different for each microcontroller. Triple DES or AES
could be used as the cryptographic algorithm

can only use it to complete one particular batch of smart card microcontrollers. The advantage
of this method is that the producer of the operating system only has to have one ROM mask,
instead of generating a different version of the ROM for each card manufacturer.

This method can be further refined. For instance, a chip-specific authentication value can
be generated using the microcontroller serial number. Not only does this increase the level of
security if the chips fall into the wrong hands on their way to being completed, it also allows
the producer of the operating system to control the completion process at the individual chip
level. With such an approach, the completion agent receives a list of authentication values and
can only complete the operating system in the corresponding microcontrollers. This method,
or a similar method, is commonly used in practice.

Conceivably, a special smart card containing a function for reading out the contents of
the memory could be smuggled into the smart card manufacturing process and be completed,
initialized and personalized, after which the secret data loaded into memory during these steps
could be read out. Although this would be rather difficult in a typical smart card manufacturing
process, due to the strong security measures that are used, it is certainly not possible to fully
exclude such a scenario. In order to provide inherent defense against this conceivable form of

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 281 of 1123

5.4 Completion 247

attack, the authenticity of the microcontroller can be verified prior to completion. This can be
done in a large variety of manners, one of which is briefly illustrated in Figure 5.7.

ROM

X, card ID
X

IFD (terminal)

RND

ICC (smart card)

K RND

X'K, RND, ROM

K = f(card ID, ...)

X = ?X'

smart card
authentic

smart card
not authentic

Figure 5.7 A possible method for ensuring that the ROM portion of a smart card operating system
is authentic. This sort of verification is best performed prior to completing the operating system in
EEPROM, in order to securely avoid loading genuine completion data into a counterfeit card

This method requires an individual key to be stored in each microcontroller by the semicon-
ductor manufacturer. Prior to completion, a random number is sent to the smart card in order
to prevent playback attacks. This random number, the individual card key and the content of
the ROM are then converted into a hash value by a hash function in the smart card, and this
hash value is conveyed to the outside world along with a card identifier. There the card-specific
key can be computed using the card identifier. Since the ROM content and the random number
are known to the outside world, the hash computation can be reproduced in the outside world,
and the result can be compared with the hash value received from the smart card. If the two
values match, the smart card is authentic. Although this method is simple, it is without doubt
sufficiently effective. Certain aspects can be further refined, but our primary objective here is
to present a conceivable approach to verifying authenticity prior to completion.

Hardware recognition

Most relatively recent operating systems can be used with microcontrollers having various
amounts of EEPROM, although the size of the ROM and RAM are not allowed to vary. This
allows the card issuer to always use the least expensive version of the microcontroller that
meets his needs. For example, he could start with an inexpensive single-application card with
1 kB of EEPROM and then migrate to more expensive microcontrollers with 4, 16, 32 or 64 kB

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 282 of 1123

248 Smart Card Operating Systems

of EEPROM as needed for his multiapplication cards. To the extent that the microcontroller
manufacturer supports such a range of chips, the smart card operating system must also have
matching capabilities. This means that it must be able to automatically recognize the size of the
EEPROM, and consequently set up its internal pointer structures for maximum free memory,
file sizes and similar operational parameters. The technical implementation of this involves
using an operating system routine to read the manufacturer’s fabrication data and calculate
the size of the available EEPROM from this data. This technique can only handle variable
EEPROM sizes; current smart card operating systems cannot adapt themselves to various sizes
of ROM or RAM.

The main advantage of this hardware recognition capability is that the producer of the smart
card operating system does not have to match the program code to the size of the EEPROM.
This eliminates a possible source of errors, and above all it means that the operating system
does not have to be re-evaluated for every new hardware platform. The hardware recognition
capability of modern operating systems saves considerable time in software development and
can thus reduce product development time by several weeks.

Soft masks and hard masks

The terms ‘soft mask’ and ‘hard mask’ are often used in connection with field trials and smart
card operating systems. Strictly speaking, both terms are nonsensical from a purely logical
point of view, since a ROM mask – which means the program code located in the ROM – is
always unalterable and thus ‘hard’. In the jargon of the smart card world, however, the term
‘soft mask’ means something only roughly similar to a ROM mask. This term is used when
part or all of the program code for a smart card operating system, or the commands for an
application, is located in the EEPROM. This means that the code can be altered relatively
easily, without the cost and time involved in generating a new ROM mask. This type of mask
is thus alterable, or ‘soft’. Soft masks are primarily used in testing and field trials, since they
allow errors to be corrected and programs to be modified quickly and at minimal cost. The
disadvantage of using a soft mask is that it requires using chips with large EEPROMs, which
are more expensive than equivalent chips with program code in ROM. However, since field
trials normally do not involve issuing millions of cards, the increased cost of using chips with
large EEPROMs is entirely acceptable.

Once the test or field trial using a soft mask has been completed and the program code in the
EEPROM is operational without any further modifications, it can be moved from the EEPROM
to the ROM by generating a true ROM mask. This can be done with relatively little effort, and
the result is called a ‘hard mask’, since it cannot be readily altered. Strictly speaking, the only
advantage of a hard mask is that a given amount of memory occupies significantly less chip
area in ROM than in EEPROM, thus allowing a smaller and less expensive microcontroller to
be used for the same amount of program code.

This two-stage process using soft and hard masks for new smart card applications also
provides flexibility and allows substantial changes to the program code to be made even shortly
before the cards are issued to users. With a traditional process using a pure ROM mask, it is
not possible to make significant changes to the program code once the mask has been given
to the manufacturer. Since the two-stage process is superior to the traditional process in this
regard, nowadays a soft mask is almost always used initially when introducing a new smart

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 283 of 1123

5.5 Memory Organization 249

card application. Migration to a hard mask occurs only after any necessary modifications have
been made to the program code.

Operating system APIs

Originally, smart card operating systems did not allow third-party software to be loaded into
the card and executed as needed. Consequently, at that time operating systems did not have
published programming interfaces that could be used by third parties to call operating system
functions. More recent developments in smart card operating systems, such as MULTOS
and operating systems that support Java (Java Card), allow third parties to load their own
program code into smart cards. In order to eliminate the need to again program routines
already present in the operating system, such operating systems include carefully conceived
application programming interfaces (APIs) that provide access to the most important functions
of the operating system. Naturally, practically all operating systems have their own internal
APIs, but these APIs are not designed for external use and are usually confidential.

As an exception to the usual situation in the smart card world, there are no general standards
relating to APIs for smart card operating systems. Instead, two industry standards have come
into predominant use. One of them consists of the various Java Card APIs, while the other is
the Multos API. The APIs described in the related specifications provide access to the essential
functions of the operating system.2 These functions include access to the file manager, calls
to the available cryptographic functions and, naturally, transmitting and receiving data. The
only essential difference between any of the well-known PC operating systems and a smart
card operating system with a complete operating system API and provision for downloaded
program code is the amount of memory available to the operating system.

5.5 MEMORY ORGANIZATION

The three different types of memory used in smart card microcontrollers have completely
different properties. ROM can only be programmed using a mask during manufacturing, and
it is all programmed at the same time. Its content is static for the life of the chip. Given
the construction of ROM, the chance of an undesired change in the content of the ROM is
practically zero.

In contrast to ROM, RAM retains its content only as long as power is applied to the smart
card. A power failure causes total loss of all data stored in the RAM. However, data can be
written to RAM at the full operating speed of the processor, and RAM can be erased an unlimited
number of times. EEPROM, by contrast, can retain data without external power. However, it
has three disadvantages, which are its limited lifetime, the fact that it is divided into pages and
its relatively long write and erase times (around 1 ms/byte). With the exception of the interrupt
vectors, which are prescribed by the microprocessor, the operating system program code stored
in ROM does not have to comply with any particular structure. The individual routines can thus
be linked to each other in any desired sequence, although an attempt is made to limit the length

2 See also Section 5.14.1, ‘Java Card’, and Section 5.14.2, ‘Multos’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 284 of 1123

250 Smart Card Operating Systems

of jumps in order to save memory space. What is important is that the ROM is protected by
error detection codes (EDCs), since it is certainly possible for errors to occasionally occur in
the ROM. A scratch in the ROM region of the microcontroller, for example, or a fracture during
the wire bonding process, can cause the data in the ROM to be incorrect. Interestingly enough,
this does not necessarily mean that the operating system can no longer function; instead, it is
certainly possible that only specific routines will run incorrectly. In order to prevent problems
that might arise in such situations, the ROM is checked when the operating system starts up to
verify that it is fundamentally free of errors.

Figure 5.8 shows the usual memory organization of a 256-byte RAM. It is divided into
regions for the registers, the stack, general variables, workspace for cryptographic algorithms
and the I/O buffer. If an I/O buffer of 256 bytes is required, for example, or if additional variables
must be stored in RAM, the limits of the available memory can be reached very quickly. This
problem is solved by having workspace in the EEPROM, which is thus used like RAM. The
disadvantage of this is that it takes around 10,000 times as long to write data to EEPROM as to
write data to RAM. An additional disadvantage is the limited lifetime of EEPROM cells, since
unlike RAM cells, they cannot be written an unlimited number of times. However, moving the
content of the RAM to the EEPROM is often the only solution, such as when an I/O buffer
is needed that is larger than the entire amount of available RAM. For comparison, Figure 5.8
also shows the typical organization of a 6-kB RAM in a high-performance telecommunications
smart card.

register (10 bytes)

stack (26 bytes)

variables (50 bytes)

stack (2000 bytes)

logical channels (120 bytes)

OTA (840 bytes)

RSA algorithm (700 bytes)
RSA key generator (200 bytes)

triple DES (90 bytes)
GSM 11.11 variables (600 bytes)

GSM 11.14 variables (340 bytes)
WIM variables (500 bytes)

microbrowser variables (110 bytes)
I/O buffer (500 bytes)

cryptographic
algorithms
(70 bytes)

I/O buffer
(100 bytes)

Figure 5.8 The diagram on the left shows a typical partitioning of a 256-byte RAM for a simple
smart card operating system programmed in assembler. The diagram on the right shows the memory
organization of a 6-kB RAM for a high-performance telecommunications smart card whose operating
system has been generated using the C language

The organization of the data stored in EEPROM is much more complicated and intricate than
either of the other two types of memory. With modern operating systems, the basic partitioning
of the EEPROM is essentially as follows (see Figure 5.9). First, many types of microcontrollers
have a region at the beginning of the EEPROM with special hardware protection that can be
used to store special manufacturing data, such as a number that is only used once and is
thus unique to the chip. Many semiconductor manufacturers also record the chip type and the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 285 of 1123

5.5 Memory Organization 251

amount of EEPROM available to the operating system in this region. This region is usually
designed for write once, read multiple (WORM) access, which means that it can be written
only once, after which it can only be read. Technically, this is usually achieved by using regular
EEPROM cells that have been modified so that they cannot be electrically erased.

Table 5.5 Examples of manufacturing data written by some
semiconductor manufacturers to a WORM region in the EEPROM during
chip fabrication. The first five manufacturing data elements, taken together,
yield a unique 8-bit chip number. The major advantage of a chip number
generated in this manner is that it does not require highly accurate time data
synchronized over several production locations, but only data available to
all production machines in every manufacturing facility

Data element Size

Semiconductor manufacturer 1 byte
Production facility 1 byte
Semiconductor processing batch number 2 bytes
X coordinate on the wafer 2 bytes
Y coordinate on the wafer 2 bytes
Microcontroller type 2 bytes
Optional hardware components 6 bytes
RAM capacity 2 bytes
EEPROM capacity 3 bytes
ROM capacity 3 bytes

Above this region, which usually has a size of 16 to 32 bytes, come the tables and pointers
for the operating system, which are loaded into the EEPROM when the card is completed. The
combination of these tables and pointers and the routines stored in ROM yields the complete
smart card operating system. In order to ensure that the operating system can always be used
in a secure and stable state, this region is protected by an error detection code (EDC) that is re-
computed and checked before the first EEPROM access or even before every EEPROM access.
If a memory error is detected during EDC verification, the affected portion of the EEPROM
must subsequently not be used, since this means that proper operation of the operating system
cannot be assured.

Above the protected portion of the operating system, there is a region that contains additional
application program code. If need be, this region may also be protected against alteration by
using a checksum. Application-specific commands or algorithms that should not be located in
the ROM or that are too large to fit in the ROM are placed in this region.

The next region contains all of the file structures, or in other words, the entire externally
visible file tree. This region is not protected as a whole by a checksum, but instead usually
has strong file-based protection. The internal structure of this region is shown in more detail
in Figure 5.9.

At the top of the EEPROM, there is an optional free memory region that has its own
memory manager. However, the free memory is often assigned to individual applications in
the file region, where it can be used within the applications for the creation of new files.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 286 of 1123

252 Smart Card Operating Systems

manufacturing data

EDC

EDC

operating system

application program

file region

free memory

Figure 5.9 An example of EEPROM partitioning for a smart card operating system

Otherwise it belongs to the general file region and is available for all new applications that are
loaded in their entirety.

DF1 region

MF region

DF2 region

file memory

file memory

file memory

free memory

free memory

free memory

Figure 5.10 Sample partitioning of the file region of a smart card operating system that supports
several independent and physically separated applications. Although this approach yields extremely
rigid isolation of the individual applications, it is presently no longer used in operating systems with
dynamic file management, since it is too inflexible with respect to free memory management

5.6 SMART CARD FILES

In addition to containing mechanisms for identification and authentication, smart cards are
primarily data storage media. They have a decisive advantage relative to other storage media,
such as diskettes, in that access to the data can be tied to certain conditions.

The first smart cards had only more or less directly addressable memory regions, which
could be used for writing or reading data. The data were accessed by specifying physical

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 287 of 1123

5.6 Smart Card Files 253

memory addresses. Nowadays, all smart cards have complete hierarchical file management
systems with symbolic, hardware-independent addressing.

Naturally, these file management systems have certain features that are specific to smart
cards. The most obvious feature is that there is no man–machine interface. All files are ad-
dressed using hexadecimal codes, and all commands are strictly based on this addressing,
since here communication only takes place between two computers. Equally typical of these
file management systems is that they are designed to use a small amount of memory. Every
redundant byte is avoided if possible. Since the ‘user’ in the terminal is a computer, this does
not present any problems.

There is usually no form of sophisticated memory management, which also helps to keep
memory usage as low as possible. If a file is deleted – and only a few operating systems have
this capability – the space released does not necessarily become available for use by a newly
created file. Normally, all files are created and loaded into the smart card when it is initialized
or personalized. After this, changes to file contents are limited.

Naturally, the characteristics of the memory that is used also affect the nature of the file
management system. The memory pages in an EEPROM cannot be written or erased an
unlimited number of times, as can the hard disk of a PC. Consequently, there are special file
attributes that allow information to be stored redundantly so it can be corrected if necessary.

file created

deactivate
file

create file
(option 3)

terminate
file delete file

terminate
file

terminate
card

file
non-existent

file
non-existent

create file
(option 2)

create file
(option 1)

activate
file

activate
file

activate
file

file initialized

file terminated

card terminated

file operational
(activated)

file operational
(deactivated)

Figure 5.11 States and state transitions in the full life cycle of files in a smart card operating system
compliant with ISO/IEC 7816-9. The various states following the creation of a file result from the possible
parameters

Internal structures of files

Modern file management systems for smart cards have an object-oriented structure. This means
that all information about a file is stored in the file itself. A further consequence of this principle
is that a file must always be selected before any action can be performed. Files in such object-
oriented systems are thus always divided into two parts. The first part, called the file header,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 288 of 1123

254 Smart Card Operating Systems

contains information about the layout and structure of the file and its access conditions. The
modifiable user data are stored in the second part, the file body, which is linked to the file
header by a pointer.

header

file

administrative data

user databody

Figure 5.12 The internal structure of a file for a smart card file management system

In addition to providing improved data structuring, this scheme also has the advantage of
providing better physical security for data items. The page-oriented EEPROM containing all
the files allows only a limited number of write/erase cycles. The file header and the file body are
always located on separate memory pages. The header, which is normally rarely altered, stores
all of the access conditions. A write or erase error involving the file body thus cannot affect
these conditions. If the header and the file body were located in the same page of memory, it
would be possible to utilize deliberately generated write errors to alter the access conditions
such that confidential information could be read from the file body.

Some smart card operating systems offer the option of addressing a file body from two
different headers. These two headers are usually located in DFs belonging to two different
applications. This allows data to be shared between two applications in a technically elegant
manner. In this case, it is important for the access conditions specified in the two headers to
be identical.

5.6.1 File types

The structure of a smart card file system, as specified in the ISO/IEC 7816-4 standard, is similar
to that of a DOS or Unix system. The major difference is that smart cards do not contain any
application-specific files, such as special types of files for a particular word processor. Only
the standard file structures may be used in smart cards.

There are basically two categories of files for file smart cards. The first category is directory
files, which are called ‘dedicated files’ (DFs). The second category consists of the files that
hold the actual user data, which are called ‘elementary files’ (EFs). A DF acts as a sort of folder
containing other, lower level DFs or EFs that logically belong together. EFs can be classified
into those for the external world (working EFs) and those for the operating system (internal
EFs). The various file types are described below, and their relationships are illustrated in
Figure 5.14.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 289 of 1123

5.6 Smart Card Files 255

File tree according to ISO/IEC 7816-4

directories files for data

EF (elementary file)

internal EF

working EF

MF (master file)
DF (dedicated file)

Figure 5.13 Classification of smart card file structures according to ISO/IEC 7816-4

EF

EF

EF

MF

DF

DF

DF

DF

...

...

...

...
...

...

DF level 1 2 3

Figure 5.14 The various types of files in a smart card file tree

MF

The root directory is called the ‘master file’ (MF). It is implicitly selected after the smart card
is reset. The MF contains all other directories and all files. It is a special type of DF, and it
represents the entire extent of the smart card memory available for the file region. A master
file must be present in every smart card.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 290 of 1123

256 Smart Card Operating Systems

DF

Dedicated files (DFs) may exist below the MF as needed. The term ‘directory files’ is frequently
used for these files, although this does not comply with the official definition of the abbreviation
‘DF’ in the ISO/IEC 7816-4 standard. A DF is a directory in which other files (DFs and EFs)
can be grouped together. A DF may contain other DFs. In principle, there is no limit on the
number of levels of DFs. However, it is rare for there to be more than two levels of DFs under
the MF, due to the limited amount of memory in smart cards.

With the specification for the UICC (TS 102.221), a special type of DF was introduced
with the name ‘application dedicated file’ (ADF). This is a DF for applications, and it can be
selected using an appropriate mechanism (a SELECT command with an AID), but it is not
located below the MF. An ADF can thus be considered to be a type of MF.

EF

The user data needed for an application are located in EFs. ‘EF’ is the abbreviation of ‘ele-
mentary file’. EFs may be located directly below the MF or below a DF. To allow data to be
stored in a minimum amount of memory and logically optimized data structures, an EF always
has an internal file structure. This is the main difference between EFs and files in a PC, whose
internal data structures are determined by applications (such as word processors) rather than
by the operating system. EFs are classified into working EFs and internal EFs.

Working EFs

All application data that must be read by or written from the terminal, or in other words, all
data that are intended for the external world (as seen by the smart card), are located in working
EFs. The data contained in such files are not used by the operating system.

Internal EFs

In addition to EFs for applications, there are also internal system files that store data for the
operating system itself, data for the execution of an application, secret keys and program code.
Access to these data is specially protected by the operating system. According to ISO/IEC
7816-4, these system files can be integrated into the file management system in two different
ways. The first option is to store these files in the relevant application DFs as invisible EFs.
Such files cannot be selected, and they are managed fully transparently by the smart card
operating system in a manner similar to how resource files are used in the Macintosh OS.
With the second option, these system files are assigned regular file names (in other words,
FIDs) and can be selected using these names. This is essentially the same principle as is
used for file management under DOS. Each of these two approaches has an equal number
of advantages and disadvantages, with both providing the same functionality in somewhat
different manners.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 291 of 1123

5.6 Smart Card Files 257

Application files

According to convention, all files containing user data for a particular application (the EFs
for that application) are always grouped together in a single DF. This produces a clear and
easily understood structure, and it makes it easy to enter a new application into a smart card
by creating the appropriate DF.

Since the MF is a special sort of DF, it goes without saying that in a single-application smart
card, all the application files can be placed directly under the MF. In a typical single-application
smart card, therefore, all the EFs can be located either directly under the MF or in a solitary
DF. Smart cards with several applications have a corresponding number of DFs, in which the
EFs belonging to the applications are located.

Additional DFs can be placed within such application DFs. For example, a DF placed
directly under the MF could be dedicated to a ‘Traffic Control’ application. An additional level
of DFs within the application DF could contain the files for the languages supported, such as
‘English’ and ‘Deutsch’.

EF EF

MF

...

EF EF

DF

MF

... EF EF

DF DF

MF

... ...

...

Figure 5.15 Differences between the file structure of a smart card with only one application and the file
structure of a smart card with several applications. The two reasonable arrangements for cards with only
one application are shown on the left and in the middle. The arrangement for a smart card with several
applications is shown on the right

5.6.2 File names

In modern smart card operating systems, files are without exception addressed by logical names,
rather than being accessed using direct physical addresses. The latter approach was perfectly
normal in the smart card world earlier on, and there are a few smart card microcontrollers
that still use it. With simple applications that occupy precisely defined memory regions, direct
physical access can save a lot of memory space. It also does not result in any loss of user-
friendliness, since all files are accessed by the computer in the terminal. However, direct
physical access does not in any way match the criteria of modern software design, and it also
creates major problems with regard to software enhancements and smart card microcontrollers
with differing address spaces.

All schemes that use logical file names are significantly better, and above all much easier
to extend. Without question, it can be assumed that in a few years file addressing using logical

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 292 of 1123

258 Smart Card Operating Systems

File names according to ISO/IEC 7816-4

MF (master file) EF (elementary file)

Short FID

FID (file identifier)

FID (file identifier)

DF (dedicated file)

FID (file identifier)

DF name
(may include an AID)

Figure 5.16 Classification chart of smart card operating system file names per ISO/IEC 7816-4

names will be the only type of file addressing used in smart cards with microcontrollers. With
memory cards, on the other hand, physical file addressing will continue to be used for the
foreseeable future.

File identifier (FID)

The system described here is based on the ISO/IEC 7816-4 standard, and it is in principle
reflected in all other international smart card standards. Every file, including directory files,
has a 2-byte file identifier (FID), which can be used to select the file.

For historical reasons, the FID of the MF is'3F00'. This FID is reserved for the MF within
the entire logical address space. The logical file name'FFFF'is reserved for future applications,
and may not be used. There are also other FIDs that are reserved by the ISO standard and by
other standards. They are listed in Table 5.6.

Table 5.6 FIDs reserved by the most important smart card standards

FID Name and purpose Standard

'2F00' This FID is reserved for EFDIR (directory) file, which is used to ISO/IEC 7816-4
store application identifiers (AIDs) and the path names of the
associated applications.

'2F01' This FID is reserved for EFATR, which contains extensions ISO/IEC 7816-4
to the ATR.

'3F00' MF is the root directory for all files in a smart card. ISO/IEC 7816-4,
GSM 11.11,
TS 102.221,
EMV

'3FFF' This FID is reserved for file selection using a path name. ISO/IEC 7816-4
'FFFF' This FID is reserved for future use by ISO/IEC. ISO/IEC 7816-4

The GSM application is a typical example of the fact that various groups of FIDs cannot
be freely used. In the GSM 11.11 specification, the more significant byte is determined by
the location of the file within the directory structure (file tree). This coding has developed
historically and originates from the first French smart cards. GSM DFs have a value of'7F'for

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 293 of 1123

5.6 Smart Card Files 259

the first (more significant) byte. The FIDs of EFs located directly below the MF have'2F'as
the first byte, and the FIDs of EFs located underneath a DF start with'6F'. The less significant
bytes are numbered sequentially. This specification applies only to the GSM application and
is not a general standard. In other situations, the full 2-byte address region of the FID can be
fully exploited and is not subject to any restrictions.

EFDIR has an FID of'2F00'. It has a linear fixed structure and consists of at least one record.
Each record is in turn a constructed data object containing data about a particular application
in the smart card. This typically consists of the AID and a textual designation of the application
in question. EFDIR can also contain additional data, such as the path to the application. The
purpose of EFDIR is to display the applications present in a smart card to a terminal in a
standardized format.

Table 5.7 Example of a typical structure of an EFDIR file per ISO/IEC 7816-4 and ISO/IEC 7816-5, as
specified for the UICC

EFDIR Directory EF

Description: This file contains information about the applications present in a smart card.

File: FID ='2F00'; structure: linear fixed, file size: n bytes;
access: READ: always, UPDATE: application-dependent, but generally limited
to the administrator

Record coding: byte 1: '61'(‘application template’ tag)
byte 2: length of the application template (3–127)
byte 3: '4F'(AID tag)
byte 4: length of the AID (1–16)
byte 5– n: AID
byte n + 1: '50'(‘application label’ tag)
byte n + 2: length of the application label
byte n + 3– m: application label in ASCII (1–16)

Example: '61 0F 4F 05 D2 76 00 00 60 50 05 52 61 6E 6B 6C'
'61' ⇒ ‘application template’ tag
'0F' ⇒ length of the application template = 15 bytes
'4F' ⇒ AID tag
'05' ⇒ length of the AID = 5 bytes
'D2 76 00 00 60' ⇒ AID
'4F' ⇒ ‘application label’ tag
'05' ⇒ length of the application label = 5 bytes
'52 61 6E 6B 6C' ⇒ application label =''Rankl''

The FIDs in the file tree must be chosen such that the files can be unambiguously selected.
It is thus prohibited for two different files within the same DF to have the same FID. A DF
may also not have the same FID as an EF located directly underneath it, since this would mean
that the operating system would have to decide whether to select the DF first or the EF. The

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 294 of 1123

260 Smart Card Operating Systems

following rules apply to the selection of unique FIDs:

Rule 1: all DFs and EFs within a single directory must have different FIDs.
Rule 2: nested directories (DFs) may not have the same FIDs.
Rule 3: an EF within a directory (MF or DF) may not have the same FID as the next

higher or next lower directory.

Short file identifier (SFI)

Short file identifiers may be used for implicit file selection in the immediate context of a
command. Short file identifiers are optional for EFs, so they do not necessarily have to be
assigned. An SFI is passed as a command parameter for implicit selection of a file and is
therefore only 5 bits long. It can thus take on values between 1 and 30, since a short file
identifier of'0'addresses the current EF.

DF name

A DF consists of a collection of files used by an individual application. A DF is a sort of
directory or folder, and it can contain both EFs and other DFs. In the future, the address space
provided by the 2-byte FID could become too small. Consequently, each DF has a ‘DF name’
in addition to its FID. As specified in the ISO/IEC 7816-4 standard, the DF name has a length
of 1 to 16 bytes. The DF name provides sufficient address space to allow every smart card
application to be unambiguously identified throughout the world. Since DF names are freely
chosen, it is possible for two different DFs to sometimes have the same DF name. Consequently,
DF names are normally only used together with AIDs (application identifiers), as defined in the
ISO/IEC 7816-5 standard. An AID may have a length between 5 and 16 bytes and is composed
of two data elements defined by ISO. The AID is thus a subset of the DF name.

5 bytes
(mandatory)

0 ... 11 bytes
(optional)

5 ... 16 bytes
0 ... 16 bytes

RID PIX

AID
DF name

Figure 5.17 The DF name in relationship to the AID, which consists of the RID (registered identifier)
and the PIX (proprietary application identifier extension)

Structure and coding of the application identifier (AID)

The application identifier (AID) consists of two data elements. The first data element is the
registered identifier (RID), which has a fixed length of 5 bytes. It is assigned by a national or
international registration authority and includes a country code, an application category and
a number that refers to the application provider. This numerical coding means that each RID

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 295 of 1123

5.6 Smart Card Files 261

is assigned only once, so that it can be used worldwide to identify a particular application.
Unfortunately, the lists of assigned RIDs are confidential, so they cannot be published. However,
some examples of RIDs that have been made public can be found in Section 16.8, ‘Selected
RIDs’. Addresses of national and international RID registration authorities are located in
Section 16.7, ‘Registration Authorities for RIDs’.

If necessary, an application provider can place a proprietary application identifier extension
(PIX) after the RID. The PIX, which may be up to 11 bytes long, is the optional second part
of the AID. It may consist of a serial number and a version number, for example, which could
be used for naming the application.

Table 5.8 Coding of the 5-byte (10-digit) registered identifier (RID)

RID Meaning

D1 D2–D4 D5–D10

X — — Registration category: 'A'–international registration
'D'–national registration

— X — Country code; coding per ISO 3166
— — X Number of the application provider, which is assigned by a

national or international registration authority

Table 5.9 Example of a nationally registered RID that complies with the ISO/IEC 7816-5
standard (in this case, the RID of Wolfgang Rankl)

RID Meaning

D1 D2–D4 D5–D10

‘D’ . . . — The registration category is ‘national’
. . . '276' — The ISO 3166 country code for Germany
. '00 00 60' Application provider number assigned by the national

registration authority

5.6.3 File selection

Object-oriented file management systems require that a file be selected before it can be ac-
cessed. File selection informs the operating system which file will subsequently be addressed.
Successful selection of a new file causes the previous selection to become invalid. This means
that only one file can be selected at any given time. Since FIDs may be freely chosen, certain
limitations must be imposed on the free addressability of files. Otherwise, it could easily hap-
pen that several files with the same FID would be available in the file tree, and the operating
system would then have to decide which file was meant. In order to avoid such ambiguity and
thus be independent of the search algorithm used by the operating system file manager, the
selection options for files are intentionally restricted.

Things would be different if all the FIDs used in the file tree were unique. In this case,
it would be easy to select the desired file across several directory boundaries. However, this

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 296 of 1123

262 Smart Card Operating Systems

situation is exactly what cannot always be guaranteed. Consequently, selection is only possible
within certain boundaries, since otherwise unambiguous selection of the desired file cannot be
assured. The MF, however, can always be selected from anywhere within the file tree, since its
FID is unique within the file tree. Selecting a DF located in the first level below the MF is only
possible from a DF at the same level or from the MF. Figure 5.18 shows examples of various
types of allowed and prohibited selections.

EF EF

DFDF
EF EF

DFDF

EF EF

MF

EF EF

DFDF
EF EF

DFDF

EF EF

MF

Figure 5.18 Examples of allowed selection options (left) and prohibited selection options (right) when
a FID or DF name is used. Only direct selection without the path name is illustrated

Selecting directories (MF and DF)

The MF can be selected from anywhere within the file tree, either using a special selection
option of the file selection command or by means of its FID ('3F00'), which only occurs once
within the file tree. When the MF is selected, the selection state that exists immediately after
the smart card is reset is restored, since the MF is implicitly selected by the operating system
after a reset. DFs can be selected either via their FIDs or via their DF names, which contain
registered and thus unique AIDs.

Explicit EF selection

There are basically two methods available for selecting EFs. With explicit selection, a specific
command (SELECT FILE) is sent to the smart card before the actual access to the file takes
place. This command includes a parameter holding the 2-byte FID of the file to be selected.
After the file has been selected, it can be accessed by all subsequent commands.

Implicit EF selection

Implicit selection is the name given to the process in which a file is selected using a short file
identifier passed as a parameter of a command that actually accesses the file. A number of
restrictions apply to the use of implicit EF selection. It only works for EFs within the currently
selected DF or MF. It is thus not possible to implicitly select a file across directory boundaries.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 297 of 1123

5.6 Smart Card Files 263

In addition, implicit selection is possible only with certain access commands that allow a short
file identifier to be passed as a parameter (such as READ BINARY, UPDATE BINARY, READ
RECORD and UPATE RECORD).

The major advantage of implicit selection is that it allows a file to be selected and accessed
with a single command. This makes a SELECT FILE command unnecessary in many cases,
which simplifies the sequence of commands. Due to the reduced need for communications,
using implicit selection allows distinctly higher processing speeds to be achieved.

File selection using a path name

In addition to direct selection, the ISO/IEC standard allows two supplementary methods for
explicit file selection using a path name. In the first method, the path from the currently selected
file to the target file is passed to the operating system. The second method uses the path from
the MF to the target file. Both methods are implemented in many smart card operating systems.
Using these additional capabilities results in a measurable reduction in the time required to
process command sequences.

5.6.4 EF file structures

In contrast to files in Windows systems, EFs in smart cards have internal structures. The
structure can be individually selected for each EF according to the intended purpose of the
file. This has major advantages for the outside world, since the internal structure allows data
elements to be constructed such that they can be accessed very quickly and effectively.

Managing these data structures requires a significant amount of program code in the smart
card. This is why the data structures are not all mutually symmetrical, but instead occur only
in the forms often needed in practice.

EF structures

transparent special

database

data object

sequence control

transparent

execute

record-oriented

linear fixed

linear variable

cyclic

Figure 5.19 Classification of EF file structures for smart card operating systems

Transparent file structure

The transparent data structure is often referred to as a binary or amorphous structure; in other
words, a transparent file has no internal structure. The data contained in the file can be accessed
for reading or writing in bytes or blocks using an offset value. The READ BINARY, WRITE
BINARY and UPDATE BINARY commands are used for this purpose.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 298 of 1123

264 Smart Card Operating Systems

The minimum size of a file with a transparent structure is one byte. No maximum size is
explicitly specified in any standard. However, the maximum number of bytes that can be read
in the short format (255) or the long format (65,536), combined with the maximum offset
value (32,767), allows a maximum size of 65,791 bytes or 98,303 bytes, respectively. With the
memory capacities of contemporary smart cards, these maximum sizes are slowly slipping into
the realm of what is feasible, although in current practice transparent files are rarely larger than
a few hundred bytes. Figure 5.20 illustrates the organization of the transparent file structure,
and Figure 5.21 illustrates how six bytes can be accessed for reading from a 12-byte long file
using an offset of 4 bytes.

1 2 3 4 5 n

byte number

Figure 5.20 Transparent file structure

1 2 3 4 5 6 7 8 9 10

byte number

offset

data

Figure 5.21 Reading 6 bytes from a transparent file using an offset of 4 bytes

A transparent file structure is primarily used for very small amounts of data or for data
having no internal structure. An example of a typical use would be storing a digitized passport
photograph that could be read from the smart card by the terminal. However, this linear, one-
dimensional data structure can also be used to simulate other data structures if necessary. Of
course, in such cases the terminal access takes a more complex form, since parameters related
to the structure of the file must be stored inside the file itself.

Linear fixed file structure

The linear fixed data structure is based on chaining fixed-length records. A record consists of a
series of individual bytes. Individual records within this data structure can be freely accessed.
The smallest unit of access is one record, which means that it is not possible to access only part
of a record. The commands READ RECORD, WRITE RECORD and UPDATE RECORD
can be used for reading and writing within this data structure.

The first record is always numbered record 1. The largest allowed record number is'FE',
or 254 in decimal notation, since'FF' is reserved for future extensions. The length of a single
record is determined by the access commands, and can range from 1 to 254 bytes, but all
records in the file must have the same length. Figure 5.22 illustrates the organization of the
linear fixed file structure.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 299 of 1123

5.6 Smart Card Files 265

A typical application for this data structure is a telephone directory, in which the name
comes first, followed by the associated telephone number in a fixed position.

record
number

1

1 2 3 4 5 n

2

3

...

...

...

m

byte number

Figure 5.22 Linear fixed file structure

Linear variable file structure

The fact that all records in a linear fixed file structure have the same length means that memory
space is often wasted when this structure is used, since many record-oriented data items
have variable lengths. One example is the names in a telephone directory. The challenge of
minimizing the amount of memory space is met by the linear variable structure, in which each
record can have an individually defined length. The unavoidable consequence of this is that
each record must have a supplementary field that contains information about its length. This
structure is otherwise similar to the linear fixed structure, as can be seen from Figure 5.23.

record
number

1

1 2 3 4 5 n

2

3

...

...

...

m

byte number

Figure 5.23 Linear variable file structure

The first record is numbered 1, and the maximum file length is 254 records. The length
of an individual record is determined by the access commands, and can range from 1 to 254
bytes. The access commands for this structure are the same as for the linear fixed structure,
namely READ RECORD, WRITE RECORD and UPDATE RECORD.

This file structure is preferably used when records with highly variable lengths are to be
stored and the use of smart card memory must be minimized. For example, the previously

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 300 of 1123

266 Smart Card Operating Systems

mentioned telephone directory could be optimized by making each record exactly as long as
the actual entry, so the records would not all have the same length. However, managing this file
structure requires program code in the smart card operating system and extra memory space
to store the record length information. For this reason, operating systems for microcontrollers
with small memories often do not offer this file structure. Consequently, the ISO/IEC 7816-4
standard explicitly allows this limitation in some profiles.

Cyclic file structure

The cyclic structure is based on the linear fixed file structure, and thus consists of a certain
number of records that all have the same length. In addition, the EF contains a pointer that
always indicates the record that was last written. This record is always numbered record 1. If
the pointer reaches the last record in the EF, the operating system automatically adjusts it to
point to the first record in the EF when the next write access occurs. It thus behaves the same
as the hour hand of an analog clock.

1 2 3 4 5 n

record
number

1

2

3

...

...

...

m

byte number

Figure 5.24 Cyclic file structures

If a cyclic file contains n records, the last one that was written is record number 1. The
one that was written just before that is number 2, and the oldest record is number n. This file
structure, like the other two record-oriented file structures, can also be accessed by addressing
the first, last, next or previous record.3

The number and size of the records are fully analogous to those for the linear fixed structure.
Due to the limitations of the write and read commands, a maximum of 254 records can be
created, each with a maximum length of 254 bytes. This structure is typically used for log files
within the smart card, in which the oldest entry is always overwritten by a new entry.

Execute file structure

The ‘execute’ structure is in principle not a separate structure, since it is based on the transparent
structure. It is described in the EN 7826-3 standard and offers numerous extension options

3 See also Section 7.2, ‘Write and Read Commands’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 301 of 1123

5.6 Smart Card Files 267

within the operating system. The execute structure is not intended to be used for storing data,
but rather for storing executable program code.4 A file with execute structure can be accessed
using the same commands as for transparent files. Of course, this structure creates a sort of
‘back door’, since anyone who can write to such a file can download his or her own program
code into the card, possibly including a Trojan horse.

The maximum program size is the same as the maximum size of a transparent file, and is
thus 65,791 bytes without offset addressing or 98,303 bytes with offset addressing, using the
UPDATE BINARY command. No internal data structure is specified, but it is certainly possible
for the program code contained in the file to introduce one, so that the executable program can
define its own data regions in the execute file and access them internally.

Database file structure

The ISO/IEC 7816-7 standard defines a subset of SQL for smart cards with the designation
SCQL (smart card query language). In order to store data in the file system of a smart card such
that they can be read using SCQL commands, it is necessary to provide a suitable file structure.
The layout of this structure is not standardized; instead, its design is left up to individual
operating system producers. A database file stores the actual user data, various ‘views’ of the
database, the access privileges and user profiles.

Data object file structure

The ISO 7816-4 commands PUT DATA and GET DATA are used to store TLV-coded data
objects in smart cards and to read out such stored objects. This can be implemented either
completely independent of the file management system, or within the file management system
using a special structure for storing data objects. If the implementation is within the file
management system, a slightly modified transparent or linear fixed file can be used as a storage
location for data objects. In this case, the PUT DATA and GET DATA commands access these
modified file structures via the file management system.

Sequence control file structure

If a smart card operating system has a command sequence controller, information regarding
the commands that can be accepted must also be stored in memory. This is normally done
using a file whose structure is specially adapted to this task. However, this is not standardized,
so every operating system with sequence control has its own format, which is not compatible
with that of any other operating system.

5.6.5 File access conditions

As part of their object-oriented design, all files contain information governing access to them
within the context of the file management system. This information is always physically

4 See also Section 5.12, ‘Downloadable Program Code’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 302 of 1123

268 Smart Card Operating Systems

coded in the header of each file. The entire security of smart card file management is based
on managing file access privileges, since these privileges form the basis for controlling file
access.

The access conditions are defined when a file is created, and they usually cannot be modified
afterwards. There is a high degree of variation in the permitted file access conditions, depending
on the commands present in the operating system. For example, there is no point in defining
access conditions for a READ RECORD command if this command is not present in the smart
card operating system.

For the MF and the DFs (in contrast to the EFs), there is no information stored with respect
to data access (read or write privileges). Instead, the access conditions for creating new files
are stored together with other information. Depending on the file type, other access conditions
may also be stored. For EFs, these conditions relate to accesses to the file contents, and for the
MF and DFs, they are the conditions that apply within these organizational structures.

In specifying access conditions, a distinction can be made between state-oriented and
command-oriented access conditions. With state-oriented conditions, the current security state
is compared with the corresponding access condition of the file using a definable logical com-
parison. There are two options for the current security state: the global security state and the
local security state. The global security state is the security state of the MF, which means the
state of the smart card as a whole. The local security state is the state of the currently selected
directory, which means the state of the DF or the state of the directory above the DF. Both
the global security state and the local security state can be altered by successful execution
of identification and authentication commands using specific keys. When access to a file is
requested, a logical comparison function is used to compare the current security state with the
state specified in the file as the access condition. If this comparison is successful, the file may
be accessed. For example, read access might be allowed in states 5 and above. In this case,
read access would be prohibited in any state lower than state 5. Naturally, it is also possible to
specify several different states for a particular type of access. For example, read access could
be allowed in states 5, 8 and 9. As a rule, the retry counter (error counter) for the associated
secret is reset to zero if the comparison is successful. If the comparison is not successful, the
error counter is incremented, and if it reaches its maximum allowed value, the associated key
is blocked.

At first glance, state-oriented access conditions may appear to be relatively complicated.
However, they provide an enormous amount of freedom in the creation of applications, and
in principle they can be used for any possible architecture. Their drawback is that they are
relatively complex.

In contrast to state-oriented access conditions, command-oriented access conditions define
the commands that must be correctly executed prior to the access. This primarily involves
authentication and identification commands. Command-oriented access conditions are widely
used in the smart card world, with the best-known example being smart cards for the GSM
system. With command-oriented access conditions, the access table in the file contains infor-
mation about the commands that must be successfully executed for each type of access. In
many cases, the commands are further assigned to specific keys. In practice, for instance, the
condition for read access to a file may require prior identification of the user by means of
the VERIFY command and the user’s No. 1 PIN. In this case, the file can be read only after
this command has been successfully executed. The advantage of this type of access protection
is its simple structure, which is generally suitable for the majority of applications. However,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 303 of 1123

5.6 Smart Card Files 269

additional overhead is generally required if command-oriented access conditions are used,
particularly with multiapplication smart cards. For instance, the access tables would have to be
extended in the case of an operating system that supports downloadable program code, since
explicit references to specific commands must be present in these tables. Consequently, this
type of file access condition is somewhat inflexible in certain situations.

File access conditions

state-oriented
access conditions

command-oriented
access conditions

Figure 5.25 Classification of the two possible types of file access conditions

All possible types of access to an EF must be precisely governed by means of access
privileges. The number of commands that this involves varies, depending on the operating
system. Some of the most commonly used file access commands are the following:

APPEND Enlarge a file
DELETE FILE Delete a file
INCREASE/DECREASE Computations within a file
INVALIDATE Block a file
LOCK Permanently block a file
READ/SEEK Read or search within a file
REHABILITATE Unblock a file
WRITE/UPDATE Write within a file

The access conditions of a DF are fundamentally different from those of an EF. They
specify the conditions under which specific commands may be executed within the directory
in question. The three most important access commands are:

CREATE Create a new file
DELETE FILE Delete a file
REGISTER Register a new file

State-oriented access conditions are primarily used in multifunctional smart card operating
systems, such as STARCOS, since they are highly flexible and easily modified. However, most
large smart card applications, such as GSM and the German Eurocheque system, use command-
oriented access conditions to control file access. This approach requires slightly less program
code and memory than state-oriented access conditions. Of course, this comes at the price
of somewhat lower flexibility. Both approaches have their advantages and disadvantages, and
most arguments in favor of one or the other are ultimately based on philosophical issues related
to the design of operating systems. However, a method that can be used to flexibly fashion
access conditions in a general form for controlling access to resources (including files) has
now been specified in the ISO/IEC 7816-9 standard. This highly powerful concept is described
in more detail further on.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 304 of 1123

270 Smart Card Operating Systems

5.6.6 File attributes

Within its object-oriented definition, every EF has special attributes that define supplementary
properties of the file. However, this depends on the operating system and the application area
of the smart card. These attributes define properties of EFs that are primarily related to the
EEPROM, and they arise from the potential uncertainty of the file contents and the possibility
of write errors in EEPROM operations. These attributes are defined when the file is created
and usually cannot be changed afterwards.

WORM attribute

One of the attributes based on the EEPROM storage medium is called WORM (write once,
read multiple). If a file has this attribute, data can be written to the file one time only, but they
can be read an unlimited number of times. This attribute can be implemented either in the
hardware of the EEPROM or as a software function. The WORM attribute can be used, for
example, to write a serial number in a file once and forever. This attribute is also used with
personalization, in which information such as the cardholder’s name and the expiry date are
permanently written to the card.

This attribute is intended to be used to protect sensitive data against being overwritten.
The best possible protection is provided if WORM access is possible at the hardware level,
which means that the EEPROM has hardware protection that allows data to be written only
once. However, even a software implementation provides much better protection than other
comparable mechanisms.

Frequent writing attribute (‘high update activity’)

An attribute that is primarily defined and used in the GMS realm is a flag for ‘high update
activity’. The only reason that this attribute exists is because an EEPROM has a limited number
of write/erase cycles. A file having this attribute can be written very often without having its
data content be affected by write errors. This can be achieved by storing multiple copies when
writing the data and using a majority vote when reading the data. Triple parallel storage is
commonly used for writing, with a 2-of-3 majority vote for reading. An alternative mechanism
is to switch from one copy of a multiple data set to another copy if a read error or checksum
error occurs, fully transparent to the outside world.

EDC utilization attribute

An attribute that provides special protection for the user data in a file by means of an error
detection code (EDC) is used for particularly sensitive data. This allows the ‘flipping’ of bits in
the EEPROM to at least be detected. If multiple storage is used together with EDC protection,
it is also possible to correct flipped bits. This ECC (error correction code) attribute is primarily
used for electronic purses. Here the flipping of a memory cell amounts to the actual loss of
money, since the current amount of money in the purse is stored in the file. The EDC and ECC
file attributes are thus used to minimize the effects of bit flipping.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 305 of 1123

5.7 File Management 271

Atomic write access attribute

Recent smart card operating systems often include a mechanism that ensures that when a file
is accessed for writing, the writing operation is executed either completely or not at all.5 Since
this mechanism more than doubles the write access time for a file, it should in principle not be
used for all files. A separate attribute allows this writing mechanism to be selectively applied
to each file.

Concurrent access attribute

Smart card operating systems that support several logical channels often have a special file
attribute for concurrent access. This attribute explicitly allows a file to be accessed for reading or
writing by two or more commands at the same time if the smart card receives these commands
via different logical channels that are concurrently open. It is important for this attribute
to be specifically marked for the file, since with parallel access via different channels it is
possible for data to be modified via one channel immediately before or after they are read via
another channel. If the two processes are not synchronized, the data that are read will vary
depending on when the commands reach the smart card. Consequently, concurrent access is
generally not allowed, and access by any other channel is temporarily blocked when a file
has been selected. Only after the file has been deselected is it possible for it to be accessed
by another channel. The concurrent access attribute disables this block for a particular file. In
this case, the relevant applications in the terminal are responsible for synchronizing parallel
read and write processes. Of course, there is no problem if they only access the file for
reading.

Data transmission selection attribute

The file management systems of smart cards that have both contact and contactless interfaces
sometimes include a file attribute that determines which of the two interfaces may be used for
accessing the file. This makes it possible to specify for each individual file whether commands
may access a file via the contact interface and/or the contactless interface. With an electronic
purse, for example, this attribute makes it very easy to allow purchases to be made only via
the contact interface and the card to be loaded only via the contactless interface.

5.7 FILE MANAGEMENT

All files in a smart card are stored in the EEPROM. This is the only type of memory in the smart
card that can retain stored data without power and that also allows data to be altered if necessary
(when power is available). It also provides the only means to save information from one session
to the next, since the contents of the RAM are lost when the smart card is deactivated, and the
contents of the ROM cannot be altered after the chip has been manufactured.

5 See also Section 5.10, ‘Atomic Operations’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 306 of 1123

272 Smart Card Operating Systems

In earlier smart cards, files were directly accessed using physical addresses. Actually, there
were no files in the true sense of the word. Instead, the entire memory was linearly addressable
from the outside and could be accessed using write and read commands. However, this is not
allowed in modern operating systems, for reasons related to security and applications. Object-
oriented file management, with access condition information located directly in the files, is
currently the standard. The organization and management of these files is the task of the file
manager portion of the operating system.

With an objected-oriented structure, every file must have a file descriptor that contains all
the information relevant to the file itself. In smart card technology, the file descriptor is referred
to as the file header. The data content of a file, or in other words the user data, is located in the
‘body’ of the file.

The information contained in the file descriptor depends strongly on the capabilities of the
file manager. However, the file descriptor must contain at least the following items:

� file name (e.g. FID ='0001')

� file type (e.g. EF)

� file structure (e.g. linear fixed)

� file size (e.g. 3 records of 5 bytes)

� access conditions (e.g. READ = after PIN code has been entered)

� attribute (e.g. WORM)

� link to the file tree (e.g. directly under the MF).

With an EF or the MF, the file name is the two-byte file identifier (FID). With a DF, the
application identifier (AID) also forms part of the file name. The file type, which may be MF,
DF or EF, must also be indicated.

Depending on the file type, there may be an element in the header that describes the
internal structure of the file (transparent, linear fixed, linear variable, cyclic or executable).
All information relating to the length of the transparent data portion, or the number and length
of the records, also depends on the file type.

Besides the basic attributes of the file, which have just been described, the operating sys-
tem needs even more detailed information about the access conditions, which means which
commands are allowed to access the file and what types of access are allowed. The access con-
ditions must be individually specified for every possible command. Special file attributes, such
as high update activity, WORM or EDC protection, can also be marked if they are supported
by the file manager.

All of the above information relates to the file as an isolated object. In order to define the
location of the file in the file tree, an additional pointer is needed to specify the exact position
of the file within the MF or DF.

Pointer-based file management

In simple operating systems, the file headers have fixed lengths that depend on the file type
(MF, DF or EF). This reduces the amount of administrative and computational overhead for

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 307 of 1123

5.7 File Management 273

internal file management. However, such an arrangement has the major disadvantage of being
relatively inflexible with regard to extension. Another drawback is that it does not allow an
unlimited number of different access conditions to be implemented for any given EF, or even a
very large number. This is because the memory that would have to be reserved to accommodate
a large number of access conditions in the header would not be fully used by most applications.
Consequently, variable-length headers are very popular in smart card file management systems.
Such headers can be automatically adapted to the needs of specific applications by the smart
card operating system.

MF header:

↑EF head1FID ↑DF1 EDC↑EF Key head

DF header:

FID ↑EF head1 EDCDF name ↑EF Key head

EF header:

FID

↑EF body EDC

↑ F headn+1D

EF type EF structure

update state

read state

body info

number of records

number of records

length of each record

length of record 1 ...

file sizetransparent:

linear variable:

linear fixed:

Figure 5.26 A possible file header structure for MF, DF and EF files (internal and working) in a
pointer-based smart card file management system. Heavy borders indicate TLV-coded data objects that
must be present, while light borders indicate optional data objects. The numbering is valid only within
the directory in which the file is located, rather than globally for all files. This structure is based on the
requirements for a simple file management system defined in Small-OS. Here ‘access cond’ stands for
‘access condition’ and ‘head’ for ‘header’

FAT-based file management

A type of file management that is widely used for the hard disk drives of PCs is based on file
allocations tables (FATs). This method can be adopted for use in the memory management of
smart cards without any essential modification. With this method, the EEPROM to be managed
is divided into many equal-sized pieces, which are called sectors. Ideally, the sizes and start
addresses of the sectors should correspond to the EEPROM pages. This allows write and erase
operations to be performed on integral EEPROM pages.

The FAT contains pointers to each of the sectors of the memory, with FAT entries also
being linked to each other by means of pointers. Vacant FAT locations and defective sectors

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 308 of 1123

274 Smart Card Operating Systems

EF body (structure of a single record):Key

EF body:

key number

data

error counter

PIN / keypurpose

result state NOKinput state

EDC

maximum error count

result state OK

EDC

Figure 5.27 A possible file header organization for internal and working EFs in a smart card file man-
agement system. All TLV-coded data objects must be present. This structure is based on the requirements
for a simple file management system defined in Small-OS. ‘EDC’ stands for ‘error detection code’

DF 1 header DF 2 header

EF 2 body

MF header

EF Key header EF 2 header

EF Key body EF 1 body

EF 1 header ...

...

... ...

Figure 5.28 Outline of a possible architecture of the pointer and data structures in a smart card file
management system. This is based on the requirements for a simple file management system defined in
Small-OS. The dashed outlines demarcate the memory available to each directory

are marked by special entries. With regard to memory space, the FAT can be significantly
compressed if there is a direct relationship between FAT locations and sectors. In this case, the
sector pointers within the FAT are unnecessary.

Figure 5.29 shows a possible implementation of a FAT for file management in a smart card.
The file descriptor, which contains the essential information about the structure of the file,
contains a pointer to the initial entry in the FAT. In the FAT, a number of sectors corresponding
to the size of the file are linked using internal FAT pointers. The final entry always contains an
end-of-file (EOF) marker. There is a one-to-one relationship between the FAT entries and the
sectors in the memory that contain the user data belonging to the file descriptor.

The question of whether file management is implemented using file headers and file bodies
linked by pointers or using a FAT largely depends on various technical considerations and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 309 of 1123

5.7 File Management 275

1

1 2 3 4 5

2 3 4 5 6 7 8 ...

...

n

nsectors

file descriptor

file allocation table
(FAT)

EOF

file body

administrative data

user data

file header

sector size

Figure 5.29 Basic structure of a file allocation table (FAT) for file management in a smart card. The
end of the user data is indicated in the FAT by an EOF (end of file) marker

constraints. Both approaches have advantages as well as disadvantages. A FAT-based file
management system requires memory for the FAT itself, and particularly in the case of small
files, this is disproportionately larger than the amount required by a pointer-based system.
However, memory fragmentation does not occur in a FAT-based system, since it fundamentally
cannot occur in such a system.

Requesting and releasing memory within the memory management system of a smart card is
implemented using a variety of services. At the lowest level, these services include requesting
and releasing memory, increasing memory, reading and writing data and writing data as an
atomic operation. The file management interface constructed on top of these services usually
includes services to create and delete files, read data from files, write data to files, select the
MF, select the higher level DF, select a file using its FID and select a file using its DF name.

Memory partitioning into pages

The limited number of write/erase cycles of the EEPROM and the partitioning of the EEPROM
into pages create a general problem for file management. This has a considerable effect on the
entire design of the file manager and the internal file structures. The sizes of both file headers
and file bodies must be adapted to the predefined size of the memory page to prevent them
from being split by page boundaries. File management information in the memory must also
be strictly separated from the actual file data contents. If this were not the case, undesired side
effects could occur between the management data in the header and the user data in the file
body. These could destroy the entire internal security structure of the smart card operating
system. This is briefly illustrated in the following example.

Suppose the access conditions for a file containing secret, non-readable keys are stored on
the same memory page as the public, writeable data of another file. If a write operation to this
file is interrupted, for example by pulling the card out of the terminal, this will affect the access
conditions stored on the same page. In the worst case, no access conditions at all will remain, and
the file containing the secret keys can be read by everybody. It is thus fundamentally important to
store the internal file structures for file management and the user data on separate memory pages.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 310 of 1123

276 Smart Card Operating Systems

DF separation

One way of understanding the function of a DF is to see it as representing all of the memory
provided to a particular application. Within this region, the application operator is fully re-
sponsible for his application and can essentially do and permit whatever he wishes. However,
he must under no circumstances be able to access a memory region assigned to a different
application from within his own region in any manner, nor should he be able to read or alter
data stored in another region. Consequently, some smart card operating systems have special
mechanisms that always test every memory access to see whether the physical address is lo-
cated within the limits of the current DF. If this is not the case, the process is terminated and a
severe internal error is reported.

This address monitoring is currently performed by suitable software routines in the oper-
ating system, due to the lack of hardware support. The security of this solution is naturally
significantly lower than what could be achieved with suitable hardware, since it is more easily
bypassed. In the future, smart card microcontrollers will probably have memory management
units (MMUs), as do all current CPUs.6 Such units can be used to achieve secure control over
memory accesses within a DF. Until then, the only option is to employ suitable operating
system routines to monitor the address boundaries of the DFs.

This principle of memory organization – storing all of the components of a DF within
a single contiguous region of memory – had to be abandoned in the development of recent
operating systems, since memory management would otherwise have been too inflexible.

Free memory management mechanisms

The small amount of available memory imposes major restrictions on smart card operating
systems with regard to free memory management for the EEPROM. Only since the mid-
1990s have operating systems been available that can create and subsequently delete files (DFs
and EFs) after the card has been personalized. Given the secure nature of a smart card, this
must naturally be protected in a cryptographically flawless manner. The ideal solution is to
execute the appropriate commands in the secure messaging mode following an initial mutual
authentication.

Free memory management must also take into account the fact that in the event of a sudden
loss of power, which can for example occur if the card is pulled out of the terminal, the entire
file tree must remain in a well-defined state. Particularly in such circumstances, the security of a
smart card can completely collapse if file pointers suddenly become undefined. The satisfactory
approaches to solving this problem once again involve atomic operations, although in this case,
due to the large data volumes, such processes require a relatively large amount of time and
correspondingly large memory buffers.

There are various realization strategies for memory management, and incidentally for all
types of file management in smart cards, and they differ significantly in terms of software
implementation. This is illustrated in Figure 5.30 and the associated description, using smart
card memory management as an example.

6 See also Section 3.4.3, ‘Supplementary hardware’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 311 of 1123

5.7 File Management 277

best-fit

garbage collection

WORM LIFO (last in, first out)

defragmentation

before

before

before

after

free memory

occupied memory

memory no longer needed

after

after

Figure 5.30 Typical memory management mechanisms for smart card operating systems. A detailed
explanation is provided in the text

The simplest type of memory management is a sort of write once, read multiple (WORM)
functionality. With such an approach, once memory space has been occupied by storing a file, it
remains occupied even after the file has been (logically) deleted. The administration overhead
with this approach is minimal.

A somewhat more elaborate method, from a software engineering point of view, is mem-
ory management based on the last-in, first-out (LIFO) principle. With this approach, the most
recently created file can always be deleted, releasing the space it previously occupied. This
method is often used in simple smart card operating systems. With the somewhat more sophis-
ticated best-fit algorithm, the operating system always attempts to find the smallest suitable
region of free memory when creating a new file. When the file is deleted, this region again
becomes free and can be used by other files. However, if files of various sizes are frequently

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 312 of 1123

278 Smart Card Operating Systems

created and then deleted, strong fragmentation of the memory occurs relatively quickly. As a
result, large files can no longer be created, since no single region of free memory will be large
enough to hold the entire file, even if the total amount of free memory is sufficient to hold the file.

This is precisely where the defragmentation process comes into play. When the memory is
heavily fragmented, this memory management process, which is relatively complex by smart
card standards, repeatedly relocates the files in memory until it arrives at a situation in which
all of the free memory forms a single contiguous block. The difficulty here comes from the
fact that such an algorithm runs relatively slowly in smart cards, due to the need to perform
many time-intensive EEPROM write accesses.

Garbage collection is a process that can be regarded as independent of the processes just
described. Operating either on demand or periodically, the garbage collection process searches
the entire memory for areas of memory that are no longer used. If an area that is no longer
needed is found, the garbage collection process automatically allocates it the free memory pool.
A defragmentation process can subsequently be used to combine all of these small memory
blocks to form a large, contiguous region of free memory.

Data integrity

Another important consideration is ensuring data integrity. The file manager should always be
able to test whether the data in the memory have accidentally changed, which could occur due
to factors such as aging. To minimize the administrative overhead for this function, the level
of data redundancy and/or the extent of the supervisory protective functions should match the
importance of the data. There is thus no need to protect all data with checksums as a matter of
principle. Several data elements, such as a complete file header, can be protected as a group,
or particularly important data elements can be individually protected. This primarily depends
on how often the data elements are altered in the EEPROM and how much memory space the
designer of the operating system is willing to sacrifice to ensure data integrity.

Error detection codes are used to ensure data integrity. They are primarily used to protect
critical data elements, such as data access privileges and file body pointers in file headers.
Checksums based on CRCs are often used for this purpose, since they can be computed
relatively quickly and do not require very much program code. However, Reed–Solomon codes
are also often used to provide better protection against the typical failure mode of EEPROM
cells. These codes are significantly better than CRC checksums for detecting the burst errors
that typically occur when an entire EEPROM page has changed.

Cross-application access

Certain smart card functions are only enabled after the card user has entered a PIN code. Since
the powers of memory of the average person are limited, it has become common to use only
one PIN per smart card, even with cards that hold several applications. Every application in
the card thus uses this common PIN. It could be stored separately for each application in an
internal EF, but this would require each of the stored PINs to have its own retry counter. If
there are five applications, for example, and each application allows three attempts, a total of
15 attempts to guess the PIN will be allowed. In many cases, this is not tolerable with regard
to the design and security of the applications. Consequently, some operating systems allow
cross-application access to PINs and keys.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 313 of 1123

5.8 Sequential Control 279

This utilization of shared resources is in principle implemented in a manner similar to the
alias mechanisms commonly used in PC operating systems. The main difference is that smart
card operating systems only allow references to higher level DFs, with the MF being the highest
level entity. It would thus not be possible to access a PIN located in an arbitrary DF, but only
one located in a higher level of the file hierarchy, such as the MF.

In the case of the above example of a single PIN and retry counter that are shared by several
applications, a possible implementation is as follows. The PIN is stored in an internal EF
located immediately below the MF. In the application, which is located in a DF below the MF,
a reference to the storage location of the PIN is stored in an internal EF. The states resulting
from successful and unsuccessful PIN comparisons are naturally stored in the PIN record in the
DF, since they apply to only one particular application. If a PIN comparison is triggered, the
VERIFY command first accesses the PIN record in the current DF, from which it sees that
the PIN and its associated retry counter are located at a different level. It then uses the indicated
PIN for the PIN comparison. The state of the currently selected DF stored in the internal EF
is set according to the result of the comparison.

This procedure is presently supported by many smart card operating systems in various
forms. Particularly for the utilization of data that are shared by two or more applications,
it provides a very elegant and cryptographically faultless solution. In addition to allowing
PINs and keys to be used across several applications, some operating systems also offer an
equivalent mechanism for EFs. This makes it possible to directly access global data in EFs
located immediately below the MF without first deselecting the current DF.

5.8 SEQUENTIAL CONTROL

If a state machine must be implemented in an operating system, there are various ways in
which it can be constructed. However, certain basic principles must be observed, independent
of the operating system and its producer.

In the previously described layered model of the operating system, the state machine must
be located after the command interpreter and before the actual execution of the command.
The task of the state machine is to determine whether the received command may be executed
in the present state. It does this using a table. A basic principle here, as is usual with smart
cards, is to use as little memory as possible to provide the state information. In addition, this
information must also be structured such that the actual state machine can be built using as
little memory as possible.

The state machine needs a certain amount of information to analyze the command held in
the I/O buffer. Figure 5.31 shows a possible structure for a smart card state table.

The first data element (initial state) contains the state the rest of data in the data structure
is to be processed. This data element could contain a number that directly defines the state
to which all the other information applies. This is followed by a subtable that identifies all
commands that are allowed in the initial state. It must be possible to identify a single command,
a group of commands, all commands or no commands in each subtable.

The allowed parameters for a command follow the command definition in the table structure.
In these data elements, it must be possible to define both individual values and ranges of values
for the parameters. For example, if the code for the READ BINARY command is in the
command field, the P1 and P2 parameter fields could contain the minimum and maximum
offset values for a read access to transparent data, while the P3 parameter field could contain

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 314 of 1123

280 Smart Card Operating Systems

— — — —

initial state command definitions new state in the new state in the
good case bad case

— — — —

command
definitions

command parameter P1 parameter P2 parameter P3
(min, max) (min, max) (min, max)

— — — —

— — — —

Figure 5.31 Example of data elements in a data structure for a state machine

both the lower and upper limits for the length. Since multiple entries may be present in this
subtable for a given state, additional commands and their parameters could be defined after
READ BINARY.

A table entry concludes with the new state that is to be assumed if the command is success-
fully executed, which means if command execution completes without any errors. The data
structure of the example also allows a state to be defined that is to be assumed if command
execution is not successful. In order to maintain a high degree of flexibility within the state
machine, it must be possible to specify subsequent states either absolutely or relatively. Here
‘relative’ means that the new state is set by adding or subtracting a value to or from the value
of the initial state, while ‘absolute’ means that the value of the new state is set directly, without
reference to the value of the initial state.

In principle, there are no limits to how a state machine can be constructed. The data structure
illustrated here is quite suitable for use in a relatively sophisticated operating system. In
principle, every possible state machine diagram can be represented in a smart card using the
described data structure and a corresponding state machine. Naturally, individual files also
have their own supplementary protection against unauthorized reading or writing in the form
of access conditions for commands. Nevertheless, sequential control for commands can provide
an additional higher level mechanism that complements this object-oriented protection and that
thus increases the security of the system. This is actually the primary benefit of using state
machines in smart cards.

5.9 ACCESS TO RESOURCES IN ACCORDANCE WITH
ISO/IEC 7816-9

The allowed types of access to files can be specified using state-oriented or command-oriented
access conditions. With state-oriented access conditions, the current security state is compared

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 315 of 1123

5.9 Access to Resources in Accordance with ISO/IEC 7816-9 281

to the relevant access condition by means of a logical comparison operation. There are two
types of current security state, which are the global security state (the security state of the
smart card as a whole) and the local security state (the security state of the currently selected
directory). By contrast, with command-oriented access conditions the access table in the file
contains information about the commands that must be successfully executed prior to each
type of access.

Both types of access conditions (state-oriented and command-oriented) have been and will
continue to be supported in various forms by commercial smart card operating systems. Until
recently, the biggest problem has been the large variety of implementations and approaches
that have been taken. The objective of the ISO/IEC 7816-9 standard is to define a uniform
approach to accessing resources in smart cards, and it includes a section specifically devoted
to this subject that specifies a very powerful model for access conditions for files as well as
commands and data objects. Unfortunately, this model is also complicated. This universal
access model unifies both state- and command-oriented access conditions, and to this it adds
the possibility of specifying specific command sequences. Furthermore, ISO/IEC 7816-9 also
allows the possibility of using specific data object tags to specify a state machine for the
accesses. The concept is fully based on TLV-coded data objects, which as is well known, can
be used very flexibly to create elegant IT structures.

Access conditions

filescommands

read

all files data files

sequence

search

write

delete (content)delete (file)

block

unblock

terminate extend

create

parameters

secure messaging

Figure 5.32 Classification of command and files access conditions according to ISO/IEC 7816-9

ISO/IEC 7816-9 defines ‘security attributes’ (SAs) that can be used to govern accesses
and non-accesses and attain specific security states in the smart card. These security attributes
control accesses to card resources such as files, commands and data objects, as well as SCQL
tables and views.

The access control principle is relatively simple. The resource to be protected is assigned a
reference (which may be explicit or implicit) to one or more security attributes. These attributes
consist of one or more access rules (ARs), which in turn are composed of access modes (AMs)
and security conditions (SCs). Each access mode specifies the type of access, such as read or
write, while the security conditions specify the security mechanisms (SMs) needed to allow
the access conditions to be satisfied. An additional object that may be incorporated into the
security rules is the current security environment (SE).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 316 of 1123

282 Smart Card Operating Systems

access modes

explicit or
implicit reference

type of access operation security
mechanisms

data objects

access rules

access command (optional)

command

view / table (for SCQL)

security conditions

card
resources

security
attributes

Figure 5.33 Classification of possible card resources and associated security attributes according to
ISO/IEC 7816-9

All ISO/IEC 7816-9 security attributes are stored either in ‘compact format’ (to save memory
space) or as regular TLV-coded data objects in the ‘expanded format’. Each of these formats
provides similar access protection functionality, but the expanded format offers significantly
more flexibility. For instance, with this format it is possible to generate a detailed specification
of commands and associated parameters for accessing resources.

record no. access rules

1
2
3

n
...

AM DO || SC DO1 || SC Do2 || ...
...
...
...
...

card
resources

reference via FID
(only if EF is an EFW)

and record number
ARR

Figure 5.34 Representation of the linking of arbitrary resources of a smart card to associated access
rules, which are stored in an EFARR file

The access rules are stored in one or more EFs with linear variable structure. Such EFs can
be internal EFs (EFIs) or working EFs (EFWs), and they are given the name EFARR (access rule
reference EF). The file identifier (FID) of such an EF can be freely chosen. If an EFI is used
to store access rules, an implicit access to this EF is made via the operating system every time
an access condition occurs. In the case of an EFW, the card resource to be protected contains a
reference to the FID of the EFARR. In both cases, the card resource to be protected references
the number of the record in the EFARR that contains the appropriate access rule. The advantage
of a selectable EFARR (that is, an EFW) is primarily that its content can be modified using
normal commands and corresponding access conditions. This creates enormous flexibility,
since the access conditions for the resources of the smart card can be modified whenever so
desired.

It is important to mention that it is naturally not necessary to store a record in the EFARR

for every EF. It is fully sufficient to store a single record for all EFs having identical access
conditions and then reference this record from these EFs. This considerably reduces the number
of records needed in the EFARR.

The link between the EF and the EFARR exists in only one direction, rather than possibly
being bidirectional. It is therefore not possible to determine which EF or EFs reference a
particular record in the EFARR from within that record. This is important with regard to file

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 317 of 1123

5.9 Access to Resources in Accordance with ISO/IEC 7816-9 283

file header (administrative data)

file body (user data)

name(s) ... attribute

EFARR

(pointer to) access conditions pointer to file body

Figure 5.35 Linking an arbitrary file header in the file management system of a smart card to the
associated access rules stored in an EFARR file

management, since when an EF is deleted, it is not allowed to also delete the associated record
in the EFARR, as it may be referenced by one or more other EFs.

When a file is to be accessed by a command, the following procedure is used. First, the
operating system tests whether the explicitly or implicitly referenced EFARR and the appropriate
record are present. If they are not, access is denied. Next, the EFARR is searched for an access
mode (AM) data object for the requested access. If this data object is found, the specified
security condition (SC) is tested; otherwise access is again denied. If the security condition is
met, access to the file with the corresponding command is allowed.

start

end

access permitted access denied

referenced EF
present?

ARR

AM exists for
requested access?

SC for the
AM satisfied?

referenced record
present in EFARR ?

no

no

no

no

Figure 5.36 Flow chart showing the essential queries for testing for file access in accordance with the
ISO\IEC 7816-9 access model

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 318 of 1123

284 Smart Card Operating Systems

Table 5.10 Coding of the access mode (AM) byte for DFs as defined by ISO/IEC 7816-9

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 . b7–b1 according to this table
1 . b3–b1 according to this table and b7–b4 proprietary

. . . 1 DELETE FILE (this file)

. 1 TERMINATE CARD USAGE (MF), TERMINATE DF

. 1 ACTIVATE FILE

. 1 DEACTIVATE FILE

. 1 CREATE FILE (create a DF)

. 1 . . . CREATE FILE (create an EF)

. 1 DELETE FILE (lower-level file)

Table 5.11 Coding of the access mode (AM) byte for EFs as defined by ISO/IEC 7816-9

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 . b7–b1 according to this table
1 . b3–b1 according to this table and b7–b4 proprietary

. . . 1 DELETE FILE

. 1 TERMINATE EF

. 1 ACTIVATE FILE

. 1 DEACTIVATE FILE

. 1 WRITE BINARY, WRITE RECORD,
APPEND RECORD

. 1 . . . UPDATE BINARY, UPDATE RECORD,
ERASE BINARY

. 1 READ BINARY, READ RECORD, SEARCH
BINARY, SEARCH RECORD

Table 5.12 Possible security conditions (SC) codes as defined by ISO/IEC 7816-9

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 0 0 0 0 0 0 0 Access always allowed
1 1 1 1 1 1 1 1 Access never allowed

. 0000 No reference to the security environment

. 0001 – 1110 Security environment number

. 1111 RFU

0 . At least one condition must be satisfied
1 . All conditions must be satisfied

. . . 1 Secure messaging

. 1 External authentication

. 1 User authentication (e.g. by means of PIN entry)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 319 of 1123

5.9 Access to Resources in Accordance with ISO/IEC 7816-9 285

Table 5.13 Possible access mode data object (AM DO) codes as defined by
ISO/IEC 7816-9. These codes are used in the extended format

Tag Length Meaning

'80' 1 AM byte from Tables 5.0 and 5.11
'81'–'8F' X Description of CLA || INS || P1 || P2 for specifying the

parameters of access commands
'9C' X Specific (proprietary) description of a state machine

Table 5.14 Possible security condition data object (SC DO) codes as defined by ISO/IEC 7816-9.
These codes are used in the extended format

Tag Length Meaning

'90' 0 Access always allowed
'97' 0 Access never allowed
'A4' X Control reference template (CRT) for authentication

(external authentication or user authentication)
'B4','B6','B8' X Control reference template (CRT) for a command and/or response using

secure messaging
'9E' X Security condition in accordance with Table 5.15
'A0' X The stated security conditions are to be combined in a logical OR manner
'AF' X The stated security conditions are to be combined in a logical AND manner

Table 5.15 Coding of the usage qualifier in a control reference template (CRT), as defined by
ISO/IEC 7816-9. CRTs are used in the extended format. The tag for the usage qualifier is'95'

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

1 . Verification, encryption and external authentication
. . . 1 Computation, decryption and internal authentication
. 1 Secure messaging response
. 1 Secure messaging command
. 1 Knowledge-based user authentication (e.g. PIN)
. 1 Biometric user authentication
. X X RFU

To help clarify the information provided in the above tables, some typical examples of
entries in an EFARR are shown in Tables 5.18 through 5.20, coded using both expanded and
compact formats.

In summary, it can be noted with regard to access rules in accordance with ISO/IEC 7816-9
that although this system is quite powerful and highly flexible, it also demands a certain price
from the smart card operating system in the form of additional memory space. Furthermore, in

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 320 of 1123

286 Smart Card Operating Systems

Table 5.16 Possible file control parameter (FCP) codes as defined by ISO/IEC 7816-4 and ISO/IEC
7816-9. The tag for the FCP is'62'

Tag Length Meaning

'80' 2 Number of data bytes without structure information in a transparent EF
'81' 2 Number of data bytes with structure information
'83' 2 FID
'84' 1–16 DF name
'88' 1 SFI coded in bits 8–4; bits 3–1 set to 0
'8A' 1 Life-cycle status integer (LCSI)
'8C' variable Security attribute in compact format
'AB' variable Security attribute in expanded format

Table 5.17 Possible control reference data object
(CR DO) codes as defined by ISO/IEC 7816-4

Tag Meaning

'80' Algorithm reference
'81' File reference: FID path to a file
'82' File reference: DF name
'83' Key reference: for direct use
'84' Key reference: for computing a session key

practice it is nearly impossible to manually code the access conditions for even simple smart
card applications using these rule-based access conditions without the assistance of suitable
software tools. Nevertheless, this concept for access to the resources of a smart card will come
to prevail throughout the world, since the advantages of flexibility and standardization are
highly important.

Table 5.18 Example of the content of an EFARR record coded in compact format. This record specifies
the access conditions for UPDATE BINARY, . . . and READ BINARY, . . . for a file (EF). All other types
of file access are automatically prohibited

Data item Designation Meaning

'8C' tag The tag'8C'identifies an access rule in compact format
'03' length The length of the following data is 3 bytes
'03' AM The following security conditions refer to UPDATE BINARY, . . .

and READ BINARY, . . . , since'03'= ◦0000 0011◦

'00' SC No security condition is specified for UPDATE BINARY, . . . which
means that the EF may always be written

'00' SC No security condition is specified for READ BINARY, . . . which
means that the EF may always be read

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 321 of 1123

5.9 Access to Resources in Accordance with ISO/IEC 7816-9 287

Table 5.19 Example of the content of an EFARR record coded in compact format. This record
specifies the access conditions for ACTIVATE FILE, DEACTIVATE FILE and READ BINARY for a
file (EF). All other types of file access are automatically prohibited

Data item Designation Meaning

'8C' tag The tag'8C'identifies an access rule in compact format
'04' length The length of the following data is 4 bytes
'19' AM The following security conditions refer to ACTIVATE FILE,

DEACTIVATE FILE and READ BINARY, . . . ,
since'19'= ◦0001 1001◦.

'90' SC Prior user authentication, such as PIN entry, is necessary as a security
condition for ACTIVATE FILE since'90'= ◦1001 0000◦. The PIN
needed for this is implicitly known to the operating system

'90' SC Prior user authentication, such as PIN entry, is necessary as a security
condition for DEACTIVATE FILE, since'90'= ◦1001 0000◦. The PIN
needed for this is implicitly known to the operating system

'00' SC No security condition is specified for READ BINARY, . . . , which
means that the EF may always be read

Table 5.20 Example of the content of an EFARR record coded in expanded format as defined in
ISO/IEC 7816-9. This specification allows access to the file in question using READ BINARY, . . . at all
times. UPDATE BINARY is only possible after prior successful verification of PIN 1 or PIN 2. All
other types of file access are automatically prohibited

Data item Designation Meaning

'AB' tag The tag'AB'identifies an access rule in expanded format
'1A' length The length of the following data is 26 bytes

'80' AM DO The tag'80'indicates that the access mode data object (AM DO)
contains a byte with the access conditions (AM byte)

'01' length The length of the following data is 1 byte
'02' AM The following security conditions refer to UPDATE BINARY, . . . ,

since'02'= ◦0000 0010◦

'A0' SC The following SCs are to be combined in a logical OR fashion
'10' length The length of the following data is 16 bytes ('10')

'A4' CRT DO The tag'A4'indicates that the following data contain information
about necessary authorizations. These data form a control reference
template (CRT)

'06' length The length of the following data is 6 bytes

'83' key reference The tag'83'indicates that this is a CRT data object for referencing
a key

'01' length The length of the following data is 1 byte
'01' key number Key number 1 is to be used

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 322 of 1123

288 Smart Card Operating Systems

Table 5.20 (Cont.)

'95' usage qualifier DO The tag'95'= ◦1001 0000◦ indicates that this is a CRT
data object for a usage qualifier

'01' length The length of the following data is 1 byte
'08' usage qualifier Knowledge-based user authentication (i.e., a PIN) is specified as a

usage qualifier, since'08'= ◦0000 1000◦

'A4' CRT DO The tag'A4'indicates that the following data contain information
about necessary authorizations. These data form a control reference
template (CRT)

'06' length The length of the following data is 6 bytes

'83' key reference The tag'83'indicates that this is a CRT data object for referencing
a key

'01' length The length of the following data is 1 byte
'02' key number Key number 2 is to be used

'95' usage qualifier DO The tag'95'= ◦1001 0000◦ indicates that this is a CRT data object
for a usage qualifier

'01' length The length of the following data is 1 byte
'08' usage qualifier Knowledge-based user authentication (i.e., a PIN) is specified as a

usage qualifier, since'08'= ◦0000 1000◦

'80' AM DO The tag'80'indicates that this is an access mode (AM) data object
'01' length The length of the following data is 1 byte
'01' AM The security condition refers to READ BINARY, . . . , since'01'=

◦0000 0001◦

'90' SC DO The tag'90'indicates that accesses are always allowed
'00' length The length of the following data is 0 bytes. From this, it can be

concluded that a security condition for READ BINARY . . . is not
necessary, which means that the EF may always be read

5.10 ATOMIC OPERATIONS

A requirement that is frequently imposed on smart card microcontroller software is that certain
parts of it must execute either completely or not at all. Operations that are indivisible and thus
fulfill this requirement are called ‘atomic’ operations. They always occur in connection with
EEPROM write routines.

Atomic operations are based on the idea of ensuring that when an EEPROM write access
occurs, the data in question must never be written only partially. This could happen if, for
example, the user pulls the card out of the terminal at the wrong instant or there is a sudden
power failure. Since the smart card has no buffer for electrical energy, the software in the card
would immediately lose its ability to do anything at all in such cases.

Particularly in the case of electronic purses in smart cards, it is essential to ensure that file
contents are complete and correct at all times. For instance, it would be absolutely fatal if the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 323 of 1123

5.10 Atomic Operations 289

balance of a purse were not completely changed to its new state if a card is suddenly pulled
out of the terminal. Entries in log files must also always be complete. Since the hardware of
a smart card does not support atomic operations, they must be implemented in software. The
methods that are used for this are in principle not new. They have been used for a long time
for databases and hard disk drives. The basic procedure of a method that is used in smart card
operating systems is described here. This error recovery procedure is transparent to the outside
world and thus does not require any changes to existing applications.

For purposes of demonstrating how this method works, let us assume that data destined for
a particular file are sent to the smart card via its interface. This would be a typical process with
an UPDATE BINARY command, for example. You can follow the exact process by referring
to Figure 5.37 while reading the following description.

1.
2. flag = buffer content valid
4. flag = buffer content invalid

3.

new data

buffer

data in the file

flag

Figure 5.37 Example of a possible implementation of an atomic operation in a smart card operating
system. This procedure can of course be extended to process multiple data elements in parallel

In the EEPROM portion of the operating system, a buffer is created that is large enough
to accept all of the necessary data. This buffer has a status flag, which is also stored in the
EEPROM. The state of the flag can be set to either ‘data in buffer valid’ or ‘data in buffer not
valid’. In addition to the buffer, there must also be suitable locations in memory for the target
address and the current volume of the buffered data.

The procedure works as follows. In the first step, the data starting at the target address,
for example in a file, are copied to the buffer according to the specified physical address and
volume of the data. The buffer flag is then set to ‘data in buffer valid’. In the following step,
the operating system copies the new data to the desired address, and then changes the buffer
flag back to ‘data in buffer not valid’. Whenever the operating system starts up, it checks the
buffer flag before sending the ATR. If the flag is set to ‘data in buffer valid’, the data in the
buffer are automatically written to the memory area specified by the stored address and volume
information.

This mechanism ensures that the data in the file are valid under all circumstances. If a routine
is aborted at any time in the process of program execution, the data in the smart card EEPROM
can always be restored. For example, if the cardholder pulls the card out of the terminal at
the third step of the procedure – in which the new data are written to the EEPROM – the new
data will be only partially present in the file. When the card is again activated in a subsequent
session, the operating system notices that there are valid data in the buffer and copies them to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 324 of 1123

290 Smart Card Operating Systems

the appropriate location. This restores the original status of the file, so the contents of all of
the files in the EEPROM are consistent. The initial waiting time between the individual bytes
of the ATR provides an excellent opportunity to make this correction.7

The procedure just described has two serious drawbacks. The first is that the buffer will have
the heaviest write/erase stress of all of the EEPROM. Since the number of write/erase cycles
for any given region of the EEPROM is limited, it is highly probable that this important buffer
region will be the first part of the EEPROM in which write errors start to occur. Such errors
would mean that the smart card could no longer be used, since the integrity of the data would
no longer be assured. This problem can be made less severe by using a cyclic structure for the
buffer, so that the same region is not written every time. Unfortunately, this forces the buffer to
take up a relatively large amount of memory. The second disadvantage of this implementation
of atomic operations is that it increases program execution time, due to the obligatory write
access to the buffer. In the worst case, the file access can take three times as long with this
procedure as it would if the data were written directly to the file in the EEPROM. It is thus
common to limit such buffering to write accesses to certain files or data elements, rather than
buffering all EEPROM accesses. This can be specified by an attribute in the header of each file.

This procedure can be very easily extended to writing not just a single data element into
the buffer, but instead several data elements. If this is done, it is even possible to have write
accesses to several different files or data elements be performed either completely or not at all.
Practically all smart cards operating systems, such as Java Card, support atomic operations,
and they may also allow relatively long sequences in the program flow to be marked as being
atomic, thereby protecting them against power interruptions.

5.11 OPEN PLATFORM

Due to its activities as one of the largest card issuers, Visa International was confronted rela-
tively early with the problem of managing manifold applications from a wide variety of sources
in multiapplication smart cards. This led to the generation of the Visa Open Platform (VOP)
specification, which defines an interface inside smart card operating systems for managing
smart card applications. Since 1999, the publisher of this specification is the Global Platform
Committee [Global Platform], whose function is to standardize technologies for multiapplica-
tion smart cards. The name of the specification was also changed to ‘Open Platform’ (OP) at
that time. The OP specification is the most important international specification for application
management in multiapplication smart cards, and it can be obtained free of charge from the
Web server of the Global Platform Committee.

The OP specification is intentionally independent of any particular operating system, which
allows it to be supported by all types of smart card operating systems, both proprietary and
open (such as Multos and Java Card). In practice, however, the OP specification has primarily
become the de facto standard for loading and managing Java-based applications with the Java
Card operating system. For instance, the ETSI GSM 03.19 standard regards Open Platform as
the standard interface for downloading applications.

The purpose of the OP specification is to provide card issuers with mechanisms for securely
managing third-party applications in the smart cards they have issued. To this end, Open

7 See also Section 6.2, ‘Answer to Reset’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 325 of 1123

5.11 Open Platform 291

Platform defines the basic architecture of a multiapplication smart card. This is shown in
Figure 5.38, and it is very important for understanding these mechanisms.

runtime environment

provider application

issuer applicationcard manager

Open Platform API

provider security domain

provider security domain

Figure 5.38 Basic architecture and components of Open Platform

The runtime environment forms the foundation for all applications. It provides an application
repair facility, a hardware-independent interface (API) and storage space for the data and
programs of the various applications. The card manager is built on top of this foundation. It is
the core component of Open Platform, and it can be selected via a freely chosen AID. The card
manager can thus be regarded as the IT representative of the card issuer in the multiapplication
smart card. It manages the runtime environment with respect to the applications and provides
them with interfaces for oncard services and interfaces to the outside world. This also includes
offcard selection of applications in the smart card and dispatching APDUs coming from the
outside world to their corresponding applications. The card manager also ensures, among other
things, that the maximum memory sizes specified by the card issuer for application providers
cannot be exceeded when their applications are loaded.

In order to manage the information in the smart card related to the various security domains,
applications, life-cycle stages of the components and the like, the card manager has a data area
called the card registry. This is the central location in the smart card for managing all data
related to Open Platform.

In the same way, a security domain is the representative of an application provider for matters
related to informatics and security. The function of security domains is to provide keys and
cryptographic services for applications that are independent of those provided by the card issuer.
Some OP implementations support the downloading of security domains. The Open Platform
API (OP API) allows applications to access the management services of the card manager.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 326 of 1123

292 Smart Card Operating Systems

Applications in a multiapplication smart card can be divided into two classes with regard to
Open Platform. The first class is immutable applications, which are loaded into the memory
of the smart card during card completion and remain there in a fixed form. The second class is
mutable applications, which can be loaded, installed and removed either when the smart card
is completed or after it has been issued.

The OP specification also describes a generic data format for loading applications into smart
cards. The data to be transferred are TLV-coded and consist of the actual data to be loaded for
the application (the load file) preceded by an optional data authentication pattern (DAP) block
to cryptographically secure the data and the loading process.

Once an application has been loaded into the smart card, the first stage of its life cycle begins.
This life cycle is also defined by the OP specification. The first stage is called ‘installed’, and it
means that the application has been stored in the memory allocated to it and properly linked to
the operating system, so that it can be run. However, the application cannot yet be selected from
outside the smart card when it is in this state. This is possible in the next state, which is called ‘se-
lectable’. The following state, which is called ‘personalized’, is entered after the newly loaded
application receives its individual or person-specific data. After this comes an interval during
which the application is used by the card user. A possible further state is ‘blocked’, in which the
application cannot be used, although this condition can be reversed. This state can be assumed
by the application itself, for instance if it diagnoses a security problem. The ‘locked’ state is
similar to the blocked state, except that it is irreversible. The ‘logically/physically deleted’
state indicates that the particular application has been logically or physically deleted from the
smart card. The actual deletion state depends on the smart card operating system that is used.

card manager

card manager

card manager

card manager

card manager

card manager card manager

application

application

load file
loaded

logically/physically
deleted

locked

personalized

blocked

selectable

installed

Figure 5.39 The possible states of an application in a multiapplication smart card that complies with
the Open Platform specification. The entities responsible for each of the state transitions are indicated

One of the important functions related to Open Platform is ‘delegated management’. This
refers to functions that allow an application provider to load applications into a smart card

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 327 of 1123

5.12 Downloadable Program Code 293

(designated loading), install applications (designated installation) and delete applications (des-
ignated deletion), all independent of the card issuer. These functions are available to the appli-
cation provider if his security domain is given these privileges when it is installed by the card
issuer.

Several special commands necessary for the functions of Open Platform are defined in the OP
specification. Some of these commands are strongly based on the ISO/IEC 7816-4 standard,
but they do not fully correspond to the commands in this standard. Table 5.21 provides a
summary of the OP commands for smart cards, with brief descriptions.

Table 5.21 Smart card commands defined in the Open Platform specification

Command Brief description

DELETE Delete a uniquely identifiable object (e.g., a load file, application or
key)

GET DATA Read a data object; based on ISO/IEC 7816-4
GET STATUS Read life-cycle state information for the card manager, application

and load file. This command is the complement to SET STATUS
INSTALL Install an application by invoking various oncard functions of the

card manager and/or security domain
LOAD Load an application by transferring the load file
PIN CHANGE/UNBLOCK Change or unblock a PIN; based on ISO/IEC 7816-4
PUT DATA Write one or more data objects; based on ISO/IEC 7816-4
PUT KEY Write one or more new keys or replace an existing key or keys
SELECT Select an application or file; specified in ISO/IEC 7816-4
SET STATUS Set life-cycle state information for the card manager, application

and load file. This command is the complement to GET STATUS

5.12 DOWNLOADABLE PROGRAM CODE

In the first (German) edition of this book, which was published in 1995, the section entitled
‘Downloadable Program Code’ occupied approximately one and a half pages. In this edition,
the amount of text devoted to this subject has increased by a factor of 20. This alone indicates
how important this subject has become.

There is probably no risk of exaggeration in saying that a full paradigm change with regard to
downloadable program code in smart cards occurred within one year (1997–98). Downloadable
program code in smart cards is now considered to be the rule rather than the exception.
The reasons for the sudden increase in the importance of downloading executable program
code cannot be completely and unambiguously ascertained, even in retrospect. One trigger
may have been the floating-point error (in the FDIV instruction) in the then widely used
Pentium processor, which became common knowledge in 1994. This could not be corrected
by downloading new software, since the error was in the hardware. However, there were
software patches (work-arounds) available for many applications.

It is likely that this error is the reason why some large system operators, shortly after
it became well known, suddenly made plans to allow executable code to be downloaded to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 328 of 1123

294 Smart Card Operating Systems

Terminal Smart card

SELECT the card manager using the AID � return code := selection result
IF (return code = OK) THEN card manager �Response [return code]
successfully selected
ELSE abort
Authentication of the outside world with respect �
to the Open Platform card manager
(e.g. using EXTERNAL AUTHENTICATE)
IF (authentication = OK) THEN continue process �

ELSE abort
INSTALL with parameter ‘load an application’ �
REPEAT {

LOAD using the data in the load file �
IF (return code = OK) THEN loading successful �Response [return code]
ELSE abort }

UNTIL (load file fully transferred)
INSTALL with parameter ‘install an application’ �
INSTALL with parameter ‘make application selectable’ �

Figure 5.40 Summary of the basic command sequence for storing a new application in a smart card
with Open Platform

smart cards. One of the largest applications that can accept executable program code is the
German Eurocheque card. However, this capability is not presently used, so it in fact represents
only a ‘sheet anchor’ to be used in case serious programming errors are discovered. In the
GSM system, there are also operating systems for SIMs that allow program code for special
applications to be downloaded via the radio interface.

However, in contrast to all other computer operating systems, with smart cards it is not
common practice to load programs into the cards after they have been issued and then run these
programs as desired, despite the fact that this (along with storing data) is actually a primary
function of every operating system. There are naturally good reasons why this particular
functionality has been largely absent in smart cards up to now.

From a technical and functional perspective, executable program code (stored in EFs, for
example) does not present any problems at all. Modern operating systems can manage files
containing executable code, and they also allow executable code to be downloaded after the
card has been personalized. This makes it possible, for example, for an application provider
to have executable code in the smart card that is not known to the producer of the operating
system. An application provider could thus load a private encryption algorithm into the card
and have it run there. This would allow the knowledge of the security features of the system
to be distributed among several parties, which is one of the basic requirements for secure
systems.

Another significant reason for allowing program code to be downloaded is that it makes it
possible to correct programming errors in fully personalized cards (bug fixing). Known errors

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 329 of 1123

5.12 Downloadable Program Code 295

in the operating system can thereby be corrected or at least rendered less critical by using
downloaded code.

Downloadable program code

interpreted program codecompiled program code

program code in the
machine language of the
target hardware

interpreted pseudo-
assembler code

portion of a virtual machine

complete virtual machine

Figure 5.41 Classification of the methods for downloading and running executable program code with
a smart card operating system

There are two basic ways to run downloaded code in a smart card. The first and technically
simplest way is to load native code (code that has been compiled into the machine language
of the target processor) into files in the smart card. This program code must of course be
relocatable, since the memory addresses are not known outside the card. In addition to its
technical simplicity, this solution has the advantage that the program can be run at the full
execution speed of the processor, which makes it particularly attractive for downloaded al-
gorithms. In addition, there is no need for extra program code for an interpreter. The main
problem with this approach is that the downloaded program can also access the memory re-
gions of other applications if the microcontroller does not have a memory management unit
(MMU).

The second way to execute downloadable code in a smart card is to interpret the code. In this
case, the interpreter can check the memory regions that are being addressed while the program
is running. However, the interpretation must run quickly, since there is no benefit to having code
that runs slowly. The implementation of the interpreter should also occupy the least possible
amount of memory, since only a very limited amount of memory is available. Presently, the
best known versions of this approach are the Java Card specification [Javasoft, JFC] and the C
interpreter MEL (Multos Executable Language) from Multos [Maosco] (as well as Windows
for Smart Cards, which has now again been cancelled). There is even a Basic interpreter for
smart cards, which has been available for several years [Zeitcontrol]. Incidentally, interpreters
are not suitable for correcting errors in smart card operating systems, since they make a specific
region of protected memory available to an application program and thus do not have access
to the areas where the operating system routines and data are stored.

The age-old problem with interpreters is their slowness, which is an inherent property of
interpreted code. There are several different approaches that can be used to compensate for
this drawback and keep the size of the program code of the actual interpreter as small as
possible. This simplest approach is to interpret a pseudocode, which ideally is as similar as
possible to the machine instructions of the target hardware. The processing speed of the inter-
preter is thus relatively high because the pseudocode is close to the machine language, while

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 330 of 1123

296 Smart Card Operating Systems

machine-independent program code can still be used. Memory accesses during interpretation
can be monitored, but this is not mandatory. A slower solution, which is also somewhat more
complicated in terms of programming logistics, is to split the interpreter into an offcard part
(the ‘offcard virtual machine’) and an oncard part (the ‘oncard virtual machine’). This ap-
proach is taken by many current Java Card implementations. Its main advantages are reliable
memory protection and complete hardware independence. However, dividing of the interpreter
into oncard and offcard parts has drawbacks. It makes cryptographic protection mandatory for
transferring programs between the two parts of the interpreter, since otherwise the oncard part
of the interpreter could be deliberately caused to misbehave by using manipulated program
code.

The optimum technical solution is to have a complete interpreter in the smart card. This
makes it possible to load any desired program into the card and run it without any risk to other
programs located in the card. However, the code size of a full interpreter is so large that it will
certainly take several years and several generations of smart card microcontrollers before this
solution becomes widely established in the smart card world.

5.13 EXECUTABLE NATIVE CODE

Presently, most microcontrollers for smart card still have processors that do not have any sort
of memory protection mechanisms or any supervisory or monitoring capability. As soon as the
program counter finds itself addressing ‘foreign’ machine code, control of all of the memory
and all of the processor’s functions rests entirely with this executable code. At this point, it is no
longer possible to restrict the functions of the executable program. Every addressable memory
location can be read by bypassing any memory manager or handler that may be present, and
memory locations in EEPROM and RAM can also be written. The entire content of the memory
could thus easily be sent to a terminal via the card interface.

This is precisely the weak point of downloadable and executable programs. If everyone
was allowed to download programs, or if programs could be downloaded by circumventing
protective mechanisms, the security of any secret keys or other confidential information within
the entire memory region could be no longer assured. This would be the ideal form of attack
on a smart card. The card would still behave in the same way as a non-manipulated card with
respect to the outside world, but special commands could be used to read out its entire memory
or write data to portions of the memory

There is yet another compelling argument against third-party downloadable programs. The
producer of the files to be downloaded must know all of the entry points (jump addresses) and
calling parameters of the operating system routines in order to use important operating system
functions. However, some operating system producers prefer to reveal as little information as
possible about the internal processes and addresses of their program code, since they consider
such information to be critical with regard to the security of their products. In addition, it would
be necessary to verify that the downloaded code does exactly what it is supposed to do without
any errors, and without harboring a Trojan horse. This can only be done by an independent
party.

The most elegant solution to this problem, and probably the one holding the most promise,
is to use a hardware-based memory management unit (MMU) in the smart card, in addition

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 331 of 1123

5.13 Executable Native Code 297

to the actual processor. This approach uses hardware circuitry to monitor the program code
while it is executing in order to verify that it stays within its assigned boundaries. Only with
such a solution is it possible to allow application operators to download programs that have
not been certified by the card issuer, while still preserving the security of the card. Each
such application would be assigned a physically contiguous region of memory, representing
a DF. The MMU would then monitor the assigned memory boundaries when a downloaded
program in a DF is called. If these boundaries were exceeded, the program could be im-
mediately halted via an interrupt, and the application could then be blocked pending further
action.8

There are two different ways to implement downloadable code capability. The first is to
put the program code in an EF whose structure is ‘executable’. The content of this file can be
executed by means of the EXECUTE command after it has first been selected. Depending on
the application, prior authentication may be required. The parameters for running the program
are passed to the smart card in the EXECUTE command, and the response generated by the
program in the EF is sent back to the terminal.

DF DF

... ...

EF application-
specific
commands

EF EF

Figure 5.42 The two ways in which executable program code can be entered into a standard smart card
operating system: as an executable file (left) or as application-specific commands (ASC) (right)

The second approach takes a somewhat different form, since it is based on the principles of
object-oriented design. This option is described in the EN 726-3 standard (among others) as
‘application-specific commands’ (ASC). As specified in this standard, the complete application,
including all of its files and application-specific commands, is contained in a single DF. The
program code can be downloaded into a memory region within this DF that is managed by
the operating system. This is done using a special command that transfers all the necessary
information to the smart card. If the DF in question is selected and a command is then sent
to the card, the operating system checks whether the command belongs to the downloaded
commands. If it does, the operating system immediately calls the program code located in the
DF. If the command instead selects a different DF, the downloaded commands effectively do
not exist in the context of the command.

8 See also Section 3.4.3, ‘Supplementary hardware’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 332 of 1123

298 Smart Card Operating Systems

operating system

operating system

EFCode or
noyes

execute the
 program code
 stored in the
EF or ASC

receive buffercommand APDU

response APDU transmit buffer

Figure 5.43 Basic calling procedure for executable program code stored in an EF, or programs that
work within the framework of ASCs, in a standard smart card multiapplication operating system

Example of native program code downloaded to an EF

There are several large smart card applications whose operating systems allow executable
code to be downloaded after the card has been personalized. However, the specifications
for this capability are almost always confidential, and in some cases, even the fact that this
capability exists is confidential. Consequently, we can only describe the general principles of
this capability here, independent of any actual operating system. A possible implementation
is described in detail following the description of the basic principles.

In the first place, the program code to be downloaded must satisfy certain basic prerequisites
before it can be run in a smart card. It may sound obvious, but the most important prerequisite
is that the processor type must be known (for example, 8051 or 6805). Particularly in a hetero-
geneous environment with many different types of smart card microcontrollers, satisfying this
requirement may well involve a certain amount of effort. Along with this comes the require-
ment that the smart card operating system and its application programming interface (API)
must be known, including all entry points and the parameters passed to and returned from its
routines.

The program code to be downloaded, which is always native code (machine code of the
target processor), should be programmed so that it is relocatable. If it is not, it must be relo-
cated on the fly by the smart card when it is downloaded. The requirement for relocatability,
which means that the program can be shifted within the memory, comes from the fact that
the memory addresses where the code will be stored are known only to the smart card op-
erating system and not to the outside world. A program is usually made relocatable during
the programming stage. In concrete terms, relocatability means (for instance) that jumps to
absolute physical addresses are not allowed, but only jumps relative to the address of the jump
instruction.

If the program code satisfies all of these requirements, it can in principle be loaded into the
memory of a smart card and run there. The program code can of course be structured as desired.
Figure 5.44 shows a possible structure, but the actual structure can be completely different,
depending on the operating system. The first data element in this example is a unique label
that tells the smart card operating system that this is program code. Such a label is commonly

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 333 of 1123

5.13 Executable Native Code 299

called a ‘magic number’. For example, with Java Class files, it is a sequence of four bytes
forming the word ‘CAFEBABE’.

label

CALL

executable
program code

RETURN

startup
routine

function
routine

shutdown
routine

resistant
routines

EDC

Figure 5.44 A possible structure for native program code that can be downloaded to an EF and then
run from the EF

The program code starts just after the label. In this example, it is divided into four parts.
The first part contains all of the necessary initializations, data saving and the like. Following
this startup routine comes the actual function routine, which contains the program code for
the desired task. This is followed by the shutdown routine, which is the counterpart to the
startup routine. The shutdown routine ensures that the program is correctly terminated, and if
necessary it restores any saved data and adjusts the stack.

The fourth part of the program, which follows the first three parts, is optional. It can include
program code to be resistantly incorporated into the smart card software. Bug fixes for the
operating system would typically be located here. The three prior routines would then modify
pointers or handles so that the routines in this section would be permanently linked into the
software of the operating system. The entire process is very similar to the well-known TSR
(terminate and stay resident) routines of the DOS era. These routines only had to be called
once in order for them to anchor themselves in the operating system until the next reset. In the
case of a smart card, these resistant routines would be installed permanently after being called
once, rather than only for the duration of a single session.

Here we assume that the downloaded program is called using a Call instruction and that it
returns control to the calling program with a Return instruction. In principle, a direct jump to
the first machine code instruction (using a Jump instruction) would also be possible, but this
would have the disadvantage that the called program would not know which program called it.

For insurance against accidental changes, the entire data block should be protected by an
error detection code (EDC). Alternatively, a digital signature could naturally be used to provide
additional protection. The smart card would then have the public key, and the producer of the
program code would hold the associated private key. This would provide binding assurance
that authentic program code can be run in the smart card.

The downloaded program code can be stored either in an EF or in a program memory region
within a DF that is not visible to the outside world. The first option is described in some detail
below, since it is encountered significantly more often in actual practice.

EFs with transparent structures are ideal for storing program code, since they can be ef-
fectively written in several sections using UPDATE BINARY commands with offsets. Also,
their maximum length of more than 65 kB is more than adequate, even for extensive programs.
These EFs can have an attribute of ‘executable’, which means that the program code stored in
them can be directly invoked using an EXECUTE command.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 334 of 1123

300 Smart Card Operating Systems

Instead of this, some operating systems have a file structure called ‘execute’ that is based
on the transparent structure. This is not particularly important with regard to the outside
world, especially since both types can normally be accessed using the UPDATE BINARY and
EXECUTE commands. The EF can be selected via its FID or an SFI. The access condition
for reading is always set to ‘never’. Writing data is normally allowed after prior authentication
and using secure messaging.

Figure 5.45 shows the essential elements of a procedure for loading program code into an
EF in a smart card in a secure manner. If a suitable EF is not already available, it must first be
created. Figure 5.46 shows in simplified form that the EF must first be selected, after which the
program code must be run using an EXECUTE command. Data can optionally be transferred
in the body of the command. If necessary, data can also be returned to the terminal in the
response in a similar manner. Naturally, the called program must retrieve any data that is sent
to it by reading it from the receive buffer, generate its response and write its response to the
transmit buffer.

Background system Smart card

Select an EF with an ‘execute’ �
structure
Mutual authentication of the smart �

card and the terminal �
Enable secure messaging
Send n UPDATE BINARY �
commands containing the executable
program code in the data segment,
protected by secure messaging

Figure 5.45 A possible procedure for loading executable program code in an existing EF with an
‘execute’ structure. The access conditions for UPDATE BINARY prescribe mutual authentication of the
smart card and the terminal and the use of secure messaging for data transmission

Background system Smart card

Select an EF containing �
executable program code
Send an EXECUTE command � Check the label (‘magic number’)

of the program
Check the EDC of the program
Run the first machine instruction
using CALL

Figure 5.46 A possible procedure for running executable program code, which in this example is stored
in an ‘execute’ EF

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 335 of 1123

5.13 Executable Native Code 301

Due to the severe requirements for unambiguous identification of the microcontroller, oper-
ating system and internal software interfaces, as well as those related to system management,
it is usually only possible to download programs using an online connection to a background
system. The databases located in the background system either hold all the necessary data
keyed to the unique chip number, or they receive this information online via a direct end-to-
end link with the smart card. Using this information, a program with the desired functionality
is selected from those available in the system and transferred to the smart card using the pre-
scribed security mechanisms. The secret keys for this are normally managed and used in the
background system exclusively within a security module. The usual procedure for the entire
process is shown in Figure 5.47.

- CPU type
- OS version
- OS API

interfacebackground system

database with
information about
all cards in use

message:
"program code loaded"

smart card

card number

mutual
 authentication

create EF Exe

load program code
in EFExe

program code
versions

Figure 5.47 The procedure used for downloading native program code online from a background system
into a smart card EF. This procedure can be used to transfer various types of program code to a smart
card according to the smart card operating system and microcontroller hardware present in the card. This
procedure could easily be implemented in a GSM application, for example

The method for loading native code into a smart card that has just been described has some
attractive practical advantages. The procedure is simple and robust, and it can be implemented
in a smart card operating system using a small amount of program code. The program code to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 336 of 1123

302 Smart Card Operating Systems

be run does not have to be interpreted, since it can be directly executed by the processor. This
yields a high processing speed, so this method can be used to downloading complex algorithms
(such as DES, IDEA and the like).

Due to their low processing speeds, interpreter-based systems cannot provide this function-
ality in the foreseeable future. If there is no hardware-based memory management (MMU) to
restrict free access to the memory, this method provides an excellent way to correct errors in
the smart card software after the card has been issued. If an error is discovered, this method
provides a unique ‘back door’ that can only be opened using this sort of software downloading.
Other technologies, such as Java for smart cards, implement strict and unconditional memory
partitioning and thus cannot modify the code of the operating system. If an MMU is present,
it still might be possible to invoke an administrator mode to temporarily deactivate memory
supervision.

This brings us to the drawbacks. Downloading executable native code presupposes a high
level of knowledge of the hardware and/or the operating system of the smart card. It may
be necessary to have a separate program on hand for each type of smart card used in the
system, even though all of these programs would have the same functionality. The second
major drawback of this method is that, for reasons of security, the program must be developed
by the card issuer (or under the authority of the card issuer). Loading unknown or third-
party programs into the smart card must be strictly prohibited, since the downloaded program
assumes control of the microcontroller once it is started and cannot be governed in any manner.
Such a program could for example read out the secret keys of other applications present in the
card and send them to the terminal via the I/O interface.

Evaluation of the program code by the card issuer provides only weak protection against
attacks of this sort. In this case, better protection can be obtained using hardware-based mem-
ory management, which makes only certain regions in EEPROM and RAM available to the
downloaded program and immediately terminates the program if an attempt is made to exceed
the boundaries of these regions.9 This makes it possible to fully isolate the applications in the
smart card. Presently, due to the absence of suitable MMUs, the only available expedient is to
carefully review the program to be downloaded.

5.14 OPEN PLATFORMS

With increasing use of Java Card, Multos and Windows for Smart Cards, the term ‘open
platform’ has also come into more general use. This term refers to smart card operating
systems that allow third parties to load applications and programs into smart cards without the
involvement of the producer of the operating system. Generally speaking, most open platform
specifications are public and are generated by a consortium of companies (such as Java Card
Forum). Most open smart card operating systems are available from several producers, who
provide systems having similar or mutually compatible functions.

The opposite of an open platform is a ‘proprietary’ platform. This term is often used in a
deprecatory sense to refer to a company-specific solution. In many cases, the specifications for
such platforms are not fully published or are the property of a single company.

9 See also Section 3.4.3, ‘Supplementary hardware’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 337 of 1123

5.14 Open Platforms 303

However, both terms – ‘open’ and ‘proprietary’ – are used in a manner that is by no
means unambiguous or non-partisan. In many cases, it is instead marketing-driven. Objectively,
many so-called ‘open’ smart card operating systems are rather proprietary and dependent on a
particular company. Truly open platforms in the sense of Linux, with free access to the source
code, no licensing restrictions and independence from specific companies or organizations,
presently do not exist in the area of smart card operating systems.

5.14.1 Java Card

In 1996, Europay presented a paper on ‘open terminal architecture’ (OTA) that described and
largely specified a Forth interpreter for terminals. The objective was to generate a uniform
software architecture for terminals in order to create a basis for hardware-independent termi-
nal programming. Given this, a specific application (such as paying with a credit card) would
only have to be programmed once, and the resulting software would run without any modi-
fications on all terminals made by various manufacturers. Although the proposed design has
never been fully implemented, it certainly gave rise to extensive discussions in the smart card
world.

Consequently, when it became known in the fall of 1996 that Schlumberger was developing
a smart card that could run platform-independent programs written in the Java language, no
one was particularly surprised. The idea of combining an interpreter with a memory-poor
microcontroller was already well known from the OTA proposal. The published specification
(Java Card 1.0) provided an application programming interface (API) for integrating Java into
an ISO/IEC 7816-4 operating system, in order to allow Java to access the standard smart card
file system with its MF, DFs and EFs.

Many producers of smart card operating systems were initially astonished at the idea that
a language such as Java, which normally requires well over a megabyte of memory, should be
used with smart cards. However, nearly all major smart card manufacturers were represented
at the first meeting with Sun, the company that developed and promoted Java, in the spring of
1997.

This was the first conference of what has since become known as Java Card Forum (JCF),
which functions as the international standardization panel for Java in smart cards. The tasks
of the technical group of Java Card Forum are to define a subset of Java for use in smart cards,
to specify the outlines of the Java interpreter (known as the Java virtual machine or JVM) and
to define both a general-purpose API and application-specific APIs (for telecommunications
and financial transactions, for example). These APIs form the interface between the smart
card operating system and Java. The task of the marketing group of JCF is to promote Java
technology for smart cards.

The names of the current specifications at the time of writing10 are Java Card Virtual
Machine Specification, Java Card Runtime Environment (JCRE) Specification and Java Card
Application Programming Interface. Up-to-date versions are available at no charge from the
WWW server of Java Card Forum [JCF].

10 Summer 2002

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 338 of 1123

304 Smart Card Operating Systems

The Java programming language

In 1990, a research group at Sun managed by James Gosling started developing a new pro-
gramming language. The objective was to create a hardware-independent, secure and modern
language that could be used for microcontrollers in consumer products (such as toasters and
espresso machines). A large variety of microcontroller types with different architectures are
used in such products. This non-uniformity, combined with frequent hardware modifications,
makes it difficult for software developers to write portable program code. Remarkably enough,
smart cards exactly match the characteristics of the original target application area.

The programming language was first called ‘Oak’, after the oak furniture in James Gosling’s
office, but in 1995 it was renamed ‘Java’11 and the objectives were redefined. In the summer
of 1995, Sun began to intensively promote Java as the hardware-independent language for the
heterogeneous Internet. The slogan coined by Sun, Write Once – Run Anywhere, which was
frequently quoted at that time, probably provides the clearest indication of the intended level
of hardware independence.

The beginning of the widespread use of Java coincides with the beginning of the enormous
growth of the World Wide Web (WWW).12 For a variety of reasons that were not just technical,
but which entirely arose from the realms of business politics and worldviews, the new language
excited researchers, universities and software companies throughout the world [Franz 98]. As
a result, Java became the de facto standard for Internet applications within an extremely short
time. Naturally, the characteristics of this new language favored this development.

The Java programming language is a fully object-oriented and strongly typed language. It
is easily learned by programmers, since it has much in common with C and C++. Java is
also a robust language, which means that it does not permit the tricks and popular but dubious
techniques possible with C and C++ (for example). For example, no pointers are used in
Java, field boundaries are monitored at run time and there is strict type checking. In addition,
memory management is handled by Java and an associated ‘garbage collector’, so ‘memory
leaks’ (a much-feared phenomenon in C and C++) are impossible by design. Java is also a
secure programming language, which means that when a program is run the functions that it
wants to perform are monitored while it is running, so the runtime environment can stop the
program if necessary. This is one of several possible reasons for calling an exception handler. If
an exception occurs, a call is made to a specific routine in which the response to this particular
case can be defined.13

The majority of these features are only possible because Java is an interpreted programming
language that is not executed directly by the processor. Java also has other features, such as
multithreading capability and support for distributed processing, but these are presently not
supported in the smart card environment.

The intention of Sun was to have Java standardized in the form of an ISO standard. However,
for a number of reasons this did not happen. One of the reasons was doubtless that the five-year
review and revision cycle of ISO is too long for a new programming language such as Java,
since it would have made it difficult to make the necessary modifications arising from practical

11 In this context, ‘Java’ is American slang for ‘a cup of coffee’, and does not refer to either the South Pacific island
or the French biscuits with the same name

12 In 1993, there were only three WWW servers in the whole world!
13 See also [Arnold 00]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 339 of 1123

5.14 Open Platforms 305

experience, as well as delaying the introduction of such modifications. Another conceivable
reason may be that before Java technology can be used in products, such as smart cards, a
rather costly licensing agreement must be concluded with Sun. This is contrary to the usual
convention regarding ISO standards.

The characteristics of Java

Programs written in Java are translated into ‘Java bytecode’ by a compiler. Java bytecode is
simply processor-independent object code. In a manner of speaking, bytecode is a program
consisting of machine instructions for a virtual Java processor. This processor does not actually
exist; instead, it is simulated by the target processor. This simulation takes place in the Java
virtual machine (JVM or VM), which is the actual interpreter. Seen from a different perspective,
the JVM is a simulation of the Java processor on an arbitrary target system. The target processor
in turn naturally uses native code. The main advantage of this arrangement is that only the
JVM, which is programmed in native code, has to be ported to a particular target processor.
Once this has been done, the Java bytecode will run on the new system.

Since the runtime task of the VM involves more than just mindlessly interpreting the
bytecode and includes type checking and monitoring accesses to objects, the VM is also called
the ‘sandbox’. This name graphically suggests that a Java program is only allowed to work
within its own environment (sandbox) and is not allowed to leave this environment, since the
VM will otherwise put a stop to its activities.

A compiled Java program, which means one that has been translated into bytecode and
provided with certain supplementary information, is stored in a ‘class file’. Class files are
executed by the Java virtual machine after they have been loaded. One or more class files
constitute an ‘applet’, which contains a complete smart card application and has its own
application identifier (AID). In the context of Java for smart cards, applets are sometimes
called ‘cardlets’.

The hardware independence of Java naturally has its price, which primarily consists of
its very slow execution speed compared with other standard programming languages. This
problem has still not been solved in a satisfactory manner, although further developments and
improvements of Java are focused on this issue. One step that is already being taken is to use a
‘just-in-time’ (JIT) compiler, which translates the Java bytecode into the machine language of
the processor the first time the program is run. Although this causes the program to run rather
slowly the first time it is used, it runs significantly faster afterwards. However, the software of
a JIT compiler is rather complex, and the limited memory space of smart cards means that it
will be several years before such a compiler can be implemented in a smart card.

Direct compilation of Java programs into the machine language of the target processor would
not be worthwhile in the heterogeneous world of smart cards, in contrast to the PC world. The
last remaining alternative is to use special hardware. One possibility is to integrate a special
Java processor on the semiconductor die, in addition to the 8051 and 6805 kernels presently
used. This would provide the advantage of allowing time-critical routines (such as those used
for data transmission or cryptographic algorithms) to still be programmed in assembler, while
allowing a high-level language, such as Java, to be used for all higher software layers.

Technically, this would not present any problems, as can be seen from the following facts:
Sun’s Java chip (microJava 701) has an edge length of 7 mm with a 0.25-µm process, works

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 340 of 1123

306 Smart Card Operating Systems

program
generation

target
processor

linked
object code

(native
program code)

compiler
or

assembler

linker

object
code

C code or
assembler

code

Figure 5.48 Top-level data flow diagram of the usual process for converting source code in C or
assembler into executable machine code for the target processor

program
generation

Java
compiler

Java
VM

class file

Java source
code

class file

JIT
compiler

Java
processor

general-
purpose

processor

general-
purpose

processor

native program code native program code
bytecode

(native program code
for Java processor)

general-
purpose

processor

native program code

Figure 5.49 Top-level data flow diagram of possible procedures for converting Java source code into
executable machine code for a target processor. Although the route shown at the left is provided by some
compiler producers, it does not correspond to the original philosophy of Java, since it does not maintain
hardware independence

at 200 MHz with a 2.5-V supply voltage, contains 2.8 million transistors and has a power
consumption of only 4 W. Since this chip includes many functions that are not needed in smart
cards (such as floating-point arithmetic and controlling external memory), it would certainly
be technically possible to integrate a stripped-down Java processor meeting the needs of smart
cards into a smart card microcontroller.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 341 of 1123

5.14 Open Platforms 307

Another possible solution to the speed problem is hardware extension of the instruction sets
of smart card processors. Using this approach, approximately 80 % of the machine instructions
of the Java VM could be handled by the processor. From a technical perspective, this would
not be particularly difficult, and it would offer a pronounced increase in speed. This approach
is presently preferred by many manufacturers of smart card microcontrollers as a solution to
the speed problem.

Table 5.22 Program execution time versus programming language, taking C/C++
as the reference. The stated values for programs running on a PC are estimates and
are only intended to serve as guidelines. The reference PC processor is a 300-MHz
Pentium II, while the reference Java processor is a 200-MHz picoJava 701

Programming language Execution time

C, C++ 1
Java executed by an interpreter 20–40
Java executed by an interpreter using a JIT compiler ≈5
Java program code compiled as native code 1–2
Java executed by a Java processor ≈1.2

Another option for increasing the execution speed of Java bytecode is to use a 32bit smart
card microcontroller. However, even with a 32-bit processor the execution speed of interpreted
Java code is still 10 to 20 times slower than program code written in C. The primary advantage
of these new processors is that they can be used for a wide variety of applications.

The disadvantage of interpreted program code relative to compiled program code, namely
inadequate processing speed, can be strongly reduced by using suitable programming inter-
faces for the interpreter. These applications programming interfaces (APIs) allow interpreted
program code to call machine-language routines. The native code routines called in this man-
ner run at the full processing speed of the host processor. Although this may initially appear
to be an ideal way to achieve increased processing speed, it has its own problems. The first
is that the API for native code must be carefully conceived if it is to be generally useful in-
stead of only useful in a few special cases. Still, this can be achieved with a bit of careful
planning. The second problem is more serious. The compatibility and hardware independence
of a programming language such as Java is only possible if all APIs are the same. If there
are several types of APIs that have different interfaces or provide different functions, using
a standard programming language does not provide any significant advantage. Under such
conditions, it would be necessary to make specific modifications to the source code for each
platform having its own API. This is why Java Card Forum continues to invest considerable
effort in standardizing APIs, since they are fundamentally important for achieving platform
independence.

The Java virtual machine (JVM)

The Java virtual machine is the most essential element of the Java technology. It simulates a
Java processor and can be implemented in software on any sufficiently powerful processor. If
it is desired to run Java bytecode on a new type of processor, the Java virtual machine must
be ported to this processor. It is usually written in the C programming language, so the actual

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 342 of 1123

308 Smart Card Operating Systems

porting may not require anything more than a few modifications and a recompilation of the
source code. The size of a Java virtual machine on a PC ranges from 100 to 200 kB.

The Java virtual machine has all the elements of a real processor. It has its own instruction set
in the form of the bytecode, and it has registers such as the program counter and accumulator.
The data to be processed are passed to the virtual machine in the form of a class file, which
contains fixed constants, the bytecode to be executed in the form of methods, and various
additional information.

Table 5.23 Overall structure of a class file

Data elements of a class file

Label (‘magic number’)
Version number
Constants pool
Methods
Attributes of classes, fields and methods

Java bytecode takes up very little space and is nearly as compact as machine code. The
overall memory space balance relative to native machine code is made worse by the obligatory
presence of the virtual machine. The difference naturally becomes greater as the size of the
program code becomes smaller relative to the size of the virtual machine.

Bytecode is fundamentally very similar to the machine instructions of a real processor.
For example, there are instructions for stack manipulation, logical and arithmetic instructions,
instructions that access the registers of the virtual Java processor, and even access methods for
arrays. The Java virtual machine and the bytecode are extensively described by Tim Lindholm
and Frank Yellin [Lindholm 97].

Due to the significantly restricted system resources of smart card microcontrollers, certain
limitations must be imposed on the Java Card VM compared with the original Java VM for
PCs. The Java Card VM does not have garbage collection to automatically return memory
that is no longer needed to the free memory pool. (Version 2.2 of the Java Card specification,
which was not yet officially released at the time of writing of this book, does provide for an
optional garbage collector.) Support for class files is also drastically reduced. There are fewer
data types available in smart cards, and the bytecode itself is reduced from 149 instructions
to 76.

The size of the program code for the oncard Java VM for smart cards is on the order of
40 kB of 8051 machine code when written in C. Approximately 400 bytes of RAM are also
needed. The API with the classes from javacard.framework and javacardx.framework needs 3
to 4 kB of memory, the majority of which is Java bytecode. In addition, at least a rudimentary
operating system is needed, with data transmission protocols, cryptographic algorithms and
many functions that are closely linked to the hardware. The code size for this is 6 to 8 kB if
it is programmed in assembler [Baentsch 99]. In connection with these memory size values,
it must be noted that they are highly dependent on the available functions and other complex
considerations. Consequently, the values stated above can vary considerably among individual
implementations.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 343 of 1123

5.14 Open Platforms 309

Table 5.24 Limitations to the functional scope of Java Card relative to full Java

Function Java Card Java

Cloning of classes no yes
Cloning of objects no yes
Data type: int optional yes
Data types: Boolean, byte, short yes yes
Data types: long, float, double, character no yes
Dynamic downloading of classes no yes
Dynamic memory management (garbage collection) no yes
Dynamic object creation yes yes
Exception handling yes yes
Fields for objects no yes
Fields for supported data types only one-dimensional also multidimensional
Interfaces yes yes
Operators all all
Packages yes yes
Sequence control functions yes yes
Threads no yes
Virtual methods yes yes

Table 5.25 Data types in Java for smart cards, with their memory
requirements and ranges of values. The data type ‘int’ is optional

Data type Size Range of values

Boolean 1 byte true, false
byte 1 byte –128 to 127
short 2 bytes –32,768 to 32,767
int 4 bytes –2,147,483,648 to 2,147,483,647

The correctness of this relatively small program is extraordinarily important, since an error or
security gap in the Java VM could undermine the whole idea of providing a secure environment
by incorporating Java in the smart card. The design and implementation must therefore be
largely error-free. An ITSEC or Common Criteria evaluation is normally employed to verify
this. Naturally, the small size of the program code for the Java VM considerably simplifies
this process, especially since it allows the complete functionality of the VM to be formally
described. ITSEC E4 certification is typical.

Due to the small amount of memory present in smart cards, it was necessary to divide
the Java virtual machine into oncard and offcard parts. Static tests can easily be performed
outside of the smart card in the Offcard VM without reducing performance or security. The link
between the two parts of the VM is formed by data in CAP format. For complete security, such
data must be cryptographically protected, ideally using digital signatures, so that they cannot be
manipulated during transmission. They would otherwise present an attacker with a promising
starting point, since the security mechanisms of the offcard VM could be circumvented using
manipulated data.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 344 of 1123

310 Smart Card Operating Systems

Table 5.26 Summary of the limitations of Java Card. These broadly defined limits currently do not
impose any restrictions on the development of software for smart cards

Classes An instance of a class may contain at most 255 fields.
A class may have at most 256 static methods and at most 256 static fields.
A class may have at most 15 interfaces.

Package A package may contain at most 255 public classes and interfaces.
Methods A method may have at most 255 local variables and contain at most 32,767

bytecodes.
Arrays Arrays may contain at most 32,767 fields.
Switch instruction A switch may support at most 65,536 branches.

If the ‘int’ data type is supported, the maximum number of branches in the
switch instruction depends on the value range of the selected data type
(char, byte, short or int), as with Java for PCs.

Since Java is stack-oriented, it naturally needs a stack as well as a heap. These are created and
managed separately for each applet in the smart card. The stack is primarily used for passing
data when calling methods, while the heap serves as a storage area for objects. Common sizes
are approximately 700 bytes of RAM for the stack and approximately 5 to 8 kB of EEPROM
for the heap. However, relatively small applets can certainly manage with 50 to 60 bytes for
the stack and a few hundred bytes for the heap.

The Java VM consists of four functional parts, as shown in Figure 5.49: the bytecode verifier,
the loader, the bytecode interpreter and the security manager.

bytecode interpreter security manager

smart card operating system

microcontroller hardware

loader

bytecode verifier

Figure 5.50 The individual components of the Java Card virtual machine

The function of the bytecode verifier is to perform a variety of static tests on the class file
passed to the Java VM. It first checks the file format. Following this, it checks the constants pool,
checks the bytecodes for syntactical correctness, and checks the arguments of the methods and
the object inheritance hierarchies. A few other tests may also be performed. They are described
in detail by Frank Yellin [Yellin 96].

After the bytecode verifier is finished, the loader takes the checked data and sends them in
CAP format to the actual interpreter in the smart card. For security reasons, the data should
be provided with a digital signature so they cannot be manipulated on their way from the
loader to the oncard part of the Java VM. The actual loading process is independent of the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 345 of 1123

5.14 Open Platforms 311

Java Card specification. Here the OP specification14 has come to be the prevailing industry
standard.

After being loaded, the executable bytecode is located in the memory of the smart card
together with various of supplementary data, where it can be executed by the oncard part of
the Java VM. The actual interpreter reads the bytecodes one at time, together with their asso-
ciated arguments, and converts them into native machine instructions for the target processor.
The security manager works in parallel with the bytecode interpreter. Among other things, it
constantly checks compliance with the field, stack and heap boundaries. If it detects a violation
of the defined security rules, it is authorized to immediately initiate an exception and stop the
processing of the bytecode that caused the problem.

Listing 5.1 The basic functions of the main program loop of the Java bytecode interpreter

DO (Interpreter main loop

fetch and save program counter Fetch and save the value of the program counter for later
comparison.

fetch opcode

fetch operands

execute machine instruction Execute the virtual Java processor machine instruction,
which consists of the opcode and the operands.

IF (machine instruction did not
alter the program counter)

If the Java machine instruction that has just been
executed has not altered the program counter (which

THEN (increment program counter) means that it was not a GOTO bytecode, for instance),
then set the program counter to the next opcode.

) WHILE (opcodes available) Repeat the loop until all opcodes have been processed.

Java for smart cards

The truly significant benefits of a modern programming language such as Java with regard
to its use with smart cards extend beyond the fact that it allows everyone to write programs
for smart cards. This would also be conceivable for most smart card operating systems using
assembler or C, publicly revealed interfaces and a few modifications. A concept such as Java
is also attractive for operators of large systems. They have the problem of being forced to
purchase a variety of smart card operating systems running on different microcontrollers from
various card manufacturers. Although this multiple sourcing is certainly worthwhile for tactical
reasons (due to reduced dependence on a single supplier and the resulting price pressure on
the suppliers), it constantly creates problems with regard to compatibility and testing. Within
the foreseeable future, it is not possible to have different operating systems from two different
producers, with all their various versions, behave the same way at the interface level. This
represents a serious problem for system operators.

14 See also Section 5.11, ‘Open Platform’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 346 of 1123

312 Smart Card Operating Systems

From the system operator’s point of view, the ideal solution to this problem would be
hardware-independent program code that could be executed by an evaluated interpreter in
smart cards in a standardized manner. An application program could then be written, tested and
evaluated only once, after which it could be run using all different types of smart card operating
systems. No differences would be visible ‘from the outside’, which means at the interface. This
would preserve the advantages of multisourcing while eliminating its disadvantages.

You should bear this thought in mind when examining how Java is integrated into smart
cards. The first versions only allowed Java bytecode to be stored in an EF located under the
MF or under a DF. An EXECUTE command then started up the virtual machine to run the
program stored in the EF. An application programming interface (API) associated with the file
system allowed data to be read from and written to files.

Java Card

commands for
managing applets

applet(s)

file tree

program code
for commands

Figure 5.51 The two basic IT components of a smart card with Java

However, this approach has not prevailed. According to the Java Card specification, a smart
card with Java has a Java virtual machine that is activated during card manufacturing and
deactivated at the end of the card’s life cycle. The lifetime of the Java virtual machine thus
corresponds to the lifetime of the smart card. When a smart card is electrically deactivated,
the Java virtual machine only suspends its activities, while still remaining active. This is a
fundamental difference compared with a Java virtual machine on a PC, where the Java virtual
machine ceases to exist when the computer is switched off. A file system in accordance with
ISO/IEC 7816-4 is no longer provided, since a file system can be constructed using objects
within Java applets. There are also several classes that make it relatively easy to construct a file
tree that complies with the ISO/IEC 7816-4 specification. The program code and its associated
file tree are both part of the applet that is loaded into the smart card. The applet in the card can
be selected by its unique AID using the SELECT command. After the applet has been selected,
it automatically receives all further APDUs for processing. The program code of the applet
can then evaluate and process the commands and their associated data, perform appropriate
accesses to the file system and finally generate a response.

This approach provides maximum flexibility and compatibility, since each application is
contained in an applet along with its file tree. The actual card commands, such as READ
BINARY and MUTUAL AUTHENTICATE, are located in the applet as program code. This
allows a single card to have different codings and different procedures in two separate applets
that support the same command in mutually independent manners.

Of course, this advantage comes at the price of a significant amount of memory space for
the applets, since they must necessarily contain redundant data and routines. This conspicuous

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 347 of 1123

5.14 Open Platforms 313

Java Card API

Java virtual machine

smart card operating system

microcontroller hardware

loading an applet

applet

Figure 5.52 The basic process for loading an applet in a smart card operating system with Java

consumption of memory can be somewhat reduced in some cases by allowing the objects of
one applet to be shared with other applets (‘object sharing’). For reasons of security, this can
only be provided by the applet that creates the object in question. The process of sharing an
object cannot be reversed. This means that if an object is made available for access by other
applets, it remains available for the lifetime of the card.

The only applet-independent commands that remain are those used for securely loading
applets into smart cards. The program code for commands is stored in EEPROM and run
by the Java virtual machine. The only common elements for the entire smart card are the
transmission protocols.

Java Card Framework

In order to make the programming of smart cards in Java as easy as possible, there are four
packages that provide standardized application programming interfaces (APIs) with functions
that are useful for smart cards. Three of these packages are mandatory for all Java Cards
that do not necessarily require certain key lengths or cryptographic algorithms to be present.
The fourth package, which is optional and is distinguished by an ‘x’ (for ‘extension’), can be
included if necessary. There are also many other application-specific packages, such as those
for GMS functions (GSM 03.48).

Since the program code ‘underneath’ the API can be generated in the machine language
of the target processor, this approach not only provides a standard interface but also yields an
enormous increase in processing speed.

The obligatory package java.lang forms the basis for Java in smart cards. It defines the ele-
mentary classes for exceptions. It is complemented by the package javacard.framework, which
defines the core functions for Java Card applets, such as elementary classes for applet man-
agement, data exchange with the terminal and various constants in accordance with ISO/IEC
7816-4. The package javacard.security, which contains cryptographic functions, provides in-
terfaces to a variety of cryptographic algorithms. For reasons related to export legislation, this
package is constructed such that it does not allow the smart card to be used as a general-purpose
encryption and decryption tool. The optional package javacardx.crypto, which contains the
interfaces to the associated decryption methods, is needed to provide this capability.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 348 of 1123

314 Smart Card Operating Systems

hardware

HAL (hardware abstraction layer)

JCVM Java Card virtual machine)(

JCRE Java Card runtime environment)(

Java Card
API

card manager applet 1 applet 2

firewall

Open Platform
API

other
APIs

native services
(transmission protocols, cryptographic algorithms, memory management)

Figure 5.53 Schematic representation of the basic architecture of a Java Card system. This example
contains several typical APIs as well as application management for the Open Platform mechanisms. The
location of the applications is shown in the form of two applets

Table 5.27 The most important classes of the java.lang package of the Java Card
application programming interface

Class Description

java.lang.Exception Class for exception handling for Java Card.
java.lang.Object The class for all Java Card classes.
java.lang.Throwable The class of all exceptions and errors for the Java Card.

Software development for Java in smart cards

How does one go about developing a Java program for a smart card and then running it? The
first thing the programmer does is to generate the actual Java source code using a text editor.
He or she then compiles the source code using any desired Java compiler, which yields the
machine-independent bytecode. Up to this point, the process is identical to Java programming
for PCs.

The bytecode is then transferred as a class file to the Java Card Converter (which actually
means the offcard portion of the Java virtual machine). The Java Card Converter tests the
format, syntax, field references and similar items in the program. If all these tests are passed
successfully, the Java Card Converter creates what is known as a card application file (CAP
file). If necessary, a digital signature is generated for the CAP file, depending on the application.
A digital signature provides assurance that the CAP file has been checked by the Offcard VM
and is authentic. In the absence of a verifiable signature, the security of the Oncard VM could
be bypassed using a manipulated applet, since the Oncard VM cannot perform a full set of tests
due to memory space limitations. After this, the applet is loaded into the smart card in the form

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 349 of 1123

5.14 Open Platforms 315

Table 5.28 The most important classes of the javacard.framework package of the Java Card
application programming interface

Class Description

javacard.framework.AID Encapsulates the 5–16 byte application identifier (AID) as
specified in ISO/IEC 7816-5.

javacard.framework.APDU Provides methods for exchanging data between the smart card
and the terminal at the APDU level.

javacard.framework.Applet Defines an applet for a smart card.
javacard.framework.ISO7816 This interface encapsulates various constants from ISO/IEC

7816-3 and ISO/IEC 7816-4. Some typical examples are
offsets to various data elements within an APDU and various
return codes.

javacard.framework.JCSystem This is one of the most important classes. It includes methods for
making objects persistent or transparent and allowing several
applets to access an object.

javacard.framework.OwnerPIN Provides functions for the PIN of the cardholder.
javacard.framework.PIN This interface represents a PIN with its associated retry counter

and a validity status.
javacard.framework.Util Contains methods for handling fields and data objects and for

type conversion.

javacardx.framework.Shareable This interface is used to identify shareable objects.

of a CAP file. This is usually done using the OP mechanisms.15 The smart card first verifies
the digital signature, which is usually present, and then passes the applet to the Oncard VM
once it has been checked. What happens after this is largely the same as for program execution
using a virtual machine in a PC. The Oncard VM tests and interprets the bytecode line by line
and generates machine instructions for the smart card processor from the bytecode.

In actual practice, the process is naturally somewhat more complicated than what has just
been described. It is to be hoped that the developer will not immediately start writing Java code
immediately after being given his or her assignment, but will instead use analysis and design
methods to determine the actual requirements before starting to program.

In order to quickly locate errors during and after the coding, the developer uses a Java smart
card simulator. This allows the developer to follow the execution of the code step by step,
examine variables and make any necessary corrections quickly and easily.

Besides this, a suite of tests is run for relatively large projects and those that are critical for
security. These tests check all good cases and the most important bad cases for commands and
responses. Source code inspection by an independent party may also be included.

As you can see from this example, Java for smart cards significantly reduces development
time, and it reduces possible error sources as a secondary benefit. However, coding by itself is
only one of many aspects of developing a smart card application. The primary advantage of Java
for smart cards is that it allows a large number of developers to generate executable programs
for smart cards, rather than just a few software developers employed by card manufacturers.

15 See also Section 5.11, ‘Open Platform’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 350 of 1123

316 Smart Card Operating Systems

Table 5.29 The most important classes of the javacard.security package of the Java Card application
programming interface

Class Description

javacard.security.DESKey This interface provides access to DES and triple DES with
two or three keys.

javacard.security.DSAKey This interface provides access to DSA.
javacard.security.DSAPrivateKey This interface provides access to DSA for generating

signatures.
javacard.security.DSAPublicKey This interface provides access to DSA for verifying

signatures.
javacard.security.Key The basic interface for all keys.
javacard.security.KeyBuilder The class for generating keys.
javacard.security.KeyPair A container class for a key pair (public and private keys).
javacard.security.MessageDigest The base class for all hash algorithms.
javacard.security.PrivateKey This is the interface for private keys for asymmetric

cryptographic algorithms.
javacard.security.PublicKey This is the interface for public keys for asymmetric

cryptographic algorithms.
javacard.security.RandomData The basic class for generating random numbers.
javacard.security.RSAPrivateCrtKey This is the interface for private keys for asymmetric

cryptographic algorithms in combination with the
Chinese remainder theorem (CRT).

javacard.security.RSAPrivateKey This interface provides access to RSA for generating
signatures.

javacard.security.RSAPublicKey This interface provides access to RSA for verifying
signatures.

javacard.security.SecretKey This is the interface for all symmetric keys.
javacard.security.Signature The base class for all signature algorithms.

Table 5.30 The most important classes of the javacardx.crypto package of the Java Card application
programming interface

Class Description

javacardx.crypto.KeyEncryption This interface provides access to the keys for decryption.
javacardx.crypto.Cipher This is the base class for all encryption algorithms.

If a particular applet must be loaded into a very large number of smart cards in identical form,
some implementations of Java Card also allow part of the applet to be defined as a portion of
the ROM mask. However, the parts of the applet that contain modifiable code must remain in
EEPROM. Such an applet is frequently called a ‘ROMable applet’.

In generating Java applets for smart cards, several properties of the current Java Card
specification should be taken into account in addition to the particular features of the operating
system being used.16 These are listed and briefly described below.

16 A good summary of the development of software for smart cards is provided by Zhiqun Chen [Chen 00]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 351 of 1123

5.14 Open Platforms 317

program
generation

Java
compiler

class fileoffcard
VM

 CAP file

 class file
(including bytecode)

Java source
code

CAP file

oncard
VM

loader
target

processor
native

program code

Figure 5.54 The usual program development process leading to execution of a program by the Java
virtual machine in the smart card microcontroller

Java Card API

Java virtual machine

smart card operating system

microcontroller hardware

applet

command APDU

response APDU

Figure 5.55 Data flow from the command APDU to the applet and the corresponding response APDU,
with reference to the layer model of a Java smart card

Execution speed

Aside from its memory demands, the major point of criticism with regard to Java for smart
cards is its low execution speed. However, it is relatively difficult to make fair comparisons
between assembler programs and Java. This is primarily because it is not necessary to create
exactly the same processes in Java as in assembler, as long as the program behaves the same
way at the interface to the terminal. For example, a file system is not always necessary with a
Java program, and probably nobody would ever program a cryptographic algorithm in Java.

Another general consideration is that the methods of the Java Card API should be used as
much as possible, since they are in part coded in the native instructions of the target processor.
This can yield a considerable increase in processing speed. When typical smart card commands
are implemented in Java with intensive utilization of the interfaces to native library routines,
it can be assumed that the execution time (excluding the data transmission time) will be

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 352 of 1123

318 Smart Card Operating Systems

approximately 50 % longer than for a comparable implementation in C or assembler. With
unfavorable programming, a Java program can easily be a factor of 2 to 3 slower than a
corresponding native program.

Application selection

Selecting a particular application in a Java Card amounts to selecting the corresponding applet
by means of its unique AID. This selection starts the applet, so that it can perform any necessary
initializations. After this, the applet automatically receives all command APDUs that are sent
from the terminal to the smart card. If the applet is not selected, it remains inactive and is not
involved in any data transfers.

Firewalls – keeping applications separate

From an IT perspective, individual applets in a smart card are completely isolated from each
other. Any possible mutual interference is prevented by the security manager of the Java virtual
machine. With Java Card, all applets of a package are automatically located inside the same
security environment. Applets within an environment can mutually access objects. If it is
necessary for applets to access common data (such as a PIN) across environment boundaries,
the JCRE mechanisms provide secure access to objects belonging to a different environment.
Naturally, the object that is to be accessed from within a different environment must explicitly
allow such access.

JCRE (Java Card runtime environment)

package 1 package 2

context 1 context 2
shareable
interface

applet 2

applet 1 applet 3

firewall

Figure 5.56 Schematic representation of the relationship between two packages with one or two applets
and the firewalls of Java Card and their associated security context. By using the shareable interface,
applets 1 and 3 can exchange data through the firewall

Transaction integrity – atomic operations

A sudden loss of power during a session must not be allowed to cause the data of an applet
to assume undefined states. This is implicitly guaranteed by the virtual machine or operating
system when an object is modified. However, if it is necessary to guarantee unconditional

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 353 of 1123

5.14 Open Platforms 319

integrity across several objects or procedures, there are special mechanisms that can be used
by the applet developer. These mechanisms can be used to ensure that the objects in question
either retain their original states or properly assume new states.

File system

It is not mandatory for an applet to have its own file system. With some applications, it can be
fully adequate to create file-independent data objects that can be accessed using either standard
commands or commands defined by the programmer (‘private-use’ commands). The advantage
of using applets without file systems is once again related to the ever-present underlying need
to conserve memory usage in smart cards. In addition, the object-oriented nature of Java allows
data objects to be accessed by calling objects according to their associated calling conditions.
This makes it possible to implement accesses that meet very specific requirements of certain
applications. For example, an application or user could be given the opportunity to allow
another party to inherit their access privileges.

Nonetheless, common present-day applications for both smart cards and PCs show that
data are very often stored and managed using file-oriented structures. Although this possibility
is not excluded by the Java Card specification, it is unfortunately not directly supported. File
management, for example using an ISO/IEC 7816-4 file structure, must be specifically imple-
mented in Java using several classes. This is frequently necessary to support issuing Java smart
cards that are compatible with previously developed applications having standard file trees.

Deleting objects – persistent and transient objects

All objects are inherently created as persistent objects in EEPROM when they are generated
using the new() method. Persistence refers to the ability of an object to exist past the end
of a session, and is the opposite of transience. Persistent objects thus survive both the end of
a session and a sudden loss of power, without losing data or consistency. Any object exists
only as long as there is a reference that points to it. If this reference is deleted, the object is
effectively no longer present, even though it still occupies memory. The only remedy for this
would be a file manager with garbage collection, but this capability is not yet available in the
current Java Card specification. (The next version of the Java Card specification, Version 2.2,
will have provision for a garbage collector.)

Persistent objects can be converted into transient objects so that they can be stored in RAM,
although this conversion cannot be reversed. Data contained in transient objects are lost at the
end of the current session, and such objects are re-initialized to their default values the next
time they are called.

Deleting applets

The Java Card specification provides a mechanism for deleting an applet in a smart card. The
memory space occupied by the deleted applet can be made available for use by other applets
by using a suitable technique, such as defragmentation.

Cryptographic algorithms

Many of the currently used cryptographic algorithms either involve modifying or swapping
data at the bit level (such as DES) or utilize the arithmetic of long numbers (such as RSA).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 354 of 1123

320 Smart Card Operating Systems

Smart cards with Java are presently not suitable for programming such algorithms in Java, due
to their low execution speeds and limited memory capacities (EEPROM and RAM).

Consequently, such cards usually contain the javacardx.crypto class, which provides an
interface (API) to cryptographic algorithms implemented in native machine code. This allows
cryptographic algorithms to be used from Java programs without having to accept significant
speed penalties.

Cryptography and export restrictions

In many countries, export permits are required for smart cards with general-purpose operating
systems and freely usable data encryption and decryption functions accessible via internal
interfaces. This means that such cards cannot be exported at all to certain countries, and an
exporter may have to wait several months for a suitable permit to be issued by the responsible
agency.

Consequently, the classes for cryptographic functions are structured in Java Card such that
they can be used directly for general data decryption and MAC computations but not for
encryption. This is completely adequate for many applications, and in many countries it allows
a ‘simplified’ export permit procedure to be used.

If a particular application requires data to be encrypted, the card manufacturer can incor-
porate the classescryptoEnc.DES3 EncKey andcryptoEnc.DES EncKey, which make
encryption possible. From a purely cryptographic perspective, however, it is certainly possible
to devise easily implemented procedures that can be freely used for encryption and decryption,
without using these ‘encryption’ classes.

Memory space minimalization

In the near term, Java programs for smart cards will continue to be strongly influenced by
the amount of available memory. This leads to certain compromises in programming that are
not necessary for PCs. Table 5.31 lists a number of practical recommendations to help obtain
the best possible match between Java programs and the special demands of the smart card
environment.

Summary and future prospects

In spite of the unrelenting hype around Java, it should not be forgotten that it surely will not
prove to be the solution to every informatics problem of the past and future years, and that
it may not always be able to meet all of the expectations that have been invested in it. You
only have to consider the fate of all of the previous programming languages that are no longer
in fashion, such as Pascal (‘modular’), Lisp (‘AI for everyone’), C (‘portable’) and C++
(‘reusable program code’). Although these languages have improved the state of software
technology by orders of magnitude, many of their predicted benefits failed to materialize.
Nevertheless, it is true that a new era in the history of smart cards began with the introduction
of Java, since it is the first language that allows third parties to run executable program code
in smart cards in a straightforward manner. Java has now become the standard programming
language for smart card applications.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 355 of 1123

5.14 Open Platforms 321

Table 5.31 Several useful programming guidelines for generating Java applets for smart cards, based
on suggestions in [Schlumberger 97]. The objective of these guidelines is to make the best possible use
of the severely limited memory capacities of smart cards

Guidelines for minimizing
memory usage Remarks

Use constants instead of variables Constants need less memory space than variables and
are thus to be preferred.

Use simple data types Using the simplest possible data types saves memory.
Reuse variables Reuse variables as much as possible to make the most

economical use of the limited amount of memory in
the smart card.

Avoid local variables Local variables should be used as sparingly as possible.
Use a simple class hierarchy A simple class hierarchy that is as flat as possible saves

memory in the smart card.
Use few arguments Methods should use no more arguments than are

absolutely necessary.
Use a simple calling hierarchy A simple calling hierarchy for the methods saves

memory in the smart card.
Eliminate unused variables The program should always be checked for unused

constants, variables, methods and classes after it has
been generated. The compiler may not always be
able to remove such items during optimization.

A few trends in the future development of Java are clearly visible. Version 2.2 of the Java
Card specification will augment the current specification with several useful functions, such as
logical channels, garbage collection and remote method invocation (RMI). RMI can be used to
directly invoke methods in a smart card from a terminal. The next version of the specification,
Version 3, will be optimized for the processing capacity and memory sizes of new 32-bit smart
card microcontrollers and will offer significantly more features than the current versions. It
can safely be assumed that Version 3 will be closer to regular Java on PCs and the functionality
of such Java systems.

By contrast, the large-scale loading and management of applets using applet management
systems17 must be regarded as a longer term possibility, due to its enormous complexity.
However, it is probable that within the foreseeable future, card manufacturers will load applets
and their associated data into Java-based smart cards as part of the normal completion process,
with such applets remaining unchanged in the card until the end of its useful life.

Java Card is presently the only internationally used technology for realizing program-based
applications in smart cards, and it will remain so within the foreseeable future. Within the
various application areas, there are now a large number of specifications, APIs and extensions
to Java Card, which provide a very broad basis for its utilization. In addition, the current degree
of compatibility of Java cards produced by different manufacturers represents an attractive
economic argument for card issuers, since it makes card manufacturers interchangeable. Java

17 See also Section 10.5, ‘Phase 4 of the Life Cycle in Detail’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 356 of 1123

322 Smart Card Operating Systems

Card has also made it possible for short development cycles, which are particularly demanded
in the IT sector, to be achieved for smart cards, while allowing all well-known, proven life-
cycle models18 to be used. These reduced development and delivery times can open up new
markets and applications for smart cards.

5.14.2 Multos

Multos is a multiapplication smart card operating system originating from the development of
the Mondex system for electronic purses. Starting with this system, an operating system that is
primarily optimized to meet the requirements of electronic payment systems was developed in
several steps. The publisher of the specifications, license issuer and operator of the certification
services for Multos is the Maosco Consortium [Maosco]. The majority of the Multos specifica-
tions are confidential, so here we can only present a summary of the features of this operating
system. One interesting detail is that certain core operating system components of Multos are
certified in accordance with ITSEC E6, which is the highest possible evaluation level.

Multos corresponds to a typical ISO/IEC 7816-4 compliant operating system and can in-
terpret downloadable program code. Program code is typically developed in C and translated
into the Multos executable language (MEL) using a special compiler. MEL is a hardware-
independent program code that is executed by a stack-oriented virtual machine called the ‘appli-
cation abstraction machine’ (AAM). From within MEL, an application can access the operating
system services of the Multiapplication Operating System (MAOS) via various interfaces.

Before an application can be loaded into a Multos smart card, it must be digitally signed
by a licensed Multos certification service using relatively elaborate mechanisms. As is usual
with payment cards, large portions of the completion process are also specified in detail.

hardware

MAOS (multiapplication operating system)

AAM (application abstract machine)

application 1 application 2 application 3

BPF (basic processor functions
(transmission protocols, cryptographic algorithms, file manager, applet management, etc.)

)

firewall

Figure 5.57 Schematic representation of the basic architecture of the Multos smart card operating
system. This example includes three applications based on Multos that have been generated in MEL

18 See also Section 15.7, ‘Life-Cycle Models’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 357 of 1123

5.14 Open Platforms 323

5.14.3 Basic Card

Since 1996, a smart card operating system with an interpreter for the Basic programming lan-
guage has been available from the German company Zeitcontrol [Zeitcontrol]. This operating
system is called Basic Card, and it is available in various versions with different features and for
hardware platforms with various memory sizes. Besides Java Card and Multos, it is one of the
few multiapplication operating systems to allow executable program code to be downloaded
by third parties.

The procedure for generating downloadable programs for Basic Card is based on traditional
Basic interpreters. A compiler translates the source code into P-code, which is transferred to
a memory region of the smart card microcontroller reserved for this purpose using a special
loader program. After this, the program code stored in this region can be processed by the
interpreter as necessary.

With regard to data types, control structures and functions, the version of Basic supported
by Basic Card corresponds to the presently common simpler dialects of this programming
language, which has existed for several decades. It has also been extended to include some
functions specific to smart cards, such as an interface to the smart card file system. In addition,
there is support for the T = 0 and T = 1 data transmission protocols for contact-type cards,
and for contactless data transmission in accordance with the ISO/IEC 14 443 B standard.
For typical security applications, a variety of cryptographic algorithms can be called via an
interface (including DES, triple DES, AES, RSA with a key length of 1024 bits, elliptic curves
with a key length of 160 bits and the SHA-1 hash algorithm).

Compared with other smart card operating systems with interpreters, the program code is
very compact and the execution speed is relatively high. These two aspects are primarily due
to the facts that in procedural terms, Basic can be easily and quickly interpreted, and that
no sophisticated security mechanisms are used for preparing applications. Nevertheless, for
certain applications that require programs in smart cards to be developed quickly and easily,
Basic Card can certainly represent an alternative to other smart card operating systems.

The main unconventional aspect of Basic Card is the fact that it is the product of a relatively
small company, which has continued to further develop it over the course of many years, rather
than one of the giants of the IT industry, as some of the other smart card operating systems
with interpreters.

5.14.4 Windows for Smart Cards

In 1998, Microsoft announced Windows for Smart Cards (WSC) as a version of Windows
for smart cards. This smart card operating system was intended to increase the bandwidth
of the Microsoft operating system and was doubtless intended to be an alternative to Java
Card, which was not yet a widely used operating system. After several years of development
and several alpha, beta and final versions of the operating system, accompanied by a rather
large promotional effort in terms of the modest smart card market, Windows for Smart Cards
was cancelled in mid-May and the source code was offered for sale to several companies.
Due to a lack of acceptance by the smart card industry, which is very demanding with regard
to reliability and security, WSC never achieved any significant market success during this
period.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 358 of 1123

324 Smart Card Operating Systems

Windows for Smart Cards was a smart card operating system designed to be used with
multiple applications, and it also supported downloadable program code. Many parts of the
bytecode supported by the virtual machine (VM) were very similar to the machine code of
8051-type processors, which had a positive effect on execution speed. Loading programs into
the memory of the smart card was protected using the usual cryptographic mechanisms.

Downloaded programs could access various operating system functions, such as crypto-
graphic algorithms, data transmission and file management, via several APIs. There was also
a GSM 11.14 API in order to allow compliant value-added services for SIMs to be developed
using the SIM Application Toolkit.19 Such services could be developed using Microsoft’s stan-
dard, powerful development environments for Basic and C. All that was necessary was to link
in a few library components and place suitable compiler directives in the code.

Windows for Smart Cards was a complete operating system, which means that it also
included a complete file management system with rule-based access mechanisms. File man-
agement was based on ISO/IEC 7816-4 and ISO/IEC 7816-9, thus providing a large measure
of compatibility with current standards. The file management system had one unusual feature,
which is that it was the first file management system for smart card operating system to use a
file allocation table (FAT).20

Figure 5.58 shows the basic functionality of Windows for Smart Cards in the form of a data
flow diagram. The programs generated using a development environment and loaded into the
smart card were called ‘runtime environment’ (RTE) applications. The operating system was
informed of the presence of an RTE application via a dispatch table to allow the corresponding
program code to be executed by the VM as necessary. Another option was to permanently
integrate certain applications or commands in the ROM code. Such items were called ‘non-
RTE applications’.

A ‘file system builder’ (FS builder) could be used to create the files needed by a particular
application, along with their access conditions. These files could then be loaded into the smart
card as well, where they could be accessed by an RTE application.

5.14.5 Linux

Since the end of the 1990s, the open-source operating system Linux has altered large portions
of the software industry. Up to now, the focus of Linux has been computers in the PC area,
which have much higher performance than smart cards. However, for some time there have
been efforts to establish Linux in the area of typical microcontroller applications. Up to now,
this has presupposed a level of performance that typically can only be provided by 32-bit
processors, along with memory demands on the order of several kilobytes of ROM and several
tens of kilobytes of RAM. Current smart card microcontrollers cannot yet meet these demands.
However, it is certainly conceivable that the versions of Linux available up to now could have
their hardware requirements further reduced. At the same time, the performance of smart card
microcontrollers increases with every new generation, so it would be possible for Linux to be
available for smart cards in the not too distant future.

19 See also Section 13.2.4, ‘The SIM’
20 See also Section 5.7, ‘File Management’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 359 of 1123

5.14 Open Platforms 325

dispatcher

RTE
application

non-RTE
application

operating
system

RTE virtual
machine

loader FS loader

FS builder

terminal

specify
RTE

application

specify
dispatch

table

mask
programming

specify
file system

terminal
C-APDU

CLA || INS

reference to
RTE application X

|| C_APDU

start
application || C-APDU

start
application || C-APDU

Offcard

Oncard

R-APDU

start

dispatch
table

non-RTE
applications

RTE
applications file system

read/write
file access

read/write
file access

native code of
non-RTE application

bytecode of
RTE application

reference to
RTE application

R-APDU

Figure 5.58 Data flow diagram for the essential components of Windows for Smart Cards. This diagram
shows the fundamental IT relationships between these components. It has been produced based on
published descriptions and makes no claim to being complete

Besides Linux, it is naturally possible for another open-source operating system for smart
cards to appear. The only important consideration is that it can be used without licensing, since
the high licensing fees resulting from the large quantities in which smart cards are produced
and used represent one of the most significant barriers to the use of standard operating systems
in smart cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 360 of 1123

326 Smart Card Operating Systems

5.15 THE SMALL-OS SMART CARD OPERATING SYSTEM

The features and basic working principles of smart card operating systems are summarized
in the previous sections of this chapter. For those readers who wish to immerse themselves
more deeply into this subject, this section provides a detailed description of the internal inter-
relationships of a complete operating system. This is a classical smart card operating system
according to the ISO/IEC 7816-4 or GSM 11.11 standard.

The name of the operating system described in this section is ‘Small-OS’, which reflects its
very small memory demands and the fact that it can be run on hardware platforms that are not
particularly powerful. It is written in a pseudocode resembling Basic. The pseudocode shown
here cannot be compiled as is, since some assignments have not been fully decoded to the last
bit and are explained only verbally. We do not wish to present page after page of true program
code in a language such as C or C++, which can be incomprehensible and boring to read.
Instead, our objective is to present a graphic example that illustrates the subject.

The ready comprehensibility of pseudocode greatly outweighs the advantages of using a
real programming language, which are that it can be directly compiled and executed. With
pseudocode, you do not get lost in the details of the implementation, and you can instead
completely concentrate on the fundamental processes. The system presented here is platform-
independent and is not tailored to any particular hardware. There is an actual implementation
of Small-OS, but it is not programmed in assembler to run on a smart card microcontroller.
Instead, it runs as a simulation in the program The Smart Card Simulator. This program is
available at no charge under a GPL via the Internet [Rankl].21

Programming in pseudocode

First we would like to make a few remarks about programming style and the programming
of Small-OS. The pseudocode, which is derived from Basic, in principle represents a semi-
formal description of the Small-OS smart card operating system. Similar operating system
characterizations are often used for software evaluations according to the ITSEC. They are
used as the basis for the evaluation and for checking the source code. The pseudocode that is
presented in this section thus represents a good example of how formalized processes within
a smart card operating system are portrayed. The pseudocode is listed here in tables with
extensive comments. Similar forms of presentation can be found in the EN 1546 series of
standards, for example, in which the internal processes of smart cards for electronic purses are
semi-formally described.

The individual terms used in the pseudocode are described at the front of the book.22 The
program code is based on the standard dialects of Basic, with object-oriented extensions.
Only generally understandable constructs are used. All labels, constants and references are in
English. Numerical values are usually given in hexadecimal form using ISO notation (such as
'42'). However, decimal or binary forms are used where necessary to aid understanding, using

21 Due to time constraints and a lack of demand, it has unfortunately not been possible to update the Smart Card
Simulator. Consequently, its current state of development is incomplete, and many details no longer correspond to
the current versions of the standards

22 See ‘Program Code Conventions’ at the front of the book

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 361 of 1123

5.15 The Small-OS Smart Card Operating System 327

Table 5.32 Summary of the features of Small-OS

Name: Small-OS
Typical application areas: Multiapplication with no user-generated program code
Hardware prerequisites: ROM: ≈8 kB, EEPROM: ≈1 kB, RAM: ≈128 bytes

Instruction set: Profile N per ISO/IEC 7816-4, with extensions
Commands: SELECT FILE, READ BINARY,

UPDATE BINARY, READ RECORD,
UPDATE RECORD, VERIFY,
INTERNAL AUTHENTICATE

Data transmission: Transmission protocol: T = 1
�divider (CRCF) set to a fixed value of 372
(standard ISO/IEC 7816-3 setting)
�PPS not supported
�secure messaging not supported

File system: One DF level
�structures for working EFs: transparent, linear fixed
�structure for internal EFs: linear variable (for PINs and keys)
�one EF key allowed per directory (i.e. per MF or DF)
�no dynamic file system
(no file deletion or creation, no free memory management)
�maximum size of a transparent EF: 255 bytes

State machine: Independent secure states for the MF and DFs
�secure states: 256 (0–255)
�initial state = 0
�only one allowed input state for using a PIN or a key
�only one allowed input state for file access
(i.e. ‘<’ and ‘≥’ comparisons are not possible)
�no cross-level key access (EF key is always selected
via the currently selected directory (MF or DF))
�PIN addressing: 2 PINs maximum (ref. no. 1 and 2)
�key addressing: 31 keys maximum (ref. no. 1–31)
�retry counters for PINs and keys allow a maximum
of 15 unsuccessful attempts

Cryptographic algorithm: DES

Program code: Generation and loading by external parties is not possible

a notation that is derived from the ISO notation. For example, all countable values, such as
length specifications, are shown in decimal form.

Nobody would program a smart card operating system in this form in assembler or C, since
it would be far too complicated. One of the design objectives with Small-OS was to create a
simple yet powerful smart card operating system in a manner that is most easily understood

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 362 of 1123

328 Smart Card Operating Systems

and well commented. Intentionally, no attempt was made to minimize program execution
time, program code, RAM usage or stack depth, since doing so would seriously impair the
readability of the code. In real smart card operating system programming, for example, it is
sometimes common practice to use a JUMP instruction instead of a CALL instruction for
calls to rarely used subroutines, since this saves two bytes of expensive stack space. A flag
that is set before the subroutine is called with the JUMP instruction and is used to determine
the return address when the subroutine process is completed. This sort of optimization is not
found in Small-OS, for the reason just given. The pseudocode has been optimized only with
regard to readability and comprehensibility. The resulting deviations from real smart card
operating systems are identified wherever they occur, either in the text or in the commented
pseudocode.

The majority of a smart card operating system is located in ROM, due to the notorious
shortage of memory in smart card microcontrollers. It thus cannot be modified after the chip
has been manufactured. Software cannot be produced with absolutely no errors (except for
trivial miniprograms), but only with as few errors as possible. An error in ROM program code
would have serious consequences. To make it possible to use bug fixes to patch such errors,
jumps to EEPROM are provided at critical locations in the ROM. This technique is very old
in software engineering and is not specific to smart cards. Nearly identical mechanisms are
used in the MacOS and OS/9, for example. Locations in EEPROM that are called by the
program code, called ‘handles’, are used for this. A handle normally contains only a RETURN
instruction, which causes an immediate return to the calling code. If a bug fix for the ROM
code is necessary, corrective code is inserted in the EEPROM at a handle location. In this case,
the call to the handle does not produce an immediate return. This mechanism is not included
in Small-OS, for reasons of simplicity and understandability.

The relatively detailed description of the smart card operating system provides an interest-
ing opportunity to follow several typical types of attacks directly in pseudocode. At suitable
locations, possible attacks and defensive measures at the operating system level are described
in detail. For example, it is possible to examine an attack on the PIN by comparing processing
times, which has now become a ‘classic’ form of attack, in all of its details in the pseudocode.
A comprehensive listing of typical attacks and their defenses is given in Chapter 8, ‘Security
Techniques’.

Design criteria

The above considerations led to the following design criteria that guided the conception and
programming of Small-OS. Small-OS should be a simple smart card operating system that does
not need a lot of program code and has a low level of complexity, just like the real models that
inspired it. This makes its structure comprehensible and easy to grasp. It is built up in a strictly
modular fashion, which means that it can be directly extended with additional commands
at a reasonable effort. The file system and the supported commands are without exception
compliant with the international ISO/IEC 7816-4 standard. The ‘N’ profile of ISO/IEC 7816-4
was chosen as an option, with some extensions that are commonly present in the smart card
world.

Small-OS is thus intended to be used in situations in which it is not necessary to download
applications after the cards have been issued. However, depending on the amount of available

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 363 of 1123

5.15 The Small-OS Smart Card Operating System 329

Table 5.33 Small-OS design criteria in order of priority

Priority Criterion Reason

1 Compatibility with ISO/IEC 7816-4 �the international standard for smart card operating
systems

2 Robustness �high level of reliability
�high level of error tolerance

3 Low level of complexity �high level of reliability
�easily understood operation

4 Modular construction �high level of reliability
�high level of error tolerance
�ease of extension

5 Small memory demand �an absolute must for smart card operating systems
6 Multiapplication operating system �currently standard capability
7 No program code downloading �high level of reliability

�low level of complexity
8 Similar to real smart card operating

systems

�with regard to the real world, Small-OS is an
instructive example

memory, several different applications could be run in the smart card independently of each
other. This means that Small-OS is a multiapplication operating system. However, it is not
possible to download program code to the card and then execute it in the card. In summary,
Small-OS is comparable to the first general smart card operating systems, such as are still used
in various forms for GSM applications.

The ISO/IEC 7816-4 standard describes a basic file system and several fundamental com-
mands for smart cards, among other things. In this way, it primarily characterizes the interface
of the smart card, rather than the internal architecture of the operating system. In addition,
there are numerous options and a few passages that unfortunately are subject to interpretation.
The number of possible variations that are thus made possible must be sharply reduced in prac-
tice by specifications, such as the GSM 11.11 specification, to ensure compatibility between
different implementations.

With actual smart card operating systems, therefore, the designation ‘ISO/IEC 7816-4
compatible’ by no means signifies that they behave exactly the same way in all respects. This
would need a detailed specification, which would again in part be an individual interpretation
of the ISO/IEC 7816-4 standard. Consequently, in practice the behavior is usually the same
only if the command is successfully executed, while there are various differences in case of an
error. With Small-OS, interpretations of the ISO/IEC 7816-4 standard are usually identified as
such in the pseudocode. Within the limits of the interpretation of the standard, Small-OS is truly
compliant with the ISO/IEC 7816-4 standard and corresponds to the normal interpretations of
the standard in the smart card industry as much as possible.

Major differences between operating systems are frequently to be found in regard to return
codes. Since the usage and priority of the individual return codes are not described in detail
in ISO/IEC 7816-4, assumptions must be made. Small-OS, in contrast to all other operating
systems, at least has the advantage that the code is public. This means that it is always possible
to determine exactly which return code is generated.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 364 of 1123

330 Smart Card Operating Systems

kernel

operating system main loop

I/O manager

command interpreter
reset
vector

return code manager

file management

hardware

command program coden

command 1 program code
A.1

B.12

B.1

B.2

B.3 B.4

B.5

B.6

B.7
B.8

B.9
B.10B.11

C.1

D.2

C.4

D.1

C.3C.2

A.2 A.3

cryptographic library

Figure 5.59 The layer structure of Small-OS and the resulting calling scheme. Calls labeled ‘A’ are
used when the operating system starts up, those labeled ‘B’ are used to invoke commands and those
labeled ‘C’ are used as necessary within commands to access the file system. Calls labeled ‘D’ are used
with cryptographic algorithms. The numbers indicate the sequence of the program calls

If one were to implement Small-OS for a smart card microcontroller, it would need around
5–6 kB of ROM, 128 bytes of RAM and at least 1 kB of EEPROM, depending on the number
of applications present (using an 8051 processor). This assumes as general conditions that
only the T = 1 data transmission protocol is used and that DES is used as the cryptographic
algorithm. If certain applications were to need more memory, a microcontroller with more
EEPROM could be used without any problems. This would not affect the operating system or
require any modifications.

File access

The file system described in the ISO/IEC 7816-4 standard allows an enormous number of
options with regard to access conditions and key management. For Small-OS, therefore, a
solution that is often used in practice for multiapplication operating systems has been chosen.
The file headers of working EFs contain prescribed states for each of the various access
commands (for example, the conditionAccessCondition.Read for the READ command).
Each state is described by a positive integer. This means that each EF has independent state
values for read and write accesses in its header. These values must be achieved within the
current directory before the command can be executed. State 0 represents the base state (idle),
so that a state condition of 0 means that all accesses are allowed.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 365 of 1123

5.15 The Small-OS Smart Card Operating System 331

State variables are always assigned to the MF and the currently selected DF (Security
State.MF and SecurityState.DF). These can be altered by commands relating to security
(VERIFY and INTERNAL AUTHENTICATE). In case of an access to a specific EF, the
current state in the directory is compared with the required state in the EF file header. If
the actual and required states are the same, then the file may be accessed for writing or
reading.

Real smart card operating systems often allow a large variety of less-than, greater-than,
greater-than-or-equal and not-equal comparisons to be made here. It is also frequently possible
to define several possible access states independently in the file header. This further complicates
a process that is already not exactly simple, and for this reason it is not used in Small-OS.
In principle, however, Small-OS could be extended to allow such comparisons without any
structural modifications.

Access to internal secrets (PINs and keys)

All PINs and keys are held in special internal EFs. Such EFs are called EF Key here. This type
of file can be read or written only by the operating system itself. External selection or access
is not possible. There are no mechanisms at all in the design that would allow external access
to such EFs. This is a part of the security philosophy of the Small-OS smart card operating
system.

Only one EF Key file can be created for each directory. It automatically has a linear variable
structure, so that it can store PINs and keys of various lengths in a minimum amount of
memory. Each record in an EF Key file contains either a PIN or a key, with an address
number that is unique within the file (. . . .KeyNo). For each secret object (PIN or key), a state
value is stored. This defines the state (. . . .EntryState) that is required for a command to be
used (VERIFY or INTERNAL AUTHENTICATE). Following the execution of a command,
the result state (. . . .ResultState.OK orResultState.NOK) is set in the directory to which
the EF belongs according to the result achieved (such as PIN comparison successful or not
successful). In addition, a retry counter (. . . .RCntr) is assigned to each secret object. This
counter is incremented for each unsuccessful result until it reaches its maximum value. If the
retry counter has reached its maximum value (. . . .RCntrMaxValue), the associated secret object
can no longer be used.

Some smart card operating systems allow ‘cross-level’ access to keys. This allows keys
stored in the next higher directory to be accessed from within a particular DF. The mechanisms

processdata source /
data sink

data data data store

Figure 5.60 The symbols used for the data flow diagrams for Small-OS. Data sources and data sinks,
which are also called terminators, represent objects outside the system under consideration that exchange
data with the system. A process is located inside the system under consideration. It processes input data
streams and generates output data streams. A data store is a storage place for data that can be read and
written. A detailed introduction to this type of system analysis is contained in Robertson [Robertson 96]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 366 of 1123

332 Smart Card Operating Systems

operating system
(ROM)

file system
(EEPROM)

test
hardware

reset

initialize
operating
system

generate
ATR

transmit buffer

checksumschecksums

operating system
configuration

hardware
error

initialization
successful
or incorrect

hardware tested

configuration
parameters

ATR

Figure 5.61 Small-OS: data flow diagram of the startup and test processes of the operating system

receive
data

receive buffer

terminal

transmit
data

transmit buffer

transmission
protocol

command
processinig

command
APDU

response APDU
or ATR

command
APDU

response
APDU

reset

ATR

Figure 5.62 Small-OS: data flow diagram for reset and data transmission

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 367 of 1123

5.15 The Small-OS Smart Card Operating System 333

interpret
command

APDU

command
APDU

receive buffer

transmit buffer

execute
command

generate
return
code

 file
 accesses

OS kernel
accessesSW1 || SW2

response
data

 command
APDU

return code
ID

Figure 5.63 Small-OS: internal data flow diagram of the process for command processing

current
security state

file system
(EEPROM)

process
file

accesses

OS
kernel

file accessesOS kernel accesses

operating system
(ROM)

read data

data to be
written

current
 states

new
states

Figure 5.64 Small-OS: internal data flow diagram of the process for file and OS kernel accesses

needed for this are not included in Small-OS, since the functionality would not justify the
amount of code needed to implement them. Key accesses via aliases are also not implemented,
for the same reason.

Small-OS constants

Basically, constants are used in the pseudocode as much as is reasonable for numerical and
non-numerical values. This considerably increases the readability of the code, and it is purely
and simply good programming style. All constants are identified by the prefix C . The values
of these constants normally depend on the target hardware or the implementation, so they are
not further defined here. The constants for the 2-byte return codes all have the prefix C RC .
Table 5.21 lists the associated return codes. In practice, the constants of an operating system
are usually stored in unalterable form in the ROM.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 368 of 1123

334 Smart Card Operating Systems

Table 5.34 Constants used in Small-OS (excluding return code constants)

Constant Meaning

C Error Constant for general errors (e.g. when calling a subroutine)
C InvalidPointer Constant for an invalid pointer value
C Equal Constant for comparisons OR compared objects are equal
C NotEqual Constant for comparisons OR compared objects are not equal

C Found Constant for search functions OR sought object found
C NotFound Constant for search functions OR sought object not found
C AccessDenied Constant for access conditions, access denied
C AccessAllowed Constant for access conditions, access allowed
C WriteError Constant for a data write error (e.g. writing to EEPROM)

C EFTypeWorking Constant for a working EF
C EFTypeInternal Constant for an internal EF
C EFStrucLinFix Constant for a linear fixed EF
C EFStrucTransp Constant for a transparent EF

C CmdVERIFY Constant for the VERIFY command
C CmdINTAUTH Constant for the INTERNAL AUTHENTICATE command

Small-OS variables

The variables in Small-OS can basically be divided into RAM and EEPROM variables. The
RAM variables are re-initialized each time the smart card is reset and retain their values only
for the duration of one session. However, data can be stored in RAM variables without any
loss of time, and the number of write cycles is unlimited. EEPROM variables, by contrast, are
typically used primarily for the implementation of the file manager, for which data contents
and access conditions must exist between sessions as well.

Small-OS RAM variables The regions for the transmit and receive buffers take up the majority
of the RAM variables. All data elements of an APDU can be addressed via their own specific
variables. In order to manage with the small amount of available RAM, the transmit and
receive buffers are in practice sometimes made partially overlapping. Some commands must
then learn from the operating system exception handler that data can be written to the transmit
buffer only after all the data in the receive buffer has been processed. In order to promote
understandability, no such memory minimization is used here, and the transmit and receive
buffers are thus completely separate from each other.

The second large group of RAM variables relates to the management of the file tree.
Several pointers are provided, which point to the current directory (. . . .Ptr.CurrentDF), the
current file (. . . .Ptr.CurrentWEF) and the current valid key file (. . . .Ptr.CurrentIEF.Key). With
record-oriented EFs (linear fixed EFs), the currently selected record is also assigned a pointer
(. . . .Ptr.CurrentRecord). All pointers are identified by the prefix Ptr and are explicitly set to the
value C InvalidPointer whenever they are not allowed to be used.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 369 of 1123

5.15 The Small-OS Smart Card Operating System 335

Table 5.35 Return code constants used in Small-OS

Constant Content Meaning of the return code

Process completed – warning processing
C RC CounterX '63Cx' A counter (usually the PIN retry counter) has

been incremented and now has the value'x'

Process aborted – execution error
C RC MemoryFailure '6581' EEPROM write error

Process aborted – checking error
C RC WrongLength '6700' Incorrect length
C RC CmdIncompFStruc '6981' Command incompatible with file structure
C RC SecStateNotSatisfied '6982' Security state not satisfied
C RC AuthMethodBlocked '6983' Authentication method blocked
C RC CondOfUseNotSatified '6985' The conditions for using the data element

(PIN or key) are not satisfied
C RC CmdNotAllowed '6986' Command not allowed
C RC FctNotSupported '6A81' Function not supported
C RC FileNotFound '6A82' File not found
C RC RecordNotFound '6A83' Record not found
C RC LcInconsistentP1P2 '6A87' Lc inconsistent with P1 or P2
C RC RefDataNotFound '6A88' Data referenced in command not found
C RC WrongP1P2 '6B00' P1 or P2 incorrect
C RC INSNotSupported '6D00' Command not supported
C RC CLANotSupported '6E00' Class not supported
C RC FatalError '6F00' Internal error with no further description

Process completed – normal processing
C RC OK '9000' Command successfully executed

The two variables SecurityState.MF and SecurityState.DF identify the security state in the
MF and the currently selected DF, respectively. The security states that files have achieved are
stored in these variables as positive integers. Here the value'0' indicates that no security state
has been achieved. This value is automatically set when Small-OS is initialized after a reset.

Additional RAM memory is needed for the program stack, the DES cryptographic algorithm
and working registers. Here it is assumed that these are implicit, so no special variables are
assigned for them.

Small-OS EEPROM variables For the sake of simplicity, the file tree in the smart card is
implemented as a multidimensional array. This approach would be much too memory-intensive
for use in a real smart card operating system. The basic structures that are usually used in real
systems for file management are one-way linked lists. The lengths of the list elements can be
kept variable with the help of TLV encoding. This minimizes the amount of memory needed
for file management, since only the necessary data elements have to be stored in memory. The
size of the file headers for DFs and EFs, with all the information necessary for these files, is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 370 of 1123

336 Smart Card Operating Systems

normally between 20 and 40 bytes. However, the multi-dimensional array file structure used
in Small-OS can without question provide a simpler and more efficient solution when the
operating system is implemented in a high-level language and runs in a hardware environment
with relatively few memory limitations. A nearly identical construction is used in the ‘Smart
Card Simulator’ program, for example.

Table 5.36 Variables used in Small-OS for data transmissions to and from the smart card. The
listed variables are typically held in RAM

Variable Description

.18 Bitwise reading or writing of a variable
(for example, APDU.Cmd.CLA.1 corresponds to bit 1 of the
class byte in the command APDU)

APDU.Cmd Command APDU received from the smart card
APDU.Cmd.CLA Class byte of the command APDU
APDU.Cmd.INS Command byte of the command APDU
APDU.Cmd.P1 Parameter 1 of the command APDU
APDU.Cmd.P2 Parameter 2 of the command APDU
APDU.Cmd.Lc Long command byte of the command APDU (optional)
APDU.Cmd.Data[. . .] Data portion of the command APDU with length 1 . . . n (optional)
APDU.Cmd.Le Expected length of the response APDU (optional)
APDU.Rsp Response APDU to be sent by the smart card
APDU.Rsp.Data[. . .] Data portion of the response APDU with length 1 . . . n (optional)
APDU.Rsp.SW1 Status word 1 of the response APDU (byte 1 of the return code)
APDU.Rsp.SW2 Status word 2 of the response APDU (byte 2 of the return code)
Returncode Return code := APDU.Rsp.SW1 || APDU.Rsp.SW2

Table 5.37 Variables used in Small-OS for file management and file access. The listed variables
are typically held in RAM

Variable Description

Ptr.MF Pointer in the smart card operating system; always points to the MF
Ptr.CurrentDF Pointer in the smart card operating system; points to the currently

selected DF or to the MF
Ptr.CurrentIEF.Key Pointer in the smart card operating system; points to the current

internal EF that holds the key for the currently selected DF (EF Key)
Ptr.CurrentWEF Pointer in the smart card operating system; points to the currently

selected working EF in the currently selected DF or the MF
Ptr.CurrentRecord Pointer in the smart card operating system; points to the current

record in a record-oriented EF. This pointer is not valid if a
transparent file is selected

SecurityState.MF Achieved security state of the MF
SecurityState.DF Achieved security state of the currently selected DF

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 371 of 1123

5.15 The Small-OS Smart Card Operating System 337

Data structures

Ptr.CurrentDF := Ptr.MF
DF[Ptr.CurrentDF].EF[Ptr.CurrentIEFKey]. ...

Ptr.CurrentDF := Ptr.MF
DF[Ptr.CurrentDF].EF[Ptr.CurrentWEF]. ...

MF.DF[Ptr.CurrentDF].EF[Ptr.CurrentIEFKey]. ...

MF.DF[Ptr.CurrentDF].EF[Ptr.CurrentWEF]. ...

DF[Ptr.MF]

MF.DF[Ptr.CurrentDF]

EF

EF

Key

EF

EF

Key

MF

DF

Figure 5.65 Example of the addressing of directories (MF and DF) and files (EFs) within the data
structures available in Small-OS

Table 5.38 General data structures used in Small-OS for file management. The
listed variables are typically held in EEPROM

Variable Description, contents and size

Data structures for the MF and the DFs
DF[. . .].FID File identifier

length: 2 bytes; content: 0 . . . 255 each element
DF[. . .].DFName DF name (includes the application identifier)

length: 1 . . . 16 bytes; content: 0 . . . 255 each element
DF[. . .].LenDFName Length of the DF name

length: 1 byte; content: integer ∈ {1 . . . 16}

Data structures for EFs
DF[. . .].EF[. . .]. . . . File tree in the form of a 2-dimensional matrix
DF[. . .].EF[. . .].FID File identifier

length: 2 bytes; content: 0 . . . 255 each element
DF[. . .].EF[. . .].Structure EF structure

content: property (transparent / linear fixed)
DF[. . .].EF[. . .].Type EF type

content: property (working / internal)
DF[. . .].EF[. . .].AccessCondition.Read Access condition for which the READ command is

allowed for the EF
content: 0 . . . 255

DF[. . .].EF[. . .].AccessCondition.Update Access condition for which the UPDATE command is
allowed for the EF
content: 0 . . . 255

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 372 of 1123

338 Smart Card Operating Systems

Table 5.39 Data structures used in Small-OS for managing working EFs with transparent and
linear fixed structures. The listed variables are typically held in EEPROM

Variable Description, contents and size

Data structures for EFs with transparent structures
DF[. . .].EF[. . .].TransparentData[1 . . . n] Data content of a transparent file

length: n (=TransparentDataSize)
content: 0 . . . 255 each element

DF[. . .].EF[. . .].TransparentDataSize Data size of a transparent file
content: 0 . . . 255

Data structures for EFs with linear fixed structures
DF[. . .].EF[. . .].Record[. . .].Data[1 . . . n] Data content of a single record of a linear fixed file

length: 1 . . . n (n =. . . .Size)
content: 0 . . . 255 each element

DF[. . .].EF[. . .].Record[. . .].Size Length of a single record of a linear fixed file
(same for all records in a linear fixed file)
content: 1 . . . 255

DF[. . .].EF[. . .].NoOfRecords Number of records in a linear fixed file
content: 1 . . . 255

Table 5.40 Data structures used in Small-OS for managing internal EFs with linear variable
structure, which are used to store PINs and keys. The listed variables are typically held in
EEPROM

Variable Description, contents and size

Data structures for EFs for storing keys
DF[. . .].EF[. . .].Record[x].KeyData PIN or key in a linear variable file

length: n (=KeySize)
content: 0 . . . 255 each element

DF[. . .].EF[. . .].Record[x].KeySize Length of the PIN or key in bytes
DF[. . .].EF[. . .].Record[x].KeyNo Number of the PIN or key

content for a PIN: 1; 2
content for a key: 1 . . . 31 each element

DF[. . .].EF[. . .].Record[x].RCntr Retry counter for a PIN or key
content: 0 . . . 15

DF[. . .].EF[. . .].Record[x].RCntrMaxValue Maximum retry counter value for a PIN or key
content: 1 . . . 15

DF[. . .].EF[. . .].Record[x].KeyPurpose Utilization of the EF Key records
(VERIFY or INTERNAL AUTHENTICATE)

DF[. . .].EF[. . .].Record[x].EntryState Necessary state for using a PIN or key
content: 0 . . . 255

DF[. . .].EF[. . .].Record[x].ResultState.OK State following successful use of a PIN or key
content: 0 . . . 255

DF[. . .].EF[. . .].Record[x].ResultState.NOK State following unsuccessful use of a PIN or key
content: 0 . . . 255

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 373 of 1123

5.15 The Small-OS Smart Card Operating System 339

The main loop and the initialization of the hardware and operating system

After the smart card is reset, the program counter is loaded with the address of the reset vector,
and the processor then starts to execute the first program code. The hardware is tested right away

Listing 5.2 Small-OS program code: operating system initialization and the main loop

Resetvector: Entry point following a CPU reset.
CALL Initialize Hardware
CALL Initialize Operating System
CALL IO Manager Send ATR

Main Loop: Main loop of the smart card operating system.
CALL IO Manager Receive APDU
CALL Command Interpreter
CALL IO Manager Send APDU
GOTO Main Loop

Listing 5.3 Small-OS program code: initializing the microcontroller hardware and the smart card
operating system

Initialize Hardware: Subroutine for initializing the
smart card hardware.

CALL Kernel CheckRAM Test the RAM to see if it is in
IF STATUS (Kernel CheckRAM = C Error) THEN (good working order.

GOTO IO Manager Send Error ATR)
CALL Kernel DeleteRAM Set the entire RAM to the value
IF STATUS (Kernel DeleteRAM = C Error) THEN ('00'in order to have a defined

GOTO IO Manager Send Error ATR) initial state after each reset. An
intentional side effect is that all
variables in RAM are initialized.

CALL Kernel Check EDC ROM Check the error detection codes
IF STATUS (Kernel Check EDC ROM = C Error)
THEN (

(EDCs) at various places in the
ROM.

GOTO IO Manager Send Error ATR)

CALL Kernel Check EDC EEPROM Check the error detection codes
IF STATUS (Kernel Check EDC EEPROM = C Error)
THEN (

(EDCs) at various places in the
EEPROM.

GOTO IO Manager Send Error ATR)
RETURN

Initialize Operating System: Subroutine for initializing the
CALL IO Manager Set Transmission Parameter smart card operating system.
CALL SELECT FILE MF
IF STATUS (SELECT FILE MF = C Error) THEN (

GOTO IO Manager Send Error ATR)
SecurityState.MF := 0
SecurityState.DF := 0

RETURN

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 374 of 1123

340 Smart Card Operating Systems

to see if it is in good working order, just as with PCs. This consists of a RAM test to start with,
followed by the calculation of several checksums for the contents of the ROM and EEPROM.
If an error occurs here, the smart card attempts to send a special error ATR, following which it
does nothing except to wait in an endless loop for the next reset. The success of the attempt to
send the error ATR depends primarily on the nature of the error that has occurred. If the error

Listing 5.4 Small-OS program code: routines for data transmissions to and from the smart card

IO Manager: Hardware-related subroutines for data exchange
with the terminal via the serial I/O line.

IO Manager Send Error ATR: Subroutine for sending a special ATR that
Transmit an ATR that indicates a
serious operating system error
Error ATR:

indicates a serious error in the smart card hardware
or the operating system. Following the ATR, the
operating system is suspended in an endless loop.

GOTO Error ATR

IO Manager Send ATR:
· · ·

RETURN

Subroutine that codes all the parameters of the
transmission protocol into an ATR string and
transmits the string. Uses the operating system
core routine Kernel IO SendByte.

IO Manager Send APDU:
· · ·

RETURN

Subroutine that converts an APDU already present
in the I/O buffer into a TPDU, according to the
chosen transfer parameters, and then sends the
TPDU to the terminal via the serial I/O line. The
mechanism for correcting data transmission errors
may be used as necessary for the transfer. Uses the
operating system core routine Kernel IO SendByte.

IO Manager Receive APDU:
· · ·
APDU.Cmd := TPDU received from
the terminal and converted
· · ·

RETURN

Subroutine that receives a TPDU from the terminal
via the serial I/O line according to the chosen
transfer parameters, converts it into an APDU and
then stores it in the I/O buffer. The mechanism for
correcting data transmission errors may be used as
necessary for the transfer. Uses the operating
system core routine Kernel IO ReceiveByte.

IO Manager Set Transmission Parameters: Subroutine that sets the parameters for serial data
transmission.

· · ·
set clock rate conversion factor to 372
set convention
set the length of the transmit buffer
set the length of the receive buffer
· · ·

RETURN

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 375 of 1123

5.15 The Small-OS Smart Card Operating System 341

is serious and affects the RAM or the program code of the transmission routine, only a garbled
ATR or no ATR at all can be sent.

After the chip hardware has been tested and initialized, the initialization of the operating
system starts. The important aspects of this are setting the data transmission parameters for
the T = 1 protocol, automatically selecting the MF and establishing the security conditions for
file accesses. If the MF cannot be found, this is a serious error, and Small-OS then terminates
all further actions after sending an error ATR.

The I/O manager

The entire process of transferring data from and to the terminal is handled by the I/O man-
ager. Two hardware-independent program routines in the core of the operating system called
Kernel IO SendByte and Kernel IO ReceiveByte form the basis for transmitting and receiving
messages. All other parts of the I/O program code are independent of the target hardware for
Small-OS. The ATR and the T = 1 transmission protocol are completely executed in the I/O
manager for both successful and unsuccessful instruction processing. A dedicated state ma-
chine had to be developed for this, primarily to handle the relatively complicated procedures
of the T = 1 protocol. The ISO/IEC 7816-3 Amd. 1 standard describes the reactions of the
I/O manager in case of both success and failure by means of many examples. With manually
optimized assembler code, a good I/O manager requires at least one kilobyte of memory, which
is usually located in ROM.

Real I/O managers preferably use only the RAM for the I/O buffer, since write accesses to
the RAM take place at the full speed of the CPU. However, there are now many smart card
operating systems whose transmit and receive buffers are larger than the available amount
of RAM. In such cases, a certain part of the EEPROM is used as an extension to the data
transmission buffer when the amount of data exceeds a certain threshold. This avoids any
restrictions on the size of the I/O buffer, but the price for this is a considerably reduced data
transmission rate, due to the time required to write to the EEPROM. In addition, with this sort
of extended I/O buffer, there is a danger that the buffer could reach the end of its useful life
in a relatively short time, due to frequent write accesses to the EEPROM. In spite of these
limitations, this is the only technically feasible means to make the data transmission buffer
larger than the amount of available RAM.

Operating system kernel

All of the routines that belong to the core of the operating system are collected together in
the OS kernel. Most of these routines are either hardware-dependent or rather time-critical,
and must therefore be adapted when the program is ported to a different hardware platform.
The functions provided by these routines are in each case described by their names. Some of
these subroutines can influence aspects of the system that are of concern to its security. For
example, the execution time of a subroutine such as Kernel CompareByteString should not
vary depending on the result of the comparison, since any such variations could be used as the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 376 of 1123

342 Smart Card Operating Systems

basis for determining the internal results of PIN computations by measuring elapsed times.
Nowadays, this type of attack has been eliminated by incrementing the retry counter before
each PIN comparison as a precautionary measure, but not long ago this was a very promising
way to attack a PIN.

Listing 5.5 Small-OS program code: hardware-dependent core routines

OS Kernel: Core hardware-related subroutines of the operating system.
Kernel Check EDC x: Subroutine for computing checksums (EDCs) to test the internal
· · · consistency of memory regions in the ROM or EEPROM.
RETURN x ∈ {ROM, EEPROM}
Kernel x: Subroutine for elementary functions.
· · · x ∈ {CopyByteString, CompareByteString, DeleteRAM,
RETURN CheckRAM}
Kernel DES x: Subroutine for DES encryption and decryption.
· · · x ∈ {Encrypt, Decrypt}
RETURN

Kernel IO x: Subroutine for sending and receiving a single byte via the serial
· · · interface of the microcontroller.
RETURN x ∈ {SendByte, ReceiveByte}

Command interpreter

The Small-OS command interpreter is constructed in a relatively simple manner. It works
on the principle of a dispatcher that, based on the class and instruction bytes, calls a rou-
tine that processes the recognized command. This implementation uses little memory and
has the additional important advantage that it is relatively easy to integrate new com-
mands into the operating system. This can be done by just adding a few lines of code to
the command interpreter. These identify the new command and the associated subroutine
call. With suitable code in place, the new command will be recognized and executed as
necessary.

The structures of command interpreters that are commonly used in practice, however, are far
more complicated. This is partly because they must run in unalterable ROM, but also because
it must be possible to download program code into the EEPROM when the operating system
is completed. This downloaded code must then be recognized and called when the program
runs. The principle that is used for this is a jump table located in the EEPROM, which can be
extended as necessary when the card is completed.

Fixed polling of a particular class byte, as used in the Small-OS command interpreter,
only makes sense in operating systems that do not support either secure messaging or logical
channels, and which also support only a single command class conforming to the ISO/IEC
7816-4 standard. In all other cases, the class byte is used to identify previously defined options,
so it need not be the same for all commands.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 377 of 1123

5.15 The Small-OS Smart Card Operating System 343

Listing 5.6 Small-OS program code: the command interpreter

Command Interpreter: Command interpreter
IF APDU.Cmd.CLA <>'00'THEN (If the class byte is not the same as the class for

Returncode := C RC CLANotSupported ISO/IEC 7816-4 commands, abort command
GOTO Command Interpreter Exit) processing and set the corresponding return code.

IF APDU.Cmd.INS ='A4'THEN (If the command SELECT FILE has been sent to the
CALL SELECT FILE smart card, call the corresponding subroutine.
GOTO Command Interpreter Exit)

IF APDU.Cmd.INS ='B0'THEN (If the command READ BINARY has been sent to
CALL READ BINARY the smart card, call the corresponding subroutine.
GOTO Command Interpreter Exit)

IF APDU.Cmd.INS ='D6'THEN (If the command UPDATE BINARY has been sent to
CALL UPDATE BINARY the smart card, call the corresponding subroutine.
GOTO Command Interpreter Exit)

IF APDU.Cmd.INS ='B2'THEN (If the command READ RECORD has been sent to
CALL READ RECORD the smart card, call the corresponding subroutine.
GOTO Command Interpreter Exit)

IF APDU.Cmd.INS ='DC'THEN (If the command UPDATE RECORD has been sent to
CALL UPDATE RECORD the smart card, call the corresponding subroutine.
GOTO Command Interpreter Exit)

IF APDU.Cmd.INS ='20'THEN (If the command VERIFY has been sent to the smart
CALL VERIFY card, call the corresponding subroutine.
GOTO Command Interpreter Exit)

IF APDU.Cmd.INS ='88'THEN (If the command INTERNAL AUTHENTICATE has
CALL INTERNAL AUTHENTICATE been sent to the smart card, call the corresponding
GOTO Command Interpreter Exit) subroutine.

Returncode := C RC INSNotSupported The command sent to the smart card is not supported.

Command Interpreter Exit: Set the return code in the I/O buffer as specified by
CALL Returncode Manager the program code for the command.

RETURN

The return code manager and the file manager

The return code manager uses a passed-in value to look up the return code in a table, and
then adds it to the end of any data block in the transmit buffer. A dedicated manager is used
for this, for two main reasons. First, it is better programming style to have all return codes
in one central location. For example, this makes it possible to substitute another return code
for a particular return code, easily and in one central place, in case of a software error. This
can sometimes be essential. Second, using a return code manager saves precious memory. It
is easy to calculate that storing each return code only once in a common table takes up less
memory than repeating it everywhere it is needed.

In real smart card operating systems, all file accesses take place via a central file manager, for
reasons of security. Frequently, the file manager also computes the checksum of the file header
when the file is accessed. In a concession to simplicity, Small-OS accesses the multidimensional

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 378 of 1123

344 Smart Card Operating Systems

variables of the file tree directly when a command is processed, without separating levels or
first computing a checksum. The only check that it makes for all commands is to test whether
access to the file is allowed. With a complete file manager, read and write accesses to files
would take place in a similar manner.

Listing 5.7 Small-OS program code: the return code manager and file manager

Returncode Manager:
· · ·

RETURN

Manager for setting the return code.
Sets the return code based on the value
received and a return code table.

File Manager CheckACRead: File manager for checking the ‘file
access condition for ‘read’

Status := C AccessDenied Set the variable for the access status to
the initial value. Test whether the
security state required for reading the
selected EF with READ BINARY or
READ RECORD has been achieved.
The security state that must be
achieved depends on the currently
selected directory (MF or DF).

IF Ptr.CurrentDF = Ptr.MF THEN (
// MF is selected

IF.EF[Ptr.CurrentWEF].AccessCondition.
Read =
SecurityState.MF THEN (

Status := C AccessAllowed))
ELSE (

// DF is selected
IF.EF[Ptr.CurrentWEF].AccessCondition.
Read =

SecurityState.DF THEN (
Status := C AccessAllowed))

RETURN

File Manager CheckACUpdate: File manager for checking the file
access condition for ‘update’.

Status := C AccessDenied Set the variable for the access status to
the initial value. Test whether the
security state required for reading the
selected EF with UPDATE BINARY
or UPDATE RECORD has been
achieved. The security state that must
be achieved depends on the currently
selected directory (MF or DF).

IF Ptr.CurrentDF = Ptr.MF THEN (
// MF is selected
IF.EF[Ptr.CurrentWEF].AccessCondition.
Update =
SecurityState.DF THEN (

Status := C AccessAllowed))
ELSE (

// DF is selected
IF.EF[Ptr.CurrentWEF].AccessCondition.
Update =

SecurityState.DF THEN (
Status := C AccessAllowed))

RETURN

The basic structure of the program code for smart card commands

The basic functions of smart card commands are described in Chapter 7 (‘Smart Card Com-
mands’). The command processing program code listings shown here are always divided into

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 379 of 1123

5.15 The Small-OS Smart Card Operating System 345

three sections, separated by thin lines. Any associated subroutines are separated from the main
body of the code (and from each other) by thick lines. The first functional block of the main
body of the code investigates the command header (which means the CLS, INS, P1 and P2)
as much as is possible at the time. This respects the well-known software design principle of
testing the consistency and range of the data as early as possible.

Following this, the basic prerequisites for the execution of the command are checked. For
example, monitoring the file structure or the access conditions occurs in this section. If all
these checks are completed without any rejections, the actual command execution then takes
place. This usually involves only a very small amount of code. Finally, the return code for
successful execution of the command is set, and a jump to the I/O manager is made (via the
command interpreter and the return code manager). The I/O manager sends the result of the
command processing and then waits for a new command.

If an error is detected in any of the tests in the pseudocode, the relevant return code is imme-
diately set and program execution branches via the central exit of the subroutine in question.

The command set

All seven of the commands listed below correspond to the ISO/IEC 7816-4 standard in their
structure and coding. However, given the freedom of implementation that a standard naturally
allows, it is necessary to specify the details of each command in addition to referring to
the standard. The specifications of all the commands of Small-OS are thus described in the
following subsections. The specifications have been kept relatively short and formal, so they
represent only the essential elements.

SELECT FILE

The SELECT FILE command is used to select a file (MF, DF or EF). This normally requires
a 2-byte FID (file identifier). Profile N of the ISO/IEC 7816-4 standard also allows DFs to be
selected using a DF name, which can contain an AID (application identifier). In Small-OS, the
AID can be passed only in its complete form. In the special case of the MF, no FID is required
to make the selection, since a suitable command option can be used instead. The MF is also
automatically selected after the smart card is reset, and it can be selected from every other
directory during a session.

SELECT FILE falls under Case 1 when the MF is directly selected, which means that neither
the command APDU nor the response APDU contains a data portion. When the selection is
made using a FID or a DF name, SELECT FILE falls under Case 3. This means that a data
portion is present in the command APDU but not in the response APDU.

After a reset, the security state of the MF is reset to the ground state (0). Selecting a DF
does not affect the security state of the MF, but the security state of the DF is automatically
set to the ground state (0) when it is selected. When a linear fixed EF is selected, the record
pointer is set to ‘invalid’.

The search order, which means whether the operating system should first search for a DF
or an EF when selection is made using a FID, is not specified in the standard. However, this
is of considerable significance in certain cases. For example, if the MF is currently selected
and there is a DF as well as an EF with the same FID, it may not be possible to select the
EF, depending on the search routine. Consequently, in implementing the search routine of

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 380 of 1123

346 Smart Card Operating Systems

Small-OS, we have chosen to always search the list of EFs first, followed by the list of DFs.
In case of a conflict, the DF can always be selected using its DF name, so using the FID is not
absolutely necessary in such cases.

Table 5.41 Small-OS coding of the Case 1 command
SELECT FILE with the option ‘direct MF selection’

Data element Coding Remarks

CLA '00' —
INS 'A4' —
P1 '00' —
P2 '00' —

Table 5.42 Small-OS: coding of the Case 3 command SELECT FILE with the
option ‘file selection using an FID’

Data element Coding Remarks

CLA '00' —
INS 'A4' —
P1 '00' —
P2 '00' —
Lc 2 —
DATA FID The 2-byte FID of an MF, DF or EF

Table 5.43 Small-OS: coding of the Case 3 command SELECT FILE with the option ‘DF
selection using a DF name’

Data element Coding Remarks

CLA '00' —
INS 'A4' —
P1 '04' —
P2 '00' —
Lc 1 . . . 16 —
DATA DF name A DF name (1 to 16 bytes) is given. The DF name

may contain the AID of the file to be selected.

Table 5.44 Small-OS: coding of the response to the SELECT FILE command

Data element Coding Remarks

SW1 || SW2 '9000' Return code for correct execution of the command

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 381 of 1123

5.15 The Small-OS Smart Card Operating System 347

Listing 5.8 Small-OS: program code for the SELECT FILE command, in compliance with ISO
7816-4, Profile N

SELECT FILE: Command according to ISO/IEC
7816-4, Profile N, with extensions.

IF APDU.Cmd.P1 ='00'THEN (If P1 ='00', either the command option
for the direct MF selection is set or a file
is being selected using its 2-byte FID.

IF ((APDU.Cmd.P2 ='00') AND
(LENGTH (APDU.Cmd) = 4)) THEN (

IF LENGTH (APDU.Cmd) < 4 THEN (
Returncode := C RC WrongLength
RETURN)

CALL SELECT FILE MF

If P2 ='00'and only the 4-byte command
header was passed in, the MF is being
directly selected. Test whether the
command was sent as a Case 1 command.
If not, set the appropriate return code and
abort command processing.

RETURN)

IF APDU.Cmd.Lc ='02'THEN (
IF LENGTH (APDU.Cmd) < 6 THEN (

Returncode := C RC WrongLength
RETURN)

If two data bytes have been passed with
the command, a file should be selected
using a 2-byte FID. Test whether the
command was sent as a Case 3 command.

IF APDU.Cmd.Data [1 . . . 2] ='3F00'THEN (
CALL SELECT FILE MF)
RETURN)

ELSE (
CALL SELECT FILE FID)
RETURN)

If not, set the appropriate return code and
abort command processing. If the MF is
selected (with FID ='3F00'), execute the
selection immediately, With any other
file (DF or EF), execute the selection via
a search routine using the given FID as
the search string.

IF APDU.Cmd.P1 = ◦0000 0100◦ THEN (
IF LENGTH (APDU.Cmd) < 5 THEN (

Returncode := C RC WrongLength
RETURN)

IF ((APDU.Cmd.Lc < 1)
OR (APDU.Cmd.Lc > 16)) THEN (

Returncode := C RC LcInconsistentP1P2
RETURN)

Test whether a DF can be selected with
the DF name. Test whether the command
was sent as a Case 3 command. If not, set
the appropriate return code and abort
command processing. Test whether the
accompanying data portion is between 1
and 16 bytes long.

CALL SELECT FILE DFName)

RETURN

SELECT FILE MF: Subroutine to select the MF.

SEARCH (MF in file tree)
IF STATUS (SEARCH = C NotFound) THEN (

// MF not found in file tree

If the MF cannot be found in the file tree,
abort with an internal operating system
error.

Returncode := C RC FatalError
RETURN)

// MF found in file tree
Ptr.CurrentDF := identified MF address

Set the current DF pointer to the address
of the located MF.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 382 of 1123

348 Smart Card Operating Systems

SEARCH (EF Key in MF)
IF STATUS (SEARCH) = C Found THEN (

Ptr.CurrentIEF.Key := identified EF

Search for an EF Key and set the
appropriate pointer if it is present.

Key address)

ELSE (Ptr.CurrentIEF.Key := C InvalidPointer)
Ptr.CurrentWEF := C InvalidPointer

Mark the current EF pointer and the
current record pointer as invalid. Set the

Ptr.CurrentRecord := C InvalidPointer
SecurityState.MF := 0
SecurityState.DF := 0

security states of the MF and DF to the
initial value.

Returncode := C RC OK

RETURN

SELECT FILE FID: Subroutine to select a DF or EF using a
FID.

SEARCH (EF with FID in the currently
selected DF)
IF STATUS (SEARCH) = C Found THEN (

Ptr.CurrentWEF := identified EF address
Ptr.CurrentRecord := C InvalidPointer
Returncode := C RC OK

Search in the current DF for an EF with
the given FID. If an EF can be found, set
the current EF pointer.

RETURN)

//EF with the given FID not found
SEARCH (DF mit FID)
IF STATUS (SEARCH) = C Found THEN (

Ptr.CurrentDF := identified DF address
SEARCH (EF Key in the current DF)
IF STATUS (SEARCH) = C Found THEN (

Ptr.CurrentIEF.Key := identified EF

If an EF cannot be found, search for a DF
with the given FID. If a DF can be found,
set the current DF pointer to point to it.
Then search for an EF Key, and set the
appropriate pointer if one can be found.

Key address)
ELSE (Ptr.CurrentIEF.Key := C InvalidPointer)

Ptr.CurrentWEF := C InvalidPointer
Ptr.CurrentRecord := C InvalidPointer
SecurityState.DF := 0
Returncode := C RC OK

Mark the current EF pointer and the
current record pointer as invalid. Set the
security state of the DF to the initial
value.

RETURN)

// neither an EF nor a DF with the given
FID found

If no matching file could be found, set the
appropriate return code.

Returncode := C RC FileNotFound

RETURN

SELECT FILE DFName: Subroutine to select a DF using a DF
name.

SEARCH (DF with DF name)
IF STATUS (SEARCH) = C NotFound THEN (

Returncode := C RC FileNotFound
RETURN)

ELSE (Ptr.CurrentDF := identified DF address)

Set the current DF pointer to the address
of the DF found in the file tree. Then
search for the relevant EF Key in the
current DF, and set the appropriate
pointer to its address if one can be found.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 383 of 1123

5.15 The Small-OS Smart Card Operating System 349

SEARCH (EF Key in current DF)
IF STATUS (SEARCH) = C Found THEN (

Ptr.CurrentIEF.Key := identified EF
Key address)

ELSE (Ptr.CurrentIEF.Key := C InvalidPointer)

Ptr.CurrentWEF := C InvalidPointer
Ptr.CurrentRecord := C InvalidPointer

Mark the current EF pointer and the
current record pointer as invalid.

SecurityState.DF := 0
Returncode := C RC OK

Set the security state of the DF to the
initial value.

RETURN

READ BINARY

The READ BINARY command can be used to read data from a transparent EF, starting from a
location specified by a 15-bit offset parameter passed by the command. READ BINARY falls
under Case 2, which means that there is no data part in the command APDU, but there is a
data part in the response APDU.

All length specifications must be an integral number of bytes. The maximum length of the
data to be read is limited to the maximum data volume of a transparent EF, which is 255 bytes
for Small-OS. If a value of zero is given for the length, all data from the given offset location to
the end of the file are read. Profile N of the ISO/IEC 7816-4 standard does not provide for the
implicit selection of EFs by means of short file identifiers, so this option is not implemented
here.

Before data can be read from an EF using this command, the associated access conditions
must be satisfied. Otherwise, the command will be rejected with an appropriate error report.

Table 5.45 Small-OS: coding of the Case 2 command READ BINARY

Data element Coding Remarks

CLA '00' —
INS 'B0' —
P1 ◦0XXX XXXX◦ The 7 more significant bits of the offset to the data to be read

(offset := XXX XXXX || Y)
P2 Y The 8 less significant bits of the offset to the data to be read
Le Z Z = 0: read all bytes up to the end of the file

Z > 0: Z is the number of bytes to be read

Table 5.46 Small-OS: coding of the response to the READ BINARY command

Data element Coding Remarks

DATA . . . If the command was correctly executed, the data requested
by the command are located in this data element

SW1 || SW2 '9000' Return code for correct execution of the command

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 384 of 1123

350 Smart Card Operating Systems

Listing 5.9 Small-OS: program code for the READ BINARY command, in compliance with ISO
7816-4, Profile N

READ BINARY: Command according to ISO/IEC
7816-4, Profile N.

IF LENGTH (APDU.Cmd) < 5 THEN (
Returncode := C RC WrongLength
RETURN)

Test whether the command was
sent as a Case 2 command. If not,
set the appropriate return code
and abort command processing.

IF APDU.Cmd.P1.b8 = ◦1◦ THEN (
Returncode := C RC FctNotSupported

Test whether an EF should be
selected using an SFI.

GOTO READ BINARY Exit)

IF Ptr.CurrentWEF = C InvalidPointer THEN (
Returncode := C RC CmdNotAllowed

Test whether an EF is already
selected.

GOTO READ BINARY Exit)

WITH DF[Ptr.CurrentDF]. Set a part of the file tree as a
reference for this command.

IF. EF[Ptr.CurrentWEF].Structure =
C EFStrucTransparent

THEN (

Test whether the selected EF has a
transparent structure.

Returncode := C RC CmdIncompFStruc
GOTO READ BINARY Exit)

FileOffset := (APDU.Cmd.P1 * 256) + APDU.Cmd.P2
DataLenToRead := 0

Calculate the offset to the desired
data in the file, and initialize the
variable for the amount of data to
be read.

IF STATUS (File Manager CheckACRead) =
C AccessDenied THEN (

Returncode := C RC SecStateNotSatisfied
GOTO READ BINARY Exit)

Test whether the security state has
been achieved that is required for
reading data from the selected EF
with READ BINARY.

IF APDU.Cmd.Le ='00'THEN (
DataLenToRead := .EF [Ptr.CurrentWEF].
TransparentDataSize–FileOffset)

ELSE (

Test whether all available data
should be read (i.e., Le ='00'), or
only a certain amount of data.

DataLenToRead := APDU.Cmd.Le)

IF .EF[Ptr.CurrentWEF].TransparentDataSize >=
FileOffset
THEN (

Test whether the requested offset
fits with the size of the file.

Returncode := C RC WrongP1P2
GOTO READ BINARY Exit)

IF .EF[Ptr.CurrentWEF].TransparentDataSize <
(FileOffset +DataLenToRead) THEN (

Returncode := C RC WrongP1P2

Test whether the selected offset
and the requested data length (Le)
fit with the size of the file.

GOTO READ BINARY Exit)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 385 of 1123

5.15 The Small-OS Smart Card Operating System 351

CALL Kernel CopyByteString
// from: .EF[Ptr.CurrentWEF].TransparentData[x . . . y]
// x = FileOffset ; y = (FileOffset + DataLenToRead)

Copy the requested data from the
file to the I/O transmit buffer.

// to: APDU.Rsp.Data[1 . . . DataLenToRead]

Returncode := C RC OK The command has been processed
with no error, since in all other
cases an error exit is used.

READ BINARY Exit:
END WITH

RETURN

UPDATE BINARY

The UPDATE BINARY command can be used to read data from a transparent EF, starting from
a location specified by a 15-bit offset parameter passed by the command. UPDATE BINARY
falls under Case 3, which means that there is a data part in the command APDU, but there is
no data part in the response APDU.

All length specifications must be an integral number of bytes. The maximum length of the
data to be read is limited to the maximum data volume of a transparent EF, which is 255 bytes
for Small-OS. If a value of zero is given for the length, all data from the given offset location
to the end of the file are read. Profile N of the ISO/IEC 7816-4 standard does not provide
for the implicit selection of EFs by means of short file identifiers, so this option is not imple-
mented here. Before data can be written to an EF using this command, the associated access
conditions must be satisfied. Otherwise, the command will be rejected with a suitable error
report.

Table 5.47 Small-OS: coding of the Case 2 command UPDATE BINARY

Data element Coding Remarks

CLA '00' —
INS 'D6' —
P1 ◦0XXX XXXX◦ The 7 more significant bits of the offset to the data

to be read (offset := XXX XXXX || Y)
P2 Y The 8 less significant bits of the offset to the data to be read
Lc . . . Number of bytes to be written
DATA . . . The data bytes to be written

Table 5.48 Small-OS: coding of the response to the UPDATE BINARY command

Data element Coding Remarks

SW1 || SW2 '9000' Return code for correct execution of the command

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 386 of 1123

352 Smart Card Operating Systems

Listing 5.10 Small-OS: program code for the UPDATE BINARY command, in compliance with ISO
7816-4, Profile N

UPDATE BINARY: Command according to ISO/IEC
7816-4, Profile N.

IF LENGTH (APDU.Cmd) < 6 THEN (
Returncode:= C RC WrongLength
RETURN)

Test whether the command was
sent as a Case 3 command. If not,
set the appropriate return code
and abort command processing.

IF APDU.Cmd.P1.b8 = ◦1◦ THEN (
Returncode:= C RC FctNotSupported
GOTO UPDATE BINARY Exit)

Test whether an EF should be
selected using an SFI (i.e.,
the msb of P1 is set).

IF Ptr.CurrentWEF = C InvalidPointer THEN (
Returncode := C RC CmdNotAllowed
GOTO UPDATE BINARY Exit)

Test whether an EF is already
selected. If not, abort the
command.

WITH DF[Ptr.CurrentDF]. Set a part of the file tree as a
reference for this command.

IF .EF[Ptr.CurrentWEF].Structure =
C EFStrucTransparent
THEN (

Test whether the selected EF has
a transparent file structure.

Returncode:= C RC CmdIncompFStruc
GOTO UPDATE BINARY Exit)

FileOffset := (APDU.Cmd.P1 * 256) + APDU.Cmd.P2 Calculate the offset to the data in
the file.

IF STATUS (File Manager CheckACUpdate) =
C AccessDenied THEN (

Returncode:= C RC SecStateNotSatisfied
GOTO UPDATE BINARY Exit)

Test whether the security state
has been achieved that is required
for writing data to the selected EF
with UPDATE BINARY.

IF .EF[Ptr.CurrentWEF].TransparentDataSize <
(FileOffset + APDU.Cmd.Lc) THEN (

Returncode:= C RC WrongP1P2

Test whether the selected offset
and requested data length (Lc) fit
with the size of the file.

GOTO UPDATE BINARY Exit)

CALL Kernel CopyByteString
// from: APDU.Cmd.Data[1 . . . APDU.Cmd.Lc]
// to: .EF[

Ptr.CurrentWEF].TransparentData[x . . . y]
// x = FileOffset ; y =
(FileOffset + APDU.Cmd.Lc)
IF STATUS (Kernel CopyByteString) = C WriteError THEN (

Returncode := C RC MemoryFailure GOTO

Copy the passed-in data from the
I/O receive buffer to the file. If an
error occurs, abort and report the
error to the terminal.

UPDATE BINARY Exit)

Returncode := C RC OK The command has been processed
with no error, since in all other
cases an error exit is used.

UPDATE BINARY Exit:
END WITH

RETURN

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 387 of 1123

5.15 The Small-OS Smart Card Operating System 353

READ RECORD

The READ RECORD command can be used to read a record from a linear fixed EF. The
maximum amount of data to be read is limited to the maximum record length of 255 bytes.
The length specification must either match the length of the addressed record or be set to zero.
With a length of zero, the entire record is automatically read. All length specifications must be
an integer number of bytes. Profile N of the ISO/IEC 7816-4 standard does not provide for the
implicit selection of EFs by means of short file identifiers, so this option is not implemented
here. READ RECORD falls under Case 2, which means that there is no data part in the
command APDU, but there is a data part in the response APDU.

A record in a linear fixed EF can be addressed in three different ways. The number of the
desired record can be passed directly with the READ RECORD command. If this record is
present in the file, its contents are returned in the response; otherwise the answer contains a
suitable error report. This type of access does not affect the record pointer, which can only be
modified with the command options ‘first’, ‘last’, ‘next’ and ‘previous’. The record pointer is
set to ‘invalid’ immediately after an EF is newly selected. If the option ‘next’ or ‘previous’ is
selected when the record pointer is invalid, the record pointer is automatically set to the first or
last record of the file, respectively. This makes it possible to (for example) read the records in
a file by first selecting the EF and then sending a series of READ RECORD commands with
the ‘next’ option, without having to use any other commands. The third type of access is to
use the ‘current’ option. In this case the record that is currently indicated by the current record
pointer is read. If the record pointer is invalid, the command is aborted with an appropriate
error report.

Before data can be read from an EF using this command, the associated access conditions
must be satisfied. Otherwise, the command will be rejected with a suitable error report. The
record returned in the response when the command is successfully executed is not TLV coded,
although this is optionally allowed by the ISO/IEC 7816-4 standard.

Table 5.49 Small-OS: coding of the Case 2 command READ RECORD

Data element Coding Remarks

CLA '00' —
INS 'B2' —
P1 X Y = ◦0000 0100◦, X = 0 read the current record

(Ptr.CurrentRecord)
Y = ◦0000 0100◦, X <> 0 read record number X

P2 Y Y = ◦0000 0100◦ read the record using the method
indicated in P1

X = 0, Y = ◦0000 0000◦ read the first record in the file
X = 0, Y = ◦0000 0001◦ read the last record in the file
X = 0, Y = ◦0000 0010◦ read the next record in the file
X = 0, Y = ◦0000 0011◦ read the previous record in the file

Le Z Z = 0: read all bytes until the end of the record
Z > 0: Z is the record length

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 388 of 1123

354 Smart Card Operating Systems

Table 5.50 Small-OS: coding of the response to the READ RECORD command

Data element Coding Remarks

DATA . . . If the command was correctly executed, the record requested
by the command is located in this data element

SW1 || SW2 '9000' Return code for correct execution of the command

Listing 5.11 Small-OS: program code for the READ RECORD command, in compliance with ISO
7816-4, Profile N

READ RECORD: Command according to ISO/IEC
7816-4, Profile N

IF LENGTH (APDU.Cmd) < 5 THEN (
Returncode := C RC WrongLength
RETURN)

Test whether the command was
sent as a Case 2 command. If not,
set the appropriate return code
and abort command processing.

IF APDU.Cmd.P2.b8 . . . b4 <> ◦00000◦ THEN (
Returncode:= C RC FctNotSupported
GOTO READ RECORD Exit)

Test whether an EF should be
selected using an SFI.

IF Ptr.CurrentWEF = C InvalidPointer THEN (
Returncode:= C RC CmdNotAllowed
GOTO READ RECORD Exit)

Test whether an EF is already
selected.

WITHDF[Ptr.CurrentDF]. Set a part of the file tree as a
reference for this command.

IF .EF[Ptr.CurrentWEF].Structure = C EFStrucLinFix
THEN (

Returncode:= C RC CmdIncompFStruc
GOTO READ RECORD Exit)

Test whether the selected EF
has a linear fixed structure.

IF STATUS (File Manager CheckACRead) =
C AccessDenied THEN (

Returncode:= C RC SecStateNotSatisfied
GOTO READ RECORD Exit)

Test whether the security state
has been achieved that is required
for reading the selected EF with
READ RECORD.

RecordNoToRead := 0
RecordLenToRead := 0

Initialize the variable for the
number of the record to be read
and its length.

IF APDU.Cmd.P2.b3 . . . b1 <> ◦000◦ THEN (
Ptr.CurrentRecord := 1
RecordNoToRead := Ptr.CurrentRecord)

If the option ‘read first record’
was selected, set the current
record pointer to the first record
in the file.

IF APDU.Cmd.P2.b3 . . . b1 <> ◦001◦ THEN (
Ptr.CurrentRecord := .EF[Ptr.CurrentWEF].
NoOfRecords
RecordNoToRead := Ptr.CurrentRecord)

If the option ‘read last record’
was selected, set the current
record pointer to the last record
in the file.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 389 of 1123

5.15 The Small-OS Smart Card Operating System 355

IF APDU.Cmd.P2.b3 . . . b1 <> ◦010◦ THEN (
IF Ptr.CurrentRecord = C InvalidPointer THEN (

Ptr.CurrentRecord = 1
RecordNoToRead := Ptr.CurrentRecord)

ELSE (

If the option ‘read next record’
was selected, set the current
record pointer to the next record
in the file if it does not already
point to the last record in the file.

IFPtr.CurrentRecord < .EF[Ptr.CurrentWEF].
NoOfRecords THEN (
Ptr.CurrentRecord := Ptr.CurrentRecord + 1
RecordNoToRead := Ptr.CurrentRecord)

ELSE (
Returncode = C RC RecordNotFound
GOTO READ RECORD Exit)))

IF APDU.Cmd.P2.b3 . . . b1 <> ◦011◦ THEN (
IF Ptr.CurrentRecord = C InvalidPointer THEN (

Ptr.CurrentRecord :=
.EF[Ptr.CurrentWEF].NoOfRecords
RecordNoToRead := Ptr.CurrentRecord)

ELSE (

If the option ‘read previous
record’ was selected, set the
current record pointer to the
previous record in the file, if it
does not already point to the
first record in the file.

IF Ptr.CurrentRecord > 1 THEN (
Ptr.CurrentRecord := Ptr.CurrentRecord –1
RecordNoToRead := Ptr.CurrentRecord)

ELSE (
Returncode = C RC RecordNotFound
GOTO READ RECORD Exit)))

IF ((APDU.Cmd.P2.b3 . . . b1 <> ◦100◦) AND
(APDU.Cmd.P1 = 0)) THEN (

IF Ptr.CurrentRecord <> C InvalidPointer THEN (
Returncode = C RC WrongP1P2
GOTO READ RECORD Exit)

ELSE (

If the option ‘read current record’
was selected, test whether the
relevant pointer is valid. If it is,
set the internal variable or the
command to the current record to
be read.

RecordNoToRead := Ptr.CurrentRecord))

IF APDU.Cmd.P2.b3 . . . b1 <> ◦100◦ THEN (
IF.EF[Ptr.CurrentWEF].NoOfRecords <
APDU.Cmd.P1
THEN (

Returncode = C RC WrongP1P2
GOTO READ RECORD Exit)

ELSE (
RecordNoToRead := APDU.Cmd.P1))

If the option ‘address record
directly with P1’ was selected,
test whether the specified record
is present in the file.

IF APDU.Cmd.Le ='00'THEN (
RecordLenToRead := .EF[Ptr.CurrentWEF].
Record[RecordNoToRead].Size)

ELSE (

Test whether the entire record is
to be read with an explicit length
specification or with no explicit
length specification (Le ='00')

RecordLenToRead := APDU.Cmd.Le)

IF RecordLenToRead <> .EF[Ptr.CurrentWEF].
Record[RecordNoToRead].Size) THEN (

Test whether the requested data
length (Le) matches the record

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 390 of 1123

356 Smart Card Operating Systems

Returncode = C RC LcInconsistentP1P2 length.
GOTO READ RECORD Exit)

CALL Kernel CopyByteString
// from: .EF[Ptr.CurrentWEF].Record
[RecordNoToRead].

Copy the requested data from the
file to the I/O transmit buffer.

// Data[1 . . . RecordLenToRead]
// to:APDU.Rsp.Data[1 . . . RecordLenToRead]

Returncode = C RC OK The command has been processed
with no error, since in all other
cases an error exit is used.

READ RECORD Exit:
END WITH

RETURN

UPDATE RECORD

The UPDATE RECORD command can be used to write a record to a linear fixed EF. The data
passed by the command are not allowed to be TLV coded, although this is allowed as an option
by the ISO/IEC 7816-4 standard. The maximum amount of data to be written is limited to the
maximum record length of 255 bytes. The length specification must exactly match the length of
the addressed record, and all length specifications must be an integer number of bytes. Profile
N of the ISO/IEC 7816-4 standard does not provide for the implicit selection of EFs by means
of short file identifiers, so this option is not implemented here. READ RECORD falls under
Case 3, which means that there is a data part in the command APDU, but there is no data part
in the response APDU.

A record in a linear fixed EF can be addressed in three different ways. The number of the
desired record can be passed directly with the UPDATE RECORD command. If this record

Table 5.51 Small-OS: coding of the Case 3 command UPDATE RECORD

Data element Coding Remarks

CLA '00' —
INS 'DC' —
P1 X Y = ◦0000 0100◦, X = 0 write the current record

(Ptr.CurrentRecord)
Y = ◦0000 0100◦, X <> 0 write record number X

P2 Y Y = ◦0000 0100◦ write the record using the method
specified by P1

X = 0, Y = ◦0000 0000◦ write the first record in the file
X = 0, Y = ◦0000 0001◦ write the last record in the file
X = 0, Y = ◦0000 0010◦ write the next record in the file
X = 0, Y = ◦0000 0011◦ write the previous record in the file

Lc . . . Number of bytes to be written
DATA . . . The record to be written

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 391 of 1123

5.15 The Small-OS Smart Card Operating System 357

is present in the file, its contents are returned in the response; otherwise, the answer contains
a suitable error report. This type of access does not affect the record pointer, which can only
be modified with the command options ‘first’, ‘last’, ‘next’ and ‘previous’. The record pointer
is set to ‘invalid’ immediately after an EF is newly selected. If the option ‘next’ or ‘previous’
is selected when the record pointer is invalid, the record pointer is automatically set to the
first or last record of the file, respectively. This makes it possible to (for example) write all
the records in a file by first selecting the EF and then sending a series of UPDATE RECORD
commands with the ‘next’ option, without having to use any other commands. The third type
of access is to use the ‘current’ option. In this case, the record that is currently indicated by
the current record pointer is written. If the record pointer is invalid, the command is aborted
with an appropriate error report. Before data can be written to an EF using this command, the
associated access conditions must be satisfied. Otherwise, the command will be rejected with
a suitable error report.

Table 5.52 Small-OS: coding of the response to the UPDATE RECORD command

Data element Coding Remarks

SW1 || SW2 '9000' Return code for correct execution of the command

Listing 5.12 Small-OS: program code for the UPDATE RECORD command, in compliance with ISO
7816-4, Profile N

UPDATE RECORD: Command according to ISO/IEC
7816-4, Profile N.

IF LENGTH (APDU.Cmd) < 6 THEN (
Returncode := C RC WrongLength
RETURN)

Test whether the command was
sent as a Case 3 command. If not,
set the appropriate return code and
abort command processing.

IF APDU.Cmd.P2.b8 . . . b4 <> ◦00000◦ THEN (
Returncode := C RC FctNotSupported

Test whether an EF should be
selected using an SFI.

GOTO UPDATE RECORD Exit)

IFPtr.CurrentWEF = C InvalidPointer THEN (
Returncode := C RC CmdNotAllowed

Test whether an EF is already
selected.

GOTO UPDATE RECORD Exit)

WITH DF[Ptr.CurrentDF]. Set a part of the file tree as a
reference for this command.

IF .EF[Ptr.CurrentWEF].Structure = C EFStrucLinFix
THEN (

Returncode := C RC CmdIncompFStruc

Test whether the selected EF
has a linear fixed structure.

GOTO UPDATE RECORD Exit)

IF STATUS (File Manager CheckACUpdate) =
C AccessDenied) THEN (

Returncode := C RC SecStateNotSatisfied
GOTO UPDATE RECORD Exit)

Test whether the security state has
been achieved that is required for
reading the selected EF with
UPDATE RECORD.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 392 of 1123

358 Smart Card Operating Systems

RecordNoToUpdate := 0 Initialize the variable for the
number of the record to be written.

IF APDU.Cmd.P2.b3 . . . b1 <> ◦000◦ THEN (
Ptr.CurrentRecord := 1
RecordNoToUpdate := Ptr.CurrentRecord)

If the option ‘write first record’
was selected, set the current record
pointer to the first record in the file.

IF APDU.Cmd.P2.b3 . . . b1 <> ◦001◦ THEN (
Ptr.CurrentRecord :=
.EF[Ptr.CurrentWEF].NoOfRecords

If the option ‘write last record’
was selected, set the current record
pointer to the last record in the file.

RecordNoToUpdate := Ptr.CurrentRecord)

IF APDU.Cmd.P2.b3 . . . b1 <> ◦010◦ THEN (
IF Ptr.CurrentRecord = C InvalidPointer THEN (

Ptr.CurrentRecord := 1
RecordNoToUpdate := Ptr.CurrentRecord)

ELSE (

If the option ‘write next record’
was selected, set the current record
pointer to the next record in the file
if it does not already point to the
last record in the file.

IF Ptr.CurrentRecord < .EF[Ptr.CurrentWEF].
NoOfRecords THEN (

Ptr.CurrentRecord := Ptr.CurrentRecord + 1
RecordNoToUpdate := Ptr.CurrentRecord)

ELSE (
Returncode = C RC RecordNotFound
GOTO UPDATE RECORD Exit)))

IF APDU.Cmd.P2.b3 . . . b1 <> ◦011◦ THEN (
IF Ptr.CurrentRecord = C InvalidPointer THEN (

Ptr.CurrentRecord =.EF[Ptr.CurrentWEF].
NoOfRecords
RecordNoToUpdate := Ptr.CurrentRecord)

If the option ‘write previous record’
was selected, set the current record
pointer to the previous record in the
file if it does not already point to
the first record in the file.

ELSE (
IF Ptr.CurrentRecord > 1 THEN (

Ptr.CurrentRecord := Ptr.CurrentRecord - 1
RecordNoToUpdate := Ptr.CurrentRecord)

ELSE (
Returncode = C RC RecordNotFound
GOTO UPDATE RECORD Exit)))

IF ((APDU.Cmd.P2.b3 . . . b1 <> ◦100◦) AND
(APDU.Cmd.P1 = 0)) THEN (

IF Ptr.CurrentRecord <> C InvalidPointer THEN (
Returncode = C RC WrongP1P2
GOTO UPDATE RECORD Exit)

ELSE (

If the option ‘write current record’
was selected, test whether the
relevant pointer is valid. If it is, set
the internal variable or the
command to the current record to
be read.

RecordNoToUpdate:= Ptr.CurrentRecord))

IF APDU.Cmd.P2.b3 . . . b1 <> ◦100◦ THEN (
IF .EF[Ptr.CurrentWEF].NoOfRecords <
APDU.Cmd.P1
THEN (

Returncode = C RC WrongP1P2

If the option ‘address record
directly with P1’ was selected, test
whether the specified record is
present in the file.

GOTO UPDATE RECORD Exit))

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 393 of 1123

5.15 The Small-OS Smart Card Operating System 359

IF .EF[Ptr.CurrentWEF].
Record[Ptr.CurrentRecord].Size
<> APDU.Cmd.Lc THEN (

Returncode := C RC LcInconsistentP1P2

Test whether the length of the
passed-in record (Lc) matches the
record length of the file.

GOTO UPDATE RECORD Exit)

CALL Kernel CopyByteString
// from: APDU.Cmd.Data[1 . . . APDU.Cmd.Lc]
// to: .EF[Ptr.CurrentWEF].Record
[RecordNoToUpdate].
// Data[1 . . . APDU.Cmd.Lc]

Copy the transferred data from the
I/O receive buffer to the file. If an
error occurs, abort and report the
error to the terminal.

IF STATUS (Kernel CopyByteString) = C WriteError
THEN (

Returncode := C RC MemoryFailure
GOTO UPDATE RECORD Exit)

Returncode := C RC OK The command has been processed
with no error, since in all other
cases an error exit is used.

UPDATE RECORD Exit:
END WITH

RETURN

VERIFY

The VERIFY command is used to compare a secret item that has been passed over to the smart
card, such as a PIN, to a stored reference value. The length of the PIN must be between one
and eight bytes. The operating system does perform any sort of testing of the coding of the
data string that is passed in. This means that, for example, a 4-digit PIN (e.g.''1234'') could be
coded as two BCD bytes ('12' ||'34') or as four ASCII bytes [(''1'' ||''2'' ||''3'' ||''4'') = ('31'
||'32' ||'33' ||'34')]. The VERIFY command falls under Class 3, which means that there is a
data part in the command APDU but not in the response APDU.

At most two PINs (PIN number 1 and PIN number 2) can be addressed. They can be located
in either the EF Key of the MF or the EF Key of the currently selected DF. A PIN that is stored
in the EF Key of the MF is used as a common PIN for all applications in the smart card. If a
PIN is stored in the EF Key of a DF, it can be used only for the application associated with
that DF. Such a PIN is thus an application-specific PIN.

Every PIN has a retry counter that is reset to zero when a positive comparison result is
obtained and incremented by one when a negative result is obtained. If the state of the retry
counter is not zero, the number of PIN attempts still allowed is returned encoded in SW2. If
the retry counter reaches its maximum value, this is indicated by a separate return code.

Since Small-OS does not have any command to reset the retry counter, whenever a retry
counter is standing at its maximum value, there is absolutely no possibility of ever making any
further PIN comparisons. Depending on the application, this might mean that the smart card
could no longer be used. The PIN located in the EF Key cannot be altered by the user, although

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 394 of 1123

360 Smart Card Operating Systems

this possibility is commonly found in many smart card applications. A specific command
would be needed for this (CHANGE REFERENCE DATA as per ISO/IEC 7816-8), but this is
not provided in the ISO/IEC 7816-4 standard.

The implementation presented here has a small peculiarity due to simplification. The retry
counter is located in EEPROM, as you know. However, EEPROM write accesses need not
always be successful, due to the possibility of a write error. Consequently, it is necessary to
test the data after each write operation to verify that they have been correctly written. If the
result of the test is negative, a suitable return code is set. The retry counter is altered so often in
the VERIFY command that no such test has been included in the pseudocode, since the basic
relationships of the code would no longer be clear if it were present. You should bear this in
mind when examining the code.

The VERIFY command is naturally predestined to be used for attacks on the PIN. The imple-
mentation has been designed to make it impossible to base an attack on an analysis of timing be-
havior or current consumption. The retry counter is always incremented before the received PIN
is compared to the reference PIN stored in the EF Key. This ensures that cutting off the power
supply to the card immediately following the PIN comparison does not cause the retry counter
to be incremented, which would allow an attacker an unlimited number of PIN comparisons.

The actual EEPROM writing process for incrementing the retry counter is by no means as
trivial as one might initially imagine. The coding of the retry counter must be constructed such
that breaking off the process during the write operation, or during the erase operation that may
be necessary before the write operation, cannot result in the retry counter being reset to its
initial zero value. The code internal to the operating system must therefore be designed with
reference to the minimum-energy state of the EEPROM, which is also known as its secure state.
This means that with an EEPROM whose secure state is zero, for example, the initial value of
the retry counter may not be coded as zero. If it were, the retry counter could be reset to zero by
skillfully switching off the supply voltage during the EEPROM write operation. It would then
be possible to determine the PIN within a relatively short time by trial and error, since the retry
counter would not be able to fulfill its role as a counter for unsuccessful PIN comparisons.
Ideally, the technique of using atomic operations23 can also be used for writing the retry
counter.

Table 5.53 Small-OS: coding of the Case 3 command VERIFY

Data element Coding Remarks

CLA '00' —
INS '20' —
P1 '00' —
P2 Y Y = ◦100Z ZZZZ◦ Use a reference PIN that is stored in the

EF Key of the currently selected directory
(MF or DF) (specific reference data)

Z = ◦0 0001◦ ∧ Z = ◦0 0010◦ Number of the referenced PIN (1 or 2)
Lc . . . Length of the passed-in PIN
DATA . . . The passed-in PIN

23 See also Section 5.10, ‘Atomic Operations’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 395 of 1123

5.15 The Small-OS Smart Card Operating System 361

Table 5.54 Small-OS: coding of the response to the VERIFY command

Data element Coding Remarks

SW1 || SW2 '9000' Return code for correct execution of the command
(successful PIN comparison)

Listing 5.13 Small-OS: program code for the VERIFY command, in compliance with ISO 7816-4,
Profile N

VERIFY: Command VERIFY
according to ISO/IEC
7816-4, Profile N.

IF LENGTH (APDU.Cmd) < 6 THEN (
Returncode := C RC WrongLength
RETURN)

Test whether the command
was sent as a Case 3
command. If not, set the
appropriate return code and
abort command processing.

IF APDU.Cmd.P1 <>'00'THEN (
Returncode := C RC WrongP1P2
GOTO VERIFY Exit)

Test whether P1 has the
allowed value
(P1 must be'00').

IF ((APDU.Cmd.P2 <'01') OR (APDU.Cmd.P2 >'02'))
THEN (

Returncode := C RC WrongP1P2
GOTO VERIFY Exit)

Test whether P2 has one of
the two allowed values
(P2 must be either 1 or 2).

IF ((APDU.Cmd.Lc < = 1) OR (APDU.Cmd.Lc > = 8))
THEN (

Returncode := C RC LcInconsistentP1P2
GOTO VERIFY Exit)

Test whether the length of
the passed data (i.e. the PIN)
lies within the allowed range
(1 ≤ Lc ≤ 8).

IFPtr.CurrentIEF.Key = C InvalidPointer THEN (
Returncode := C RC RefDataNotFound

Test whether an EF is present
in the current directory.

GOTO VERIFY Exit)
SEARCH (for the PIN with the requested reference
number
in DF[Ptr.CurrentDF].EF[Ptr.CurrentIEF.Key])

Search for the requested
reference number in EF Key.

IF STATUS (SEARCH) = C Found) THEN (
set KeyRecord to the record containing the found PIN
WITH DF[Ptr.CurrentDF].EF[Ptr.CurrentIEF.Key].)

ELSE (

If a PIN with the specified
reference number is found,
set the current key pointer to
reference it.

Returncode := C RC RefDataNotFound
GOTO VERIFY Exit)

IF .Record[KeyRecord].KeyPurpose <> C CmdVERIFY
THEN (

Returncode := C RC CondOfUseNotSatified
GOTO VERIFY Exit)

Test whether the selected
data are allowed to be used
with the VERIFY command.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 396 of 1123

362 Smart Card Operating Systems

IF Ptr.CurrentDF = Ptr.MF THEN (
// MF is selected
IF .Record[KeyRecord].EntryState <>
SecurityState.MF
THEN (

Returncode := C RC SecStateNotSatisfied
GOTO VERIFY Exit))

If the MF is selected, test
whether its current security
state allows the VERIFY
command to be used. The
security state called for in the
key record must have been
achieved in the currently
selected directory.

ELSE (
// DF is selected
IF .Record[KeyRecord].EntryState <>
SecurityState.DF
THEN (

Returncode := C RC SecStateNotSatisfied
GOTO VERIFY Exit))

If a DF is selected, test
whether its current security
state allows the VERIFY
command to be used. The
security state called for in the
key record must have been
achieved in the currently
selected directory.

IF .Record[KeyRecord].RCntr > =
.Record[KeyRecord].RCntrMax THEN (

Returncode := C RC AuthMethodBlocked

Test whether the retry
counter has reached its
maximum value.

GOTO VERIFY Exit)

IF APDU.Cmd.Lc <> .Record[KeyRecord].KeySize
THEN (

Returncode := C RC LcInconsistentP1P2
GOTO VERIFY Exit)

Test whether the passed-in
PIN has the same length as
the reference PIN.

.Record[KeyRecord].RCntr := .Record[KeyRecord].
RCntr + 1

As a precautionary measure,
increment the retry counter
before making the actual PIN
comparison. This defends
against a possible attack by
analyzing the processing
time or current consumption.

CALL Kernel CompareByteString
// Data 1: APDU.Cmd.Data[1 . . . APDU.Cmd.Lc]
// Data 2: .Record[KeyRecord].
KeyData[1 . . . APDU.Cmd.Lc]

Compare the passed-in PIN
with the stored reference
PIN.

IF STATUS (Kernel CompareByteString) = C Equal
THEN (

.Record[KeyRecord].RCntr := 0
IF Ptr.CurrentDF = Ptr.MF THEN (

// MF is selected
SecurityState.MF := .Record[KeyRecord].
ResultState.OK)

ELSE (

If the passed-in PIN matches
the stored reference PIN,
set the retry counter to zero
false attempts and set the
security state for successful
PIN testing.

// DF is selected
SecurityState.DF := .Record[KeyRecord].
ResultState.OK))

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 397 of 1123

5.15 The Small-OS Smart Card Operating System 363

IF STATUS (Kernel CompareByteString) = C NotEqual
THEN (

IF Ptr.CurrentDF = Ptr.MF THEN (
// MF is selected
SecurityState.MF :=
.Record[KeyRecord].ResultState.NOK)

If the passed-in PIN does not
match the stored reference
PIN, the retry counter will
have already been
incremented before the PIN
comparison.

ELSE (
// DF is selected

SecurityState.DF :=
.Record[KeyRecord].ResultState.NOK)

IF .Record[KeyRecord].RCntr =
.Record[KeyRecord].RCntrMaxValue THEN (

Returncode := C RC AuthMethodBlocked)
ELSE (

Returncode := C RC CounterX || (
.Record[KeyRecord].RCntrMax –
.Record[KeyRecord].RCntr))

GOTO VERIFY Exit)

Set the security state that
results from an unsuccessful
PIN comparison. If the retry
counter has reached its
maximum value, set SW2 to
the number of unsuccessful
attempts that are still
allowed. Otherwise, indicate
in the return code that no
further PIN verifications
are possible.

Returncode := C RC OK The command has been
processed with no error,
since in all other cases an
error exit is used.

VERIFY Exit:
END WITH

RETURN

INTERNAL AUTHENTICATE

The INTERNAL AUTHENTICATE command is used to authenticate the smart card via a
challenge–response procedure. An 8-byte random number is sent to the smart card, which
encrypts it using the DES algorithm. The number of the key to be used must be given in
parameter P2, which must indicate whether the key to be used is located in the EF Key file of
the MF or the currently selected DF. INTERNAL AUTHENTICATE falls under Case 4, which
means that a data part is present in both the command APDU and the response APDU.

The ISO/IEC 7816-4 standard only specifies a few parameters for the authentication com-
mands. The cryptographic algorithm, for example, is not specified. In Small-OS, the DES
algorithm has been chosen as the cryptographic algorithm. As an extension to Profile N of the
ISO/IEC 7816-4 standard, a 5-byte key number is passed with the command.

In Small-OS, INTERNAL AUTHENTICATE can in principle be used to encrypt eight bytes
of plaintext into eight bytes of ciphertext using a selectable key. A smart card with Small-OS
would thus fall under strict export control in almost all countries, so that it would take several
weeks or even months to obtain an export permit for the card. Consequently, INTERNAL
AUTHENTICATE is implemented in many real smart cards such that it is not possible to
directly encrypt data. This avoids the export restrictions.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 398 of 1123

364 Smart Card Operating Systems

The ability to directly encrypt a plaintext block into a ciphertext block is equally risky from
a cryptographic perspective, since it could be used to generate plaintext–ciphertext pairs for
brute-force attacks. In addition, this implementation would be very susceptible to differential
fault analysis.24 The simplest form of attack to implement would be a timing attack25 on the
computation of the DES, which thus must be noise-free. Otherwise, the key could be determined
by measuring the processing time for the computation.

For all of these reasons, the starting value is most commonly extended in practice by
appending a random number generated inside the smart card and the card’s own unique num-
ber. The resulting number is then encrypted, and the ciphertext is sent back to the terminal
along with the data used to extend the original number. This means that this command can
no longer be used to encrypt data (which solves the export problem). In addition, the fact
that a different value is encrypted each time provides the basis for protection against dif-
ferential fault analysis (DFA) and differential performance analysis (DPA).26 All of these
measures show relatively dramatically that both the specification and the implementation of
even an ostensibly simple command, such as INTERNAL AUTHENTICATE, requires con-
siderable knowledge and experience to protect the keys of a smart card application against
attack.

Table 5.55 Small-OS: coding of the Case 4 command INTERNAL AUTHENTICATE

Data element Coding Remarks

CLA '00' —
INS '88' —
P1 '00' —
P2 Y Y = ◦100Z ZZZZ◦ use a key from the EF Key file in the

currently selected directory (MF or DF)
(specific reference data)

Z ZZZZ◦ number of the referenced key (1 . . . 31)
Lc 8 Length of the passed-in random number
DATA . . . The passed-in random number
Le 8 Length of the returned random number

Table 5.56 Small-OS: coding of the response to the INTERNAL AUTHENTICATE command

Data element Coding Remarks

DATA . . . If the command was correctly executed, this data element
contains the encrypted random number that has been encrypted using
the key referenced by the command

SW1 || SW2 '9000' Return code for correct execution of the command

24 See also Section 8.2.4, ‘Attacks and defense measures while the card is in use’
25 See also Section 8.2.4.2, ‘Attacks on the logical level’
26 See also Section 8.2.4.2, ‘Attacks on the logical level’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 399 of 1123

5.15 The Small-OS Smart Card Operating System 365

Listing 5.14 Small-OS: program code for the INTERNAL AUTHENTICATE command, in
compliance with ISO 7816-4, Profile N, extended with global and specific reference data (selectable
reference to the MF or DF)

INTERNAL AUTHENTICATE: Command INTERNAL
AUTHENTICATE according
to ISO/IEC 7816-4, Profile N.

IF APDU.Cmd.P1 <>'00'THEN (
Returncode := C RC WrongP1P2

Test whether P1 has the allowed
value (P1 must be'00').

GOTO INTERNAL AUTHENTICATE Exit)

IF APDU.Cmd.Lc <> 8 THEN (
Returncode := C RC WrongLength
GOTO INTERNAL AUTHENTICATE Exit)

Test whether the passed data
(i.e. the random number) has
the allowed length of 8 bytes.

IF Ptr.CurrentIEF.Key = C InvalidPointer THEN (Returncode
:= C RC RefDataNotFound

Test whether an EF is present
in the current directory.

GOTO INTERNAL AUTHENTICATE Exit)

IF APDU.Cmd.P2.b5 . . . b1 = ◦00000◦ THEN (
Returncode := C RC WrongP1P2

Determine the number of the
key to be used from P2.

GOTO INTERNAL AUTHENTICATE Exit)
ELSE (

KeyNumber := APDU.Cmd.P1.b5 . . . b1)

SEARCH (for the key with theKeyNumber in
DF[Ptr.CurrentDF].EF[Ptr.CurrentIEF.Key])
IF STATUS (SEARCH) = C Found THEN (

set KeyRecord to the record with the found key
WITH DF[Ptr.CurrentDF].EF[Ptr.CurrentIEF.Key].)

Search for the reference number
requested via P2 in EF Key. If a
key with the specified reference
number is found, set the current
key pointer to reference it.

ELSE (
Returncode := C RC RefDataNotFound
GOTO INTERNAL AUTHENTICATE Exit)

IF .Record[KeyRecord].KeyPurpose <>
C CmdINTAUTH THEN (

Returncode := C RC CondOfUseNotSatified GOTO
INTERNAL AUTHENTICATE Exit)

Test whether the selected key is
allowed to be used with the
INTERNAL AUTHENTICATE
command.

IF Ptr.CurrentDF = Ptr.MF THEN (
// MF is selected
IF.Record[KeyRecord].EntryState <>
SecurityState.MF

THEN (

The security state called for in
the key record must have been
achieved in the currently
selected directory (MF or DF).

IF Ptr.CurrentDF = Ptr.MF THEN (
// MF is selected
IF.Record[KeyRecord].EntryState <>
SecurityState.MF

THEN (

The security state called for in
the key record must have been
achieved in the currently
selected directory (MF or DF).

Returncode := C RC SecStateNotSatisfied
GOTO INTERNAL AUTHENTICATE Exit))

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 400 of 1123

366 Smart Card Operating Systems

ELSE (
// DF is selected
IF .Record[KeyRecord].EntryState <>
SecurityState.DF
THEN (

Returncode := C RC SecStateNotSatisfied
GOTO INTERNAL AUTHENTICATE Exit))

CALL Kernel DES Encrypt
// plaintext: APDU.Cmd.Data[1 . . . 8]
// key: .Record[KeyRecord].KeyData[1 . . . 8]
// ciphertext: stored in APDU.Rsp.Data[1 . . . 8]

Encrypt the passed-in data (the
random number) using the
referenced key, and place the
result in the transmit buffer.

Returncode := C RC OK The command has been
processed with no error, since in
all other cases an error exit is
used.

INTERNAL AUTHENTICATE Exit:

END WITH

RETURN

A simple application example

The following simple smart card application illustrates the construction and contents of the
variables in the EEPROM with the Small-OS operating system. The function of this application
can be described in a few words. It allows the creation of a file that is 50 bytes long, whose
contents can always be read, and which can be overwritten after the PIN value ‘1234’ has been
successfully tested. The reference number of the PIN is 1, and a maximum of three unsuccessful
attempts is allowed for the PIN input. The EF containing the file is located underneath its own
DF. All file names (DF names and FIDs) can be freely chosen.

Table 5.57 shows how the required capabilities can be implemented by putting appropriate
values in the structures used for the file tree. In order to realize the required access conditions,
the state machine shown in Figure 5.66 is implemented. After a reset, Small-OS automatically
sets the security state of the DF to zero. In this state, the EF containing the data can be
read but not written. State 1 is necessary for writing to the file. If a VERIFY command is
successfully executed with the correct PIN, the DF is set to security state 1 (. . . ResultState.OK),
and the file can be written. If the PIN test is not successful, the DF is set to security state 0
(. . . .ResultState.NOK).

The commands READ BINARY and UPDATE BINARY are used to read and write data
from and to the file, respectively. The entire file can be read or written, or only part of it.
The only decisive factor here is that the security state achieved in the DF must correspond the
desired type of access.

This example quite clearly shows two limitations of Small-OS, which arise only from the
desire to keep the extent of the pseudocode within reasonable limits. Once security state 1 has
been reached, the file can no longer be read, since reading is only allowed in security state 0.
This could be remedied by integrating the option of a ‘greater than or equal’ comparison into

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 401 of 1123

5.15 The Small-OS Smart Card Operating System 367

0
(initial state)

1

read data
from EF 1

0
(initial state)

VERIFY
(OK)

VERIFY
(NOK)

x

write data
to EF 1

1

Reset

SELECT
FILE (DF 1)

Figure 5.66 State diagram of the file with the FID'0001'(EF 1). Reading data from the EF and writing
data to the EF relate to successful READ BINARY and UPDATE BINARY commands to the smart card,
respectively. State ‘x’ is any arbitrary state

Small-OS, in addition to the ‘equal’ comparison. Another possible solution would be to not
limit the file access conditions to only one comparison test per operation (reading or writing),
but instead to allow several tests for each operation. In this case, reading the file could be
allowed in state 0 as well as in state 1, even if only ‘equal’ comparisons are possible.

Multiple access conditions for an access operation can be integrated into Small-OS just
as easily as testing for greater than or equal. However, the pseudocode would be a bit more
extensive, as would be the amount of program code for an actual implementation. With real
smart card operating systems, such extensions can easily cause the amount of code to exceed
the amount of memory available in the microcontroller (ROM or EEPROM). In practice, these
strict memory limitations often mean that certain useful functions cannot be implemented.

In the application just described, state 1 cannot be exited once it has been achieved by
means of a successful PIN verification, which means that the file can no longer be read, due to
the access conditions. State 0 can be exited either via an unsuccessful PIN verification or by
resetting the smart card. In terms of a ‘clean’ application design, this is a rather unfortunate
solution. However, the problem can be remedied using a simple trick to return to the initial
state. As you know, selecting a DF causes the security state of the DF in question to be reset.
Consequently, the DF can be selected one more time if necessary, which automatically changes
the security state from 1 back to 0.

Until recently, applications such as this were coded manually in assembler, in the form
shown here. Nowadays, there are application generators for almost all commercially available
smart card operating systems. These programs run on PCs and have graphical user interfaces
for creating files and access conditions. A similar process also takes place in the smart card
simulator when a new application or file is created. Once the necessary files for the application
have been created, they can be loaded into a smart card using the application generator. After
this, the first trials with the new application can be carried out.

This sample application can also be profitably used to illustrate some interesting types of
attacks. Although these are theoretical in nature, since they require sophisticated technical

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 402 of 1123

368 Smart Card Operating Systems

Table 5.57 Sample values of the file management variables for a simple sample application. There is
one DF directly under the MF, and it contains one transparent EF that is 50 bytes long. The content of
the EF can be read at any time, but it can be modified only after a PIN has been entered.

Variable name Description, contents and size

Data structures for the MF
DF[1].FID :='3F00' The standard FID of the MF.

Data structures for the DF
DF[2].FID :='DF01' The DF FID is'DF01'(freely chosen).

DF[2].DFName :='D276'||'000060' The registered AID of Wolfgang Rankl is
used here for the DF name.

DF[2].LenDFName := 5 The length of the DF name is 5 bytes.

Data structures for the EF
DF[2].EF[1].FID :='0001' The EF FID is'0001'(freely chosen).
DF[2].EF[1].Structure := C EFStrucTransp The structure of the EF is transparent.
DF[2].EF[1].Type := C EFTypeWorking The type of the EF is working.
DF[2].EF[1].AccessCondition.Read := 0 The state that is necessary for the READ

command to be allowed for the EF. The
access condition is set to 0, which means
that reading the file is always allowed.

DF[2].EF[1].AccessCondition.Update := 1 The state that is necessary for the UPDATE
command to be allowed for the EF. The
access condition is set to 1, which means
that altering the file is allowed only after
successful PIN entry.

DF[2].EF[1].TransparentDataSize := 50 The transparent file is 50 bytes long.

Data structures for the EF Key
DF[2].EF[2].Record[x].KeyData :='1234' The (hexadecimal) PIN value is'1234'.
DF[2].EF[2].Record[x].KeySize := 2 The length for the PIN is 2 bytes.
DF[2].EF[2].Record[x].KeyNo := 1 The reference number of the PIN is 1.
DF[2].EF[2].Record[x].RCntr := 0 The initial value of the retry counter is 0.
DF[2].EF[2].Record[x].RCntrMaxValue := 3 The maximum value of the retry counter is

3, which means that the user is allowed a
maximum of three incorrect PIN entries.

DF[2].EF[2].Record[x].KeyPurpose := C CmdVERIFY The data content of the EF Key record may
only be used for PIN testing with the
VERIFY command.

DF[2].EF[2].Record[x].EntryState := 0 PIN testing is possible only in state 0.
DF[2].EF[2].Record[x].ResultState.OK := 1 If the PIN comparison is successful,

state 1 is set in the current DF.
DF[2].EF[2].Record[x].ResultState.NOK := 0 If the PIN comparison is not successful,

state 0 is set in the current DF.

equipment, they still illustrate some noteworthy principles. The prerequisite for these attacks
is the ability to alter specific contents of the EEPROM, which in technical terms amounts to the
ability to manipulate the stored charges of individual EEPROM cells. The necessary techniques
are discussed in more detail in Chapter 8. Here we only want to look at the consequences of
this manipulation.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 403 of 1123

5.15 The Small-OS Smart Card Operating System 369

If it were possible to deliberately alter the content of the file tree pointer that normally
indicates the data of the EF, it could be changed to indicate the data content of the EF Key. The
EF is always readable in state 0, and in this case, READ BINARY would read the PIN instead
of the actual 50 bytes in the EF. Of course, the exact address of the data part of the EF Key
must be known for this attack to be used, and a lot of insider knowledge is required to obtain
this information. It would be simpler if the variable DF[2].EF[1].TransparentDataSize could
be altered. If the value of this variable is increased to a large value, for example, then READ
BINARY can be used to read an amount of data extending past the end of the file, according
to the new value of the variable. If the EF Key is located in memory following EF 1, both the
EF Key header and the actual file content could be read straightaway.

Manipulation of the EEPROM could also be used to repeatedly reset the PIN retry counter.
The PIN could then be determined within an acceptable amount of time by trial and error. An
even simpler attack would be to set the PIN itself to a known value.

These examples very clearly show that the security of a smart card would completely
collapse if it were possible to manipulate the EEPROM. It would make no difference if the
contents of the EEPROM could not be read, but could only be overwritten. In any case, the
PIN and the keys of the card could be determined. The only thing that would have to be known
is the exact memory addresses where the manipulations should be carried out. Checksums for
the header contents, if present, would only make the necessary modifications to the EEPROM
more complicated, but they ultimately could not prevent them. Of course, it is presently not
technically possible to change individual bits at any desired locations in the EEPROM. The
approaches just described thus represent theoretically interesting forms of attack rather than
actual dangers. However, if this sort of manipulation of the EEPROM were to become possible
in the future, these examples clearly and unambiguously show the potential dangers that would
arise.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 404 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 405 of 1123

6
Smart Card Data Transmission

The possibility of two-way communications is a prerequisite for all interactions between a
smart card and a terminal. However, only a single line is available. Digital data are exchanged
between the card and the terminal via this electrical connection. Since only one line exists,
the card and the terminal must take turns transmitting data, with the other party acting as the
recipient. This alternate transmitting and receiving of data is called a half-duplex procedure.

A full-duplex procedure, in which both parties can transmit and receive simultaneously, is
presently not implemented for smart cards. However, since most smart card processors have two
I/O ports, and two of the eight contacts are reserved for future applications (such as a second I/O
connection or USB interface), full-duplex operation would certainly be technically possible.
This will doubtless be implemented in hardware and operating systems in the medium term.

Communication with the card is always initiated by the terminal. The card always responds
to commands from the terminal, which means that the card never sends data without an external
stimulus. This yields a pure master–slave relationship, with the terminal as master and the card
as slave. The proactive command procedure,1 which is used by telecommunications smart cards
and allows the smart card to send commands to the terminal, is also based on the standard
master–slave arrangement.

After a card has been inserted in a terminal, its contacts are first mechanically connected
to those of the terminal. The five active contacts are then electrically enabled in the correct
sequence.2 Following this, the card automatically executes a power-on reset and then sends an
Answer to Reset (ATR) to the terminal. The terminal evaluates the ATR, which contains various
parameters relating to the card and data transmissions, and then sends the first command. The
card processes the command and generates a response, which it sends back to the terminal. This
back-and-forth interplay of commands and responses continues until the card is deactivated.

Between the ATR and the first command sent to the card, the terminal can also send a
Protocol Parameter Selection (PPS) command. The terminal can use this command, which like
the ATR is independent of the transmission protocol, to set various transmission parameters
for the card’s transmission protocol.

1 See also Section 13.2.4, ‘The SIM’
2 See also Section 3.3.6, ‘Activation and deactivation sequences’

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 406 of 1123

372 Smart Card Data Transmission

...

PPS
necessary?

no

yes

Terminal

Reset

PPS request

command 1

ATR

PPS response

response 1

Smart Card

Figure 6.1 The initial data transfers between a terminal and a smart card, showing the answer to reset
(ATR), protocol parameter selection (PPS) and the first command–response pair

smart card in
sleep mode

smart card in
active mode

smart card
activated

send ATR

smart card receives data
(C-APDU / PPS request)

smart card transmits data
(R-APDU / PPS response)

smart card electrically activated

activation
sequence

smart card
electrically
deactivated

Figure 6.2 The general states of a smart card for activation and communication with the terminal

The entire procedure for data transmission to and from the smart card can be represented
using the OSI layer model. This differentiates electrical events on the I/O line, logical processes
in the actual transmission protocol and the behavior of applications that use these processes. The
behavior and interactions within and between these layers are specified in several international
standards. These relationships are illustrated in Figure 6.3.

In this chapter, the asynchronous transmission protocols are described with respect to rel-
evant standards in terms of their functions. All allowed parameters and settings within the
context of the protocol are described. In practice, it often happens that smart cards do not
support all options of the transmission protocol, due to the limitations of available memory.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 407 of 1123

6.1 The Physical Transmission Layer 373

ISO/IEC 7816-3
ISO/IEC 10 536
ISO/IEC 14 443
ISO/IEC 15 893

(contact-type cards)
(contactless cards)

ISO/IEC 7816-3
ISO/IEC 10 526-4
USB specification

(T = 0, T = 1)
(T = 2)
(USB)

ISO/IEC 7816-4, -7 , -8 , -9
EN 1546-3
EMV
GSM 11.11, GSM 11.14
TS 31.102, TS 31.111, TS 102.222

OSI layer 1
layerphysical

OSI layer 2
link layer

OSI layer 7
application layer

Figure 6.3 The OSI model for communication between terminals and smart cards

From a functional perspective, the various options can be regarded as simply a range of
possibilities from which an optimum set can be selected for a particular application or smart
card. The important consideration is that the selected parameters should not be too exotic, in
order to allow the card to communicate with as many different types of terminals as possible.

In terminals, the situation with regard to data transmission protocols is somewhat different.
There the full functionality of the relevant standard is normally implemented, since sufficient
memory is available.

6.1 THE PHYSICAL TRANSMISSION LAYER

The general parameters of the physical transmission layer are specified in the international
smart card standard ISO/IEC 7816-3. This is the fundamental standard for all aspects of
communications at the physical level.

The entire data exchange with the smart card takes place digitally, which means that it
employs only the logic values 0 and 1. The voltage levels used are the conventional values for
digital technology, namely +5 V, +3 V and +1.8 V, with 0 V as a reference. The choice of
whether a physical high or low level represents a logic 1 is freely definable, with the actual selec-
tion being indicated by the card in the first byte of the ATR. Here the ‘direct convention’ means
that a logic 1 is represented by the +1.8-V, +3-V or +5-V level, while the ‘inverse convention’
means that the +1.8-V, +3-V or +5-V level represents a logic 0. In either case, the level of
the I/O line is always high in the quiescent state, which is when no data are being transmitted.

Communications between a smart card and the outside world take place serially. Data
handled by the processor in the form of bytes must therefore be converted into a serial bit
stream. To this end, each byte is separated into its eight individual bits, which are then sent
over the line one after the other. The bit order depends on the convention used. With the direct
convention, the first data bit after the start bit is the least significant bit in the byte. With the
inverse convention, the most significant bit is sent directly following the start bit.

Data transmission between the card and the terminal is asynchronous, which means that
each byte sent must be provided with supplementary synchronization bits. A start bit is added
to the beginning of each transmitted byte to mark the start of the transmission sequence for
the recipient. At the end of each byte, the sender also adds a parity bit for error detection and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 408 of 1123

374 Smart Card Data Transmission

I/O

direct
convention

inverse
convention

I/O

logic 1

logic 0

logic 0

logic 1

1

8

2

7

3

6

4

5

5

4

6

3

7

2

8

1

high

low

high

low

t

t

Figure 6.4 Data transmission conventions: (a) data transmission using the direct convention; (b) data
transmission using the inverse convention

one or two stop bits. The time allocated to the stop bits is designated as the ‘guard time’ in the
T = 0 protocol. In principle, the guard time is a sort of stop bit. The receiver and the transmitter
can both use this time to prepare for the next byte transmission. The parity of each byte must
always be even. The parity bit thus has the logic value 1 if the number of ones in the byte is
odd, or 0 if the number of ones in the byte is even.

start bit

high

low

8 data bits parity bit

t

Figure 6.5 Structure of a character for data transmission

Since smart card microcontrollers do not have timers that are independent of the applied
clock signal, it is not possible to specify an absolute time interval for an individual data bit.
The bit interval is therefore specified in terms of the applied clock. For this purpose, a ‘divider’
is defined to indicate the number of clock pulses per bit interval. The duration of one bit is
called an ‘elementary time unit’ (etu).

It is thus meaningless to specify the data transmission rate of a smart card as a fixed value
(such as 9600 bit/s), since the rate is proportional to the rate of the applied clock. However,
there are essentially only two divider values in use worldwide: 372 and 512. For some time
now, even smaller divider values are being used increasingly often to increase the transmission
rate. Reducing the divider value makes it increasingly difficult for the card’s operating system
to receive and transmit data, since the processor has progressively less time to perform these
tasks. For instance, if data are received using a divider value of 64, the processor has only
64 clock intervals to recognize each bit and transfer it to the I/O buffer.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 409 of 1123

6.1 The Physical Transmission Layer 375

To calculate the transmission rates that can be achieved with the standard divider values, we
only need to consider the clock rate and the divider value, as shown in the following examples:

3.5712 MHz ÷ 372 = 9600bit/s

4.9152 MHz ÷ 512 = 9600bit/s

A data transmission rate of exactly 9600 bit/s can thus be obtained with both commonly
used clock frequencies (3.5712 MHz and 4.9152 MHz).3 The desire for a transmission rate
of 9600 bit/s is the reason for the awkward divider values. In the early days of smart card
technology, inexpensive quartz crystals were available for only very few frequencies. Standard
crystals for use in television sets were used, and the divider values for the cards were set to
obtain a data transmission rate of 9600 bit/s, which was a common value at the time. A clock
rate of 4.77 MHz was used in early PCs for the same reason, since this was compatible with
US television sets, and in principle a PC could thus be connected to a television set.

If we assume that 5 MHz is the highest practical value for the clock rate and 32 is the
minimum divider value, we obtain the current upper limit for the data transmission rate, at
least as long as transmission is performed using software executed by the processor:

5 MHz ÷ 32 = 156,250 bit/s

Of course, it is possible to reduce the divider value even further in order to increase the trans-
mission rate. However, this significantly increases the amount of program code in the card, and
so it is not normally done, due to the limited amount of available memory. Many new smart card
microcontrollers have a built-in hardware unit (a universal asynchronous receiver/transmitter,
or UART) that handles data transmission via the serial interface. This sharply reduces the
amount of software overhead in the card for handling data transmission, making it possible to
use much higher data transmission rates. Such an interface unit can easily achieve the standard
transmission rate of 111.6 kbit/s.4

The bit interval can be calculated from the clock rate and the divider value. With a 3.5712
MHz clock frequency and a divider value of 372, we obtain a bit interval of 104 µs, which by
definition corresponds to one etu (elementary time unit) for this divider value. We can construct
the diagram shown in Figure 6.6 for various transmission rates.

The timing of serial data transmissions does not have to be strictly controlled. For technical
reasons, a certain amount of tolerance is allowed. Since many smart card microcontrollers
do not have interface hardware, it is sometimes necessary to exploit the allowed tolerance
to accommodate software implementations of the interface function. The timing variation
between the falling edge of the start bit and the final transition of the nth bit may not exceed
±0.2 etu. As far as the transmitter is concerned, this means that while the variation in the timing
of individual bits may be up to ±0.2 etu, the variation over several bits is also not allowed to
exceed this value. The sum of the timing variations over a group of bits must therefore not
exceed the allowed tolerance.

3 Here and in the following text, the unit ‘bit/s’ is always used in this book for the data transmission rate. In the
literature and in many standards, the unit ‘baud’ is sometimes erroneously used as equivalent to ‘bit/s’. The term
‘baud’ refers to the number of state changes per second during a data transmission. Depending on the transmission
method used, one or more information bits can be transmitted for each state change. For this reason, the baud rate
can only be taken to be equal to the data transmission rate in the particular case that only one bit is transmitted for
each state change

4 See also Section 16.11.3, ‘Determining the data transmission rate’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 410 of 1123

376 Smart Card Data Transmission

time
[msec]

data volume
[bytes]

3.5 MHz,
93

38,400 bit/s
divider

3.5 MHz,
divider 32
111,600 bit/s

3.5 MHz,
186

19,200 bit/s
divider

0 100 15010 50
0

25

100

150

200

3.5 MHz,

9600 bit/s
divider 372

Figure 6.6 Data transmission times for typical transmission rates, assuming 1 start bit, 8 data bits, 1
parity bit and 2 stop bits per byte

I/O

start bit data bits 1 ... 8 parity bit

stop bit 1

stop bit 2

0
0

1

104

2
208

3

312

4
416

5

520

6
624

7

728

8
832

9

936

10 11

1144

12
1248

·
1040·

[etu]
[µsec]

high

low t

·

Figure 6.7 Timing diagram for one character at 9600 bit/s (corresponding to a 3.5712-MHz clock and
a divider value of 372)

Particularly when data are transmitted via a physical conductor, it is relatively common for
signal dropouts and overshoots to occur. Consequently, the incoming signal is sampled multiple
times rather than just once. Triple sampling followed by a 2-of-3 majority vote is a commonly
used method. Small distortions in signal levels can thus be compensated at relatively little effort.
Increasing the number of samples to five or seven would make little sense, given the generally
good quality of the smart card data transmissions and the amount of extra effort this would entail.

The three samples should be distributed as evenly as possible over the received bit interval,
in order to best compensate for brief dropouts. This is done by sampling at the middle of the bit

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 411 of 1123

6.2 Answer to Reset (ATR) 377

I/O

0 1 2 3 4 5 6 7 8 9 10 t [etu]

sampling
zones

transition
zones

start bit 8 data bits parity bit

Figure 6.8 Test zones (sampling intervals) and transition zones for the reception of a data byte

interval and at both ends of the ‘test zone’, as defined by the applicable timing tolerances for
byte transmission. The optimum sampling points can be defined by determining the boundaries
of the test zone and the midpoint of the bit interval. However, these are not specified in any
standard.5 Sampling within the ‘transition zone’ is not allowed, since the signal level is invalid
within this zone.

0.4 etu

sampling zone

transition zones
(allowed tolerances)

bit center point

triple sampling1 2 3

0.6 etu

1 etu

0.4 etu

Figure 6.9 Example of threefold sampling of a received bit

6.2 ANSWER TO RESET (ATR)

After the supply voltage, clock signal and reset signal have been applied, the smart card sends
an Answer to Reset (ATR) via the I/O lead. This data string, which contains at most 33 bytes,

5 See also Section 16.11.4, ‘Sampling times’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 412 of 1123

378 Smart Card Data Transmission

is always sent with a divider value (clock rate conversion factor) of 372 in compliance with the
ISO/IEC 7816-3 standard. It contains various parameters related to the transmission protocol
and the card. This divider value should be used even if the transmission protocol used after
the ATR employs a different divider value (e.g. 64). This ensures that an ATR from any card
can always be received, regardless of the parameters of the transmission protocol ultimately
used.

It is very rare for an ATR to have the maximum allowable length. It most often consists
of only a few bytes. Particularly in applications where the card should be usable very quickly
after the activation sequence, the ATR should be short. A typical example is paying a road toll
using a smart card electronic purse. Even if the vehicle passes through the toll gate quickly, it
must be possible to reliably debit the card in the short time available.

The start of the ATR transmission must occur between 400 and 40,000 clock cycles after
the terminal issues the reset signal. With a clock rate of 3.5712 MHz, this corresponds to an
interval of 112 µs to 11.20 ms, while at 4.9152 MHz the interval is 81.38 µs to 8.14 ms.6 If
the terminal does not receive the start of the ATR within this interval, it repeats the activation
sequence several times (usually up to three times) to try to detect an ATR. If all of these attempts
fail, the terminal assumes that the card is faulty and reacts accordingly.

During the ATR, the time between the leading edges of two successive bytes may be up
to 9600 etu according to ISO/IEC 7816-3. This period is designated the ‘initial waiting time’,
and it is exactly one second at a clock rate of 3.5712 MHz. This means that the standard
permits a one-second delay between the individual bytes of the ATR when it is sent to the
terminal. In some smart card operating systems, this time is utilized for internal computations
and EEPROM write accesses. The internal write buffer for atomic operations is often flushed
at the same time.7

t

Reset
high

low

I/O

start bit

t

undefined region

t 1

Figure 6.10 Timing diagram of the reset signal and the start of the ATR, in accordance with ISO/IEC
7816-3 (400 clock cycles ≤ t1 ≤ 40,000 clock cycles)

The data string and data elements of the ATR are defined and described in detail in the
ISO/IEC 7816-3 standard. The basic ATR format is described in Figure 6.11 and Table 6.1. The
first two bytes, designated TS and T0, define several fundamental transmission parameters and
indicate the presence of subsequent bytes. The interface characters specify special transmission
parameters for the protocol, which are important for the following data transmissions. The
historical characters describe the extent of the smart card’s basic functions. The check character,

6 See also Section 16.11.2, ‘ATR data element conversion tables’
7 See also Section 5.10, ‘Atomic Operations’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 413 of 1123

6.2 Answer to Reset (ATR) 379

which is a checksum of the previous bytes, may optionally be sent as the last byte of the ATR,
depending on the transmission protocol used.

TS

T1,
T2,
...,
TK

TA1

TA2

TA3

TA4

TC1

TC2

TC3

TC4

T0 b1 ... b4

b1 ... b4

b1 ... b4

b1 ... b4

b7

b7

b7

b7

b6

b6

b6

b6

b5

b5

b5

b5

b8

b8

b8

b8

TD1

TD2

TD3

TD4

TB1

TB2

TB3

TB4

protocol

protocol

protocol

TCK

1

1

2

2

3

3

4

4

0

0

Figure 6.11 Basic structure and data elements of the ATR

6.2.1 ATR characters

The initial character

This byte, designated ‘TS’, specifies the convention used for all the data in the ATR and
subsequent communications processes. In addition, the TS byte contains a characteristic bit
pattern that can be used by the terminal to determine the value of the divider. For this purpose,
the terminal can measure the time between the first two falling edges in TS and divide it by
three. The result is the duration of one etu. However, since the divider is fixed at 372 for the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 414 of 1123

380 Smart Card Data Transmission

Table 6.1 The data elements of the ATR and their
designations according to ISO/IEC 7816-3

Data element Designation

TS Initial character
T0 Format character
TA1, TB1, TC1, TD1, . . . Interface characters
T1, T2, . . . , Tk Historical characters
TCK Check character

ATR, the terminal does not normally evaluate this synchronization pattern. The first byte is a
mandatory part of the ATR and must always be sent. Only two codes are allowed for this byte:
'3B' for the direct convention and'3F' for the inverse convention.

The direct convention is normally used in Germany, but the inverse convention is normally
used in France. The convention does not affect the security of the transmission. Of course,
every operating system producer prefers one or the other for historical reasons, but all terminals
and many smart cards support both conventions.

I/O

b1
1

b2
1

b3
0

b4
1

b5
1

b6
1

b7
0

b8
0

start bit data bits 1 ... 8 parity bit

0 1 2 3 4 5 6 7 8 9 10 [etu]

high

low t

bit number
bit value

Figure 6.12 Timing diagram of the initial character TS using the direct convention, which is indicated
by the value'3B'= ◦0011 1011◦

I/O

start bit data bits 8 ... 1 parity bit

0 1 2 3 4 5 6 7 8 9 10 [etu]

high

low t

b8
0

bit number
bit value

b7
0

b6
1

b5
1

b4
1

b3
1

b2
1

b1
1

Figure 6.13 Timing diagram of initial character TS using the inverse convention, which is indicated by
the value'3F'= ◦0011 1111◦

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 415 of 1123

6.2 Answer to Reset (ATR) 381

Table 6.2 Coding of the initial character TS

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

'3B' Direct convention
'3F' Inverse convention

The format character

The second byte, T0, contains a bit field that indicates which interface characters follow it in
the ATR. It also indicates the number of historical characters following the interface characters.
Like TS, this byte must be present in every ATR.

Table 6.3 Coding of the format character T0

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

Number of historical
. X

characters (0 to 15)

. 1 TA1 sent

. 1 TB1 sent

. . . 1 TC1 sent
1 . TD1 sent

The interface characters

The interface characters specify all of the transmission parameters for the current protocol.
They consist of the TAi, TBi, TCi and TDi bytes. However, these bytes are optional in the
ATR, and they may be omitted as appropriate. Since default values are defined for all of the
parameters of the transmission protocol, interface characters are often not required in the ATR
for a normal communications process.

The interface characters can be classified into global interface characters and specific inter-
face characters. The global interface characters specify basic parameters for the transmission
protocol, such as the divider, that apply to all subsequent protocols. The specific interface
characters specify parameters for a particular transmission protocol. The ‘work waiting time’
for T = 0 is a typical example of such a parameter.

In principle, the global interface characters apply to all protocols, but for historical reasons
(since originally only the T = 0 protocol was defined in the ISO standards), several of these
characters are only relevant to the T = 0 protocol. If T = 0 is not used, they can be omitted, in
which case the preset values apply.

Each TDi byte is only used to provide links to subsequent interface characters. For this
purpose, the upper nibble of each TDi byte contains a bit pattern indicating which of the
TA(i+1), TB(i+1), TC(i+1) and TD(i+1) interface characters follow it, using the same coding
as for the T0 format character. The lower nibble of each TDi byte identifies the available
transmission protocol in each case. A TDi byte must always be sent if any subsequent interface
characters are to be sent.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 416 of 1123

382 Smart Card Data Transmission

Table 6.4 Coding of the TDi bytes

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

Transmission protocol number
. X

(0−15)

. 1 . . . TA(i+1) sent

. 1 TB(i+1) sent

. . . 1 TC(i+1) sent
1 TD(i+1) sent

The other interface characters (TAi, TBi and TCi), which are not used for linking, define the
available transmission protocol(s). Their meanings according to the ISO/IEC 7816-3 standard
are described below.

The global interface character TA1

The parameter FI in the upper nibble encodes the divider (clock rate conversion factor) F .
The parameter DI in the lower nibble encodes the bit rate adjustment factor D.

Table 6.5 Coding of TA1

b8 b7 b6 b5 b4 b3 b2 b1 IFSC

X . . . FI
. . . X DI

Table 6.6 Coding of FI

F 372 372 558 744 1116 1488 1860 RFU
FI 0000 0001 0010 0011 0100 0101 0110 0111
fmax 4 MHz 5 MHz 6 MHz 8 MHz 12 MHz 16 MHz 20 MHz . . .

F RFU 512 768 1024 1536 2048 RFU RFU
FI 1000 1001 1010 1011 1100 1101 1110 1111
fmax . . . 5 MHz 7.5 MHz 10 MHz 15 MHz 20 MHz

Table 6.7 Coding of DI

D RFU 1 2 4 8 16 32 RFU
DI 0000 0001 0010 0011 0100 0101 0110 0111

D 12 20 RFU RFU RFU RFU RFU RFU
DI 1000 1001 1010 1011 1100 1101 1110 1111

The parameter codes for the divider F and bit rate adjustment factor D allow typical
transmission rates to be specified in accordance with the standard. This is summarized in

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 417 of 1123

6.2 Answer to Reset (ATR) 383

Section 16.10.2, ‘ATR parameter conversion tables’. The following relationships apply:

� The bit interval for the ATR and PPS, which is called the initial etu, is specified as

initial etu = 372

fi
s

� The bit interval for the transmission protocol used after the ATR and PPS can be defined
independently of the ATR. This interval, which is called the work etu, is defined as

work etu = 1

D

F

fs
s

The bit rate adjustment factor (D) and the clock rate conversion factor (F) allow the transmis-
sion rate to be modified and adapted to individual circumstances. The frequency of the applied
clock (in units of Hertz) is shown in the above formulas as f . The value of the maximum
allowable clock frequency is given by fmax. The standard value for fmax is 5 MHz.

The global interface character TA(i)

The value of TA(i) is always interpreted as XI || UI if i > 2 and T = 15 ='F' in TD(i–1). In
this case, TA(i) contains the clock stop indicator XI, which indicates the logical state the clock
line must assume when the clock is stopped, and the class indicator UI, which specifies the
supply voltage class.

Table 6.8 Coding of XI

X Not supported Low state High state No preferred state

XI 00 01 10 11

Table 6.9 Coding of UI

U Voltage class A Voltage class B Voltage classes RFU
4.5–5.5 V 2.7–3.3 V A & B

UI 00 0001 00 0010 00 0011 all other values

The global interface character TB1

Bits b7 and b6 of TB1 encode a programming voltage factor called ‘II’. Bits b5–b1 define the
parameter ‘PI1’. The most significant bit, b8, is always set to 0, which effectively means that
it is not used.

Table 6.10 Coding of TB1

b8 b7 b6 b5 b4 b3 b2 b1 IFSC

0 X II
0 . . . X X X X X PI1

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 418 of 1123

384 Smart Card Data Transmission

These parameters were needed for the first generation of smart cards, since they used
EPROM for data storage instead of EEPROM, which is currently standard. The necessary
high voltages and currents for EPROM programming had to be provided by the terminal via
the Vpp contact. However, since smart cards without internal charge pumps no longer exist,
the specific coding of this byte can be ignored. Parameters PI1 and II thus always have the
value 0, which indicates that no external programming voltage is needed. If the TB1 parameter
is omitted in the ATR, the default Vpp value of 5 V at 50 mA applies, as specified in the
standard.

The global interface character TC1

TC1 encodes an extra guard time, designated N, as an unsigned hexadecimal integer. This extra
guard time is defined as an extension to the duration of the stop bit. The value N indicates how
many additional etu’s are to be added to the guard time. TC1 is interpreted linearly except for
N = 'FF', which has a special meaning. With the T = 1 protocol, the normal guard time of
2 etu is changed to 1 etu if N ='FF'. With the T = 0 protocol, the standard guard time of 2
etu is retained in this case, to allow an error to be indicated by a low level within the guard
time interval. In practice, reducing the guard time to 11 etu with the T = 1 protocol increases
the effective data transmission rate by nearly 10 percent, since only 11 bits have to be sent for
each character instead of 12.

Table 6.11 Coding of TC1

b8 b7 b6 b5 b4 b3 b2 b1 IFSC

Extra guard time N,
X

with a range of 0–254 etu

X = 255 and T = 0:
guard time = 2 etu

1 1 1 1 1 1 1 1
X = 255 and T = 1:
guard time = 1 etu

The global interface character TB2

TB2 contains the value of PI2. This parameter specifies the external programming voltage in
tenths of a volt. It is normally no longer used in the ATR, for the same reason as TB1.

Table 6.12 Coding of TB2

b8 b7 b6 b5 b4 b3 b2 b1 IFSC

X PI2

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 419 of 1123

6.2 Answer to Reset (ATR) 385

Specific interface character for the T = 0 transmission protocol

The specific interface character TC2

TC2 is the final parameter for the T = 0 protocol. It contains the parameter WI, which encodes
the ‘work waiting time’. This is the maximum interval between the leading edges of two
consecutive bytes:

work waiting time = (960·D·WI) work etu

If the TC2 parameter is not present in the ATR, the default value of the work waiting time is
used (WI = 10).

Table 6.13 Coding of TC2

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

X WI

Specific interface characters for the T = 1 transmission protocol

The following additional bytes are defined for the T = 1 transmission protocol in accordance
with ISO/IEC 7816-3. In this case, the interface characters prescribed for T = 0 are used
only as necessary. For this protocol, the parameter index i must always be greater than 2. The
specific interface characters TAi, TBi and TCi (i > 2) always apply to the transmission protocol
specified in TD(i – 1).

Specific interface character TAi (i > 2)

The TAi byte contains the maximum length of the information field that can be received by
the card (IFSC). This value must be in the range of 1 through 254. The default value of IFSC
is 32 bytes.

Table 6.14 Coding of TAi for i > 2

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

X IFSC

Specific interface character TBi (i > 2)

The lower nibble (bits b4 b1) contains the code CWI for the character waiting time CWT,8

which is calculated as

CW T = (2CW I + 11) work etu

8 See also Section 6.4.3, ‘The T = 1 transmission protocol’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 420 of 1123

386 Smart Card Data Transmission

The upper nibble holds the value BWI, with which the block waiting time BWT9 can be
calculated as follows:

BW T = 2BW I · 960 · 372

f
s + 11 work etu

Table 6.15 Coding of TBi for i > 2

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

. . . X CWI
X . . . BWI

Specific interface character TCi (i > 2)

Bit b1 encodes the method used to compute the error detection code.

Table 6.16 Coding of TCi for i > 2

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

. 0 LRC is used

. 1 CRC is used
0 0 0 0 0 0 0 . . . Reserved for future use

Since the standard that defines the ATR parameters does not specify all possible transmission
protocol parameters in terms of interface characters, specific implementations may use a variety
of supplementary interface characters. A typical example is provided by the German national
T = 14 protocol. Several additional ATR bytes are defined for this protocol to meet its specific
needs. These can be decoded only by users of this protocol, since only they know the applicable
specification. This is not standardized, nor is it made known outside of the applications that
use it.

Global interface character TA2

This byte indicates the allowed modes for the PPS. This is explained in more detail in Section
6.4, which describes the PPS.

The historical characters

For a long time, the historical characters were not defined by any standard. As a result, they
contain a wide variety of information, depending on the producer of the operating system.

9 See also Section 6.4.3, ‘The T = 1 transmission protocol’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 421 of 1123

6.2 Answer to Reset (ATR) 387

Table 6.17 Coding of TA2

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

Switching between negotiable
0

mode and specific mode is
possible.
Switching between negotiable

1
mode and specific mode is not
possible.

. . . 0 0 Reserved for future use.

Transmission parameters
. 0 . . .

explicitly defined in the
interface characters.
Transmission parameters

. 1 . . .
implicitly defined in the
interface characters.

. X Protocol T = X is to be used.

Many companies use the available bytes to identify the operating system and the associated
version number of the ROM mask. This is usually encoded in ASCII, so it is easy to interpret.
Historical characters are not required to be present in the ATR, so they may be entirely omitted.
In some situations, this can be beneficial, since it makes the ATR shorter and thus quicker to
send.

The ISO/IEC 7816-4 standard provides for an ATR file in addition to the historical charac-
ters. This file, with the reserved FID'2F01', contains additional data for the ATR. It is intended
to be an extension to the historical characters, which are limited to 15 bytes. The content of
this file, whose structure is not defined by the standard, is ASN.1-coded.

The parameters in the ATR file or the historical characters may contain complex information
relating to the smart card and the operating system used in the card. For example, they can
indicate which file selection and implicit selection functions are supported by the smart card
and provide information about the logical channel mechanism. They can also hold additional
information about the card issuer, the card and chip serial numbers, the ROM mask version,
the chip and the operating system. The coding of the relevant data objects is defined in the
ISO/IEC 7816-4 and 7816-5 standards.

According to ISO/IEC 7816-4, the historical characters can contain the following three data
fields: an obligatory category indicator, one or more optional data blocks in compact TLV
format and an optional status indicator. The compact TLV format has a tag in the first nibble
and the length of the following data in the second nibble.

The category indicator is transferred in T1. It contains information about the structure of
the data in the ATR. The data following the category indicator include information about the
services supported by the smart card operating system and the operating system functions. The
most important of these items are described in Tables 6.19 through 6.22. The status indicator
indicates the life-cycle stage of the smart card.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 422 of 1123

388 Smart Card Data Transmission

Table 6.18 Coding of the category indicator in T1

Value Meaning

'00' Status information is located at the end of the historical characters
'10' Reference to a DIR file (directory file)
'80' Status information, if present, is contained in a compact TLV-coded data object
'81'. . .'8F' RFU
all other values Application-specific (proprietary)

Table 6.19 Coding of the application-independent card services using the compact TLV-coded data
object'31'(= tag || length)

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

1 . Application selection using the full DF name
. . . 1 Application selection using a partial DF name

. 1 Data objects are available in the DIR file

. 1 Data objects are available in the ATR file

Data objects can be read from the DIR or ATR file
. 1

using the READ BINARY command
Data objects can be read from the DIR or ATR file

. 0
using the READ RECORD command

. 0 0 0 Not used

Table 6.20 Coding of the first software function table in compact TLV-coded data objects. The
combined tag/length byte can have a value of'71','72'or'73', depending on the number of data bytes

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

1 . DF selection using the full DF name
. . . 1 DF selection using a partial DF name
. 1 DF selection by specifying a path
. 1 DF selection using an FID
. 1 Implicit DF selection (with the desired application)

. 1 Short FIDs are supported

. 1 . . . Record numbers are supported

. 1 Record identifiers are supported

The check character

This last byte in the ATR is the check character (TCK), which contains the XOR checksum
of the bytes from T0 through the last byte before the check character. This checksum can be
used in addition to parity testing to verify the correctness of the ATR transmission. However,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 423 of 1123

6.2 Answer to Reset (ATR) 389

Table 6.21 Coding of the second software function table in compact TLV-coded data objects. The
combined tag/length byte can have a value of'71','72'or'73', depending on the number of data bytes

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

. . 0 0 The WRITE command acts as a one-time write

. . . 0 1 WRITE command behavior is application-specific

. . . 1 0 The WRITE command acts as a logical OR

. . . 1 1 The WRITE command acts as a logical AND

. 1 Implicit DF selection (with the desired application)

Size of the data units in nibbles modulo 2
. x x x

(◦001◦ = 22 = 2 nibbles = 1 byte)

0 0 0 Not used

Table 6.22 Coding of the third software function table in compact TLV-coded data objects. The
combined tag/length byte can have a value of'71','72'or'73', depending on the number of data bytes

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

. . . 1 Extended Lc and Le fields

Logical channels are assigned by the card when the
. 1 0

MANAGE CHANNEL command is used
Logical channels are assigned by the terminal when

. 0 1
the MANAGE CHANNEL command is used

. 0 0 Logical channels are not supported

Maximum number of logical channels
. X Y

[2 × (X + Y + 1)]

0 . . . 0 0 Not used

despite the apparent simplicity of the structure and computation of this checksum, there are
several significant differences among various transmission protocols.

If only the T = 0 transmission protocol is indicated in the ATR, no checksum is allowed
to not be present at the end of the ATR. In this case, it is not sent at all, since bytewise error
detection using parity checking and retransmission of erroneous bytes is mandatory in the
T = 0 protocol. By contrast, a TCK byte must be present in the T = 1 protocol. The checksum
is then computed starting with byte T0 and ending with the final interface character, or with
the final historical character if historical characters are present.

6.2.2 Practical examples of ATRs

Tables 6.23 through 6.28 show practical examples of various types of smart card ATRs. They
are very useful as an aid to interpreting ATRs or defining your own ATRs.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 424 of 1123

390 Smart Card Data Transmission

Table 6.23 Sample smart card ATR with T = 1

Designation Value Meaning Remark

TS '3B' direct convention
T0 'B5' Y1 ='B'= ◦1011◦ TA1, TB1 and TD1 follow

K ='5' 5 historical characters

TA1 '11' FI = ◦0001◦ ='1' F = 372
DI = ◦0001◦ ='1' D = 1

TB1 '00' II = 0 I = 0
PI1 = ◦0000◦ ='0' Vpp contact not used

TD1 '81' Y2 ='8'= ◦1000◦ TD2 follows
T = 1

TD2 '31' Y2 ='3'= ◦0011◦ TA3 and TB3 follow
T = 1

TA3 '46' I/O buffer size = 70 bytes ICC I/O buffer size (layer 7)
TB3 '15' BWI ='1' BWT = 2011 etu

CWI ='5' CWT = 43 work etu

T1 '56' ''V'' ''V 1.0''
T2 '20' ''''
T3 '31' ''1''
T4 '2E' ''.''
T5 '30' ''0''

TCK '1E' check character XOR checksum of T0 through T5

Table 6.24 Sample ATR for a STARCOS smart card with T = 1 and the direct convention, with the
operating system not yet completed

Designation Value Meaning Remark

TS '3B' direct convention
T0 '9C' Y1 ='9'= ◦1001◦ TA1 and TD1 follow

K ='C'= 12 12 historical characters

TA1 '11' FI = ◦0001◦ ='1' F = 372
DI = ◦0001◦ ='1' D = 1

TD1 '81' Y2 ='8'= ◦1000◦ TD2 follows
T = 1 T = 1 is used

TD2 '21' Y2 ='2'= ◦0010◦ TB3 follows
T = 1 T = 1 is used

TB3 '34' CWI ='4' Character waiting time
BWI ='3' Block waiting time

T1 . . . T12 '53'||'43'||'20'||'53'||'56'||'20'|| ''SC SV 1.1 NC''
'31'||'2E'||'31'||'20'||'4E'||'43'

TCK '0F' check character XOR checksum of T0 through T12

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 425 of 1123

6.2 Answer to Reset (ATR) 391

Table 6.25 Sample ATR for a STARCOS smart card with T = 1 and the direct convention, with the
operating system completed

Designation Value Meaning Remark

TS '3B' direct convention
T0 '9B' Y1 ='9'= ◦1001◦ TA1 and TD1 follow

K ='B'= 11 11 historical characters

TA1 '11' FI = ◦0001◦ ='1' F = 372
DI = ◦0001◦ ='1' D = 1

TD1 '81' Y2 ='8'= ◦1000◦ TD2 follows
T = 1 T = 1 is used

TD2 '21' Y2 ='2'= ◦0010◦ TB3 follows
T = 1 T = 1 is used

TB3 '34' CWI ='4' Character waiting time
BWI ='3' Block waiting time

T1 . . . T12 '53'||'54'||'41'||'52'||'43'||'4F'|| ''STARCOS 21C''
'53'||'20'||'32'||'31'||'43'

TCK '43' check character XOR checksum of T0 through T12

Table 6.26 Sample ATR for a GSM smart card with T = 0 and the direct convention

Designation Value Meaning Remark

TS '3B' direct convention
T0 '89' Y1 ='8'= ◦1000◦ TD1 follows

K = 9 9 historical characters

TD1 '40' Y2 ='4'= ◦0100◦ TC2 follows
T = 0 T = 0 is used

TC2 '14' WI ='14' The work waiting time is'14'

T1 . . . T9 '47'||'47'||'32'||'34'||'4D'||'35'|| ''GG24M5280''
'32'||'38'||'30'

Table 6.27 Sample ATR for a GSM smart card with T = 0 and the inverse convention

Designation Value Meaning Remark

TS '3F' inverse convention
T0 '2F' Y1 ='2'= ◦0010◦ TB1 follows

K ='F'= 15 15 historical characters

TB1 '00' PI1 = ◦00000◦ Vpp is not used; the programming voltage
II = ◦00◦ for the EEPROM is generated in the chip

T1 . . . T15 '80'||'69'||'AE'||'02'||'02'||'01'|| Individual data of the
'36'||'00'||'00'||'0A'||'0E'||'83'|| smart card manufacturer
'3E'||'9F'||'16'

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 426 of 1123

392 Smart Card Data Transmission

Table 6.28 Sample ATR for a Visa Cash smart card with T = 1 and the direct convention

Designation Value Meaning Remark

TS '3B' direct convention
T0 'E3' Y1 ='E'= ◦1110◦ TB1, TC1 and TD1 follow

K = 3 3 historical characters

TB1 '00' PI1 = ◦00000◦ Vpp not used; EEPROM programming
II = ◦00◦ voltage generated internally

TC1 '00' N = 0 No extra guard time
TD1 '81' Y2 ='8'= ◦1000◦ TD2 follows

T = 1 T = 1 is used
TD2 '31' Y2 ='3'= ◦0011◦ TA3 and TB3 follow

T = 1 T = 1 is used
TA3 '6F' IFSC ='6F'= 111 The information field size of the

smart card is 111 bytes
TB3 '45' CWI ='5' Character waiting time

BWI ='4' Block waiting time

T1 '80' category indicator Data object in the compact TLV format
follows (compliant with ISO/IEC 7816-4)

T2 '31' card service data Label ('3') and length ('1') of the data
object for the card service data

T3 'C0' 'C0'= ◦1100 0000◦ Application selection by the complete or
partial DF name

TCK '08' check character XOR checksum of T0 through T3

6.3 PROTOCOL PARAMETER SELECTION (PPS)

The smart card specifies various data transmission parameters in the interface characters of the
ATR, such as the transmission protocol and the character waiting time. If a terminal wants to
modify one or more of these parameters, it must perform a protocol parameter selection (PPS)
procedure in accordance with ISO/IEC 7816-3 before the transmission protocol is actually
used. This allows the terminal to modify certain protocol parameters if this is permitted by the
card. Prior to 1997, protocol parameter selection was called protocol type selection (PTS).

PPS can be performed in two different modes. In the negotiable mode, the standard values of
the divider F and the bit rate adjustment factor D remain unchanged until a PPS is successfully
executed. If the card uses the specific mode, the values of F and D specified by the ATR must
be used for transmitting the PPS. The card indicates which of these two modes it supports in
the TA2 byte.

The PPS request must be made immediately after the ATR has been received by the terminal.
If the card allows the requested changes to the protocol parameters, it sends the received PPS
bytes back to the terminal. In principle, this is an echo of the received data. Otherwise, the card
sends nothing, and the terminal must perform a new reset sequence to cause the card to exit this
state. PPS may be performed only once, immediately after the ATR. Repeated transmission of
the PPS is prohibited by ISO/IEC 7816-3. In practice, it is very rarely necessary to perform a

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 427 of 1123

6.3 Protocol Parameter Selection (PPS) 393

initial state

specific
mode

PPS

negotiable
mode

ATR

cold reset

warm reset

1

1

transmission
protocol
 active

warm
reset

cold or
warm reset

Figure 6.14 State diagram of the two PPS modes (negotiable mode and specific mode) according to
ISO/IEC 7816-3

PPSS

PPS1 PPS3

PPS0 b1 ... b4 b7b6b5 b8

PCK

PPS2

protocol
RFU

Figure 6.15 The basic structure and data elements of the PPS

PPS, since the transmission parameters of the smart cards being used are exactly matched to
the requirements of the terminal.

Table 6.29 PPS data elements and their designations
according to ISO/IEC 7816-3

Data element Designation

PPSS Initial character
PPS0 Format character
PPS1, PPS2, PPS3 Parameter characters
PCK Check character

The first byte is the initial character (PPSS), which unambiguously informs the card that
the terminal is initiating a PPS request immediately after the ATR. It always has the value'FF'
and is a required component of each PPS.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 428 of 1123

394 Smart Card Data Transmission

The data element following the PPSS is the format character (PPS0). It is also a required
component of each PPS. It may optionally be followed by up to three bytes, which are called
the parameter characters and are designated PPS1, PPS2 and PPS3. They encode various
parameters for the transmission protocol to be used following the PPS. Data element PPS3 is
reserved for future use, so it cannot yet be described here. The final byte of the PPS is called
the control character (PCK). It contains the XOR checksum of all previous bytes, starting with
PPSS. Unlike the other data elements, which are optional, PCK is a mandatory component of
the PPS, as are PPSS and PPS0.

Table 6.30 Coding of PPS0

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

. X Transmission protocol to be used

. 1 . . . PPS1 is present

. 1 PPS2 is present

. . . 1 PPS3 is present
0 Reserved for future use

Table 6.31 Coding of PPS1

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

X . . . FI
. . . X DI

If the card can interpret the PPS and modify the transmission protocol accordingly, it
acknowledges this by sending the received PPS back to the terminal. If the PPS request contains
items that the card cannot process, it simply waits until the terminal executes a reset. The main
disadvantage of this procedure is that a large amount of time can be lost before the actual
transmission protocol is used.

The PPS just described cannot be used for protocol switching with terminals that cannot exe-
cute a PPS but that nonetheless have their own special transmission protocols. This is precisely
the situation with German card phones, for example. A special procedure has been devised
to permit protocol switching despite this limitation. Since all terminals perform multiple reset
sequences if they do not recognize the ATR, it was decided that the smart card should switch
transmission protocols after every reset. This can best be illustrated by an example. After the
first reset, the card sends the ATR for T = 14 and is then ready to communicate using the T = 14
protocol. After the second reset, it sends an ATR for T = 1 and is then ready to communicate
using the T = 1 protocol. After the third reset, it is again prepared to use the T = 14 protocol.
This is not an ideal technical solution, since a device should always behave the same after
every reset, but it is a fully practical solution for a heterogeneous terminal world.

It is possible to mitigate this objection by having the smart card always respond with the
same ATR after a power-on reset (cold reset). In this case, the card always executes a cold
reset directly after it has been inserted in the card reader and the activation sequence has been
completed. A reset that it triggered via the card’s reset line (warm reset), on the other hand,
switches the transmission protocol. The card thus behaves the same after every ‘real’ reset, while
any supplementary triggering of a reset causes it to switch to a different transmission protocol.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 429 of 1123

6.3 Protocol Parameter Selection (PPS) 395

...

PPS
necessary?

PPS
allowed or
possible?

wait
for

reset

no

no

yes

yes

Terminal

activation sequence with reset

PPS request

command 1

ATR

PPS response

response 1

Figure 6.16 A typical PPS procedure with a GSM card

...

protocol
OK ?

yes

no

Terminal

reset in the course
of the activation sequence

(power-on reset, cold reset)

reset via the reset line
(warm reset)

command 1

ATR for T = 14

ATR for T = 1

response 1

Smart Card

Figure 6.17 A typical PPS procedure triggered by a reset

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 430 of 1123

396 Smart Card Data Transmission

6.4 DATA TRANSMISSION PROTOCOLS

After the smart card has sent an ATR, possibly followed by a PPS, it waits for the first command
from the terminal. The subsequent process always corresponds to the master–slave principle,
with the terminal as master and the card as slave. In concrete terms, the terminal sends a
command to the card, and the latter executes it and subsequently returns a response. This
back-and-forth interplay of commands and responses never changes.

There are various ways in which communication with a smart card can be established. There
are also a number of different methods for resynchronizing communications if a disturbance
occurs. The exact implementation of the commands, the corresponding responses and the proce-
dures used in the event of transmission errors are defined in the form of transmission protocols.

Transmission protocols

memory chips processor chips

T = 0

T = 1

T = 2

T = 14 (Germany)

I C bus (S = 8)

2-wire (S = 10)

3-wire (S = 9)

SLE 4403 derivative
2

Figure 6.18 Classification of transmission protocols used with contact-type smart cards

A total of 15 transmission protocols have been identified and defined in terms of their basic
functions. These protocols, which are designated as ‘T =’ (for ‘transmission protocol’) plus a
sequential number, are summarized in Table 6.32.

Table 6.32 Summary of transmission protocols according to ISO/IEC 7816-3

Protocol Meaning

T = 0 Asynchronous, half-duplex, byte oriented, specified in ISO/IEC 7816-3
T = 1 Asynchronous, half-duplex, block oriented, specified in ISO/IEC 7816-3 Amd. 1
T = 2 Asynchronous, full duplex, block oriented, specified in ISO/IEC 10536-4
T = 3 Full duplex; not yet specified.
T = 4 Asynchronous, half-duplex, byte oriented, extension of T = 0, not yet specified
T = 5 . . . T = 13 Reserved for future use, not yet specified
T = 14 For national use, not standardized by ISO
T = 15 Reserved for future use and not yet specified

Two of these protocols predominate in international use. The first is the T = 0 protocol,
which became an international standard in 1989 (ISO/IEC 7816-3). The other is T = 1, which
was introduced in 1992 in an amendment to an international standard (at the time ISO/IEC
7816-3 Amd. 1, now ISO/IEC 7816-3). The full-duplex transmission protocol T = 2, which
is strongly based on T = 1, is currently in the definition stage and will be available as an
international standard in a few years.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 431 of 1123

6.4 Data Transmission Protocols 397

In Germany, the widely distributed card-phone system uses yet a third protocol, designated
T = 14. It is defined in an internal specification of Deutsche Telekom.

The data elements transported by transmission protocols are called transmission protocol
data units (TPDUs). They can be regarded as protocol-dependent containers that transport data
to and from the card. The actual application data are embedded in these containers.

In addition to the technically complex smart card transmission protocols, there is an addi-
tional set of very simple synchronous protocols for memory cards. They are typically used with
telephone cards, health insurance cards and the like. However, they do not have error-correction
mechanisms, and they are based on hard-wired logic in the chip.

6.4.1 Synchronous data transmission

Synchronous data transmission is not used with microcontroller-based smart cards, since they
only communicate with the terminal asynchronously. However, it is the standard method for
memory cards, which are used in very large numbers in applications such as prepaid elec-
tronic purses for card phones. This widespread use justifies a description of the operation of
synchronous data transmission.

In memory cards, synchronous data transmission is very closely linked to the chip’s hardware
and is designed to be as simple as possible. There is no separation of layers in the transmission
protocol, nor is logical addressing present, so the application in the terminal must directly
access memory locations in the chip. The protocol allows the data stored in the chip to be
physically addressed and then read or written. This means that the actual data transmission
process is also tied to the functions of memory addressing and management.

There is also no procedure for detecting or correcting errors during data transmission,
although it must be said that such errors between the card and the terminal occur very rarely.
If the terminal application nonetheless detects a transmission error, it must re-read the relevant
area in the card’s memory. All these restrictions serve to allow data to be transmitted between
the card and the terminal at a high rate using only a small amount of logic circuitry.

Since synchronous data transmission is only used to keep data transmission as simple as
possible (which means using a minimum amount of logic circuitry), an almost inevitable
consequence is strong hardware dependence. As a result, synchronous transmission protocols
are not uniform and sometimes vary greatly from chip to chip. Only the ATR is standardized.
A terminal that has to communicate with various types of memory cards must incorporate
several different types of synchronous data transmission protocols.

The exact designation of the type of data transmission used for memory cards is ‘clock-
synchronous serial data transmission’. This clearly indicates the basic conditions that apply to
this type of communication. As with asynchronous communications, data are transmitted be-
tween the card and the terminal serially, or bit by bit. However, the bits are sent synchronous to a
supplementary transmit clock signal. This makes the transmission of start and stop information
unnecessary.

In the case of a simple memory card, there is also no error detection information, which
means that neither a parity bit nor a supplementary checksum is sent. The low probability of
transmission errors is due to the very low clock rate, which ranges from 10 kHz to 100 kHz.
Since one bit is sent for each clock cycle, a clock rate of 20 kHz yields a transmission rate of
20 kbit/s. However, the effective data rate is lower, since additional address information must
also be sent in the case of memory cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 432 of 1123

398 Smart Card Data Transmission

In order to describe synchronous data transmissions for memory cards in an understandable
manner, we first need to describe some of the basic features of memory cards. In their simplest
form, these cards have memories that are divided into two parts, consisting of an unchangeable
ROM region and an EEPROM region that can be written and erased. Both regions are bit-
addressable and can be freely read, and the EEPROM can also be written and erased.

The master–slave relationship is even more pronounced in memory cards than in micro-
controller smart cards. For example, the terminal completely takes over physical addressing of
memory. The card itself can only globally block certain areas against erasing. This is controlled
by hard-wired logic located ahead of the memory. This logic also manages the very simple
data transmission process.

6.4.1.1 The telephone chip protocol

Data transmission is illustrated here using a phone card containing an Infineon SLE4403 chip
as an example. The memory in this IC is bit-oriented, which means that all operations are
carried out on individual bits. Other types of chips may have protocols that differ from the
protocol described here. However, the basic data transmission principles are the same for all
synchronous cards.

Data are transmitted using three leads. The bidirectional data lead is used by both the card
and the terminal to exchange single-bit data. The clock lead transmits the clock generated by the
terminal to the card. This clock provides the reference for the synchronous data transmission.
The third connection needed for the data transmission is the control lead. It determines what
the chip actually does, based on the states of the other two leads.

In principle, complete control of a memory card requires the chip’s logic circuitry to decode
four different functions. These are read, write, clear memory and increment the address pointer.
A memory card has a global memory pointer that can be used to address all memory regions
bit by bit. If the pointer reaches the upper memory boundary, it rolls over to zero. With a
bit-oriented chip design, it then points to the first bit in memory. One of the functions of
synchronous data transmission is to reset this pointer to an initial value, which is normally
zero. The next function is to read data from the memory. The other two functions are writing
and erasing EEPROM bits. Erasing EEPROM bits, which would allow them to be rewritten,
is of course blocked in phone cards, since otherwise the cards could be reloaded.

Resetting the address pointer

The address pointer is reset to its initial value of zero by the power-up logic of the card if
the clock lead and the control lead are simultaneously at a high level. However, the control
pulse must be applied for a somewhat longer interval than the clock pulse, in order to prevent
the address from being immediately incremented. The address pointer should be reset to
its original value after each activation sequence, since it would otherwise be pointing to an
undefined address.

Incrementing the address pointer and reading data

If there is a rising edge on the clock line while the control lead is at a low level, the internal
logic of the card increments the address pointer by one. The falling edge of the clock causes

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 433 of 1123

6.4 Data Transmission Protocols 399

clock

control

address
pointer address := 0

t

t

Figure 6.19 Resetting the address pointer to zero

the content of the address indicated by the pointer to be placed on the data lead. If the pointer
reaches its maximum value, which depends on the size of the memory, it rolls over to zero and
thus starts over from the beginning.

clock

control

address
pointer

I/O line

adr. := adr. + 1............

content of the
addressed bits
on the I/O line

t

t

Figure 6.20 Incrementing the address pointer and reading data from an address

Writing to an address

If the address pointer is within a writeable EEPROM region, the value on the data lead can be
written to EEPROM by applying a high level to the control lead and then pulling the clock lead
low. The length of the write cycle is determined by the duration of the immediately following
clock pulse. If the bit was written correctly, the content of the written memory cell appears at
the data output.

Erasing bytes

Part of the EEPROM memory in a typical phone card is always organized as a multi-place octal
counter. If a byte has to be erased in this counter due to a carry to the next place, this is performed
by the logic circuitry. Erasing a byte in memory is thus somewhat more complicated. The
procedure is as follows: if a bit within a byte is written twice in a row, the chip’s hardware logic

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 434 of 1123

400 Smart Card Data Transmission

I/O

clock

t

t

control

address
pointer

write duration

content of the
written memory cell

address previously set
t

Figure 6.21 Writing a bit to an address in EEPROM memory

automatically erases the associated less significant byte. This ensures that a carry to the next
higher place occurs, while the lower place is erased without allowing any opportunity for fraud.

The four types of access that have been described may vary from chip to chip and also
among manufacturers. Another type of data transmission, which by contrast is standardized, is
represented by the I2C bus. Many of the newer memory cards use this bus for communicating
with the terminal. This naturally has the advantage that different chips, made by different
manufacturers, can be used together within a single system. Problems due to several different
transmission protocols are thus eliminated, since all chips are mutually compatible at the
transmission interface.

6.4.1.2 The I2C bus

Since serial, clock-synchronized data transmission protocols are uncomplicated and versatile,
they are used relatively frequently. Components for use with the I2C (inter-integrated circuit)
bus, which was developed by Philips, have been available since 1990. This bus is based on a
bidirectional serial data lead and a serial clock lead. The definition of the I2C bus encompasses
both the hardware (the two leads) and the software, in the sense of the data transmission format.
Each IC on the bus can take control of the bus and send requests to other ICs connected to the
bus.

Since memory cards are also controlled by a synchronous clock, the I2C bus has very quickly
established itself in the smart card industry. A wide range of memory ICs has become available
for use in cards. The following example is based on the SGS-Thomson ST24C04 memory
chip. It has a 512-byte EEPROM that can be freely written and read. Timing computations
for EEPROM programming are handled internally by the chip, so this does not have to be
controlled externally.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 435 of 1123

6.4 Data Transmission Protocols 401

The hardware for the I2C bus consists of two lines between the terminal and the card. The
serial clock (SCL) line carries the clock, which can range up to 100 kHz. This yields a data
transmission rate of up to 100 kbit/s, which is relatively high for smart cards. The other line,
serial data (SDA), is used bidirectionally to exchange data between the card and the terminal.
The SDA line is connected to the supply voltage (Vcc) in the terminal via a pull-up resistor.
Both communicating parties can only pull this line to ground. Sending a high level is therefore
passive, and involves the sender switching its output to a high-impedance state (tri-state), thus
allowing the pull-up resistor to pull the SDA line up to the supply voltage level.

In the smart card context, the terminal is always the master of the I2C bus and the card is
always the slave. Data transmission always uses single-byte packets. The most significant bit
(bit 8) of the byte is sent first. Each transmission over the SDA line is initiated by a start signal
and terminated by a stop signal. The start signal consists of a falling edge on the SDA line
while the level on the SCL line is high. Conversely, a rising edge on the SDA line while the
level on the SCL line is high indicates a stop signal. The recipient must acknowledge receipt
of each byte by pulling the SDA line low for one clock cycle.

SCL (serial clock)

SDL (serial data)

start signal stop signal

t

t

Figure 6.22 Start and stop signals on the I2C bus

The first seven bits of the first byte after the start of communications are the address of
the recipient. In our example, we assume for simplicity that the address has the binary value
◦1010000x◦. Of course, this may vary depending on the chip type, and it can be chosen within
certain limits for some memory ICs. The last bit in the address (x) tells the recipient whether
data are to be read or written. A 1 indicates reading, while 0 is for writing.

The following examples illustrate the general functions of the I2C bus as used with smart
cards.

Reading from an address

There are several types of access for reading the EEPROM of a smart card. In the type described
here, one byte is read at a time. However, it is also possible to read several bytes in succession.

The read sequence is initiated by the start signal. The subsequent bits contain the address of
the card, with the control bit set to ‘write’. This indicates to the card that it must temporarily store
the following data in an internal buffer. This buffer is nothing more than a byte-oriented address
pointer for the EEPROM. After the card receives the first byte, it sends an acknowledgement
by grounding the SDA line for one clock cycle. After this, the terminal sends the EEPROM
address to the card. Once again, the card acknowledges receipt of the data. The terminal then

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 436 of 1123

402 Smart Card Data Transmission

sends a start signal and the card address with the read bit set. On receiving this, the card sends
the data from the location addressed by the pointer to the terminal. The terminal does not have
to acknowledge the receipt of the data; it only sends a stop signal to the card. This completes
the read sequence for one byte.

SDA (serial data)

t

start

slave address

mode:
write

mode:
read

terminal

smart card

slave addressaddress in
smart card

memory

data from
smart card
memory

start

acknowledge acknowledgeacknowledge

stop

Figure 6.23 Unconstrained reading of a byte from memory using the I2C bus

Writing to an address

As with reading data from the card’s EEPROM, there are also various modes for writing data.
The simplest mode, which can be used to write a single byte anywhere in memory, is described
here.

Again, the sequence begins with a start signal from the terminal. This is followed by the
card’s address, with the write bit set. The card acknowledges receipt and then receives from the
terminal the address in the EEPROM where the data are to be written. The card acknowledges
this as well, and then receives the data. After the terminal receives the third acknowledgement,
which indicates that the card has received the data, it sends a stop signal. Following this, the
card starts to write the received data to the EEPROM, which does not require external timing
signals. This completes the writing sequence, and the byte is now stored in the EEPROM.

SDA (serial data)

t

start

slave address

mode:
write

terminal

smart card

address in
smart card

memory

data for
smart card

memory

acknowledge acknowledgeacknowledge

stop

Figure 6.24 Unconstrained writing of a byte in memory using the I2C bus

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 437 of 1123

6.4 Data Transmission Protocols 403

6.4.2 The T = 0 transmission protocol

The T = 0 transmission protocol was first used in France during the initial development of smart
cards, and it was also the first internationally standardized smart card protocol. It was generated
in the early years of smart card technology, and it is thus designed for minimum memory usage
and maximum simplicity. This protocol is used worldwide in GSM cards, which makes it the
most widely used of all current smart card protocols. The T = 0 protocol is standardized in
ISO/IEC 7816-3. Additional compatible specifications are contained in the GSM 11.11, TS
102.221 and EMV specifications.

The T = 0 protocol is byte-oriented, which means that the smallest unit processed by the
protocol is a single byte. The transmission data unit consists of a header containing a class
byte, a command byte and three parameter bytes, optionally followed by a data section. In
contrast to the application protocol data unit (APDU) specified by ISO/IEC 7816-4, length
information is provided only by parameter P3. This indicates the length of the command data
or response data. It is also specified by the ISO/IEC 7816-3 standard.

CLA INS P1 P2 P3 data field

header data part

Figure 6.25 Structure of a command with the T = 0 protocol

Due to the byte orientation of the T = 0 protocol, if a transmission error is detected,
retransmission of the incorrect byte must be requested immediately. With block protocols, by
contrast, an entire block (a sequence of bytes) must be retransmitted if an error occurs. Error
detection with T = 0 is based exclusively on a parity bit appended to each sent byte.

start bit n start bit n+1

guard time

data byte n parity bit n

high

low

t

Figure 6.26 A byte transmitted via the I/O interface with no error using the T = 0 protocol

If the recipient detects a transmission error, it must set the I/O line to a low level for the
duration of one etu starting halfway through the first bit interval of the guard time of the faulty
byte. This indicates to the other party that the most recent byte must be retransmitted. This
byte repetition mechanism is very simple, and it has the advantage that it is selective, since
only incorrect bytes have to be repeated. Unfortunately, this mechanism suffers from a severe
disadvantage. Most interface ICs treat the etu interval as the smallest detectable unit, so they

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 438 of 1123

404 Smart Card Data Transmission

cannot recognize a low level on the I/O line that is set halfway through a stop bit. Standard
interface ICs are thus not suitable for the T = 0 protocol. However, if each bit is received
separately by software, this is not a problem.

start bit n start bit n+1

error indication

data byte n parity bit n

high

low

t

Figure 6.27 A data transmission error is indicated in the T = 0 protocol by a low level at the I/O
interface during the guard time

The T = 0 protocol also allows an external programming voltage for the EEPROM or
EPROM to be switched on or off. This is done by adding 1 to the received command byte and
sending it back to the terminal as an acknowledge byte. This is why only even-valued command
bytes are permitted, since otherwise this mechanism would not work. However, switching an
external programming voltage is technically obsolete, since all smart card microcontrollers
now generate the programming voltage in the chip itself. We thus need not discuss this topic
any further.10

To illustrate the T = 0 command–response sequence, let us assume that the terminal sends
the card a command with a data section, and the card responds with data and a return code (see
Figure 6.28). The terminal first sends the card a 5-byte command header, consisting of a class
byte, a command byte and the P1, P2 and P3 bytes. If this is received correctly, the card returns
an acknowledgement (ACK) in the form of a procedure byte (PB). This acknowledgement is
coded the same as the received command byte. On receipt of the procedure byte, the terminal
sends exactly the number of data bytes indicated by the P3 byte. Now the card has received
the complete command, and it can process it and generate a response.

If the response contains data in addition to the 2-byte return code, the card informs the
terminal of this via a special return code, with the amount of data indicated by SW2. After
receiving this response, the terminal sends the card a GET RESPONSE command, which
consists only of a command header and an indication of the amount of data to be sent. The
card now sends the terminal the requested amount of data generated in response to the first
command, with the appropriate return code. This completes one command sequence.

If a command is sent to the card and the card only generates a return code with no data
section, the GET RESPONSE portion of Figure 6.28 does not occur. Since an additional
command from the application layer is needed to perform this action (fetching data related
to a previous command), there is naturally no longer strict separation between the protocol
layers. An application-layer command (GET RESPONSE) must be used here to support the

10 There is currently a proposal for revising the ISO/IEC 7816-3 standard to eliminate the provision for controlling
an external programming voltage via the instruction byte. This would double the number of possible commands

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 439 of 1123

6.4 Data Transmission Protocols 405

Smart card Terminal

� 5-byte command header
[CLA, INS, P1, P2, P3]

Header received without error, �
request transmission of data section:
[ACK] (acknowledge ACK)

� [data section]
with number of data bytes = P3

command processing
Command executed and data �
available; data length in SW2:
[SW1 || SW2]

� GET RESPONSE
P3 =quantity of data to be sent
[CLA, INS, P1, P2, P3]

[data || SW1 || SW2] � Command–response sequence
completed.

Figure 6.28 A typical T = 0 communications sequence with data in both the command and the response
(a Case 4 command, such as MUTUAL AUTHENTICATE)

data link layer, which has certain effects on the application in question. All of this may appear
complicated at first sight, so it is shown again graphically in Figure 6.30.

The maximum interval between the leading edges of two successive bytes is designated the
work waiting time. This is coded in data element TC2 of the ATR.

start edge (character n)

smart card

start edge (character n+1)

work waiting time

Figure 6.29 Definition of the work waiting time

The primary function of the guard time is to separate individual bytes during the trans-
mission. This gives the sender and the recipient more time to perform the functions of the
transmission protocol.

If the smart card returns a procedure byte containing the null value ('60') to the terminal, this
does not have any effect on the actual sequence of the protocol, but it does inform the terminal
that the smart card is still processing the last command that it received. Sending a null value
can thus be used as a sort of waiting time extension (WTX), although it is not standardized in
this form.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 440 of 1123

406 Smart Card Data Transmission

1

2

L1

A

3

D

α

L1

45

5

1C

GB

E

F

 yes

no

F

J

K

2

G

1

H

 yes

no

no yes

I

yes

 no

no yes

Figure 6.30 The smart card state machine for the communications process using the T = 0 communi-
cations protocol, without error handling

α Command processing D Receive the data section
1 Quiescent state (P3 = number of bytes)
2 Header received with CLA, INS, P1, P2 & P3 E Did the command contain a data
3 Wait for the data section section (i.e., C and D executed)?

(P3 = number of bytes) F Are response data available
4 Wait for a command (no error occurred)?

(header with CLA, INS, P1, P2 & P3) G Send SW1 and SW2
(P3 = amount of response data) H Send the available response data

5 SW1, SW2 sent and and SW1 + SW2
GET RESPONSE received I Send SW1 and SW2

A Receive the header (5 bytes) (SW2 = amount of response data)
B Data available (P3 != 0)? J Receive a command
C Data section available; (header = 5 bytes)

send procedure byte to terminal K Is the received command
GET RESPONSE?

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 441 of 1123

6.4 Data Transmission Protocols 407

The T = 0 protocol allows the card to receive the bytes in the data section individually
after it has received the header. To do so, it only has to send the inverted command byte to the
terminal as a procedure byte, whereupon the terminal will send a single data byte. The next data
byte follows the next procedure byte from the card. This bytewise transmission can continue
until the card has received all the bytes in the data section, or until it sends the non-inverted
command byte to the terminal as a procedure byte. Upon receiving the non-inverted command
byte, the terminal sends all the remaining data bytes to the card, which will have then received
the complete command.

There are two incompatibilities here between GSM 11.11 and ISO/IEC 7816-3. The first
is that according to the GSM standard, a GET RESPONSE command is requested using
SW1 ='9F', while according to the ISO/IEC standard the usual value is'61'.11 In each case,
SW2 contains the amount of data to be fetched. The second incompatibility between the two
standards relates to the manner in which data is fetched using GET RESPONSE. The manner
described above corresponds to the GSM standard and is representative for the majority of smart
card applications throughout the world. According to the ISO/IEC standard, a certain amount
of data can be fetched using GET RESPONSE, but there is no marker to allow subsequent
data packets to be requested one after the other. With the ISO/IEC standard, GET RESPONSE
always starts with the first byte.

These two incompatibilities can be easily handled in the terminal by suitable software. The
important thing is to be aware that they exist.

Smart card Terminal

� 5-byte command header
[CLA, INS, P1, P2, P3]

‘Send one data byte’ �

� [Data byte 1]
‘Send one data byte’ �

� [Data byte 2]
further reception of individual bytes further transmission of individual

bytes
‘Send all remaining data bytes’ �

� [Data bytes n–P3]
(P3 = number of data bytes)

command processing
[SW1 || SW2] � Command–response sequence

completed

Figure 6.31 Single-byte reception with T = 0 (a Case 3 command, such as UPDATE BINARY)

11 There is a proposal for revising the ISO/IEC 7816-3 standard to have it allow both values

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 442 of 1123

408 Smart Card Data Transmission

With a transmission protocol, the primary concerns of the user are ultimately only the data
transmission rate and the error detection and correction mechanisms. Transmitting an 8-bit byte
requires sending 12 bits, including one start bit, one parity bit and two etu for the guard time.
Transmitting one byte thus takes 12 etu, which is equivalent to 1.25 ms with a 3.5712-MHz
clock frequency and a divider value of 372. Table 6.33 lists data transmission times for some
typical commands.

Table 6.33 Data transmission times for some typical commands using the T = 0 protocol
and a clock rate of 3.5712 MHz, a divider value of 372, 2 stop bits and 8 data bytes per
command (C = command, R = response)

Command User data Protocol data Data transmission time

READ BINARY C: 5 bytes — 18.75 ms
R: 2 + 8 bytes

UPDATE BINARY C: 5 + 8 bytes — 18.75 ms
R: 2 bytes

ENCRYPT C: 5 + 8 bytes C: 5 bytes 37.50 ms
R: 2 + 8 bytes R: 2 bytes

The data transmission rate naturally drops if transmission errors occur. However, the single-
byte repetition mechanism is very advantageous here, since only incorrectly received bytes
have to be retransmitted.

The error detection mechanism of the T = 0 protocol consists only of a parity check at the
end of each byte. This allows reliable recognition of single-bit errors, but two-bit errors cannot
be detected. Furthermore, if a byte is lost during the transmission from the terminal to the card,
this results in an endless loop (deadlock) in the card, since it is expecting a specific number of
bytes and has no possibility of timing out. The only practical way for the terminal to escape
from this situation is to reset the card and establish communications again from the beginning.

There is a very similar situation when the terminal is expecting more data than the smart
card sends. This also unavoidably leads to a deadlock. For this reason, some implementations
of the T = 0 protocol in terminals have a timer that triggers termination of communications
after a configurable maximum interval. The mechanism used for this is similar to that for the
block waiting time (BWT) with the T = 1 protocol. However, it is not standardized and is thus
implementation-dependent.

In normal communications, the insufficient separation of the link and transport layers does
not cause any major problems. The smooth operation of the GSM application is the best proof
of this. However, problems quickly arise if secure messaging is used. With a partly encrypted
header and a fully encrypted data section, it is no longer possible to support the T = 0 protocol
using the previously described procedure without incurring large overheads. This is because
the unencrypted command byte must be used for the procedure byte in the T = 0 protocol.
However, this fact has been recognized by the standards organizations and is taken into account
in the standards related to secure messaging, so all varieties of secure messaging are possible
using the T = 0 protocol.

Due to the absence of layer separation and the obvious problems in the event of a bad
connection, the T = 0 protocol is often considered to be outdated. However, transmission errors
almost never occur in communications between the terminal and the card. The main advantages

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 443 of 1123

6.4 Data Transmission Protocols 409

of the T = 0 protocol are its good average transmission rate, minimal implementation overhead
and widespread use.

6.4.3 The T = 1 transmission protocol

The T = 1 transmission protocol is an asynchronous half-duplex protocol for smart cards. It is
based on the international ISO/IEC 7816-3 standard. The TS 102.221 and EMV specifications
are also relevant for this protocol. The T = 1 protocol is a block-oriented protocol, which means
that one block is the smallest data unit that can be transmitted between the card and the terminal.

This protocol features strict layer separation, and it can be assigned to the data link layer
(transport layer) in the OSI reference model. In this context, layer separation means that
data destined for higher layers, such as the application layer, can be processed completely
transparently by the data link layer. It is not necessary for layers other than the ones directly
involved to interpret or modify the contents of the transmitted data.

Secure messaging (SM), in particular, requires adherence to layer separation. Only then can
encrypted user data be passed across the interface without resorting to complicated procedures
or tricks. The T = 1 protocol is currently the only international smart card protocol that permits
all varieties of secure data transmission without any compromises.

The transmission protocol sequence starts after the card has sent the ATR or after a successful
PPS has been executed. The first block is sent by the terminal, and the next block is sent by
the card. Communication then continues in this manner, with the transmit privilege alternating
between the terminal and the card.

Incidentally, the T = 1 protocol is not limited to being used for communication between
smart cards and terminals. It is also used by many terminals to exchange application and control
data with the computers to which they are connected.

The data transmission rate is naturally of particular interest for any data transmission pro-
tocol. Table 6.34 lists the transmission times for some typical commands using the T = 1
protocol.

Table 6.34 Data transmission times for some typical commands with the T = 1 protocol
and a clock rate of 3.5712 MHz, a divider value of 372, an XOR error detection code,
2 stop bits and 8 data bytes per command (C = command, R = response)

Command User data Protocol data Data transmission time

READ BINARY C: 5 bytes C: 4 bytes 28.75 ms
R: 2 + 8 bytes R: 4 bytes

UPDATE BINARY C: 5 + 8 bytes C: 4 bytes 23.00 ms
R: 2 bytes R: 4 bytes

ENCRYPT C: 5 + 8 bytes C: 4 bytes 38.75 ms
R: 2 + 8 bytes R: 4 bytes

6.4.3.1 Block structure

The transmitted blocks are basically used for two different purposes. One of these is the
transparent transmission of application-specific data, while the other is sending protocol control
data or handling transmission errors.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 444 of 1123

410 Smart Card Data Transmission

A transmission block consists of an initial prologue field, an information field and a final
epilogue field. The prologue and epilogue fields are mandatory and must always be sent. The
information field is optional and contains data for the application layer, which is either a
command APDU sent to the card or a response APDU from the card.

epilogue fieldinformation fieldprologue field

node address
NAD

1 byte 1 byte 1 byte 1 ... 2 bytes0 ... 254 bytes

protocol control byte
PCB

length
LEN

APDU EDC

Figure 6.32 The structure of a T = 1 transmission block

There are three fundamentally different types of blocks in T = 1: information blocks, receipt
acknowledgement blocks and system blocks. Information blocks (I blocks) are used to trans-
parently exchange application-layer data. Receipt acknowledgement blocks (R blocks), which
do not contain any data fields, are used for positive or negative reception confirmation. System
blocks (S blocks) are used for control information related to the protocol itself. Depending on
the specific control data, they may have an information field.

The prologue field

The prologue field consists of three subfields: node address (NAD), protocol control byte
(PCB) and length (LEN). It is three bytes long and contains basic control and pointer data for
the actual transmission block.

Node address (NAD)

The first byte in the prologue field is called the node address (NAD) byte. It contains the desti-
nation and source addresses for the block. Each of these is coded using three bits. If an address
is not used, its bits are set to 0. Furthermore, for compatibility with older microcontrollers,
control is provided for the EEPROM or EPROM programming voltage. However, there is no
practical use for this, since all smart card microcontrollers now have on-board charge pumps.

Protocol control byte (PCB)

The subfield following the node address is the protocol control byte (PCB). As the name
suggests, it serves to control and supervise the transmission protocol. This increases the amount

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 445 of 1123

6.4 Data Transmission Protocols 411

Table 6.35 Node address (NAD field)

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

X X Vpp control
. . . X X X DAD (destination address)
. X X X SAD (source address)

of coding required. The PCB field primarily encodes the block type, as well as associated
supplementary information.

Table 6.36 PCB field for an I block

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 . I block identifier
. . . N(S) Send sequence number
. X Sequence data bit M
. X X X X X Reserved

Table 6.37 PCB field for an R block

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

1 0 R block identifier
. 0 N(R) 0 0 0 0 No error
. 0 N(R) 0 0 0 1 EDC or parity error
. 0 N(R) 0 0 1 0 Other error

Length field (LEN)

The one-byte length (LEN) field indicates the length of the information field in hexadecimal
form. Its value can be'00'to'FE'. The code'FF'is reserved for future extensions and currently
should not be used.

The information field

In an I block, the information field serves as a container for application layer data (OSI layer 7).
The content of this field is transmitted completely transparently. This means that the content
is directly passed on by the transmission protocol without any analysis or evaluation.

In an S block, the information field transfers data for the transmission protocol. This is the
only case in which this content of this field is used by the transport layer.

According to the ISO standard, the size of the information field can range from'00' to'FE'
(254) bytes. The value'FF'(255) is reserved by ISO for future use. The terminal and card may
have I fields with different sizes. The default size of the terminal I field is 32 bytes (IFSD =
information field size for the interface device); this can be modified via a special S field. This

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 446 of 1123

412 Smart Card Data Transmission

Table 6.38 PCB field for an S block

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

1 1 S block identifier
Resync request

. 0 0 0 0 0 0
(only from terminal)
Resync response

. 1 0 0 0 0 0
(only from smart card)
Request change to

. 0 0 0 0 0 1
information field size
Response to request change

. 1 0 0 0 0 1
to information field size

. 0 0 0 0 1 0 Request abort

. 1 0 0 0 1 0 Response to abort request
Request waiting time extension

. 0 0 0 0 1 1
(only from smart card)
Response to waiting time extension

. 1 0 0 0 1 1
(only from terminal)
Vpp error response

. 1 0 0 1 0 0
(only from smart card)

default value of 32 bytes also applies to the card (IFSC = information field size for the card),
but this can be modified by a parameter in the ATR.12 In practice, the size of the I field for
both the terminal and the card is between 50 and 254 bytes.

Epilogue field

The epilogue field, which is transmitted at the end of the block, contains an error detection
code computed from all previous bytes in the block. The computation employs either an LRC
(longitudinal redundancy check) or a CRC (cyclic redundancy check). The method used must
be specified in the interface characters of the ATR. If it is not specified, by convention the
LRC method is implicitly used. Otherwise, the CRC computation is carried out according
to ISO 3309. The divider polynomial used, G(x) = x16+x12 + x5 + 1, is the same as for
CCITT Recommendation V.41.13 Both of these error detection codes can only be used for
error detection; they cannot correct a block error.

The single-byte longitudinal redundancy checksum is computed using XOR concatenation
of all previous bytes in the block. This computation can be executed very quickly, and its
implementation is not code-intensive. It is usually performed on the fly during data transmission
or reception. It is a standard part of practically all T = 1 implementations.

Using the CRC procedure to generate an error detection code yields a much greater proba-
bility of error detection than the relatively primitive XOR checksum. However, this procedure

12 The TAi (i > 2) data element in the ATR
13 See also Section 4.5.2, ‘CRC checksums’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 447 of 1123

6.4 Data Transmission Protocols 413

is presently not used in practice, since the XOR checksum has become the established standard
throughout the world. With the CRC procedure, the epilogue field must be extended to two
bytes, which further reduces the data transmission rate.

6.4.3.2 Send/receive sequence counter

Each information block in the T = 1 protocol has a send sequence number consisting of only
one bit located in the PCB byte. This number is incremented modulo 2, which means that it
alternates between 0 and 1. The send sequence counter is also designated N(S). Its starting
value at protocol initiation is 0. The counters in the terminal and the smart card are incremented
independently of each other.

The primary purpose of the send sequence counter is to support requests for resending
blocks received with errors, since individual data blocks can be unambiguously addressed via
N(S).

6.4.3.3 Waiting times

Several waiting times are defined to provide transmitters and receivers with precisely specified
minimum and maximum intervals for various actions during data transmission. They also
provide defined ways to terminate communications in order to prevent deadlocks in case of
errors. Default values are defined for all of these waiting times in the standard, but these may be
modified to maximize the transmission rate. The modified values are indicated in the specific
interface characters of the ATR.

Character waiting time (CWT)

The character waiting time is defined as the maximum interval between the leading edges of
two consecutive characters within a block. The recipient starts a countdown timer on each
leading edge, using the character waiting time as the initial value. If the timer expires and
no leading edge for a new bit has been detected, the recipient assumes that the transmission
block has been received in full. The ‘CWT reception criterion’ can thus be generally used for
end-of-block detection. However, this considerably reduces the data transmission rate, since
the time for each block is increased by the duration of the CWT. It is thus better to detect the
end of the block by counting received bytes.

The CWT is calculated using the data element CWI contained in the ATR, according to the
following formula:

CW T = (2CW I + 11) work etu

The default value for the CWI is 13, which yields the following value for CWT:

CW T = (213 + 11) work etu = 8203 work etu

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 448 of 1123

414 Smart Card Data Transmission

start edge (character n)

terminal

start edge (character n+1)

t < CWT

Figure 6.33 Definition of the character waiting time (CWT)

With a clock frequency of 3.5712 MHz and a divider value of 372, this yields an interval of
0.85 seconds.14

This interval, which is specified in the standard as the default setting, is too long for fast
data communications. In practice, the usual value of CWI is between 3 and 5. This means that
for a normal transmission sequence, in which the characters follow each other without any
time delay, the receiver waits for an interval of one to two bytes before detecting the end of
the block or interruption of communications.

Normally, the reception routine detects the end of a block from the block length information
in the LEN field. However, if the content of this field is erroneous, the character waiting time
can be used as an additional means to terminating reception. This problem only manifests
itself when the length information is too long, since in this case the receiver would wait for
additional characters that never arrive. This would block the transmission protocol, and this
situation could only be cleared by a card reset. The character waiting time mechanism gets
around this problem.

Block waiting time (BWT)

The purpose of the block waiting time is to allow communications to be terminated in a defined
manner if the smart card does not respond. The block waiting time is the maximum allowed
interval between the leading edge of the last byte of a block sent to the card and the leading
edge of the first byte returned by the card.

In terms of a conventional T = 1 block, this is the allowed maximum interval between the
leading edge of the XOR byte in the epilogue field of the command block and the leading
edge of the NAD byte in the response from the card. If this waiting period expires without
a response being received from the card, the terminal may assume that the card is faulty
and initiate an appropriate response. This could for example be a card reset, followed by a
new attempt to establish communication. The BWT is specified in abbreviated form in the
interface characters of the ATR by the BWI parameter. The value of the BWT is given by the
formula

BW T = 2BW I × 960 × 372

f
s + work etu

14 See also Section 16.11.2, ‘ATR data element conversion tables’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 449 of 1123

6.4 Data Transmission Protocols 415

smart card

start edge (command)

start edge (response)

t < BWT

first character of the block (response)last character of the block (command)

terminal

command processing time

Figure 6.34 Definition of the block waiting time (BWT)

If no BWI value is given in the ATR, the default value of 4 is used. With 3.5712 MHz and a
divider value of 372, this gives 1.6 s as the value for the block waiting time:

BW T = 24 × 960 × 372

3,571,200 Hz
s + 11 work etu = 24 × 0.1 s + 11 work etu ≈ 1.6 s

As can be seen, this value is quite generous. In practice, a value of 3 is often used for BWI, which
yields a block waiting time of 0.8 s.15 Typical command processing times in the card are usually
around 0.2 s.16 A BWT of the above duration thus represents a compromise between normal
command processing times and quick detection of a smart card that is no longer responding to
commands.

Block guard time (BGT)

The block guard time is defined as the minimum interval between the leading edge of the final
byte and the leading edge of the first byte in the opposite direction. It is the opposite of the
BWT, which is defined as the maximum time between the two specified leading edges. Another
difference is that the block guard time is obligatory for both parties and must be observed,
while the block waiting time is only significant for the smart card. The purpose of the block
guard time is to provide the sender with a minimum time interval in which to switch over from
transmitting to receiving.

The block guard time has a standard fixed value of 22 etu. In a smart card running at 3.5712
MHz with a divider value of 372, this yields an interval of approximately 2.3 ms.

15 See also Section 16.11.2, ‘ATR data element conversion tables’
16 See also Section 15.2, ‘Formulas for Estimating Processing Times’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 450 of 1123

416 Smart Card Data Transmission

start edge (response)

start edge (command)

command processing time

BGT< t

first character of the block (response)last character of the block (command)

receiver

transmitter

Figure 6.35 Definition of the block guard time (BGT)

6.4.3.4 Transmission protocol mechanisms

Waiting time extension

If the smart card needs more time to generate a response than the maximum time allowed by the
block waiting time (BWT), it can request a waiting time extension from the terminal. It does so
by sending a special S block requesting an extension, and it receives a corresponding S block
from the terminal in acknowledgement. The terminal is not allowed to refuse this request.

A byte in the information field informs the terminal of the length of the extension. This
byte, multiplied by the block waiting time, gives a new block waiting time. This extension is
only valid for the most recently sent I block.

Smart card Terminal

� I block
S block �
(request waiting time extension)

� S block
(acknowledge waiting time extension)

I block �

Figure 6.36 Procedure for extending the waiting time

Block chaining

One of the essential performance features of the T = 1 protocol is the block chaining function.
This allows either party to send data blocks that are larger than the size of its transmit or receive

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 451 of 1123

6.4 Data Transmission Protocols 417

buffer. This is particularly useful in light of the limited memory capacities of smart cards.
Chaining is permitted only for information blocks, since only such blocks can contain large
amounts of data. In the chaining process, the application data are partitioned into individual
blocks that are sent to the recipient one after the other.

The application layer data must be partitioned such that none of the resulting segments is
larger than the maximum block size of the recipient. The first segment is then placed in an
information field in accordance with the T = 1 protocol, supplied with prologue and epilogue
fields and sent to the recipient. The M bit (‘more data’ bit) is set in the block’s PCB field to
indicate to the recipient that the block chaining function is being used and that chained data
are located in the following blocks.

As soon as the recipient has successfully received this information block with the first
segment of the user data, it indicates that it is ready to receive the next chained I block by
returning an R block whose sequence number N(R) is the same as the send sequence count
N(S) of the next I block. The next block is then sent to the recipient.

This reciprocal exchange of I and R blocks continues until the sender issues an I block with
an M bit in the PCB field indicating that it is the last block in the chain (M bit = 0). After this
block has been received, the recipient has all the application layer data and can process the full
data block.

CLA INS P1 P2 Lc D1 D2Dn Dm Dm'

I block 1 I block 2

I blockR block

terminal

smart card

(command part 1)

Step 1 2Step

(command part 2)

Step 3

(response)

Step 4

Figure 6.37 Example of block chaining for transmitting data from the terminal to the smart card

There is a restriction with regard to the block chaining mechanism. Within a single
command–response cycle, chaining may proceed in one direction only. For example, if the
terminal is sending chained blocks, the card may not send chained blocks in response.

There is another restriction that has nothing to do with the mechanism itself, but rather
with the very limited amount of memory in smart cards. Implementing the block chaining
mechanism involves extra overhead, and its usefulness is very limited, since commands and
responses are not especially long and thus do not normally require chaining.

If the card’s receive buffer in RAM is not large enough to store all of the data passed
using block chaining, it must be moved to the EEPROM. This leads to a sharp reduction
in the transmission rate, since the EEPROM (in contrast to the RAM) cannot be written at
the full speed of the processor. Consequently, many T = 1 implementations have no block

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 452 of 1123

418 Smart Card Data Transmission

chaining function, as the cost/benefit ratio often does not justify it. This is a typical example
of the fact that standards are often interpreted very liberally in actual practice. In this case, the
interpretation amounts to considering block chaining to be a supplementary option in T = 1
that is not absolutely necessary. This can lead to significant compatibility problems in practice.

Error handling

The T = 1 protocol has elaborate error detection and handling mechanisms. If an invalid block
is received, the protocol attempts to restore error-free communications by means of precisely
defined procedures.

Seen from the terminal’s perspective, there are three synchronization stages. In the first
stage, the sender of a faulty block receives an R block indicating an EDC/parity bit error or a
general error. The recipient of this R block (the original sender) must then retransmit the last
block that it sent.

If it proves impossible to restore an error-free connection using this mechanism, the next
stage is invoked. This means that the smart card receives a resynchronization request from the
terminal in an S block. The terminal expects a resync response in reply. The terminal and card
then both reset their send and receive counters to zero, which corresponds to the protocol state
immediately following the ATR. Starting from this situation, the terminal attempts to restore
communications.

The first two stages affect only the protocol layer. They have no effect on the actual appli-
cation. However, the third synchronization stage does affect all layers in the smart card. If the
terminal cannot establish an error-free connection using the first two synchronization stages,
it triggers a smart card reset via the reset lead. This unfortunately means that all the data and
states of the current session are lost. Following the reset, communications must be completely
re-established from the bottom up. If even this procedure fails to produce a working connection
after three attempts, the terminal deactivates the card. The user then usually receives an error
message to the effect that the card is defective.

Table 6.39 T = 1 error-handling stages

Synchronization stage Mechanism

Stage 1 Repeat the erroneous block
Stage 2 Resynchronize and then repeat the erroneous block
Stage 3 Reset the smart card and establish the connection anew

6.4.3.5 Example of data transmission with the T = 1 protocol

Figure 6.38 shows an example of a data transmission for a SELECT FILE command using the
T = 1 protocol.

6.4.3.6 Differences between ISO/IEC T = 1 and EMV T = 1

The original definition of the T = 1 protocol according to the ISO/IEC 7816-3 standard has
provisions for many options and mechanisms, some of which are code-intensive and rarely

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 453 of 1123

6.4 Data Transmission Protocols 419

Terminal

SELECT FILE [FID = '3F00']

response to SELECT FILE

Smart Card

NAD PCB LEN EDC

'00' '00' '06í 'A2'' 'A4 00 00 02 3F 00

TPDU

APDU

NAD PCB LEN EDC

'00' '00' '02' 'B2''9 '0 00

TPDU

APDU

SELECT FILE [FID = '3F00']

response to SELECT FILE

NAD PCB LEN EDC

'00' '00' '06' 'A2'' 'A4 00 00 02 3F 00

TPDU

APDU

NAD PCB LEN EDC

'00' '00' '02' 'B2''9 '0 00

TPDU

APDU

SELECT FILE [FID = '3F00']

response to SELECT FILE

NAD PCB LEN EDC

'00' '40' '06' 'E2'' 'A4 00 00 02 3F 00

TPDU

APDU

NAD PCB LEN EDC

'00' '40' '02' 'F2''9 '0 00

TPDU

APDU

Figure 6.38 Successful transmission of a TPDU using the T = 1 transmission protocol. The XOR
option is used for the error detection code (EDC). A SELECT FILE command with a FID of'3F00',
which selects the MF, is transmitted in the APDU. The incrementing of the send sequence count in the
PCB byte for each transaction, and the corresponding changes in the EDC, can be readily seen

used. The elaborate error correction mechanisms are a typical example. Although they may be
theoretically interesting, in many cases they are ineffective in dealing with actual transmission
errors. In practice, it is usually better to simply reinsert the card in the terminal and start a
new session, rather than using innumerable resynchronization requests to attempt to restabilize
communications. Consequently, the EMV specification imposes several restrictions relative to
the original ISO/IEC standard, as summarized in Table 6.40.

6.4.4 The T = 14 transmission protocol (Germany)

The ISO/IEC 7816-3 standard includes a tag in the ATR for designating a national transmis-
sion protocol. Such a transmission protocol is designated T = 14. With the introduction of
the C-Netz for mobile telephony and card phones in Germany, a protocol was needed for
communicating with the smart cards used in these systems. The character-oriented T = 0
protocol was considered undesirable, and at that time there was not yet a standardized block-
oriented protocol. Consequently, in 1987 Telekom decided to use a protocol developed by a
DIN working group. This protocol received the designation T = 14, which simply means that
it is a country-specific implementation. It had no significance outside of Germany, but it had

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 454 of 1123

420 Smart Card Data Transmission

Table 6.40 Summary of the differences in the implementation of the T = 1 transmission protocol
between the ISO/IEC 7816-3 standard and the EMV specification

Mechanism or option ISO/IEC 7816-3 EMV

BWT expired Reset the card (for example) Deactivate the card
Smart card sends a request Allowed A maximum of three

to change the IFS successive requests is allowed
Smart card sends an S block Allowed Deactivate the card

with an abort request
Zero-length I block Allowed Prohibited
Terminal sends three Behavior according to Deactivate the card

successive blocks without specified error handling;
receiving a valid response usually a resync request

enormous influence on the development of the internationally standardized T = 1 protocol,
since the T = 14 protocol formed the principal foundation for this protocol.

The T = 14 protocol was used extremely widely in Germany, since it was employed in the
C-Netz mobile telecommunications network and public card phones. With the closing down of
the C-Netz at the end of 2000 and the change to the T = 1 protocol for public card phones, the
T = 14 protocol is no longer an important protocol in Germany, which is why it is described
here only briefly.

The T = 14 protocol has a block-oriented structure and works asynchronously using the
applied clock signal. The divider (clock rate conversion factor) has a value of 512, which yields
a data transmission rate of 9600 bit/s at a clock frequency of 4.9512 MHz. Data transmission
at layer 2 (the data link layer) always takes place using the direct convention. The size of the
buffers for transmitted and received blocks must be at least 50 bytes, with a maximum value
of 255 bytes. There is no block chaining mechanism.

6.4.5 The USB transmission protocol

A future amendment to the ISO/IEC 7816-3 standard will contain a specification for a new
transmission protocol for smart cards. This is the Universal Serial Bus (USB) protocol, which
has come to prevail over competing protocols, such as Firewire and the like, for use with smart
card applications.

The USB protocol requires a special hardware component in the smart card microcontroller,
but this component is already present in many chips, at least as an option. The major advantage
of USB with respect to currently used transmission protocols is that it is an established industrial
standard coming from the PC world. USB also offers a higher transmission rate than T = 0 or
T = 1.

It presently appears that Version 1.1 of the USB specification will be used for smart cards,
with both the low-speed option (1.5 Mbit/s) and the full-speed option (12 Mbit/s) being sup-
ported, depending on the type of microcontroller. It should be noted that the effective trans-
mission rate is significantly lower than the stated values once the required protocol data have
been subtracted. USB Version 2.0, which has a data transmission rate of up to 480 Mbit/s (in
the high-speed mode), will not be used in the foreseeable future.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 455 of 1123

6.5 Message Structure: APDUs 421

Contacts C4 (AUX1) and C8 (AUX2), which up to now have been specified but not used,
will be used to implement the USB interface in smart cards. Further details will be specified
in the above-mentioned standard, but it can be expected that it will take several years until all
of the related standardization work is completed.

6.4.6 Comparison of asynchronous transmission protocols

With regard to comparing the various transmission protocols, a brief remark with regard to
achievable data transmission rates is in order. Attempts are often made to compare the T = 0 and
T = 1 protocols based on calculated effective transmission rates. However, such calculations
are only valid for specific commands in specific contexts. If they are generalized, they become
meaningless and invalid.

Both protocols have their strengths and weaknesses with regard to achievable transmission
rates. These are strongly dependent on very many individual factors, such as the transmission
error rate, the size of the I/O buffer in the card and the specific implementation of the protocol. In
short, it can be assumed that on average and with most applications, the effective transmission
rates of both protocols are nearly the same. If you want to increase the transmission rate,
changing the protocol will have little effect. It is more effective to reduce the divider value,
since this yields significantly better results.

Two international transmission protocols have been described in the previous sections. In
order to provide an overview, Table 6.41 summarizes the essential features of these protocols,
as well as their advantages and disadvantages.

Table 6.41 Comparison of internationally standardized asynchronous data transmission protocols

Criterion T = 0 T = 1 T = 2 (proposed)

Data transmission asynchronous, asynchronous, asynchronous,
half-duplex, half-duplex, full-duplex,
byte-oriented block-oriented block-oriented

Standard ISO/IEC 7816-3, ISO/IEC 7816-3, ISO/IEC 10536-4
GSM 11.11, EMV EMV

Divider freely definable, freely definable, freely definable,
usually 372 usually 372 usually 372

Block chaining not possible possible possible
Error detection parity bits parity bits, parity bits,

EDC at end of block EDC at end of block

Memory required ≈300 bytes ≈1100 bytes ≈1600 bytes
for implementation

6.5 MESSAGE STRUCTURE: APDUs

Applications protocol data units (APDUs) are used to exchange all data that passes between
the smart card and the terminal. The APDU is an internationally standardized data unit for the
application layer, which is layer 7 in the OSI model. In smart cards, this layer is located directly

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 456 of 1123

422 Smart Card Data Transmission

above the transmission protocol layer. The protocol-dependent data units of the transmission
protocol layer are called ‘transmission protocol data units’ (TPDUs).

A distinction is made between command APDUs (C-APDUs), which represent commands
to the card, and response APDUs (R-APDUs), which represent replies to these commands from
the card. In simple terms, an APDU is a sort of container that holds a complete command to
the card or a complete response from the card. APDUs are passed by the transmission protocol
transparently, which means without modification or interpretation.

APDUs that comply with the ISO/IEC 7816-4 standard are intended to be independent of
the transmission protocol. Consequently, the content and format of an APDU must not change
when a different transmission protocol is used. This applies above all to the two standard
protocols, T = 0 and T = 1. This demand for protocol independence affects the structure of the
APDUs, since it must be possible to transmit them transparently using both the byte-oriented
T = 0 protocol and the block-oriented T = 1 protocol.

6.5.1 Structure of the command APDU

A command APDU is composed of a header and a body. The body may have a variable length,
or it may be entirely absent if the associated data field is empty.

CLA INS P1 P2 Lc field Le fielddata field

header body

Figure 6.39 Structure of a command APDU

The header consists of four elements, which are the class byte (CLA), the instruction byte
(INS) and two parameter bytes (P1 and P2). The class byte is also used to identify applications
and their specific command sets. For instance, the class byte'A0' is used for GSM, while the
code'8X' is most commonly used for company-specific (private-use) commands. ISO-based
commands are coded by class byte '0X'. The standard additionally specifies the class bytes
to be used to indicate the use of secure messaging and logical channels. All of this is still
compatible with using the class byte as an application identifier.

The next byte in the command APDU is the instruction byte, which encodes the actual
command. Almost the entire address space of this byte can be exploited, with the sole restriction
that only even codes can be used. This is because the T = 0 protocol allows the programming
voltage to be activated by returning the instruction byte incremented by one in the procedure
byte. The instruction byte thus always has had an even value.17

The two parameter bytes are primarily used to provide more information about the command
selected by the instruction byte. They thus serve mainly as switches that select various command
options. For example, they are used to choose various options for SELECT FILE or specify
the offset for READ BINARY.

17 See also Section 16.11.5, ‘The most important smart card commands’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 457 of 1123

6.5 Message Structure: APDUs 423

Table 6.42 The most important class byte (CLA) codes according to ISO/IEC 7816-4

b8–b5 b4 b3 b2 b1 Meaning

. X X Logical channel number

. . . 0 0 Secure messaging not used

. . . 0 1 Non-ISO secure messaging using a private method

. . . 1 0 ISO secure messaging, header not authentic

. . . 1 1 ISO secure messaging, header authentic

'0' Structure and coding compliant with ISO/IEC 7816-4/7/8
'8','9' Structure compliant with ISO/IEC 7816-4,

user-specific coding and meaning of commands
and responses (private use)

'A' Structure and codes compliant with ISO/IEC 7816-4,
specified in supplementary documents (e.g. GSM 11.11)

'F' 1 1 1 1 Reserved for PPS

Table 6.43 Summary of the assignment of class bytes to applications

Class Application

'0X' Standard commands compliant with ISO/IEC 7816-4/7/8
'80' Electronic purses compliant with EN 1546-3
'8X' Application-specific and company-specific commands (private use)
'8X' Credit cards with chips, compliant with EMV
'A0' GSM mobile telecommunication systems compliant with GSM 11.11

The section following the header is the body, which can be omitted except for a length
specification. The body serves a dual function. First, it specifies the length of the data section
sent to the card (in the Lc field)18 and the length of the data section to be sent back from the card
(in the Le field).19 Second, it contains the data for the commands that are sent to the card. If the
value of the Le field is'00', the terminal expects the card to return the maximum amount of data
available for the command. This is the only exception to the numerical description of the length.

The Le and Lc fields are usually one byte long, but they can be converted into fields that are
each three bytes long. Such fields can be used to represent lengths up to 65,536, since the first
byte contains the escape sequence'00'. The standard defines this three-byte length specification
for future applications. Due to the limitations of currently available memory sizes, it has not
yet been implemented.

The previously described parts of the command APDU can be combined to produce the
four general cases illustrated in Figure 6.41.

18 ‘Lc’ stands for ‘length command’
19 ‘Le’ stands for ‘length expected’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 458 of 1123

424 Smart Card Data Transmission

'00'

byte 1 byte 2 byte 3

Le/Lc (MSB) Le/Lc (LSB)

Figure 6.40 Structure of an extended Lc or Le field

header

header

header

header

case 1

case 2

case 3

case 4

Le field

Lc field

Lc field Le field

data field

data field

Figure 6.41 The four possible command APDU cases

6.5.2 Structure of the response APDU

The response APDU, which is sent by the card in reply to a command APDU, consists of an
optional body and a mandatory trailer, as shown in Figure 6.42. The body consists of the data
field, whose length is specified by the Le byte of the preceding command APDU. Regardless
of the value specified in the Le byte, the length of the data field can be zero if the smart card
terminates command processing due to an error or incorrect parameters. This is indicated in
the two single-byte status words SW1 and SW2 in the trailer.

SW1 SW2data field

trailerbody

Figure 6.42 Structure of the response APDU

type 1 SW1 SW2

type 2 SW1 SW2data field

Figure 6.43 The two types of response APDUs

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 459 of 1123

6.6 Securing Data Transmissions 425

The card must always send a trailer in response to a command. The two bytes SW1 and SW2,
which are also called the ‘return code’, encode the response to the command. For example, the
return code'9000'means that the command was executed completely and successfully. There
are more than 50 different codes. Their basic classification scheme is shown in Figure 6.44.20

return code
(SW1 || SW2)

process completed process aborted

warning processing execution error checking errornormal processing

'61XX'
'9000'

'62XX' '63XX' '64XX' '65XX' '67XX' to
6FXX''

Figure 6.44 Return code classification scheme as defined by the ISO/IEC 7816-4 standard. The return
codes'63XX'and'65XX'indicate that data in non-volatile memory (EEPROM) have been altered, while
the remaining'6X'codes indicate that this has not occurred

If a '63XX' or '65XX' return code is received after a command has been executed, this
means that the card’s non-volatile memory (usually the EEPROM) has been modified. If
another code starting with'6X' is returned, command execution was terminated prematurely
without modifying the non-volatile memory.

It should be noted that although there is a standard for return codes, many applications use
non-standard codes. The only exception is the code'9000', which almost universally indicates
successful processing. With all other codes, it is always necessary to consult the relevant
specification in order to be sure of their meanings.

6.6 SECURING DATA TRANSMISSIONS

The entire data exchange between a terminal and a smart card uses digital electrical pulses on
the I/O line of the smart card. It is conceivable and not technically difficult to solder a wire
to the I/O contact, record all the communications for a session and later analyze them. In this
way, it is possible to gain knowledge of all the data transmitted in both directions.

A somewhat more difficult task is to electrically isolate the I/O contact, mount a dummy
contact on top of it, and then use thin wires to connect both of these contacts to a computer.
With this arrangement, it is easy to allow only certain commands to reach the card or insert
‘foreign’ commands into the communications sequence.

Both of these typical types of attack can succeed only if secret data passes unprotected over
the I/O line. Data transmission should thus basically be designed such that even if an attacker

20 See also Section 16.10.8, ‘Smart card return codes’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 460 of 1123

426 Smart Card Data Transmission

is able to eavesdrop on data transmissions and insert his own message blocks, he will not be
able to gain any advantage from doing so.

There are various mechanisms and methods that can be used to protect against these attacks
and against even more sophisticated types of attack. They are collectively referred to as ‘secure
messaging’. These mechanisms are not specific to smart cards, and they have been used for
a long time in data communications systems. What is special in the smart card domain is
that neither the processing capacity of the communicating parties nor the transmission rate is
particularly great. Consequently, commonly used standard methods have been scaled down
to match the capabilities of smart cards, without in any way reducing the security of these
methods.

The objective of secure messaging is to ensure the authenticity, and if necessary the con-
fidentiality, of part or all of the transmitted data. A variety of security mechanisms are used
to meet this objective. A security mechanism is defined as a function requiring the following
items: a cryptographic algorithm, a key, an argument and initial data as necessary. A general
condition must also be satisfied, which is that all security mechanisms must behave completely
transparently with regard to existing protocol layers, in order to ensure that existing, standard-
ized procedures are not adversely affected by secure messaging. This applies particularly to
the two transmission protocols T = 0 and T = 1, as well as to commonly used standard smart
card commands.

Before using a secure messaging method, both parties must agree on the cryptographic
algorithm to be used and a common secret key. According to Kerckhoff’s principle, the security
of the method relies entirely on this key. If it is revealed, secure messaging is reduced to a
generally known additional checksum that decreases the effective data transmission rate and
at best can be used to correct transmission errors.

Several different types of secure messaging methods have been known for many years. They
are all relatively rigid and tailored to specific applications. Most of them cannot be faulted as
far as security is concerned. However, none of them has become internationally predominant
or has proved to be sufficiently flexible to be included in current standards.

Security mechanism

key

cryptographic algorithm

initial data (optional)

argument

Figure 6.45 The data and functions required for a security mechanism

The requirements of transparency with respect to existing commands, use with two fun-
damentally different transmission protocols and maximum adaptability have led to the stan-
dardization of a very flexible (and correspondingly complex and elaborate) secure messaging
method in the ISO/IEC 7816-4 standard, with additional related functions defined in ISO/IEC

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 461 of 1123

6.6 Securing Data Transmissions 427

7816–8.21 This method is based on embedding all user data in TLV-coded data objects. Three
different types of data objects are defined:

� data objects for plaintext: contains data in plaintext
(e.g., the data section of an APDU)

� data objects for security mechanisms: contains the results of a security mechanism
(e.g., a MAC)

� data objects for auxiliary functions: contains control data for secure messaging
(e.g., the padding method used)

The class byte indicates whether secure messaging is used for the command. The two
available bytes can encode whether the method specified in ISO/IEC 7816-4 is used and
whether the header is also included in the cryptographic checksum (CCS).22 If the header is
included in the computation, it is authentic, as it cannot be changed during the transmission
without this being evident.

Data objects for plaintext

According to the standard, all data that are not BER-TLV coded must be encapsulated, which
means they must be embedded in data objects. Several different tags are used, as shown in
Table 6.44. Bit 1 of each tag indicates whether the data object is included in the computation
of the cryptographic checksum. If this bit is not set (e.g.,'B0'), the data object is not included
in the computation, while if it is set (e.g.,'B1'), the data object is included.

Table 6.44 Tags for plaintext data objects

Tag Meaning

'B0','B1' BER-TLV coded; contains data objects related to secure messaging
'B2','B3' BER-TLV coded; contains data objects not related to secure messaging
'80','81' No BER-TLV coded data
'99' State information for secure messaging

Data objects for security mechanisms

The data objects used for security mechanisms are divided into those used for authentication
and those used for confidentiality. The tags defined for this purpose are listed in Tables 6.45
and 6.46.

Here ‘authenticity’ refers to all data objects related to cryptographic checksums and digital
signatures. Data encryption, and marking such data as encrypted in the context of secure

21 Secure messaging is usually abbreviated to ‘SM’, which many programmers interpret as ‘sado-masochism’ on
account of the many degrees of freedom and room for interpretation provided by these two standards

22 For the coding of the class byte, see Section 6.5.1, ‘Structure of the Command APDU’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 462 of 1123

428 Smart Card Data Transmission

Table 6.45 Tags for authentication data objects

Tag Meaning

'8E' Cryptographic checksum
'9A','BA' Initial value for a digital signature
'9E' Digital signature

Table 6.46 Tags for confidential data objects

Tag Meaning

'82','83' Cryptogram; the plaintext is BER-TLV coded and includes data objects for secure
messaging

'84','85' Cryptogram; the plaintext is BER-TLV coded and does not include data objects
for secure messaging

'86','87' Indicates the padding method used:
'01'– padding with'80 00 . . .'
'02'– no padding

messaging, fall under the heading of ‘confidentiality’. The tags listed shown in the above
tables must be used for secure messaging according to the type of method used.

Data objects for auxiliary functions

The data objects for auxiliary functions are used in secure messaging to coordinate the general
constraints. The two parties use these data objects to exchange information about the cryp-
tographic algorithms and keys used, initial data and similar basic information. In principle,
these items can be different for each transmitted APDU, or even between a command and
its response. In practice, though, auxiliary function data objects are rarely used, since all of
the general constraints for secure messaging are defined implicitly, so they do not have to be
specifically defined during communications.

Based on the options for secure messaging specified in ISO/IEC 7816-4, which have been
only briefly outlined above, we can describe two fundamental procedures. We have kept these
descriptions as simple as possible in order to make it easier to understand the complex mecha-
nisms involved. Due to the high degree of flexibility provided by the standard, there are many
other possible combinations of security mechanisms, some of which are even more complex.
The two procedures described here represent a compromise between simplicity and security.

The ‘authentic mode’ procedure uses a cryptographic checksum (CCS or MAC) to protect
the application data (APDU) against manipulation during transmission. The ‘combined mode’
procedure, by contrast, is used to completely encrypt the application data, so that an attacker
cannot draw any conclusions about the data content of the commands and responses that are
exchanged. A send sequence counter is only used with one of these two procedures. This
counter, whose initial value is a random number, is incremented for each command and each

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 463 of 1123

6.6 Securing Data Transmissions 429

response. This allows both parties to determine whether a command or response has been
omitted or inserted. When a send sequence counter is used in combination with the ‘combined
mode’ procedure, identical APDUs appear to be different. This is called ‘diversity’.

6.6.1 The authentic mode procedure

The authentic mode procedure guarantees authentic transmission of APDUs, which means
that the APDUs are protected against manipulation during transmission. The recipient of an
APDU, which means a command or a response, can determine whether it has been altered
during transmission. This makes it impossible for an attacker to modify data within an APDU
without this being noticed by the recipient.

The fact that this procedure is being used is indicated by a bit in the class byte, so that the
recipient can act accordingly and check the received APDU for authenticity. The actual APDUs
are sent in plaintext and are not encrypted. The transmitted data are thus still public, and with
suitable manipulation of the transmission channel they could be intercepted and evaluated by
an attacker. This is not necessarily a disadvantage, since with respect to privacy legislation
it is better not to send confidential data via a public channel. In addition, the card user is at
least theoretically allowed the possibility of seeing what data are exchanged between his or
her smart card and the terminal.

In principle, any block encryption algorithm can be used to compute the cryptographic
checksum. For practical reasons, we assume that DES is used with a fixed 8-byte block length.
The individual data objects must therefore be ‘filled out’ to an integer multiple of eight bytes,
which is known as padding. In this process, data objects that are already an integer multiple of
eight bytes are nevertheless extended by one block. After padding, the cryptographic checksum
(CCS) of the entire APDU is computed using the DES algorithm in CBC mode. This 8-byte
checksum is appended directly to the APDU as a TLV-coded data object, with the four least
significant bytes omitted. All padding bytes are deleted after the checksum has been computed.
The modified APDU is then sent via the interface. This procedure extends the length of
the APDU by eight bytes, which only marginally reduces the transmission rate if normal
transmission block sizes are used.

The data objects for the control structures can also explicitly identify the algorithm and
padding method that are used. Here again we assume for the sake of simplicity that the smart
card and the terminal implicitly know all the parameters of the secure messaging system being
used.

When the protected APDU arrives at the recipient, the latter again pads it to an integer
multiple of eight bytes and then computes its own MAC for the APDU. By comparing the
MAC it has generated with the MAC generated by the sender, the recipient can determine
whether the APDU has been altered during the transmission.

A prerequisite for computing a cryptographic checksum is a secret DES key that is known to
both parties. If this key were not secret, an attacker would be able to break the authentic mode
communication procedure by intercepting an APDU, modifying it as desired and computing a
new ‘correct’ MAC. After this, he would only have to replace the original MAC with the new
one and send the newly created APDU on its way.

In order to better protect the keys used to generate the MAC against attacks based on known
plaintext–ciphertext pairs, dynamic keys are normally used. These are generated by encrypting

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 464 of 1123

430 Smart Card Data Transmission

CLA'

CLA'

CLA

CLA' INS

INS

INS

INS

P1

P1

P1

P2

P2

P2

Lc

P1 P2 Lc

Lc'

Lc data

data

data

data

CCS

CCS

PB PB

PBPB

TDATA

TDATA

TDATA TCCS

LDATA

LDATA

LDATA LCCS

key
(secret)

Step 1

Step 2

Step 3

Step 4

Figure 6.46 Generating a command APDU using the authentic mode procedure. This example uses
a case-3 command (e.g. UPDATE BINARY), with its header included in the cryptographic checksum
(CCS). A response APDU can be generated in a similar manner. ‘PB’ indicates the padding bytes

Step 1: The initial format of the APDU.
Step 2: The data section is converted into TLV-coded data, and the data

objects are padded to an integer multiple of eight bytes.
Step 3: The CCS is computed.
Step 4: A TLV-coded data object containing the CCS is added to the APDU.

a random number that has been previously exchanged between the terminal and the card. A
secret key known to both parties is used for this encryption.

The additional steps that are needed for the transmission and reception of an APDU that is
protected by the authentic mode procedure naturally reduce the effective data transmission rate.
On average, a good approximation is to assume that the rate will be half of that for unprotected
plaintext.

6.6.2 The combined mode procedure

Compared with the authentic mode procedure, the combined mode procedure represents the
next higher level of security. The data section of the APDU is no longer transmitted as plain-
text, but instead in an encrypted form. The procedure is an extension of the authentic mode
procedure.

In the combined mode procedure, as in the authentic mode procedure, the data objects to be
protected with a cryptographic checksum are first padded to an integer multiple of eight bytes
and then encrypted using the DES in CBC mode. The header is excluded from this process,
as required for compatibility with the T = 0 protocol. (If it is desired to encrypt the header

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 465 of 1123

6.6 Securing Data Transmissions 431

as well, so that the command being sent the card is unrecognizable, the T = 0 ENVELOPE
command must be used.) One bit in the class byte indicates the use of secure messaging. The
data are transmitted across the interface after they have been encrypted. Since the recipient
knows the secret key that was used for encryption, it can decrypt the APDU. The recipient then
checks the correctness of decryption by recomputing the appended cryptographic checksum
in the same level of the transmission layer.

When this procedure is used, an attacker eavesdropping on the I/O line cannot discover
which data are exchanged between the card and the terminal in the command and response.
It is also not possible to replace one of the encrypted blocks within the APDU, since the

CLA'

CLA'

CLA'

CLA

CLA' INS

INS

INS

INS

INS

P1

P1

P1

P1

P2

P2

P2

P2

Lc

P1 P2 Lc

Lc

Lc'

Lc DATA

DATA

DATA

DATA

DATA'

CCS

CCS

PB PB

PB

PBPB

PB

TDATA

TDATA

TCCSTDATA

T'DATA

LDATA

LDATA

LCCSLDATA

L'DATA

key
(secret)

key
(secret)

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 6.47 Generating a command APDU using the combined mode procedure. This example uses
a Case 3 command (e.g. UPDATE BINARY), with its header included in the cryptographic checksum
(CCS). A response APDU is created in a similar manner. The padding bytes are indicated as ‘PB’.

Step 1: The initial format of the APDU.
Step 2: The data section is converted into TLV-coded data, and the data

objects are padded to an integer multiple of eight bytes.
Step 3: The CCS is computed.
Step 4: A TLV-coded data object containing the CCS is added to the APDU.
Step 5: The APDU data section is encrypted.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 466 of 1123

432 Smart Card Data Transmission

blocks are linked to each other by using the DES in CBC mode. Any replacement would be
immediately noticed by the recipient.

With regard to the cryptographic algorithm, the comments made in the description of the
authentic mode procedure apply here as well. In principle, any block encryption algorithm can
be used. The keys should be dynamic, as with the authentic mode procedure, which means that
session-specific derived key should be used for every session.

With regard to the security benefits, general usage of the combined mode procedure for all
APDUs can be recommended. However, increased security is accompanied by a considerable
reduction of the effective transmission rate. A good approximation for the difference in the
transmission rates for unprotected APDUs and those protected using the combined mode
procedure is a factor of four. The speed difference between the authentic mode and combined
mode procedures thus amounts to a factor of two. It is therefore necessary to carefully examine
each case, in order to determine which data should be transmitted in such a secure but time-
consuming fashion.

6.6.3 Send sequence counter

Using a send sequence counter mechanism for secure messaging does not by itself constitute
a security mechanism. It only makes sense to use a send sequence counter in combination
with the authentic mode or combined mode procedure, since otherwise any modification of
the count by an attacker would remain undetected.

The working principle of a send sequence counter is that each APDU contains a sequence
number that depends on when it is sent. This allows the deletion or insertion of an APDU in the
course of the procedure to be immediately noticed, so that appropriate measures (terminating
the communications) can be taken by the recipient.

This function is based on a counter that is initialized with a random number. This number
is sent to the terminal by the card at the start of the communications process, in response to a
request from the terminal. The counter is incremented each time an APDU is sent. The counter
should not be too short, but it should also not be too long, in order to avoid generating excessive
transmission overhead. The following description assumes the commonly used value of two
bytes, but longer counters may be used in practice.

There are two basic ways to incorporate a sequence count into command and response
APDUs. The counter value can be placed directly in the APDU as a numerical value in a data
object, or the counter value may be XOR-ed with a matching amount of data in the APDU,
following which a cryptographic checksum is computed and the modified data are restored
to the APDU. The recipient of this APDU knows the expected counter value, and can use
this value to modify the APDU in the same way as the sender. After this it can compute the
cryptographic checksum and check the correctness of the received APDU.

The following process takes place during communications. The terminal first requests an
initial counter value from the smart card. The smart card returns a two-byte random number to
the terminal. The terminal then sends the first secured command to the card, accompanied by
a send sequence count. Either the authentic mode or combined mode procedure can be used
to protect the counter and the body. The card receives the protected APDU and first checks
whether there is any sign of manipulation, based on the authentic mode or combined mode

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 467 of 1123

6.6 Securing Data Transmissions 433

CLA

CLA

option 1

option 2

INS

INS

P1

P1

P2

P2

P3

P3

data

data

SSC

SSC

XOR

Figure 6.48 Two options for a send sequence count in a command APDU. In the first option, the send
sequence counter is a TLV-coded data object in the data section. In the second option, the send sequence
count is only coupled to the APDU data by an XOR operation used to compute the CCS

procedure. It then compares the counter value to the expected value. If these values match, no
APDU has been inserted or deleted during the transmission.

generate an
initial value x
for the SSC

communications
process using
the SSC

ASK RANDOM

APDU with SSC = x+4

random number as
initial value for the SSC

Smart Card Terminal

APDU with SSC = x+3

APDU with SSC = x+2

APDU with SSC = x+1

Figure 6.49 Transmitting APDUs using a send sequence counter (SSC)

It is apparent that using a send sequence counter is attractive not only when several com-
mands have to be executed in a particular order, but also for individual commands, since each
session is made unique if a counter is used. Using a counter primarily provides protection
against ‘replaying’ previously sent APDUs and deleting APDUs.

If a send sequence counter is used together with the combined mode procedure, each
encrypted block is different, which creates a condition known as diversity. This is the result of

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 468 of 1123

434 Smart Card Data Transmission

incrementing the counter for each APDU and the fact that with a good encryption algorithm,
changing a single bit in the plaintext affects the appearance of the entire ciphertext block.

6.7 LOGICAL CHANNELS

In smart cards containing several independent applications, it is optionally possible to address
these applications via logical channels. If logical channels are used, up to four applications
in a single card can concurrently exchange data with the terminal. The existing single serial
interface is still used, but the applications can be addressed individually at the logical level.

Two bits in the class byte (bit 1 and bit 2) are used to determine which command belongs
to which application.23 This permits up to four logical channels,24 so up to four sessions
with applications in the card can run in parallel. However, there is a limitation with regard
to communicating with the various applications in the smart card, which is that the external
processes that access the card must be mutually synchronized and are not allowed to interleave
their commands, since the response APDU from the card does not contain any information
about the logical channel of the originating command. This means that it is impossible to
externally determine which return code has been sent back in response to which command.
Due to the absence of channel identification, no new command can be sent until the response
to the previous command has been received.

The primary application for this very powerful mechanism is using several applications in
parallel. For example, suppose a cardholder is conducting a telephone conversation using the
GSM application in a multiapplication smart card. In order to confirm an appointment with the
other party, she needs to briefly consult her personal organizer, which is located in the same
card. Using a second logical channel, the terminal searches for a file in the personal organizer
application, in parallel with the GSM application, and then tells our highly stressed manager
whether she can agree to the proposed date. This is a typical use of logical channels. Another
conceivable example is securely transferring electronic funds between two electronic purses
in the same card.

The potential utility of logical channels for applications is matched by the difficulties that
their management entails for the smart card operating system. In principle, each logical channel
represents nothing less than a separate smart card, with all of its states and conditions. This
effectively means that the operating system must concurrently manage all the data for several
parallel sessions within its memory. The associated costs should not be underestimated, and in
particular this requires microcontrollers with large amounts of RAM. If secure messaging and
all possible types of authentication are also required for each logical channel, the amount of
memory needed very quickly rises to a level that can only be met by the highest-performance
types of currently available smart card microcontrollers.

23 See also Section 6.5.1, ‘Structure of the command APDU’
24 There is a proposal to revise and upgrade the ISO/IEC 7816-3 standard to increase the number of possible logical

channels to eight by using an additional RFU bit

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 469 of 1123

7
Smart Card Commands

Communications procedures between a terminal and a smart card are always based on the
master–slave principle. This means that the terminal, acting as the master, sends a command
to the card, which as the slave immediately processes the command, generates a response and
returns its response to the terminal. The card thus never sends data without first having received
a corresponding command from the terminal. Even the ATR is no exception to this rule, since
it is a response to the reset signal, which is also a type of command to the card.

Actual communications always employ a transmission protocol, such as T = 0 or T = 1.
These relatively uncomplicated protocols meet the special requirements of smart card applica-
tions and are optimized for this purpose. Deviations from these precisely specified protocols
within application procedures are not permitted. The transmission protocols allow data to be
sent to the card and received from the card in a manner that is completely transparent to the trans-
port layer. The data are embedded in a sort of container called an application protocol data unit
(APDU). APDUs sent by the terminal to the card are the commands to the card. The terminal
also receives the responses to its commands in APDUs embedded in the transmission protocol.
There are a large number of commands based on this mechanism, and they initiate specific ac-
tivities within the card. The simplest examples are read and write commands for smart card files.

In smart card applications, the card is used as a data storage medium, an authorization
medium or both at the same time. This has led to the generation of command sets that are
optimized for these applications and transmission protocols and that are used only in the smart
card realm. Due to the severely limited memory capacity of smart cards, combined with market
pressure to allow only moderate increases in this capacity for cost reasons, command sets are
usually tailored to specific applications. All commands that are not needed in a given application
are relentlessly removed during program optimization. Only a few operating systems exhibit
extensive command sets that have not been reduced to those needed for a particular application.

A diversification effect is also seen with smart card command sets, as is typical with new
technologies. Each company active in this area attempts to create its own commands that are
tailored to the needs of its operating system or anticipated application. This often arises from
necessity, since functionally equivalent commands may not exist in the standards. Companies
may also deliberately attempt to improve their positions relative to the competition, or to
deny their competitors access to a particular application area, by using commands that are

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 470 of 1123

436 Smart Card Commands

highly optimized with regard to card functions and memory usage. In any case, a decision
to use commands based on available standards always means choosing an open, more easily
expandable and proven system, which may later allow additional functions to be incorporated
into a single card. On the other hand, there are many examples of systems in which the use of
smart cards was only made possible by using highly optimized special commands.

There are currently 13 international standards and more or less stable draft versions of
standards that define typical smart card commands. They define considerably more than 100
commands, along with their associated procedures. To a large extent, the defined commands
are mutually compatible in terms of coding and functionality.

The majority of the commands currently used with smart cards are defined in the ISO/IEC
7816-4 standard, which is a general international standard. It is not dedicated to any particular
area, such as telecommunications or financial transactions, but instead attempts to address all
smart card applications. The commands in ISO/IEC 7816-4 are complemented by three sup-
plementary, specialized sections of this family of standards. ISO 7816-7 defines commands
for querying and managing smart card databases with structures based on structured query
language (SQL). ISO/IEC 7816-8 contains commands for executing and parameterizing cryp-
tographic functions, and Part 9 of the ISO/IEC 7816 family adds file management commands
to the basic command set.

There is no significant international standard in the area of financial transactions, but there
is an industry standard. This is the EMV specification, whose name comes from the initial
letters of Europay, MasterCard and Visa, the three initiators of this specification. Due to the
strong market position of the companies behind it, this specification has achieved the status of
a reference for all smart card operating systems, and it has the same degree of significance as
the ISO/IEC 7816 family of standards.

The GSM 11.11 specification, which was developed for use in the telecommunications
area, forms the normative basis for the SIM, while the TS 13.101, TS 31.111 and TS 102.222
standards specify the basic commands for the USIM. Due to the simple fact that a tremendous
number of smart cards are used in telecommunications applications, these standards represent
a de facto standard for commands for smart card operating systems.

In principle, special commands used only in a restricted area are not covered by these
standards and must therefore be specified individually. One example is the command set
specified for multisector electronic purse systems, which is defined in the CEN EN 1546
standard. This European standard defines all commands necessary for an electronic purse, along
with the associated procedures. A standard such as this, which is limited to a single application,
arises only in areas of particular interest to government agencies or specific branches of industry,
due to the very high cost of generating such standards.

The commands in the standards and specifications described above can be classified ac-
cording to their functionalities. However, it must be remembered that only subsets of all these
commands are implemented in real-life smart card operating systems. Depending on the pro-
ducer of the operating system, more or less significant deviations from the functionality and
coding described in this chapter may be encountered. However, the basic functions described
here are in principle present in all operating systems. Of course, the functionality may be
severely restricted due to considerations of memory capacity or cost. Whenever a new applica-
tion is being planned, exact specifications of the coding and functions of all of the commands
must be requested from the producer(s) of the operating system(s) under consideration.

The following sections describe the most important and most widely used smart card com-
mands. The basis for this selection is formed by the following standards and specifications:

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 471 of 1123

Smart Card Commands 437

Standards and specifications for smart card commands

general telecommunications

GSM 11.11
GSM 11.14
(SIM)

TS 31.102
TS 31.111
TS 102.222
(UICC, USIM)

ISO/IEC 7816-4

payment systems

EMV 2000
(credit & debit cards)

EN 1546
(electronic purses)

ISO/IEC 7816-7
(SCQL)

ISO/IEC 7816-8
(cryptographic functions)

ISO/IEC 7816-9
(file management)

CEPS
(electronic purses)

Open Platform
(application management)

Figure 7.1 The most important standards and specifications for smart card commands

ISO/IEC 7816-4/7/8/9, EMV 2000, GSM 11.11, TS 311.111, EN 726–3 and EN 1546–3. Ex-
tensive tables listing the coding of the most important smart card commands can be found in
Section 16.10.7, ‘Smart card command encoding’.

Naturally, it is impossible to buy a single smart card anywhere in the world that contains all
the commands described here. As a conservative estimate, the memory required for their full
implementation would be five to 10 times as large as the total amount of memory in the largest
currently available smart card microcontrollers. However, it is not at all necessary for a smart
card to be able to execute all of these commands. Depending on the intended application area
and operating system, certain classes of commands may be supported more comprehensively
than others.

For example, with a multiapplication card you would certainly want to make sure that
additional applications can be installed in the card after it has been personalized. A card for
cryptographic applications, assuming it has adequate memory capacity, will contain the full
spectrum of cryptographic commands, along with the various algorithms. Each application
area requires a different selection of commands from the various classes.

In each of the following descriptions, the standard or specification in which the command
is defined is identified in order to maintain an overview. If no source is given, the command
in question is used internally by smart card manufacturers and cannot be assigned to any of
the above-mentioned standards. Some of these commands are nonetheless very useful and will
probably be incorporated into a standard in the future. They thus are listed here with descriptions
of their basic functionality. In the interest of readability, we have omitted descriptions of the
coding of typical smart card commands in this chapter. This information can be found in
Section 16.10.7, ‘Smart card command encoding’.

Some commands are supported by nearly all smart card operating systems and have only a
limited number of options. For such commands, the command and response APDUs are fully
decoded in their descriptions. The internal processing sequences of seven typical commands
are also shown in psuedocode in Chapter 5 in the description of the ‘Small OS’ operating
system.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 472 of 1123

438 Smart Card Commands

For a given application, smart card commands can be classified into operational com-
mands, which are commands needed for normal use, and administrative commands, which are
commands needed for managing the smart cards and the application. For reasons related to
interoperability, operational commands are generally specified in complete detail in the stan-
dards. Administrative commands are often specific to particular operating systems and are not
necessarily specified by standards.

Command classes (part 1: card usage)

security

file operations

read

write

select

search

identification

authentication

cryptographic algorithms

numeric operations

database

application-specific financial transactions

telecommunications

user management

database management

database query

health care

local public transport

Figure 7.2 Classification of smart card commands that are primarily used for operational functions
(while the card is in actual use)

For each command, the response shown in its description is the one received by the terminal
in the event of successful execution. Otherwise, if an operation is forbidden or an error occurs
in the card, the terminal receives only a 2-byte return code. Some of the described commands
also have parameters for selecting additional functions. These options often exist only in the
standard, rather than in actual operating systems, since they may be too complicated or have no
practical significance. Therefore, this chapter does not list or explain every option defined in the
standards, since our aim is to concentrate on practical functions. In describing the commands,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 473 of 1123

7.1 File Selection Commands 439

Command classes (part 2: others)

data transmission

production

operating system and
hardware tests

file management

unblock

block

create

delete

write data

completion

modify access conditions

test error-detection codes

write data patterns

test data patterns

Figure 7.3 Classification of smart card commands that are primarily used for administrative functions
(before and after the smart card is in actual use)

we have generally used the standard that has the largest number of functional options for the
command in question.

7.1 FILE SELECTION COMMANDS

Without exception, file management in all modern smart card operating systems is object-
oriented. Among other things, this means that before any action can be performed on an object
(which corresponds to a file), it must first be selected. Only then does the system know which
file is meant, and all subsequent file-specific commands apply to this file alone. Of course, the
access conditions for the file still must be checked within the operating system, in order to
determine whether the command in question is allowed or even possible.

The master file (MF) is always implicitly selected after the card has been reset, so it does not
have to be specifically selected. Other files are subsequently selected by executing the SELECT
FILE command. A file is addressed using its 2-byte file identifier (FID) or, in the case of a
directory file (DF), a 1-byte to 16-byte DF name. A DF name can contain an internationally
unique application identifier (AID) that is 5 to16 bytes long. It is possible to pass only a portion
of the AID, omitting the less significant bytes (those to the right). An additional parameter
causes the card to select the first, last, next or previous DF relative to the DF identified by the
abbreviated AID.

In connection with an older set of command definitions, the GSM 11.11 standard allows
only the 2-byte FID to be used for file selection. The ISO command set, by contrast, also

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 474 of 1123

440 Smart Card Commands

supports a type of file selection using the path name of the file in question. The path name can
be either relative, in which case the file is selected starting from the currently selected DF, or
absolute, in which case the file is selected starting from the MF.

Only successful selection of a new file causes the previously selected file to be deselected.
If the selection cannot be completed, for instance because the requested file does not exist,
the previous selection remains in force. This ensures that a file is always selected, even in the
event of an error.

After successful file selection, the terminal may request information about the new current
file if necessary. This request, including the desired number of data items, is sent to the card
using the SELECT FILE command. The exact contents of these data items are defined in the
applicable standard. The data items returned by the card may include information about the
structure, size and amount of free memory of the newly selected file. The amount of data may
also depend on the file type.

Table 7.1 lists the explicit file selection options permitted by ISO/IEC 7816-4 for the
SELECT FILE command, and Figure 7.4 depicts the sequence of events in a typical file
selection process.

Table 7.1 The functionality of SELECT FILE according to ISO/IEC 7816-4

SELECT FILE

Command • FID (if EF, DF or MF)
or
DF name (if DF)
or
path to file from currently selected DF
or
path to file from MF
or
switch: select next higher-level DF
or
first, last, next, or previous DF (if a partial AID is transferred)

• switch: return information about the selected file

Response • information about the selected file (if selected via the switch)
• return code

In addition to explicit file selection using an FID, DF name or a path specification in a
SELECT FILE command, implicit file selection can be used. However, this is only possible
with standard read and write commands. A file can be selected before the command is actually
executed by specifying its 5-bit short FID as a supplementary parameter. However, in this case
the file must be an EF and it must be located within the current DF. The advantage of this
method lies in simplified command execution and increased processing speed, since it is not
necessary to send an explicit SELECT FILE command to the card.1

1 See also Section 5.6.2, ‘File names’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 475 of 1123

7.1 File Selection Commands 441

Smart card Terminal

SELECT FILE

�

Command [FID='3F 00';
no additional file information necessary]

Search for the file with FID ='3F 00'
IF (file found)
THEN return code = OK
ELSE return code = file not found
Response [return code] � IF (return code = OK)

THEN file selection successful
ELSE file could not be selected

Figure 7.4 Sample processing sequence for the SELECT FILE command

GSM 11.11 defines the STATUS command, which returns the same data to the terminal
as successful file selection using SELECT FILE. These data provide information about the
currently selected file: its type and structure, size, FID, access conditions and whether it is
blocked. This command is rarely used, and its main purpose is to allow the terminal to determine
which file is currently selected during a session and the currently valid access conditions.

Table 7.2 The functionality of STATUS according to GSM 11.11

STATUS

Command • —

Response • information about the currently selected file
• return code

EN 726–3 specifies the CLOSE APPLICATION command, which supplements SELECT
FILE and STATUS and is used to close applications. The FID of the application to be closed is
provided with the command, and the card responds by deleting the previously attained security
state. This command is mainly useful when a terminal needs to ensure resetting of the state
attained by the card. If the card’s operating system does not support such a command, this result
can only be achieved by a card reset. In the ISC/IEC 7816-4 definitions, selecting the MF is
sufficient to cause the security state of the previously selected file to be reset to its initial state.

Table 7.3 The functionality of CLOSE APPLICATION
according to EN 726-3

CLOSE APPLICATION

Command • FID (of the current DF)

Response • return code

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 476 of 1123

442 Smart Card Commands

7.2 READ AND WRITE COMMANDS

Read and write commands primarily support using smart cards for secure data storage. These
commands can be used to write data to appropriate EFs and subsequently read these data. If
these EFs have specific access conditions, only authorized users are allowed to read them. The
data are thus stored in the card with protection against unauthorized access.

Since there are various types of EF data structures, there are also various types of read and
write commands for these files. Unfortunately, this does not fully correspond to an object-
oriented file management system. In a purely object-oriented system, the operating system
must be built such that an object can determine its own access mechanisms. This is not the case
for smart card file management. This non-compliance dates back to the historical emergence of
commands that were subsequently incorporated into current standards. The precursors of smart
cards, which are memory cards, have only one memory region that can be read and written
using offset and length parameters. Externally, this memory can be regarded as a single file with
a transparent structure. The first smart cards were built according to the same principle, and
the definitions of the commands for reading and writing transparent files date from this time.
Later, when other types of file structures were defined, new commands specifically adapted to
these structures were defined for use with such files. As a result, there are two different types
of file access.

Therefore this class of commands must be divided into commands for accessing EFs with
transparent structures and commands for accessing EFs with the other types of structures
(cyclic, linear fixed and linear variable). However, several standards (such as EN 1546 for
electronic purses) explicitly state that read commands for files with transparent structures may
also be used to read files with other types of structures. In any case, such commands can be
used to obtain additional data about the internal structure of the file.

An EF with a transparent logical structure is amorphous, which means that it does not
have any internal structure. It corresponds to a linearly addressable memory with byte access.
The READ BINARY command is used to read such a file, while the WRITE BINARY and
UPDATE BINARY commands are used for writing.

Table 7.4 The functionality of READ BINARY according to
ISO/IEC 7816-4

READ BINARY

Command • number of bytes to be read
• offset to the first byte to be read
• optional: short FID for implicit selection

Response • data read from the file
• return code

The fundamental difference between the WRITE BINARY and UPDATE BINARY com-
mands relates to the secure state of the card’s EEPROM. The secure EEPROM state is the
logical state of the EEPROM bits when the memory cells have taken on their minimum-energy
state. Since the memory cells are small capacitors, this means the state in which they contain

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 477 of 1123

7.2 Read and Write Commands 443

Table 7.5 The functionality of WRITE BINARY according to
ISO/IEC 7816-4

WRITE BINARY

Command • number of bytes to be written
• data bytes to be written
• offset to the first byte to be written
• optional: short FID for implicit selection

Response • return code

Table 7.6 The functionality of UPDATE BINARY according to
ISO/IEC 7816-4

UPDATE BINARY

Command • number of bytes to be overwritten
• offset to the first byte to be overwritten
• optional: short FID for implicit selection

Response • return code

no charge, which is usually the logic 0 state. In order to change a bit from state 0 to state 1, it
must be erased. This restores the charge on the capacitor.

A WRITE command can only be used to change bits from the non-secure state, which is
usually logic 1, to the secure state, which is usually logic 0. In this case, the WRITE command
produces the logical AND of the transferred data and the file content. By contrast, if the secure
state of the chip corresponds to logic 1, the WRITE command must produce the logical OR of
the data provided by the command and the data in the file. The result of the logical coupling
of the data provided by the command and the data in the file is that the secure state of the
EEPROM is always achieved using a WRITE command. In addition, a WRITE command may
support write once, read multiple (WORM) access, depending on the file. WRITE commands
originate from a time when using atomic operations for file access was still unknown in the
smart card realm. They are presently used only very rarely.

An UPDATE command, by contrast, performs a genuine write to the file. The previous state
of the data in the file does not affect the content of the file following execution of an UPDATE
command. UPDATE BINARY can thus be considered to be equivalent to using ERASE to
erase the file, followed by WRITE BINARY.

These commands can be utilized to construct physically secure smart card counters. The
principle involves a bit field in which each bit that is set represents a monetary unit. When
a payment is made, the counter is decremented bit by bit using OR operations generated by
WRITE BINARY commands. After authentication, the counter value can be increased again
using an UPDATE BINARY command. The main advantage of this technique is that it makes
it impossible to increase the counter value by manipulating the EEPROM, such as by heating
it, since the secure state of each bit represents a value of 0.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 478 of 1123

444 Smart Card Commands

As their names suggest, READ BINARY is a read command, while WRITE BINARY and
UPDATE BINARY are write commands. The file is always accessed using a length parameter
and an offset to the first byte to be addressed. Some operating systems also permit implicit
file selection before the actual data access occurs, using a supplementary short FID parameter.
However, this option is not present in all standards and operating systems.

Figure 7.5 illustrates a typical command sequence using READ BINARY followed by
WRITE BINARY and finally UPDATE BINARY. The effects on the content of the selected
file are shown in Figure 7.6. Of course, this example assumes that file selection is successful
and that the access conditions for the file to be written are met.

Smart card Terminal

READ BINARY

�

Command [offset = 2 bytes,
number of bytes to be read = 5]

requested data :='03'||'FF'||'00'
||'FF'||'00'

Response[requested data || return code] � IF (return code = OK)
THEN READ BINARY successful
ELSE abort

WRITE BINARY

�

Command [offset = 3 bytes, number of bytes
to be written = 2, data ='F0 F0']

Response [return code] � IF (return code = OK)
THEN WRITE BINARY successful
ELSE abort

UPDATE BINARY

�

Command [offset = 5 bytes, number of bytes
to be written = 2, data ='F0 F0']

Response [return code] � IF (return code = OK)
THEN UPDATE BINARY successful
ELSE abort

Figure 7.5 Accessing a file with a transparent structure

ERASE BINARY is an exception among the commands that operate on transparent EFs. It
cannot be used to write data to a file, but only to erase data starting from a given offset. If no
second offset parameter is stated, the command erases all data to the end of the selected file. In
this case, erasing data means that the data region specified in the command is set to the logical
erased state. This state must be defined separately for each operating system, since it may not
be the same as the physically erased state of the memory.

Because the structures of linear fixed, linear variable and cyclic EFs are fundamentally
different from the structure of a transparent EF, special commands for accessing these particular
data structures are available in addition to the commands described above. All of these files
have record-oriented structures. For write access, the smallest addressable unit in the data field
is a single record. For read access, either an entire record or part of a record may be read,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 479 of 1123

7.2 Read and Write Commands 445

(a) '01' '02' '03' 'FF' '00' 'FF' '00' ... n

(b) '01' '02' '03' 'F0' '00' 'FF' '00' ... n

(c) '01' '02' '03' 'F0' '00' 'F0' 'F0' ... n

Figure 7.6 Example of write accesses to an EF with a transparent structure using the sequence of
commands shown in Figure 7.5

(a) file content with READ BINARY
(b) file content after WRITE BINARY
(c) file content after UPDATE BINARY

Table 7.7 The functionality of ERASE BINARY according to
ISO/IEC 7816-4

ERASE BINARY

Command • offset to the first byte to be erased
• optional: offset to the last byte to be erased
• optional: short FID for implicit file selection

Response • return code

starting with the first byte of the record. These file structures, which transform a linear, one-
dimensional memory into a memory that can be addressed in two dimensions, yield access types
that are significantly more complex than those used with a transparent structure. In principle,
all possible data structures can be emulated using a transparent structure, but in specific cases
this may prove considerably more complicated than using a higher-level structure.

After an EF with a record-oriented structure has been selected, the card’s operating system
creates a record pointer whose initial value is undefined. The value of this pointer can be set
using a READ, WRITE, UPDATE RECORD or SEEK command. The pointer for the current
file is saved as long as this file is selected. After successful explicit or implicit selection of
another file, the value of the record pointer is again undefined.

All commands for record-oriented files can use a parameter byte to specify the type of
access to the file. The basic type is direct access using the absolute number of the desired
record. This type of access does not alter the record pointer. The number of the desired record
is sent to the card, and the response contains the content of the record in question.

If the parameter byte specifies the first record, the operating system sets the record pointer
to the first record in the file, and this record is read or written according to the type of command
used. The parameter value ‘last’ accesses the final record in a similar manner. The additional
parameter values ‘next’ and ‘previous’ allow the next and previous records, respectively, to be
selected and read or written. Finally, the parameter value ‘current’ can be used to address the
record marked by the current value of the record pointer.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 480 of 1123

446 Smart Card Commands

Hiro Protagonist

2

1

3

4

5

6

7

8

Y.T.

Juanita

Raven

Onkel Enzo

The Black Sun

Cosa Nostra Pizza

Enki

record contentrecord number

first

current

last

previous

next

Figure 7.7 Accessing a file having a record-oriented structure

This large variety of access methods for record-oriented data structures originates from
the typical structure of a telephone directory. Consider a record whose initial part contains a
surname and given name, followed in the same record by the associated telephone number.
Using READ RECORD and the parameters described above with a telephone directory mapped
into an EF, you can ‘page’ forwards and backwards as desired within the directory or jump
to the first or last entry. The record pointer can also be changed using the search command
SEEK, which is described below.

Joshua Calvert

Quinn Dexter

Louise Kavanagh

Alkad Mzu

Ione Saldana

Kiera Salter

Ralph Hiltch

Fletcher Christian

Kelly Tirrel

Gerald Skibbow

telephone number

47 84 46

089 11 00 11

089 47 51 22

089 178 098

08933 178 234

089 23 76 87 33

089 78 123 78 1

089 12 111 222

089 92 178 234

089 129 167 189

name

Figure 7.8 Example of a telephone number list in a file with a ‘linear fixed’ structure

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 481 of 1123

7.2 Read and Write Commands 447

ISO/IEC 7816-4 also provides the option of reading all records from the first record up to a
specified record number. Similarly, all records from a specified record number through to the
last record can be read in a single command–response cycle using READ RECORD. Although
these commands are very practical, the capacity of the I/O buffer can quite easily be exceeded
if they are used with large files.

Figure 7.9 illustrates the execution of several read and write operations on the file shown
in Figure 7.8.

Table 7.8 The functionality of READ RECORD according to ISO/IEC
7816-4

READ RECORD

Command • number of records to be read
or
mode (current, first, last, next or previous record)
or
read all records from n to the last record
or
read all records from the first record to n

• optional: short FID for implicit file selection

Response • data read from the file
• return code

Table 7.9 The functionality of WRITE RECORD according to ISO/IEC
7816-4

WRITE RECORD

Command • record data for writing
• number of the record to be written

or
mode (current, first, last, next or previous record)

• optional: short FID for implicit file selection

Response • return code

Table 7.10 The functionality of UPDATE RECORD according to ISO/IEC
7816-4

UPDATE RECORD

Command • record data for overwriting
• number of the record to be overwritten

or
mode (current, first, last, next or previous record)

• optional: short FID for implicit selection

Response • return code

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 482 of 1123

448 Smart Card Commands

Smart card Terminal

READ RECORD

�

Command [record number =''2'']
command processing
Response [''Oliver''|| return code] � IF (return code = OK)

THEN READ RECORD successful
ELSE abort

UPDATE RECORD

�

Command [''Wolfgang'', firs,]
command processing
Response [return code] � IF (return code = OK)

THEN UPDATE RECORD successful
ELSE abort

UPDATE RECORD

�

Command [''Alex'', next]
command processing
Response [return code] � IF (return code = OK)

THEN UPDATE RECORD successful
ELSE abort

READ RECORD

�

Command [record number = 2]
command processing
Response [''Alex''|| return code] � IF (return code = OK)

THEN READ RECORD successful
ELSE abort

Figure 7.9 Sample read and write operations for a record-oriented file

The APPEND RECORD command, given its functionality, could just as well be classified
as a file management command. It can be used to append records to existing record-oriented
files. The data for the entire new record are provided together with the command. A relatively
complex memory manager, in smart card terms, is a prerequisite for the availability of this
command with its full functionality. The function of the memory manager is to create a link
between the new record and the ones already present in the file. It is then possible, within
the limits of the available memory, to add an arbitrary number of new records. However, the
number of new records that can be added is often restricted in order to simplify matters.
In this case, when a record-oriented file is created, memory is reserved as necessary for
adding future records. This space can later be filled using APPEND RECORD commands.
Once this free space is used up, the APPEND RECORD command cannot be used again for
this file.

If APPEND RECORD is used in conjunction with a linear fixed or linear variable file, the
new record is always added at the end of the file. If the structure is cyclic, however, the new
record is always numbered 1, which corresponds to the currently written record in files of this
type.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 483 of 1123

7.2 Read and Write Commands 449

APPEND RECORD can be used for various purposes. One possibility is a telephone direc-
tory, as already mentioned. Another possibility is a log file, in which the data to be recorded
are written directly to the card by creating new records.

Table 7.11 The functionality of APPEND RECORD according to
ISO/IEC 7816-4

APPEND RECORD

Command • record to be written
• optional: short FID for implicit file selection

Response • return code

There are two commands that complement the file-based read and write commands. They
are designed for direct access to data objects. Depending on the selected DF, certain data
can be written to or read from files or internal operating system structures, bypassing the file-
oriented access mechanisms. Data objects can be written using PUT DATA and read using GET
DATA. For both of these commands, the exact structure of the TLV-coded data objects must be
transferred with the command. This means that it is necessary to know whether application-
specific or standard coding is used for the data objects. This information is important inside
the operating system, since it allows the objects to recognize the data according to how they
are packaged. The appropriate access conditions must be satisfied in advance for both of these
commands.

Table 7.12 The functionality of GET DATA according to
ISO/IEC 7816-4

GET DATA

Command • number of data objects to be read
• tag of the data objects to be read

Response • read data objects
• return code

Table 7.13 The functionality of PUT DATA according to
ISO/IEC 7816-4

PUT DATA

Command • structure of the data objects to be written
• data objects to be written

Response • return code

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 484 of 1123

450 Smart Card Commands

7.3 SEARCH COMMANDS

Record-oriented structures are well suited to storing sets of related data with identical structures
in a single file. A typical example is a telephone directory containing names and telephone
numbers. A search command can be used to avoid having to read the entire directory, record
by record, when looking for a particular name.

The SEEK command can be used to search for a specified character string in a record-
oriented data structure. An offset can be supplied with the command. The length of the search
string is variable. The command must tell the operating system in which direction to search.
This can be either from the starting location onwards (in the direction of increasing record
numbers) or from the starting location backwards. The starting location for the search must
also be specified. The first record, last record or current record can be specified as the starting
position. If the search string is found, the operating system sets the record pointer to the location
of the string and informs the terminal that the search was successful.

m-byte search pattern
offset

'01' n

Figure 7.10 Searching within a record-oriented file

The ISO/IEC 7816-9 standard describes two commands that can be used to search for data
in transparent and record-oriented files. The SEARCH RECORD command is the ISO/IEC
version of the GSM 11.11 SEEK command. The major difference between these two commands
is that according to ISO/IEC 7816-9, a short FID can also be transferred within the command
for implicit EF selection.

The command sequence shown in Figure 7.11 illustrates some ways in which the SEEK
command can be used. This example is based on the linear fixed file shown in Figure 7.7.

Table 7.14 The functionality of SEEK according to GSM 11.11

SEEK

Command • length of the search string
• search string
• offset
• search mode (forward from the beginning, backward from the end,

forward from the next position, backward from the previous position)
• switch: return the record number of the located record

Response • record number (if selected by the switch)
• return code

The SEARCH BINARY command can be used to search for specific data in a selected
transparent file. The file may be selected either explicitly by a previously transferred command

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 485 of 1123

7.3 Search Commands 451

Smart card Terminal

SEEK

�

Command [search string =''Hans''||
search direction =''forward from the
beginning''|| send record number]

Response [record number = 8 || � IF (return code = OK)
return code] THEN''Hans''found

ELSE''Hans''not found

SEEK

�

Command [search string =''Alex''||
search direction =''backward from
the end''|| send record number]

Response [record number = 1 || return code] � IF (return code = OK)
THEN''Alex''found
ELSE''Alex''not found

Figure 7.11 Sample command sequence using the SEEK command

Table 7.15 The functionality of SEARCH RECORD according to ISO/IEC 7816-9

SEARCH RECORD

Command • length of the search string
• search string
• offset
• mode (forward from the beginning, backward from the end,

forward from the next position, backward from the previous position)
• switch: return the record number of the located record
• optional: short FID for implicit file selection

Response • record number (if selected by the switch)
• return code

Table 7.16 The functionality of SEARCH BINARY according to
ISO/IEC 7816-9

SEARCH BINARY

Command • length of the search string
• search string
• offset
• optional: short FID for implicit file selection

Response • offset to the located data
• return code

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 486 of 1123

452 Smart Card Commands

or implicitly via a command parameter. The result is the offset from the start of the file to the
first byte of the located search string.

7.4 FILE MANIPULATION COMMANDS

There are several commands that allow the content of a file to be modified by means other than
simple writing. The main representatives of this class are the INCREASE and DECREASE
commands. They increase or decrease the value of a cyclically structured file whose content
takes the form of a counter. The amount of the increase or decrease is transferred as a command
parameter.

The cyclic file structure is defined to meet the needs of logging functions. These commands
are primarily used for simple electronic change purses and counters. For the sake of simplicity,
an example cyclic file with only one record is shown in Figure 7.12. The starting value of the
record is 10. On conclusion of the process, the record has the same value again.

Table 7.17 The functionality of DECREASE according
to GSM 11.11

DECREASE

Command • value to be subtracted

Response • subtracted value
• new value of the record
• return code

Table 7.18 The functionality of INCREASE according
to GSM 11.11

INCREASE

Command • value to be added

Response • added value
• new value of the record
• return code

The EXECUTE command can also be considered to be a file manipulation command in a
certain sense. It is used to run executable EFs (whose structure is ‘executable’). The program
to be executed can receive data from the terminal via the command, and it can also send data
that it generated back to the terminal as a response.

This command and the related file structure are controversial, since they can potentially be
used to bypass the entire security system of a smart card.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 487 of 1123

7.5 Identification Commands 453

Smart card Terminal

DECREASE

�

Command [value to be subtracted = 3]
command processing
Response [subtracted value = 3 ||
new value = 7 || return code] � IF (return code = OK)

THEN DECREASE successful
ELSE DECREASE could not be executed

DECREASE

�

Command [value to be subtracted = 2]
command processing
Response [subtracted value = 2 || � IF (return code = OK)
new value = 5 || return code] THEN DECREASE successful

ELSE DECREASE could not be executed

INCREASE

�

Command [value to be added = 5]
command processing
Response [added value = 5 || � IF (return code = OK)
new value = 10 || return code] THEN INCREASE successful

ELSE INCREASE could not be executed

Figure 7.12 Sample command sequence using INCREASE and DECREASE

Table 7.19 The functionality of EXECUTE according to EN726-3

EXECUTE

Command • data to be passed to the executable file

Response • data returned by the executable file
• return code

7.5 IDENTIFICATION COMMANDS

In addition to being used as secure data storage media, smart cards can also be used to identify
individuals. The usual procedure involves exchanging secret information that is known only
to the user and the card. This is usually a personal identification number (PIN).

Everyone is familiar with PIN verification from personal experience. The PIN is entered
at a terminal, and shortly thereafter the display shows whether the PIN was correct or, if not,
how many attempts are still allowed. In this procedure, the smart card receives the PIN from
the terminal in a VERIFY command. The PIN is usually a four-digit number, which the smart
card compares with a value stored in its EEPROM. If the entered PIN matches the stored PIN,
the card’s internal state changes, the terminal receives a response confirming a positive result,
and the retry counter is reset to its original value of 0. If the entered PIN does not match the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 488 of 1123

454 Smart Card Commands

stored PIN, the retry counter is incremented. If it reaches its predefined maximum value, the
card is blocked for further PIN verification.

Many smart card operating systems allow several PINs to be used. In such cases, it is
mandatory to send the identification number of the relevant PIN in all associated commands,
so that it can be correctly addressed. As a rule, however, card issuers attach great importance
to having only one PIN per card, even when it is technically possible to have more than one.
This is essential for customer acceptance and user friendliness.

The abbreviation ‘CHV’ is often used in place of ‘PIN’ in the telecommunications industry.
CHV stands for ‘cardholder verification’ and means exactly the same thing as PIN. Since some
of the commands described below originated in the telecommunications industry, their names
use the abbreviation CHV instead of PIN.

Table 7.20 The functionality of VERIFY CHV
according to GSM 11.11

VERIFY CHV

Command • PIN
• number of the PIN

Response • return code

The ISO/IEC 7816-4 standard describes a PIN verification command that is largely the
same as the GSM 11.11 command. Its name is VERIFY, and it can be used not only for
PIN comparison, but also for verifying biometric features. Compared with PIN verification
according to the GSM specification, there is only one significant difference in the coding.
ISO/IEC makes a distinction in the command between a global PIN and an application-specific
PIN. The command can thus be used to specify whether to verify a PIN that applies to the
entire smart card or one that is only applicable to the current DF.

Table 7.21 The functionality of VERIFY according to ISO/IEC 7816-4

VERIFY

Command • PIN or biometric feature (= secret)
• number of the PIN or biometric feature
• switch: global or application-specific secret

Response • return code

In some applications, the cardholder is expected to choose his or her own PIN the first time
the PIN is entered. The null-PIN method can be used for this purpose. With this method, the
PIN is set to zero when the card is personalized. This PIN code has a special meaning for some
smart card operating systems, which reject all VERIFY commands containing a null PIN and
demand that the PIN first be changed using the CHANGE REFERENCE DATA command. In
this way, the user is forced to change his or her PIN, since it is not possible to alter the security
state of the card if a null PIN is entered. This method is not standardized, but it can sometimes
be used to advantage if it is supported by the operating system.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 489 of 1123

7.5 Identification Commands 455

PINs have steadily proliferated since their introduction as identification numbers for card-
holders. Currently, the average card user is expected to keep track of perhaps 10 to 20 different
PINs for various cards and other authorizations. The fact that this expectation is unrealistic is
shown by the large number of people who jot down the PIN on the card itself. If smart cards
are used, the user can be allowed to choose a PIN at will, and thus to use the same PIN for
all of his or her cards. Although this may cause security problems, since anyone who illicitly
acquires one PIN thereby knows all of them, it is still better than writing the PIN on the card
where everyone can read it.

The CHANGE CHV command allows the PIN to be altered. The ISO/IEC 7816-8 equivalent
to this command is CHANGE REFERENCE DATA, which has the same input and output
parameters. If the PIN currently stored in the card is known, it can be replaced with a new one.
If the current PIN is entered incorrectly, the operating system increments the retry counter to
protect against possible attempts to use this mechanism to discover the PIN. As soon as the
current PIN is correctly passed to the card, the card stores the new PIN it has received in the
appropriate memory location and resets the retry counter.

Table 7.22 The functionality of CHANGE CHV
according to GSM 11.11

CHANGE CHV

Command • old PIN
• new PIN
• PIN number

Response • return code

If a retry counter has reached its maximum value, it can be reset using the UNBLOCK
CHV command with a second PIN, which is called the personal unblocking key (PUK). The
PUK is usually longer than the standard 4-digit PIN (8 digits, for example). The user need not
memorize the PUK, since it is only needed if the PIN has been forgotten. It is sufficient if the
user has a record of the PUK somewhere at home. However, just resetting the retry counter
would not help the user very much, since he or she would still not know the correct PIN.
Consequently, the command UNBLOCK CHV must also provide the card with a new PIN.

It should not be possible to use this command to alter the PIN of a hybrid card, which has
a magnetic stripe as well as a chip. Otherwise the PIN recorded on the magnetic stripe would
not match the PIN in the chip, which would cause severe problems. With such cards, the retry
counter is simply reset and the customer is sent a letter with the original PIN.

Table 7.23 The functionality of UNBLOCK CHV
according to GSM 11.11

UNBLOCK CHV

Command • PUK
• new PIN

Response • return code

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 490 of 1123

456 Smart Card Commands

The ISO/IEC 7816-8 standard has its own command for resetting the retry counter when
it has reached its maximum value. This command is called RESET RETRY COUNTER. A
certain security state must be achieved before this command can be executed. As a rule, this
state is achieved by means of a successful authentication. Despite its name, this command can
also be used to replace the current PIN with a new PIN.

Table 7.24 The functionality of RESET RETRY COUNTER according to
ISO/IEC 7816-8

RESET RETRY COUNTER

Command • number of the PIN
• option: [PUK || new PIN]
• if option selected: number of the PUK
• switch: global PIN or application-specific PIN

Response • return code

GSM includes two other commands that can be used to control PIN querying. They are DIS-
ABLE CHV and ENABLE CHV, which switch PIN verification off and on. If PIN verification
is disabled, all file access restrictions that require prior PIN verification are disabled. Both of
these commands are very popular in the mobile telecommunications area, since they eliminate
the need to re-enter the PIN every time the mobile telephone is switched on. From a security
perspective, these commands are questionable, since they disable protection against unautho-
rized use that is provided by the PIN. Of course, the user could also use CHANGE CHV to
choose a trivial PIN, such as''0000'', which offers just as little protection.

The ISO/IEC 7816-8 commands for these functions are called ENABLE VERIFICATION
REQUIREMENT and DISABLE VERIFICATION REQUIREMENT. Depending on the ap-
plication, a certain security state must be achieved before these commands can be executed.

Table 7.25 The functionality of DISABLE VERIFICATION REQUIREMENT
according to ISO/IEC 7816-8

DISABLE VERIFICATION REQUIREMENT

Command • reference data (e.g., PIN)
• number of the reference data

Response • return code

For obvious reasons, the PIN verification procedures described above are subject to attack,
since a large financial gain could be realized using a lost or stolen card and the right PIN. All
commands associated with PIN and PUK comparison must be protected against analysis of the
card’s electrical or timing behavior. For instance, current consumption during the execution of
VERIFY PIN must be constant, regardless of whether the entered PIN is correct. It is equally
important for the time required to execute PIN commands to be independent of whether the
PIN is correct. Varying execution times could have fatal consequences for the card’s security,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 491 of 1123

7.6 Authentication Commands 457

Table 7.26 The functionality of ENABLE VERIFICATION REQUIREMENT
according to ISO/IEC 7816-8

ENABLE VERIFICATION REQUIREMENT

Command • reference data (e.g., PIN)
• number of the reference data

Response • return code

and thus ultimately the security of the entire system. Such variations could be used to determine
the value of the correct PIN in a very simple manner, causing all of the system’s PIN codes to
be rendered worthless as a means of user identification.

7.6 AUTHENTICATION COMMANDS

In addition to commands for identifying the cardholder, there is a further set of commands
for authenticating the terminal and the card. Since each of these communications partners is
equipped with a complete computer, the procedures can be made much more complex, and
thus more secure, than those used for PIN verification.

In PIN verification, the card receives a secret code in plaintext (the PIN) via the interface,
and it only has to compare this with the PIN held in memory. Tapping the transmission line
would thus have fatal consequences. Modern authentication procedures are designed to make
such attacks impossible.

In principle, authentication involves verifying a secret known to both of the communicating
parties without requiring it to be sent across the interface. The procedures are constructed such
that tapping the data transmission would not compromise the security of the authentication.2

Depending on the operating system, various commands are available for authenticating the
card or the terminal, or both at the same time. For the sake of clarity, here and in the rest of
this chapter we refer to authentication between the card and the terminal. However, in terms of
information technology what actually happens is that the ‘outside world’ authenticates itself
with respect to an application in the card. This does not involve verifying that the card as a
whole is genuine, but only that the embedded microcontroller shares a secret with the external
world. This should be taken into account in certain applications.

In many operating systems, the keys used for authentication are protected by a retry counter.
If a terminal unsuccessfully attempts authentication too many times, the card blocks the as-
sociated key for further authentication tests. This is a perfectly acceptable procedure with
regard to system security, but it does have one drawback. Resetting the retry counter for the
authentication key to its initial value often involves very complex, logistically cumbersome
and costly administrative procedures. Consequently, some systems do not have retry counters
for authentication keys.

For security reasons, only card-specific keys should be used for authentication. These keys
can be generated from a unique feature of the card. A serial number or chip production number

2 See also Section 4.11, ‘Authentication’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 492 of 1123

458 Smart Card Commands

is very suitable for this purpose. Such non-confidential (and thus public) numbers can be read
from the card using a suitable command. There is presently no standard in this regard; here we
use the GET CHIP NUMBER command. The name varies from one operating system to the
next, as do the data that are exchanged. Here we are only interested in the functionality. The
command GET CHIP NUMBER obtains a unique serial number from the card, which in light
of the DES algorithm should preferably be eight bytes long. This number is used to uniquely
identify the chip and to compute card-specific keys.

Table 7.27 The functionality of GET CHIP NUMBER

GET CHIP NUMBER

Command • —
Response • chip number

• return code

There is one more command that is needed for authentication. This is GET CHALLENGE,
which is specified in ISO/IEC 7816-4. It is used to request a random number from the card.
This number is subsequently used during authentication. When DES authentication is used,
the length of the number is typically eight bytes, but it may be different for other cryptographic
algorithms.

Table 7.28 The functionality of GET CHALLENGE
according to ISO/IEC 7816-4

GET CHALLENGE

Command • —

Response • random number
• return code

In order to make the following examples relatively easy to understand and avoid unnecessary
complexity, we have omitted describing the derivation of the card-specific key. However,
deriving card-specific keys is absolutely essential for reasons of security.

The INTERNAL AUTHENTICATE command allows the terminal to authenticate a card,
or in the case of a multiapplication card, to authenticate an application. This command can be
used to verify that a card is genuine. The card receives a random number, which it encrypts
using a cryptographic algorithm such as DES using a key that is known only to it and the
terminal. The result of this encryption is returned to the terminal in the response. The terminal
performs the same encryption as the card and compares its result with the result in the response
received from the card. If the two results match, it follows that the card also knows the secret
authentication key and must be genuine. The card has thus been authenticated.

This command implements the classic challenge–response procedure for authenticating a
communications partner. The exact data content of the challenge is not specified in detail in the
ISO/IEC 7816-4 standard. The only thing that is standardized is that the value sent to the card

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 493 of 1123

7.6 Authentication Commands 459

Table 7.29 The functionality of INTERNAL AUTHENTICATE
according to IEO/IEC 7816-4

INTERNAL AUTHENTICATE

Command • random number
• number of the algorithm to be used
• number of the key to be used

Response • enc (key; random number)
• return code

Smart card Terminal

� INTERNAL AUTHENTICATE
X := enc (key; random number) Command [random number, key number]

X':= enc (key; random number)
Response [X || return code] � IF (return code = OK) AND (X = X')

THEN command successful,
smart card authenticated
ELSE authentication failed

Figure 7.13 Sample command sequence using INTERNAL AUTHENTICATE

must be random and session-specific. Consequently, when the INTERNAL AUTHENTICATE
command and the other authentication commands described below are used in an application,
a detailed specification is always necessary to ensure that they can be used interoperably.

The terminal uses the EXTERNAL AUTHENTICATE command to show the card that it
is connected to a genuine terminal. This command must be initiated by the terminal, since
the communications process must always operate within the command–response framework.
However, the card can force terminal authentication by blocking access to certain files until
the terminal has been successfully authenticated.

This authentication is performed as follows. First, the terminal sends a GET CHALLENGE
command to request a random number from the card, which it then encrypts using a secret key.
Using the next command, EXTERNAL AUTHENTICATE, the terminal returns the encrypted
random number to the card. The card performs the same encryption using the secret key, which
it also knows, and then compares the result with the value received from the terminal. If they
match, the terminal must also possess the secret authentication key and is thus genuine. After
successful terminal authentication, the operating system changes the state of its state machine.
This allows the terminal to access certain files for reading or writing. For the user, this is the
visible result of an external authentication.

If the INTERNAL AUTHENTICATE and EXTERNAL AUTHENTICATE commands are
executed one after the other, the communicating parties are mutually authenticated. Each one
thus knows that the other one is genuine. However, this requires a total of three complete
command sequences. In order to simplify this complicated and time-consuming procedure,
the three commands and their data have been merged into a single command, which is called
MUTUAL AUTHENTICATE.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 494 of 1123

460 Smart Card Commands

Table 7.30 The functionality of EXTERNAL AUTHENTICATE
according to ISO/IEC 7816-4

EXTERNAL AUTHENTICATE

Command • enc (key; random number)
• number of the algorithm to be used
• number of the key to be used

Response • return code

Smart card Terminal

GET CHALLENGE

�

Command []
Response [random number || return code] � IF (return code = OK)

THEN command successful
ELSE abort

X := enc (key; random number)

EXTERNAL AUTHENTICATE
X':= enc (key; random number) �

Command [X, key number]
IF (X = X')
THEN terminal authenticated
ELSE authentication failed
Response [return code] � IF (return code = OK)

THEN command successful, terminal
authenticated
ELSE authentication failed

Figure 7.14 Sample command sequence using EXTERNAL AUTHENTICATE

This command is defined in the ISO/IEC 7816-8 standard. It can be used to perform mutual
authentication of two parties in accordance with the ISO/IEC 9798–2/3 standard. Using a
single authentication command also increases the security of the overall procedure, since it
prevents the fraudulent insertion of commands between two one-way authentications. A further
improvement in the security of the procedure results from the fact that it is impossible to obtain
plaintext–ciphertext pairs by tapping the communications between the terminal and the card,
which would otherwise provide an ideal basis for an attack.

Mutual authentication works as follows. First, the terminal uses the GET CHALLENGE
command to request the chip number of the card. It can then compute the card-specific key.
The terminal then uses the ASK RANDOM command to obtain a random number from the
card, and it generates its own random number.

After the terminal receives the random number from the card, it combines the two ran-
dom numbers and the chip number to form a single data block, which it encrypts using the
secret authentication key and a cryptographic algorithm in CBC mode. It sends the result-
ing ciphertext block to the card, which decrypts it and compares the chip number and the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 495 of 1123

7.6 Authentication Commands 461

Table 7.31 The functionality of MUTUAL AUTHENTICATE according to ISO/IEC 7816-8

MUTUAL AUTHENTICATE

Command • enc (key; terminal random number, smart card random number,
chip number)

• number of the algorithm to be used
• number of the key to be used

Response • enc (key; smart card random number, terminal random number)
• return code

random number with the numbers it previously sent to the terminal. If they match, the termi-
nal has been authenticated. Now the card swaps the two random numbers, deletes the chip
number and again encrypts the resulting block using the secret key. After the terminal has
received and decrypted this block, it can determine whether the card possesses the secret au-
thentication key by comparing the known random numbers. If they match, the card is also
authenticated.

Smart card Terminal

GET CHIP NUMBER

�

Command []
Response [chip number || return code] � IF (return code = OK)

THEN command successful

key derivation
(compute the card-specific key)

GET CHALLENGE
generate RND CK �

Command []
Response [RND CK || return code] � IF (return code = OK)

THEN command successful

MUTUAL AUTHENTICATE
generate RND T
X1 := enc (key; RND T || RND CK ||
chip number)

X1':= dec (key; X1) �

Command [X1 || key number]
IF (RND CK and chip number are the
same as those sent)
THEN terminal authenticated
ELSE abort
X2 := enc (key; RND CK || RND T)
Response [X2] � X2':= dec (key; X2)

IF (RND T = same as the one sent)
THEN smart card authenticated

Figure 7.15 Sample command sequence using MUTUAL AUTHENTICATE

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 496 of 1123

462 Smart Card Commands

7.7 COMMANDS FOR CRYPTOGRAPHIC ALGORITHMS

Commands for cryptographic algorithms are very important for many applications. For exam-
ple, they make it relatively easy to use smart cards as encryption and decryption devices or to
verify digital signatures. Many smart card operating systems have their own command sets for
executing cryptographic algorithms. Smart card commands such as ENCRYPT, DECRYPT,
SIGN DATA and VERIFY SIGNATURE have arisen because there was no standard for this
sort of functionality. However, commands specially designed for processing cryptographic
algorithms have now been defined in the ISO/IEC 7816-8 standard.

In the ISO/IEC 7816-8 standard, the functions related to cryptography are split between two
commands. The MANAGE SECURITY ENVIRONMENT (MSE) command allows various
general constraints to be set before the cryptographic algorithm is executed. This command
passes a ‘template’ to the card, and this template contains the relevant parameters. They remain
valid until they are replaced using a new MANAGE SECURITY ENVIRONMENT command.
The templates themselves consist of TLV-coded data objects, which provide a high degree of
flexibility (and unfortunately, complexity) for transferring parameters.

key

input outputsecurity
operation

parameters

Figure 7.16 The basic principle of the ISO/IEC 7816-8 MANAGE SECURITY ENVIRONMENT and
PERFORM SECURITY OPERATION commands for using cryptographic functions

Table 7.32 The functionality of MANAGE SECURITY ENVIRONMENT according to ISO/IEC
7816-9

MANAGE SECURITY ENVIRONMENT

Command • template with parameters for a cryptographic checksum
or
template with parameters for a digital signature
or
template with parameters for a hash algorithm
or
template with parameters for authentication
or
template with parameters for encryption and decryption

Response • return code

After all the options for the cryptographic function have been configured using the MAN-
AGE SECURITY ENVIRONMENT command, the PERFORM SECURITY OPERATION

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 497 of 1123

7.7 Commands for Cryptographic Algorithms 463

(PSO) command can be invoked. A wide variety of security operations can be performed using
this command, provided that they are supported by the smart card operating system. However,
the number of options with this command is so large that this support is not always mandatory.
Although PERFORM SECURITY OPERATION is coded using only one instruction byte, it
has eight fundamentally different functions that are distinguished by the P1 parameter byte.
This was done because the number of codes remaining for coding commands has become
somewhat scant in the last while.

Since the PERFORM SECURITY OPERATION command can be used in so many different
ways, we have divided the following description of its functions along the lines of its various
options, without describing any of them in detail.

PERFORM SECURITY OPERATION with the COMPUTE CRYPTOGRAPHIC CHECK-
SUM option is used to compute a cryptographic checksum (CCS), which is commonly referred
to as a MAC. The padding, as well as the key to be used, can be either implicitly provided
by the operating system or explicitly supplied using the MANAGE SECURITY ENVIRON-
MENT command. The counterpart to this command option is the VERIFY CRYPTOGRAPHIC
CHECKSUM option, which computes the cryptographic checksum of the transferred data and
compares it with a reference value, which is also transferred with the command. The result of
this operation is a match/no-match decision, which is returned to the terminal.

Table 7.33 The functionality of PERFORM SECURITY OPERATION
with the COMPUTE CRYPTOGRAPHIC CHECKSUM option,
according to ISO/IEC 7816-8

PERFORM SECURITY OPERATION
Option: COMPUTE CRYPTOGRAPHIC CHECKSUM

Command • data to be encrypted

Response • CCS
• return code

Table 7.34 The functionality of PERFORM SECURITY OPERATION
with the VERIFY CRYPTOGRAPHIC CHECKSUM option, according
to ISO/IEC 7816-8

PERFORM SECURITY OPERATION
Option: VERIFY CRYPTOGRAPHIC CHECKSUM

Command • data to be encrypted
• CCS

Response • return code

The ENCIPHER and DECIPHER options are provided for the pure encryption and decryp-
tion of data. The ENCIPHER option is used to encrypt the data transferred with the command.
The encryption algorithm to be used can be selected, according to the options available in the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 498 of 1123

464 Smart Card Commands

operating system, by first sending the MANAGE SECURITY ENVIRONMENT command.
Similarly, the mode of the encryption algorithm must also be set in advance by parameters
transferred before the command is issued. With a block encryption algorithm, it is also possible
to select the ECB or CBC mode. Since the length of the data block sent to the card is not always
an exact multiple of the block size of the cryptographic algorithm, the padding method must
be defined via an additional parameter. The address of the key stored in the smart card that is
to be used by the algorithm to encrypt the data is also important.

Table 7.35 The functionality of PERFORM SECURITY OPERATION
with the ENCIPHER option, according to ISO/IEC 7816-8

PERFORM SECURITY OPERATION
Option: ENCIPHER

Command • data to be encrypted

Response • encrypted data
• return code

The reverse function of ENCIPHER is DECIPHER. With this function, the transferred data
can be decrypted in the same mode as that used for ENCIPHER. Naturally, the smart card
must know the appropriate key, algorithm mode and padding mode. This information must
be passed to the card’s operating system using the MANAGE SECURITY ENVIRONMENT
command.

Table 7.36 The functionality of PERFORM SECURITY OPERATION
with the DECIPHER option, according to ISO/IEC 7816-8

PERFORM SECURITY OPERATION
Option: DECIPHER

Command • encrypted data

Response • decrypted data
• return code

With the introduction of public-key algorithms into smart card applications, there was a need
for suitable commands for using the newly available functions. Smart cards are particularly
suitable for digital signature applications, since the private key for the signature algorithm can
be securely stored in memory, where it cannot be read. The ISO/IEC 7816-8 standard describes
four command options that can be used for digital signatures.3

The HASH option of the PERFORM SECURITY OPERATION command can be used to
compute a hash value. The command may transfer either the data to be hashed or a hash value

3 See also Section 14.4, ‘Digital Signatures’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 499 of 1123

7.7 Commands for Cryptographic Algorithms 465

already computed outside the smart card along with the data needed for the final step of the
computation. In the latter case, the hash computation for the final block is performed in the card.
The advantage of the latter method is that the hash value can be generated significantly faster
outside of the card, but the final step still occurs inside the card. From a purely cryptological
perspective, this provides only a small amount of extra security, but it does somewhat limit the
possibilities for manipulating the hash value. For this reason, it is widely used in practice.

Since the amount of data to be hashed is usually larger than maximum allowed length of a
command data field, the HASH option employs ‘layer-7’ chaining, which means that the data
blocks are logically chained at the application level. The final data block to be hashed includes
a marker that informs the command that it is the final block for the hash process.

This command option also has its own options. The computed hash value can either be
transferred immediately to the terminal in the response to the command or stored in the card
for use with a subsequent command. The padding and the key to be used are defined as
necessary using a prior MANAGE SECURITY ENVIRONMENT command, in the same way
as for previously described commands.

Table 7.37 The functionality of PERFORM SECURITY OPERATION with the HASH option,
according to ISO/IEC 7816-8

PERFORM SECURITY OPERATION
Option: HASH

Command • data to be hashed
• hash value (if only part of the hash computation is to be performed

in the card)
• switch: perform only part of the hash computation in the card
• switch: return the computed hash value in the response
• switch: final command with data to be hashed

Response • hash value (if selected by the switch)
• return code

The COMPUTE DIGITAL SIGNATURE option can be used for signing data. The data string
to be signed, which has usually been compressed to a hash value, must be passed to the smart
card if it is not already present in the card as the result of a previous PERFORM SECURITY
OPERATION command with the HASH option. The COMPUTE DIGITAL SIGNATURE
option also allows the data to be signed to be transferred directly to the card. The data can then
be hashed in the card before the signature is generated. For large amounts of data, ‘layer-7’
chaining can be used as with the HASH option.

If the length of the hash value does not correspond to the input data length of the public-key
algorithm, padding must be added. The options for this are set by parameters of the MANAGE
SECURITY ENVIRONMENT command, which is also used to identify the key to be used.

The verification counterpart to the COMPUTE DIGITAL SIGNATURE option is provided
by the VERIFY DIGITAL SIGNATURE option. In principle, any sufficiently fast digital
computer could be used to verify a digital signature, since the necessary key is public. However,
in many cases the validity of the public key must first be verified using an additional digital
signature. This is certainly a security consideration, so this should not be performed using

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 500 of 1123

466 Smart Card Commands

Table 7.38 The functionality of PERFORM SECURITY OPERATION with the
COMPUTE DIGITAL SIGNATURE option, according to ISO/IEC 7816-8

PERFORM SECURITY OPERATION
Option: COMPUTE DIGITAL SIGNATURE

Command • data to be signed
or
hash value of the data to be signed

• switch: final command with data to be signed

Response • digital signature
• return code

an insecure computer. In order to verify a digital signature, the associated public key must
either be implicitly known to the smart card or be explicitly made known to the card using
the command option VERIFY CERTIFICATE, which is described immediately below. The
data to be verified may be passed by VERIFY DIGITAL SIGNATURE either directly or in the
form of the associated hash value. All other parameters are the same as for the COMPUTE
DIGITAL SIGNATURE option.

Table 7.39 The functionality of PERFORM SECURITY OPERATION with the
VERIFY DIGITAL SIGNATURE option, according to ISO/IEC 7816-8

PERFORM SECURITY OPERATION
Option: VERIFY DIGITAL SIGNATURE

Command • data to be verified
or
hash value of the data to be verified

• digital signature
• switch: final command with data to be verified

Response • return code

In open systems, public keys for verifying digital signatures are usually signed using the
private key of the certification authority. The authenticity of a public key must be verified before
it is used, since this is the only way to be sure that the key is not a forgery. This verification must
take place in a secure environment, such as a smart card, since it would otherwise be subject
to manipulation. The VERIFY CERTIFICATE command option is provided specifically for
verifying signed public keys, which are also called ‘certificates’. Once a public key has been
identified as authentic, it can either be stored permanently in the smart card or be used with an
immediately following VERIFY DIGITAL SIGNATURE command.

Figure 7.17 illustrates how the commands described above can be used to generate a digital
signature and then verify it.

If a smart card operating system supports generating key pairs for asymmetric cryptographic
algorithms, this process can be instigated by the ISO/IEC 7816-8 GENERATE PUBLIC KEY PAIR

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 501 of 1123

7.7 Commands for Cryptographic Algorithms 467

Table 7.40 The functionality of PERFORM SECURITY OPERATION
with the VERIFY CERTIFICATE option, according to ISO/IEC 7816-8

PERFORM SECURITY OPERATION
Option: VERIFY CERTIFICATE

Command • certificate
• switch: store the public key

Response • return code

Smart card Terminal

COMPUTE DIGITAL SIGNATURE
S := sign (private key; �

Command [hash value of the data]
hash value of the data)
Response [S || return code] � IF (return code = OK)

THEN signature successful
ELSE abort

VERIFY DIGITAL SIGNATURE
H':= encrypt (public key; S) �

Command [hash value of the data]
H := hash value of the data
IF (H = H')
THEN (return code = OK)
ELSE (return code = not OK)
Response [return code] � IF (return code = OK)

THEN signature is genuine
ELSE signature is false

Figure 7.17 Sample procedure for using PERFORM SECURITY OPERATION with the COMPUTE
DIGITAL SIGNATURE and VERIFY DIGITAL SIGNATURE options. The basic parameters (key and
algorithm to be used) are specified in advance, either implicitly or using a MANAGE SECURITY
ENVIRONMENT command

command. All parameters needed for key generation must be set in advance using the MANAGE
SECURITY ENVIRONMENT command.

Table 7.41 The functionality of GENERATE PUBLIC KEY PAIR
according to ISO/IEC 7816-8

GENERATE PUBLIC KEY PAIR

Command • —

Response • return code

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 502 of 1123

468 Smart Card Commands

7.8 FILE MANAGEMENT COMMANDS

Most modern smart card operating systems allow various management operations to be per-
formed on files within limits set by specific security conditions, including extending, creating,
deleting and blocking files. Nevertheless, most or even all management functions are frequently
omitted in single-application cards, since these functions generally require a large amount of
program code, which would increase the memory capacity and thus the cost of the card. With
multiapplication cards, support for certain management functions is essential in order to avoid
having to load all the applications into the card when it is personalized.

With regard to system security, management functions should only be allowed to be executed
following mutual authentication, since they are ideal starting points for an attack. For example,
suppose an unauthorized person were to delete a file holding confidential data and then create
a new file with the same name but without any read access restrictions, so that it could be still
be read with its original name, therefore confidential data could be writen to the manipulated
file. This type of attack is by no means new; it has been around for many years in a somewhat
different form. However, it is used successfully over and over again in file management systems.

Another possible point of attack is provided if management functions are used in publicly
accessible terminals, which in principle are insecure. In such situations, data transfers must
always be protected using secure messaging functions. Only then will an application provider
be able to securely load files and applications into cards already in use, for instance via public
card phones. This is a very attractive option for logistics reasons.

Particularly in the case of multiapplication smart cards, which can be used by several
application providers, it is necessary to partition the memory and assign authorization keys
for file creation before the individual applications are generated. This prevents any individual
application provider from allocating the entire available memory to his own application, leaving
none for other applications. One way to prevent such behavior is to use a procedure that pre-
allocates memory space to each application and at the same time stores card- and application-
specific keys for creating files in the card. This can be done using the REGISTER command,
which is not standardized. New files can be created at a later date if the application-specific
key is known. This method creates a strict separation between allocating memory space and
loading new files into the card. The issuer of a multiapplication card can thus sell memory
space to several application providers without having to worry about memory piracy.

Table 7.42 The functionality of REGISTER (not standardized)

REGISTER

Command • DF name of the new DF
• maximum memory space for the new application (i.e., the DF)
• key for creating new files (i.e., for CREATE FILE)

Response • return code

The CREATE FILE command allows DFs or EFs to be created in smart cards after they have
been completed. Before this command can be executed, a particular logic state must have been
achieved, for example via successful mutual authentication. Depending on the environment in

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 503 of 1123

7.8 File Management Commands 469

which the CREATE FILE command is executed, data transfers may have to be protected by
secure messaging. The CREATE FILE command is defined in the ISO/IEC 7816-9 standard.

Table 7.43 The functionality of CREATE FILE according to ISO/IEC 7816-9

CREATE FILE

Command • file type of the new file
• IF (file type = DF) THEN [DF name of the new file]
• IF (file type = EF) THEN [

• FID of the new file
• access conditions
• structure of the new file]

• IF (file structure = transparent) THEN [file size]
• IF (file structure = linear fixed) OR (file structure = cyclic) THEN [

• number of records
• record length]

• IF (file structure = linear variable) THEN [
• number of records
• length of each individual record]

Response • return code

After a file has been created with all of its access conditions, attributes and other properties,
it can be selected using SELECT FILE and then accessed. The operating system must make
it impossible to create an incomplete file by interrupting the file creation process, since such
a file could provide a basis for an attack on the card. Furthermore, it must not be possible to
read out the residual contents of memory areas that are only partially overwritten when a new
file is created.

The file header contains the complete access conditions for the file. For example, it can
store data relating to the states in which a READ or UPDATE command is allowed to access
the content of the file. Particularly when a card is being personalized, as well as for extensive
management procedures within the file tree, it is a major advantage to be able to access files
directly without object protection. For this reason, a previous version of the ISO/IEC 7816-
9 included a command called MANAGE ATTRIBUTES that could be used to change the
access conditions of a previously selected file. This command could only be used following
mutual authentication and within a secure environment. However, it was made redundant by the
introduction of security environments and rule-based access conditions as defined in ISO/IEC
7816-9,4 and it is no longer included in the standard. Nevertheless, it is supported by some
smart card operating systems, due to the simplicity of its implementation.

If the REGISTER command is available, the card issuer uses it to specify the maximum
amount of memory that can later be allocated to an application. In addition, a temporary
DF name, which may contain an application identifier (AID), is specified, and a key for
the CREATE FILE command is stored in the card. Files can subsequently be created if this
information is known.

4 See also Section 5.9, ‘Resource Accesses in Accordance with ISO/IEC 7816-9’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 504 of 1123

470 Smart Card Commands

Table 7.44 The functionality of the now obsolete MANAGE ATTRIBUTES
command, according to a draft version of ISO/IEC 7816-9

MANAGE ATTRIBUTES

Command • new access conditions

Response • return code

The user receives a smart card that has been prepared in this manner. If the user so desires,
he or she can have an application provider load an additional application into the card, such as
a card phone application. However, the application provider must know the secret download
key before he can load a new application into the card, and the card issuer will naturally not
provide this key unless there is a contractual relationship between the two parties.

After successful mutual authentication between the smart card and the terminal, the appli-
cation provider can create his files in the DF allocated to him. This can take place either on
the provider’s premises or via a public card phone. Next, the provider fills the EFs with the
necessary data and keys and sets the access attributes of the files. After this, the application is
ready to use, and the user can enjoy his or her newly acquired functions.

The procedure for loading a new application in the file tree of a smart card is illustrated in
Figure 7.18.

The DEACTIVATE FILE command (defined in ISO/IEC 7816-9) and the INVALIDATE
command (defined in GSM 11.11) allow the terminal to reversibly block a previously selected
file. When a file is blocked, read and write accesses to the file are prohibited, and only selection
is allowed.

The EMV specification provides a similar command for reversibly blocking applica-
tions, called APPLICATION BLOCK. This command does not block the EFs within an
application, but only the commands for file selection, authentication and financial transac-
tions within the DF of the application. The functionality of the APPLICATION BLOCK
command is otherwise similar to that of the DEACTIVATE FILE and INVALIDATE
commands.

Table 7.45 The functionality of DEACTIVATE FILE
according to ISO/IEC 7816-9

DEACTIVATE FILE

Command • —
or
FID
or
short FID
or
DF name

Response • return code

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 505 of 1123

7.8 File Management Commands 471

Smart card Terminal

mutual authentication between the smart card and the terminal

CREATE FILE

�

Command [. . .]
command processing
Response [return code] � IF (return code = OK)

THEN command successfully executed
ELSE command failed

several iterations:

UPDATE BINARY or
UPDATE RECORD

�

Command [. . .]
command processing
Response [return code] � IF (return code = OK)

THEN command successfully executed
ELSE command failed

several iterations:

MANAGE ATTRIBUTES

�

Command [. . .]
command processing
Response [return code] � IF (return code = OK)

THEN command successfully executed
ELSE command failed

Figure 7.18 Sample procedure for loading a new application

Table 7.46 The functionality of INVALIDATE
according to GSM 11.11

INVALIDATE

Command • FID

Response • return code

The inverse functions for INVALIDATE and DEACTIVATE FILE are provided by the
REHABILITATE and REACTIVATE FILE commands, which can be used to unblock a blocked
file. The file must be selected before it can be unblocked. It goes without saying that execution
of all these commands can only be permitted in a certain security state, since otherwise anyone
would be able to block or unblock files at will.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 506 of 1123

472 Smart Card Commands

Table 7.47 The functionality of REHABILITATE
according to GSM 11.11

REHABILITATE

Command • —

Response • return code

Table 7.48 The functionality of REACTIVATE FILE
according to ISO/IEC 7816-9

REACTIVATE FILE

Command • —
or
FID
or
short FID
or
DF name

Response • return code

Smart card Terminal

mutual authentication between the smart card and the terminal

DEACTIVATE FILE

�

Command [FID]
command processing
Response [return code] � IF (return code = OK)

THEN file is blocked
ELSE file not found or
file blocking failed

REACTIVATE FILE

�

Command [FID]
command processing
Response [return code] � IF (return code = OK)

THEN command successfully executed
ELSE file not found or
file unblocking failed

Figure 7.19 Sample command sequence for DEACTIVATE FILE and REACTIVATE FILE

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 507 of 1123

7.8 File Management Commands 473

The LOCK command is the non-reversible version of INVALIDATE. A file that has been
blocked with LOCK cannot be unblocked. Its state is completely irreversible. Another use for
this command is to permanently block an application when it reaches its expiry date. A file
that has been blocked with the LOCK command can only be selected; all other types of access
will be denied by the operating system.

Table 7.49 The functionality of LOCK according to
EN 726-3

LOCK

Command • —

Response • return code

The main drawback of permanent, irreversible blocking is that it also blocks any further use
of valuable memory space in the card. A much more elegant solution is to erase the memory
regions occupied by files that are no longer needed, so they can be used by other applications
or new applications. When doing so, it is important to not only delete the file from the file tree,
but also to physically erase the entire memory area that was used by the file(s). Only in this
way can one be sure that all of the file contents, which may certainly be confidential and worth
protecting, have been overwritten and are thus no longer accessible to anyone. If the memory
that comes free when a file is deleted is to be made available for use by other files, deleting
a file becomes a complicated and costly process. Consequently, it is not fully implemented in
all operating systems.

In principle, the DELETE FILE command can be used to block and unblock files in exactly
the same way as the previously described commands. A file that is implicitly selected with this
command can be completely removed from the file memory of the smart card. Whether the
memory space that is released as a result can be used for other files depends on the individual
operating system. As a rule, free-memory management is not available, so the memory space
is lost forever after this command has been executed.

Table 7.50 The functionality of DELETE FILE
according to ISO/IEC 7816-9

DELETE FILE

Command • FID
or
DF name

Response • return code

The command TERMINATE DF is provided in the ISO/IEC 7816-9 standard for irreversibly
blocking a DF. A blocked DF can still be selected, but the functions (such as program code)
and files it contains are no longer accessible. This command can be used to ‘switch off’ an
application while allowing the previous presence of the application to still be recognized.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 508 of 1123

474 Smart Card Commands

Table 7.51 The functionality of TERMINATE DF
according to ISO/IEC 7816-9

TERMINATE DF

Command • FID
or
DF name

Response • return code

The functionality of the ISO/IEC 7816-9 TERMINATE CARD USAGE command is similar
to that of the TERMINATE DF command. However, this command blocks the entire card, and
thus the execution of any subsequent commands. After this, the only thing the card can do is
indicate its new status in the ATR. The EMV equivalent of this command is the CARD BLOCK
command, which has similar functionality.

Table 7.52 The functionality of TERMINATE CARD USAGE
according to ISO/IEC 7816-9

TERMINATE CARD USAGE

Command • —

Response • return code

7.9 COMMANDS FOR MANAGING APPLETS

In the case of smart card operating systems that support downloadable program code, one of
the requirements is that code must be loaded into the memory of the smart card in a secure
manner and in compliance with conditions imposed by the issuer of the smart card. There are a
number of highly different, generally company-specific concepts for achieving this. The only
internationally used industrial standard for this purpose is the Open Platform (OP) specification
from Global Platform [GP].

An application is loaded into the smart card by transferring its load file to the card using
the LOAD command. The INSTALL command, which continues the process, establishes the
loaded application by invoking various on-card functions of the card manager and the security
domain. The DELETE command is used to delete uniquely identifiable objects in a smart card,
such as load files, applications and keys. Open Platform is described in Section 5.11, ‘Open
Platform’.

7.10 COMMANDS FOR COMPLETING THE OPERATING SYSTEM

When smart card microprocessors are manufactured, only the ROM is programmed. The
EEPROM remains empty, apart from a chip number and a card-specific key. After the card
body and the microcontroller have been combined to produce a smart card, the operating

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 509 of 1123

7.10 Commands for Completing the Operating System 475

system code in the ROM must be supplemented by the portions that reside in the EEPROM.
This is called ‘completing’ the smart card. Only after it has been completed does a smart card
contain a full operating system, with all its functionality.

There is a relatively simple loader program in the ROM for writing these parts of the
operating system to the EEPROM. It can be used to write data to the EEPROM following a
key verification. The EEPROM memory is addressed linearly, either byte by byte or page by
page, using direct physical addresses.

Once all necessary data have been entered into the EEPROM in this way, the operating
system is switched over from pure ROM operation. From this point on, processes and rou-
tines also run in the EEPROM. This switchover can be performed by a command whose
execution condition has been satisfied, following a prior checksum comparison for all of the
completed EEPROM data. The checksum ensures that all the data have been correctly stored
in the EEPROM. Completion does not employ particularly complex functions or authorization
procedures, since it is necessary to rely on the ROM portion of the operating system. Even the
smallest error here could make it impossible to complete the smart card. Such an error would
be time-consuming and, all told, very expensive.

EEPROM keyROM key

chip number
identification

password

Figure 7.20 One of many possible ways to generate a chip-specific password for authorizing the
completion of the operating system

In the rest of this section, three representative commands for completing the smart card
operating system are described. The commands used for this purpose vary greatly depending
on the operating system and chip manufacturer. Here we can only illustrate the necessary
functions. However, practically all smart cards use this procedure or a similar procedure to
complete the operating system.

The COMPARE KEY command tests a password sent to the card against a reference pass-
word stored in the ROM and EEPROM by the manufacturer during chip fabrication. This key
(password) is card-specific and is quite long (approximately 32 bytes). If the comparison is suc-
cessful, subsequent load commands are permitted. Otherwise, a retry counter is incremented.
Once the retry counter reaches a predefined value (e.g., 3), it blocks any further access to the
card. The card can then be sent for recycling, since the only thing it can do is to generate an
ATR.

After the load password has been successfully verified using COMPARE KEY, all necessary
data can be written to the EEPROM using the WRITE DATA command. At this point, the
EEPROM can be addressed and written byte by byte. This means that in addition to the data

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 510 of 1123

476 Smart Card Commands

Table 7.53 The functionality of COMPARE KEY

COMPARE KEY

Command • key

Response • return code

for the operating system, complete applications may also be loaded. Incidentally, this is the
method normally used to load applications into smart cards having very little memory, since
they do not have enough room for complex CREATE FILE commands and their associated
state machines.

Table 7.54 The functionality of WRITE DATA

WRITE DATA

Command • data
• memory address in EEPROM

Response • return code

If the amount of ROM in the smart card is so small that there is not even enough room for
EEPROM test commands, the basic functions of the test commands can be simulated using this
command. This is done by repeatedly writing data to a specific memory location until the card
reports a write error. If the number of write cycles is totaled, the number of possible write/erase
cycles is known. This is the primary result expected from an EEPROM test command in the
context of quality assurance.

Once all data have been written to the EEPROM using one or more successive WRITE
DATA commands, the content of the EEPROM is tested to see that it is correct, and the
completion procedure is then terminated. The command used for this is COMPLETION END.
After successful execution of this command, a card reset is normally triggered to reinitialize
the operating system and allow it to achieve a new state.

Table 7.55 The functionality of COMPLETION END

COMPLETION END

Command • checksum of the EEPROM contents

Response • return code

For tests and experiments, it is often necessary to be able to delete an existing completion.
This is usually not possible, but a command that provides this capability is available in a few
isolated operating systems. This is the DELETE COMPLETION command, which can reverse
the completion of the operating system. With this command, it is not necessary to use a new
smart card for every new completion. This command is used exclusively for testing purposes.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 511 of 1123

7.11 Commands for Hardware Testing 477

Table 7.56 The functionality of DELETE COMPLETION

DELETE COMPLETION
Command • —

Response • return code

The correct completion of a smart card operating system can be verified using the CHECK
COMPLETION command. For this purpose, the smart card computes a checksum from the
completion data and compares it with a reference value stored along with the completion data.
If the two checksums match, the completion is correct.

Table 7.57 The functionality of CHECK COMPLETION

CHECK COMPLETION

Command • —

Response • return code

Figure 7.21 further illustrates the sequence of commands for completing a smart card as
just described. This procedure is governed by a state machine during the completion process to
ensure that only the indicated commands can be executed and only exactly in the order shown.
This state machine is described by Figure 7.22.

7.11 COMMANDS FOR HARDWARE TESTING

During initialization, the operating system of the smart card tests various hardware components,
both implicitly and explicitly. The commands described here, however, go far beyond the self-
test routines integrated directly into the operating system. As part of production quality assur-
ance, it is necessary to separately verify certain critical parts of the microprocessor. These tests
focus particularly on the EEPROM, since experience shows that most problems show up here.
The operation of the processor is implicitly verified if the terminal can receive a correct ATR.

Since there are no standards for test commands, their functionality and coding depend on
the producer of the operating system, and sometimes on the operating system itself.

The test commands may be permanently stored in ROM. However, it is also quite common
for them to be loaded into the EEPROM via the completion commands and then executed in
the EEPROM. Obviously, this can cause problems if the EEPROM is not fully functional. The
advantage of using EEPROM is that it makes more space available in the ROM. In the interest
of operating system security, using test commands must be restricted to the stage preceding
completion. This means that all test commands are blocked in a card that has been initialized or
even personalized. Possible exceptions are the RAM test and the ROM or EEPROM checksum
tests, since these commands do not affect security.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 512 of 1123

478 Smart Card Commands

Smart card Terminal

COMPARE KEY
command processing �

Command [key for completion]
Response [return code] � IF (return code = OK)

THEN command successfully executed
ELSE command failed

numerous iterations:

WRITE DATA
command processing �

Command [data || address]
Response [return code] � IF (return code = OK)

THEN command successfully executed
ELSE command failed

conclusion:

COMPLETION END
command processing �

Command [EEPROM checksum]
Response [return code] � IF (return code = OK)

THEN command successfully executed
ELSE command failed

Figure 7.21 Example of a typical completion procedure

The following commands may be used for extensive hardware tests. A dysfunctional RAM
would cause a complete operating system crash even before the ATR could be sent, but it is
possible for a few RAM bits or bytes to be ‘dead’. This would only affect certain functions
or routines.

The TEST RAM command checks the entire RAM and sends an appropriate response to
the terminal. During the test, all available bytes must be written and read using a variety of test
patterns. A typical test consists of writing'55'and'AA'alternately, since these two hexadecimal
values form a checkerboard pattern at the bit level. Another effective method is the wave test,
in which the RAM is first written from the lowest to the highest address and then read, and
then from the highest to the lowest address. The exact implementation of this test depends on
the operating system. Sometimes this test is omitted.

Table 7.58 The functionality of TEST RAM

TEST RAM

Command • —

Response • return code

CALCULATE EDC is a very simple test that computes an EDC checksum for the whole
ROM or specified portions of the EEPROM and returns it to the terminal. This is one way to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 513 of 1123

7.11 Commands for Hardware Testing 479

1

2

B

3

D

4

E

2

C

1

E

5

F

5

G

1

A

Figure 7.22 State machine for completing a smart card operating system

States: Transitions:
1 initial state after smart card reset A all commands except COMPARE KEY
2 smart card ready for loading data into EEPROM B COMPARE KEY (successfully executed)
3 smart card completed C WRITE DATA
4 initial state of smart card after completion D COMPLETION END
5 smart card irreversibly blocked E reset smart card

F COMPARE KEY (3 times unsuccessful)
G all commands and reset

determine whether the ROM mask has changed or any EEPROM cells have flipped. EEPROM
testing relates only to static areas that cannot be intentionally changed during the lifetime of
the card. The terminal compares the checksum received from the card with a reference value
and decides whether the memory contents are still consistent.

Table 7.59 The functionality of CALCULATE EDC

CALCULATE EDC

Command • switch: ROM / EEPROM

Response • checksum
• return code

The TEST EEPROM command is used to perform an EEPROM endurance test by over-
writing the contents of the EEPROM. The smart card receives two patterns, which it writes
alternately to an area of memory. The size of this area and the number of write attempts can be
specified in the command, within certain limits. Naturally, the operating system must check
the memory content for errors after each write cycle.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 514 of 1123

480 Smart Card Commands

Since the number of write cycles is supplied to the smart card as a command parameter,
this command can be fully processed inside the smart card. This is much faster than sending
a sequence of individual commands. If the card discovers a write error, it returns the number
of already completed write cycles and the address of the error to the terminal. The EEPROM
endurance test can be used not only for destructive testing of the EEPROM, but also for writing
data to freely chosen regions of the EEPROM. In the latter case, the number of write cycles is
set to one.

Table 7.60 The functionality of TEST EEPROM

TEST EEPROM

Command • pattern 1
• pattern 2
• number of write cycles
• start address in EEPROM
• end address in EEPROM

Response • number of write cycles executed (in the event of an error)
• error address (in the event of an error)
• return code

The COMPARE EEPROM test is used to test whether a pattern written to the EEPROM is
still present in the EEPROM. This command is primarily used in combination with the TEST
EEPROM command to test EEPROM data retention at various temperatures. This is done by
writing a pattern to several memory pages, placing the smart card in an environmental test
chamber for a certain length of time, and then checking whether the pattern has been retained.

Table 7.61 The functionality of COMPARE EEPROM

COMPARE EEPROM

Command • comparison value
• address

Response • return code

In principle, the TEST EEPROM command can be used to erase the entire EEPROM if the
start and end addresses are appropriately specified. However, many operating systems have
a command that we can call DELETE EEPROM. It erases the entire EEPROM in one go by
overwriting the entire contents of the EEPROM. This command is employed for only two
purposes. The first is to restore the EEPROM to a predefined state with a minimum of effort
after various tests have left their test data in the EEPROM. The second is to reduce the time
required to initialize or complete the operating system. If the DELETE EEPROM command
is executed prior to either of these activities, the EEPROM can subsequently be written faster,
since it avoids the frequently encountered need to erase an EEPROM page before writing new
data to it.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 515 of 1123

7.12 Commands for Data Transmission Protocols 481

Table 7.62 The functionality of DELETE EEPROM

DELETE EEPROM

Command • —

Response • return code

7.12 COMMANDS FOR DATA TRANSMISSION PROTOCOLS

In principle, data transmission protocols should be designed to be fully independent of the
data and commands of the application layer. This is also the intention of the OSI layer model.
Unfortunately, there is a discrepancy here between theoretical requirements and actual prac-
tice. There are two commands whose only purpose is to allow transport mechanisms to be
utilized at the application level, namely GET RESPONSE and ENVELOPE. There is also
another command, MANAGE CHANNEL, whose function is not used by the application layer
alone.

In the T = 0 protocol, it is not possible to send a block of data to the smart card and receive
a block of data from the smart cardwithin a single command–response cycle.5 This protocol
thus does not support case 4 commands, although they are frequently used. It is thus necessary
to use a work-around for the T = 0 protocol. This operates in a simple manner. The case 4
command is first sent to the card, and if it is successful, a special return code is sent to the
terminal to advise the terminal that the command has generated data that are waiting to be
retrieved. The terminal then sends a GET RESPONSE command to the smart card and receives
the data in the response. This completes the command–response cycle for the first command.
As long as no command other than GET RESPONSE is sent to the card, the response data can
be requested multiple times.

Table 7.63 The functionality of GET RESPONSE according to
ISO/IEC 7816-4 and GSM11.11

GET RESPONSE

Command • amount of data to be sent

Response • data
• return code

If commands are completely encrypted as part of secure messaging, transmission problems
can occur with the T = 0 protocol, which requires both an unencrypted instruction byte and an
unencrypted Le byte. The ENVELOPE command gets around this restriction by embedding
a complete APDU, with its header and data section, in the data section of the APDU of the
ENVELOPE command. This can be encrypted without any restrictions and transmitted using

5 See also Section 6.4.2, ‘The T = 0 transmission protocol’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 516 of 1123

482 Smart Card Commands

any protocol. The same procedure is used for the response generated by the smart card, which
is also embedded in the APDU of the ENVELOPE command. The ENVELOPE command is
also used to implement proactive commands for the SAT and USAT.6 This use corresponds to
the above description, with the exception that the data are not encrypted.

Table 7.64 The functionality of ENVELOPE according to
ISO/IEC 7816-4

ENVELOPE

Command • command APDU

Response • response APDU
• return code

Logical channels can be used which allow up to four applications in a single smart card to
be addressed independently of each other.7 The commands and applications are coordinated by
two bits in the class byte. Before the terminal can use a new logical channel, it must explicitly
advise the smart card via the MANAGE CHANNEL command. This signals to the card that an
additional channel is needed. The channel number can be specified explicitly by the terminal,
or the card can supply the number of a free channel in its response. When a new logical channel
is opened from the standard channel (channel 0), the behavior of the card in the new channel
is the same as after a reset, which means that the MF is selected and no security state has
been attained. When a new logical channel is opened from a channel other than channel 0, the
current DF selection and current security state are retained. When a logical channel is closed,
the associated file selection and security state are deleted.

Table 7.65 The functionality of MANAGE CHANNEL according to ISO/IEC 7816-4

MANAGE CHANNEL

Command • switch: logical channel open/closed
• IF (a particular channel is desired) THEN
• logical channel number

Response • logical channel number (if a new logical channel is opened)
• return code

7.13 DATABASE COMMANDS: SCQL

In the beginning, smart cards were used as identification media and thus represented typical
single-user systems. However, the sophisticated security mechanisms and access mechanisms

6 See also Section 13.2.4, ‘The SIM’
7 See also Section 6.7, ‘Logical Channels’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 517 of 1123

7.13 Database Commands: SCQL 483

of multiapplication smart cards can certainly be used to configure and use smart cards as
multiuser systems. Of course, the cost and effort involved should not be underestimated. The
cryptographic protective mechanisms needed for this can also quickly reach a critical level of
complexity.

The situation here is similar to the situation with the various file structures. In principle, a
record-oriented telephone directory can be constructed using a transparent file structure, but it
is much easier to use a linear variable file structure.

This is the basic reason why a subset of the database query language SQL (structured query
language) has been standardized for use with smart cards in ISO/IEC 7816-7 and has been
incorporated into the product range of various operating system producers. The subset of SQL
for smart cards defined in the ISO/IEC 9075 standard is called ‘structured card query language’
(SCQL). The primary application area for smart cards with SCQL capability is health care,
since in this area, a variety of persons and organizations must access data using several different
read and write access privileges. However, there is presently no large application that utilizes
SCQL.

SCQL, like SQL, supports table-oriented database systems. Such systems consist of a table
name, a fixed number of named columns and a variable number of rows. ‘Logical views’ can
be applied to this table. If a view is static, this means that a certain number of columns are
assigned to this view. A dynamic view, by contrast, is a selection of rows that satisfy a particular
condition (e.g., given name = “Wolfgang”). Combinations of static and dynamic views are
allowed. Each view has its own name and can be used as the basis for reading and writing
data.

Table

View 1 (static) View 2 (dynamic)

column 2

column 2 column 2

column 3

column 3

column 1

column 1 column 1

row 1
row 2
row 3
row 4
row 5

row 1
row 2
row 3
row 4
row 5

row 3
row 5

row 3
row 5

row 3
row 5

row 1
row 2
row 3
row 4
row 5

row 1
row 2
row 3
row 4
row 5

row 1
row 2
row 3
row 4
row 5

Figure 7.23 An SCQL table with three columns and five rows. Static view and dynamic views have
been created for this table. View 1 is static and shows columns 1 and 2 in their entirety. View 2 is dynamic
and shows the rows in all three columns that satisfy a certain condition (not defined here)

SCQL in smart cards requires an additional type of file structure, known as ‘database’, to
be included in the operating system. A file with this structure is called a database file (DBF),

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 518 of 1123

484 Smart Card Commands

and it is a database object that can be located directly below the MF or under a DF. It contains
the data tables and associated system tables, and it can be addressed by database commands
without first being selected. A DBF is a logical structure that may be distributed across several
EFs, depending on the smart card operating system.

Three system tables must be set up in the DBF to manage users and privileges. The first
of these is the object description table, which stores information about the tables and their
associated views. This table is complemented by the user description table, which is defined
by the user of the database system. The third DBF table is the privilege description table, which
defines the privileges of the individual users with regard to tables and views, as well as the
operations they are allowed to perform on the tables and views.

Teela Brown
Bram

ball
vampire

Tribe
View: protectors

Name

Teela Brown
Nessus
Bram

Chmee
Akolyth

Prill
Vala

ball
puppeteer
vampire

kzinti
kzinti

machinist
machinist

yes
no
yes
no
no
no
no

Table: acquaintances of Louis Wu
Tribe ProtectorName

Teela Brown
Nessus
Bram

Chmee
Akolyth

Prill
Vala

View: name

Chmee
Akolyth

View: kzinti
Name

Figure 7.24 A sample SCQL table with the columns ‘Name’ and ‘Tribe’, the attribute ‘Protector’ and
seven entries. Three views are also shown. Different access privileges for the various views can be defined
in SCQL

The operations that can be performed on an SCQL table or view are read, insert, write
and delete, all of which are governed by access privileges. A cursor is defined for read and
write operations in a table or view, in order to mark the row to which an operation will be
applied.

There are three basic SCQL commands: PERFORM SCQL OPERATION, PERFORM
TRANSACTION OPERATION and PERFORM USER OPERATION. Only three instruction
codes (INS) are needed for these, since the actual SCQL operations are initiated via parameter
byte P2. All data in the command body and response body are TLV-coded data objects. The
three commands are summarized in Tables 7.66, 7.67 and 7.68.

Although SCQL has many limitations relative to SQL, such as no sorting, no nested queries,
no joins and so on, it still has definite potential for use in the multiuser area. However, the
memories of currently available microcontrollers are not yet large enough for extensive SCQL
databases in smart cards. It may thus take a while until there is a major application that uses
SCQL.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 519 of 1123

7.13 Database Commands: SCQL 485

Table 7.66 The SCQL command PERFORM SCQL OPERATION and its functions according to
ISO/IEC 7816-7

PERFORM SCQL OPERATION

CREATE TABLE Generates a table with its columns and column names.
CREATE VIEW Creates a new view (static or dynamic) for a table.
CREATE DICTIONARY Creates the object description table, user description table and

privilege description table.

DROP TABLE Deletes a table.
DROP VIEW Deletes a view.

GRANT Grants access privileges to a single user, a group of users or all users.
REVOKE Revokes access privileges previously granted by GRANT.

DECLARE CURSOR Positions a cursor that marks a row in a table, view or system table.
OPEN Activates a cursor in the first row.
NEXT Moves the cursor to the next row.

FETCH Reads the row marked by the cursor.
FETCH NEXT Reads the next logical row after the row where the cursor is located.

The cursor is moved to the row to be read.

INSERT Adds a row to the end of the table without modifying the cursor.
UPDATE Writes data to one or more fields in a row in a table. The row is

selected by the cursor.
DELETE Deletes the row marked by the cursor from the table. The cursor is

positioned to the following row.

Table 7.67 The SCQL command PERFORM TRANSACTION OPERATION and its functions
according to ISO/IEC 7816-7

PERFORM TRANSACTION OPERATION

BEGIN Reserves space for a memory image for the functions COMMIT and
ROLLBACK, for example for a row of a table.

COMMIT Tests all changes that have been made to a table since the last BEGIN
command.

ROLLBACK Restores a table to the state it had before the last BEGIN command.

Table 7.68 The SCQL command PERFORM USER OPERATION and its
functions according to ISO/IEC 7816-7

PERFORM USER OPERATION

PRESENT USER Identifies a user by means of his or her user ID.
CREATE USER Creates an entry for a new user.
DELETE USER Deletes the entry for a user.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 520 of 1123

486 Smart Card Commands

7.14 COMMANDS FOR ELECTRONIC PURSES

Part 3 of the European standard for universal electronic purses, EN 1546, defines six commands
for electronic purses and 12 commands for the security module in the terminal, which itself
may be a smart card. The basic structures of the four most important commands used with
smart card electronic purses8 are described here. These commands can be utilized to run an
application in a smart card for making ‘cashless’ payments from a prepaid purse and refilling
the purse. The commands for error recovery, currency conversion, parameter modification and
canceling a payment are not described here, nor are those for the security module. The Common
European Purse System (CEPS) specification for electronic purses defines commands that are
very similar to those defined by EN 1546.

The commands described here would fit just as well under ‘Application-Specific Commands’
(Section 7.16), since they are defined specifically for this one application. They can never be
used for any other purpose than electronic purses, since they have been optimized for this
application. However, we dedicate a section to them because electronic purses are one of the
main future applications for smart cards, besides telecommunications.

All electronic purse transactions are divided into three steps according to EN 1546. In the
first step, the card is initialized using the command INITIALIZE IEP for Load / for Purchase.
In the second step, a command is executed to perform the actual transaction, such as filling
the purse or paying with the purse. In the optional third step, the transaction just performed
is confirmed. All purse commands directly access files in the purse application of the smart
card for both writing and reading. These files hold the purse balance, log entries and various
parameters.

The individual steps of a purse transaction are executed using the commands described
below. The EN 1546 standard precisely defines the internal processes of each command with
regard to functionality and the sequence of the individual steps. All implementations thus have
at least the same general processes.

The INITIALIZE IEP command can be used for several purposes. A parameter is used to
select initialization of a purse loading transaction, a purchase transaction or another type of
transaction.

Loading (crediting) the purse in the smart card is initiated by the command INITIALIZE
IEP for Load. The transferred data, such as a currency code and amount to be loaded, are
checked in the card to see whether they match prescribed values in the parameter files. Freely
definable data (user-determined data) can also be stored in a log file. Next, a transaction counter
is incremented and a signature S1 is generated for various data (such as the current balance
and expiry date), so that this information can be transferred to the terminal without risk of
manipulation.

In the second step of the load transaction, the card essentially receives information about
the keys to be used and a signature S2 via the CREDIT IEP command. This information
comes from the security module in the terminal, and besides protecting the data, it allows
the card to authenticate the security module. The smart card has already been authenticated
with respect to the security module in the terminal by the previous INITIALIZE IEP for Load

8 Command sequences and general system structures of electronic purse systems are described in detail in Section
12.3.1, ‘The CEN EN 1546 standard’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 521 of 1123

7.14 Commands for Electronic Purses 487

Table 7.69 The functionality of INITIALIZE IEP for Load according to EN 1546-3

INITIALIZE IEP for Load

Command • —
• amount to be loaded (MLDA)
• currency code (CURRLDA)
• PPSAM descriptor (PPSAM)
• random number (R)
• user-determined data (DD)

Response • purse provider identifier (PPIEP)
• IEP identifier
• cryptographic algorithm used (ALGIEP)
• expiry date (DEXPIEP)
• purse balance (BALIEP)
• IEP transaction number (NTIEP)
• key information (IKIEP)
• signature S1

• return code (CCIEP)

command. After successfully testing S2, the card increases the purse balance, makes a new
entry in the log file and generates signature S3 for confirmation. This signature is then used
by the security module in the terminal as confirmation of correct booking of the amount to be
loaded.

Table 7.70 The functionality of CREDIT IEP according to EN 1546–3

CREDIT IEP

Command • key information (IKPPSAM)
• signature S2

• user-determined data (DD)

Response • signature S3

• return code (CCIEP)

The second process consists of making a purchase using the electronic purse. This trans-
action is again initiated by the INITIALIZE IEP command, this time using the ‘for Purchase’
option. The smart card does not receive any data with this command, but it does increment
the transaction counter. Next, a signature S1 is generated for data such as the expiry date,
transaction counter and IEP identifier. This information, which is protected for transmission
by signature S1, is then sent to the terminal together with some additional data.

The actual payment transaction is performed by the DEBIT IEP command. It sends infor-
mation to the electronic purse in the smart card regarding the amount to be debited and current
key versions, as well as another signature. This signature can be used to test the authenticity

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 522 of 1123

488 Smart Card Commands

Table 7.71 The functionality of INITIALIZE IEP for Purchase according to
EN 1546-3

INITIALIZE IEP for Purchase

Command • —

Response • identifier of the purse provider (PPIEP)
• IEP identifier
• cryptographic algorithm used (ALGIEP)
• expiry date (DEXPIEP)
• purse balance (BALIEP)
• currency code (CURRIEP)
• authentication mode (AMIEP)
• IEP transaction number (NTIEP)
• key information (IKIEP)
• signature S1

• return code (CCIEP)

of the security module in the terminal in the same manner as for loading the purse. If this
test is successful, the purse balance is decreased, the purchase transaction log is updated and
another signature, S3, is generated to confirm the entire transaction. This signature is placed
in the response to the DEBIT IEP command. It serves as confirmation to the security module
in the terminal that the amount was properly debited in the smart card.

Table 7.72 The functionality of DEBIT IEP according to EN 1546–3

DEBIT IEP

Command • PSAM identifier
• PSAM transaction number (NTPSAM)
• amount to be debited (MPDA)
• currency code (CURRPDA)
• key information (IKPSAM)
• signature S2

• user-specific data (DD)

Response • signature S3

• return code (CCIEP)

Here we have only presented a brief summary of the four most important commands for
electronic purses as specified in EN 1546. This standard is extremely comprehensive and
includes many options and possibilities for system design, which naturally can affect the
structures of the commands.9

9 See also Section 12.3.1, ‘The CEN EN 1546 standard’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 523 of 1123

7.15 Commands for Credit and Debit Cards 489

7.15 COMMANDS FOR CREDIT AND DEBIT CARDS

The joint specification of Europay, MasterCard and Visa for smart cards used for financial
transactions, EMV,10 specifies two commands especially designed for financial transactions.
In principle, these two extremely flexible commands could be used to implement an electronic
purse in a smart card. However, their intended use lies more in the realm of credit and debit
transactions, which is why their use for these two applications is described here. We devote
a separate section to these commands because credit and debit cards incorporating chips
are expected to be produced in very large numbers in the future. Their significance is thus
correspondingly large.

The two commands GET PROCESSING OPTIONS and GENERATE APPLICATION
CRYPTOGRAM are based on TLV-coded data objects in the data section of the command and
response. This creates a considerable variety of possible variations and options, which can be
exploited by each application as necessary.

The GET PROCESSING OPTIONS command is used to initiate a payment transaction. It
transfers the processing options data object list (PDOL), which contains TLV-coded data for
processing the rest of the payment transaction, from the terminal to the smart card. This data
could be the transaction amount, for example. The card returns a BER-TLV coded data object
containing the application interchange profile (AIP), which describes the functions supported
by the smart card, and the application file locator (AFL), which specifies the location of the
application data.

Table 7.73 The functionality of GET PROCESSING OPTIONS according to
EMV

GET PROCESSING OPTIONS

Command • processing options data object list (PDOL)

Response • application interchange profile (AIP)
• application file locator (AFL)
• return code

The second command for the payment transaction process in a credit card with a chip is
GENERATE APPLICATION CRYPTOGRAM. The data in the command APDU and response
APDU of this command are TLV-coded. It transfers all of the data necessary for a payment
transaction to the card, together with the desired application cryptogram. The card then de-
termines how the rest of the payment transaction should proceed, based on the received and
stored data. As a result, it returns an application cryptogram to the terminal. In the simplest
case, this may be the transaction cryptogram. This concludes the payment transaction process.

The application cryptogram returned by the smart card may contain an authorization re-
quest instead of a transaction cryptogram. In the process of determining how the payment
transaction should proceed, if the smart card concludes that online authorization is necessary,
the application cryptogram that it returns to the terminal contains a request to the authorization

10 See also Section 12.4, ‘The EMV Application’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 524 of 1123

490 Smart Card Commands

Table 7.74 The functionality of GENERATE APPLICATION
CRYPTOGRAM according to EMV

GENERATE APPLICATION CRYPTOGRAM

Command • desired application cryptogram
• transaction-related data

Response • cryptogram information data
• application transaction counter (ATC)
• application cryptogram (AC)
• return code

center superior to the terminal. After the authorization center has processed this request, the
corresponding information is sent to the smart card using a second GENERATE APPLICA-
TION CRYPTOGRAM command. The card can then generate the transaction cryptogram for
the payment and send it to the terminal.11

7.16 APPLICATION-SPECIFIC COMMANDS

There are a large number of commands that are tailored to specific applications. They are
mainly used to minimize memory space or processing time. The majority of these commands
are so specific that they are not included in any standard, or they are defined in a standard for
use in a particular application area.

A list of all application-specific commands would exceed the scope of this chapter. As a
representative example of such commands, we present the RUN GSM ALGORITHM com-
mand, which is the only application-specific command in the GSM 11.11 specification. It is
used to simultaneously generate a dynamic, card-specific key and authenticate the card with
respect to the GSM background system. This function is so specific to the GSM application
that it would make no sense to include it in a general smart card standard. The command
uses a cryptographic algorithm specific to GSM, and the two initial values generated from the
transferred random number would be useless in any other application.

Table 7.75 The functionality of RUN GSM ALGORITHM

RUN GSM ALGORITHM

Command • random number

Response • dynamic key
• enc (key; random number)
• return code

11 See also Section 12.4, ‘The EMV Application’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 525 of 1123

8
Security Techniques

One of the main advantages of smart cards in comparison with other data storage media, such
as magnetic-stripe cards and diskettes, is that they can store data such that it is protected and
kept secret. An essential requirement for this is chip hardware that is tailored and optimized
for this purpose, along with suitable cryptographic methods for protecting confidential data.
However, security depends on more than just special microcontroller hardware and algorithms
implemented in operating system software. The security of the smart card application, and the
design principles used by its developers, are also of fundamental importance. This chapter is a
compendium of essential principles, methods and strategies for producing secure smart cards
and secure smart card applications.

8.1 USER IDENTIFICATION

Since ancient times, a variety of techniques have been used for the unambiguous identification
of persons. The simplest form of identification is an identity card bearing a photograph or a
signature written in the presence of the examiner. The photograph on an identity card can be
compared with the actual person, with the result being an assessment of the genuineness of the
person’s identity.

In the field of information technology, this comparison is not so easy, since it must be per-
formed by a computer instead of another person. Despite their success in performing mindless
activities, computers still have tremendous difficulty in performing intelligent tasks. Conse-
quently, entering a password via a keypad has generally become the preferred identification
method. The effort needed for the comparison is minimal, since essentially all the computer
has to do is to compare the entered password with a stored reference value and make a simple
yes/no decision. Password comparison effectively amounts to making a decision regarding the
genuineness of the identity of the person being tested.

There are basically only three different methods that can be used to identify a person. If a
password is used, what is tested is whether the person knows a particular secret. If he or she
does, the conclusion is that the person is who he or she claims to be. The second option is

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 526 of 1123

492 Security Techniques

to test whether a person possesses a particular object. The third possibility is to test specific,
unique bodily features of the person.

Methods that rely on knowing a secret or possessing a particular item have a significant
drawback, which is that the person to be identified must either remember something or carry
something on his or her person. Depending on the situation, the fact that the secret or object
can be passed to another person can be considered to be an advantage or a disadvantage. In
any case, it is not possible to unambiguously ascertain that the person holding the secret or
the object is truly its legitimate owner, instead of someone else who may have illegitimately
acquired the secret or item that is tested.

The third identification method eliminates this transferability, since it is based on using
specific features of the human body for purposes of identification. Of course, the measurements
are in most cases technically difficult, since for obvious reasons biological features that can be
easily measured, such as weight or height, cannot be used.

User identification

knowledge of a secret bodily featurepossission of an object

Figure 8.1 Classification of methods for identifying a person

It is easier to understand these three possible identification methods if you consider the
following example. Suppose you have to meet an unknown person at the train station. As soon
as you see a possible candidate, you have the problem of deciding whether he is really the
person you are looking for. However, if the unknown person shows up at the right place and
the right time, this actually amounts to an implicit test of a secret, since you can at least hope
that the place and time of your meeting are not generally known. An explicit test of a secret
would occur if the unknown person were to utter a password that is known only to you and him.
Alternatively, he could identify himself by means of an item that he possesses, for example
by holding a newspaper printed on a specific day under his arm. Certainly, the most secure
method would be to check the person for a specific bodily feature. Perhaps he has an unusually
large nose, like Pinocchio’s (which grows very long when he lies . . .).

This train station scenario clearly shows that identifying an unknown person can be regarded
as a classic problem that occurs in everyday life as well as in spy novels, rather than just being
limited to computers and smart cards.

It has now become a common practice to enter a PIN into many types of automated equip-
ment and computers. The resulting marked increase in the number of PINs used for various
purposes makes it very difficult for ordinary people to keep track of all of their PIN codes.
After all, who can remember 20 or more different PINs? The security and good name of
a system are naturally not improved if every user jots down his or her PIN on the card,
since the number of cases of fraud will be excessive. For this reason, a desire to use other
identification methods in place of PIN codes has arisen in recent years. Biometric features
that allow a particular person to be unambiguously identified by a machine are ideal for this
purpose.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 527 of 1123

8.1 User Identification 493

8.1.1 Testing a secret number

The most commonly used method of user identification is entering a secret number, which
is generally referred to by the abbreviation PIN (for ‘personal identification number’), or
sometimes CHV (cardholder verification).

A PIN is usually a four-digit number, usually composed of the decimal numerals 0 through 9.
The reason for using a purely numeric entry is simply that card terminals generally only have
numeric keypads. The PIN is entered using the terminal keypad or a computer keyboard, and
then sent to the smart card. The smart card compares the value that it receives with an internally
stored reference value and reports the result to the terminal.

PIN entry is particularly considered to be a security issue in financial transaction appli-
cations, so requirements relating to the nature of the keypad are frequently found in this
application area. Special keypads that satisfy these requirements are often called ‘PIN pads’.
In Germany, for example, there is a requirement (from the ZKA) that the PIN for a Eurocheque
card can only be entered using a keypad having special mechanical and cryptographic protec-
tion. PIN pads have all the features of a security module, such as case-opening sensors and
foils to protect against drilling, and they encrypt the PIN directly as it is entered. This provides
reliable protection against tampering with a keypad in order to allow a PIN to be intercepted
while it is being entered.

A distinction can be made between static and modifiable PINs. A static pin cannot be
changed by the user, so it effectively must be memorized by the user. If it becomes known, the
user should destroy the card and obtain a new one with a different static PIN. A modifiable PIN
can be altered according to the wishes of the user, or changed to a number that the user finds
easy to remember. There is a danger in this, since the numbers that many people find easy to
remember are ones such as''1234'',''4711''and''0815''. The smart card does not check for the
use of such trivial numbers, since there is not enough memory available to store the necessary
table. However, it would be perfectly conceivable for the terminal to prohibit the PIN from
being changed to such a number. In order to change a PIN, it is always necessary to enter the
PIN, since otherwise an attacker could replace every existing PIN with one of his own.

The situation is different with personal unblocking keys (PUKs), which are also called
‘super PINs’. These keys usually have more digits than a normal PIN (a typical value is six),
and they are used to reset the retry counter of a PIN to zero if it has reached its maximum
value. A new PIN is also entered into the card when the PUK is entered, since resetting the
retry counter is of little use if the user has forgotten the PIN. This is usually the case when the
retry counter has reached its maximum value.

There are also applications that use transport PINs. In this case, the smart card is personalized
with a random PIN and the cardholder receives the PIN value by letter. The cardholder then
replaces the PIN used for card personalization with a PIN of his or her choice before actually
using the card. In a similar method, called the ‘null PIN’ method, the card is preloaded with
a trivial PIN, such as''0000'', and the smart card again forces the PIN to be changed before
it can be used. Both of these methods prevent a PIN that has been ‘spied out’ during card
personalization from later being put to good use.

According to a recommendation of the ISO 9564-1 standard, the PIN should consist of
four to 12 alphanumeric characters in order to minimize the probability of determining the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 528 of 1123

494 Security Techniques

correct PIN by pure trial and error. However, the situation in actual practice is often somewhat
different. Entering non-numeric characters is technically impossible in many locations, since
the keypad has only numeric characters.

The number of characters in a PIN depends not only on the desired level of security, but
also to a large degree on the memory capacity of the average card user. For years, people
have been accustomed to using four-digit PINs, which means that changing to PINs with six
or more digits would be very difficult. In practice, the presumed improvement in security
provided by using a six-digit or eight-digit PIN might turn out to be purely theoretical. Many
people find it difficult to remember numbers of this length, especially if they do not use
them very often, and consequently write them down on the card or on a slip of paper kept
near the card. The level of security with a long PIN is then significantly lower than with a
short PIN.

The perfectly well-founded insistence on periodically changing PINs meets with a similar
fate. It may work with a high-security application having only a few users, but it is fatal for
the acceptance of a mass-market application, which tries to use the simplest possible methods
in order to accommodate people with poor memories.

In this regard, there is another very important issue. In many cases, entering and verifying a
PIN does more than just identify the user and indicate legitimate possession of the card. It also
represents a profession of intent by the user, who agrees to a particular transaction by entering
his or her PIN. A good example is entering a PIN into a cash dispenser. This identifies the card
user by means of his of her knowledge of the secret PIN, but it also represents a declaration
by the user that he or she agrees to have a certain amount of cash paid out from his or her
account. This is a very important consideration in connection with certain biometric features,
some of which can be tested without the explicit permission of the person in question and do
not necessarily represent a profession of intent.

The probability of guessing a PIN

The simplest attack on a PIN, aside from watching it being entered, is just guessing. The
probability of success depends in part on the length of the PIN, the characters from which it
can be composed and how many attempts are allowed. The probability of correctly guessing a
four-digit PIN in three tries is 0.03 %, which is not particularly high. Two basic formulas for
guessing passwords are presented here. They can be used in actual practice to estimate the risk
associated with using a particular password.

x = mn (8.1)

P = i/mn (8.2)

Incidentally, there is yet a fourth factor related to guessing a PIN, which for a long time
has been inexcusably neglected. This is the uniformity of the distribution of PINs within
an application. It is much easier to guess a PIN if you know that certain PINs are more
common than others. The actual significance of this important secondary factor became evident
almost overnight in 1977 in connection with German Eurocheque cards. Although the detailed
procedure for computing a PIN from the data stored in the magnetic stripe of the Eurocheque

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 529 of 1123

8.1 User Identification 495

Table 8.1 Definitions and descriptions of the variables in Formulas (8.1) and (8.2)

Variable Example Description

i 3 number of guesses
m 10 number of possible characters per position
n 4 number of positions
P 0.0003 (0.03 %) probability of guessing the password
x 10,000 number of possible passwords

card is still secret, at least a few general steps of the procedure became known. From this
information, it could be concluded that the PINs that are generated are not uniformly distributed,
since the algorithm used produces the numerals 0 through 5 significantly more often than
6 through 9. It also became known that the PIN algorithm suppressed leading zeros when
generating PINs. With such a non-uniform distribution, it is not necessary to make 3333
attempts in order to correctly guess a four-digit PIN with the permitted number of incorrect
guesses (3), but only 150 [Karten 97]. With 10.5 % of the cards, the distribution is so poor
that only 72 attempts will suffice if the characteristics of the PIN generation algorithm are
taken into account [Schindler 97]. The end result of all this is that an improved PIN generation

Table 8.2 PINs and passwords with various lengths and codings, and the number of possible
combinations

Type of PIN or password Range of values or coding Number of
of the PIN or password possible PINs

or passwords

1-digit PIN PIN ∈ {0 . . . 9} 10
1-character password password ∈ {0 . . . 9,''A'' . . .''Z''} 36
1-character password password ∈ {0 . . . 9,''a'' . . .''z'',''A'' . . .''Z''} 62
1-character password password ∈ {0 . . . 9,''a'' . . .''z'',''A'' . . .''Z'',

20 arbitrary special characters }
82

4-digit PIN, no leading zero PIN ∈ {1000 . . . 9999} 9.00 × 103

4-digit PIN PIN ∈ {0000 . . . 9999} 1.00 × 104

4-character password password ∈ {0 . . . 9,''A'' . . .''Z''} 1.68 × 106

4-character password password ∈ {0 . . . 9,''a'' . . .''z'',''A'' . . .''Z''} 1.48 × 107

4-character password password ∈ {0 . . . 9,''a'' . . .''z'',''A'' . . .''Z'',
20 arbitrary special characters}

4.52 × 107

5-digit PIN, no leading zero PIN ∈ {10000 . . . 99999} 8.9 × 104

5-digit PIN PIN ∈ {00000 . . . 99999} 1.00 × 105

6-digit PIN, no leading zero PIN ∈ {100000 . . . 999999} 8.99 × 105

6-digit PIN PIN ∈ {000000 . . . 999999} 1.00 × 106

6-character password password ∈ {0 . . . 9,''A'' . . .''Z''} 2.18 × 109

6-character password password ∈ {0 . . . 9,''a'' . . .''z'',''A'' . . .''Z''} 5.68 × 1010

6-character password password ∈ {0 . . . 9,''a'' . . .''z'',''A'' . . .''Z'',
20 arbitrary special characters}

3.04 × 1011

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 530 of 1123

496 Security Techniques

algorithm is used with new Eurocheque cards, and the DES algorithm originally used has been
replaced by a triple-DES algorithm.

Generating a PIN

In order to generate a PIN for a smart card, it is first necessary to have a random number
generator and an algorithm that converts a random number into an ASCII-coded PIN of the
required length. A table of known trivial combinations can then be used to detect and discard
trivial PINs. Finally, the PIN must be stored in the smart card, and the VERIFY command
must then be used as necessary to compare it with PIN codes transferred to the card from the
terminal.

A somewhat more complicated procedure for generating PINs is required for a system that
uses magnetic-stripe cards instead of smart cards. This is because it must be possible for a
cash dispenser operating offline to test an entered PIN using data contained in the magnetic
stripe. This requirement does not actually apply to smart cards, but all debit cards (such as
Eurocheque cards) presently have magnetic stripes for reasons of compatibility, even if they
also have microcontrollers. When hybrid cards with both chips and magnetic stripes are used,
the PIN generation algorithm must therefore be deterministic, which means that it must always
produce the same result for a given set of input values. A random number generator cannot do
this.

A procedure is thus needed that can generate a PIN based on the magnetic stripe data. In
order to avoid having the security of the system depend on the procedure itself, a secret key
should also be involved in the computation. Figure 8.2 illustrates an algorithm similar to the
one that is used for German Eurocheque cards. Its inputs consist of the bank routing code,
the account number and the serial number of the card. This algorithm uses the DES algorithm
with a secret key to generate a four-digit PIN. This procedure suffers from the previously
mentioned disadvantage that it produces PINs that are not uniformly distributed over the total
possible number space (''0000'' to''9999'' in the case of a four-digit PIN). This is due to the
mapping rule that is used to convert the hexadecimal numerals ('A','B','C','D','E', and'F') into
decimal numerals following the encryption process. This undesirable feature could be easily
avoided by using a better mapping rule. The DES algorithm is used in part because the key
rather than the procedure must be kept secret, and in part due to its properties of confusion and
diffusion.1

The PIN generation procedure that was used between 1981 and 19972 for German Eu-
rocheque cards produced PINs that were not uniformly distributed over the entire number
space. Consequently, some PINs were significantly more probable than others, and such PINs
could be used for attacks (which were generally not successful). For this reason, it is important
to ensure that procedures used to generate PINs produce PINs that are distributed uniformly
over the available number space.

1 See also Section 4.6.1, ‘Symmetric cryptographic algorithms’
2 See also [Kuhn 97]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 531 of 1123

8.1 User Identification 497

account number
[12 34 56 78 90]

card serial number
[1]

concatenate and truncate
input values

[23344 1234567890 1]

represent as an 8-bit
BCD number

[23 34 41 23 45 67 89 01]

convert using the
mapping rules

['1C E5' 1245]

'0' 0
...
'9' 9

'A' 0
...
'F' 5

select four characters
['1C E5']

encryption result
['33 1C DF D5 D7 8A 1C E5']

bank sorting code
[11 22 33 44]

secret key
['AA BB CC DD AA BB CC DD']

PIN
[1245]

Figure 8.2 Example of a procedure for generating a four-digit PIN using the DES algorithm and three
card-specific data elements (bank routing code, account number and card serial number). This procedure
has the disadvantage that it produces PINs that are not uniformly distributed (i.e., some PINs occur more
often than others), due to the mapping rule used. Sample values are shown in square brackets. This
procedure is remotely similar to the procedure used for German Eurocheque cards and is based on two
articles in Die Datenschleuder [Müller-Maguhn 97a, Müller-Maguhn 97b]

Testing the authenticity of a terminal

As is well known, entering a PIN is used to verify the identity of the user. However, the
user might equally well want to be able to verify the genuineness of a terminal. For instance,
consider the possibility of a dummy cash dispenser. Someone with fraudulent intentions could
use such a machine to collect PINs entered by unsuspecting users. If the person who set up the
machine then steals the users’ cards, he or she could use the PINs acquired via the dummy cash

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 532 of 1123

498 Security Techniques

dispenser to withdraw money from the cardholders’ accounts. All of this is possible because
there is no way for the user to test the genuineness of the terminal.

However, there is a procedure that can be used to defend against this type of attack. It
involves storing a password in a file in the card. This password is known only to the card user
and can be changed only by the user. It can be a name or a number chosen by the user. The
smart card operating system allows read access to this file only after the terminal has been
authenticated by the card.3

terminal authenticates
smart card

show the password
on the display

cancel transaction if
password incorrect

the password may now
be changed if desired

test PIN; the password
file may be written if the
entered PIN is correct

smart card
authenticates terminal

if the terminal is authentic,
allow read access to the file

TerminalUser

PINenter PIN

Figure 8.3 A procedure for ensuring that a PIN can only be entered using a genuine terminal. A
prerequisite is that the cardholder does not enter the PIN until the correct password has been displayed
by the terminal

The first thing that happens after the user has inserted a smart card into the terminal is
a mutual authentication transaction between the card and the terminal. If this is successful,
each party knows that the other party is genuine. The card then allows read access to the file
containing the user’s secret password, which is displayed on the terminal. The user sees his or
her password and thus knows that the terminal is genuine, since it would have otherwise had
no access to the file containing the user’s secret password. He or she can now safely enter the
PIN.

This procedure is also a simple way to prevent PINs from being entered into terminals that
have been manipulated. Any arbitrary word or number can be used for the password. It should
be possible for the cardholder to change the password as desired, in order to prevent potential
attackers from being able to ferret it out. This procedure can also be extended or modified as
necessary to meet other demands of a similar nature.

8.1.2 Biometric methods

The steadily increasing use of passwords and PINs is producing a steadily increasing level of
user resistance to this type of identification. Few people find it particularly difficult to remember

3 The structure of a suitable smart card application is described in detail in Section 15.9.3, ‘Testing the genuineness
of a terminal’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 533 of 1123

8.1 User Identification 499

a few frequently used combinations of numbers or letters. However, if a card-specific PIN code
is used only rarely, such as every two months to obtain money from a cash dispenser, most
people find it difficult to remember the PIN. Matters are only made worse by the unconscious
fear that the machine will confiscate the card if the PIN is entered incorrectly three times in a
row.

This is certainly one of the main reasons why biometric methods are finding increasing
favor in many areas. They are not necessarily faster or more secure than PIN entry, but they
can make things much easier for users. If the level of security provided by biometric methods
is equivalent to that provided by PIN codes, system operators will also be prepared to use
them. After all, biometric features cannot be transferred to another person as easily as PINs.
This means that the actual person is identified, rather than a secret shared by the user and the
system operator.

8.1.2.1 Basic principles

A biometric identification method is a method that can unambiguously identify a person by
means of unique, individual biological features. Here a distinction can be made between
physiological and behavioral features. If the features tested by the method are directly related
to the person’s body and are fully independent of conscious behavior patterns, they are called
physiological biometric features. Biometric methods based on behavioral features, by contrast,
utilize certain features that can be consciously changed within certain limits, but that are still
characteristic of a particular person.

An essential aspect of biometric feature testing is the question of user acceptance. If the
method used is similar to existing, well-known methods, users will be more willing to accept
and use it. A typical example is a handwritten signature, which has been used for generations
in almost all cultures for identification and indicating agreement or consent. Social aspects
also play an important role. In many countries, fingerprinting is primarily used by the police
and security forces. This could adversely affect the acceptance of biometric methods based on
fingerprints.

Another point that must be considered is the concerns that users may have regarding medical
and hygienic aspects. For instance, users may be afraid of acquiring a disease from optical
scanning of their retinas, or that the laser light will damage their eyes. Even though such fears
may be fully subjective and lack any scientific basis, they can still strongly affect user behavior,
and above all user acceptance of the method. Before any biometric identification method is
employed, such aspects should be fully understood.

There is yet another difference between biometric and knowledge-based identification meth-
ods, which can be considered to be either an advantage or a disadvantage according to one’s
point of view. This is that biological features cannot be transferred to another person. With a
system that uses biometric methods for identification, this means, for example, that it is not
possible to give your card and your PIN to a trusted person who can then use the card in
the intended manner. System operators naturally find such actions absolutely shocking, since
revealing a PIN is prohibited in almost all systems. However, nearly everyone knows how
loosely such prohibitions are observed in practice.

Biometric features are usually not modifiable, which is precisely what makes them attractive
for the unambiguous identification of persons. However, this non-modifiability can certainly

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 534 of 1123

500 Security Techniques

Biometric user identification

physiological methods behavioral methods

typing rhythm

voice

face

iris (eye)

retina (eye)

hand geometry

dynamic signature

fingerprint

Figure 8.4 Classification of the most important biometric methods for user identification

lead to major complications if a system is compromised. In addition, this non-modifiability in
combination with the fact that some biometric features can also be measured with a reasonable
amount of effort and cost without the consent of the person involved can lead to serious
problems. This can be clearly illustrated using our fingerprint example. Suppose the fingerprints
of a person are illicitly taken by means of suitable analysis of an object that this person held in
his or her hand while eating in a restaurant, and the data are then made public on the Internet
so they can be copied by anyone who wants to do so and has suitable equipment. In such a
situation, for the rest of this person’s life it would effectively be impossible to unambiguously
identify him or her using fingerprints as a biometric feature, since it would never be possible
to be sure that he or she actually produced a particular fingerprint.

Biometric features can also be classified according to the ease with which they can be
acquired. The classifications that are used are ‘open’, ‘slightly concealed’, ‘concealed’ and
‘strongly concealed’. This classification relates to how easily the biometric feature can be
acquired by a third party without the consent of the person in question. Open features, such
as a person’s facial features, can be recorded by simple observation. An example of a slightly
concealed feature is a fingerprint, which can be acquired using simple equipment without the
awareness of the person in question. A significant amount of equipment is required to acquire
a retinal scan, and it is practically impossible to do so without the awareness of the person in
question, so retinal patterns belong to the category of concealed features. Strongly concealed
features are frequently behavioral features, since in most cases they must be consciously
revealed.

Entering a PIN not only tests whether the user knows a secret code, it is also a legally binding
equivalent of saying, ‘I consent’. This relationship is very important if some other method is to
be used in place of a PIN. A test based on a retinal scan performed at a distance of three meters,
which happens to not be technically possible at present, could certainly not be considered to
indicate the consent of the person in question to any sort of action. In almost all countries,
only an intentional manual action of the user can be interpreted as an indication of consent.
For instance, breaking the seal of a cardboard box containing software is an unambiguous
indication that the user agrees with the printed license conditions. Biometric methods involving

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 535 of 1123

8.1 User Identification 501

fully passive testing of the person in question must therefore be augmented by appropriate user
instructions together with something that provides the element of consent.

analyze
data

similarity
computation

collected
data prepared

data
decide

reference
 data

 decision
data

yes / no
decision

Figure 8.5 Basic data flow for the computational evaluation of a biometric feature

Naturally, not all biological features are suitable for personal identification. A feature must
satisfy at least the following criteria before it can be reasonably used:

� it can be measured effectively (in terms of the measuring method, time and costs)

� it must be capable of being uniquely associated with a particular individual

� it must be widely distributed within the population

� it must not be possible to alter the feature with fraudulent intent

� the amount of reference data generated must be small (a few hundred bytes to at most several
thousand bytes)

� natural changes to the feature over time must be so small that correct measurement of the
feature is always possible

� the measurement method and the feature must be acceptable to users.

With any type of measurement, the result is not always the same, but instead varies from
instance to instance. This occurs even with the simplest measurements. For example, if you
measure the length of a sheet of paper several times, each result will be slightly different. There
are many reasons for this, but it does not create difficulties in practice, since the average value
of the measurements will be close to the true value.

Experience shows that the amount of variation among individual measurements depends on
the difficulty of making the measurement. For instance, there is a significant technical difference
between measuring the weight of a bar of chocolate and measuring the distance between the
earth and the moon. Measurements performed on human beings are always difficult and are
subject to a wide range of variation.

Figure 8.6 shows an example of the results of measuring a biological feature, such as the
length of a finger. The range of variation in the measurement is plotted on the horizontal axis,
while the vertical axis indicates the probability of correct identification based on the measured
biometric feature. With an ideal biometric feature and an ideal measurement method, there

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 536 of 1123

502 Security Techniques

would be no variation, and the curve would be reduced to a vertical line. However, a real
feature together in combination with a real method results in the Gaussian ‘bell curve’ shown
in the figure. If the measurement result deviates from the reference value, it is not possible to
be absolutely sure that the person to be identified has been correctly recognized.

probability
of correct
identification

possible dispersion
in measured values

actual curve

ideal curve

0 %

100 %

Figure 8.6 Probability distribution for repeated measurements of a biometric feature of a person

Before a biological feature can be tested, the feature of the person in question must first
be acquired. This can be done by making repeated measurements and computing the average
value. This yields a reference value, which is then stored in the smart card. After this, the
smart card can as necessary test whether an actual measurement value sent to it matches
the reference value. Depending on the biometric method used, it may be necessary to use a
powerful computer to process the actual measurement data into a form that the card can use
for comparison. Since identification cannot be established with absolute certainty, a threshold
level is needed in order to decide whether the person in question should be recognized as
genuine. This threshold level must be set separately for each method and application.

If we take our probability distribution diagram and add a curve for a second person to
it, we obtain the diagram shown in Figure 8.7. The additional curve represents an arbitrary
person whose measurement curve is close enough to that of the first person for it to affect the
identity decision. Since both curves approach the horizontal axis asymptotically, they have
an intersection point. At this point, there is an equal probability that the person being tested
is genuine or not genuine. Consequently, biometric identification systems use an adjustable
threshold level that marks the probability above which the identification is assumed to be
correct. The threshold level shown in Figure 8.7 divides the two curves into four regions.
These indicate the decision to be taken regarding the identity of the person as deduced from
the biometric feature.

What this diagram essentially demonstrates is that there is no such thing as absolutely
positive identification. It is only possible to assume, with a high degree of probability, that the
person has been correctly identified. The level of this probability can be adjusted using the
threshold value. However, in practice the threshold value cannot be set arbitrarily high, since an
excessively strict criterion for correct identification produces a large number of false rejections.

The two basic parameters for judging a biometric method are its false acceptance rate (FAR)
and its false rejection rate (FRR). The FAR is the probability of incorrect acceptance of the
wrong person, while the FRR is the probability of incorrect rejection of the right person.
Naturally, these two probabilities cannot be freely chosen, since they are primarily properties

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 537 of 1123

8.1 User Identification 503

probability
of correct
identification

possible dispersion
in measured values

0 %

100 %

1 43 2

adjustable
identification

threshold

probability distribution
for the person being tested

probability distribution
for another person

equal
error rates

Figure 8.7 Probability distribution and decision regions for a biometric feature measurement:
1 – true positive identification (true acceptance) 3 – false positive identification (false acceptance)
2 – true negative identification (true rejection) 4 – false negative identification (false rejection)

of the biometric method being used and can be modified only within certain limits. In addition,
the FAR and FRR are mutually dependent, since a low FRR produces a high FAR and vice
versa. For the user, a high FRR means that he or she may be rejected in spite of presenting a
legitimate feature, which naturally affects user acceptance of the system. The system operator
wants to have not only a low FRR but also a low FAR, in order to prevent false positive
identifications.

PIN testing does not require complicated algorithms in the smart card, since it only involves
comparing received and stored PIN values. Unfortunately, things are not this easy with bio-
metric features. The reference value is of course stored in the card, but the comparison with
the measurement in question normally cannot be performed in the card. This is due to the large
amount of processing capacity needed to evaluate biometric features. Since smart cards usu-
ally do not have adequate processing capacity for this, the computer-intensive preprocessing
of the measurement values is performed externally. The result is then sent to the card, which
evaluates the preprocessed data using special algorithms that do not require a lot of memory
or processing capacity and then makes a yes/no decision based on the stored reference value.

This method is called ‘oncard matching’ or ‘matching on chip’ (MOC). The amount of
time required for matching depends on many factors, such as the biometric method used and
whether the data have been preprocessed. For example, it takes approximately two seconds
to test fingerprint data in a smart card with an 8-bit processor using data that have been
preprocessed in the terminal.

Biometric features are personal data and thus should be appropriately protected. This rep-
resents a very good application for smart cards, since the reference data needed for testing
never have to leave the card, which makes attacks significantly more difficult. However, if the
reference data are stored in a non-secure environment, they can be manipulated and read as
desired. In such a situation, a biometric identification method does not provide any significant
benefit. The steadily increasing processing capacity of microcontrollers and the possibility of
integrating sensors for biometric data acquisition into cards may allow smart cards to be used
in new application areas.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 538 of 1123

504 Security Techniques

Figure 8.8 Photograph of a USB token with an integrated fingerprint sensor and smart card microcon-
troller (Source: Giesecke & Devrient)

8.1.2.2 Physiological features

Additional biometric features could easily be added to the features described below. However,
we have limited our descriptions to the most important and most commonly used features in
order to avoid getting bogged down in details.

Some physiological features that cannot be consciously altered also do not change much over
time. For example, the characteristic patterns of fingerprints never change during a person’s
lifetime, nor do the patterns of the retinal blood vessels. The face is certainly an exception,
since even though it basically does not change, it can be transformed to a large degree by a
different haircut, growing or shaving a beard and the like. Basically, though, it is possible to
say that biometric features based on adult physiology do not require ongoing adjustment of
the reference pattern, since any changes are negligibly small or non-existent.

Facial features

Based on everyday experience, we can assume that the human face is suitable for use as a
biometric feature. However, transforming this assumption into a technical implementation is
fraught with difficulty. Faces can change greatly within a short time, and their appearance
depends strongly on external factors such as eyeglasses, beards, make-up, illumination and
viewing angle.

If a person’s face is photographed using visible light and the information captured by the
photograph is suitably processed, is will often be possible to make a decision about the identity
of the person behind the face. The technical toolkit for this process includes very powerful

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 539 of 1123

8.1 User Identification 505

computers, fuzzy logic and neural networks, which indicate the amount of effort that it entails.
In addition, the stored image should be three-dimensional, or the person being examined should
turn his or her face, to prevent the system from being deceived by holding a photograph in
front of its sensor. In general, facial features may prove to be a very interesting subject for
future biometric methods, but presently they cannot yield a high enough probability of accurate
identification to allow them to be widely used.

Retinal features

Every human retina has its own unique pattern of blood vessels, with their branches and nodes.
This pattern can be captured using a beam of infrared light directed through the pupil. The
light reflected by the retina is collected by a CCD camera, which in turn sends the recorded
image data to a computer for analysis.

Retinal imaging is one of the very best biometric methods, since it can be used to uniquely
identify a person with a very high degree of probability. However, it is not readily accepted by
users, since they must place their eyes very close to the scanner in order to be identified. This
often results in a fear of infection and anxiety with regard to the infrared beam.

Iris features

The iris is a variable diaphragm that controls the amount of light reaching the retina. Like
the retina, it is a biological feature that is unique to each individual. An iris scan can be
performed at a greater distance than a retinal scan, since the measurement process is simpler.
With this method, the iris (which is located at the front of the eye) is imaged by a CCD camera
using visible light. The data evaluation is similar to that used for retinal images. Contact
lenses can strongly influence the measurement results under certain conditions, and thus cause
problems.

Hand geometry

Identification systems based on three-dimensional measurements of the hand, or parts or the
hand, were used as early as the 1970s. These measurements can be based on features such as
finger length, finger diameter and fingertip radius. Unique individual features can be determined
using very few measurement points (e.g. five). The actual measurements can be made very
simply using infrared LEDs and photodiodes, with the hand geometry being measured by
recording which photodiodes are fully or partially blocked by the hand. Since only a few
measurements are needed for identification, the procedure is sufficiently fast and uncomplicated
for users. The user only has to place his or her hand in an instrument, which then performs the
measurements.

Fingerprints

The best-known biometric identification method based on a physiological feature is without
doubt fingerprinting. In the electronic version, it is naturally no longer necessary to coat the
fingers with black ink and press them onto a piece of paper. Instead, a thumb or fingertip is placed
against a transparent plate, and a camera mounted under the plate scans the skin surface without

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 540 of 1123

506 Security Techniques

any contact. Alternatively, ultrasonic sensors or semiconductor-based capacitive sensors can
be used.

The comparison with the reference pattern is usually based on the primary features of
the classification scheme developed by Edward Richard Henry,4 which are arches, loops and
whorls. Information about the type, position and orientation of approximately 20 such features
is stored, and this information is used to generate the reference pattern. These characteristic
features are called the ‘minutiae’.

Certain groups of users dislike this method, since fingerprints have been used for years as
a tool for combating crime. Wounds on the fingertips can also make unambiguous personal
identification difficult. It can also be difficult to identify persons who work a lot with their
hands. Many systems have sensors for measuring the temperature of the finger or the pulse
rate, in addition to the scanner. This is intended to prevent an amputated finger from being
used for identification purposes.

Nevertheless, fingerprint systems are widely used, since they present relatively few problems
in terms of technical difficulty and user acceptance. The time needed to sense the fingerprint
and perform the subsequent test also lies within reasonable limits. The sensors used have a
resolution of around 400 dpi.

Table 8.3 Comparison of biometric methods based on physiological features. The listed values are
typical and can strongly vary among manufacturers. The volume of the reference data is also
strongly dependent on preprocessing

Test duration Amount of Probability of Probability of
(seconds) reference data false rejection false acceptance

(bytes) (FRR), % (FAR), %

Facial image — — ≈2 ≈1
Retinal image 1.5–7 40–80 0.005 10–9

Hand geometry 1–2 10–30 0.8 0.8
Fingerprint 1.5–9 300–800 0.014 10–6

8.1.2.3 Behavioral features

With many persons, biometric features based on behavior are not stable over time. One example
is a signature, which can change considerably during the course of a person’s life. However, it
is rare for these changes to occur suddenly, and they are usually quite gradual and slow. Many
systems that use biometric features therefore use adaptive methods that accept any changes in
the feature that are detected during a correct identification as a new reference pattern, which
is then stored in the smart card.

4 Fingerprints were first used for identifying persons by the Bengal police in India around the end of the 19th century,
under the leadership of Sir Edward Richard Henry. After returning to London, Edward Henry established the first
British fingerprint collection in 1901, and he generated a classification method for fingerprint features that is still in
use

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 541 of 1123

8.1 User Identification 507

Table 8.4 Comparison of biometric procedures based on behavioral features. The listed values are
typical and can strongly vary among manufacturers

Test duration Amount of Probability of Probability of
(seconds) reference data false rejection false acceptance

(bytes) (FRR) (FAR)

Voice 5 100–1000 1 % 1 %
Dynamic signature 2–4 40–000 1 % 0.5 %

Typing rhythm

It has been determined that there are large differences in the manners in which different indi-
viduals type characters on a keyboard. These primarily relate to the pauses between individual
letters. This can naturally be used as a biometric feature for identification. The procedure works
by having the person to be identified type a prescribed character string (which is different for
each test) on a keyboard. The computer to which the keyboard is attached evaluates the typing
rhythm as the character string is typed. A text chosen by the user can also be used to eval-
uate the typing rhythm, but this requires more characters to be typed than with a prescribed
text.

The primary advantage of this method is that it does not need any additional hardware,
since in most cases a keyboard and computer are already available. Unfortunately, between
100 and 150 alphanumeric characters are needed for the test, and they must be typed using the
10-finger system. This is the main drawback of this method.

Vocal features

Like the face, a person’s voice is characteristic of the person, so it can also be used for identifi-
cation purposes. The person to be identified speaks one or more sentences into a microphone.
These must be different for each session, since otherwise the system could be attacked very
easily by playing back a previous identification session, which for example may have been
recorded on magnetic tape. The waveforms of the spoken text are subjected to a Fourier anal-
ysis, which yields the characteristic frequency spectrum of the speaker. This is then compared
with a reference value to determine whether the speaker’s identity is genuine. The entire gamut
of modern computational wizardry, such as fuzzy logic, neural networks and the like, is also
employed with this method.

Of course, this method also has its shortcomings. A person’s voice is very strongly influenced
by his or her current bodily condition. Furthermore, all background noises must be reliably
filtered out to make unambiguous spectral analysis possible in the first place. A different
sentence must be spoken for each test to prevent recorded speech from being played back,
which very much complicates the procedure and makes recognition more difficult. However,
these technical difficulties are offset by good user acceptance, which makes this a very attractive
biometric identification method.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 542 of 1123

508 Security Techniques

amplitude
curve

frequency
spectrum

person 1 person 2

time time

time time

Figure 8.9 Amplitude waveform and time-dependent frequency spectrum of the name ‘Wolfgang’,
spoken by two different people

Dynamic signature

The only identification method that is commonly used in everyday life is writing a signature.
Due to its very individual character, a signature can also be used as a biometric feature. With a
static method, the signature is evaluated after it has been written. With a dynamic method, by
contrast, measurements are made while the signature is being written. The static method is only
of theoretical interest, since it cannot distinguish a photocopied signature from a genuine one.

The parameters measured in the dynamic method may for example be the general form
of the signature, the speed, acceleration and pressure of the pen on the writing surface, and
the time required to write the signature. A special pen, or a special pad that can sense the
parameters to be measured, can be used to make the measurements. Figure 8.10 shows an
example of a possible arrangement in which an ordinary pen is used on a special pad, and
Figures 8.11 through 8.14 show examples of measured signals that can be used as the basis for
a biometric identification process. Pressure sensors are located at the intersections of the grid
wires, and their signal amplitudes are transmitted to the computer via conditioning logic. The
computer can then use various algorithms to process the measured data into a standardized
format and compare the results with a stored reference pattern.

Using a dynamic signature for purposes of identification has the highest degree of accep-
tance of all personal identification methods, since signatures are used daily by everybody

Figure 8.10 Sample measurement setup for testing a dynamically generated signature

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 543 of 1123

8.1 User Identification 509

0.0 cm

1.0 cm

2.0 cm

3.0 cm

4.0 cm

5.0 cm

6.0 cm

7.0 cm

8.0 cm

9.0 cm

10.0 cm

0.00 s 0.20 s 0.40 s 0.60 s 0.80 s 1.00 s 1.20 s 1.40 s 1.60 s 1.80 s 2.00 s

vertical
(Y-axis)

Figure 8.11 Horizontal and vertical pen position as function of time, for writing the word ‘Rankl’

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 s 0.20 s 0.40 s 0.60 s 0.80 s 1.00 s 1.20 s 1.40 s 1.60 s 1.80 s 2.00 s

Figure 8.12 Pen pressure as function of time, for writing the word ‘Rankl’

0.00 cm/s

0.50 cm/s

1.00 cm/s

1.50 cm/s

2.00 cm/s

2.50 cm/s

0.00 s 0.20 s 0.40 s 0.60 s 0.80 s 1.00 s 1.20 s 1.40 s 1.60 s 1.80 s 2.00 s

Figure 8.13 Pen speed as function of time, for writing the word ‘Rankl’

in almost the same fashion. However, here the technical solutions are not simple, since sig-
natures change over time and are never fully identical. You need only consider the differ-
ence in your signature if you write it while sitting or standing to appreciate the truth of
this.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 544 of 1123

510 Security Techniques

-60.00 cm/s2

-40.00 cm/s2

-20.00 cm/s2

0.00 cm/s2

20.00 cm/s2

40.00 cm/s2

60.00 cm/s2

80.00 cm/s2

100.00 cm/s2

120.00 cm/s2

0.20 s 0.40 s 0.60 s 0.80 s 1.00 s 1.20 s 1.40 s 1.60 s 1.80 s 2.00 s

Figure 8.14 Pen acceleration as function of time, for writing the word ‘Rankl’

8.2 SMART CARD SECURITY

The essential characteristic of a smart card is that it provides a secure environment for data
and programs. If the amount of effort needed to read data from a smart card were not so large,
it would essentially be nothing more than a diskette with a different interface.

It is naturally practically impossible to configure a complete system, or even a smart card,
such that it has perfect security that is proof against everything and everybody. If the effort
expended on the attack is raised to a high enough level, it is possible to gain access to any
system or manipulate it. However, every potential attacker makes a conscious or unconscious
cost/benefit analysis for himself and his targets. The rewards of breaking into a system must be
worth the time, money and effort that the potential attacker must expend to attain his objective.
Regardless of whether the reward is money or prestige within a peer group, if it is not worth
the effort, no one will invest much energy in breaking a system or a smart card.

The security of a smart card is ensured by four components. The first component is the card
body, in which the microcontroller is embedded. Many of the security features used for the
card body are not only machine-readable, but can also be visually checked by humans. The
techniques used for these features are not specific to smart cards, but are also used with other
types of cards. The remaining components – the chip hardware, the operating system and the
application – protect the data and programs in the smart card microcontroller.

Smart card security

chip hardware operating system application

passive protection

active protection

card body

Figure 8.15 Classification of smart card security components

The security of a smart card is assured only when all of these components are present
and their defense mechanisms are working properly. If the card is used exclusively within

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 545 of 1123

8.2 Smart Card Security 511

an environment where it is not subject to human verification, the card body component is
not necessary. The three components that are independent of the card body, however, are
indispensable for the physical and logical security of a smart card with respect to attacks. If
any of these components fails, or if any one of them does not meet the applicable requirements,
the smart card is no longer secure, since these components are coupled to each other in a logical
AND relationship.

The useful life of a smart card is generally three years. The challenge to manufacturers
of smart card microcontrollers and producers of smart card operating systems is to maintain
a lead on all attackers that is at least this long. This allows the consequences of possible
attacks to be minimized or avoided by employing suitable countermeasures. However, it is not
always possible to maintain such a lead, which is why it is always important in the design
and development of application architectures to pay strict attention to preventing a successful
attack on a single smart card from compromising the entire system.

8.2.1 A classification of attacks and attackers

The primary problem faced by all information technology systems that are subject to attack is
the ‘avalanche effect’, which is often seen after a successful attack. If a printer (for example)
succeeds in counterfeiting good-quality bank notes in quantity, this is naturally a matter of
concern for the affected national bank, but in practice it never leads to inflation of the national
currency. In the first place, the counterfeiter would never be able to produce a sufficient number
of false bank notes for this, and in the second place, it is very risky to bring a large number of
counterfeit notes into circulation.

With electronic money, on the other hand, the situation is somewhat different. Since it
consists of nothing more than immaterial information, in practice it is not possible to distinguish
between an original and a copy. In addition, if a new counterfeiting method becomes known,
this can lead to an avalanche effect when other people copy the original technique. This
effect can be very clearly seen by considering the history of counterfeit prepaid telephone
cards, which have been produced in very large numbers. Some network operators can still
only defend themselves against this type of attack by restricting calling destinations for card
phones.

If a design error or weakness in a major smart card system becomes known, it can be
assumed that this information will be distributed over the entire world via the Internet within
days or a few weeks. Very quickly, suitable software and hardware as necessary will be offered
via the Internet, usually with complete documentation, making it easy for others to reproduce
the original attack. This software is also usually provided in the form of source code, thus
allowing it to be further refined by others, which also generally happens. This leads to a very
rapid evolution of the hardware and software, which quickly becomes optimized to suit its
intended purpose.

The following material represents an attempt to systematically classify possible types of
attack and attackers. The emphasis naturally lies on the IT aspects of smart cards, rather than
the security features of the card body that can be checked by humans. This classification
allows potential attacks to be evaluated so that suitable measures can be taken against them.
As is well known, it is easier to defend against a known type of attack than an unknown
one.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 546 of 1123

512 Security Techniques

We have based our classification of the different types of attack on the ISO 13491-1 standard,
which describes the concepts, requirements and evaluation methods for cryptographically
secure equipment in the banking sector.

Classification of attacks

There are several different approaches to the systematic classification of attacks on smart cards.
For instance, in a security evaluation, all possible types of attack are grouped and formally
described according to each phase of the card’s life cycle [IC Protection 97, Isselhorst 97].
This yields multi-page lists that identify all conceivable attacks for each phase. The actual
evaluation consists of examining each item on the list to see whether the system or smart card
can defend against it. In analogy to fault tree analysis, it is also possible to generate an attack
tree analysis [Schneier 99]. Such an analysis is of great benefit for detailed investigations and
representing dependencies.

In this book, we use a different type of classification in order to present the subject in
as realistic a manner as possible and illustrate the ping-pong game of attack and defense. In
addition, our intention is to present a general summary of methods of attack and defense that
is not specific to any particular system.

In principle, attacks on smart cards can be divided into three different types: attacks at the
social level, attacks at the physical level and attacks at the logical level. Naturally, mixed types
of attacks also occur in practice. For example, an attack at the physical level could prepare the
way for a subsequent attack at the logical level, which is for example the case with differential
fault analysis.

Attacks on smart cards

attacks at the
social level

attacks at the
physical level

attacks at the
logical level

Figure 8.16 Classification scheme for attacks on smart cards

Attacks at the social level are attacks that are primarily directed against people that work
with smart cards. These can be chip designers working for semiconductor manufacturers,
software designers or, further on in the life cycle of the card, cardholders. These attacks
can only partially be countered by technical measures. They must primarily be countered by
organizational measures. Surreptitiously acquiring a PIN by watching it being keyed in can
easily be prevented by providing visual screens on either side of the keypad. Attacks at the
social level against smart card programmers are rendered pointless by making the procedures
that are used public, as well as by having third parties evaluate the program code that they
produce. In this case, security depends only on secret keys, and the knowledge possessed by
software developers is of no use to an attacker.

Attacks on smart cards at the physical level usually require technical equipment, since
it is necessary to obtain physical access to the smart card microcontroller hardware in one

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 547 of 1123

8.2 Smart Card Security 513

way or another. Such attacks can be either static, which means that no power is applied to the
microcontroller, or dynamic, with the microcontroller operating. Static physical attacks impose
no timing restrictions on the attacker, who can do his job at his own pace. With a dynamic
attack, by contrast, the attacker must have access to sufficiently fast equipment for acquiring
and evaluating data.

Physical analysis methods

static analysis
(microcontroller not operating)

dynamic analysis
(microcontroller operating)

Figure 8.17 Classification of physical methods that can be used to analyze smart card microcontrollers

Up to now, most known successful attacks on smart cards have been at the logical level.
These attacks arise from pure mental reflection or computation. This category includes classical
cryptanalysis, as well as attacks that exploit known faults in smart card operating systems and
Trojan horses in the executable code of smart card applications.

Just as with the cryptanalysis of cryptographic protocols, these attacks can be divided into
passive and active types. In a passive attack, the attacker analyzes the ciphertext or cryp-
tographic protocol without modifying it, and may for example make measurements on the
semiconductor device. In an active attack, by contrast, the attacker manipulates the data trans-
mission process or the microcontroller.

Types of attacks

passive attack active attack

Figure 8.18 Classification of types of attacks on smart cards

The phases of the life cycle of a smart card as defined by the ISO 10202-1 standard 5 could
be used with regard to the timing of possible attacks. However, this would result in verbose and
long-winded descriptions, so for the sake of readability we have undertaken a simplification
and classified the attacks into three intervals: (a) development, (b) production and (c) card
usage.

Attacks during development relate to system design, chip development, operating system
development and the generation of applications. The term ‘production’ is used in this context
to refer in general to all processes used to make hardware. This covers the whole range from
wafer fabrication by semiconductor manufacturers to card personalization and sending cards
to users. Card usage refers to the stage in which the smart cards are in the field, which means
when they are being used by cardholders.

5 See also Chapter 10, ‘The Smart Card Life Cycle’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 548 of 1123

514 Security Techniques

Attack timing

attacks during the
development stage

attacks during
manufacturing

attacks while the
card in in use

Figure 8.19 Classification of the timing of possible attacks

The consequences of an attack and a classification of attackers

In order to be able to realistically estimate the strengths and weaknesses of attacks on the
security of a smart card, it is important to first have at least a rough idea of the possible
types of attackers. We can also use this information to help us devise defensive strategies and
mechanisms.

As a rule, typical attackers have one of two basic motivations. The first motivation is simple
greed, while the second motivation is the desire for fame and status within a particular ‘scene’.
These two motivations have different consequences for the system operator. An attacker who
seeks a financial reward for his activities may take a certain risk by becoming a ‘card issuer’
in his own right,6 or he may attempt to blackmail the system operator. Both approaches can
be combated using the usual judicial measures. If details of the attack become public, the
reputation of the smart card system will be damaged. The worst damage to the reputation of a
system operator occurs when a large number of cardholders lose money as a result of an attack.

The reputation of a smart card system can be similarly damaged by an attack prompted by
a compulsion to perform scientific research, rather than criminal tendencies. An attacker of
this sort will consider his or her activities to be successful only if the results can be published
in a suitable manner. The attacker is also under strong pressure to publish these discoveries as
quickly as possible, since in this field, as is well known, being first is what counts. The end
result is that the system operator, with little or no warning, is confronted with the publication
of a detailed description of an attack on his system. Following this, the published attack is
refined step by step by other interested parties and explained in terms that can be grasped by
outsiders. The final blow comes when programs that carry out the attack in a fully automated
manner are published on the Internet. In the spring of 1998, several GSM network operators
found themselves confronted with a series of events similar to what has just been described.
However, in this case the attack on the COMP128 cryptographic algorithm, which is used for
A3/A8, did not have major negative effects on normal network operation.

There is a particularly significant aspect of this form of attack with regard to the attacker.
He is regarded as the successful discoverer of a security leak, and thus as one of the ‘good
guys’, and almost never need fear legal action as a result of his actions.

The quintessential conclusion that can be drawn from these scenarios is that it ultimately
does not particularly matter to a system operator whether an attack comes from a ‘good guy’
or a ‘bad guy’. In the case of a truly dangerous attack, the financial damage and the damage
to the reputation of the system are most often rather large. In the worst case, the system must

6 This is the usual approach for producing self-reloading telephone cards

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 549 of 1123

8.2 Smart Card Security 515

be shut down, all cards must be blocked and new cards that are immune to the attack must be
issued. With a large system having several million cards in use, such a process can take more
than half a year.

Attacker

hacker insider
organized

crime
academic
institution

person organization

criminal competitor

Figure 8.20 Classification of the possible types of attackers

The classification chart in Figure 8.20 shows a classification of attackers based on the
previously described aspects and practical experience. All types of attackers can be equally
dangerous to a smart card system, but they have different capabilities and options. A typical
hacker, for instance, has a moderate amount of system knowledge, good creative ideas and
usually a similar group of friends. He normally does not have an extensive amount of equipment,
and his financial means are also limited. However, if he is competent and employs a suitable
approach, he can certainly obtain access to a large amount of processing capacity, for example
by means of an Internet campaign.

All insiders form a special class of attackers, under the assumption that they have very
good knowledge of the system. They may have access to hardware and software components,
and they may be aware of weaknesses in the system. As long as only single individuals are
involved, they are equivalent to hackers in terms of their resources and options. However, since
insiders are neither anonymous nor especially numerous, it is usually possible to identify the
sources of their attacks.

The third class of persons who can be regarded as potential attackers is criminals. Although
they usually do not have a high level of technical knowledge, they exhibit considerable energy
when it comes to obtaining personal benefits (primarily financial) as a result of their activities.

A potential source of attack that cannot be ignored in practice consists of academic insti-
tutions, such as universities and technical institutes, including their students and professors.
They do not necessarily have special knowledge of particular smart card microcontrollers or
applications, but they do have a large amount of generally useful knowledge. In addition,
they have access to a large pool of qualified and inexpensive labor in the form of students
and graduates, as well as adequate technical equipment in their laboratories. Many of these
institutions also house a plentiful amount of processing capacity and highly motivated people
with an experimental bent.

A special class of attackers is formed by competitors. They normally have considerable
technical knowledge, and some of them may have very sophisticated analytical equipment.

Organized criminal organizations naturally represent a completely different level of attacks
on smart card systems. They have sufficient financial resources to acquire all the knowledge
and tools necessary for a successful attack, either commercially or by illicit means.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 550 of 1123

516 Security Techniques

Classification of the attractiveness of an attack

In order to allow effective perimeter defense measures to be put in place, the attractiveness
of an attack should be evaluated for each of the potential weaknesses of the system. This
can be done in an objective mathematical manner using value analysis, in order to compute a
prioritized list of probable attack targets. The scheme that is presented here is simplified, but
it still allows us to make a relatively good estimate of the attractiveness of the various types
of attack, and thus the probable lines of attack. Naturally, an attacker would normally choose
an attack that requires the least effort and expense. The six criteria listed in Table 8.5 will
consciously or unconsciously influence the attacker’s behavior.

Table 8.5 Criteria for determining the effort and cost required for an attack on the
hardware or software of the security components, based on the prerequisites for an attack

Degree of attractiveness Low Medium High

Level of knowledge and skills required high medium low
Number of secrets required many moderate few
Amount of time required much moderate little
Acquisition of the necessary technical

equipment (purchase or access)
difficult moderate easy

Access to the components to be attacked difficult moderate easy
Value of the result (money or prestige) low medium high

The lower the level of specific knowledge or skills required for an attack, the more attractive it
is to an individual or an organization. Similarly, an attack that does not require the knowledge
of any secrets is more attractive than one that requires many secrets to be known. This is
not inconsistent with Kerckhoff’s principle, which says that security should depend only on
the key and not on the cryptographic algorithm itself, since Kerckhoff’s principle does not
mean that it is necessary to reveal everything about a system in order to make it secure.
The presence of many secrets represents an enormous obstacle to mounting a successful
attack.

Especially in the case of systematically searching for a key, the amount of time required
plays an important role. The classic example is breaking a cryptographic algorithm using a
brute-force attack that would require 10,000 years on average. No serious attack could be
mounted on such a basis.

The attractiveness of an attack is equally dependent on the technical equipment required
for the attack. This need not necessarily refer only to the purchase of equipment, since it may
be sufficient to be able to rent the equipment or somehow acquire access to it. For example,
a device that can generate and precisely position focused ion beams costs several hundred
thousand euros, but such equipment can be rented by the day at research institutes, and some
students can use this sort of equipment for free in their research work.

The availability of the components to be attacked also strongly influences the attractiveness
of a particular type of attack. For instance, you could attack a card-based electronic purse
system either at home, by analyzing your own personal card and its card-specific keys, or at
the system level by trying to analyze a security module with its system-wide master keys. The

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 551 of 1123

8.2 Smart Card Security 517

problem with the latter approach is that access to the security module is protected by multiple
security measures.

Incidentally, this is why smart cards for pay television are so strongly exposed to attack.
An attacker can work undisturbed in his own living room, studying the communications and
behavior of his smart card in order to try to duplicate them using a computer or a DIY electronic
circuit, without being observed by anyone else and without any interference to his work.
However, if he were to attempt to do the same thing with a smart card terminal in a supermarket,
the cashier would immediately forbid any further experiments and thus interrupt his work. A
good review of the subject of the security of electronic money with and without smart cards
can be found in [BIS 96].

The final criterion, which is of decisive importance, is naturally the value of the result of
the attacker’s efforts. His efforts must be rewarded, either in a monetary form or in the form
of enhanced prestige. From this, it can for instance be concluded that various field trials of
electronic purses are only at risk of being attacked by hackers and academic groups. There are
far too few locations where the cards can be used, and the businesses are mostly too simple
(bakers, kiosks and the like), for any significant amount of money to be gained from an attack.

8.2.2 Attacks and defensive measures during development

A wide variety of security measures are employed starting with the development of microcon-
troller hardware and the software for smart card operating systems. Like quality, security is a
factor that must be addressed from the very beginning of a development project; it cannot be
designed into a product afterwards.

With regard to attacks in the development stage, it can generally be said that access to
the facilities in question is very difficult and the required level of expertise is very high. The
attractiveness of an attack is thus correspondingly reduced. Nevertheless, the potential danger
of a successful attack at this stage is significant, since there are very extensive possibilities for
manipulating the hardware and software.

8.2.2.1 Development of the smart card microcontroller

The development of the hardware for a smart card microcontroller takes many months. It
involves only a few persons and takes place in controlled-access, supervised rooms within the
facilities of a semiconductor manufacturer. The computer systems used to design the IC are
usually part of an independent network that is isolated from the rest of the world. This makes it
impossible to alter the chip design from outside, as well as preventing outsiders from obtaining
information about the internal design of the chip.

A very extensive amount of insider knowledge is needed to undertake manipulations to a
chip design that would weaken its security, so this type of attack is probably very unlikely.
In addition, nowadays the designs and protection mechanisms of almost all smart card chips
are evaluated by independent testing agencies, so an insider attack would not go undetected.
However, it certainly could be advantageous to an attacker to know the exact design criteria
and the arrangement of the functional elements on the chip, since he would then be aware of
the protective mechanisms and sensors present in the chip and the scrambling of busses and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 552 of 1123

518 Security Techniques

memories. This knowledge could later be useful to an attacker with regard to physical chip
analysis.

Protection: design criteria

There are a number of basic criteria that apply to the definition of the functions of a smart card
microcontroller. One of these is that the mechanisms for protection against static and dynamic
attacks must actually work. Sensors and other protective elements are of little use if they can
be too easily circumvented or if they are not effective under certain conditions. An example is
a sensor on the microcontroller chip that has such a large area that it can easily be destroyed
by a needle, after which it no longer can fulfill its protective role.

One design criterion that differs from the criteria used for standard chips but is nonetheless
very important is that absolutely no undocumented mechanisms or functions must be present
in the chip (‘that’s not a bug, that’s a feature’). Such undocumented features are usually not
fully tested, since only a few people know about them, so they often exhibit various errors and
weaknesses. Since they are not documented, they can be unintentionally overlooked during
hardware evaluation and possibly be used later for attacks. The use of such undocumented
features is thus strictly prohibited, even though they can often be very helpful for developers.

Protection: unique chip number

When the semiconductor hardware is being developed, all hardware security components
must be first defined and then converted into hardware for the resulting microcontroller. One
such component, in addition to sensors and protective coverings, is write once, read multiple
(WORM) memory, which is also referred to as one-time programmable (OTP) memory. When
the semiconductor chips are manufactured, a unique chip number is written to this memory.
This means that each chip is different and can be uniquely traced, and smart cards can later be
unambiguously identified within the system. In addition, chip numbers can also be used for
the derivation of keys, and they make it possible to generate ‘blacklists’ that can be used to
take suspect cards out of circulation.

It should not be overlooked that although these numbers cannot be altered in the original
chips, they naturally provide no protection against imitation chips using freely programmable
microcontrollers. This means that security measures cannot be based solely on the presence of
a particular chip number in the WORM memory of a particular chip. Such a unique number
can only be used as the basis for true cryptographic security mechanisms. For example, a chip
number can be used for the derivation of secret keys, which are in turn used in a challenge–
response authentication process.

8.2.2.2 Development of the smart card operating system

Software for smart cards is developed according to modern software development principles.
Regardless of which life-cycle model is used (waterfall, spiral or whatever), certain general
conditions must be observed.

The development computer always requires a separate, completely isolated network that
does not allow any external access. The development tools, such as compilers and simulators,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 553 of 1123

8.2 Smart Card Security 519

are software packages whose proper operation must be verified in dedicated tests. Sometimes
two different compilers are used in order to be sure that the results are correct. Using software
whose origins are not completely traceable is fundamentally prohibited, since such software
would offer a possible means to manipulate development tools and consequently modify the
programs to be generated.

Protection: development principles

Just as with hardware development, no undocumented features may be built into the software.
For example, it would certainly be possible to convert the laborious black-box tests that are
commonly used with smart cards into white-box tests by incorporating commands that could
be used to read out arbitrary regions of memory. However, should one of these commands be
inadvertently left in the operating system, it could be used to read out secret keys in real smart
cards. In order to eliminate the possibility of such an attack, the creation of dump commands
is undesirable, even through they can save valuable development time. However, deadline
pressure and the steadily increasing complexity of smart card operating systems have led to a
relaxation of this principle. In order to ensure that none of these development-state commands
ever comes to be present in real smart cards in actual use, special tests for the absence of such
commands are performed during smart card completion.

An additional principle is that programmers should never work alone on a project. This is
already forbidden by considerations of software quality assurance, but the ‘four eyes’ principle
must be observed for reasons of security as well. This effectively hinders attacks by insiders,
since at least two developers must agree to work together on any attack. In addition, internal
source code reviews are performed regularly, which assures the quality of the code and also
supervises the development process.

Once the software development is finished, the entire source code and its functions are often
inspected by an independent testing agency, as part of a software evaluation.7 The main reason
for performing this time-consuming and costly review is to check for software errors, but it
also has the effect of making it impossible for a developer to hide a Trojan horse (for example)
in the operating system. In practice, such items can be found only by reviewing the entire code,
since an experienced programmer can certainly find means and techniques to hide a Trojan
horse so that it cannot be found by a black-box test.

Protection: distributing knowledge

If several people work on a task, the result will be significantly more resistant to attack, due
to the various opinions and experience of the people involved. The principle of distributing
knowledge (shared secrets) is the opposite of the idea that ‘everybody knows everything about
everything’. In the development of security components, complete knowledge of the component
should fundamentally never be vested in a single individual, since that person would then be a
target for an attack. As in many military realms, knowledge is divided over several individuals
in the development stage, so that although it is possible for experts to discuss particular subjects,
there is never any single person who knows everything.

7 See also Section 9.3, ‘Evaluating and Testing Software’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 554 of 1123

520 Security Techniques

A similar situation exists with regard to completing the smart card operating system, during
which tables, program code and configuration data are loaded into the EEPROM. In addition
to providing increased flexibility, this procedure also has a security aspect. This is because the
chip manufacturer, who receives the final, assembled ROM code for producing the fabrication
masks, does not have complete knowledge of the operating system. The parts of the operating
system that are located in the EEPROM are unknown to the chip manufacturer, so he cannot
discover the complete security mechanisms and functions of the operating system by analyzing
the ROM code.

8.2.3 Attacks and defensive measures during production

Attacks during the production of chips or smart cards are typical insider attacks, since the
production environments are closed. Access is strictly controlled, and every entry is logged.
Nevertheless, security measures cannot be dispensed with in the production stage, since some
technically very interesting and effective attacks can be carried out in this stage.

Protection: authentication during the finishing stage

Already at the wafer fabrication stage, smart card microcontrollers are individualized using
chip numbers and protected using transport codes. With recent operating systems, the transport
code is chip-specific, and an authentication is a mandatory requirement for each access in the
finishing process. Although this increases costs and the amount of time required to finish the
chips, and naturally requires a security module for every machine, it considerably increases
security.

An obvious type of attack during finishing is to feed in dummy chips or dummy smart
cards, which behave the same as genuine components but which, for example, include a
‘memory dump’ command. The earliest opportunity to replace a genuine chip with a dummy
chip is of course after the wafer has been separated into individual dice. This type of attack
can be illustrated using a smart card for digital signatures8 as an example. In this case, the
attacker replaces a genuine smart card with a dummy card at the initialization stage. This card
is then initialized with genuine data and afterwards personalized. Since this smart card has
all the functions of a real smart card, the process for generating the key for the asymmetric
cryptographic algorithm will also be executed by the microcontroller. It obtains the data needed
for this from the initialization and personalization data. After this, the attacker must manage
to recover possession of this card, and then he can read the secret signature key from the card
using his special dump command. Since the associated public key has been signed by the trust
center and is thus confirmed to be genuine, the attacker now knows everything necessary to
produce as many duplicate cards as he wishes, all of which will be seen as genuine.

This attack is unrealistic, since administrative measures are taken to prevent chips and
smart cards from being taken into or removed from finishing stations. In addition, mandatory
authentication between the smart card and the security module of the finishing machine before
every finishing step makes it difficult to swap chips or cards.9

8 See also Section 14.4, ‘Digital Signatures’
9 An extensive and detailed description of the usual cryptographic process for the initialization and personalization

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 555 of 1123

8.2 Smart Card Security 521

8.2.4 Attacks and defense measures while the card is in use

Access to the component to be attacked – the smart card – is usually much easier for the
attacker after the smart card has been issued than in the previous phases of its life cycle. This
is why the probability of attack is relatively high while the card is in use.

The idea of a self-destroying smart card microcontroller appears again and again in many
publications, as a sort of panacea against all sorts of attacks. There are hardware security
modules, such as those used for military applications, in which such mechanisms are sometimes
employed, but such a defensive measure is not possible in smart cards for a number of reasons.
First of all, in the absence of external power a smart card has no way to recognize a potential
attack, and there is no possibility of any sort of active defense mechanism, since the smart
card does not have any reserve source of energy. Besides this, for purely legal reasons it would
probably not be possible to impose true self-destruction capability on cardholders. Who would
be responsible for the loss or damage that might occur under unfavorable circumstances simply
because a smart card has incorrectly destroyed itself? In addition, true self-destruction is not at
all necessary, since in almost all cases it is sufficient to erase the secret keys stored in the card.

There is yet another aspect to this subject, which relates to erasing keys or blocking smart
cards. It is very difficult for a smart card to even recognize that it is being attacked. There is
simply not any sensor that can report ‘Attack! Erase everything!’ Too low a voltage or too high
a clock rate could be a sign of an attack, but these situations also occur in normal operation
due to unfavorable ambient conditions. Dirty or corroded contacts have high contact resistance
and thus cause the operating voltage to be lower than normal. An excessive clock rate can
be present in a smart card terminal that is intended to be used with cards that work at high
clock rates. Since recognizing an actual attack is so difficult, and usually not even possible,
automatic mechanisms for blocking the card or erasing the keys are usually not used.

In the following section, some types of attack that can be considered to be nearly ‘classic’ are
described and explained. The descriptions of the attacks can be said to represent the ‘state of the
art’. They are intended primarily to provide people who are inexperienced in the area of smart
card security with a reasonably solid basic understanding, in order to prevent mechanisms that
are already known to be vulnerable from being reused out of simple ignorance. These attacks
can be foiled by the defensive measures described below, which in turn can be countered
by slightly modified attack scenarios. This leads to the well-known cat and mouse game of
measures and countermeasures for attacks and defenses.

The scenarios presented here do not form an invitation to break the security of smart card
systems, since without exception they are both known and published [Kommerling 99]. They
do not represent any serious threat to the security of any contemporary smart card system, since
they have long since been dealt with by suitable protective measures. However, a few years
ago it would have been possible to achieve a certain amount of success using such scenarios.

The attacks are divided into those that are directed against the chip hardware and those in
which an attempt is made to break the smart card system at the logical level. The physical
attacks and analysis methods can also be subdivided into static and dynamic types. In a static
analysis, the chip is not operating, but it may be electrically powered. In a dynamic analysis,
which is much more difficult to perform, the chip operates with its full range of functions
during the analysis.

of smart cards can be found in Section 10.4, ‘Phase 3 of the Life Cycle in Detail’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 556 of 1123

522 Security Techniques

Table 8.6 Summary of typical attacks affecting systems using smart cards, in order of the date when
they first became known. The listed attacks and associated primary countermeasures are described in
greater detail in the text

Known
since

Attack Brief desription

Before
1990

Tapping
data communications

Using wires attached to the module, it is possible to
tap data transmissions between the terminal and the
card. The countermeasure was the introduction of
secure messaging.

≈1990 Dissolving the passivation
layer

Dissolving the passivation layer on top of the
microcontroller is the prerequisite for physical
access to the components on the microcontroller die.
The countermeasure for this was the introduction of
passivation detectors in microcontrollers.

≈1990 Manipulation of
data communications

By electrically insulating the contact surfaces of the
module and suitably attaching wires to the module,
it is possible to manipulate data tranfers between the
terminal and the card as desired. The
countermeasure was the introduction of secure
messaging.

≈1991 Erasing the EEPROM
using UV light

By erasing the EEPROM using UV light, it is
posssible to do things such as resetting counters to
their initial values. The countermeasure for this was
the introduction of light sensors in microcontrollers.

≈1991 Substitute circuits
for memory cards

Substitute circuits for memory cards can be used to
emulate the functions of the memory card and the
secret authentication feature. The countermeasure to
this was the introduction of challenge–response
authentication for memory cards.

≈1992 Switching off the supply
voltage

Writing the retry counter can be prevented by
switching off the supply voltage during PIN testing.
The countermeasure to this was to increment the
retry counter before performing the PIN test, as a
precautionary measure.

≈1993 Stopping the clock By stopping the clock and analyzing the RAM using
an electron-beam tester, conclusions about the
content of the RAM can be drawn. The
countermeasure to this was the introduction of
underfrequency detectors in microcontrollers.

≈1993 Manipulating the
microcontroller with
a laser cutter

The components on the microcontroller die can be
manipulated using a laser cutter. The
countermeasure to this was the introduction of
protective cover layers on microcontrollers.

1995 Timing attack Due to ignorance, a dependence between the key value
and the processing time was created in the
implementations of many cryptoalgorithms. This
can be used to help determine the secret key. The
countermeasure to this was the implementation of
noise-free cryptographic algorithms.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 557 of 1123

8.2 Smart Card Security 523

Table 8.6 (Cont.)

Known
since

Attack Brief desription

≈1995 Tapping the bus
using microprobes

The busses on the microcontroller die can be tapped
using microprobes. The countermeasure to this was
scrambling the busses on the microcontroller dies.

1996 DFA Secret keys for cryptographic algorithms can be
deternined by selectively introducing scattered
computation errors in the processor. The
countermeasures to this were introducing glitch
detectors on microcontroller dies and using suitable
preventive measures in cryptographic algorithms.

≈1996 Manipulating the
microcontroller
using FIB

The components on the microcontroller die can be
manipulated using FIB. The countermeasure to this
was the introduction of protective layers on top of
the microcontrollers.

1997 Exhaustive key search
with DES

Using powerful computers or networks of computers,
DES keys can be computed within a few hours
using a brute-force attack. The countermeasure to
this was the use of triple DES.

1997 Statistical distribution of
PIN codes

The generation of PIN codes for the German
Eurocheque-card system did not have a uniform
statistical distribution, with the result that some PIN
values were significantly more common than others.
The countermeasure to this was using an improved
PIN generation algorithm.

1998 SPA/DPA The data being processed can be determined from the
current consumption of the processor. The
countermeasures to this were the introduction of
randomly driven delays in the processor, using
processors with constant current consumption and a
large number of precautionary measures in the
microcontroller software.

1998 COMP 128 Due to a design weakness in the COMP 128
authentication algorithm, which is used by several
GSM network operators, it is possible to determine
the secret keys using a brute-force attack. The
countermeasure to this was using a different
authentication algorithm and limiting the number of
authentications.

1998 Disturbing
the processor

By disturbing the processor (e.g. using intense flashes
of light), it is possible to interfere with its operation
at critical points while it is processing the machine
code. The countermeasures to this were using
suitable detectors in microcontrollers along with a
large number of precautionary measures in the
software.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 558 of 1123

524 Security Techniques

8.2.4.1 Attacks at the physical level

Manipulations at the semiconductor level require a large amount of technical effort. Depend-
ing on the attack scenario, the equipment required may include a microscope, a laser cutter,
micromanipulators, focused ion beams, chemical etching equipment and very fast computers
for analyzing, logging and evaluating the electrical processes in the chip. This equipment and
the knowledge of how to use it are available to only a few specialists and organizations, which
strongly reduces the probability of an attack at the physical level. Nevertheless, a card or semi-
conductor manufacturer must assume that a potential attacker could employ the devices and
equipment necessary for such an attack, which means that suitable protection must be built
into the hardware.

Attacks at the physical level

memorybusses sensors

volatile memory

non-volatile memory

processor

NPU

CPU address bus

data bus

control bus

Figure 8.21 Classification of the points of attack on a smart card microcontroller at the physical level

Figure 8.22 Graphic representation of the surface profile of a smart card microcontroller, as measured
using an atomic force microscope. The maximum surface relief in this illustration is only 2.3 µm (Source:
Giesecke & Devrient)

In order to conduct an attack at the physical level, a few preliminary steps are necessary.
The first thing that has to be done is to remove the module from the card, which can easily be
done using a sharp knife. After this, the epoxy resin must be removed from the chip. Anderson
and Kuhne [Anderson 96b] used fuming nitric acid for this with an infrared lamp as a heat
source, followed by an acetone rinse to clean the chip. After this, the semiconductor chip is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 559 of 1123

8.2 Smart Card Security 525

free and still fully operational. Many people think that the chip now lies unprotected before
them and only has to be ‘read out’, but this is by no means so. An attacker still has to work
through a manifold of security measures before he can gain access to the secrets.

The protective measures in the hardware can be divided into passive and active components.
The passive components are based directly on the techniques used in semiconductor manufac-
turing. They include all processes and options that can be used to protect the memory region
and the other functional parts of the microcontroller against various types of analysis.

There is a full spectrum of active components available on a silicon chip to complement
the passive possibilities offered by the semiconductor technology. Active protection means
the integration of various types of sensors into the silicon crystal. These sensors are queried
and evaluated by the smart card software as needed. This is naturally only possible when the
chip is fully powered and operational. A chip without electrical power cannot measure any
sensor signals, let alone evaluate them. Sometimes the boundary between useful protective
components and technical gadgetry is particularly narrow where sensors are concerned. A
light-sensitive sensor that is supposed to prevent optical analysis of the memory will not
respond if the chip is located on the object carrier of an optical microscope without power or
a clock signal. In addition, it is very easy to visually identify such a sensor on the chip surface
and cover it with a drop of black ink, so its protective function can easily be neutralized even
when the chip is operating. However, this can be countered by distributing a large number of
light sensors over the entire chip.

Long-term functional security is also an important consideration. For example, a temperature
sensor that causes the smart card software to erase the entire EEPROM in response to a brief but
non-damaging overheating of the chip makes absolutely no contribution to increased functional
security or security against an attack. Consequently, most smart card microcontrollers employ
only a few sensors.

In the following descriptions, we explain the protective mechanisms of smart card micro-
controllers that are the most important and the most often used in practice.

Static analysis of smart card microcontrollers

Protection: semiconductor technology

The dimensions of structures on the chip (track widths, transistor sizes and so on) approach
the limit of what is currently technically possible. The usual structural widths lie in the range
of 0.35 µm to 0.13 µm, which in itself is no longer technically remarkable. However, the
transistor density on the silicon belongs to the highest level that can currently be achieved
using standard lithographic fabrication processes. These very fine structures alone make it
nearly impossible to extract any information from the chip using analytic procedures, for
which reason semiconductor technologies with structure sizes of around of 1 µm are currently
considered to be secure. This dimension is sure to be reduced in the future.

Protection: chip design

‘Standard cells’ are frequently used in designing semiconductor integrated circuits. They can
contain the core elements of a processor or a particular type of memory. The advantage of

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 560 of 1123

526 Security Techniques

Figure 8.23 Photograph of a human hair in comparison with semiconductor structures of a smart card
microcontroller, magnified 1000× (Source: Giesecke & Devrient)

using standard cells is that it allows a semiconductor manufacturer to quickly produce a va-
riety of different types of chips with a high level of quality. This technique, which has been
developed for mass-produced components where security is not an issue, is not allowed to
be used for smart card microcontrollers. This is because the designs and functions of stan-
dard cells are known, and their use would thus provide a potential attacker with too much
information and thus considerably simplify his task. The functional elements of smart card
microcontrollers are developed especially for this application and are not used for any other
purpose.

Protection: dummy structures

Using dummy structures on the chip is a measure that is the subject of frequently controversial
discussions among experts. Dummy structures are elements of the semiconductor that do not
have any actual function, but instead are intended to confuse and mislead an attacker. The
associated security is based purely on keeping the existence and locations of such structures
secret. Dummy structures can also be monitored, so that any changes to them can be detected
and can cause the chip to switch off. The main disadvantage of dummy structures is the
additional room that they occupy on the chip.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 561 of 1123

8.2 Smart Card Security 527

Protection: chip busses

All internal busses of the chip, which connect the processor to the three different types of
memory (ROM, EEPROM and RAM), are not brought out from the chip. This means that it is
not possible to directly make connections to these busses. It is thus not possible for an attacker
to tap into the address, data or control bus of the microcontroller or influence the bus signals
in order to read out the memory contents. The busses are usually fabricated in the lower layers
of the semiconductor device in order to make it difficult to make direct contact with them
from the surface. In addition, the busses on the chip are scrambled in a static, chip-specific or
session-specific manner, so the functions of the individual bus lines cannot be recognized from
the outside. There are even smart card microcontrollers whose bus scrambling is continuously
modified during a session.

Protection: memory design

The storage medium used for most programs is the ROM. The contents of the type of ROM
commonly used in the industry can be read bit by bit using an optical microscope. It would
not be particularly difficult to assemble these bits into bytes and then arrange these bytes to
obtain the complete ROM code. In order to prevent exactly this type of analysis, the ROM is
not located in the top level of the chip, which is the most easily accessible layer. It is instead
located in the lower layers of the silicon. This impedes an optical analysis.

However, if the chip were to be glued to a carrier upside down and the rear surface were then
ground off, it would be possible to read the contents of the ROM. For this reason, only ion-
implanted ROM is used in smart card microcontrollers, since the contents of such a ROM cannot
be seen using either visible or ultraviolet light. This also largely protects against ‘selective
etching’, which is a process that can be used to attempt to etch the semiconductor in order to
make the contents of the ROM visible.

Protection: protective layers (shields)

Analyzing the electrical potentials on the surface of the chip while it is operating represents a
threat. With a suitably high scanning resolution, this technique can be used to measure charge
potentials (voltages) on very small regions of the crystal. With this information, it is possible
to draw conclusions about the contents of the RAM while the chip is operating. This analysis
can be very effectively prevented by placing current-carrying metalization layers on top of the
memory region or the entire chip. If these metalization layers are removed by chemical etching,
the chip will no longer operate properly, since they are needed to distribute the electrical power
the chip needs in order to function. Frequently, several protective layers are arranged on top
of each other and continuously monitored for integrity.

In addition, the chip can be fabricated with meandering current-carrying structures on top
of the entire chip or on top of a region that needs special protection, such as an underfrequency
detector. These structures can be easily monitored using resistance or capacitance measure-
ments, or they can be incorporated into the circuitry of the chip such that it immediately stops
working if they are damaged. Security can be further increased by modifying the connections

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 562 of 1123

528 Security Techniques

or interconnections of these meandering structures during a session. This provides protection
against using a focused ion beam (FIB) tool to bridge the meanders.

It is also conceivable to use opaque protective layers whose integrity is continuously mon-
itored by phototransistors, which are easily implemented in semiconductor devices. If such a
layer were removed, this would immediately be detected and the chip could refuse to operate
any further.

Attack and defense: reading out the volatile memory

As is well known, a RAM loses its data contents when its power supply is cut off. However,
this does not occur if the memory cells are cooled to a temperature of –60˚ C. Also, the
content of the RAM is not necessarily lost if the stored data remain unchanged for a long
time. The background of this effect is described in a paper by Peter Gutmann on the subject
of securely erasing memory media [Gutmann 96]. Consequently, secret keys are not held in
RAM any longer than is absolutely necessary, following which they are immediately erased or
overwritten with other values. This minimizes the risk that traces of secret keys may be left in
the RAM cells and weakens attacks based on fixing the RAM contents by freezing or burning.

Reading out RAM cells is very difficult, since it requires detecting the switching states of
the transistors involved. However, it is certainly possible to extract stored data from RAM
cells using sophisticated electron microscopes and special contrast-enhancement methods. A
prerequisite for this is removing the passivation layer and the metalization layers underneath
the passivation layer, which protect the RAM against exactly this type of attack. Removing
the metalization layers unavoidably causes the RAM cells to be destroyed, since part of their
functionality is incorporated in these layers.

Figure 8.24 Photograph of several RAM cells magnified 3000×, without protection by means of
additional metalization layers. The lower picture shows the electrical potentials of the same RAM cells
as measured using an electron beam tester with the chip in operation. The distribution of zeros and ones
over the RAM can be clearly recognized (Source: Giesecke & Devrient)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 563 of 1123

8.2 Smart Card Security 529

Protection: memory scrambling

Scrambling the memory on the microcontroller chip, which is similar to the well-established
practice of scrambling the busses, is being used increasingly often. The security of this tech-
nique is based on the secrecy of the scrambling scheme for the memory cells. Memory scram-
bling is easily implemented and does not require much additional space on the chip. Without
the relevant scrambling information, it is extremely difficult for an attacker to discover how
the memory cells are actually addressed.

The EEPROM can also be scrambled using software. However, this requires complicated
programming, and all write accesses must be protected by making them atomic operations,
since otherwise the system would be very vulnerable to the sudden removal of the supply
voltage. Software memory scrambling does, however, have the advantage that it can be made
chip-specific and even dynamic, so that the memory contents can be redistributed within the
memory in the course of a session.

linearly increasing memory addresses scrambled memory addresses

01

11

21

00

10

20

30

40

02

12

22

03

13

04

14

05

15

06

16

07

17

08

18

09

19

01

11

2120

30

12

22

03

13

04

14

05

16

07 09

00

10

02

15

06

17

08

18

19 40

Figure 8.25 Comparison of a conventional semiconductor memory and a scrambled memory used in a
smart card microcontroller

Protection: memory encryption

Besides scrambling the data in the memory, modern smart card microcontrollers also provide
batch- or chip-specific encryption of the memory and some of the processor registers. This
involves decrypting or encrypting the corresponding data in real time when they are read or
written. Besides the key, with some types of chips the memory address can also be incorporated
in the encryption and decryption process, so that identical data in different memory locations
have different values after having been encrypted. Particularly for RAM regions, session-
specific keys can also be used.

With such encryption, if data are read from the memory by means of a successful attack,
it will still be necessary to have the secret key in order to recover the plaintext values. This
considerably increases the amount of effort that must be expended by an attacker, since he
must either know where the key is stored or systematically read out all of the data present in
the chip.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 564 of 1123

530 Security Techniques

Attack and defense: encrypted storage of secret data

This example of an attack at the physical level is actually a textbook example of a defensive
measure that is not particularly effective. The basic idea of this defense is that if it is possible
to read out the EEPROM of a smart card, an attacker should at least be prevented from thereby
learning secret data, such as a PIN or key. Naturally, there are preventive measures that can
be taken. For example, the PIN can be simply encrypted using a one-way function, with the
result being stored in the EEPROM as the reference value for PIN comparison. A card-specific
key could be used for the one-way function, so that the reference data for two identical PINs
would be different in two different cards.

If the reference value is now read from the EEPROM, it would seem to be impossible
to derive the PIN from this value. However, a clever attacker would not even take such an
approach. If normal PINs consisting of four decimal digits are used, the number space of the
PINs has a lower boundary of ''0000'' and an upper boundary of ''9999''. This means that
the number of possible PINs is exactly 10,000. If the attacker can read the entire memory of
the smart card, he can also read the one-way function and its associated card-specific key. With
this information, he can start encrypting all possible PINs using the one-way function. After
an average of 5000 attempts, he will have obtained a result that matches the reference value in
the smart card, which means he knows the PIN. As can be seen, in this case using a one-way
function to store the PIN does not provide any significant benefit. The reason this mechanism
is frequently used in practice is because it requires much more effort to read a large amount of
data from a memory than only a few bytes for the PIN. Consequently, the keys in a smart card
are frequently encrypted using a card-specific key before being stored in the card.

Dynamic analyses of smart card microcontrollers

Protection: monitoring the passivation layer

A passivation layer is placed on top of the microcontroller in the silicon at the conclusion of
the fabrication process. This layer impedes oxidation (due to atmospheric oxygen) and other
chemical processes at the surface of the chip. The passivation layer must always be removed
before any sort of manipulation of the chip can be performed. It should be borne in mind that
although it is possible to chemically remove the passivation layer, the chip is then exposed to
a major risk of oxidation, which can destroy it relatively quickly. A sensor circuit can employ
resistance or capacitance measurements to determine whether the passivation layer is still
present. If it is missing or damaged, this can either trigger an interrupt to the chip software or
cause the complete hardware of the chip to be shut down, which reliably prevents any sort of
dynamic analysis.

Protection: voltage monitoring

A voltage monitor is present in every smart card microcontroller. It provides a well-defined
shutdown of the IC if the supply voltage exceeds its allowed lower or upper limits. This
gives the software the assurance that it is not possible to operate the chip in marginal regions in
which the chip may not function properly. Without such a voltage monitor, it would be possible
for the program counter to become unstable when the chip was operated in a marginal region,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 565 of 1123

8.2 Smart Card Security 531

Figure 8.26 Photograph of a passivation layer monitor at 1000× magnification. The passivation layer
detector consists essentially of the two rectangular semiconductor elements, and it uses capacitance
measurements (Source: Giesecke & Devrient)

Figure 8.27 A modern passivation layer monitor at 8000× magnification. The track separation is 4 µm,
and the working principle of this detector is based on resistance measurements (Source: Giesecke &
Devrient)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 566 of 1123

532 Security Techniques

leading to uncontrolled program jumps or plain computation errors in the processor. Such
faulty behavior could be used to determine secret keys by using the technique of differential
fault analysis (DFA), which is described elsewhere in this book.

For this reason, it is important for the voltage monitor to also be able to detect very brief
voltage peaks or dropouts, in order to protect against typical attacks involving the intentional
introduction of processor errors. As an example, in the case of a smart card intended to be used
with a supply voltage of 3–5 V, the usual shutdown thresholds are 2.3 V and 6.3 V. These value
lie slightly outside the range of 2.7–5.5 V specified by various standards, in order to allow for
tolerances in sensor calibration during semiconductor fabrication.

Voltage monitoring in particular is highly important for the security of the microcontroller.
A conceivable method of attack would be to first use a focused ion beam (FIB) or similar
tool to disable the relevant detectors and then start the actual attack. For this reason, the
components that are vital to the security of the microcontroller are often specially protected
so that manipulation can be detected, causing the smart card to automatically deactivate itself.

Another type of sensor that is partly based on the voltage detector is the power-on detector.
This detector, which is also present in all chips, recognizes a power-on condition independently
of the external reset signal and ensures that the chip is always placed in a defined initial state
when power is first applied. The reasons for doing this are similar to those for using voltage
monitoring.

Protection: frequency monitoring

A smart card is always driven by an external clock, so its processing speed is completely
determined outside the card. This means that, at least in theory, it is possible to operate
the microcontroller in single-step mode. This would provide outstanding opportunities for
analyzing the microcontroller, in particular by measuring its current consumption while it
is operating (power analysis) and measuring electrical potentials on the surface of the chip.
In order to prevent such attacks, a functional component for detecting underfrequency and
overfrequency conditions is built into the chip. This eliminates the possibility of reducing
the clock rate to unallowable levels. The minimum clock rate stated in most specifications is
1 MHz. However, for technical reasons the underfrequency detector has a wide tolerance range,
so the chip usually stops working at around 500 kHz. This ensures that the chip will always
work at the minimum specified clock rate of 1 MHz. The upper frequency limit is 5 MHz
in most specifications, and typical overfrequency detectors disable the chip at a frequency
of approximately 7 MHz. Modern microcontroller hardware is often built such that the chip
cannot be used if the clock rate is too high.

In order to protect the microcontroller against the dangers of single-step operation, it is
naturally necessary to secure the underfrequency detector with protective layers, so that any
attempt to tamper with the detector will be recognized.

Protection: temperature monitoring

A temperature sensor is used in some types of chips, but the benefit of such a sensor is debatable.
The chip will not be damaged if the temperature briefly exceeds the specified operating range,
and this does not in itself represent an attack. Shutting down the chip in this marginal situation,
however, could lead to an artificially increased failure rate without providing the operator of
the smart card system with any additional security.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 567 of 1123

8.2 Smart Card Security 533

Protection: bus scrambling

In many smart card microcontrollers, the internal busses that drive the memory are scrambled.
This means that the individual bus lines are not laid out next to each other in increasing or
decreasing order, but are instead arranged randomly next to each other and ‘swapped’ several
times, or even arranged in several layers on top of each other. This represents an additional
hurdle for a potential attacker, who does not know which bus line is associated with which
address bit or function.

Scrambling the bus lines was originally introduced only in a static version, with the same
scrambling scheme used on every chip. With static scrambling, it would probably not be all
that difficult for an attacker to discover the scrambling scheme over a moderate length of time,
and thus be able to take it into account when tapping the busses.

The security provided by this technique can be improved by using chip-specific scrambling.
This is naturally not achieved by using a different set of exposure masks for the busses of each
chip, since this is currently either not technically possible or affordable. Instead, scrambling
is performed by randomizer circuits located just ahead of the memory. These can be driven by
the chip serial number, for example. This technique is not difficult in terms of semiconductor
technology, and it makes life considerably more difficult for someone who tries to tap the bus.
Using variable input values for the randomizer makes it possible to achieve chip-specific and
session-specific scrambling.

CPU

data bus with
conventional chip layout

RAM

CPU

data bus with
chip-specific scrambling

data bus with
session-specific scrambling

RAM

data bus with
static scrambling

CPU RAM

CPU RAM

different for
each microcontroller

different for each session
or portion of a session

Figure 8.28 Bus scrambling in a smart card microcontroller, illustrated using an 8-bit data bus between
the CPU and the RAM. The data bus lines shown here represent information flows rather than electrical
leads. The encryption units are shown as separate components for the sake of clarity, but they are actually
intermingled with the rest of the components in such a manner that they cannot be recognized as separate
components, thus making them immune to attack

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 568 of 1123

534 Security Techniques

Protection: irreversible switching from the test mode to the user mode

All microcontrollers have a test mode that is used for verifying the chips during the fabrication
process, and for executing internal test programs while the semiconductors are still in the
wafer or after they have been packaged in modules by the manufacturer. The test mode allows
types of access to the memory that are strictly forbidden when the chips are later in actual use.
However, for technical production reasons, it is an unavoidable requirement to be able to read
data from the EEPROM in this mode.

The change from the test mode to the user mode must be irreversible. This can be realized
by using a polysilicon fuse on the chip. In this case, a voltage is applied to a test point on the
chip that is provided for this purpose, and this voltage causes the fuse to melt through. The
chip is thus switched into the user mode using hardware. Normally, this cannot be reversed.
However, a fuse is by its nature a relatively large structure on the surface of the chip. It is
conceivable that the fuse could be mechanically bridged after the removing the part of the
passivation layer that covers the fuse. This would put the microcontroller back into the test
mode, and the memory could be read out using the extended access options available in this
mode. If the complete content of the memory is known, it is easy to clone the smart card that
has been read out.

Figure 8.29 Photograph of a polysilicon fuse magnified 2000×. The picture on the left shows a fuse
that is still intact, while that on the right shows a blown fuse (Source: Giesecke & Devrient)

In order to defend against this type of attack, most semiconductor manufacturers have
adopted the practice of reserving a portion of the EEPROM for the switchover mechanism, in
addition to using a fuse. If a certain unalterable value is located in this part of the memory, the
chip has been irreversibly switched to the user mode. Even if the fuse is bridged over, the chip
will not return to the test mode, since the additional logical switch in the EEPROM prevents
this.

The security of the switchover from the test mode to the user mode can be increased even
further by a very simple measure. If the microcontroller chip is laid out on the wafer such
that the test pads needed to make contact with the chip for performing the tests are simply
sawn off when the wafer is divided into individual dice, neither a fuse nor any EEPROM cells
are needed to switch between the modes, since the elements needed for the test mode will no

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 569 of 1123

8.2 Smart Card Security 535

Figure 8.30 Photograph of a polysilicon fuse together with a microprobe needle, magnified 500×.
A blown fuse could be bridged using a microprobe needle (Source: Giesecke & Devrient)

longer be present. It is also be possible to replace the fuse that switches from the test mode
to the user mode by a track that is irreversibly broken when the dice are sawn from the wafer.
With present-day technology, it is not possible to make a connection to a sawn-through track
on the edge of a chip.

test pads

I/O
CLK
RST
Vcc
GND

RAM

CPU

NPU

EEPROM

ROM

cutting lines for
sawing the wafer

Figure 8.31 One of several possible ways to irreversibly remove the test pads used for testing the CPU
and memory of a smart card microcontroller

Dynamic analysis and defense: tapping the memory busses of the microcontroller

Before the busses between the CPU and the memories of the microcontroller (ROM, EEPROM
and RAM) can be tapped, the chip must be exposed and the passivation layer on the top surface
of the chip must be removed. The passivation layer protects the chip against oxidation, but it
also protects the chip against attack, since its integrity is monitored by sensors. According to
Anderson and Kuhn [Anderson 96b], it can be removed by etching with hydrofluoric acid. In

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 570 of 1123

536 Security Techniques

addition, a laser cutter10 can be used to selectively cut openings in the passivation layer at the
necessary locations.

After the passivation layer has been removed from the entire surface of the chip, or only
from selected locations, it would be at least theoretically possible to make contact with the
address, data and control busses for the memory using microprobe needles. If it is possible to
make electrical connections to all the lines of these three busses, it is very easy to address the
individual memory cells and to read any desired regions of the ROM and EEPROM. The chip
does not have to be powered for this, and any desired type of connection jig can be used. The
consequences of a successful attack using this method would be serious, since in principle it
would make all the secret data in the non-volatile memory readable.

This method could be extended by making connections to the busses and then operating the
chip in the normal manner. In this way, it would be possible to eavesdrop on the complete data
traffic between the CPU and the memories, and this could be recorded using a sufficiently fast
logic analyzer.

As already indicated, it is very difficult to make electrical contact with the individual tracks
on the chip. With an 8-bit microcontroller, the number of connections needed for this attack
is 16 for the address bus, 8 for the data bus and 1 to 4 for the control bus. In total, at least
25 simultaneous connections would have to be created between an external analysis computer
and the tracks on the chip. Even with modern micromanipulator technology, this is currently
not possible, due to the very small dimensions of the semiconductor structures. However, it
would be possible to use a focused ion beam (FIB) generator, which is commonly used in the
semiconductor industry, to implant a sort of electrically conductive contact surface for each
bus line. These surfaces then could be used as contact points for microprobe needles. However,
the effort required for this is enormous.

Even if an attacker succeeded in making these connections, he would still have to determine
how the busses have been scrambled before he could successfully read the data. This is because
the individual bus tracks are not arranged on the chip in an orderly fashion next to each other,
but are instead arranged in an externally unrecognizable manner.

If markedly improved technology in the future should make it possible to make connec-
tions to the busses of current microcontrollers, that would probably not have any effect on
security, since by that time semiconductor structures will have become significantly finer than
they presently are. In addition, micromechanical technology will probably always lag behind
semiconductor technology, which is based on optical processes. This means that even in the
future, this sort of attack will probably not be suitable for significantly weakening the security
of smart cards.

Dynamic analysis and defense: measuring the current consumption of the CPU

Already in 1995, in the first edition of this book, the following statement appeared at this point:
‘The design of the processor is also crucial with regard to security. A smart card processor must
have nearly the same current consumption for all machine instructions. Otherwise, conclusions
can be drawn regarding the instruction being processed, based on the current consumption. A
certain amount of secret information can be deduced from these conclusions.’ The fact that it

10 A laser cutter is a device for drilling and cutting using a high-power laser beam. It has an precision of a fraction of
a micron

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 571 of 1123

8.2 Smart Card Security 537

Figure 8.32 An example of using a focused ion beam (FIB) on a semiconductor chip. The track on the
surface of the chip running from the top to the bottom of the picture has been separated using an FIB and
then connected to a parallel track using a newly deposited metalization structure, which can be seen in
the upper part of the picture. This structure was also created using the FIB (Source: Fraunhofer Institute
for Integrated Circuits, Component Technology Group)

is possible to draw conclusions about the instructions being executed by a processor, and even
about the data being processed, by analyzing the current consumption of the processor while it
is executing instructions, was thus already known for several years when Paul Kocher, Joshua
Jaffe and Benjamin Jun published a paper on simple power analysis (SPA) and differential
power analysis (DPA) in June of 1998 [Kocher 98].11

The working principle of simple power analysis is relatively straightforward. The current
consumption of the microcontroller is determined by measuring the voltage drop across a
resistor connected in series with the power supply. Measurements are made at high time res-
olution using an analog-to-digital converter. With a high-performance processor, such as a
Pentium or PowerPC, it would not be possible to draw any conclusions about the instruc-
tions being executed, due to the complexity of the internal processes. However, the relatively
simple structures of the 8051 and 6085 CPUs used in smart card microcontrollers result in

11 A detailed summary of this subject can be found in [Kocher 98b] and [Messerges 99]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 572 of 1123

538 Security Techniques

measurable and thus interpretable variations in current consumption, according to the instruc-
tions and data being processed. To help clarify the principle, imagine that a particular program
sequence with a particular set of data always produces the same plot of processor current
versus time. If the same program is then run using different data, the plot of current versus time
will be different. This variation is used to determine which data have been processed by the
program.

+ 5 V

GND

reset

clock

data transfer

resistor R

to voltmeter

Vcc

RST

CLK

GND

RFU

I/O

Figure 8.33 Circuit diagram of the connections to a smart card microcontroller needed to make simple
current measurements using a series resistor

Differential power analysis (DPA) can reveal even finer differences in the current consump-
tion of a microcontroller than simple power analysis. With the DPA technique, the current
consumption is first measured while the microcontroller is processing known data, and then
again while it is processing unknown data. The measurements are repeated many times, so that
the effects of noise can be eliminated by taking average values. The differences are calculated
once the measurements have been completed, and conclusions regarding the unknown data are
drawn from the results.

In the paper by Kocher et al., ‘high-order differential power analysis’ (HO-DPA) is men-
tioned as a further extension of DPA. This involves measuring not only the current consumption
of the microcontroller, but also other variables that depend on the program being executed by
the processor, such as the electromagnetic radiation of the chip. The measurement information
collected in this manner using both known and unknown data can be used in the same way as
in the DPA technique to calculate differences, which can then be used to compute the unknown
data.

These three types of power analysis for smart card microcontrollers represent very se-
rious forms of attack on hardware and software that have not been protected by suitable
countermeasures. This is because the current consumption of some microcontrollers is defi-
nitely dependent on the machine instructions being executed and the data being processed by
the instruction. In addition, the cost and complexity of the equipment needed for a successful
attack using this method is relatively limited. However, there are several effective countermea-
sures based on suitably improved hardware and modified software.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 573 of 1123

8.2 Smart Card Security 539

NOP (no operation)
machine instruction

MUL (multiply)
machine instruction

JMP (jump)
machine instruction

time

current
consumption

Figure 8.34 Simplified representation of variations in the current consumption of a smart card micro-
controller while it is processing several different machine instructions. Besides being dependent on the
machine instruction being processed, the current consumption of the processor may also depend on the
data being processed

The simplest hardware solution is to incorporate a fast-acting voltage regulator in the chip
that uses a sense resistor to monitor the current drawn by the microcontroller and ensures
that it is independent of the instructions and data. Artificial noise current generators on the
chip are also an effective solution. A technically more complicated solution is to use a modi-
fied processor design that always draws a constant current. However, all of these approaches
slightly increase the power consumption of the microcontroller, which is undesirable in certain
application areas, such as telecommunications. An alternative, simpler defense measure can be
to activate certain components of the microcontroller that are not needed for the actual process
while performing SPA/DPA-critical processes. The CRC checksum generator or numerical
coprocessor could be used for this purpose, using random data as input values in order to
generate artificial noise in the current consumption.

Using randomly generated delays (random wait states) in the processor considerably in-
creases the difficulty of synchronizing the data obtained from current analysis, without in-
creasing the chip’s current consumption. A similar approach can be used with smart card
microcontrollers that have their own on-chip clock generators, by continuously and randomly
varying the clock frequency within certain limits.

There is presently an immense range of possible software countermeasures. Here we can de-
scribe a few representative examples. The simplest approach is to use only machine instructions
that have very similar current consumptions. In this case, machine instructions whose current
consumption is significantly different from the average level are not allowed to be used in the
assembler code. Another approach is to have several different, randomly selected procedures
for performing the same computations in cryptographic algorithms. This makes it consider-
ably more difficult for the observer to recognize a correlation between known and unknown
machine instructions or processed data. In order to make it more difficult to obtain the data
needed to successfully perform a power analysis, all keys should be protected by irreversible

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 574 of 1123

540 Security Techniques

command to
the smart card

microcontroller awakens
from the sleep state

microcontroller re-enters
the sleep state

command processing
in the smart card

response frlom
the smart card

time

time

I/O lead

Figure 8.35 Simplified representation of the current consumption of a smart card microcontroller in
the quiescent state and variations in its current consumption during operation. From the current drawn
by the microcontroller, it is possible to recognize when it is awakened from the sleep state by the first
falling edge on the I/O line, following which it exhibits a continuously varying current consumption that
depends on the machine instructions being executed

retry counters. In addition, it is necessary to block free access to all commands (such as
INTERNAL AUTHENTICATE) that can be used to pass any desired data through a crypto-
graphic algorithm in the smart card. If it is essential to use commands of this sort for some
reason, the smart card must test the authenticity of the terminal before executing them. Re-
stricting the use of the available commands also makes it more difficult to collect reference
data for a subsequent power analysis.

As a matter of principle, secret data should never be processed bitwise, since doing so
considerably simplifies SPA/DPA analysis. When keys have to be loaded into the registers
of a cryptoprocessor, in some implementations they are intermixed with random numbers
that are also loaded in these registers as dummy values, in order to render the corresponding
measurements meaningless. Of course, the true keys must be located in the registers at the end
of the loading process.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 575 of 1123

8.2 Smart Card Security 541

SPA/DPA techniques are not just limited to ferreting out secret data stored in smart cards.
They can also be used for purposes such as convincingly demonstrating that specific program
code is used in a smart card. This is done by making an SPA analysis of the function in question
in the smart card and comparing the current consumption plot obtained in this manner with the
plot for a reference card. Even if the source code is not known, under favorable conditions this
technique can for example be used to prove that segments of program code from an outside
source are being used in a competitor’s product. The technical basis for this is the fact that
generally speaking, the machine code produced from the same source code by a given compiler
will also be the same. The differences arising from the subsequent linking process, due to the
almost certain differences in code localization in the memory, are relatively small.

Testing software in smart cards for resistance to SPA/DPA attacks has presently reached
a high level of refinement and thus taken on the character of a specialist discipline. It has
become common for measurements to be made periodically during software development,
with the software being modified as necessary according to the results of the measurements
in order to defeat SPA/DPA attacks. At the early stages of development, measurements are
made with the software in EEPROM, and the analyses are repeated and refined when the first
samples are obtained from the semiconductor manufacturer with the software in the ROM of the
microcontroller. This is because experience has shown that this aspect is definitely significant
with regard to SPA/DPA measurements.

By their nature, SPA and DPA can be used for more than just mounting attacks on cryp-
tographic algorithms. Both methods are also very suitable for analyzing all activities of the
processor. With suitable experience and equipment, it is even possible to determine the data
involved in copy operations within the memory of a smart card that is not resistant to these
types of attack.

Analysis and defense: measuring the electromagnetic radiation of the CPU

It is at least theoretically possible to draw conclusions about the internal processes of the smart
card microcontroller from measurements of its electromagnetic radiation, in the same manner
as with differential power analysis. Magnetic fields with small dimensions and strengths can
be measured using SQUIDs (superconducting quantum interference devices). However, this is
technically enormously difficult, and the knowledge of the internal structure of the semicon-
ductor device that is indispensable for this method is not generally available. In addition, ICs
can be very effectively protected against this sort of attack by stacking several traces on top
of each other, so that even if a magnetic field can be measured, it is not possible to determine
which of the tracks is actually carrying the associated current.

Manipulating the smart card microcontroller

Manipulation and defense: altering the memory content of the smart card microcontroller

Directly reading the memory content of a microcontroller is a possible attack scenario whose
danger can be appreciated at first glance. A similar scenario that is almost as strong a form of
attack is intentionally altering the data content in a memory of the smart card microcontroller.
This does not mean randomly introducing errors in the computation process of a cryptographic

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 576 of 1123

542 Security Techniques

algorithm, which forms the basis of differential fault analysis (DFA), but instead selectively
changing the values of certain bits or bytes in the ROM or EEPROM.

Non-selective changes in all types of memory can be produced by (for example) exposing
the module to X-rays or shining ultraviolet light on the exposed chip. EEPROM cells can be
discharged by exposing them to ultraviolet light, which causes their contents to take on the
value of the lowest-energy state. This process is exactly the same as erasing a conventional
EPROM using an ultraviolet lamp. However, it cannot reasonably be used for an attack, since
the attacker has no control over which EEPROM cells are switched.

However, the ultraviolet lamp can be replaced by a collimated beam of light or light from a
laser, and this can be focused to a fine point. This could certainly be used to alter the contents
of individual memory cells. The advantage of using a laser is that it can supply enough power
to also modify the contents of ROM cells. A focused ion beam can also be used in a similar
manner to change the contents of memory cells.

The changes that are possible can certainly be used for theoretically effective attacks. For
example, the random number generator could be manipulated such that it no longer produced
random numbers, but instead always supplied the same value. If this were possible, authenti-
cation of the terminal by the smart card could be broken by a replay attack using a previously
employed value.

It is certainly possible to imagine other types of attacks that could be carried out if the
contents of specific memory bits could be intentionally modified. For example, all S boxes
of the DES algorithm could be intentionally changed to a uniform value of zero or one. This
would mean that the DES algorithm would no longer act as an encryption algorithm, but only
as a linear transformation [Anderson 96a].

If the exact location of the DES key in the EEPROM is known and it is also possible to
modify individual bits in the EEPROM (using focused ultraviolet light, for example), it is
naturally possible to utilize these conditions to mount an effective attack. This attack consists
of setting an arbitrary bit of the key to 0 and then calling a command that uses the DES
algorithm with the modified key. If the return code indicates a parity error in the key, the bit
that has been modified was originally set to 1, while if no parity error is reported, the bit was
already set to 0. The same procedure is then followed for the remaining 55 bits of the key, with
the result that the secret key is known [Zieschang 98].

Many other types of attack along the same lines are possible, such as selectively modifying
program processes or altering pointer values. These attacks may look very simple and attractive
on paper, but it would be very difficult to carry them out in actual practice. The necessary
conditions for a successful attack are not exactly easy to achieve, so this type of attack remains
an interesting but theoretical concept.

In order to alter bits selectively, an attacker must have detailed knowledge of the physical
addresses of the data and program code in the memory, and he must also know the scrambling
and/or encryption schemes used for the memory in question. In addition, all data and routines
that are significant with regard to security are protected using checksums that are always
checked before using the data or routine. This means that the attacker would also have to
selectively modify the checksum to match the modified data. You should also not overlook
the fact that all protective layers covering the memory in question must be neutralized before
any manipulation can take place. All of these considerations together reduce the attractiveness
of this type of attack to almost nothing, even though it must be admitted that it sounds very
attractive in theory.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 577 of 1123

8.2 Smart Card Security 543

Attacks at the logical level

The main prerequisite for attacks on the security of a smart card at the logical level is
knowledge of the communications and information flow between the terminal and the smart
card. In this case it is not particularly necessary to understand the processes occurring at the
hardware level, but rather the software processes. In terms of information technology, the
sample scenarios described here are located one level above attacks that primarily exploit the
properties of the hardware.

Attack and defense: dummy smart cards

Probably the simplest imaginable type of attack is to use a smart card that has been custom
programmed and includes additional logging and analysis functions. Up until a few years ago,
this was practically unfeasible, since only a few companies had access to smart cards and
the microcontrollers used to produce them. Nowadays, though, smart cards and configuration
programs can be freely purchased from a number of companies. This naturally increases
the options available to an attacker. Even without this, with a certain amount of effort and
dexterity it is possible to assemble a working smart card using a plastic card and a standard
microcontroller in an SMD package. Such a card can at least be made to imitate the electrical

Figure 8.36 Rear view of an opened smart card module. The chip at the left is a standard PIC microcon-
troller that is connected to an EEPROM memory chip at the right by bonding wires and tracks. This type
of chip module is typically used for cloned smart cards and other types of attacks on smart card systems

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 578 of 1123

544 Security Techniques

Vcc

PIC 16F84
1 1

18 8
24LC
16B

RST

CLK

RFU

GND

Vpp

I/O

RFU

Figure 8.37 A typical substitute circuit for an smart card microcontroller built using standard discrete
components (PIC 16F84 microcontroller and 24LC16B EEPROM memory chip). These components fit
into a typical smart card module, so it is not possible to detect any difference from a genuine smart card
microcontroller without investigating the module. This circuit and variations on it can be found on the
relevant Internet sites

interface of a real smart card and to behave the same way for data transfers. It is now possible
to obtain such cards from a wide variety of sources via the Internet. New possibilities are also
offered by Java technology for smart cards, which makes it easy to generate programs and load
them into dummy cards.

With such a dummy card, it would be possible to record at least a part of the communications
with a terminal and subsequently evaluate this information. After several attempts, it would
probably be possible to perform part of the communications in exactly the same way as a
genuine smart card. Whether this can be put to advantage is doubtful, since all professionally
designed applications have cryptographic protection for important activities. As long as the
secret key is not known, the attack will not go any farther than the first authentication. Such
an attack can only be successful if the secret key is known or the complete application runs
without any cryptographic protection. Should such an application exist, it is highly doubtful
that any benefits that could be obtained from this type of attack would be sufficiently large to
justify the necessary effort.

Analysis: determining the command set of a smart card

The instruction classes and commands that are supported by a smart card are of course not
often published, but it is very easy to determine what they are. This is more interesting with
regard to completely determining the command set of a smart card than it is for an attack on
the security of the smart card. However, it is conceivable that an attack could be mounted on
the basis of this information.

The method used to determine the command repertoire is illustrated in Figure 8.38. The first
step is to generate a command APDU and send it to the smart card using a freely programmable
terminal. The class byte in the APDU is changed for each APDU to cover the range from
'00' to'FF'. As soon as a return code other than ‘invalid class’ is received, the first valid class
byte has been determined. There are usually two or three valid instruction classes, which can
then be used to try all possible instruction bytes in the next round. This consists of sending
command APDUs with various instruction bytes to the smart card and noting the ones that
yield a return code other than ‘unknown instruction’. If suitable software is available in the
terminal, this method can be used determine which commands are supported by a particular

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 579 of 1123

8.2 Smart Card Security 545

smart card in one to two minutes. To a certain extent, a portion of the possible parameters of
the commands so identified can also be determined in a similar manner.

This algorithm can be made considerably faster by using only the class byte codes allowed
by the ISO/IEC 7816-4 standard and allowing the instruction byte to be an indexed variable.
This strongly reduces the number space of the class byte by taking secure messaging and
logical channels into account. A similar improvement can be made by using only even-valued
instruction bytes, since the odd-valued codes contain only the Vpp control information, which
is no longer used.

start

P1 := '00'
P2 := '00'

command APDU :=
CLA || INS || P1 || P2

arbitrary values
may be assigned
to P1 and P2

send
command APDU

receive
response APDU

class supported by
smart card found

 (= CLA)

SW1 || SW2 =
'6E00' ?

CLA := CLA + 1

command APDU :=
CLA || INS || P1 || P2

CLA = 256 ?

1

1

INS := 0

send
command APDU

receive
response APDU

SW1 || SW2 =
'6D00' ?

INS := INS + 1

INS = 256 ?

CLA := '00'

end

command
supported by

smart card found
(= INS)

 no

 yes

2

2

 no

 yes

 no

 yes

 yes

 no

'6D00' represents
a non-supported
command

'6E00' represents
a non-supported
class

Figure 8.38 Basic procedure for performing an exhaustive search for all commands supported by a
smart card operating system. The results of the search will only be complete if command invocation is
not controlled by a state machine. The procedure works on the principle of systematically testing all class
byte (CLS) and instruction byte (INS) codes in turn, ignoring any command contents that may be present
(secure messaging, logical channels, Vpp control and so on)

The reason that this simple search algorithm for instruction classes, commands and param-
eters can be so effective is that practically all command interpreters in smart card operating
systems evaluate received commands by starting with the class byte and working through the
following bytes. This process is terminated as soon as the first invalid byte is recognized, and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 580 of 1123

546 Security Techniques

a suitable return code is generated and sent back to the terminal. However, it can only work
if the smart card does not have a global state machine that monitors the command sequence.
If such a state machine is present, it is at least possible to use this procedure to determine the
command sequence in a step-by-step manner.

The utility of such a procedure for an attacker may not appear to be that great, since the
command set is usually not secret. However, it does at least provide a simple and fast means
to determine all of the available commands. It is also a very useful means for determining
whether the producer of the operating system has incorporated any undocumented commands
in the software.

Attack: tapping data transmissions

A slightly modified smart card can be used to tap data transmissions during a session and
manipulate the data as desired. The modifications consist of gluing an insulated dummy contact
on top of the I/O contact, so that the original I/O interface is no longer connected to the I/O
contact. The new (dummy) contact and the original I/O contact are then connected to a fast
computer. With suitable programming, this computer can delete or insert any desired data within
the communications between the terminal and the smart card. If the computer is sufficiently fast,
neither the terminal nor the card will detect any difference between normal and manipulated
communications.

Figure 8.39 An adapter that can be used to extend a smart card outside of a terminal enclosure in
order to allow measurements to be made on the card. The eight contacts can be seen on the left, and a
prototyping area for electronic circuitry can be seen on the right

It is clear that the course of a session can be radically affected using this method. Whether
an attacker can derive any benefit from this method depends primarily on the application in
the smart card. A well-known design principle says that eavesdropping on communications or
the deletion or insertion of data in the communications stream must not be allowed to impair
security. If this principle is not observed, an attacker can certainly obtain an advantage using
this method. There are known cases of fraud using simulated memory cards.

In order to provide protection against this type of attack, some terminals have shutters
that cut off any wires attached to the smart card. Secure messaging can also be used very
effectively here to allow any manipulation of the data during the data transmission to be
reliably detected.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 581 of 1123

8.2 Smart Card Security 547

Many terminals may be used only under supervision, which makes it difficult to use manip-
ulated cards with leads to an accompanying computer in such terminals. In summary, although
this type of attack can be regarded as very interesting and quite promising in theory, in practice
it achieves only modest success.

Attack and defense: power interruption

A type of attack that was successful with many smart cards until recently is to interrupt the
power to the card at a particular time while a command is being executed. This type of attack is
based on the fact that with conventional programming, all write operations to EEPROM pages
are performed sequentially. If the programmer has not been clever in arranging the order of the
write operations, an attacker can derive an advantage by cutting off power at the right time.

This can be briefly illustrated using a highly simplified example. In an electronic purse
application, if the balance is increased before the log file is updated when processing a purse
loading command, an attacker would have a good chance of being able to load a smart card
for free. He would only have to switch off the power at the right time, or jerk the card out of
the terminal with millisecond accuracy (!). The purse balance would then have been changed
to the new value, but there would no log record for this transaction and no response to the
command. With simple electronic purse systems in the past, such an attack was certainly a real
possibility.

In order to determine the exact time to terminate processing, the attacker only has to use
an electronic counter to count the number of clock pulses after the time when the command is
sent and then perform a series of experiments with increasing clock counts to determine the
proper time to interrupt power to the card. It hardly needs to be said that the entire procedure
can be more or less automated using a computer.

purse balance file
(in binary notation)

purse
balance

1. current purse balance

2. deduct 10 EUR

3. erase the EEPROM

4. write the new purse balance

100 EUR

90

255

90

EUR

EUR

EUR

°0110 0100°

°1111 1111°

°0101 1010°

Figure 8.40 Example procedure for writing a new balance in an electronic purse. Here it is assumed
that the erased state of the EEPROM represents a logic 1. Due to the way the EEPROM works, this
means that the entire EEPROM page must be erased (which means setting all of its bits to 1) if only one
bit in the page must be changed from 0 to 1. In this example, if the power for the smart card is cut off
exactly after the EEPROM has been erased, which means after step 3, the purse balance would be set to
its maximum value and the attacker would have effectively created money. This can be reliably prevented
by using atomic operations

Although this type of attack sounds attractive and appears to be easy to copy, in practice there
are several effective countermeasures. The simplest approach is arrange the EEPROM write

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 582 of 1123

548 Security Techniques

instructions in a carefully considered order. The EN 1546 standard for multisector electronic
purses is well worth examining in this regard, since all of the electronic purses described in
this standard are explicitly protected against this sort of attack.

However, even a perfectly ordered sequence of write operations cannot by itself achieve
absolute protection. This can be illustrated using another example. When the electronic purse
of our previous example is being loaded, it may be necessary to erase the EEPROM before
the write process. If the erased state of the EEPROM corresponds to the maximum value of
the purse balance, which incidentally is the usual case, the purse can be artificially loaded to
its maximum value by simply interrupting the power to the card at the right time. The proper
moment is when the erase operation has just been completed and the write operation has not
yet been started.

Operating system designers know an effective countermeasure for this type of attack, which
is to use atomic operations as described in detail in Section 5.10. The characteristic of an atomic
operation is that it is indivisible, which means that it is performed either completely or not
at all. This provides fully adequate protection against the type of attack just described. Even
the optimally ordered EEPROM write operations described in the EN 1546 standard require
atomic operations in several locations to prevent this type of attack from being implemented.

Attack and defense: current analysis during PIN comparison

A technically very interesting type of attack on comparison features, such as PINs, can be
carried out using a combination of physical measurement of a parameter and variation of
logical values. This type of attack relates to all mechanisms in which data are sent to the
smart card and compared in the card with corresponding values, with a retry counter being
incremented according to the result of the comparison.

The attack works on the principle of measuring the current drawn by the card, for example by
measuring the voltage drop across a resistor in the Vcc lead. If a suitable command containing
the comparison data is sent to the card, it is possible to see from the current measurement
whether the retry counter has been incremented, even before the return code has been received.
If the return code is sent before the retry counter is written when the result of the comparison is
positive, this method can be used to determine the value of the reference data. This is done by
sending all possible variations of the comparison value to the smart card and cutting off power
to the card before the retry counter has been incremented if the result is negative. A positive
result can be clearly recognized from the associated return code, which is sent before the retry
counter is written.

There are two basic ways to defend against this type of attack. The simplest defense consists
of always incrementing the retry counter before making the comparison, and then decrementing
it afterwards as appropriate. In this case, the attacker cannot obtain an advantage, regardless of
when he interrupts power to the card, since the retry counter will have already been incremented.
The second defense is more complicated, but it provides similar protection. In this approach,
the retry counter is incremented after a negative comparison and written to an unused EEPROM
cell after a positive comparison. Both of these write accesses occur at the same time in the
process, so the attacker can draw no conclusions with regard to the result of the comparison.
He learns the result of the comparison only after receiving the return code, and at this point it
is too late to prevent a write access to the retry counter by cutting off the power.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 583 of 1123

8.2 Smart Card Security 549

Attack and defense: timing analysis of PIN comparisons

Programmers always give considerable attention to making programs execute as quickly as
possible. Normally, this is also an important consideration. However, the fact that the execution
time of a process has been optimized can be utilized for an attack that definitely has a good
chance of success. If a PIN is sent to a smart card for comparison, the associated comparison
routine normally compares the PIN it receives with the stored PIN value byte by byte. A pro-
grammer who is not security-conscious will program this routine such that the first difference
between the two compared values causes the routine to immediately terminate and return to
the calling program. This leads to minute variations in the execution time of the comparison
process, which can nevertheless be measured using suitable equipment (such as a storage os-
cilloscope). This information could be used by an attacker to determine the secret PIN code in
a relatively straightforward manner.

Up to a few years ago, this was still an effective type of attack on smart cards. However, it
is now a known type of attack, and comparison routines are constructed such that all digits of
a PIN are always compared. Consequently, there is no time difference between positive and
negative comparison results.

Protection: noise-free cryptographic algorithms

The security of smart card applications is based on secret keys used with cryptographic algo-
rithms. In order to access the card in certain ways or perform certain operations with the card,
the terminal must always first authenticate itself using a secret key. Naturally, authentication
of the terminal by the card represents an attractive target for an attacker. By contrast, authen-
tication of the card by the terminal is not attractive with respect to an attack on the card, since
a smart card can be manipulated as desired using a (dummy) terminal.

The smart card authenticates the terminal by sending it a random number, which the terminal
then encrypts and returns to the card. The smart card then performs the same encryption and
compares the result with the value received from the terminal. If the two values match, the ter-
minal has been authenticated, and it receives a corresponding return code. If the authentication
fails, the card sends a different return code. The starting point for the attacker is analyzing the
processing time between when the command is sent and when the response is returned by the
smart card.

As late as the early 1990s, cryptographic algorithms with significant differences in execution
times for different keys and plaintexts were still sometimes used. The resulting reduction of the
key space can be exploited by an attacker to search for the secret key using a brute-force attack.
The duration of the search is strongly dependent on the noise level of the algorithm. The size of
the key space becomes smaller as the variation in execution time increases, making it easier and
faster to search for the key. If the exact implementation of the algorithm on the target computer
is known, this information can also be included as reference data for generating the timing
tables. This type of attack was made public under the name ‘timing attack’ in a publication
by Paul Kocher in 1995 [Kocher 95], which primarily deals with the time dependencies of the
RSA and DSS algorithms.

In principle, a timing analysis is a very dangerous threat to the security of a smart card.
However, since this type of attack has been known for a relatively long time, all present-day
smart cards use only noise-free cryptographic algorithms, which are algorithms for which the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 584 of 1123

550 Security Techniques

time required for encryption or decryption is independent of the input values. This blocks
this sort of attack. However, the programmer has conflicting interests in this regard, since a
noise-free algorithm usually requires more program code and is always slower than a noisy
version. The reason for this is that a noise-free algorithm must be designed such that the path
through the program has the same length for all combinations of plaintext data, ciphertext data
and keys. This means that the longest necessary path is the reference value, and all other paths
must be suitably modified to match this length.

To provide additional security, in some applications all authentication keys have their own
retry counters, so that only a limited number of unsuccessful authentications can be performed.
Once the retry counter has reached its maximum value, the smart card blocks all further attempts
at authentication.

key

computation
time

plaintext

11 ms

12 ms

13 ms

14 ms

15 ms

16 ms

Figure 8.41 Example of the effects of ciphertext and plaintext data on a noisy encryption algorithm.
This plot shows a portion of the plaintext / ciphertext space. It was generated using an old implementation
of the DES algorithm, with 100,000 iterations per measurement value

Manipulation: differential fault analysis (DFA)

As is well known, the operation of electronic devices can be adversely affected by exposing
them to electromagnetic interference. For instance, a mobile telephone can cause the processors
of many types of small computer-controlled appliances to crash. The cause lies in the memory
cells, whose contents can be altered by the high-frequency AC fields.

In 1996, Dan Boneh, Richard DeMillo and Richard Lipton published a study [Boneh 96]
describing a theoretical method for determining the secret keys of asymmetric cryptographic
algorithms by introducing scattered hardware errors. Since the three discoverers of this method
worked at the Bell Communications Research (Bellcore) Laboratories at the time, this type of
attack is often called the Bellcore attack.

Only two months later, Eli Biham and Adi Shamir published an extension of the Bellcore
attack called differential fault analysis (DFA) [Biham 96], which also included symmetric

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 585 of 1123

8.2 Smart Card Security 551

cryptographic algorithms such as DES. This meant that, at least in theory, many smart card
applications were exposed to a new and serious form of attack.

The basic principle of both of these types of attack is relatively simple. In the first step, an
arbitrary plaintext is encrypted using the key to be broken, and the resulting ciphertext is saved.
Following this, the operation of the card is disturbed while it is processing the cryptographic
algorithm, for example by exposing it to ionizing radiation or high-frequency fields in order
to alter a single bit of the key in a random location while the computation is being performed.
This yields a ciphertext that is incorrectly encrypted, due to the altered bit. This process is
repeated many times, and all the results are saved for analysis. The remainder of the procedure
for determining the value of the secret key is purely mathematical, and it is fully described in
the papers just mentioned.

The strength of this attack is primarily due to the fact that it is not even necessary to know
the location of the altered bit in the secret key. Biham and Shamir state in their publication that
with a single corrupted key bit, 200 ciphertext blocks are sufficient to compute the value of the
secret DES key. If triple DES (with a 168-bit key) is used in place of simple DES, the number
of required ciphertexts does not increase significantly. Even if more than one bit is altered, this
attack remains effective; the only consequence is that more incorrectly encrypted ciphertexts
are needed.

In practice, this type of attack is not as simple as it sounds. If at all possible, only one bit
should be altered, or at least only very few bits. If the entire microcontroller is simply bathed
in microwave radiation, usually so many bits will be altered that the processor will hopelessly
crash. Consequently, an attempt is made to induce the processor to make isolated processing
errors by injecting specially prepared glitches12 into the power or clock lines. If the filter on the
associated input leads cannot neutralize these glitches, they can produce the desired processing
errors.

However, a smart card is not totally helpless in the face of a Bellcore attack or DFA if
suitable precautions are taken. The simplest defense is to simply compute the cryptographic
algorithm twice and compare the two results. If they match, no attempt has been made to alter
any bits from outside the card. This defense assumes that intentionally introduced random
errors can never alter the same bit twice in a row. This is a realistic assumption, since if it ever
became possible to selectively alter specific bits in a smart card processor, attacks that are much
simpler and faster than DFA would be possible. The main disadvantage of double computation
is the additional time that it requires, which can cause problems. This applies primarily to
attacks on time-intensive asymmetric cryptographic procedures, such as RSA and DSS.

Another effective defensive measure against differential fault analysis can be achieved by
always encrypting different plaintexts. The simplest solution is to prefix the plaintext to be
encrypted with a random number. This means that the cryptographic algorithm always encrypts
different data, which prevents DFA from being used.

In summary, the Bellcore attack and differential fault analysis are unquestionably dangerous
types of attack that can succeed with smart cards that do not incorporate adequate protective
measures. However, all smart card operating systems and applications were modified to protect
them against these types of attack shortly after they became known, so neither the Bellcore
attack nor DFA currently represents a serious threat.

12 A glitch is a very brief interruption or spike in the voltage or current

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 586 of 1123

552 Security Techniques

Attack and defense: disturbing the processor

A type of attack that is similar to using differential fault analysis to attack the secret key
of a cryptographic algorithm consists of attempting to affect the execution of program code
routines by disturbing the operation of the processor. A type of attack that has been known
to manufacturers of smart cards and smart card microcontrollers since around 1998 is the
‘light attack’, which was described in mid-2002 by Sergei Skorobogatov and Ross Anderson
[Skorobogatov 02] as an ‘optical fault induction attack’.

This paper describes an arrangement in which a standard commercial flash unit is attached
to the camera adapter flange of a conventional optical microscope. Following this, a highly
restricted region of the RAM of a standard microcontroller (PIC16F84) is exposed to light
from the flash unit. With microcontrollers that are not hardened to resist this type of attack, this
arrangement can be used to selectively set certain bits in the RAM to the logic 0 or 1 states.

The operation of the processor can be disturbed by applying glitches to the supply lines,
exposing the chip to flashes of light or using high-frequency radiation [Lamla 00], among other
things. If the disturbance is triggered at the proper instant during the execution of the program,
it can be used to intentionally influence a query operation, for instance. A simple example
of this is shown in Figure 8.42. The task of the illustrated routine is to send the content of a
transmit buffer, whose boundaries are specified by a start address and an end address. If the
attacker succeeds in intentionally disturbing the query that determines the end address of the
transmit buffer, data following the end of the transmit buffer will also be sent to the terminal.
Should the workspace for a cryptographic algorithm be located in this region of memory, its
keys could be illicitly read out in this manner.

send content
of transmit buffer

send byte at
pointer address

pointer :=
start address

pointer =
end address?

yesno

pointer :=
pointer + 1

end

transmit buffer
in RAM

start address

pointer

end address

program flow for
data transmission

Figure 8.42 Example of a non-robust routine for sending the content of a transmit buffer, which can
be successfully attacked by disturbing the processor

The defense against this attack involves several system levels. At the hardware level, it is
important for the smart card microcontroller to have suitable sensors, so that it can detect all

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 587 of 1123

8.2 Smart Card Security 553

attempts to disturb the processor. These sensors can include voltage glitch detectors and a large
number of suitable light sensors. In order to make it impossible to defeat a few light sensors
by covering them with black ink, it is a good idea to use a relatively large number of sensors
distributed over the surface of the chip. This by itself is sufficient to preclude many types of
attack. An opaque chip encapsulation material provides only limited protection, since it can
be removed relatively easily using chemical methods.

The second level of protection must be implemented in the software. The program code
shown in the example can be made significantly more robust by using an ‘equal to’ query
instead of a ‘less than or equal to’ query. Another countermeasure is to execute the query
twice, with a random delay between the two queries. This requires the attacker to use two
flashes of light to manipulate the query, and he will be additionally hindered by the fact that
he cannot exactly predict the timing of the second flash.

In addition, all confidential data stored in RAM should be immediately deleted after they
have been used, or they should be temporarily encrypted. In order to further reduce the con-
sequences of this type of attack, it is also a good idea to encrypt all secret data (such as PIN
codes and keys) located in EEPROM. Should an attacker succeed in reading out portions of the
EEPROM by manipulating queries, he would then only obtain encrypted data, which would
be of no use to him. If an MMU is present, it can also be configured to monitor compliance
with certain boundaries for transmitting data from the card. Furthermore, modern processors
can detect illegal machine instructions and invalid addresses and respond appropriately. As can
be clearly seen from this defense scenario, an attack that unquestionably can be regarded as
serious can be blocked by suitable combination protective measures in hardware and software.

Protective elements: smart card operating systems

Protective mechanisms in the hardware form the basis for protective mechanisms in the oper-
ating system software. No potential weakness may be overlooked, since the three components
of the protective mechanisms – hardware, operating system and application – are linked in a
logical AND relationship. This is similar to a chain, in which the weakest link determines its
breaking strength. If a particular mechanism fails in a smart card, the entire security of the
card collapses. The operating system in particular forms the basis for the actual application,
whose information and processes must be protected.

The following material deals specifically with measures for protecting against typical at-
tacks, rather than general smart card security functions. However, most of these general func-
tions also contribute significantly to operational security and protection against attacks. For
this reason, you are explicitly referred to the appropriate sections of Chapter 5.

Protection: hardware and software tests following a reset

When the operating system is initialized, at minimum the most important parts of the hard-
ware must be tested to see if they are in proper working order. For instance, a RAM test is
indispensable, since all access conditions are stored in the RAM while the chip is operating,
and failure of a single bit could cause a complete security collapse. It is likewise necessary to
compute and test the checksums for the most important portions of the ROM and EEPROM.
The CPU is at least implicitly tested by sending the ATR, since the bulk of all possible machine

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 588 of 1123

554 Security Techniques

instructions must be executed faultlessly for this to be possible. Explicit testing of the CPU
and any NPU that may be present can usually be limited to sample testing, since completely
testing all functions for flawless operation would take too much time and code.

If the operating system discovers a hardware error or checksum error, there are two possible
ways to proceed. The first option is for the software to immediately jump to an endless loop,
which means that an ATR cannot be sent and subsequent commands can no longer be received.
The main disadvantage of this is that the cause of this behavior cannot be recognized from the
outside. The problem might be a broken bonding wire, a fractured chip or a checksum error in
the EEPROM, but this cannot be determined by the user. A better option is to have the smart
card attempt to send a special ATR before disabling itself by entering an endless loop. The
error ATR at least gives the outside world an indication of what has happened inside the smart
card. However, it must not be overlooked that simply sending an error ATR requires a largely
functional CPU, a few bytes of RAM and several hundred bytes of program code in the ROM.

Protection: layer separation in the operating system

Layer separation, with clearly defined parameters for transitions between the individual layers,
is a sign of a stable and robust smart card operating system. The consequences of possible
design or programming errors in the operating system are minimized by clean separation of
the layers within the operating system. Of course, this does not mean that such errors will
not occur, but the effects of the errors will not be as extensive as with an operating system
programmed in very compact, condensed code. Layer separation makes it difficult for any error
that occurs in one layer to propagate to other layers.

Protection: supervising data transmission

Another very important element of security is to supervise the data transmission process in
order to protect the memory against unauthorized accesses. All communications to and from
the smart card take place via an I/O interface supervised by the operating system. No other form
of access is possible. This represents an effective form of memory protection in the smart card,
since it ensures that the operating system always retains control over access to memory regions.

The transmission protocol, which is controlled by the transport manager, must intercept all
possible incorrect inputs. There must be no possibility of influencing the data transmission
process by manipulating transfer blocks in order to cause data to be illicitly sent from the
memory to the terminal.

Protection: checksums for important memory contents

The file structure, and in particular the file headers (file descriptors), should be protected using
checksums. This enables the operating system to at least detect any unintentional changes to
data stored in memory. This requirement is especially important in light of the fact that the
object-oriented access conditions for each file are stored in this part of the file.

All memory regions of the EEPROM that are vitally important for the smart card operating
system must be protected using checksums (EDCs). Whenever such a region is accessed or
the code it contains is called to be executed, the consistency of its contents must be verified
before the access or code execution is allowed to proceed.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 589 of 1123

8.2 Smart Card Security 555

Protection: encapsulation of applications

Some operating systems encapsulate the individual DFs containing the applications and their
files, so that individual applications are isolated from each other. However, this concept is
based on software protection alone, with no support from the chip hardware. The amount
of protection is thus not as great as it could be. Nonetheless, even this software approach to
application encapsulation can be very beneficial in case of an error, since it makes it impossible
for the file manager to exceed the boundaries of a DF without explicit prior selection. The effects
of a memory error on a file are thereby at least limited to the DF in question.

If hardware support for the operating system is present in the form of a memory management
unit (MMU), the various applications can be fully isolated from each other. In this case, even
manipulated software within an application cannot obtain unauthorized access to the memory
regions of other applications.

Protection: camouflaging the activities of the operating system

Whenever data must be written to the EEPROM, the charge pump in the chip must first be
switched on. This increases the current consumption of the chip, and with some types of
microcontrollers this can easily be detected using a suitable measurement setup. This means
that the fact that it may be possible to externally determine when EEPROM write accesses
occur must be taken into account in the design of the operating system. The software in the
smart card must prevent an attacker from being able to take advantage of this knowledge.

It is very important that it should not be possible for an attacker to draw any useful conclu-
sions about processes and decisions in the machine program by measuring the current drawn
by the card. For instance, it would be fatal if it were possible to use such measurements to
reliably judge the outcome of a PIN comparison before the completion of command processing
and transmission of the return code, since this information could very easily be used to analyze
the value of the PIN.

erase one
EEPROM page

write date to two
EEPROM pages

time

current
consumption

Figure 8.43 Approximate representation of the variation in the current consumption of a smart card
when the charge pump is switched on

Protection: object-oriented access conditions

Early smart card applications were always based on a centrally managed access mechanism.
One disadvantage of centralized access management mechanisms is that software or memory
errors can affect the overall security of the smart card. Modern object-oriented file management

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 590 of 1123

556 Security Techniques

systems, in which the access conditions are stored in the individual files, have the advantage
that only a single file is affected by a memory error, with the security of all other files remaining
intact. This is actually a fundamental property of all distributed systems. They are somewhat
more difficult to program, but they provide significantly stronger security against attacks and
errors, due to their self-sufficiency.

Protection: disabling the smart card

The operating system must allow the smart card to be fully disabled. This is very important for
the final stage of the smart card life cycle. Using statistical methods, it is possible to perform
very exact analyses of the software in the chip by collecting discarded but still fully functional
smart cards. To prevent this, mechanisms for completely disabling the operating system and
all of its routines must be available in the operating system, in order to make it impossible to
analyze the electrical or runtime behavior of the cards.

Attack and defense: random number generator

The random numbers generated by the smart card are used in authentication to individualize
a session, which means to make each session unique and different from all preceding and
following sessions. The objective of this is to make it impossible to successfully replay data
that have been obtained by tapping a previous session. Another form of the attack would
be to have the smart card generate so many random numbers that their sequence becomes
predictable. Yet another possibility is to keep requesting random numbers from the smart card
until the EEPROM memory of the random number generator no longer works properly, so that
the same number is generated over and over again.

Any of these attacks could, if successful, bypass the authentication of the terminal by the
smart card. Without exception, they work only with the first generation of smart cards.

They will all fail with modern operating systems. The cycle length of current random number
generators is so large that the same random number never appears twice within the lifetime
of an individual smart card. It is also no longer of any benefit to generate so many random
numbers that problems start to occur with the EEPROM. If this happens, random number
generation is simply blocked, so further authentication is prevented.

A high-quality random number generator must meet some additional requirements, such
as producing non-predictable random numbers and having a long cycle length (the number of
values that are generated before the generator repeats itself). In addition, all smart cards within
a particular application must generate different random numbers. This may sound extremely
obvious, but problems have repeatedly occurred in the past in this regard! This different
behavior is achieved by entering a starting value for the pseudorandom number generator
when the smart card is initialized or personalized. This starting value is often called a seed
number, in allusion to a biological seed that determines the growth of a plant. The design and
evaluation criteria for pseudorandom number generators are extensively discussed in Section
4.9, ‘Random Numbers’, along with methods to measure the quality of random numbers.

Protective components of the smart card application

The protective mechanisms of the application are based on suitable mechanisms in the hardware
and operating system. The application is dependent on having these two lower levels fully meet

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 591 of 1123

8.2 Smart Card Security 557

their obligations with regard to protection, since it cannot correct for any errors in the hardware
or the operating system. For example, if it is possible to read the contents of the EEPROM
using an analysis procedure, even the most complicated and secure encryption processes are
of no use at all, since the keys can be taken directly from the EEPROM by an attacker. An
application must nevertheless be constructed such that the entire system is not compromised
in the event of a successful attack on an individual card.

Protection: simple mechanisms

In order to provide effective protection against attacks, all mechanisms of an application
should be designed to be as uncomplicated as possible, and they should always conform to the
generally applicable principle of ‘keep it as simple as possible’. In the first place, this makes
implementation easier, and later on, it makes it easier to test the protective mechanisms in order
to verify that they are properly implemented and effective. It is extremely dangerous to assume
that protection against all possible forms of attack can be obtained by simply making something
sufficiently complicated. As a rule, exactly the opposite is true. A common consequence of
using complicated processes and mechanisms is that various things are forgotten or overlooked,
which makes things that much easier for an attacker.

Fundamentally, the available protective mechanisms in the operating system should always
be utilized in the application. They have been tested for reliability, and the defense they provide
starts at a lower software level than that of the application. This is not intended to mean that an
application does not need to have any protective mechanisms of its own, but the mechanisms
already present in the operating system should always be used.

Protection: conservative access privileges

In addition to the principle of ‘keep it simple’, there is a second generally valid rule. This
is that access privileges for the files and commands of a smart card should be granted as
conservatively as possible. Access should be generally prohibited, and only allowed if it is
absolutely necessary.

The advantages of this approach are that it makes it less likely that access to important
data and commands will be granted unintentionally, and it costs an attacker additional effort
to obtain each piece of necessary information. This can considerably reduce the attractiveness
of an attack, since it increases the overall amount of effort required.

Protection: state machines for command sequences

Attacking a smart card application is considerably more difficult if it is not possible to execute
every command at any desired time and an unlimited number of times. This can be realized by
using a state machine to specify the allowed sequences of commands. For example, if mutual
authentication of the terminal and the smart card is specified as the first required action, an
attacker will have to overcome this protective barrier before he or she can execute any further
commands.

Protection: redundant access security

The attacker’s job is made considerably more difficult if the smart card files are protected not
only by access conditions stored in the objects, but also by using a state machine to specify

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 592 of 1123

558 Security Techniques

the permitted commands and parameters. With this, the attacker cannot discover the specific
features of the system by simply trying each command or combination of commands in turn. If
the command sequences are supervised by a state machine, only the commands defined in the
application can be executed in the smart card. All other commands will be blocked in principle
by the state machine. This considerably reduces the scope of the possibilities available to an
attacker with regard to command manipulation.

Protection: various test levels

It has been standard practice for many decades to support various test levels for bank notes. This
involves security features that can be independently checked by different groups of people or
different types of machines. For instance, many of the visual features, such as security threads
and watermarks, can be checked by anyone on the street. For checking at the next level, an
ultraviolet lamp is needed to allow the fluorescent pigments in the paper to be seen. The features
belonging to the next higher level are used by automated equipment to verify that the notes are
genuine. A typical example is the infrared characteristics of the bank note. Yet another level
of independent features is provided for tests performed by the central bank.

This concept can easily be transferred to smart cards, with the logical consequence that
not everybody or every piece of equipment can test all of the features. For example, a retail
terminal for an electronic purse system might contain only some of the keys used for signature
verification, rather than all of them. This would not weaken the system in a cryptographic sense,
and it would have the advantage that an attacker could not compromise the entire system by
learning the master key of a retail terminal. The only entity that would know all the keys in the
system required for a complete transaction data set would be the system operator, who would
always be able to recognize an attack due to the forged signatures, and who would thus be able
to take appropriate countermeasures in case of an attack.

Protection: security features

Features incorporated in the microcontroller can offer additional operational security for smart
cards. These features consist of additional functional units that are added to the microcontroller
and can be tested by the terminal, along with testing the software in the chip. Both analog
and digital components are used for this purpose. The security of these features is based on
concealment and is different for each application, which means that the chips are application-
specific.

Protection: secure data transmission

There are certain risks associated with transmitting data in an insecure environment. Using
relatively simple technical manipulations of the interface between the terminal and the card,
it is possible to insert or delete almost any desired data within the normal data steam during a
session. If this happens while data related to security are being transmitted, an attacker could
derive a benefit from such manipulations.

In order to prevent this type of relatively simple and easily executed attack, a secure mes-
saging method can be employed. However, complete encryption all of transmitted data should
be avoided as much as possible, with encryption being reserved for transmitting secret keys

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 593 of 1123

8.2 Smart Card Security 559

and similar items. One reason for not encrypting all of the data relates to data privacy legis-
lation. Almost all information that is written to the memory of a smart card is public. If this
information is encrypted, nobody can check what is actually written to or read from the card. In
order to avoid any suspicions regarding encrypted data, which in principle would be justified,
data should as much as possible remain unencrypted while being transmitted.

Protection: error recovery functions

If a session is prematurely terminated for an undefined reason, or there are fundamental ques-
tions regarding an earlier session, it is a major benefit to have application-specific log files in the
smart card. Such files are maintained by the operating system, which updates them regularly
during the session to reflect the current state of the application and any signatures or other data
that may have been received from the terminal. The logged data are located in a cyclic file
in which the oldest record is always overwritten each time a new entry is made, causing the
content of the oldest record to be lost. For example, if a log file contains 20 records, information
regarding the most recent 20 sessions can be stored for subsequent analysis of session history.
This information can be used resolve many questions and unambiguously clarify contested
transactions and sequences of events.

An reason for maintaining detailed log files in the smart card is the fact that they make
certain error recovery functions possible. With a log file, it is possible to automatically restore
the previous state of the card (a roll back) if a session is terminated in an undefined manner.
This would otherwise require analyzing the exact process and sequence of events, which might
require human intervention.

Protection: authentication

Unilateral authentication, which is well known due to its use with magnetic-stripe cards,
basically amounts to nothing more than verification by the terminal that the card is genuine.
A magnetic-stripe card, due to its passive nature, cannot verify the genuineness of a terminal.
The introduction of smart cards has fundamentally changed this situation. Now the card can
also test whether it has been inserted into a genuine terminal or is connected to a genuine
background system. This has extensive consequences with regard to security, since it makes it
possible for the card to also take active measures against unauthorized access attempts.

Numerous possibilities arise from the ability of the card and the terminal to perform mutual
authentication, but they are usually not exploited to anywhere near their full potential. A smart
card should at minimum refuse to allow any access attempts as long as the terminal cannot
properly authenticate itself. This would make it impossible to undertake any sort of analysis of
the smart card operating system in private, even if only to find out what commands are present.

Protection: online behavior

Terminals with integrated security modules can be used fully autonomously to operate applica-
tions using smart cards. Of course, periodic uploads and downloads to and from the background
system are still necessary, but they usually occur only infrequently. However, in the case of
a relatively large application with a large number of cards in circulation, it must at least be
possible for a terminal to quickly make a connection to the background system if necessary, in

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 594 of 1123

560 Security Techniques

order to provide direct end-to-end communication between a smart card and the background
system. The importance of this increases with the size of the system and the scope of the benefit
an attacker can obtain by means of fraud. This is because a direct communications link to the
smart card allows the background system to access the current database of the card and block
the card if necessary. In addition, the keys stored in the background system are significantly
more secure than the keys stored in the many terminals in the field, even if the terminals have
security modules. The background system can also produce good statistical evaluations of the
card data it receives via sporadic end-to-end links to the smart cards.

All of these arguments are naturally particularly relevant to electronic purses based on smart
cards. The ‘urge’ to go online can be triggered by random variables and timing windows stored
in the smart card. An equally effective method is to use a counter in the card to demand an
online connection with mutual authentication after a certain number of offline transactions
have taken place or if the value of the offline transaction exceeds a certain level. At the end of
the session, the background system can reset the counter or alter the values of the parameters
that control the online behavior of the card.

Protection: blacklists

It is impossible to fully eliminate the possibility of counterfeit smart cards being used in a
system, no matter how well the cards may be protected against attacks. A smart card system
must also incorporate effective mechanisms to protect users by blocking stolen cards throughout
the entire system. The methods used for this purpose are strongly dependent on the application
in question and the design of the system, but they can all be reduced to a few basic techniques.

In order to prevent forged or lost smart cards from being used, it is necessary to maintain lists
that identify either valid cards or invalid cards by means of some unique feature. This feature is
usually a number, such as the card number. From the perspective of impeccable system design,
which requires everything that is not explicitly permitted to be implicitly prohibited, a list of
valid cards would be best. However, in a large system such a ‘whitelist’ would be awkwardly
large and would require very frequent updating. This can be easily illustrated by noting that in
a system with 10 million smart cards and an 8-byte card number, the whitelist would contain
80 MB of data.

This is why blacklists are used in practice. A blacklist records all cards that have been
blocked. In the example just mentioned, the size of the list would be reduced to 800 KB if the
number of blocked cards is 1 % of the total. However, if it is necessary to block significantly
more than 1 % of the cards in the system, due to attacks or lost cards, the size of the list would
quickly become impractical even with this approach.

In order to further reduce the number of data transfers and the amount of data that must be
transferred between the system that maintains the list and the system that tests cards against
the list, ‘red lists’ are occasionally used as well. A red list identifies cards that are demon-
strably forged and thus should be immediately confiscated or at least blocked for all further
transactions. The number of entries in such a list lies in the two- or three-figure range, even in
large systems.

Smart cards can be checked against these lists in real time with systems that work online.
With systems that work partially or fully offline, updated blacklists and red lists must be
transferred to the terminals as often as possible. This should occur at least daily, since a
protective mechanism based on a blacklist will otherwise not be effective.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 595 of 1123

8.2 Smart Card Security 561

Attack and defense: computer viruses and Trojan horses

Until recently, computer viruses were entirely unknown with smart cards, since there was no
technical provision for downloading program code while the card was in use. Modern smart
card operating systems, however, have mechanisms that allow program code to be downloaded
to smart cards after they have been issued to cardholders, and then executed. This means that
in principle, the conditions necessary for the existence of computer viruses in smart cards have
been created. By definition, a computer virus is a program that can reproduce itself and thus
spread to other computers. If such a program cannot reproduce itself, it is called a Trojan horse.
Both types of program have in common that under certain circumstances they can perform
unauthorized actions in the host computer. With a smart card, this could involve reading and
outputting the values of secret keys.

Unlike the situation with normal PCs, it is not a straightforward task to load a program into
the memory of a smart card and then execute it. There are security mechanisms in the card
that prevent programs from being run without authorization. For example, some applications
may require prior authentication of the terminal. In addition, it is usually necessary to use at
least a MAC or a digital signature to load program code into a smart card. Some smart card
operating systems also use software or hardware to mutually isolate the memory regions used
by individual applications, so that the applications in the smart card cannot affect each other.
As a result of these strong security measures, it is unlikely that computer viruses or Trojan
horses that are unintentionally downloaded when the card is already in use will be able to
impair the functions or security of any applications within the foreseeable future.

Attack and defense: exhaustive key search

One possible type of attack at the cryptographic level is an exhaustive search for a key. For this,
the attacker needs a plaintext–ciphertext pair (or better yet, several pairs), and naturally he has
to have the appropriate cryptographic algorithm. He or she then encrypts the given plaintext
using each possible key in turn until the given ciphertext is obtained. This key can then be
tested with all other plaintext–ciphertext pairs on hand. If correct encryption can be performed
in each case, the key that has been identified is most likely the correct key. This procedure is
basically suitable for all encryption algorithms, although it is not always the fastest method
for determining the value of the secret key.

As early as 1993, Michael Wiener published plans for a special computer with a stated cost
of one million dollars that could test all DSS keys for a given plaintext–ciphertext pair within
seven hours [Wiener 93]. This would allow the value of a 56-bit DES key to be determined in
3.5 hours on average. A few years later, in 1997, the DES key for a plaintext–ciphertext pair
provided by RSA Inc was determined in 97 days by systematic searching, using more than
70,000 computers interconnected via the Internet [RSA 97]. The search rate during the final
phase of this experiment amounted to around 0.7 % of the DES key space every 24 hours.
Another example of the large processing capacity that can be obtained by interconnecting
computers via the Internet is the SETI@Home initiative for searching for extraterrestrial life.
The EFF ‘DES Cracker’, which was built as a massively parallel computer in 1998, required
only 56 hours to determine an unknown DES key [EFF 98].

In practice, several different approaches are taken to counter such attacks. The simplest and
best-known measure is to make the key space of the cryptographic algorithm so large that it

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 596 of 1123

562 Security Techniques

is not possible to perform a systematic search within an acceptable length of time, even with
very high processing capacity. This is why the DES algorithm has now been replaced by triple
DES as a matter of principle. Compared with currently available processing capacity, the key
space of the DES has simply become too small.

start

CT1' :=
enc (Key; PT1)

CT1' = CT1 ?

Key := next key

all keys tested
?

Key := initial key

no

no

end

 yes

1

key found (= Key)key not found
1

22

3

 yes

i := i +1

CTi' :=
enc (Key; PTi)

i := 2

CTi' = CTi ?

i = n?

no

3

yes

 yes

no

Figure 8.44 A basic procedure for performing an exhaustive search for a key, with a given cryptographic
algorithm and several plaintext–ciphertext pairs, according to a proposal by James Massey [Massey 97].
The following abbreviations are used: CT = ciphertext; PT = plaintext; (CTi, PTi) = plaintext–ciphertext
pair i; n = number of plaintext–ciphertext pairs

Another defensive measure can be created very easily by constructing the application pro-
tocol such that pairs of plaintext and ciphertext do not occur. In smart card applications, in
most cases it is not even necessary to encrypt the data, since it is sufficient to secure the data
using a MAC. Since the mapping of multiple plaintext blocks onto a MAC is not unique, a
brute-force attack using a MAC is a great deal more arduous than the same type of attack using
a plaintext–ciphertext pair.

If a random number is prefixed to the plaintext in the smart card (which is called ‘salting’)
and the resulting data are encrypted or used to compute a MAC before being transmitted, the
data to be encrypted will be different each time the function is used, so the results will also be
different each time. This also makes an exhaustive search more difficult, since in many cases

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 597 of 1123

8.2 Smart Card Security 563

the random number does not have to be public. For example, it could be a secret shared by
the security module and the smart card. Incidentally, a random number prefixed to the data to
be encrypted within the smart card also provides very good protection against attacks using
differential fault analysis (DFA) and power analysis (SPA/DPA), even if the random number
is public.

The task of the attacker can also be made more difficult by using dynamic keys (session
keys), which are different for each encryption operation. In this case, even if the attacker
manages to determine the value of the key by some happy accident, it will not be of any use to
him, since the key will have changed again before the next transaction.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 598 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 599 of 1123

9
Quality Assurance and Testing

Quality assurance, with its associated test procedures and methods, is particularly important
for smart cards. A smart card manufacturer must fabricate its products in very large numbers
at high quality and low cost. In contrast to other branches of the semiconductor industry,
these products also contain relatively complicated and sensitive microcontrollers together with
software that generally cannot be modified afterwards.

If we compare this situation with that for standard PC software, for example, the basic
difference is obvious. In the latter case, it has become standard practice to replace the first
release of new software (usually identified by a ‘0’ at the end of the version number) within a
short time, ranging from a few weeks to at most one or two months, by revised and improved
versions (with version numbers ending in ‘a’, ‘b’, ‘c’ and so on). This would be impossible with
smart cards. Their mask-programmed software is by nature unalterable, and it is not feasible to
replace a large number of issued cards using any sort of recall campaign. Even with cards that
are not used in the particularly sensitive area of financial transactions, such a campaign would
cause lasting damage to the reputation of the card issuer, and the costs would be immense.

This is why quality assurance and testing are of fundamental importance in the production
of smart cards. After the cards have been manufactured and distributed, it is simply not possible
to ‘stuff in’ an improved version of the software a short time later. This naturally means that a
large amount of effort must be expended to produce a product that has as few errors as possible.

With regard to the various tests, a basic distinction must be made between qualification
tests and production tests. Qualification tests are used to make a basic decision about whether
the smart card in question can be used at all. These tests are usually performed before intro-
ducing a new card body, chip, module or operating system. If the new or modified product
meets the specified requirements, it is then qualified for production and can be manufactured
in large numbers. After this, qualification tests are performed only infrequently on random
samples.

A different sort of testing method is used for production tests. These tests can usually
be executed quickly without using complex equipment or procedures, in order to meet the
inescapable demand of mass production for short turnaround times and high throughput. They
primarily involve only simple measurements of general mechanical and electrical parameters,
together with sending suitable test commands to the smart card microcontroller.

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 600 of 1123

566 Quality Assurance and Testing

Many test specifications for large smart card applications are primarily designed with in-
teroperability between smart cards and terminals in mind. A good example is the GSM 11.17
specification, entitled ‘Subscriber Identity Module (SIM) Test Specification’, which occupies
around 100 pages. It describes detailed tests for GSM smart cards, which cover aspects ranging
from the card body and general electrical parameters (including the supply voltage and current
consumption) to data transmission protocols, commands and files. The GSM 11.17 tests are
organized as follows:

� physical characteristics

� electrical signals and transmission protocols

� logical model

� security functions

� functions

� commands

� file contents.

The organization of the individual tests in this specification is equally clear and practical.
Each individual test consists of four parts. The first part contains a formal definition of the test
and specifies its application. The second part lists the requirements to be satisfied, and the third
part describes the objective of the test in detail. The final part specifies the actual test procedure.

Test structure

test conditions

test definition and test application

test method

test objective

Figure 9.1 Basic organization of a GSM 11.17 test. This structure has been kept fairly general to allow
it to be used in principle for all smart card tests

9.1 CARD BODY TESTS

There is presently only one international standard for testing cards with and without chips,
which is the ISO/IEC 10373 standard. In Europe, there is also the EN 1292 standard, but this
deals exclusively with smart cards and terminals, including their general electrical require-
ments. Standards relating to cards also often include individual tests and test procedures for
checking the properties defined in the standard.

On the following pages, many of the usual tests and verifications for smart cards are briefly
described in alphabetical order. The testing laboratories of card manufacturers usually have a
repertoire of 120 to 150 different tests for cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 601 of 1123

9.1 Card Body Tests 567

Card body tests

visualmechanical thermal

dimensions

transparency

shrinkage

toxicity

adhesion

gloss

delamination

chemical

printabilitycorner radius

softening
temperature

color

bending

warpage

surface roughness
surface roughness
torsion

chemical
resistance

flammability

plasitcizer

Figure 9.2 Classification of a selection of commonly used card body tests. A series of tests is necessary
for each of the individual card components (hologram, magnetic stripe, chip and so on)

Standard ambient conditions are a fundamental requirement for the test environment, which
means that a temperature of 23◦ C ± 3◦ C and a relative humidity of 40–60 % must be main-
tained in the test laboratory. The cards to be tested must be appropriately acclimatized to these
conditions for at least 24 hours before the actual testing takes place.

Adhesion or blocking

(Basis: ISO 7810; test regulation: ISO/IEC 10373)
This test verifies whether the card’s behavior changes when it is stored under certain ambient
conditions. Five non-embossed cards are stacked together and uniformly subjected to a pressure
of 2.5 kPa at 40◦ C with 90 % relative humidity, for 48 hours. After this, the cards are inspected
for delamination, discoloration, surface changes and other visible changes.

Amplitude measurement

(Basis: ISO 7811-2; test regulation: ISO/IEC 10373)
This measurement verifies the signal amplitude and resolution of the magnetic stripe coding.
A standard read/write head that is passed along the magnetic stripe at a precisely specified
speed is used to make the measurement.

Bending stiffness

(Basis: ISO 7810; test regulation: ISO/IEC 10373)
In order to determine whether the card has the required bending stiffness, the left-hand side of
the card is clamped to a depth of 3 mm with the card facing downwards. The amount of bending

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 602 of 1123

568 Quality Assurance and Testing

is first measured with no load. A load of 0.7 N is then applied to the outer end of the card, and
the difference between the amount of bending under load and the amount of bending with no
load is measured. The result indicates the stiffness of the card. The bending stiffness test is often
also performed at temperatures lower or higher than the usual testing temperature of 23◦ C.

Card dimensional stability and warpage with temperature and humidity

(Basis: ISO 7810; test regulation: ISO/IEC 10373)
Both the shape and the size of certain types of plastic change markedly in response to variations
in atmospheric humidity. Consequently, the ability of the card to meet the standards must also
be tested under these conditions. For this test, the card is placed flat on a surface and the
temperature and humidity are varied. The testing conditions are –35◦ C, +50◦ C and +25◦ C
at 5 % relative humidity and +25◦ C at 95 % relative humidity. The size and warping of the
card are verified with respect to the standard values after it has been exposed to each of these
conditions for 60 minutes.

Card dimensions

(Basis: ISO 7810; test regulation: ISO/IEC 10373)
This test measures the height, width and thickness of a non-embossed card. A force of 2.2 N
is applied to the card, and its height and width are measured using a profile projector. For
measuring the thickness, the card is divided into four equal rectangles, and the thickness of
each rectangle is measured at the center using a micrometer at an applied force of 3.5 N to 5.9 N.
The measured maximum and minimum values are compared with the standard thickness.

Card warpage

(Basis: ISO 7810; test regulation: ISO/IEC 10373)
This test measures the amount of warpage of the card. The card is placed on a flat surface and
the warpage is measured using a profile projector. This test is primarily intended to be used
for cards that are stamped from base material supplied in roll form.

Delamination

(Basis: ISO 7810; test regulation: ISO/IEC 10373)
This test is only meaningful for multilayer cards, which are assembled by laminating several
layers of plastic. The cover foil is separated from the core foil at one point using a sharp knife.
Starting with this separation, the tester attempts to pull the two laminated foils apart. The
necessary force is measured and compared with reference values.

Dynamic bending stress

(Basis: ISO 7816-1; test regulation: ISO/IEC 10373)
The dynamic bending test is illustrated in Figure 9.3. The card is flexed at a rate of 30 times
per minute (0.5 Hz) with a deflection f of 2 cm across its length or 1 cm across its width. The

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 603 of 1123

9.1 Card Body Tests 569

card must remain undamaged after being flexed at least 250 times in each of the four possible
directions (a total of 1000 bending cycles).

this point
is fixed

short or long edge of the smart card

this point is
free to move

deflection f

Figure 9.3 Schematic diagram of how the card is loaded for the dynamic bending test

Figure 9.4 A machine for conducting dynamic bending tests on smart cards

Dynamic torsion stress

(Basis: ISO 7816-1; test regulation: ISO/IEC 10373)
In the dynamic torsion test, the card is twisted ±15 degrees about its longitudinal axis at a rate
of 30 twists per minute (0.5 Hz). The standard requires 1000 torsion cycles without functional
chip failure or visible mechanical damage to the card.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 604 of 1123

570 Quality Assurance and Testing

Electrical resistance and impedance of contacts

(Basis: ISO 7816-1/2; test regulation: ISO/IEC 10373)
The electrical resistance of the contacts is an important criterion for the reliability of the
supply of electrical power to the microcontroller in the card and data transmission to and from
the microcontroller. The resistance is measured using two test probes applied to two opposite
corners of the smallest allowable contact rectangle with a force of 0.5 N ± 0.1 N. The resistance
between the two test probe contacts, which are gold-plated and rounded to a radius of 0.4 mm,
must be less than 0.5 �.

Electromagnetic fields

(Basis: ISO 7816-1; test regulation: ISO/IEC 10373)
In this test, the card is moved into a static electromagnetic field with a strength of 1000 Oe
(79.6 H) at a maximum speed of 1 cm/s. The memory contents of the card must not change.

Embossing relief height of character

(Basis: ISO 7811-1; test regulation: ISO/IEC 10373)
In this test, the thickness of the card where it is embossed is measured using a micrometer,
with an applied force between 3.5 N and 5.9 N.

Flammability

(Basis: ISO 7813; test regulation: ISO/IEC 10373)
The flammability of the card is measured by holding one edge at an angle of 45◦ in a specified
Bunsen burner flame for 30 seconds (diameter 8.5 mm, height 25 mm).

Flux transition spacing variation

(Basis: ISO 7811-2; test regulation: ISO/IEC 10373)
This test determines whether the magnetic flux transitions that encode the individual bits in the
magnetic stripe are uniform and sufficiently strong. A read head is passed along the stripe and
the field variations are recorded. The measured results are compared with the values specified
in ISO 7811-2.

Height and surface profile of the magnetic stripe

(Basis: ISO 7811-2/4/5; test regulation: ISO/IEC 10373)
This test measures the height and uniformity of the surface of the magnetic stripe. It generates
a height profile using a special measuring device that is described in detail in the standard.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 605 of 1123

9.1 Card Body Tests 571

Light transmittance

(Basis: ISO 7810; test regulation: ISO/IEC 10373)
Some cards have an optical barcode on an embedded foil. This test is suitable for determining
the optical transparency of the covering layer and the rest of the card body. One side of the
card is illuminated with a light source, and the light transmission is measured on the other side
with a detector that is sensitive to 900-nm light.

Location of contacts

(Basis: ISO 7816-2; test regulation: ISO/IEC 10373)
This test is used to measure the locations of the contacts. The card is placed on a flat surface and
subjected to a force of 2.2 N ± 0.2 N. Following this, the positions of the contacts relative to the
edges of the card are measured using any desired method that has an accuracy of at least 0.5 mm.

Resistance to chemicals

(Basis: ISO 7810, ISO 7811-2; test regulation: ISO/IEC 10373)
The chemical resistance of the card body and the magnetic stripe are investigated using these
tests. Different cards are placed in the following precisely specified liquids at a temperature
between 20◦ C and 25◦ C:

� 5 % aqueous solution of sodium chloride

� 5 % aqueous solution of acetic acid

� 5 % aqueous solution of sodium carbonate

� 60 % aqueous solution of ethyl alcohol

� 10 % aqueous solution of sugar

� gasoline (according to ISO 1817)

� 50 % aqueous solution of ethylene glycol.

Each card is removed from the solution after one minute and either visually examined or tested
using a magnetic stripe reader.

Static electricity

(Basis: ISO 7816-1; test regulation: ISO/IEC 10373)
This test, which is only meaningful for smart cards, checks the chip’s robustness with regard
to electrostatic discharge (ESD). A 100-pF capacitor that has been charged to +1500 V and
–1500 V in turn is discharged through a 1500-� current-limiting resistor into the chip’s various
contacts. There must be no damage to the functionality of the chip and no change to the contents
of its memory due to the discharges.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 606 of 1123

572 Quality Assurance and Testing

Surface profile of contacts

(Basis: ISO 7816-1/2; test regulation: ISO/IEC 10373)
This test compares the surface profile of the individual contacts with the surface of the rest of
the card. It is intended to ensure that the contacts lie in approximately the same plane as the
overall card surface.

Surface roughness of the magnetic stripe

(Basis: ISO 7811-2; test regulation: ISO/IEC 10373)
The surface roughness of the magnetic stripe is measured using the same device as for the
height and surface profile. However, it is used with a special probe tip that allows the surface
roughness of the magnetic stripe to be determined. The reason that this test is important is that
surface roughness is one of the major factors in the wear of the read/write heads in magnetic-
stripe readers.

Ultraviolet light

(Basis: ISO 7816-1; test regulation: ISO/IEC 10373)
Since (E)EPROM memories lose their contents when they are exposed to ultraviolet light,
there is a special test to determine whether the smart card is sensitive to ultraviolet light. The
card is irradiated for 10–30 minutes by ultraviolet light with a wavelength of 254 nm and an
energy density of 15 Ws/cm2. The (E)EPROM data contents must not change as a result.

Vibration

(Basis and test regulation: ISO/IEC 10373)
Since cards are often subjected to severe vibrations during transport and use (e.g. mobile phones
in cars), an appropriate test is also necessary. It requires the card to be tested on a vibration
table in each of the three axes with an amplitude not exceeding 1.5 mm over a frequency range
of 10 Hz to 500 Hz. The functionality and memory content of the chip must not be adversely
affected as a result.

Wear test for magnetic stripe

(Basis: ISO 7811-2; test regulation: ISO/IEC 10373)
In order to determine how the magnetic stripe responds to wear, test data are first written to
the stripe. A dummy read/write head with a hardness of 110–130 HV and a radius of curvature
of 10 mm is then passed back and forth along the stripe 1000 times with an applied force of
1.5 N. Following this, the data are read again. The signal amplitude must lie within the limits
specified in ISO 7811-2.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 607 of 1123

9.2 Microcontroller Hardware Tests 573

X-ray test

(Basis: ISO 7816-1; test regulation: ISO/IEC 10373)
The contents of (E)EPROM memory cells can be altered by X-ray irradiation, just as with
ultraviolet light. In order to test the X-ray resistance of the memory, the chip is irradiated by
Xrays with an energy of 70 kV. The memory contents are then examined for any changes, or
the memory is tested to see whether it can still be written.

There are naturally many other things that can be tested, such as the number of insertion
cycles, the wear resistance of the inks, the stability of the plasticizer and resistance to perspira-
tion and saliva. Depending on where and how the card will be used, the appropriate tests must
be selected and performed.

9.2 MICROCONTROLLER HARDWARE TESTS

Besides ensuring the quality of the card body, one of the primary tasks of quality assurance is
to ensure that the microcontroller is in good working order. The microcontroller is the most
important and most vulnerable component of a modern smart card.

The CPU and memory are subjected to a variety of tests starting with the semiconductor
fabrication stage. In order to allow these tests to be run, every microcontroller has a test ROM
containing various programs that support external access to the CPU and memory. In addition,
there are sometimes special pads (contacts) that allow free access to the central buses of the
processor. During fabrication, needle probes are used to contact the appropriate pads on the
chip to allow the necessary test programs to be run. These pads are cut off when the chips are
sawn from the wafer, in order to prevent them from later being used for attacks. This means
that it is no longer possible to access the internal buses of the chips.

Once the die has been packaged in the module, another test is naturally performed using
the module contacts. This often only amounts to performing an activation sequence and seeing
whether an ATR can be received. If this is possible, it is assumed that the chip has not suffered
any serious damage while being packaged into the module and that all bonding wires are
correctly connected. A similar ATR test is also made immediately after the module has been
embedded in the body of the card. This test checks whether the module has been damaged by
being briefly heated during the embedding process.

The microcontroller is meticulously tested before the smart card is initialized. Test com-
mands that are specifically allowed for this processing step are used.1 After successful com-
pletion of the test program, which lasts between 10 and 100 seconds, these commands are
irreversibly blocked against further use. It is possible to perform these time-consuming tests
at this stage without reducing throughput by using a large number of initialization machines
operating in parallel, so that the duration of the test does not have a significant effect. The tests
used here, to give some examples, check whether all EEPROM bytes can be written and again
erased and whether the RAM is fully operational. If the chip is scratched during the bonding
process, this could prevent some EEPROM cells from being properly written or cause certain
regions of the ROM to have incorrect contents.

1 See also Section 7.11, ‘Commands for Hardware Testing’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 608 of 1123

574 Quality Assurance and Testing

Various final tests are performed after the card has been initialized and personalized, depend-
ing on the manufacturer. This is usually done using fully automatic, self-calibrating testers that
can configure themselves by reading data relevant to the tests from the smart card, following
which they carry out the tests accordingly.

In addition to the relatively simple and quickly executable tests undergone by all cards,
there are also random sample tests that are only performed on individual cards. These cards,
which are taken from regular production, can naturally also be subjected to destructive testing
if necessary.

Qualification testing and continuous random sample testing have also been addressed by
the publication of the EN 1292 standard. It defines many different test procedures for micro-
controllers. Typical sample and qualification tests for microcontrollers are:

� rise and fall times at the I/O contact (EN 1292)

� number of possible write/erase cycles in the EEPROM

� EEPROM data retention

� CLK overfrequency and underfrequency detection

� Vcc overvoltage and undervoltage detection

� I/O contact voltage (EN 1292)

� current consumption at the CLK input (EN 1292)

� current consumption at the reset contact (EN 1292)

� current consumption at the Vcc input (EN 1292)

� current consumption at the Vpp input (EN 1292).

Naturally, every card manufacturer also employs its own supplementary tests to cover special
features of the embedded microprocessors. For example, there are special tests for the various
sensors on the chip to allow each of them to be suitably tested.

9.3 EVALUATING AND TESTING SOFTWARE

Physical components, such as the bodies and modules of smart cards, can largely be tested using
conventional methods. Electrical characteristics can also be measured in a satisfactory manner
using automated test equipment. However, the situation with regard to the microcontroller
software is somewhat different. Although the methods used to test software for errors have
been steadily refined during the past 40 years, since the appearance of the first programs, and
there are many recognized good methods for producing programs with a low number of errors,
it is still true that in everyday practice, software errors show up relatively frequently.

This is not a serious problem in most applications, since a revised version of the software
can quickly be issued to correct the errors. This cannot be done as easily with smart cards,
since most of the software is located in the ROM of the microcontroller. A new version of the
software necessitates a completely new production run by the semiconductor manufacturer,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 609 of 1123

9.3 Evaluating and Testing Software 575

which takes around 8–12 weeks. If the smart cards have already been put into service, it
is practically impossible to modify the existing software. It follows from these very strict
constraints that software for smart card microcontrollers must have an extremely low number
of errors. Software that is truly ‘error-free’ would be even better, but given the present state of
software development, this remains a distant goal.

As is well known, the subject of software testing is extremely extensive. It is described in
many books in all of its variations and orientations. We can only present a short sketch of this
subject, which by now has become almost an independent branch of information technology.
Consequently, in the following sections we discuss only certain special aspects of testing soft-
ware for smart card microcontrollers. Glenford J. Myers’ book [Myers 95] can be considered
to be representative of the literature on this subject. We would also like to point out that mili-
tary standards, in particular, contain many good and well-proven methods for generating and
testing software.

9.3.1 Evaluation

Due to their ability to store data securely, smart cards are primarily employed in security-
sensitive areas. However, smart cards can be used to advantage not only for the secure storage
of data, but also equally well for the secure execution of cryptographic algorithms.

The field of electronic payments, in particular, is an expanding market for smart cards. Since
enormous amounts of money flow in a widely distributed system, the application provider or
card issuer must have a high degree of confidence in the semiconductor manufacturer, the
producer of the operating system and the smart card personalizer. The application provider
must be able to be absolutely certain that the software in the smart card performs the required
financial transactions without any errors and that the software is free of security leaks, not to
mention trapdoors deliberately introduced into the software.

For example, suppose a secret command could be sent to the smart card to read out the PIN
and all secret keys. In the case of a GSM or Eurocheque card, the attacker would then be able
to clone any number of cards and sell them in perfect working order.

These security requirements relate not only to manufacturing the smart cards, but equally
well to initialization and personalization of the cards, since the secret keys and PIN are loaded
into the cards in these stages. The card issuer must place a high degree of trust in the card
provider with regard to security.

This also applies to the fundamental security of the software in the smart card. Problems
can arise even if a ‘trap door’ has not been intentionally included in the software to allow data
to be spied out of the card. Faulty operation of the software could very well make it possible
to read data from the card or write data to the card using a combination of commands that
is not used in normal processes. Although the likelihood of such a coincidence is extremely
low, it is nevertheless well known that given the current state of software technology, it is
impossible to guarantee that programs are free of errors under all conditions. It is certain that
in the future, companies that produce software for smart cards will no longer be able to deny
all responsibility on the basis of such legalistic formulations.

There are only two ways in which the application provider can test the trustworthiness of
a product. He can either test all possible variations the smart card software himself, or he can
have the software tested by a trustworthy party. The first option is frequently possible only to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 610 of 1123

576 Quality Assurance and Testing

a limited degree, since the provider usually does not have all the necessary technical expertise
and capabilities. The second option, which is assigning the tests to another party, is currently
regarded by all concerned as an acceptable solution.

This same problem has existed for many years with software and systems developed for
military use. It is thus not something that is new in the smart card world. In order to establish
metrics for the trustworthiness of software products, which means to make it objectively
measurable, the US National Computer Security Center (NCSC) issued a catalog of criteria
for evaluating the trustworthiness of information technology systems in 1983. NCSC was
founded in 1981 by the American Department of Defense (DoD). The publication of ‘Trusted
Computer System Evaluation Criteria’ (TCSEC) followed in 1985. This book had an orange
binding, so it has come to be generally known as the ‘Orange Book’. These criteria serve as
guidelines to the NCSC for the certification of information technology systems.

The TCSEC has become an international model for practically all criteria catalogs in the
information technology field. In Europe, specifically European criteria have been defined,
although they are based on the TCSEC. They were first published in 1990 as the ‘Informa-
tion Technique System Evaluation Criteria’ (ITSEC), and a revised version was issued in
1991.

The Common Criteria (CC) were created in order to provide a uniform standard for testing
the correctness of software. They can be regarded as representing the essential elements of the
TCSEC and the ITSEC. The Common Criteria are also better organized for the evaluation of
software than the TCSEC or the ITSEC. Although the first version of the Common Criteria was
published as early as 1996, it has not yet supplanted the TCSEC or the ITSEC.2 The Common
Criteria have also been published as an international standard (ISO 15408). In contrast to the
ITSEC, which has six levels, the Common Criteria have seven levels of trustworthiness. It is
relatively easy to make the transition from an evaluation based on the TCSEC or the ITSEC to
one based on the Common Criteria, since all of these catalogs have many features in common.
However, since in the smart card field in particular the ITSEC is still used as the essential basis
for software evaluation, we refer only to this catalog in the following description.

Occasionally, the requirements of the FIPS 140-2 standard are taken into account in per-
forming evaluations, in addition to the ITSEC and the CC. This standard specifies four possible
security levels for security modules, which can be considered to include smart cards, and pro-
vides detailed descriptions of seven requirement areas related to security. The contents of this
standard are very practically oriented and also deal with details of technical implementation,
such as criteria for the quality of random-number generators.

Regardless of the method used, an evaluation process has four characteristics. First, it must
be unbiased, which means that the evaluator must not have any preconceived ideas regarding
the item to be evaluated or its producer. The second characteristic is that the evaluation process
must be objective and structured to minimize the significance of personal opinions. The third
characteristic is that the same result must be obtained if the evaluation process is repeated.
The final characteristic is that the evaluation process must be reproducible, which means that
a different tester or testing agency must reach the same conclusions.

One of the most important considerations in any evaluation is defining the security targets
for the target of evaluation (TOE). The target of the evaluation is the object to be tested,

2 The TCSEC, ITSEC and CC are available at no charge from many Internet sites (e.g., the CC at [NIST])

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 611 of 1123

9.3 Evaluating and Testing Software 577

Characteristics of an evaluation processCharacteristics of an evaluation process

objectiveobjective

impartialimpartial

repeatablerepeatable

reproduceablereproduceable

Figure 9.5 The four characteristics of an evaluation process

and the security targets describe the mechanisms to be tested. Incidentally, an evaluation can
be dramatically simplified by carefully selecting the security targets, since elements that are
critical with regard to security can thereby be excluded. This is just a trick that can be used to
achieve a high evaluation level in the quickest and least costly possible manner. Naturally, the
actual security can only suffer as a result.

The ITSEC

Since the ITSEC is supposed to be valid for all possible information technology systems, and
the document is only around 150 pages long, the security criteria must be described in a very
abstract form. It is consequently very difficult to read and, like legislation, it occasionally
requires outright interpretation.

The ITSEC is based on the idea that there are three fundamental threats to any system,
which are unauthorized access to data (breach of confidentiality), unauthorized alteration of
data (breach of integrity) and unauthorized impairment of functionality (breach of availability).
The security criteria are based on these three threats.

The threats can also be diminished outside the system by various measures. For example,
an insecure computer system can be made considerably more secure if physical access to the
system is controlled by security gates. Such aspects represent general conditions that also
must be taken into consideration during an evaluation. The resulting residual threat can then
be assessed using the ITSEC criteria catalog.

Basic threats per ITSEC

breach of integrity

breach of confidentiality

breach of availability

Figure 9.6 The three basic threat areas according to the ITSEC

The basic procedure for evaluating a system in terms of the ITSEC is to rate the mechanisms
that it uses to maintain security with regard to the three defined basic threats. The ratings are
made in a manner that is similar to grading a school assignment. The mechanisms used must

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 612 of 1123

578 Quality Assurance and Testing

be both correct and effective. The mechanisms are also judged with regard to basic functions
that are relevant to security, which are also referred to as ‘generic categories’.

Table 9.1 Generic categories of
mechanisms according to the ITSEC

Category

Identification and authentication
Access control
Securing evidence
Log evaluation
Reprocessing
Genuineness
Reliability of service
Transmission security

Table 9.2 lists the requirements for evaluating software for smart cards. The amount of
effort does not increase linearly for each successive level, but instead nearly quadratically.

Table 9.2 Summary of the requirements for smart card software development as a function of the
ITSEC quality level

Necessary Evaluation level
information

E1 E2 E3 E4 E5 E6

Security targets yes yes yes yes yes yes

Formal model of
security policy

no no no yes yes yes

Descriptions of
functions

informal informal informal informal
& semi-
formal

informal
& semi-
formal

informal
& formal

Architectural
design

informal informal informal semi-
formal

semi-
formal

formal

Detailed design no no informal semi-
formal

semi-
formal

semi-
formal

Implementation nothing
required

nothing
required

nothing
required

source
code
testing

source
code
testing

source
code &
object
code
testing

Operation yes yes yes yes yes yes

Level of rigor – state description – – presentation – – explanation –

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 613 of 1123

9.3 Evaluating and Testing Software 579

This means that it takes twice as much effort to go from level E2 to level E3 as it does to
go from level E1 to level E2. The consequences of this are naturally most pronounced for
evaluation levels E4 through E6. Complete evaluation of a medium-sized smart card oper-
ating system at the ITSEC E6 level can easily take several years and cost several million
euros.

In an evaluation, a fundamental distinction is made among informal, semi-formal and formal
methods. An informal description of a function can perfectly well be compared with a textual
description in this book. The Small-OS operating system presented in Section 5.11 is basically
described semi-formally. A formal description, by contrast, can be logically tested and is
produced using a formal notation (such as predicate logic).

In the ITSEC, the levels of security against threats are divided into several classes by
function. Each of these classes is a collection of a particular combination of security functions,
and it indicates the level of threat for which the system has a secure defense. There are six
quality levels or evaluation levels (E1 through E6). E1 is the lowest level, while E6 is the
highest level.

In all of the functional classes, the formal requirements imposed on the development process
and the development environment are prescribed in a very abstract manner. Furthermore, the
functional classes contain information and specifications regarding operating documentation
and the eventual operating environment. This information is presented in a form that can be
applied to all possible technical variations of software development.

An ITSEC evaluation frequently includes an appendix that relates to the ‘strength’ of the
mechanisms, which means their robustness against attacks. Three levels of strength are defined:
low, medium and high. ‘Low’ characterizes protection against random, unintentional ingress
into a secure environment. ‘Medium’ means that there is protection against attackers having
limited resources. The top level, ‘high’, means that there is protection against attackers having
very good technical knowledge and resources. Normally, the highest level of mechanism
strength is used with ITSEC level E4 and higher. It should also be used as a matter of principle
for smart cards, in the interest of system security.

The ZKA criteria

In addition to the international evaluation standards such as TCSEC, ITSEC and CC, there are
also specific evaluation standards that have become established for large smart card applica-
tions. Two examples are the Visa criteria for security testing and the German ZKA criteria. The
ZKA criteria are mandatory in Germany for Eurocheque cards with chips, and all smart card
operating systems for this application are tested against these criteria by authorized evaluation
bodies. The ZKA criteria are listed and explained in Table 9.3.

In testing based on the ZKA criteria, the prepared documentation as well as the software
and hardware are reviewed. This is the main advantage of the smart card-specific ZKA criteria
in comparison with the general TCSEC, ITSEC and CC criteria, which apply to all types of
software. Tables 9.3 and 9.4 list the 13 ZKA criteria along with associated explanations.

In summary, the ZKA criteria presently probably offer the best security for smart cards,
since they meet the stringent demands of a large financial transaction system and are specially
tailored to the particular interests of a system based on smart cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 614 of 1123

580 Quality Assurance and Testing

Table 9.3 The ZKA criteria for evaluating a smart card system (from Stefan Rother [Rother 98b])

Criterion Explanation

Component authentication It must be possible to authenticate the security components of the
system.

Message integrity Information relevant to security that is exchanged between the
components must be protected against manipulation.

User authentication Certain functions may be executed only after the user’s PIN has been
correctly entered in order to authenticate the user.

PIN and key secrecy PINs and keys may never be transferred in plaintext outside of a
secure area. To the extent that the PINs and keys are processed or
stored in components of the operating system, these components
must be protected against unauthorized reading or modification.
The system must prevent carrying out an exhaustive PIN search.

Logging All events relevant to security must be logged in the components that
are involved. The logs must be protected against manipulation.

Key management There must be mechanisms for the distribution, administration and
exchange of keys. Only temporary keys may be used with
symmetric cryptographic procedures, and keys must be kept
separate according to their purposes.

Hardware All operations relevant to security must be protected against
unauthorized accesses.

Organizational precautions
relating to manufacturing
and personalization

Only the evaluated program code with the described parameter values
may be used in actual operation.

Process security The correctness of the processes and data flows within the evaluated
programs is ensured by a source code test.

Other applications Additional applications must not have any effects that endanger the
security.

Encryption methods The cryptographic algorithms that are used must represent the current
state of the technology and are not allowed to be based maintaining
the secrecy of the method.

Unambiguous
representation

Each security component must be clearly identifiable in the overall
system.

Personnel requirement Only suitable persons should be allowed access to the components
and mechanisms that are relevant to security.

Table 9.4 Investigating the security of the specifications and source code of a smart
card operating system based on the ZKA criteria (from Stefan Rother [Rother 98a])

Investigation of specifications and source code

Operating system commands Encryption and decryption
Application commands Key derivation
Communications mechanisms Signature generation and testing
Memory and resource management Key administration
File attributes and access privileges Authentication mechanisms
Checksum algorithms Random number generator

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 615 of 1123

9.3 Evaluating and Testing Software 581

Summary

The procedure with a real smart card project is as follows. The card issuer first works with the
operating system producer to define the operational requirements and the threats that must be
taken into account. Following this, an agreement is reached regarding the necessary evaluation
level. Next, the operating system is configured according to this evaluation level and the corre-
sponding evaluation process, and the necessary documentation is provided. In the final step, the
completed operating system with all its components can be evaluated by a suitable independent
organization, which is the evaluation body, according to the previously agreed level.

An ITSEC evaluation has certain benefits for the card issuer and application provider, since
they can be assured that the design and implementation of many security aspects are both
clearly defined and effective. However, in the dynamic smart card market this assurance comes
at the price of certain drawbacks. Software development time is considerably increased by the
need to conduct an evaluation, even at the lowest evaluation levels. The additional effort needed
to produce the necessary documentation also increases development costs, which ultimately
must be reflected in the price that the producer of the operating system charges for its product.

However, the major disadvantage is something completely different. Even with an evaluated
system, it is not possible to guarantee that all processes and mechanisms function exactly as they
are described in the relevant documentation. Evaluation does not mean that the party performing
the evaluation completely tests the product, but only that it reviews the documentation, and
possibly the source and object code, that it has received for the product in question. It is
equally important for the target hardware to guarantee a level of security equivalent to that of
the evaluation. There is no benefit in having error-free, secure software if it is possible to use
the hardware as a ‘back door’ to bypass the software.

These four reservations with regard to evaluation must be kept in mind and carefully con-
sidered in each individual case.

9.3.2 Test methods for software

There is one thing that should be clearly stated at the beginning with regard to software testing,
even though it may sound obvious. This is that testing a program does not mean conducting
a wholesale search for errors in the program, but instead performing tests according to a test
specification, with the objective of discovering whether there are errors in the program being
tested. Testing thus has nothing to do with debugging, since tests are performed by testers and
debugging is performed by software developers.

As we have repeatedly emphasized elsewhere, programs for smart card microcontrollers
are not very large compared with other types of software. Nevertheless, they have their own
special features. This can be illustrated by considering some of the general specifications of a
typical operating system.

In a microcontroller having 16 kB of ROM and 8 kB of EEPROM, the software requires
around 20 kB of memory. This leaves 4 kB of EEPROM available for any applications. If
this software is programmed in assembler, it will amount to around 30,000 lines of source
code, which would fill 500 sheets of paper if printed at 60 lines to the page. The number of
conditional branches will be around 2000, and even an experienced programmer needs around
nine months to generate 20 kB of assembler code. Presently, very high-performance smart

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 616 of 1123

582 Quality Assurance and Testing

card operating systems occupy up to 12,000 lines of source code in C, which corresponds to
approximately 2000 sheets of paper.3

This numerical example clearly demonstrates that smart card operating system software is
rather complex. On top of this, the software must be used almost exclusively in areas where
security is a consideration. This means that the demand for a low level of errors cannot be
met by simply employing a few homemade tests during or following software development.
Instead, a suitable testing strategy is necessary.

With smart cards, as in other areas, the trend is shifting from assembly language program-
ming to high-level programming languages, such as the C language, which is relatively close
to the hardware level, and Java, which is an object-oriented language. Using a high-level pro-
gramming language is necessary for large smart card operating systems with more than 30 kB
of code, not only due to the resulting decrease in implementation time, but also because of the
need to minimize the number of errors.

This can be illustrated as follows. It can be assumed that the number of errors per line of
source code is nearly the same for almost all programming languages. Since the functional
level of a high-level language is significantly higher than that of assembler, this means that the
error density is lower for the same amount of executable program code.

For example, if we assume the entirely realistic value of 1.5 errors for every 100 lines
of program code, and in addition we assume that only half of all errors can be found with an
acceptable amount of effort, then a tested program will still have 0.75 errors for every 100 lines
of program code. With Java, the relationship between lines of source code and machine code
(bytecode) is around 1:6. This means that the functionality of one line of Java code roughly
corresponds to that of six lines of machine code. If we assume that all other conditions are the
same and that the compilation process is largely error-free, the number of errors in a program
can be reduced by a factor of six by using a more powerful language. Even if the actual value is
lower than this in practice, this is still an exceptionally strong justification for using powerful
programming languages.

9.3.2.1 Fundamentals of smart card software testing

It is necessary to consider the life cycle of smart card software before even starting to define
a test strategy. The waterfall model proposed by W. W. Royce, which has been known since
1970 and has been published in many forms, can be used for this purpose. It is relatively well
suited to mask-programmed smart card operating systems. However, since it is also designed
to be used with very extensive software projects for PCs and mainframe computers, here we
use a simplified version specially adapted to smart cards.4

The five steps described here are normally performed in sequence. However, it is certainly
possible for a problem encountered in a certain step to make it necessary to go back and repeat
one or more steps. This should be avoided as much as possible, since each iteration costs time
and money.

In order to meet economic demands, such as time-to-market and short software development
time, it is often necessary to overlap the steps to a certain extent, instead of performing them

3 See also Section 5.1, ‘Historical Evolution of Smart Card Operating Systems’
4 An extensive description of the life-cycle model usually used for the development of smart card operating systems

and applications can be found in Section 15.7, ‘Life-Cycle Models’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 617 of 1123

9.3 Evaluating and Testing Software 583

in strict sequence. With this method, which is known as simultaneous engineering, sections
of the software are split into individual modules as early as possible. These modules are
then launched down the waterfall concurrently. It thus can happen that smart card software
containing only a data transmission protocol may already be at the system integration level
while the cryptographic algorithm for the same application is still being specified.

Analysis

The analysis stage includes establishing the basic definition of the objective and compiling the
requirements in the form of a formal requirements specification document that defines all the
requirements that must be satisfied by the smart card software to be developed. The analysis
stage also allows for the generation of proposed solutions in the form of preliminary designs.
Put simply, this stage defines what the finished software has to do.

Design

Analysis is followed by the design stage, which establishes how the software will do its job.
For this purpose, it is necessary to generate precise specifications that are not subject to inter-
pretation and that completely define one of the various possible solutions to the requirements
produced in the analysis stage. Formally constructed specifications are best, since they allow
the features, functions and processes of the software to be clearly and unequivocally defined.
Specifications written in pseudocode, which can be tested for consistency and freedom from
errors using computer programs, are well suited to this purpose.

In a computer-aided software engineering (CASE) environment, such specifications can
be used directly to generate the source code and test programs. They are sometimes referred
to as ‘executable specifications’, which means specifications produced in a form that can be
interpreted and further processed by computers.

Implementation and test

Once the specifications have been finalized and accepted, the program flowcharts for assembler
or C programming may be generated. This is followed by programming and associated testing.
The outcome of this stage is a fully programmed and tested smart card operating system.

errors

1 2 3 5 6

corrected
errors

uncorrected
errors

discovered
errors

0

0

100

200

300

4 time
[months]

Figure 9.7 Typical curves of discovered, corrected and uncorrected errors in the course of a typical
development project for a smart card operating system

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 618 of 1123

584 Quality Assurance and Testing

System integration

Since smart cards can only function as part of a larger system, the various system components
must be integrated in this stage. The results of system integration are the complete and error-free
interaction of all parts of the system and the final documentation for the entire system.

Maintenance

This final stage of software development can only be used to modify any general parameters
located in issued cards. Large-scale software upgrades or modifications are no longer possible
at this stage.

In the future, the ability to easily and quickly program smart cards using a high-level language
such as Java will make it possible to use evolutionary life-cycle models5 in addition to the
traditional waterfall model. With an evolutionary model, the analysis, design, and implemen-
tation and test stages, and in part even the system integration stage, are iterated several times
with increasingly improved results. The objective is to quickly arrive at an optimum solution
by expending minimal effort on generating specifications and working with fully functional
prototypes.

It is a well-known fact of long standing that in all kinds of projects, and particularly in the
case of software development, the cost of correcting an error increases as the project progresses.
This fact should lead to the expenditure of an appropriate amount of time and effort in the initial
stages of the project, as represented by the waterfall model. If the design is incomplete or the
specification is faulty, the cost of remedying the problem rises exponentially in the subsequent
stages of the project.

cost of
eliminating
an error

timeanalysis design implement
and test

system
integration

operation

Figure 9.8 The cost of correcting an error as a function of the time when it is discovered

9.3.2.2 Test procedures and test strategies

Nowadays it is impossible to keep track of all the different methods and procedures that
are available for testing software. However, only a few well-proven methods are necessary

5 See also Section 15.7, ‘Life-Cycle Models’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 619 of 1123

9.3 Evaluating and Testing Software 585

for testing smart card programs. It is possible to draw on decades of experience and a large
number of publications on the subject of testing. Incidentally, software testing always means
attempting to discover errors in the program, not demonstrating that the program is correct.

All test procedures can be divided into static and dynamic types. In a static procedure, the
program code is analyzed and evaluated using various methods, either manually or automati-
cally. The two most commonly used static testing methods are program assessment and review,
which are briefly described and explained below.

Static program assessment using software tools

This consists of analyzing various properties of the program code using static techniques. The
properties that can be analyzed include the following:

� number of lines of code (LOC)

� number of lines of comments

� ratio of the amount of comments to the amount of program code

� structure of the program code

� number of functions

� nesting depth

� ‘dead’ code

Review

Review consists of the formal analysis and evaluation of program modules by a team of
assessors. This is sometimes referred to as a ‘code walkthrough’ or a ‘code inspection’.

In contrast to static methods, dynamic program analysis methods test the program while it is in
operation, either manually or with the aid of computers. There are two fundamentally different
approaches (blackbox and whitebox testing), plus a third, hybrid approach (graybox testing).

Blackbox test

A blackbox test is based on the idea that tester knows nothing about the internal processes,
functions and mechanisms of the program to be tested. This means that all that can be done is
to examine the input and output data with regard to their relationship to each other, as defined
in the specifications.

Blackbox tests are the standard for smart card operating systems. They are also used for
security modules for terminals and computer systems. However, it is often incorrectly assumed
that these tests can discover Trojan horses or similar items that may be present, in addition to
errors in the software. This assumption is used as an argument for dispensing with relatively
time-consuming and expensive program code analysis. Although a blackbox text may allow
the tester to detect simple, unsophisticated trapdoors programmed into the system or ones
that have been inadvertently generated, an experienced programmer can easily create access

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 620 of 1123

586 Quality Assurance and Testing

instruction
byte

2-dimensional
test vector

test region

class byte'00'
'00'

'FF'

'FF'

Figure 9.9 Example of a two-dimensional test vector for a blackbox test, which defines a specific test
region by means of equivalence classes. Test vectors for complex test cases can easily have 10 or more
dimensions. Due to the limited amount of time available for testing, the test region or regions must
therefore be suitably restricted

possibilities that can never be detected by a blackbox test. This can be illustrated using the
following simple example. It is not meant to serve as a model for a Trojan horse, since this
has already been known for a long time, but rather to enhance the awareness of the necessity
of code inspections in security analyses.

Almost all smart card operating systems contain a command for generating and issuing
random numbers (GET CHALLENGE). This command could be modified such that only the
first 8-byte number that it issues is actually generated by the pseudorandom number generator.
Each of the subsequent ‘random’ numbers would then consist of an 8-byte value taken from
the EEPROM and XORed with the first random number. A simple external program could
then be used to read out the entire memory contents, including all the keys. Incidentally, this
is a very good example of applied steganography in smart cards.

With a blackbox test, there is no way to determine whether a Trojan horse is concealed
behind this command. Even a statistical analysis of the random numbers obtained would not
detect any significant deviation from the normal pseudorandom numbers. The only way to
recognize such a manipulated program is to inspect the entire code of the operating system.
This example illustrates only one of many possible ways in which a normal command can be
modified in order to obtain the contents of the memory. Since only a few lines of program
code are needed for this modification, the only effective way to combat such a possibility is to
completely reveal and analyze the source code.

Abort tests are used to test the functional viability of atomic operations. Such tests are also
called ‘recovery tests’. In such a test, a suitable command is sent to the smart card to cause
an atomic operation to be initiated in the card. While the atomic operation is being executed,
power to the card is interrupted at a specific time. Following this, a check is made to see
whether the processed data have been maintained a consistent state by the atomic operation.
In such tests, power is not just interrupted at one particular time. Instead, the test is run may
times with the power being interrupted at various times distributed over the entire duration of

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 621 of 1123

9.3 Evaluating and Testing Software 587

the atomic operation. In order to obtain valid test results, the abort time is displaced in steps,
each of which is approximately equal to half of the EEPROM write time for a single page. The
functionality of atomic operations can be tested very well in this manner. However, the number
of tests required is fairly large. If a typical time increment of 1 ms is used, thoroughly testing
command processing in a smart card over an interval of 100 ms would require 100 tests.

t

t
interval within which power is interrupted

on

power supply

 command APDU

response APDU

command execution

off

communications

Figure 9.10 Timing diagram of an abort test for testing an atomic operation

Whitebox test

A whitebox test is often called a ‘glassbox test’, which clearly describes the concept. With this
type of testing, all internal data structures and processes are known to the tester and can be
completely understood. The relevant program documentation is used to design and generate
the tests, but the specification is always the sole authority. For decades, program flowcharts
and Nassi–Schneidemann diagrams (structograms) have commonly been used to document
programs, and they also form the basis for evaluating the internal functions of the software in
a whitebox test. With object-oriented languages such as Java, the unified modeling language
(UML) has become the prevalent form of representation. The various description variants of
UML are also very well suited to the architectural description of smart card software.

Since the exact program sequences are known, it is natural for the tester to want to test all
possible execution paths through the software. There are several ways to do this. One of them
is statement coverage, in which every instruction in the program is executed at least once.
This makes it very easy to discover whether the program contains dead code, which is code
that is never used, but it is not capable of ensuring that the desired functionality is present. A
better method for this is decision coverage, which involves traversing all decision nodes in the
program code at least once in each of their possible options.

In order to be able to recognize internal program processes during dynamic testing, it is
necessary to have a sophisticated emulator for the smart card microcontroller in question
or to ‘instrument’ the program being tested. An instrumented program has special program

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 622 of 1123

588 Quality Assurance and Testing

code inserted just before every jump instruction, branch instruction and function call. This code
collects location and parameter information when the program is run. An analysis program can
be used to statistically and graphically evaluate this information. Unfortunately, the additional
program code alters the timing relationships of the program, and in the worst case, it can
even cause the behavior of the program to change. This must be borne in mind whenever this
technique is used.

An extension of the decision coverage criterion is to traverse all program decisions in all
possible combinations once for each combination. This covers all possible execution paths.
However, the limited amount of time available for testing means that this is possible only with
very small programs consisting of a few hundred bytes of code. Even with programs on the
order of 1000 bytes, it is not possible to test all possible combinations in a reasonable length
of time.

5

3

2

1-2-3-4
1-2-5-6

instruction coverage

decision coverage

in all combinations
decision coverage

1-2-3-4
1-2-5-6
1-2-5-3-4
1-2-3-6

1-2-3-4
1-2-5-6
1-2-5-3-4
1-2-5-3-6
1-2-3-6

1

64

Figure 9.11 Example of the number of possible execution paths through a program flowchart, for testing
using statement coverage and decision coverage

Table 9.5 clearly illustrates this in summary form, using a typical smart card command
interpreter as an example. The function of this program module is to identify a command
located in the card’s input buffer by means of the class and instruction bytes, and then to check
the P1, P2, Lc and Le parameters. This size of the program code for this routine is around 200
bytes, and it contains 18 branches. The possible output values consist of five return codes and
calls to 26 different command procedures.

Two other path coverage criteria are used in particular for testing smart card operating
systems: input coverage and output coverage. The objective is to generate all possible input
and output values. The output values are often restricted to the available return codes, since
otherwise the number of variations would be too large.

Since the number of possible input values can also quickly reach a magnitude that makes
testing impractical, due to the multitude of input values or the amount of time required,
equivalence classes are usually employed. This reduces the large number of possible input
values to a relatively small number that can be tested in a reasonable length of time. Equivalence
classes are formed by selecting boundary cases on either side of the decision range, together
with a value in the middle of the range. For example, if the smart card command interpreter
allows a range of 20 through 50 for the value of the P1 byte, the equivalence class would be
formed using the values 19, 20, 50 and 51 for the boundary values and 35 (for example) as the
midrange value. This set of values verifies the essential query conditions of the program. After

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 623 of 1123

9.3 Evaluating and Testing Software 589

Table 9.5 The number of possible test cases for various coverage methods in a whitebox test.
A 200-byte smart card command interpreter is used for this example. An average processing
time of 30 ms, including data transmission, was used to calculate the test durations

Coverage method Possible test cases Test duration

One million random input values 1,000,000 ≈8 h
Command coverage 10 ≈0.3 s
Decision coverage 50 ≈1.5 s
Decision coverage in all possible variations 50,000,000 ≈17 days
Input coverage in all possible variations

(5-byte header)
≈1.1 × 1011 ≈1000 years

Input coverage with equivalent classes 15 ≈0.5 s
Output coverage of the return codes 6 ≈0.2 s

this test, it could be assumed with a relatively high level of confidence that parameter range
checking has been correctly implemented.

Particularly with assembly language programming, it is unfortunately necessary to take
the properties of the target hardware into account when defining the equivalence classes. For
instance, all arithmetic operations that can cause an overflow or underflow in the processor due
to the architecture of the arithmetic unit (8-, 16- or 32-bit width) must be taken into account
when forming the equivalence classes. Only then is it possible to be sure that underflows and
overflows are correctly handled in the program.

Whitebox tests are often used for module testing during smart card development. In such
tests, finished software modules located in smart cards are fed data from outside using spe-
cial test commands, following which the results of the actions of the software modules are
determined from outside using test commands. The actual results are then compared with the
expected results outside the card.

Graybox test

A graybox test represents a hybrid combination of blackbox and whitebox tests. With such a
test, only some parts of the software are known, such as internal program processes. Graybox
tests are primarily used in the integration phase with smart cards, since they allows errors
in the interaction of the individual components to be very quickly and effectively detected
and corrected. Naturally, appropriate test keys (which are public) are needed from the key
management facility. Once this part of the integration tests is successfully concluded, the
results can be checked using the real keys (life keys).

9.3.3 Dynamic testing of operating systems and applications

It is important to realize from the start that program testing can only demonstrate the presence
of errors, not their absence. If we assume that only roughly half of the errors that are present
are actually found, it can be safely concluded that an average program still contains a number
of weaknesses.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 624 of 1123

590 Quality Assurance and Testing

In practice, an error rate of 0.7 per 100 lines of code, after testing, is often assumed for
assembly-language programming. If we take the previously mentioned value of 30,000 lines
of source code for a smart card operating system as representative and subtract two-thirds of
these as comments, we can calculate that there are still around 70 errors in a fully tested and
released operating system. In the areas of military and medical technology, where security
is critical, it is assumed that there are still four undiscovered errors for every 10,000 lines of
source code, despite the tremendous amount of effort expended on testing and quality assurance
[Thaller 93]. Although most undiscovered errors will never manifest themselves, in the right
circumstances a single error is sufficient to bypass all the security barriers of a smart card
operating system. It is highly beneficial to always bear this in mind as a motivation for careful
and well-considered testing.

Of course, there are natural limits to testing. Particularly in commercial projects, in contrast
to research projects, the amount of time available and the maximum affordable cost are strongly
limiting factors. In addition, testing becomes increasing more difficult and demanding as the
number of errors present in the program decreases. The search for the last few errors must
at some point come to an end, since the time and resources that can be expended on it are
fundamentally limited.

cost of
searching

for an error

number of errors remaining

Figure 9.12 The cost of searching for errors as a function of the number of remaining errors

When a new version of the software is released, it can generally be assumed that it will
contain fewer errors, since there has been an opportunity to analyze errors discovered in use
and eliminate them. Interestingly enough, this reduction in the number of errors does not
continue indefinitely. Instead, the number of errors is usually seen to reach a minimum around
the second version, following which it generally increases. This comes about simply because
the necessary corrections are based on the original specifications and source code. After a
certain time, which can vary, it is likely that correcting one error will produce one or more new
errors. This leads to the curve shown in Figure 9.13. After a certain number of versions, it is
thus significantly better to make a completely fresh start than to continue building on outdated
concepts and repeatedly revised source code. Incidentally, this is true in almost all fields of
technology.

In accordance with the IEEE 1008 standard (‘Standard for Software Unit Testing’), three test
levels can be distinguished for dynamic testing. The first of these is the basic test level, which
essentially tests the basic functions and successful execution of the individual commands. The

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 625 of 1123

9.3 Evaluating and Testing Software 591

number of
included
errors

version1 2 3 4 5 6 7

Figure 9.13 Empirically determined dependence of the number of residual errors in a program on the
version number

probability
that errors

are still
present

number of errors found

Figure 9.14 Empirically determined dependence of the number of residual errors in a program on the
number of errors already found

second level is the capability test, which encompasses boundary values and non-successful
execution. The third level is the behavior test, in which commands are tested in combination
with each other.

Test methodology

There is a major difference between testing a new operating system and testing a new appli-
cation. When a smart card operating system is tested, the entire program code must be tested
for a wide variety of application cases. This requires a large number of different tests. In the
case of a new application, which consists of only a DF and several EFs, the number of tests
is reduced to match the amount of additional data and the identification and authentication
procedure defined for the application.

If a new operating system must be tested, several test applications that are similar to some
typical real applications are usually generated. This essentially amounts to creating equivalence

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 626 of 1123

592 Quality Assurance and Testing

classes for the usual applications. These equivalence classes form the basis for the individual
tests that are subsequently performed.

The approach to testing new smart card operating systems described here has become es-
tablished in the course of several years in a wide variety of projects. Testing always starts
with the data transmission functions, since they form the basis for all further activities. Fol-
lowing this, all available commands are tested. If an application is involved, the next stage
is file tests. If all these tests are completed successfully, testing of defined procedures can
begin.

There are currently only a few international standards that govern the construction and
execution of tests for smart card operating systems and applications. A European standard
(EN 1292) defines a few tests for the ATR and the T = 1 transmission protocol. For GSM
smart cards, relatively extensive tests for the operating system and application are defined in
the GSM 11.17 specification.

Figure 9.15 Screen display of a tool for verifying the communications between a terminal and a smart
card on the physical and logical levels (Copyright c© Integri [Integri])

In order to provide an overview, a selection of possible tests in a conventional sequence is
presented below. This list does not pretend to be complete, and it is only meant to serve as
a detailed illustrative example. The purpose of the listed tests is to test the essential general
parameters of a new operating system, including one or more applications.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 627 of 1123

9.3 Evaluating and Testing Software 593

Data transmission tests

� ATR (parity error detection, and if T = 0 is present, character repetition and ATR structure
and contents)

� PTS (PTS structure and contents)

� Data transmission test at OSI layer 2
(start bit, data bits and stop bit, divider, and data transmission convention)

� T = 0 transmission protocol
(parity error detection and character repetition, various processes)

� T = 1 transmission protocol
(CWT, BWT, BGT, resync, error mechanisms, various processes)

� Secure messaging

Testing available commands

� Test all possible class bytes

� Test all possible instruction bytes

� Test all available commands using equivalence classes for the supported functions

Testing available files

� Test whether all files are present in the correct locations (MF, DF)

� Test for correct file size

� Test for correct file structure

� Test for correct file attributes

� Test for correct file contents

� Test the defined access conditions (read, write, block, unblock etc.)

Testing available processes

� Test the defined state machines (e.g., the command sequence)

As can easily be imagined, even if equivalence classes are generated and various other
minimization techniques are used, a relatively large number of individual tests are required.
It can be assumed that 4000 to 8000 different tests must be prepared to cover the essential
test cases for a 20-kB smart card operating system, with tests that perform the same operation
many times in a single loop (such as sending several hundred different values to the smart card)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 628 of 1123

594 Quality Assurance and Testing

being counted as single tests. The number of commands sent to the smart card using these tests
can easily be on the order of 40,000. The amount of time required to perform all these tests is
in the range of one to two days. The only way to manage such a large number of tests with a
reasonable amount of effort is to use a suitable database, which can also store the test results.

The ‘tree and tabular combined notation’ (TTCN), which is standardized in ISO/IEC 9646-
3, is one of the techniques that can be used to formally describe the tests. Any desired test case
can be described in a general and standardized form using this notation. An interpreter can
then use this description to automatically generate the command APDUs for the card being
tested. This allows largely automated test procedures to be defined.

Figure 9.16 Screen display of an object-oriented, database-supported tool for testing smart card operat-
ing systems and applications. The definition of the data elements of a command APDU (INITIALIZE IEP
for Load) is shown at the upper left. Below this is the associated reference simulation of the smart card.
Part of the tree structure that defines the individual tests is displayed on the right (Copyright c© Integri
[Integri])

The structure of a test tool for smart cards is shown in Figure 9.17. The specification of
the card’s software, which is written completely in pseudocode, is contained in an appropri-
ate database. If the specification changes, the necessary modifications to the tests are made

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 629 of 1123

9.3 Evaluating and Testing Software 595

automatically. Another database contains all of the tests, which are defined in a high-level
language that can also be directly read by a computer. The two databases feed a test pattern
generator, which generates the commands (i.e., TPDUs or APDUs as appropriate) for the card
being tested. A simulation of the real card, which is largely defined by the specification, is
run in parallel. Since there are incompletely predictable processes in the real card (e.g., gen-
erating a random number), additional data must be sent to the simulated card. The real and
simulated cards send their command responses to a comparator. If they are the same, the real
card has provided the correct result, insofar as the simulation is the proper reference. All the
data generated during a test run are stored in a log database so they can later be manually
evaluated.

smart card
under test

test programs
actual

reference

specification
smart card
simulation

log

"=" ?
test pattern
generator

analysis

Figure 9.17 Basic structure of a tool for testing smart card operating systems and applications

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 630 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 631 of 1123

10
The Smart Card Life Cycle

This chapter presents the life history of a smart card, from the origin of the semiconductor
chip through the production of the card to the recycling of the card materials. One section
of this chapter is also dedicated to the life cycle of smart card applications, since this is very
important with regard to multiapplication cards, which are becoming increasingly numerous.
Separate chapters of this book are dedicated to the most important stages in the life of a smart
card, such as the basic aspects of smart card operating systems. There are explicit references to
these chapters in the appropriate locations. Regarding the materials used for the card body, the
various types of modules and other card components, we refer you directly to the corresponding
sections of Chapter 3.1

memory cards

microcontroller cards

 0

500

1000

1500

2000

2500

3000

1995 1996 1997 1998 1999 20042002 200320012000 2005

millions

Figure 10.1 International production of memory and microcontroller cards. The numbers are estimated
values, since the various sources differ considerably. Average values have been used here

A smart card basically consists of two completely different components. The first compo-
nent is the card body, with its printing, security features and possibly a magnetic stripe. The
second component, which is what makes the card body into a proper smart card, is the module

1 See Section 3.2, ‘The Card Body’

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 632 of 1123

598 The Smart Card Life Cycle

incorporating the chip. This division of the card into two components applies equally well to
memory cards and microcontroller cards.

The manner in which data are transferred also affects the structure of the card. Smart cards
with contacts make electrical connections to the terminal by means of six or eight externally
visible contacts. Contactless smart cards contain coils of various sizes within the card body,
which are connected to the chip module that is also embedded in the card body. This structure
naturally has a significant effect on the manufacturing of this type of card.

The manufacturing process also depends to a considerable degree on other elements of the
card, such as the material used for the body of the card, the methods used for applying text to
the card and the security features. However, regardless of all these options, there is one thing
that has absolute priority: cost optimization. Manufacturing smart cards is a mass production
process, in which lot sizes start at around 10,000 pieces and can certainly reach the level of
10 million. A highly optimized production process is the most important prerequisite for the
cost-effective manufacturing of high-quality card products.

10.1 THE FIVE PHASES OF THE SMART CARD LIFE CYCLE

In addition to the manufacturing process, the life cycle of a smart card depends on the appli-
cation in which it is used. A smart card for the GSM mobile telecommunications system, for
example, has a considerably different career after manufacturing than a credit card containing
a chip. Nevertheless, the various types of cards still have much in common.

Table 10.1 Summary of the individual life-cycle phases according to the ISO 10202-1 standard

Life cycle phase Typical activities

Phase 1: Production of the chip and the
smart card

• designing the chip
• generating the smart card operating system
• fabricating the chips and modules
• producing the card body
• embedding the module in the card body

Phase 2: Card preparation • completing the smart card operating system
Phase 3: Application preparation • initializing the application(s)

• personalizing (individualizing) the application(s),
both visually and electrically

Phase 4: Card usage • activating the applications
• deactivating the applications

Phase 5: Termination of card usage • deactivating the applications
• deactivating the card

The ISO 10202-1 standard attempts to define a card life cycle that is equally valid for
all manufacturing methods and a wide variety of applications. This standard is very strongly
oriented towards financial transaction applications and the information technology used in
these applications, rather than the actual production of card bodies and chips. Nevertheless, it
represents a quite successful attempt to provide a structured description of the life history of
smart cards from the beginning to the end. This is why it is used here as the basis for describing
the smart card life cycle.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 633 of 1123

10.1 The Five Phases of the Smart Card Life Cycle 599

termination
of card
usage

(Phase 5)

load an
application
(Phase 3)

produce
chip and

smart card
(Phase 1)

card
preparation
(Phase 2)

card
usage

(Phase 4)

delete an
application
(Phase 4)

Figure 10.2 The life cycle of a smart card according to the phase model of the ISO 10202-1 standard.
Loading and deleting applications, which is possible with multiapplication smart cards, takes place in
phases 3 and 4

According to the ISO 10202-1 standard, the life of a card is divided into five phases,
which are interconnected by precisely specified transitions. All stores of cards required
by the technical implementation of the production process and all transportation paths be-
tween the various firms that perform the various production operations must be physically
or cryptographically secured in order to preclude the manipulation or theft of partly finished
products.

All production steps must naturally be accompanied by appropriate quality assurance. Since
smart cards are normally used in areas in which security is an issue, it is presently common to
guarantee the traceability of the manufacturing process in accordance with the ISO 9000 family
of standards. At minimum, this means that all production steps must be logged using batch
and chip numbers. It must be possible to reconstruct the production steps undergone by each
individual smart card, at any desired time after it has been manufactured. This makes it easier
to analyze the cause of any manufacturing faults that may show up. Since each individual chip
has a unique chip number, no two microcontrollers are identical following the semiconductor
fabrication process, which makes it relatively easy to implement traceability on the basis of
chip numbers. Manufacturing traceability can be implemented either by storing the relevant
information in a manufacturing database or by writing all the information relevant to the
manufacturing of each chip in the chip itself. The ISO 10202-1 standard recommends storing
the manufacturing data in the chips, which has certain advantages compared with storing the
data in a database. If the data are stored in the chips, the manufacturing data for any chip can
be obtained without having to access a database, although this comes at the cost of valuable
space in the microcontroller EEPROM.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 634 of 1123

600 The Smart Card Life Cycle

Table 10.2 Manufacturing data typically stored in chips. This information can be written only once,
after which it can only be read (the file or data object has the WORM attribute)

Phase of the smart card life cycle Typical fabrication data

Phase 1: chip and smart card production • ID of the chip manufacturer
• ID of the fabrication line
• unique chip number
• chip type
• ID of the module embedder
• date and time of embedding the chip in the module

Phase 2: card preparation • ID of the initializer
• ID of the finishing machine
• date and time of initialization

Phase 3: application loading • ID of the personalizer
• ID of the finishing machine
• date and time of personalization

10.2 PHASE 1 OF THE LIFE CYCLE IN DETAIL

The first phase of the ISO 10202-1 standard life cycle can be subdivided into two parts. The first
of these covers the generation of the smart card operating system and the semiconductor man-
ufacturing process for the microcontroller, while the second part covers all of the technology
for producing the card body.

10.2.1 Generating the operating system and producing the chip

Operating systems and other software for smart card microcontrollers are so complex that we
have devoted a separate chapter to them, in which all aspects of the subject are described in
detail.2 However, we must not overlook the fact that a significant part of the technical basis for
the security of the remainder of the card’s life cycle is established in the fabrication of the chip.
No matter how high the quality of the operating system may be and how much cryptographic
protection is used, they are of little use if all the secret data can be read from the chip thanks
to an error in the design or fabrication of the chip.

Semiconductor chips are usually produced in protected facilities with restricted access.
Restricted access is relatively easy to achieve with cleanrooms, which can anyway only be
entered via interlocked doorways. However, this is also important with regard to security,
since it is the only way to guarantee that no ICs containing Trojan horses in their software can
be smuggled into the system during chip fabrication or after the dice have been separated. This
would otherwise be a very serious and relatively dangerous form of attack on the security of
smart card applications.

2 See Chapter 5, ‘Smart Card Operating Systems’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 635 of 1123

10.2 Phase 1 of the Life Cycle in Detail 601

generate the ROM mask

fabricate the
semiconductor chips

chip design

test the chips
on the wafer

saw the wafer

fix the chips
in the modules

bond the chips

encapsulate the chips
in the modules

test the modules

smart card operating system modules on tapes

Figure 10.3 The production of chips and modules in the first phase of the smart card life cycle

Chip design

The geometric structure of a chip for a memory or microcontroller card should be square or as
nearly possible square, since this minimizes the risk of the chip being broken by the stresses
that arise when the card is bent. Complete protection of the chip against bending stresses is in
principle technically possible with an extremely stiff module package, but this is not desirable
in practice. Such a stiff module would eventually cause the card body to crack, due to the
alternating bending stresses to which the card is recurrently exposed.

The semiconductor components used for the chip, such as the CPU and numeric coprocessor,
are normally standard components3 that have been technically modified for increased security.
Semiconductor components for the automotive industry are often used for this purpose, since
they must be designed to meet similarly severe environmental and reliability requirements.
However, such components must be modified as necessary to fully adapt them to the security
requirements imposed on smart card microcontrollers.

In the chip design process, the first step after establishing the functional specification is
generating a general chip architecture, with a block diagram of the circuit and a rough layout
of the future microcontroller. Following this, the overall block diagram is refined step by step

3 See also Section 3.4, ‘Smart Card Microcontrollers’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 636 of 1123

602 The Smart Card Life Cycle

into logic blocks, gate-level functions, transistors and ultimately the geometric structures of
the individual exposure masks. Each step is accompanied by circuit simulation and extensive
testing. This is a complex process, consisting of many individual steps, and a fair amount of
experience is necessary to arrive at the optimum arrangement of the elements of the chip. At
the end of this process, sample chips are produced on a test fabrication line in a semiconductor
manufacturing plant. These are the first reference devices, which are very precisely measured
and exercised. A security assessment is often performed in parallel, although this assessment
cannot be completed any earlier than the time when the first regular chips are produced.

The process of designing a chip can take several months to a year before a fully operational
chip is obtained that can meet all the necessary requirements for mass production. The fact
that it takes so much time and effort to design a chip is the reason that the interval between
successive generations of smart card microcontrollers is two to three years. Due to the high
cost of making significant changes to an existing chip, the most substantial modifications are
predominantly ‘shrinking’ the chip, in order to better utilize the wafer area, and making minor
improvements or extensions to the hardware.

Smart card operating systems

Software for smart card operating systems and applications based on these operating systems
must be written using either assembly language or the C language, due to the small memory
capacities of the microcontrollers. Using these languages, which are relatively close to the
hardware level, naturally tends to disproportionately prolong the duration of the entire software
development process, and thus significantly increases its cost.

The tests for the software, most of which is located in the ROM of the microcontroller, are
very thorough and comprehensive, since it is almost impossible to correct any residual errors
in this software after the chips have been manufactured.4 Chip production always involves
generating ROM masks, which essentially represent the software that will later be located in
the ROM of the microcontroller, where it cannot be subsequently modified. If any software
error is detected in the following production steps, it can only be corrected by repeating all of
the preceding steps.

In order to make the best possible use of the available memory space in the microcontroller,
the program code must be adapted to the specific type of chip that is used. Porting the software
to another type of chip is thus only possible at additional effort and expense. Consequently,
the time required to generate a complete ROM mask is around nine months. This can be
significantly reduced if it is possible to use program code that is already on hand (in the form
of software libraries). Once the development of the ROM mask has been completed, it can be
formally handed over to a semiconductor manufacturer.

ROM masks and fabrication of the semiconductor chips

From the software that it receives in an EEPROM, on a diskette or via data telecommuni-
cations, the semiconductor manufacturer generates an exposure mask for the ROM of the

4 See also Chapter 9, ‘Quality Assurance and Testing’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 637 of 1123

10.2 Phase 1 of the Life Cycle in Detail 603

Figure 10.4 A mini emulator for a smart card, in which the mask-programmed ROM has been replaced
by a removable EPROM in a DIL package. The large IC is a smart card microcontroller with all busses
freely accessible (a ‘bond-out’ chip)

Figure 10.5 Example of a bond-out chip without final shielding, for use in a smart card microcontroller
emulator. (Photo: Infineon Technologies)

microcontroller. This mask, which contains the program code, is called the ‘ROM mask’ by
operating system designers, or often simply ‘the mask’. If the structures are reduced in size
when the mask is imaged onto the wafer, it is instead called a ‘reticule’. The ROM mask is only
one of approximately 20 masks needed to produce the microcontroller. The structures of the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 638 of 1123

604 The Smart Card Life Cycle

microcontroller chips are produced on suitably prepared high-purity silicon disks called wafers.
The diameter of wafers used for smart card microcontrollers is presently usually 6 to 8 inches
(15.2–20.4 cm). With 0.8-µm technology, around 700 microcontrollers will fit on a 6-inch wafer.

Figure 10.6 A 6-inch diameter wafer containing approximately 700 SLE44C80 microcontrollers. The
milled straight edge (primary flat) is used to mark the orientation of the wafer during fabrication (Source:
Infineon)

In the semiconductor industry, the trend for fabrication processes in the coming years is
towards larger wafers and smaller structures. It can be assumed that in a few years, 12-inch
(30.6-cm) wafers and 0.13-µm technology will become the prevailing standard for producing
smart card microcontrollers. The cost of a fabrication plant at this level of technology is on the
order of one billion euros.

Up until only a few years ago, full-wafer masks were used, with all 700 microcontrollers
being exposed at once. Contact exposure was normally used with such masks. As the dimen-
sions of the chip structures became increasingly smaller, this was no longer possible, since
the yield was not acceptable. In all new production methods, the set of photomasks represents
only a single chip, instead of an entire wafer. These very delicate masks are made from plates
of quartz glass, which is transparent to ultraviolet light. These plates hold the patterns for a
chip in the form of chrome-metal tracks. The track patterns are transferred to the glass plates
by first coating the plates with a photosensitive layer and then using an electron-beam writer to
expose the patterns. Following this, the sensitive layer is developed and the unexposed regions
are removed by etching.

The photomask is produced at a scale that is 5 or 10 times greater than the actual scale
of the chip, which allows image-enhancing reduction to be used when the wafer is exposed.
The machines that are used to expose the wafers, which are called ‘steppers’ in the trade,
are high-precision optical devices that can focus the image of the mask on the wafer with an
accuracy of a fraction of a micrometer. They can also reposition the wafer with an equal level
of precision. After the ultraviolet light exposure process for one chip has been completed,
the wafer is moved by one step to the position of the next chip, and the exposure process
is repeated at this position. The entire wafer is thus exposed one step at a time, until all the
microcontrollers that it will contain have been exposed.

The entire wafer is coated with a light-sensitive lacquer called the photoresist. Where the
photoresist has been exposed to light, the lacquer is removed by etching, and the underlying

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 639 of 1123

10.2 Phase 1 of the Life Cycle in Detail 605

Figure 10.7 Quartz-glass photomask for simultaneously exposing an entire wafer (Source: Philips)

wafer surface is then doped with impurity atoms. After the wafer has been cleaned several
times and recoated with a new layer of photoresist, it is ready to be exposed using the next
of the approximately 20 masks. Depending on the particular manufacturer and the fabrication
process used, producing a finished wafer involves around 400 processing steps and takes six
to 12 weeks, although the The actual processing time is less than a week. The very long lead
times encountered in practice are primarily due to the queuing technique commonly used in
the mass production of semiconductor devices.

illumination source

mask (quartz glass)

collimation lens

lens

wafer

the wafer is displaced
stepwise along both
horizontal axes (stepping)

Figure 10.8 Operating principle for exposing individual chips on a semiconductor wafer using a stepper

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 640 of 1123

606 The Smart Card Life Cycle

In order to make the production process more economical, a group of several wafers (a
batch) is always passed through the semiconductor fabrication machine each time. A typical
batch consists of 12 wafers, which is commonly the minimum production quantity. This cor-
responds to approximately 10,000 chips for almost all semiconductor manufacturers. It takes
a considerable amount of extra effort to process less than a full batch, so the production costs
would be just as high as for a full batch. However, some fabrication equipment allows shared
batches or multi-project wafers, in which different types of microcontroller chips with differ-
ent ROM masks are produced on a single wafer. This allows smaller lots than the otherwise
obligatory 10,000 pieces. However, by no means all types of microcontrollers can be produced
in this manner, and not every fabrication machine can handle shared batches.

The overall yield from the fabrication process is around 80 % with a well-tuned process.
This means that only around 560 of the original 700 chips on the wafer can be used in the
following production steps. With a relatively new production process, the long-term yield can
easily be as low as 60 %. This has a very negative effect on production volume and profitability.

Figure 10.9 Cross-sectional drawing of a stepper for the stepwise optical exposure of individual semi-
conductor chips (Source: ASM Lithography)

Chip testing on the wafer

In the next production step, the microcontrollers on the wafer are contacted using metal probes
and individually tested. This requires making contact with each of the 700 microcontrollers
on the wafer, either individually or in groups of up to eight, and then performing an electrical
function test. Since there are usually not any supplementary contacts for the microcontrollers,
even at this production stage only the five contacts that will later be used in the smart card can
be used for testing.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 641 of 1123

10.2 Phase 1 of the Life Cycle in Detail 607

The functional elements are tested on the wafer significantly more intensively and exten-
sively than later on, since the microcontrollers are still in the test mode at this stage. In the test
mode, all of the memories (RAM, ROM and EEPROM) can be read and/or written without
any restrictions. Any microcontrollers that fail this test are marked with a small colored dot.
This allows non-functional chips to be optically identified in the following steps, so that they
can be discarded after the wafer has been sawn into individual dice.

Figure 10.10 Testing a microcontroller on the wafer. Needle probes are used to make connections to
the IC, and each IC is individually tested (Source: Philips)

Figure 10.11 Portion of a wafer with microcontroller ICs. The dots on top of some of the chips mark
defective devices

In addition, the ability to freely access the memory in the test mode is exploited to write
chip-specific data to the EEPROM. This includes a serial number that must be used only once,
so that it is unique for each chip. This individualizes each chip, and thereby each smart card.
The benefit of this, in addition to certain security aspects, is that traceability as defined by the
ISO 9000 family of standards is guaranteed by the unique chip number.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 642 of 1123

608 The Smart Card Life Cycle

Sawing the wafer

After the chips have been tested on the wafer, the next step is to separate them. A thin self-
adhesive film is applied to the back of the silicon disk, so that the individual chips will remain
in position after the wafer has been cut. Special saws with blades that are around 25 µm thick
and spin at more than 30,000 rpm are used to cut the wafer into pieces. The wafer is sawn
such that each resulting piece holds a single microcontroller. These small pieces of silicon,
with a maximum area of 25 mm2, are called dice (‘die’ in the singular). Each die holds a
microcontroller that will ultimately be incorporated into a smart card. Once the wafer has been
separated into dice, the defective dice, which are marked with colored dots, are separated from
the good dice and destroyed.

Figure 10.12 Sawing a wafer into dice (Source: Renesas)

Up to this point, it is not possible to tell whether the ROM software has been copied without
any errors. For this reason, around 10 dice are removed from the batch at this stage and mounted
in ceramic DIL packages. The software producer receives these first sample devices and uses
his test facilities to determine whether the software in the ROM functions correctly. The entire
chip can also be tested. If an error in the software or hardware is detected at this point, the
production process must be stopped, and the entire batch has only scrap value. After the error
has been corrected, the production process must be started again from the beginning, with the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 643 of 1123

10.2 Phase 1 of the Life Cycle in Detail 609

generation of a new ROM mask by the semiconductor manufacturer. The lost time cannot be
recovered, even with accelerated handling in the other production phases.

Figure 10.13 Examples of microcontrollers mounted in various types of ceramic packages, which are
used for software testing

Figure 10.14 An individual die with a single match for size comparison. The die is approximately
0.12 mm thick

Attaching chips to modules

The next step in the production process, after the dice have been sawn from the wafer, is to
mount them into modules. The modules increase the resilience of these very fragile bits of
quartz crystal, and the electrical contacts on their top surfaces will later be used to make the
connections between the card and the terminal.

Chip modules are usually supplied on rolls of 35-mm plastic tape with perforated edges,
which carry modules in adjacent pairs. Depending on the size of the module, a single roll
can hold from 10,000 to 20,000 modules. The 35-mm plastic tape is simply called ‘tape’ by
insiders, and this type of packaging is called ‘chip on tape’ (COT).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 644 of 1123

610 The Smart Card Life Cycle

Incidentally, the width of the tape is the same as that of 35-mm photographic film, which is
commonly used in still and motion-picture cameras. The reason for using this format originates
from the early days of smart card manufacturing. At that time, the 35-mm film format was
chosen for the module carrier to allow inexpensive transport and packaging methods to be
used with a minimum of new development, since it allowed existing commercial spools and
winding equipment for film to be used for module tapes. Since changing to a different format
was no longer feasible after this format had reached a certain level of general use, it is still
employed today.

The bottoms of the dice (the silicon base material) are permanently bonded to the bottoms of
the modules. The dice can then be electrically connected to the contact surfaces of the modules
in subsequent production steps.

Figure 10.15 Example of a 35-mm plastic tape with attached pairs of modules. The front of the tape is
shown on the left, while the rear is shown on the right. The holes left by modules that have already been
punched out of the tape can be seen in the lower portions of the pictures

Figure 10.16 Example of the layouts of the front and rear sides of a module

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 645 of 1123

10.2 Phase 1 of the Life Cycle in Detail 611

Electrically bonding the chips

After the dice have been glued into the modules, the next step is to make the electrical con-
nections to the rear surfaces of the contacts. This is done using very fine gold wire, which is
welded to the aluminum contact pads on the die and the corresponding contact surfaces on the
rear of the module. To prevent the bonding wires from being broken by temperature variations,
each wire is formed into a loop. However, the loops must not be too large, since otherwise the
bonding wires would not be fully covered by the plastic resin that is later poured over the chip.
This would increase the risk of corrosion of the wires.

Encapsulating the chips in the modules

After the chip has been bonded, a black epoxy resin is poured over the chip and the rear surface of
the module. This resin protects the fragile crystal against environmental influences such as hu-
midity, twisting and bending. An opaque resin is used, because semiconductor devices are nor-
mally very sensitive to light and electromagnetic energy in the near-visible part of the spectrum.

After the chips have been encapsulated, the carrier tapes with the modules are wound onto
large spools and packed into cardboard boxes. For small production runs, it is also possible to
package the modules individually in plastic containers. However, this is avoided when there
are large piece counts, since it makes it difficult for the module implanter to use automated
processing equipment.

If a new microcontroller is to be introduced into the market or modified chip hardware has to
be tested, the production process is often complete when the modules have been encapsulated.
In this case, the modules are then passed through suitable testing and qualification stages.
Only after these have been completed with no errors is it OK to start a new batch, with suitably
modified software, for mass production. A similar situation exists when there is a new version
of an operating system, in which case the production process also ends at this point. This
is followed by the necessary qualification testing, which can take weeks or even months. If
necessary, another pass through the revision loop with an improved version of the operating
system may then take place.

Module testing

As a consequence of the production steps up to now – sawing the wafer, attaching and bonding
the chips and encapsulating the chips in the modules – 3 to 7 % of the dice will have become
unusable. An additional test is therefore usually performed before the modules are packaged
and delivered. For this test, each module must be connected to the tester via the contacts on
the front of the module. The first thing the tester does is to switch the microcontroller from the
test mode to the user mode by blowing the polysilicon fuse and writing a special byte value to
a specific location in the EEPROM. After this, it is no longer possible to externally access the
memory for reading or writing without first satisfying specific security conditions.

The test computer next carries out an ISO activation sequence and attempts to detect a valid
ATR. If this is possible, it then tests the chip hardware using the commands integrated in the
mask-programmed software. If all these tests are successful, the module has not been damaged
by any of the previous production steps, so it can be built into a smart card.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 646 of 1123

612 The Smart Card Life Cycle

Figure 10.17 An adapter in the commonly used ID-1 format for modules on tape

Figure 10.18 An incoming product inspection machine for tape-mounted modules (COT)

10.2.2 Producing card bodies without integrated coils

Card bodies for smart cards that do not have integrated coils can be mass-produced using three
different basic processes. These processes differ in terms of the durability of the card, surface
features and allowed card components. Many card manufacturers often offer only one type of
process, rather than the full range of options.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 647 of 1123

10.2 Phase 1 of the Life Cycle in Detail 613

Figure 10.19 Detail photo of an incoming product inspection machine for chip modules. Here 16
modules at a time are electrically contacted by the two contact heads and tested. Machines of this sort
can also be used for initializing microcontrollers for smart cards

Laypersons often regard the manufacturing of card bodies as an uncomplicated, easily
mastered technology that essentially only amounts to punching out a few pieces of plastic
foil and gluing them together. However, this is by no means true. The mass production of
high-quality card bodies involves a multitude of complex manufacturing steps, and it demands
outstanding mastery of the chemical processes needed to produce and use the plastic materials
and associated inks.

Manufacturing processes for card bodies

monolayer construction injection moldingmultilayer construction

Figure 10.20 Classification of the basic manufacturing processes for plastic card bodies

The technically most elaborate process is to construct the card body from several layers
of plastic that are thermally bonded. This is called a multilayer construction, and the process
of bonding the layers using heat and high pressure is called lamination. The thickness of the
plastic foils used for the inner part of the card (the core foils) ranges from 100 µm to 600 µm,
while the thickness of the outer or cover foils (overlay foils) ranges from 25 µm to 300 µm. A
card body constructed in this manner allows a great degree of freedom in the form and layout
of the card components, is very stable and also allows security features to be placed between

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 648 of 1123

614 The Smart Card Life Cycle

the layers. For example, this technique is used in the MM process for German Eurocheque
cards.5

Monolayer construction of the card body, using a single piece of 800-µm plastic sheet
(monofoil), is a simplified version of multilayer construction. This process is less expensive, but
the cards are less stable than multilayer cards. Above all, they allow significantly fewer options
for the design and layout of the card components. For instance, with monolayer construction
it is not possible to have a transparent cover layer to protect the printed elements against
scratching and rubbing.

monolayer card multilayer card injection-molded card

Figure 10.21 Overview of the commonly used types of card construction. A multilayer card is con-
structed using external cover layers (overlay foils) and internal layers (core foils)

The third process that can be used to produce a plastic card body is injection molding.
This essentially results in a monolayer card body, with all of its advantages and disadvantages.
However, there is one small but significant difference. A thin printed foil (approximately 80 µm
thick) can be placed in the mold, which allows injection-molded cards to be produced with
printing right from the mold. This process, which is called in-mold labeling, has its limitations
compared with offset printing or silk-screening in terms of layout and the inks that can be used.
However, it has the advantage that it is not necessary to run the cards through a single-card
printing machine after they have been molded. An additional feature of the injection molding
process is that the cavity for the chip module can be formed in the molding process, so it does
not have to be milled out afterwards. There are also processes newly available in which the
chip module is placed in the mold, so that it is anchored to the card body when the card is
molded. This method also makes it unnecessary to perform many of the steps described below.

Standard injection molding machines have a capacity of approximately 2000 card bodies per
hour. Although injection molding may appear to be inexpensive, it is usually more expensive
than stamping single-layer card bodies from a large sheet of plastic if very many cards have
to be produced (more than one million). This is primarily due to the time-consuming handling
of individual cards, which is one of the primary cost factors.

Printing the foils

With regard to printing the card body, there is usually no difference between multilayer and
monolayer cards. In the sheet printing process, large sheets of plastic are printed on multiple-
copy sheets, and the individual cards are then punched from the sheets. The sheets are normally
big enough to allow 24 to 48 images (cards) to be printed on each sheet, which is fed one or
more times through the individual inking stations of an offset or silk-screen printing press. The
front and rear sides of the card bodies must be printed separately.

5 See Section 3.1.2, ‘Card components and security features’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 649 of 1123

10.2 Phase 1 of the Life Cycle in Detail 615

print the foils

punch out the cards

mill the module cavities

card bodies
with module cavities

multilayer card body
with multiple cards per sheet

monolayer card body
with multiple cards per sheet

injection-molded card body
with individual card printing

print the cards injection molding

print the card bodies

Figure 10.22 Producing card bodies for smart cards in Phase 1 of the smart card life cycle

Figure 10.23 A stack of printed multiple-copy sheets, each of which holds 48 card bodies

A basic distinction is made between offset printing and silk-screen printing with regard to
processes used for printing cards. Finer details can be printed on the card with offset printing
than with silk-screen printing. In addition, the inks used for offset printing are hardened using
ultraviolet light. This occurs immediately following printing, which has the advantage that the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 650 of 1123

616 The Smart Card Life Cycle

printed cards can be stacked right away. However, it is not possible to apply holograms or
magnetic stripes on top of UV-hardened coatings using the hot-stamp process,6 since they are
not thermoplastic. A similar consideration applies to internal foils for laminated card bodies,
since the lamination process requires the foils to be thermoplastic. Consequently, the silk-
screen printing process is used, in which the inks harden by the evaporation of a solvent and
remain thermoplastic. Additional card elements can easily be added on top of surfaces printed
in this manner.

Figure 10.24 A silk-screening machine for sheet printing, which can print a multiple-image sheet for
48 card bodies in a single operation

In practice, the two printing processes are often used in combination. For example, large
single-color areas and the background for the magnetic stripe and hologram can be printed
using silk-screening, while the fine details can be applied in a second step using offset printing.
Silk-screen printing cannot achieve such a high level of detail.

In summary, offset printing is ideal for colored subjects with high resolutions and large
piece quantities. However, if additional functional elements (such as holograms) must be
permanently applied to the surface of the card, either the entire card or at least the backgrounds
for these elements must be printed with thermoplastic inks using the silk-screen process. Inks
for offset printing cannot be used for this purpose, since they are hardened using ultraviolet
light and are not thermoplastic.

A third process that is sometimes used is thermal-transfer printing, in which a piece of
colored foil is released by heating and transferred to a white card body. The colored foil bonds
to the surface of the card. This process is frequently used as a purely black-and-white printing
process to apply serial numbers to cards, but in principle, it can be used to reproduce all colors

6 This is a hot-gluing technique that requires a thermoplastic substrate

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 651 of 1123

10.2 Phase 1 of the Life Cycle in Detail 617

Figure 10.25 An offset printing machine for sheet printing

and shadings. However, it is slow and expensive, so it is primarily used for small quantities of
cards in desktop personalization machines. It has a resolution of up to 300 dpi. An additional
disadvantage of this process is that the applied colors are only bonded to the surface of the
card, so they can be scratched off.

The disadvantages of colors that are only bonded to the surface of the card can be avoided
by using thermal dye-sublimation printing. In this process, a print head heated to nearly 200˚ C
presses hot dye into the top plastic layer of the card body. The maximum penetration is
5 µm, which is sufficient to make the printing scratchproof. Thermal dye-sublimation printing
otherwise has essentially the same characteristics as thermal transfer printing, including high
costs, so it is also suitable only for relatively small quantities of cards. Even then, both processes
can generally only be used to print on suitably prepared card surfaces, which limits their use.
Nevertheless, they represent an entirely worthwhile complement to just-in-time printing for
small and medium-sized quantities of cards.

Laminating the foils

With a multilayer card body, after the foils have been printed they are laminated at a temperature
of 100–150˚ C and the required features are integrated. The printed foils are protected against

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 652 of 1123

618 The Smart Card Life Cycle

Table 10.3 Summary of the most commonly used processes for printing cards

Properties Offset Silk-screen Thermal Thermal dye
printing printing transfer sublimation

Sheet printing possible
for mass production

yes yes no no

Resolution very good moderate good good
Surface coverage

of the ink or dye
good very good satisfactory satisfactory

Printed surface suitable
for lamination

no yes uncommon uncommon

Printing resistant
to scratching

no only with a
laminated
overlay foil

no yes

Card-specific printing no no yes yes
Cost low low high high

scratching and wear by supplementary transparent overlay foils laminated onto the front and
rear surfaces, which are often called overlay foils. Depending on customer requirements,
signature panels, magnetic stripes and security features are also embedded in multilayer cards
or laminated on top of the cards at this stage.

It is certainly possible to use foils with different thicknesses for the front and rear sides
of the card. In general, though, it is better to use a symmetrical construction for mechanical
reasons. This means that foils with the same thickness are used for the front and back of the
card. This avoids possible problems with a ‘bimetallic’ effect that causes the card to warp.

Punching the foils

Once the individual foils have been laminated, they must be brought to the desired card
format. This is achieved using a punching process. The machines used for this have an hourly
throughput of 4000–8000 cards. The burr that can be seen or felt at the edges of some cards is
due to a worn punch and die set.

Milling the module cavity

A necessary part of the process of producing a card body is milling a cavity to receive the
module. There are also processes in which the foils are punched out in advance to produce
an opening to receive the module when the card body is laminated. The cavity is also already
present in the card body if it is produced by injection molding.

Since the underside of the module has a bump where the encapsulated die is located, a
matching cavity must be formed in the card body by milling out a recess. A single-level cavity
is generally unsatisfactory for modern types of modules, so it is common practice to mill a
cavity with two or even three levels. This provides a larger contact surface between the card
body and the module, which allows the module to be durably attached to the card body. In

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 653 of 1123

10.2 Phase 1 of the Life Cycle in Detail 619

Figure 10.26 A milling machine for machining cavities in card bodies. The two upright elements on
the left are electrically operated milling spindles with integrated milling swarf aspiration

addition, it is mechanically significantly better if only the rim of the module is firmly attached
to the card body, with no physical contact between the die on the rear side of the module and
the card body. In a manner of speaking, the module is fitted into the card so that it ‘floats’ in
the card body.

The first step in making the cavity is to mill a recess that is as large as the contact assembly
of the module and just as deep as the contact assembly is thick. Following this, an additional
recess is milled in middle of the first recess to provide room for the encapsulated die. This
yields a cavity with two steps.7

Figure 10.27 Example of a milled module cavity in a card body

The milling must be performed very precisely, since the thickness of the remaining card
material at the deepest part of the cavity is only 0.15 mm. If the milling machine vibrates

7 See also Section 3.2.2, ‘Chip modules’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 654 of 1123

620 The Smart Card Life Cycle

or rocks, the card body could be milled all the way through and thus be rendered useless. If
the cavity is not deep enough, the module will stand proud of the surface of the card, which
is only allowed within very narrow limits. This tricky production step is performed by fully
automated machines, with the card bodies fed in from one bin and passed out to another bin.
The throughput of a single machine is around 1000 cards per hour.

Printing the card body

A second type of printing process, in addition to sheet printing, is individual card printing.
With this process, the cards are printed after they have been separated. When cards are printed
individually, this always takes place before the cavity is milled. The throughput of machines
for printing individual cards ranges up to 12,000 cards per hour. A variation of individual card
printing is thermal transfer or thermal dye-sublimation printing in desktop personalization
equipment. The throughput of such equipment is significantly lower, and is around 300 cards
per hour at most.

Figure 10.28 Five single-card silkscreen printing machines arranged in series

Applying card components to the card body

After the card bodies have been trimmed to size, various components such as holograms and
magnetic stripes are applied to them. Holograms, which are supplied in rolls, are permanently
bonded to the card body using a thermal bonding technique (hot stamping or hot rolling).8

After this, any attempt to remove this security feature will destroy it. Magnetic stripes are
applied to the card bodies using lamination or hot stamping.

8 See also Section 3.1.2, ‘Card components and security features’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 655 of 1123

10.2 Phase 1 of the Life Cycle in Detail 621

Figure 10.29 Detail of a single-card silkscreen printing machine

10.2.3 Producing card bodies containing integrated coils

Contactless smart cards need coils for transferring energy and data. At high frequencies, the
coil can be made so small that it can be integrated into the chip module. With such a contactless
card, the production process is thus nearly the same as for cards with contacts. The chip module
with the coil is simply laminated between two or more plastic foils, or set into a cavity.

However, relatively low frequencies are used for most present-day contactless smart cards,
which means that larger-diameter coils are necessary. These coils are usually rectangular with
rounded corners and measure approximately 75 mm by 45 mm. This means they are only
slightly smaller than an ID-1 format card body. They normally have four turns, an inductance
of around 4 µH and an electrical resistance of a few ohms. Printed coils are an exception, since
they have a resistance of around 300 ohms.

Producing special card bodies with integrated coils requires the standard production process
to be adapted to meet the modified requirements. However, some general principles remain
the same. For example, contactless smart cards are also mostly made using multiple copes
for 48 cards printed on large sheets, rather than individually, since this is significantly more
economical.

Connecting the chip to the coil

In the currently standard technology, the die to be connected to the coil is attached to a lead
frame and electrically connected to two contacts on the lead frame, which are used to make

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 656 of 1123

622 The Smart Card Life Cycle

Figure 10.30 A machine for applying holograms to card bodies using the hot-stamping process

electrical connections to the two ends of the coil. The reason for using a lead frame is that
the electrical connections to the coil do not have to be positioned as precisely as they would
have to be if the coil were connected directly to the die. Although this method is more expensive
than connecting the coil directly to the die, the latter method requires very precise positioning
and high-quality bonding technology.

If the coil is integrated into the card body, two different methods are used to make the
connections between the chip and the lead frame or coil. In the widely used wire bonding
method, the chip is connected using fine bonding wires. A significantly more elegant and less
expensive solution is die bonding, in which the chip is pressed and glued against the lead frame
or coil to make a direct electrical contact. This requires the chip to be flipped over (relative to
the wire bonding technique), so this method (and sometimes the chip itself) is called ‘flip-chip’.
With both of these methods, the chip is covered with a protective layer of plastic resin after
the connections are made.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 657 of 1123

10.2 Phase 1 of the Life Cycle in Detail 623

print the coil
on a core foil

printed coil

wind the coil

attach the coil
to a core foil

wound coil

etch the coil
on a core foil

etched coil

card body with chip
for contactless smart card

attach chip or chip module
and make connections

laminate foils

embed the coil
in a core foil

embedded coil

Figure 10.31 Producing card bodies for smart cards in Phase 1 of the smart card life cycle

Figure 10.32 Cross-section of a contactless smart card with a module and a wound coil embedded in
the card body. The visible edge of the chip inside the module is 2 mm long (Source: Giesecke & Devrient)

Figure 10.33 Detail of the cross-section of a contactless smart card with an a wound coil embedded in
the card body (Source: Giesecke & Devrient)

Etched coils

There are several ways to integrate a coil into a card body. In the first process that was developed
for producing contactless smart cards, plastic foils coated with a 35-µm film of copper are
exposed and then etched to produce a coil in the copper film. The etched track is around 100 µm
wide. After the etching, a chip is placed at the terminals of the coil and electrically connected
to them. This assembly is then treated as an internal foil, to which overlay foils are laminated

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 658 of 1123

624 The Smart Card Life Cycle

Figure 10.34 Detail of the cross-section of a chip module for contactless smart cards embedded in a
card body. The bonding wire connecting the chip to the coil can be clearly seen (Source: Giesecke &
Devrient)

Figure 10.35 Front and rear views of a module with an integrated coil for a microcontroller chip

Figure 10.36 Front and rear views of a lead-frame module for a contactless smart card with the module
connected to a wound coil

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 659 of 1123

10.2 Phase 1 of the Life Cycle in Detail 625

Figure 10.37 Detail of the electrical connection of a small chip to an etched coil using die bonding

on the front and rear sides. The smart card is then finished. This type of card is referred to as
a contactless smart card with an etched coil.

Figure 10.38 An etched coil for a contactless smart card

Wound coils

The wound coil is a further development of the etched coil. Copper wire with a diameter of
150 µm is wound on a tapered coil form and then slid from the form onto a thin foil, to which it
is attached by thermoplastic welding using heat and pressure. Following this, the chip or chip
carrier is put in place and the foils are laminated. This method is distinctly less expensive than
etched coils, so it is more suitable for large quantities.

Embedded coils

Another method for producing wire coils is called the embedded coil method. This works in
a relatively simple manner. A coil of 150 µm-diameter copper wire is laid out directly on a

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 660 of 1123

626 The Smart Card Life Cycle

Figure 10.39 Right: inlay foil for a contactless smart card with an etched coil. Top left: enlarged detail of
the module cavity and contact surfaces for connecting the coil to the module. Bottom left: corresponding
module with an encapsulated chip

Figure 10.40 A wound coil made from copper wire together with a module, for use in a contactless
smart card. This method is now obsolete, but the photo clearly shows the construction of the coil and the
module

plastic foil and simultaneously bonded to the foil using ultrasonic energy. A device called a
‘sonotrode’ is used to make the coil; it mechanically guides the wire and at the same time
ultrasonically welds the wire to the plastic foil. After the coil has been made, the chip or chip
carrier is connected to the coil and a cover foil is laminated on top.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 661 of 1123

10.2 Phase 1 of the Life Cycle in Detail 627

Figure 10.41 Example of a wound coil with a lead-frame module, located in a card body that has been
kept transparent for demonstration purposes

Figure 10.42 Coils for contactless smart cards made using the embedded coil technique, located on a
multiple-copy sheet

Printed coils

Of all of the possible methods, the printed coil method is the most highly developed and the least
expensive for mass production. The windings of the coil are printed on an internal foil by silk
screening using conductive ink. Silk screening must obtain an ink thickness of approximately
50 µm, so that the electrical resistance of the coil is not excessively high. After the coil has
been printed, the chip is connected by die bonding and encapsulated using epoxy resin. The
final production step is laminating a protective cover foil on top of this assembly. The main
advantage of this method is that it permits high throughput due to the technical simplicity of

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 662 of 1123

628 The Smart Card Life Cycle

the printing process. It is thus exceptionally well suited to producing large numbers of cards.
However, it takes a considerable amount of expertise to achieve the necessary level of quality
in printing and die bonding.

Figure 10.43 Printed coil for a contactless smart card

10.2.4 Combining the card body and the chip

The final step in the production process is implanting the modules from the semiconductor
manufacturer or module producer into the prefabricated card bodies from the card manufacturer.
The mechanical aspects are the most important in this step. Nonetheless, a certain amount of
specialized expertise is needed to durably fit the modules into the cavities of the card bodies.
This is not as simple as just pasting clippings into a scrapbook.

module with chip

module embedding

card body with chip

card body for
contact-type smart sards

card body with chip and coils
for contactless smart cards

Figure 10.44 Implanting the module in the card body for a contact-type smart card, in Phase 1 of the
smart card life cycle

Implanting the module

Regardless of the method used to produce the card body and create a cavity for the module,
the module must be embedded in the card body in the next step of the production process.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 663 of 1123

10.2 Phase 1 of the Life Cycle in Detail 629

Normally, a piece of double-sided hot-melt adhesive tape is used to attach the module to
the card body. Only the supporting surface around the rim of the module is glued to the card
body, with the encapsulated die in the middle of the module remaining free. The module is
thus attached to the card body such that it ‘floats’ within the card body. To achieve this, the
adhesive tape must be pre-punched and then applied to the modules on the 35-mm carrier tape
so that it covers only the edges of the modules. After this, the individual modules are separated
from the carrier tape and glued into the card bodies using the attached adhesive. The durability
of the bond depends primarily on the proper combination of heat, pressure and time.

Figure 10.45 A machine for laminating adhesive tape onto modules on 35-mm carrier tape

Figure 10.46 A rotary-table machine for implanting chip modules. The modules, whitch are arranged
in pairs on the 35-mm carrier tape, can be seen in the foreground together with a small punch, from which
they are lifted by a suction device and placed in the cavity of the card body

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 664 of 1123

630 The Smart Card Life Cycle

The problem with this hot gluing process, which requires considerable expertise, is that the
modules are briefly heated to around 180˚ C. This normally lasts approximately one second,
but if it lasts too long the modules will be destroyed by being overheated. In any case, this brief
heating artificially ages the chips, although this normally does not have any negative effect.
The implanting machines used for card production can process around 2000 modules per hour,
which amounts to one embedding operation every 1.8 seconds.

Other methods, such as using liquid cold-setting glues, are also used, but the hot-gluing
method is still considered to be very reliable. The main problems with using liquid glues that
are injected into the milled cavity are the lack of a clearly defined adhesion surface and the
tendency of the glue to harden over time.

Once the module has been implanted in the card body and all the non-personal features
and printing have been applied to the card, the mechanical production of the smart card is
complete.

Figure 10.47 Injecting liquid glue into a pre-milled module cavity in an implanting machine (Source:
Mühlbauer)

10.3 PHASE 2 OF THE LIFE CYCLE IN DETAIL

According to the ISO 10202-1 standard, Phase 2 of the smart card life cycle describes the
loading of all data that are not card-specific as well as implanting the chips in prepared card
bodies. Phase 2 and Phase 3 are frequently carried out by a single firm, although in such firms
the two phases are normally fully separated, both organizationally and physically, for reasons
of security.

A production planning and control (PPC) system is frequently used to coordinate these
complicated production processes. The various finishing machines draw their data from this
system, and in parallel with this, they report current processing status to a central control station.
This minimizes the time and costs involved in controlling the mass production of smart cards.
An additional benefit of the PPC system is that networking the processing equipment makes
the data needed for quality assurance and testing available for near-real-time evaluation.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 665 of 1123

10.3 Phase 2 of the Life Cycle in Detail 631

Figure 10.48 Stamping a module from the tape in an implanting machine (Source: Mühlbauer)

Figure 10.49 Placing a module in the module cavity in an implanting machine (Source: Mühlbauer)

Data transfer

The card issuer or application provider must provide the card personalizer with all the data
related to his application. This includes information such as the name of the application,
the structure of the file tree, the required files and the file structures. This information is
loaded into the cards when they are initialized. Furthermore, the personalizer also needs all
customer-specific and system-specific data, such as secret card-specific keys and the names
and addresses of the cardholders. This information is transferred using diskettes, magnetic
tapes or data telecommunications.

The personalization data are almost always sensitive with regard to security, which means
that the transport path and data transfer must be suitably protected. Consequently, the data are
normally encrypted. The associated decryption key is naturally transported to the personalizer

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 666 of 1123

632 The Smart Card Life Cycle

Figure 10.50 Electrically testing a module in an implanting machine after it has been glued into the
card body (Source: Mühlbauer)

chip testing

chip initialization

card issuer

chip and card
personalization

envelope stuffing

shipping smart card

smart card in use

end of use of the
smart card

Phase 2

Phase 3

Phase 4

Phase 5

card body with chip

application producer

Figure 10.51 Phases 2 through 5 of the smart card life cycle: testing, initialization, personalizing, use
and end of use

via a different route than the data. This means that the personalization data are worthless if
they are lost, since it is not possible to decrypt them without the key.

However, there are many smart card applications in which no transfer of card-specific data
takes place. The best-known example is SIMs for the GSM mobile telecommunication system,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 667 of 1123

10.3 Phase 2 of the Life Cycle in Detail 633

which are not manufactured for a particular card producer, but instead contain only individual
card data and keys. The data sets needed for this purpose are usually generated directly by the
card producer and reported back to the application operator, so that the latter knows which
cards have been produced. The only sense in which a data transfer takes place is that the card
producer receives the data that are the same for all cards and the initial and final values for the
card-specific data. The data sets for each of the individual cards are then generated in security
modules located in the finishing equipment.

Electrical testing

The first production step of this phase is an electrical test of the smart card. A basic test is
made by performing the ISO smart card activation sequence, to which the card must respond
with a valid ATR. If the ATR can be received and it meets expectations, it is certain that at
least the core of the microcontroller is operational. Following this come special tests for the
hardware components, such as the ROM, EEPROM and RAM. Special machines that can
process multiple cards in parallel are used to achieve high throughput with these tests, some
of which can take up to several seconds. Machines with a throughput of up to 6000 cards per
hour are typically used.

wafer
test

module
test

tape
test

 good
chips

good
modules

implantation
test

initialization
test

personal-
ization

test

bad chips

bad cards

 good
modules

bad modules bad modules

good
cards

good
cards

bad cardsbad cards

good
cards

blank
modules

wafer

Figure 10.52 Material flow diagram showing typical electrical tests for smart card microcontrollers
that are performed during production

Wafer test: wafer test performed by the semiconductor manufacturer
Module test: test performed by the module implanter after bonding the chip
Tape test: testing the modules on the 35-mm tape
Implantation test: testing the smart card after the module has been implanted
Initialization test: testing the smart card after the card has been initialized
Personalization test: testing the smart card after the card has been personalized

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 668 of 1123

634 The Smart Card Life Cycle

Figure 10.53 A reel with a partial roll of tape carrying paired modules. This is the typical manner in
which modules are supplied to the smart card manufacturer by the module manufacturer

Figure 10.54 Contact head of an incoming inspection machine for modules on 35-mm tape. This
machine can process 16 modules in parallel

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 669 of 1123

10.3 Phase 2 of the Life Cycle in Detail 635

Figure 10.55 Detail view of a probe needle for the contact unit of a high-performance smart card testing
station. Although the shape of the probe needle does not conform to the ISO/IEC 7816-2 standard, this
type of contact element is often used in production facilities due to its reliability

The preferred way to test the operation of the EEPROM is to write a ‘checkerboard’ pattern,
such as'AA'(◦1010 1010◦) or'55'(◦0101 0101◦), to the individual bytes. However, since this
would take a long time, particularly with large EEPROMs, a trick is sometimes used to shorten
the test. Instead of using the specified EEPROM write time, which might for example be 3.5 ms
per page, only one-tenth of this time is used (350 µs in this example). Data will be retained
in the EEPROM for only a few minutes when such a short write time is used, but this does
not cause any problems here, since the checkerboard-pattern memory test is completed a few
seconds after the data have been written. The advantage of this dynamic form of EEPROM
programming is that it significantly speeds up testing without reducing the quality of the
testing. The same technique is sometimes used when the transmit and receive buffers of the
I/O manager are located in EEPROM instead of RAM. In this case, the reduced write time
yields a marked increase in the effective data transmission rate.

There is another interesting trick that is used in electrical testing. In order to reduce the
amount of time required to load data in subsequent production steps, a final test pattern (such
as'00') is written to the entire EEPROM using the normal write time. Since the value already
stored in the memory is known in the subsequent processes of completion, initialization and
personalization, only the data that are different from this value have to be actually written to
the EEPROM. A similar technique can be used to set the contents of the EEPROM to a value
that makes it unnecessary to first erase the page to be written for subsequent write operations.
Both of these tricks distinctly reduce the times required to carry out subsequent production
steps in which data are written to the EEPROM.

Completion

Most operating systems are only partially contained in the mask-programmed ROM of the
smart card. The link tables and portions of the program code are loaded into the EEPROM

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 670 of 1123

636 The Smart Card Life Cycle

of the smart card only after an authentication using a secret key. The process of loading the
EEPROM portion of the operating system is called completing the operating system.9

This approach allows minor modifications to be made to the ROM program code, in order to
correct errors or adapt the code to special applications without being forced to generate a new
ROM mask. The smart card operating system is not fully present in the smart card until the
EEPROM data have been written to the card. After this, it is possible to execute all application
commands, such as SELECT and READ RECORD.

Card completion, which involves data that are the same for all cards for a particular appli-
cation, is performed using high-throughput machines that process multiple cards in parallel,
just as with the incoming inspection of cards.

initial state L1 L3

complete
OS

switch phase

L1

testing

authentication

L2

personalize
application

switch phase

L1

initialize
application

authentication

card
blocked

switch phase

L1

card in use

authentication

L3

authentication

Figure 10.56 Smart card operating system state machine for implementing a five-phase life cycle

Initialization

Completing the card provides it with the software that is necessary for the next production
step, which consists of loading all the data belonging to an application that are the same for all
smart cards used with that application. This consists of the application data that do not vary
from card to card and all other non-personal data that are the same for every smart card. This
step is called initialization.

At the file level, initialization consists of creating all necessary files (MF, DFs and EFs) and
filling them as much as is possible with the application data. In many cases, the file contents
are predefined by the applicable specifications (such as GSM 11.11). With modern operating
systems, initialization is performed using the CREATE, UPDATE BINARY and UPDATE
RECORD commands. This is the last processing step in which all smart cards are treated the

9 See Section 5.4, ‘Completion’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 671 of 1123

10.3 Phase 2 of the Life Cycle in Detail 637

same. Consequently, initialization can also be performed using fast parallel machines. Card-
specific application data and personal data are not loaded into the smart card until the following
step, which is called personalization.

Figure 10.57 An initialization machine that can process 40 cards in parallel (Source: Mühlbauer)

The reason for distinguishing between general, global data and specific, personal data in
the finishing process relates to minimizing production costs. Personalization machines that
can write specific data to each individual smart card under the required security conditions
are technically complex and have a throughput of around 700 cards per hour. They are also
usually equipped with relatively slow labeling units for the card bodies. This results in high
unit costs for loading data into the cards. Consequently, an attempt is always made to load all
global data, which does not differ from card to card, into the cards using simpler and faster
initialization machines, which can process around 3500 cards per hour.

The bottleneck for both initialization and personalization is transmitting the data to the card
and writing it to the EEPROM. The time required for write accesses to the EEPROM cannot
presently be reduced, due to technical limitations. However, the time required to transmit the
initialization and personalization data can be drastically reduced by increasing the clock rate
and reducing the divider value. For example, many initialization and personalization machines
use data transmission rates of up to 115 kbit/s, instead of the usual value for smart cards of
9600 bit/s. This can reduce the initialization or personalization time by a factor of nearly two.

The following sample calculation clearly illustrates that even small time optimizations can
be worthwhile in the mass production of smart cards. Here we assume that one million cards
are to be initialized with 4 kB (4096 bytes) of data each, using two initialization machines
operating for two shifts (16 hours) per day. We also assume that initialization is performed
using 40 commands and the T = 1 transmission protocol, with 12 data bits for each byte of
transmitted data. In addition, the EEPROM write cycle time is 3.5 ms for a 4-byte page, and a
prior erase operation is not necessary. The transport time for the initialization machines, which
are not equipped with terminals for parallel processing, is 1 second per smart card, and any
dead time that may occur (for loading or emptying bins, for example) is not taken into account.
The resulting cycle time is thus the sum of the EEPROM writing time, the data transmission
time and the transport time.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 672 of 1123

638 The Smart Card Life Cycle

Using the formulas given in Section 15.2 (‘Formulas for Estimating Processing Times’)
with a data transmission rate of 9600 bit/s, we obtain a processing time of 90.7 days. If the
data transmission rate is increased to 38.4 kbit/s, the time required to process one million cards
drops to 52.5 days. A data transmission rate of 115 kbit/s would be ideal, since at this rate card
production could be completed more than 46 days earlier than at 9600 bit/s.

Table 10.4 Processing time for initializing smart cards using various data
transmission rates. The basic assumptions and general conditions are described in
the text

Data transmission rate: 9600 bit/s 38,400 bit/s 115,200 bit/s

EEPROM writing time: 3584 ms 3584 ms 3584 ms
Data transmission time: 5870 ms 1468 ms 489 ms
Resulting cycle time: 10,454 ms 6051 ms 5073 ms
Resulting processing time: 90.7 days 52.5 days 44.0 days

From this example, it is clear that particularly when a large amount of data must be stored
in the smart cards, it is worthwhile to invest time and effort in optimizing the processing.
The described increases in the data transmission rate depend only on the smart card operating
system and do not require any special chip hardware, such as would be necessary for writing
the data to the EEPROM faster. Consequently, it is possible to reduce the initialization time
for all suitably prepared smart cards.

10.4 PHASE 3 OF THE LIFE CYCLE IN DETAIL

Phase 3 primarily covers the part of the life cycle consisting of the visual and electrical
personalization of the smart card. As with Phase 2, this phase normally occurs in a highly
automated production environment that is designed for processing large numbers of cards.

Generating card-specific secret data

As a rule, the individual data for personalization are provided by the card issuer on a data
storage medium or via data telecommunications. However, a special method is often used for
providing secret data, such as PINs and keys, since such data must remain secret under all
circumstances and are only allowed to be generated in highly secure environments. There are
four methods that are used in practice for PINs.

The simplest option is to generate a trivial PIN, which the cardholder must change to a
PIN of his or her choice the first time the card is used (and before actually using the card for
a valid transaction). However, for a variety of reasons this method cannot be implemented in
all systems, even though it has the advantage of not requiring the printing and posting of PIN
letters.

A somewhat more elaborate option for producing PINs is for the card issuer to generate the
PINs using a good random number generator, followed by secure transfer of the PINs to the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 673 of 1123

10.4 Phase 3 of the Life Cycle in Detail 639

card personalizer. The latter then writes the PINs to the cards to be personalized using the usual
secure mechanisms and generates the associated PIN letters. A variation of this option is to
generate the PINs in the cards, followed by the secure transfer of the PINs to the personalization
machines for use in further processing.

The third possibility is generation of random PINs by the card personalizer. These PINs,
which are generated in a secure environment, are written to the appropriate data fields in the
smart cards, as with the previous options. In parallel with this, PIN letters are generated and
sent to the cardholders. The associated smart cards reach the cardholders via a separate path.
If the card issuer needs to have the PINs that have been generated in this manner, they can
be provided to him in a secure manner. Otherwise it is generally not necessary to store the
generated PINs anywhere except in the smart cards.

Another way to generate PINs is to use an algorithm, which may be a cryptographic al-
gorithm, to compute card-specific PINs using data present in the cards and a master key. The
drawback of this method is that the master key and (in some cases) the algorithm must be kept
secret.10

If the secret data to be generated are not PINs, but instead keys for cryptographic algorithms,
essentially similar methods can be used. The principal difference is that in this case it is not
necessary to generate PIN letters, although the keys must be provided to the system operator
in a secure manner. This is done using what is called the ‘response data’, which are transferred
from the party that generates the keys to the system operator in a cryptographically secured
form via data telecommunications or a physical data storage medium.

Transferring data to the smart card

There are two fundamentally different methods that can be used to store the initialization data
in the memory of the microcontroller. The first method, which aims to avoid direct physical
addressing of the memory, uses only logical addresses in the microcontroller for initialization
and personalization as much as possible. From a purely theoretical perspective, this is the
preferable method, since it avoids the need to use physical addresses outside of the smart card.
This automatically eliminates many potential sources of errors, and within certain limits it also
makes loading data into the smart card independent of the type of microcontroller present in
the smart card. The drawback of this approach is that it significantly increases the time required
for initialization and personalization, and particularly in the case of mass production, time is
a very critical factor.

Consequently, there is a second method that is used in practice to load data into smart cards,
which involves writing the initialization data directly to the microcontroller memory using
externally specified physical addresses. This significantly reduces the amount of time required
compared with a method based on logical addresses. Unfortunately, with this approach it is
necessary to work with physical addresses external to the card, which carries corresponding
drawbacks with regard to susceptibility to error and general usability. In practice, the method
used is generally determined on a case-by-case basis. If the number of smart cards to be
produced is sufficiently large, the increased cost of the software for the initialization machinery
and the necessarily complicated testing can be justified.

10 An example of this method for generating PINs is given in Section 8.1.1, ‘Verifying a secret number’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 674 of 1123

640 The Smart Card Life Cycle

In order to write data directly to physical addresses, the data must be suitably prepared in
advance. One way to do this involves mimicking the complete file management system of the
smart card operating system in the form of a simulation. A conversion program can then be
used to load the data to be written into the appropriately coded file bodies of the simulation and
provide them with their associated file headers. After this, all that is necessary is to relocate the
files constructed in this manner to the proper addresses in memory. Naturally, the entire process
must be performed without errors and in a manner that is matched to the operating system
in question. Following this, the data can be read from the simulation and directly written to
physical memory addresses in the smart card, using the usual commands.

Unfortunately, this approach has not proved to be worthwhile in practice, since its costs far
outweigh its potential benefits. In addition, the cost of testing to ensure the absence of errors,
using expensive black-box tests, would be excessive. Consequently, this method is rarely used.

The commonly used method is much simpler. A smart card containing a dump routine in an
otherwise unused area of memory is first initialized using file management commands, which
use logical addresses. The initialized memory is then read out using the dump routine, and the
data so obtained are written to the physical addresses of the smart card to be initialized. This
allows initialization and personalization times to be reduced by as much as 30 %. In principle,
this method can be considered to be cloning. Its major advantage is that it is simple and robust,
and the only critical aspect is that the smart card containing the dump routine must never be
allowed to leave the processing facility. If this smart card were fully personalized, the dump
routine it contains could be used to read out all of the secret data. Consequently, this smart
card has suitable mechanisms to prevent it from ever being misused for reading out memory
as the result of an exchange or an attack. This can be achieve relatively simply, for example by
having the dump routine automatically delete itself the next time the card is reset. In this case,
the smart card can be used only during a single session, since it will lose its dump capability
the first time its supply voltage is interrupted.

Personalization / individualization

The next step in producing a smart card that is ready to be sent to the user is personalization,
which is sometimes called individualization. In a more general sense, personalization means
loading all data assigned to a particular person or a particular card into the smart card. This
might be a name and address, for example, but it could also be card-specific keys. What is
important is that the data are specific to a particular card.

A basic distinction is made between visual and electrical personalization. The embossing
characters, as well as text or pictures applied to the card using laser engraving, constitute
the visual part of personalization. The electrical part consists of loading personal data into
the microcontroller and writing data to the magnetic stripe. The processing time for visual
personalization depends very strongly on the specific features and cannot be generally stated.
Electrical personalization usually takes between 5 and 20 seconds, depending on the amount
of data.

Embossing names and similar card-specific, character-based information is performed by a
machine in which metal letter punches are hammered against the rear of the card at great speed
and with considerable force. Since this is a relatively simple procedure, but one that is very
loud and produces a lot of vibration, the embossing machines are usually physically separated

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 675 of 1123

10.4 Phase 3 of the Life Cycle in Detail 641

operating system operating system

operating system

Step 1: Test Step 2: Completion

Step 3: Initialization Step 4: Personalization

file system file system

file system

free memory free memory

free memory

header header

header
fill the entire

memory with a
predefined
byte value

write a
memory image

create files and

using standard
operating system

commands

write fixed data
write individual data

using standard
operating system

commandsbody body

body

Figure 10.58 Schematic representation of the most important steps for loading common and individual
data into a smart card using file management commands such as CREATE, UPDATE BINARY and
UPDATE RECORD. The shaded regions mark the data written in each step. For simplicity, this diagram
depicts the loading of only one file system. Similar steps would be used to load other items, such as Java
applets

from the rest of the processing equipment. Laser engraving equipment, which can be used to
darken regions just below the overlay foil of the card body using a laser beam, is very often
employed instead of mechanical embossing. This technique is also useful if it is necessary to
have a black-and-white picture on the card body.

The data for the chip are written to the memory in the same way as for initialization. However,
to the extent that this involves secret keys, cryptographically protected data transmission11 is
often used to prevent an attacker from deriving any benefit from tapping the data line. For cards
that are used for financial transactions, an even more complex method is sometimes used. This
involves using a special security module in the personalization machine to re-encrypt the
encrypted personalization data received from the card issuer and then load it directly into the

11 See also Section 6.6, ‘Securing Data Transmission’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 676 of 1123

642 The Smart Card Life Cycle

operating system

operating system

operating system

operating system

Step 2: Complete the master Step 3a: Initialize the master

Step 3b: Initialize the copy Step 4: Personalize the copy

file system

file system

file system

file system

free memory

free memory

free memory

free memory

header

header

header

header

write a
memory image

write a
memory image

write the
memory image

write individual data
using standard

operating system
commands

body

body

dump routine dump routine

body

memory image

create files and

using standard
operating system

commands

write fixed data

body

Figure 10.59 Schematic representation of the principal steps for loading common and individual data
into a smart card by physically copying the data from a master version previously generated using file
management commands. Figure 10.58 shows further details of the processes used to generate the master
version and the copy. The numbering scheme used here is also taken from that figure. The shaded regions
mark the data written in each step. For simplicity, this diagram depicts the loading of only one file system.
Similar steps would be used to load other items, such as Java applets

smart card. The advantage of this method is that the personalizer does not know the secret data
in the card and also has no possibility of spying it out by tapping the data lines.

The technical trend in smart card personalization is increasingly heading in the direction of
using a process that is cryptographically fully secured. This means that in principle the work
can be performed by inexpensive service firms in non-secure facilities. Nowadays, there are
also processes in which the personalizer receives the card-specific data recorded on a CD-
ROM. In this case, the production data set with its associated card-specific key is inseparably
linked to the unique chip number of the microcontroller. Among other things, this makes it
impossible for the personalizer to produce duplicates of smart cards, unless he can somehow
manipulate the operating system. However, this method has the disadvantage that some of the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 677 of 1123

10.4 Phase 3 of the Life Cycle in Detail 643

Personalization

visual electrical

embossing

laser engraving

printed picture

magnetic-strip data

memory chip
or microcontroller

Figure 10.60 Classification of the elements of a smart card that can be personalized

Figure 10.61 A modular personalization system (Luchs 5000), which includes an integrated laser
labeling unit (Source: Giesecke & Devrient)

Figure 10.62 A modular personalization system (Data Card 9000), which includes integrated postal
processing (Source: Data Card)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 678 of 1123

644 The Smart Card Life Cycle

delivered data sets cannot be used if any of the chips are faulty, since the defective chips are no
longer available. If this method is used, the personalizer must always report back to the party
that generated the data to inform them which chips have actually been processed. This is not
necessary with the personalization methods that are presently in common use, since it is easy
to reproduce a faulty card. Incidentally, this is also why the personalization facilities of card
producers are always secure areas.

Unfortunately, the cryptographic procedures and security measures used in the realm of per-
sonalization are largely secret, so it is not possible for us to describe any specific application.
However, Figure 10.63 shows an example of an initialization process followed by a person-
alization process, as seen from a cryptographic perspective. For the cryptographic protection
to be effective, these two production steps must take place in separate rooms using separate
personnel.

The illustrated procedure works as follows. During initialization, a card-specific key (KD)
is derived in a security module using a unique chip number and a master key (KM). This key
is sent as plaintext to the card, where it is stored. Naturally, a lot of other data must be written
to the smart card during the initialization, but generating and storing the card-specific key KD
is the only cryptographically relevant step.

Following this, the card is personalized. This can be done immediately following the ini-
tialization, but it may also be done several weeks later. The important factor is that personal-
ization must be completely separate from initialization, in order to prevent a KD that has been
illicitly acquired during initialization from being used during personalization to decrypt the
card-specific data.

In the personalization process, the personalization data that have been encrypted using a
shared key are decrypted for each individual card by the security module. This is necessary
because the producer of the personalization data does not know the individual chip numbers,
which are independently generated by the semiconductor manufacturer. The security module
then computes the card-specific key (KD) from the card number that it receives from the smart
card and the master key (KM). Now the security module and the smart card have a shared secret
in the form of KD. This is used to encrypt the personalization data, which are then transferred
in encrypted form to the smart card, where they are decrypted and written to the appropriate
locations in the EEPROM. This process provides complete cryptographic protection of the
personalization procedure. It protects the data to be used for personalization against being
spied out, as long as the key (KD) that is written to the card during the initialization remains
secret.

Figure 10.64 shows an alternative method for securing loading data into smart cards, in
which the first step consists of having the smart card and the terminal agree on a common
secret key by means of a Diffie–Hellmann key exchange. After this, the data are transmitted
to the smart card in encrypted form using this key. The major advantage of this method is that
it never involves transmitting a secret key in non-encrypted form.

At the conclusion of the personalization process, the personalization machine runs several
quality control tests on the finished smart card. In the latest machines, for example, each card
is scanned by a camera and the visual personalization is evaluated by a computer and checked
against a production database. In case of an error, the card is ejected into a faulty-card bin
and a new copy of the card is automatically produced. Normally, the personalization data in
the microcontroller are also checked. However, this is technically difficult to do, since read

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 679 of 1123

10.4 Phase 3 of the Life Cycle in Detail 645

Terminal

card number

KD (card-specific key)

enc (KD; personalization data)

card number

Smart Card Security Module

KM
(master key)

KD

KD

personalization
data in plaintext

store KD

database with
encrypted, card-specific

personalization data

personalization
data in plaintext
(data and key)

KM

key for
personalization
data

Figure 10.63 Schematic representation of a typical initialization and personalization procedure using
cryptographically secured transmission of data and keys. ‘KM’ designates the master key, which is used
to derive the card-specific keys (KD). Only the cryptographically relevant processes are shown

access to many of the files is no longer allowed. Consequently, special security modules for
these tests are frequently present in personalization machines. These modules contain secret
master keys with which the personalized keys in the smart cards can be tested for correctness,
possibly via an authentication.

Another approach is to provide the personalizer with command strings and corresponding
response strings for each individual card. The personalizer then sends these commands in the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 680 of 1123

646 The Smart Card Life Cycle

Terminal

enc (KD; personalization data)

card number

Smart Card Security Module

KD

KD

personalization
data in plaintext

database with
encrypted, card-specific

personalization data

personalization
data in plaintext
(data and key)

KM

key for
personalization
data

X, g, n

Y

Y = g y mod n X = g x mod n

K = Y x mod nK = X y mod n

Figure 10.64 Schematic representation of a possible procedure for personalization using cryptograph-
ically secured transmission of data and keys. In this special procedure, the keys for loading the data in
encrypted form are negotiated in advance using a Diffie–Hellman key exchange. This eliminates the need
to transmit a previously stored symmetric personalization key to the smart card in cleartext in a separate
step. Only the cryptographically relevant processes are shown

correct sequence to the smart card and compares the responses received from the card with the
responses accompanying the commands. If they do not match, the smart card is not behaving as
expected and a personalization error must have occurred. With this method, it is not necessary
to have a special security module for the tests in the personalization machine.

Once a smart card has been personalized, it is generally not possible to reverse the pro-
cess, which means that an incorrectly personalized smart card is worthless. Of the various

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 681 of 1123

10.4 Phase 3 of the Life Cycle in Detail 647

processes, electrical personalization is the most prone to errors, and any errors that occur in the
personalization of a large batch of cards would result in major financial losses and delays. Con-
sequently, there are a few smart card operating systems that allow the complete personalization
to be fully deleted following a suitable authentication. With regard to the operating system, the
smart card afterwards behaves the same as after semiconductor fabrication or completion. This
capability is sometimes used for test cards, since it makes it possible to modify the software
in the card instead of scrapping the card every time the software changes. Occasionally, such
smart card operating system mechanisms are enabled for regular cards, thus allowing cards to
be depersonalized if necessary.

0 cards/h

50 cards/h

100 cards/h

150 cards/h

200 cards/h

250 cards/h

300 cards/h

0 kB 2 kB 4 kB 6 kB 8 kB 10 kB 12 kB 14 kB 16 kB 18 kB 20 kB

no printing

one side printed

both sides printed

amount of personalization data

throughput

Figure 10.65 Throughput diagram for electrical personalization with single-sided and double-sided
card printing using a desktop personalization machine

Generally speaking, smart card personalization is not performed for quantities less than
(typically) 10,000 cards. However, many applications require the ability to reproduce individ-
ual, customer-specific smart cards. For instance, it must be possible to replace a defective or
lost Eurocheque smart card within a few days, since otherwise the cardholder will no longer be
able to obtain money from cash dispensers. With an increasing level of customer friendliness,
there is an increasing demand for this sort of just-in-time personalization equipment. It is
usually installed alongside the mass-production personalization equipment, receives card data
via data telecommunications and uses smart cards that have already been initialized and held
as partly-finished products. With this sort of card production, provision of a replacement card
to the end user (the cardholder) within 24 hours can be guaranteed, should this be necessary.
Such equipment, which is designed for fast turnaround, is naturally not suitable for the mass
production of smart cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 682 of 1123

648 The Smart Card Life Cycle

Figure 10.66 Example of a desktop personalization machine for electrical personalization and double-
sided color printing with a resolution of 300 dpi. The input stack of cards is located on the right-hand
side, while the stacks of good and rejected cards are located on the left (Source: F + D)

Envelope stuffing and shipping

The final processing step in the production of smart cards is packing and shipping the cards. This
is not necessary with some types of cards, such as pre-paid phone cards, which are frequently
supplied en masse to the card issuer. However, with more sophisticated and expensive cards it
is common for the cardholder to receive a personalized letter containing his or her new card.
With some applications, such as credit cards, the cardholder also receives a letter with the PIN.
For reasons of security, this is sent separately and a few days later than the card. The area in
which all of these activities take place is often called the lettershop.

The envelope of the PIN letter is made with a carbon-paper coating on the inside. This
allows a slip of paper inside the envelope to be printed from the outside using a dot-matrix
impact printer. The envelope is constructed such that an unauthorized person cannot read the
printed PIN code without visibly damaging the envelope. These measures ensure that it is not
possible for someone to spy out PIN codes without being noticed, even while the PIN letters
are being generated. High-performance printing systems for PIN letters can print up to 34,000
documents per hour.

For posting the cards, the personal information (such as the cardholder’s name and address)
is either read from the card or retrieved from the production database, depending on the card
type. This information is printed on a ‘card carrier’, which is a pre-printed letter, using a high-
throughput laser printer. The letter may have two punched slots to hold the corners of the card.
Alternatively, a strip of easily removable adhesive material is often used to attach the card to
the letter. Following this, the card carrier is folded and inserted into an envelope. After the
envelope has been franked, the smart card with the personalized letter is ready to be posted
to the cardholder. High-performance envelope stuffing machines have a throughput of around
7000 letters per hour.

The final quality control step is to automatically weigh the finished letters containing the
cards. The weight of the card, which is around 6 grams, is easily sufficient to ensure reliable
verification that each envelope actually contains a card.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 683 of 1123

10.4 Phase 3 of the Life Cycle in Detail 649

Figure 10.67 A system for attaching cards to their associated letters, which are then stuffed into
envelopes along with any necessary attachments. This machine can prepare and stuff up to 7000 envelopes
per hour (Source: Böwe Systec)

In order to minimize postage costs, it is common to presort the letters by postal code before
handing them over to the post office. This optimization is most easily realized by producing
the cards in the order necessary to satisfy the postal sorting criteria (such as a regional code
followed by a local code).

Practical experience with even such simple things as sending cards by post repeatedly
brings new and interesting problems to light. For instance, one time a major producer of
smart cards was confronted with sudden failures in smart cards sent by post. When the cause
of these failures was investigated, it was discovered that the responsible postal distribution
center had changed the arrangement of the feed rollers in the sorting machine. With the new
arrangement, the letters containing the smart cards were bent so severely during sorting that the
chips inside the modules broke in some of the cards. The problem was solved by shifting the
position of the card on the carrier by a few centimeters. For this and other, similar reasons,
a few hundred test letters are often posted in the target region and then analyzed prior to a

Table 10.5 Summary of the relative cost factors for two types of smart cards
containing microcontrollers with different memory capacities

Component or production step Smart card with: Smart card with:
≈6 kB ROM ≈16 kB ROM
≈1 kB EEPROM ≈8 kB EEPROM
≈128 bytes RAM ≈256 bytes RAM

Die: 50.0 % 65.0 %
Module: 25.0 % 15.0 %
Card body: 12.5 % 10.0 %
Initialization and personalization: 12.5 % 10.0 %

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 684 of 1123

650 The Smart Card Life Cycle

major mailing, in order to ensure that the smart cards will not be damaged during transport or
sorting.

The production steps and phases that have been described thus far represent a mass produc-
tion process, which is standard for cards such as GSM cards and credit cards with chips. Other
applications or card issuers may have other basic requirements with regard to card production.
For example, some GSM smart cards are personalized ‘on site’ in the shop and then handed
directly to the customer. The customer naturally receives a favorable impression of the com-
petence and capability of the shop if he or she can receive a personalized card immediately
after subscribing and paying. However, this depends very strongly on the marketing policy and
security requirements of the card issuer. In contrast to this example, producing card bodies and
modules is basically independent of the ultimate card issuer or his marketing aspects, and thus
largely the same for all applications.

10.5 PHASE 4 OF THE LIFE CYCLE IN DETAIL

Phase 4 of the life cycle of a smart card is well known to normal card users from daily experience
with their own cards. New applications can be downloaded or activated, and applications
already present in the card can be deactivated if necessary. Since the majority of this book
addresses this phase, it is not described any further here, with the exception of card management
systems.

Card management systems

Administrative systems for cards have been used by a variety of card issuers for many years
already. However, up to now the emphasis has primarily been on inventory management and
associating cards with specific persons. With the increasingly widespread use of smart cards
that support modifying, downloading and deleting applications, the functions of card manage-
ment systems have been fundamentally altered, since they must also deal with the aspects of
card-specific applications. Such systems are called card management systems (CMS), applet
management systems (AMS) or sometimes file management systems (FMS). The term ‘card
management system’ is used here.

A functional card management system first requires a high-performance database system
containing all necessary information about issued cards, as well as at least occasional on-
line connections to the cards to be managed. For these reasons, existing smart cards used
in telecommunications applications are quite suitable for use with card management systems,
since they are continuously connected online to the background system while in use. In payment
systems that operate partially offline, it is still possible to utilize temporary online connections
to the background system, such as when a card is used with a cash dispenser or merchant
terminal. An essential prerequisite for any sort of online connection is a secure end-to-end
connection between the smart card and the management system.

A card management system can have a very broad range of functions. The simplest function
is updating the contents of files in specific smart cards, using standard smart card commands
that are sent to the cards via secure channels. A somewhat more complicated function is file
management, which means deleting existing files and creating new files, using mechanisms

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 685 of 1123

10.5 Phase 4 of the Life Cycle in Detail 651

that are similar to those used for updating file contents. All of these operations on files are
referred to as ‘remote file management’ (RFM).

Significantly larger data volumes are involved in storing a new application in a smart card.
If the application is file-based, all of the corresponding files must be created in the smart card
and then filled with data. If the new application is program-code based, the program must be
loaded into the smart card. In the case of Java Card, this is primarily done using the OP loader.12

However, it can sometimes be necessary to replace an application by a different application
or a new version of the same application. In preparation for this, the data for applications
present in the smart card must be secured. Following this, the application in question must
be deleted and the new application must be created in the smart card. Finally, the secured
data must be loaded into the application, which may involve converting the data to a different
format.

The card management systems described above relate to the period after the smart card
has been issued to the end user. However, the functions of a card management system can
be significantly expanded to cover the entire life cycle of the smart card. This is referred to
as life-cycle management. It begins with the completion of the smart card operating system
and extends over the initialization and personalization of the smart card through its actual use
and any subsequent deactivation of the card that may be necessary at some time, including
transferring the data to a new smart card.

Naturally, this manifold of functions causes card management systems to be quite complex.
Furthermore, it should be noted that it is extremely rare for the set of smart cards being managed
to be homogeneous. The most common situation is a highly heterogeneous hodge-podge of
different smart card operating systems in various versions running on a variety of hardware
platforms with different memory sizes. The applications to be managed will also have a certain
range of versions.

As an example that illustrates the resulting complexity, we can consider the situation of an
operator of a telecommunications network using SIMs having three different versions of the
operating system running on three different hardware platforms with three different versions
of the application. In the worst case, the card management system will have to perform 27
(= 33) different types of access to the application. The card user, by contrast, sees all of these
27 variants as only a single application in his SIM.

Besides the large number of variants that can quite easily arise, another consideration is
that the smart cards to be managed must meet certain general conditions. In principle, the
entire administrative process must be performed in an atomic manner by the card management
system, since if it is somehow possible to prevent administration operations from being fully
completed by means of some sort of interruption to the process, it must be possible to restore the
original state. For example, consider downloading a Java applet into a SIM via the air interface.
If the connection is broken, for instance because there is a coverage gap in a tunnel, this must
not be allowed to have any sort of technical consequences for the existing functionality of the
SIM. All of this can be technically achieved using existing mechanisms and procedures, but it
requires substantial effort.

There are commercially available card management systems that can provide several of the
previously described functions. However, if smart cards are used on a large scale in a system in

12 See also Section 5.11, ‘Open Platform’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 686 of 1123

652 The Smart Card Life Cycle

which it is necessary to dynamically manage applications, major extensions to certain aspects of
existing card management systems will be necessary, regardless of the nature of the functions.

10.6 PHASE 5 OF THE LIFE CYCLE IN DETAIL

Phase 5 of the life cycle of smart cards according to the ISO 10202-1 standard defines all
measures relating to terminating the use of the card. Specifically, these measures consist of
deactivating the application(s) in the smart card, followed by deactivating the smart card itself.
However, both of these processes are purely theoretical with most smart cards. In practice,
cards are either thrown into the trash or carefully labeled and filed away by collectors for some
indeterminate length of time. Generally speaking, it is quite rare for cards to be returned to the
card issuer.

Nevertheless, there are commands that can be used to deactivate individual applications
and the complete smart card. The ISO/IEC 7816-9 commands DELETE FILE, DEACTIVATE
FILE, TERMINATE DF and TERMINATE CARD USAGE are explicitly intended to be used
to herald the final stage of the life cycle of an application.13

These commands are primarily essential for managing individual applications in multiap-
plication cards, but they are rarely used with present-day smart cards, which mostly incorporate
more or less only one application. The easiest way to end the life of a smart card is to simply cut
it into pieces using a pair of scissors. Anyone can do this, and some card issuers recommend
this method for ‘terminating’ smart cards.

Nevertheless, in some cases it would certainly be justified for reasons of security to return
smart cards to their issuer. Some of them still contain valid secret keys, and if a potential
attacker could manage to acquire several hundred or even a thousand cards, he would have a
significantly larger pool of data for analyzing the hardware and software of the smart cards
than if he had only a few cards. Statistical investigations based on a large number of cards will
always yield more information than those based on individual cards.

For this reason, as well as well-known environmental considerations, some card issuers
collect expired cards when they issue new cards. In addition, collection bins for empty telephone
cards are often placed next to card phones. Effective recycling of cards is only possible after
the cards have first been collected.

Recycling

We must honestly admit that little progress has been made in the recycling of smart cards. For
one thing, presently there are simply not enough cards collected for a proper recycling process,
and the amount of material to be recycled is anyhow not all that large. In 1997, approximately
40,000 metric tons of plastic were used in the whole world for the production of smart cards.
Even under the fully idealistic assumption that an equal weight of cards could be separately
collected and fed back into a recycling process, this is a vanishingly small amount compared
with the total amount of plastics produced worldwide, which for PVC alone amounted to
approximately 13 million metric tons in the same year.

13 See also Section 7.8, ‘File Management Commands’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 687 of 1123

10.6 Phase 5 of the Life Cycle in Detail 653

Nevertheless, this will change with the increasingly widespread use of cards. Recycling
smart cards is a particularly difficult problem. The card body, which is laminated from several
layers of various types of plastic, is a highly heterogeneous material. In addition, the cards
are printed with several different kinds of ink and contain holograms, signature panels and
magnetic stripes, all of which add to the number of different materials in the mix. Highly
homogeneous materials can only be accumulated during card production, for instance as scrap
resulting from punching cards from single-layer sheets. It is relatively easy to reuse these
materials, and many card manufacturers already do so.

In the case of discarded smart cards, on the other hand, it is currently practically impossible
to separate the cards into homogeneous sorts of material. The presently proposed recycling
method is to punch the modules out of the cards and then shred the rest of the card bodies.
The plastic shreddings can be used to produce low-quality plastic items (garden ornaments are
a typical example of this type of recycling). The modules can also be finely ground, and the
metals that they contain can be recovered using electrolytic processes. However, such methods
are presently not used anywhere on a large scale. In addition, it is not entirely clear that this sort
of complex recycling truly protects the environment better than simple incineration or burial.

In the case of contactless smart cards with coils of copper wire or conductive ink embedded
in the card body, it is effectively impossible to separate the material of the card into individual
types of plastic.

Particularly in the case of multilayer cards, the only practical approach is high-temperature
incineration, which some people rather arrogantly refer to as ‘energy recycling’. If the temper-
ature is sufficiently high, relatively few harmful materials are released. It remains to be seen
whether this solution will be considered to be acceptable in the long term. In any case, even
though a single smart card weighs only 6 grams, the net weight of one million such cards is
still 6 metric tons.

Table 10.6 Summary of the major components of smart cards, in terms of weight

Component Material Weight

card body various plastics (e.g. PVC, PC, ABS) 4.400 g
inks on the card body resins and pigments very low
magnetic stripe iron oxide and similar materials, ink and adhesive very low
hologram aluminum and adhesive very low
microcontroller (10 mm2) silicon with various doping elements 0.009 g
bonding wires gold or aluminum very low
encapsulation blob for the

microcontroller
epoxy resin 0.010 g

adhesive to hold the module
in the card body

epoxy resin very low

module with six contacts epoxy resin, glass fibers, nickel, aluminum, gold 0.170 g
module with eight contacts epoxy resin, glass fibers, nickel, aluminum, gold 0.180 g

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 688 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 689 of 1123

11
Smart Card Terminals

The only connection between a smart card and the outside world is the serial interface. There is
no other way in which data can be exchanged, so an additional device that provides electrical
connections to the card is necessary. In this book, such a device is always referred to as a
terminal. However, other terms are used, such as interface device (IFD), chip-accepting device
(CAD), chip-card reader (CCR), smart card reader1 and smart card adapter. The basic functions,
which are to supply power to the card and to establish a data link, are the same for all of these
devices.

Any terminal that consists of more than just a contact unit, a voltage converter and a clock
generator always has its own processor (usually with an 8- or 16-bit architecture) and associated
memory. In simple equipment, the processor can be part of a microcontroller, but it is often a
component of a single-board computer. Terminals are usually programmed only by terminal
manufacturers using C, C++ or Java [JavaPOS]. In mobile telephones, which are also smart
card terminals, a variant of Java (Java 2 Micro Edition, or J2ME) will attain considerable
importance in the future as a programming language.

Terminals do not have their own hard disk drives, which means that they must store their
programs and data in battery-backed RAM, EEPROM or Flash EEPROM. The amount of
available memory is usually on the order of a few megabytes.

The problems related to allowing third parties to program terminals have been solved in the
same manner as for smart cards by using executable program code, so here the solutions will
most likely lead to the same sorts of developments. The Europay Open Terminal Architecture
(OTA), with a Forth interpreter, was one of the first attempts at a solution in 1996, and Java
for terminals is the next step. The EMV specification also explicitly includes a concept for
downloadable program code.

In contrast to smart cards, which all have very similar constructions, terminals are built in
many different ways. A fundamental distinction can be made between portable and stationary
terminals. Portable terminals are battery-powered, while fixed terminals are preferably powered
from the mains network or the data interface. Terminals can also be classified by their user

1 The terms ‘card reader’ and ‘smart card reader’ should not be understood to mean that data can only be read from
the card using such devices. Write accesses are naturally also possible

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 690 of 1123

656 Smart Card Terminals

interfaces. Portable devices in particular may have displays and simple keypads to allow their
most important functions to be used on site. Although fixed terminals also often have displays
and keypads, they have permanent links to higher-level computer systems as well. A terminal
lacking a man–machine interface (i.e., display and keypad) must have a direct connection to a
computer in order to provide a link between the smart card and the user.

CPU + NPU

volatile
memory

nonvolatile
memory

security
module interface for

cash register
or similar

printer
interface

modem

keypad

display

user
interface

smart card
interface

interface to
card user equipment

interface to
higher-level system

chip
interface

magnetic stripe
interface

security feature
interface

card insertion
sensor

IrDA
interface

Figure 11.1 Typical architecture of a smart card terminal with a display, keypad, magnetic-stripe reader
and security module. Such terminals are often used at point-of-sale locations to allow payments to be
made using a wide variety of cards (credit cards, debit cards and electronic purses). A keypad that is
specially protected against manipulation (a PIN pad) can be used if necessary. This diagram shows the
basic energy and data flows and is not a schematic diagram

There is a general and very practical characterization of classes of terminals in one of
the specifications of the German ZKA, which divides terminals into four classes. A Class 1
terminal is one that essentially consists of a contact unit without any supplementary functional
elements, along with an interface to another system (e.g., USB). Class 2 includes all of the
capabilities of Class 1, with the addition of a keypad. A Class 2 terminal need not have its own
keypad if it is connected between a contact unit and a PC. A Class 3 terminal has a display, in
addition to the elements of Class 2. Class 4, which is the most elaborate, has all of the functional
elements of Class 3 as well as a hardware security module (HSM) with RSA capability.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 691 of 1123

Smart Card Terminals 657

Table 11.1 Classification of terminals according to the ZKA

Class Functional elements

1 Contact unit and interface to other systems
2 Class-1 functional elements + keypad
3 Class-2 functional elements + display
4 Class-3 functional elements + security module

There are also a few terminals equipped with Infrared Data Association (IrDA) or Bluetooth
interfaces. Such terminals can be used for direct communication between the terminal and a
personal digital assistant (PDA) or a mobile telephone. The advantage of this is that the user,
who can assume that his or her own device is trustworthy, does not have to enter data (such as
a PIN) using a ‘foreign’ terminal.

The division into portable and fixed terminals leads to a further distinguishing feature, which
is how the terminal is used. An online terminal has an uninterrupted connection to a remote
computer during operation, and this computer assumes part of the control function. A typical
example is a terminal used for physical access control, which is completely controlled by a
background system to which it is permanently connected.

The opposite type of terminal is an offline terminal. Such a terminal works completely inde-
pendently of any higher-level system. However, although there are very many types of online
terminals, there are practically no ‘pure’ offline terminals. All offline terminals occasionally
exchange data with a background system, if only to request a new blacklist or an updated
version of the terminal software.

Figure 11.2 A typical smart card terminal for connection to a computer via a serial interface (Giesecke
& Devrient model CCR2)

In typical applications within a building, the physical link between the terminal and the
remote computer is either an electrical cable or a fiber-optic cable. However, the link can
also be formed by a telephone connection to the nearest computer center, as is the case with
point-of-sale terminals for electronic payments. This may involve a dial-up link or a permanent
link (leased line), depending on the application. Since leased lines are expensive, there is an
increasing tendency to use the telephone line only as necessary, in order to reduce operating
costs. This means that the terminal must be equipped with a dial-up modem.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 692 of 1123

658 Smart Card Terminals

Figure 11.3 Example of a portable smart card terminal for electronic payments using credit cards,
debit cards and electronic purses (Giesecke & Devrient model ZVT 900). This terminal has an integrated
security module and a printer, and it can be used offline.

Smart card terminals in the form of PC cards (formerly called PCMCIA cards) do not readily
fit into the above classification scheme. They can be used both online and offline, and with
both desktop and portable computers. In principle, such terminals are just simple and usually
inexpensive hardware interfaces between a smart card and a computer. The only prerequisite
for using a PC-card terminal is a PC card slot, which must be either a type I slot (3.3 mm
high) or type II slot (5 mm high), depending on the manufacturer. Some PC-card smart card
terminals contain expansion memory for the smart card and coprocessor ICs for mass data
encryption and decryption, in addition to the smart card interface. These terminals, which are
only a few millimeters thick, are certainly the most versatile of all. They open up application
areas for smart cards that in some cases are totally new. With such terminals, it is now possible
for smart cards to work together with standard PCs and standard software without additional
cables, power supplies or external hardware. The spectrum of possible applications is very
wide. It includes access protection for specific PC functions, software copy protection and
e-mail transfers protected by digital signatures.

‘Diskette terminals’ are also available. They provide a simple means to exchange data
between a smart card and a PC. Such a terminal has the form of a 3.5-inch diskette and contains
a very thin contact unit, card-activation electronics, a battery and a coil for transferring data
to and from the read/write head of the diskette drive. There is enough room in a 3.3-mm thick
diskette terminal to insert a smart card. On the PC side, all that is needed is a suitable software
driver to handle data exchange. This is one way to integrate smart cards into existing systems in
an uncomplicated and economical manner, although in practice this solution has not achieved
widespread acceptance.

Many years of R&D activity lie between the earliest two-chip smart cards and the modern-
day versions, which are equipped with very powerful microcontrollers. Terminals have un-
dergone a similar technical evolution over the same period. The first terminals often had very
primitive mechanical and electrical constructions, partly due to lack of experience. The conse-
quence of this was that smart card microcontrollers were frequently damaged and thus failed

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 693 of 1123

Smart Card Terminals 659

Figure 11.4 A typical smart card terminal in PC-card format (Gemplus model GPR400)

Figure 11.5 A smart card terminal in the form of a USB plug, for use with cards in the ID-000 (plug-in)
format

prematurely. Since then, most terminal manufacturers have overcome these ‘teething troubles’,
and a development stage has been reached in which external design is a more important factor
in the buyer’s choice of terminal than technical features and specifications, which are generally
similar for all terminals and manufacturers.

In functional terms, a smart card terminal consists of two parts: a contact unit for the card
and a terminal computer. The card reader, into which the smart card is inserted so that it can
be electrically contacted, essentially has only a mechanical function. The terminal computer
is needed to electrically drive the contacting unit, manage the user interface and establish a
link to a higher-level system. In the simplest case, it can be a single microcontroller, while in
technically more sophisticated solutions, it is a single-board computer.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 694 of 1123

660 Smart Card Terminals

11.1 MECHANICAL PROPERTIES

When a smart card is inserted into a terminal, two things happen in a mechanical sense. First,
the card’s contacts must be electrically connected to the terminal computer. This is the task of
the contact unit. Second, the terminal must detect the fact that a card has been inserted. This
can be handled by a microswitch or an optical sensor (light barrier). One drawback of the latter
is that its reliability can be affected by dirt or cards with transparent bodies. A mechanical
switch is generally the most effective solution.

Terminals differ very greatly in terms of the contact units and contacts that are used. The
GSM 11.11 specification imposes certain limits on the insertion force and the shape of the
contacts, and almost all terminals use these values. According to this specification, the tips of
the contact elements in the terminal should be rounded rather than pointed, with a radius of
curvature of at least 0.8 mm. This largely prevents scratching the contact surfaces of the card.
In addition, the force required to insert the card into the contact unit is significantly lower if
the contact elements have rounded leading edges than if they are pointed.

According to the GSM specification, the maximum force exerted on a single contact must
not exceed 0.5 N under any circumstances (the EMV specification allows 0.6 N). This is
intended to protect the chip located beneath the contacts, since this piece of silicon crystal
could break under greater stress.

Although the location of the contacts on the card is internationally standardized by ISO and
should thus be the same everywhere, a French national standard (AFNOR) has the chip nearer
the top edge of the card. Consequently, there are terminals that have two contact heads. This
allows both ISO and AFNOR contact locations to be supported. This technically complicated
solution is of interest in systems in which smart cards with ISO and AFNOR contact positions
are used together. This is only a transitional situation, since ISO specifies that the AFNOR
location should no longer be used. Several French banking applications, for example, employ
terminals with dual contact heads. This allows both the old AFNOR cards and the newer ISO
cards to be used during the transition period.

Problems can occur with the electrical contacts between the terminal and the smart card,
especially with portable terminals and terminals installed in vehicles. Such terminals, in par-
ticular those in vehicles, are often subjected to high accelerations, which can cause the contacts
to briefly separate from the card’s contact surfaces. You can imagine that a vehicle traveling
over cobblestones at a certain speed can cause the spring-loaded contacts to oscillate at their
resonant frequency. If the card is electrically activated at the time, it is simply impossible to
predict what will happen.

In the extreme case, when all contacts simultaneously lift free and then reconnect with the
card, the card would probably execute an activation sequence and then send an ATR. However,
in this situation it is certain that the electrical activation sequence will not comply with the ISO
standard, which means that this can eventually lead to chip failure if it is frequently repeated.
In any case, this brief power interruption will naturally result in the loss of all states that have
been achieved in the card during the current session. Depending on the application, it may thus
be necessary to enter the PIN again or re-authenticate the user.

If only one contact lifts free, the consequences strongly depend on which contact it is. If
it is the I/O contact, the only consequence is a temporary disturbance to the communications
link. This disturbance can be handled using standard error recovery mechanisms. If a different
contact lifts free, the card will be reset. In this case, the communications link must be re-
established from the very beginning.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 695 of 1123

11.1 Mechanical Properties 661

In order to prevent the contacts from lifting free due to acceleration forces, the contact force
can be increased, but the upper limit is still 0.5 N per contact. There is no simple satisfactory
technical solution to this problem, but the probability of contact separation can be minimized
by sensible placement of the terminal. For example, the terminal can be mounted so that the
contacts are perpendicular to the main axis of acceleration.

In any case, the terminal software must be able to independently re-establish communica-
tions if the contacts have briefly lifted free of the card. The millions of GSM telephones in daily
use demonstrate that smart cards can be used in portable equipment without any problems.

The service life of the contacts and the technical construction of the terminals vary im-
mensely. The service life is also strongly affected by environmental conditions, such as tem-
perature, humidity and the like. An MTBF (mean time between failures) of 150,000 insertion
cycles, however, is considered to be a normal value for a terminal.

Contact units with wiping contacts

The technically simplest terminals, which are thus the least expensive, have only wiping
contacts in the form of leaf or disc springs. No other mechanical contact elements are present
in these simple terminals. However, with such a simple spring-based contact unit, the contact
surfaces and part of the card are always dragged across the contacts when the card is inserted
and withdrawn, which produces scratch marks. These are undesirable for both aesthetic and
technical reasons.

Repeated scratching of the gold-plated contact surfaces of the card gradually wears away
the protective gold layer, and the exposed metal underneath this plating will then oxidize. This
adversely affects the electrical connection. The user may have to insert and remove the card
several times in order to rub off the oxide layer so that a satisfactory electrical connection can
be made.

Mechanically driven contact units

The next higher class of terminals does not have fixed sliding contacts, but instead a mechanism
that presses the contact unit against the contact surfaces of the card when the card is inserted
in the terminal. A lever mechanism converts the force used to insert the card into a force
perpendicular to the contact surfaces.

An optimally designed mechanism also produces a very small amount of movement of the
contact unit along the length of the card while the contacts are being applied to the card. This
ensures reliable electrical contact with the card, since the sliding motion rubs away any light
soiling on the contact surfaces. The contact pins are also individually spring-loaded, in order
to ensure a well-defined contact pressure for each contact surface.

Electrically driven contact units

The technically most complex solution, which is also the best mechanical solution, is a terminal
with an electrically driven contact unit. Here a set of parallel contact pins is driven by a motor or
solenoid to make perpendicular contact with the card from above, with a slight lateral motion.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 696 of 1123

662 Smart Card Terminals

contact method a contact method b contact method c

contact surface

contact element

Figure 11.6 Methods for making electrical contact with smart cards. Method (a) with rounded contact
pins is unfavorable, since soiling of the contact surface will adversely affect the reliability of the electrical
contact. Methods (b) and (c) represent good solutions for the two types of contact pins illustrated. The
sharp-edged contact pins shown in (c) slightly penetrate the contact surface, which can be seen under a
microscope as small surface nicks

Due to the complexity of this electromechanical construction, the terminal is relatively large.
However, this type of terminal is quite suitable for use in professional applications, in which
many millions of contact cycles must be made without maintenance. It is therefore typically
used in automated teller machines (ATMs) and personalization machines employed in smart
card manufacturing.

Figure 11.7 A typical self-feeding reader for cash dispensers, with a shutter and magnetic-stripe reader

Card ejection

The smart card is normally inserted manually, which means without any assistance from the
terminal. Only ATMs have self-feeding card readers, which use a conveyor mechanism to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 697 of 1123

11.2 Electrical Properties 663

feed the card to the contact unit within the machine. Ordinary terminals do not have such
mechanisms, and they differ only in the manner in which the card is ejected. Simple terminals
do not automatically eject the card, which means that the card must be manually removed from
the reader. Two different techniques are used for this, called ‘push–push’ and ‘push–pull’.
With a push–push contact unit, the card is inserted by hand as usual, and it must removed by
again pushing it and then pulling it. This is not ergonomically desirable, since this sequence of
motions is unnatural, so people often forcibly pull the card out of the terminal. This causes the
contact pins to be scraped over the contact surfaces and the body of the card, since the contacts
have not yet been released by the mechanism. Push–pull contact units better match normal
motion sequences, since the card is simply pushed into the terminal to insert it and pulled out
of the terminal to remove it.

Terminals that automatically eject the card have a spring that is tensioned by inserting the
card. This can be released by the terminal computer via a solenoid. This causes the card to be
partially extended from the terminal, rather than fully ejected, so that the user can grasp it and
pull it out completely.

Card-ejecting readers have one major advantage relative to other types. Ejection of the card
very clearly signals the end of the session to the user, while also reminding the user not to
forget the card in the terminal. This reminder is often emphasized by an audible beep. This
practical argument is the main reason for using card-ejecting readers.

Cash dispensers in particular are usually able to retain smart cards if necessary. Since they
routinely have self-feeding card readers, it is naturally technically feasible to route the card to
a special retention bin in the machine if necessary, rather than to the exit slot. From a technical
viewpoint, retaining cards presents no major problems, as long as the terminal is large enough
to hold the extra mechanism and the retention bin. In certain circumstances, however, there
can be legal problems if the card user is also the legal owner of the card.

Ease of card withdrawal

The reliability of a system based on smart cards can suffer severely if users can withdraw their
cards from the terminal at any time during a session. For one thing, this causes the card to be
disconnected from the power supply without following the prescribed deactivation sequence.
It could also interrupt EEPROM read or write operations, causing the content of a file to be
undefined. This could cause the card to fail completely. For these reasons, it is advantageous to
use terminals with card-ejecting readers that are designed such that it is impossible to manually
pull the card out of the terminal. A hidden mechanical emergency ejector can be provided to
remove a smart card from the terminal in case of a power failure. However, under normal
circumstances the terminal can determine when to return the card to the user, thus preventing
the user from interfering with ongoing processes.

11.2 ELECTRICAL PROPERTIES

With the exception of the contact unit, a terminal primarily consists of electronic components.
These are used to provide the interfaces to the user and the background system, and to elec-
trically drive the contacts. The terminal’s electromechanical parts and the smart card itself

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 698 of 1123

664 Smart Card Terminals

must be supplied with electrical signals. The only information that is directly provided by the
contact unit is whether a card has been inserted. The only signal that is sent directly to the
contact unit is the signal to actuate the automatic card ejector, if such a device is present.

The card interface consists of the five contacts for the ground, supply voltage, clock, reset
and data signals. Once the electrical connections have been made, it is very important with
regard to the service life of the card for the activation sequence specified by ISO/IEC 7816-3 to
be followed exactly. Otherwise, the chip may be electrically overstressed, which will increase
the failure rate. It is also important to observe the proper deactivation sequence, since otherwise
the same problems may occur.

In this regard, there is an important consideration with simple terminals that allow the user to
remove the card manually. Whenever the contact unit detects that the card is being withdrawn,
the terminal’s electronic circuitry must immediately execute a deactivation sequence. This is
the only way to prevent the contacts from sliding across the contact field of the card while
they are possibly still energized, which would produce results that have little in common
with a standard deactivation sequence. However, the consequences of such an unallowed card
withdrawal can be even more serious, since shorts may occur between the leads if the contacts
are worn or slightly bent. The mild sparking due to the discharge of capacitors in such a
situation will damage both the contact elements and the contact surfaces of the card.

With regard to the electric circuitry, almost all terminal manufacturers have realized by now
that short-circuit protection is indispensable. If this point is neglected, a single smart card with
shorted contact surfaces can cause the electrical demise of very many terminals. Incidentally,
shorted cards crop up regularly, partly due to vandalism and partly due to technical defects.

Short-circuit protection should extend to the point that every contact can be connected to
any other contact or group of contacts without any repercussions. Ideally, the circuitry that
drives the smart card should be fully electrically isolated from the remaining circuitry of the
terminal. This is standard practice in public card phones in Germany, since it also largely
protects the equipment against externally applied voltages as well as shorts.

The voltage needed for writing and erasing EEPROM pages is generated by the microcon-
troller via a charge pump on the chip. This can draw currents of up to 100 mA for intervals
of a few nanoseconds. The same effect, in a reduced form, can be produced by transistor
switching processes in the CMOS integrated circuits. Even very fast regulator circuits in the
power supply cannot handle these short spikes, with the consequence that the supply voltage
for the card collapses due to the heavy current load and the EEPROM write or erase cycle fails.
In extreme cases, the voltage dropout can be so severe that the processor lands outside of its
stable operating area and a system crash occurs.

The remedy is to connect a capacitor as close as possible to the contacts for the smart card.
A ceramic capacitor of about 100 nF is suitable, as it can release its charge very quickly. The
leads to the smart card must be as short as possible, so that lead resistance and inductance do
not significantly affect the ability of the circuit to meet the increased current demand within the
necessary interval. A brief increase in current demand can be met by drawing charge from the
capacitor until the voltage regulator can respond to the change. This is a simple and economical
way to avoid power supply problems.

Particularly for electronic payment systems, it is nowadays standard to equip the terminal
with a real-time clock. This is required for reasons of traceability and user protection. According
to the EMV specification for credit card terminals, the clock may not be off by more than 1
minute per month. This is not technically difficult, since suitably accurate clock components

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 699 of 1123

11.3 Security Technology 665

are available as single-chip solutions. In addition, the clock can be adjusted every time the
terminal makes an online connection to the higher-level system. Radio time signal receivers
in terminals have so far not achieved any practical importance, since signal reception is too
strongly affected by the screening effects of the site where the terminal is installed. Standard
time code signals usually cannot be received inside a reinforced concrete structure, for example.

11.3 SECURITY TECHNOLOGY

Terminals may contain a very large variety of security mechanisms. The spectrum ranges
from mechanically protected enclosures to security modules and sensors for the various card
features. In pure online terminals, whose only function is to convert the electrical signals that
pass between the background computer system and the smart card, there is normally no need
for additional built-in security technology. In such cases, security is handled entirely by the
computer that controls the terminal.

However, as soon as data must be entered into the terminal or the terminal must operate
independently of the higher-level system, it is necessary to incorporate suitable mechanisms
to provide additional system security. The possibilities are almost unlimited, but they depend
very strongly on the smart card in question and its security features.

With a typical smart card, whose body is very simple and only serves as a carrier for the
microcontroller, there are usually no security features on the card body. There is thus no need
for the terminal to check such features. In contrast, smart cards for financial transactions are
usually hybrid cards, which means that they have a magnetic stripe in addition to a chip, in
order to maintain compatibility with older systems. However, hybrid cards also possess the
usual features that enable the terminal to check their genuineness independently of the chip.
Suitable sensors must therefore be present in the terminal.

Terminals that work offline, either completely or occasionally, must contain master keys for
the cryptographic algorithms that are used, since card-specific keys cannot be derived without
these keys. These master keys are very sensitive with regard to security, since the entire security
of the system is based on them. In order to guarantee their security and confidentiality at all
times, they are not stored in the normal electronic circuitry of the terminal, but in a separate
security module within the terminal that has special mechanical and electrical protection.

This security module can for example be a single-board computer encapsulated in epoxy
resin, which can exchange data with the actual terminal computer only via an interface. The
secret master keys are never allowed to leave the security module, but are used only internally
to perform computations. In a typical application example, the security module receives an
individual card number or chip number from the smart card via the terminal computer, and it
uses this number to derive a card-specific key. This key is then used within the security module
to compute a signature or perform authentication.

Modern versions of this module, which is normally the size of a matchbox, contain extensive
sensor systems for detecting attacks. They are also largely self-contained electrically, so they
can actively resist attacks, even if denied an external source of power. If an attack is detected,
the usual defense is to erase all keys, so that an attacker is left with only a circuit board circuit
encased in epoxy resin inside a metal case, with no data worth analyzing.

Due to the high cost of good security modules, the trend in recent years is to use smart
cards instead. Although this leads to certain restrictions in terms of memory size, sensors

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 700 of 1123

666 Smart Card Terminals

and self-reliance, the level of security is generally adequate, even for electronic payment
applications. Cards in the IC-000 format (plug-in) are used to limit the physical size.

Since security modules in smart-card format are not permanently built into terminals, but
can be exchanged, they are ideally suited to extending terminal hardware, as illustrated by the
following example. Static unilateral RSA authentication will become increasingly important
in the next few years, partly because it is prescribed in the international EMV specification for
credit cards with chips. Since RSA authentication is so computer-intensive that it cannot be
performed by the processors normally used in terminals within an acceptable length of time,
permanent built-in security modules represent a problem. However, if a plug-in smart card is
used as a security module in the terminal, it can easily be exchanged. Relatively expensive
smart cards containing supplementary arithmetic coprocessors can then be used for the security
modules, which can perform RSA computations at high speed once the terminal software has
been suitably modified.

In the future, a variety of card issuers will market debit and credit cards containing chips.
All of these cards will use different keys and different methods for key derivation and au-
thentication. Furthermore, it is unlikely that all card issuers will be willing to reveal secret
data and methods to manufacturers of security modules. In all probability, the approach that
will be taken is for a card issuer or group of card issuers to issue a common ‘terminal card’
that can perform all of the processes relevant to the security of their collective systems and
can execute these processes within the terminal. This card will be accessed using one of the
two standard transmission protocols (T = 0 or T = 1), and it will largely behave just like a
standard smart card. The only difference will be that the terminal card will contain functions
related to secret master keys, key derivation procedures and collecting security-related data
(such as sales balances). The terminal will only look after the user interface and uploading
or downloading data to or from the background system. All security-related functions will be
handled by the terminal card. This means that the terminal must be able to work with several
different terminal cards, rather than only one. A particular card will be automatically selected
according to the card issuer and the selected function. The demand for several independent
terminal cards has been taken into account in the latest terminals. Some of them have up to
four contact units for plug-in cards. They can thus use terminal cards from several different
card issuers in parallel, without mutual interference.

One of the commonly used security measures, besides providing mechanical protection
for the terminal by using a robust housing that can only be opened using special tools and
incorporating a security module in the terminal, is to provide mechanical protection against
unauthorized tapping of data transmissions to and from the smart card. This consists of a
sort of guillotine arrangement that cuts through any wires that may run from the card to the
exterior of the card reader after the card has been inserted. The purpose of this device, which
is called a shutter, is to prevent tapping or manipulation of the messages sent between the
card and the terminal. It can be actuated either electrically or simply by inserting the card.
If the wires cannot be cut, due to their thickness or composition, the shutter will not close
completely. This is detected by the terminal electronics, and no power is applied to the card,
so no communication takes place.

Communication between the terminal and the smart card must fundamentally be designed
such that tapping or manipulation cannot impair the security of the system. Shutters should
thus not actually be necessary. Nevertheless, security can certainly be increased somewhat if
things are made more difficult for a would-be attacker. It makes a big difference whether an

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 701 of 1123

11.4 Connecting Terminals to Higher-Level Systems 667

Figure 11.8 Example of two contact units for plug-in format security modules, located side by side in
a smart-card terminal

attacker can readily tap the data exchange or first has to overcome a few hurdles. However,
shutters make terminals bigger and more expensive, and very few of them still close precisely
after several thousand operating cycles. The system design should therefore not rely entirely
on this sort of mechanical protection.

11.4 CONNECTING TERMINALS TO HIGHER-LEVEL SYSTEMS

For smart cards to be used in a PC environment, it is necessary to have a terminal that is
connected to the PC and to have support from the PC software. The difficulty here is naturally
that in the past, each type of terminal required its own software driver to be installed in the
PC. Each driver in turn had its own software interfaces, so in practice it was not possible to
generate terminal-independent software. In the mid-1990s, work began on developing specifi-
cations for terminal-independent integration of smart cards into PC programs. This occurred
in various countries and was performed by a wide variety of organizations. Internationally,
two industrial standards have come to prevail: Personal Computer / Smart Card (PC/SC) and
Open Card Framework (OCF). In Germany, as well as other countries, the Multifunktionales
Kartenterminal (MKT) specification has been in place for some time. It has achieved surpris-
ingly widespread used within the German-speaking realm. All three of these specifications
are described in summary form below, and they can also be obtained free of charge via the
Internet.

11.4.1 PC/SC

The first efforts to generate an international specification for linking cards with PC be-
gan in May 1996. The companies Bull, Hewlett-Packard, Microsoft, Schlumberger, Siemens

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 702 of 1123

668 Smart Card Terminals

Nixdorf, Gemplus, IBM, Sun, Verifone and Toshiba participated in the development of this
specification.

Version 1.0 of the ‘Interoperability Specification for ICCs and Personal Computer Systems’
was published in December 1997. It consists of eight parts, which are described in Table 11.2.
The working group was known as PC/SC (for ‘personal computer / smart card’), and this
abbreviation is also used to refer to the specification. It can be obtained via the Internet from
the WWW server of the specification group [PC/SC].

Table 11.2 Summary of the eight parts of the PC/SC specification

PC/SC specification Content

Part 1: Introduction and
Architecture Overview

This is the basis for all other parts of the specification.
It identifies the relevant standards, summarizes the
system architecture and the hardware and software
components, and lists definitions and acronyms.

Part 2: Interface Requirements
for Compatible IC Cards
and Readers

This defines the physical characteristics of contact-type
smart cards. It specifies basic electrical properties, such
as the power supply and the reset behavior, and defines
the data elements, structures and allowed processes of
the ATR and PTS. There is a summary of the basic
aspects of data transfers at the physical level, and the
T = 0 and T = 1 protocols are both described.

Part 3: Requirements for
PC-Connected Interface
Devices

The requirements imposed on the terminal and the
supported terminal features (display, keypad and so on).

Part 4: IFD Design Considerations
and Reference Design
Information

Information for designing terminals, with reference to
PS/2 keyboard interfaces and USB interfaces.

Part 5: ICC Resource Manager
Definition

Detailed descriptions of the technical aspects of the ICC
Resource Manager, including the associated classes.

Part 6: ICC Service Provider
Interface Definition

Detailed descriptions of the technical software aspects
of the ICC Service Provider and Crypto Service
Provider, including the associated classes.

Part 7: Application Domain
and Developer
Design Considerations

Description of the utilization of the PC/SC
specification from the application perspective.

Part 8: Recommendations for
ICC Security and
Privacy Devices

Compilation and definition of recommended functions
and mechanisms that should be supported by a PC/SC
Smart Card. This includes the file system (MF, DF and
EF), associated file access conditions, necessary system
files in the smart card (for keys, PINS and so on),
commands, return codes and cryptographic algorithms.

At least in principle, PC/SC is platform-independent, since it works on all Windows-based
PCs, and these make up the majority of personal computers. It allows smart cards to be

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 703 of 1123

11.4 Connecting Terminals to Higher-Level Systems 669

integrated into any desired application in a manner that is largely independent of programming
language, since it supports widely used languages such as C, C++, Java and Basic. The only
prerequisites are that a suitable driver must be available for the terminal to be used and the
smart card must be PC/SC-compatible. However, this compatibility requirement is reasonably
non-critical, since the scope has been kept relatively broad.

The easiest way to gain an overall understanding of the PS/SC specification is to view it in
terms of the defined hardware and software components. The following seven components are
described in terms of their functions and mutual interfaces:

� ICC-aware application

� ICC service provider

� Crypto service provider

� ICC resource manager

� IFD handler

� IFD

� ICC

The tasks and functions of each of these components are briefly described below, in the order
in which they are listed above.

crypto service providerICC service provider

PC application

ICC resource manager

service
provider

IFD handler n

terminal (IFD)n

smart card n (ICC)

IFD handler 1

terminal 1 (IFD)

smart card 1 (ICC)

IFD handler 2

terminal 2 (IFD)

smart card 2 (ICC)

Figure 11.9 Overview of the software architecture of the PC/SC specification for linking smart cards
to PC operating systems

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 704 of 1123

670 Smart Card Terminals

ICC-aware application

This is an application that runs on a PC and that wishes to use the functions and data of one or
more smart cards. It can also be an application that runs under a multiuser operating system
with multitasking and multithreading.

Service provider

The function of the service provider is to encapsulate the individual functions of a smart card,
independent of whatever operating system is used in the smart card. For example, it is possible
to select a file via the API of the service provider without knowing the smart card command
used for this purpose or having any idea of the coding of this command.

The service provider component is split into the ICC service provider and the crypto service
provider. This is done to avoid problems with export restrictions that many countries have with
regard to cryptographic algorithms. The separate crypto service provider, which handles all
functions that can cause export problems, can be omitted. In this case, the PC/SC interface can
be used for all functions except cryptographic functions.

The service provider does not have to be a single piece of software. It can also consist of
multiple software components linked by a network. For example, it is possible to locate the
crypto service provider on a cryptographically secure or high-performance computer that is
isolated from the remainder of the PC/SC components.

ICC resource manager

The ICC resource manager is the most important component of the PC/SC architecture. It
manages all resources that are necessary to integrate smart cards into the operating system. It
must provide three important functions.

First, it is responsible for recognizing connected terminals and smart cards. It must also
recognize when a smart card has been inserted or removed from a terminal, and respond to
such events by providing suitable messages.

Its second function is to manage the allocation of terminals to one or more applications.
For this purpose, a terminal resource can be exclusively assigned to a particular application.
However, if several applications access the same terminal simultaneously, this terminal must
be identified and managed by the ICC resource manager as a shared resource.

The third function is to provide transaction primitives. A transaction primitive is formed
by binding the commands related to a particular function into a group. This ensures that these
commands will be executed in an uninterrupted sequence. Otherwise, it would be possible
for two uncoordinated applications to concurrently access a smart card, each using its own
sequence of commands. The problems that this would cause can most easily be illustrated by
the following example. In a smart card, only one file can be selected at a time. If two different
applications attempt to select different files at the same time using SELECT FILE commands
and then read data from the smart card using read commands (such as READ BINARY),
it is completely undefined which file will actually be read. This depends only on the order

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 705 of 1123

11.4 Connecting Terminals to Higher-Level Systems 671

in which the commands arrive at the smart card. A much more complicated situation, but
no less tricky, arises when it is necessary to perform complex procedures involving several
applications interacting with a single smart card (such as paying using an electronic purse).
The ICC resource manager ensures that command sequences that belong together cannot be
split up or interrupted by other commands, and so ensures that the individual procedures are
executed one after the other.

IFD handler

The IFD handler is a sort of driver that is specific to a particular terminal. Its tasks are to link
the terminal to the specified interface of the PC and to map the individual characteristics of
the terminal onto the PC/SC interface. In a manner of speaking, the IFD handler represents a
data channel from the PC to a particular terminal.

IFD (interface device)

The IFD component of the PC/SC specification is a terminal connected to the PC via an
interface. The interface is arbitrary, so the terminal can for example be connected to the
computer via an RS232 interface, a universal serial bus (USB) interface or a PC-card interface.
The terminal must meet the ISO/IEC 7816-1/2/3 standards, which among other things means
that it must support both of the asynchronous data transmission protocols (T = 0 and T = 1).
Optionally, it may support synchronous transmission protocols (2-wire, 3-wire and I2C bus)
for memory cards, as specified by the ISO/IEC 7816-10 standard. In the terminal, in addition
to a display, the PC/SC specification supports a numeric keyboard, a fingerprint scanner and
other biometric sensors for user identification.

ICC (integrated chip card)

Microprocessor smart cards that are compatible with the ISO/IEC 7816-1/2/3 standards are
required to be supported by the PC/SC specification. Memory cards that comply with the
ISO/IEC 7816-10 standard may also be used, if this is allowed by the terminal.

11.4.2 OCF

The Open Card Initiative [OCF] was founded in 1997 by a group of more than 10 companies
active in the smart card and PC areas. The objective was to create a smart card interface
on PCs that was independent of the operating system of the PC (Windows, Unix etc.) and
independent of whatever application might be present in the smart card. The result is Open
Card Framework (OCF), a Java-based interface on PCs that can be used to allow applications
running on PCs to access applications in smart cards. OCF has become an industry standard
in the Java environment.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 706 of 1123

672 Smart Card Terminals

11.4.3 MKT

In Germany, work on generating a specification for linking smart cards to PCs via software
began at a relatively early date. This led to the Multifunktionales Kartenterminal (MKT)
specification, which has been published in various versions by Teletrust Deutschland since
1994. It is primarily oriented toward the interests of the health care field, but it is now used as
a basis for many other types of terminals within Germany.

The MKT specification is composed of seven parts. Part 1 describes the basic MKT concept,
which contains a basic overview of the software architecture and the MKT terminal. Part 2
specifies the ‘card terminal – integrated chip card’ (CT-ICC) interface. This is the interface for
contact-type smart cards using synchronous and asynchronous data transmission.

Part 3 contains a description of an application-independent interface for terminals, which
is called the ‘card terminal application programming interface’ (CT-API). This interface is
independent of any particular programming language and has a procedural structure. It pro-
vides the following three functions: ‘CT init’ for initializing a connection, ‘CT data’ for data
exchange using an existing connection and ‘CT close’ for closing a connection.

This is complemented in Part 4 by the specification of several basic, application-independent
commands for controlling terminals, which are called the ‘application-independent card ter-
minal basic command set’ (CT-BCS).

Part 5 describes the ATR and general data fields for smart cards using synchronous data
transmission. Part 6 contains the associated transmission protocols, as well as corresponding
general commands to be sent to the terminal. Based on this, Part 7 specifies the translation of
ISO/IEC 7816-4 commands into commands for smart cards using synchronous data transmis-
sion, which means memory cards.

The MKT specification was one of the first documents of its type in the world, and it has
been given an extremely broad basis in Germany by thousands of terminals used with 80
million medical insurance cards. Although it certainly no longer represents the technical state
of the art, it will remain a national industry standard for many years to come.

11.4.4 MUSCLE

Suitable drivers are required for using smart cards with Linux, as with all other types of PC
operating systems. However, for a long time such drivers were not available, which made it
rather cumbersome to use smart cards with Linux for operations such as logging on.

The first version of MUSCLE (Movement for the Use of Smart Cards in a Linux Envi-
ronment), which is intended to fill exactly this gap, was published in 2000. With regard to its
architecture, MUSCLE is strongly based on PC/SC, but in contrast to PC/SC the source code
is openly available under a GPL license [MUSCLE], which means that it can also be modified
and further developed by third parties. MUSCLE defines a Linux API that allows smart cards
to be accessed in a relatively uncomplicated manner using a connected terminal.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 707 of 1123

12
Smart Cards in Payment Systems

The original primary application of smart cards with microcontrollers was user identification
in the telecommunications sector. In recent years, however, smart cards have established them-
selves in another market sector, namely electronic payment systems. Due to the large number
of cards in use, the market potential of this sector is enormous. This is underscored by the
fact that more than one billion credit cards have been issued throughout the world.1 The future
applications of electronic purses include replacing conventional means of payment (banknotes
and coins), shopping via global networks and pay-per-view television.

Smart cards are by nature particularly suitable for payment system applications. They
can easily and securely store data, and their convenient size and robustness make them easy
for everyone to use. Since smart cards can also actively perform complicated computations
without being influenced by external factors, it is possible to develop totally new approaches
to performing payment transactions. This is very clearly illustrated by electronic purses in the
form of smart cards, which are possible only with this medium.

Electronic payment systems and electronic purses offer significant benefits to everyone in-
volved. For banks and merchants, they reduce the costs associated with handling cash. Offline
electronic purses largely eliminate the costs of data telecommunications for payment transac-
tions. The risk of robbery and vandalism is reduced, since electronic systems contain no cash
to be stolen. For merchants, the fact that transactions are processed more quickly is also a per-
suasive argument, since it means that cash management can be optimized. Vending machines
and ticket dispensers can be made simpler and cheaper, since assemblies to test coins and
banknotes are not needed. Electronic money can be transferred via any desired telecommuni-
cations channel, so it is not necessary to regularly collect money from the machines. Customers
also benefit from the new payment methods, although to a lesser degree. It is not necessary to
always have change on hand, and it is possible to pay quickly at a vending machine or ticket
dispenser.

Ultimately, the success or failure of a payment system is determined by its potential users. If
the benefits for them are too marginal, they will not use the system and will choose other means

1 As of the summer of 2002

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 708 of 1123

674 Smart Cards in Payment Systems

of payment. After all, an electronic purse is just a new means of payment that complements
rather than replaces other existing means of payment, such as credit cards and cash. There is
no reason to fear that these means of payment, which have provided reliable service for many
years, will be entirely supplanted by electronic purses in the form of smart cards.

12.1 PAYMENT TRANSACTIONS USING CARDS

The simplest approach to using cards for payment transactions is to use magnetic-stripe cards
holding data for online authorization. After the user’s card has been checked against the
blacklist and solvency has been verified, funds can be transferred directly from the cardholder’s
bank account to that of the merchant. With smart cards, the scenario is slightly different, but
in principle it remains the same. The smart card is logically linked to a bank account, and
after unilateral or mutual authentication of the background system and the card, a previously
entered amount is transferred. Naturally, PIN verification is also performed in the smart card
or background system during the transaction.

Both of these scenarios are based on a background system that makes all of the decisions.
They do not by any means fully exploit the capabilities of smart cards. However, there are
other means and methods of making payments that can be implemented by exploiting these
capabilities. Some of them are described in this chapter.

12.1.1 Electronic payments with smart cards

There are three fundamental models for electronic payments using smart cards: (a) credit
cards, in which payment is made after a service is rendered (pay later), (b) debit cards, in
which payment is made when the service is rendered (pay now) and (c) electronic purses,
in which payment is made before the service is rendered (pay before).2 These models are
described below, as well as a variation on them.

Payment cards

credit cards debit cards electronic purse cards

Figure 12.1 Classification of payment cards

Credit cards

The original idea of using a plastic card to pay for goods or services comes from credit cards.
The principle is simple: you pay using the card, and the corresponding amount is later debited
from your account. The cost of this process is borne by the merchant, who usually pays a

2 This classification can be augmented by the category ‘pay never’, which relates to fraud

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 709 of 1123

12.1 Payment Transactions using Cards 675

fee that depends on the amount of the transaction. This fee is usually around 2 to 5 % of the
purchase price.

Up to now, most credit cards have not included chips. The disadvantage of such cards is
that they have a relatively low level of protection against forgery. Consequently, card issuers
experience significant losses due to counterfeit cards, since the merchant is guaranteed payment.
Evidently, up to now, these losses have been lower than the cost of introducing cards with chips.
However, credit cards will probably be supplemented with chips in the not too distant future,
in order to reduce the steadily increasing cost of fraud.

Debit cards

The country in which debit cards are most widely used is Germany. A debit card, which may
be a magnetic stripe card or a smart card, allows the amount of the payment to be transferred
to the account of the merchant or service provider as a direct part of the payment process.
With both debit cards and credit cards, the actual payment process is normally authorized by
a credit check via a background system. There is usually a threshold level above which this
must occur, so it is not always necessary to make a connection to the background system for
small purchases. The threshold level is on the order of €200.

Electronic purses

With an electronic purse, ‘electronic money’ is loaded into the card before any payment is
made. This can be done in exchange for cash or using a cash-free process. When a purchase is
actually made, the balance in the card is reduced by the amount of the payment, and at the same
time the balance of the electronic purse of the second party (who is usually the merchant) is
increased by the corresponding amount. The merchant can later submit the electronic money
received in this manner to the operator of the electronic purse system and be credited with
the corresponding amount of real money. The user of an electronic purse thus exchanges real
money for an electronic form of money that is loaded in his or her smart card. When a purchase
is made, the cardholder exchanges this electronic money for goods or services.

This system has three significant drawbacks for the user. The first is that when the card is
loaded, the user receives electronic money in exchange for real money. Financially, the user
thus gives the operator of the purse system an interest-free loan, since it could take several
weeks for the user to actually spend the electronic money, while the real money immedi-
ately becomes the property of the system operator. The amount of interest may be small for
an individual user, but in total it represents a substantial source of supplementary income
for the operator of the purse system. In many field trials conducted up to now, it has been
found that in industrialized countries the average amount in an individual electronic purse is
around 75 euros. The total average amount of money in an electronic purse system is called
the ‘float’. Assuming that 10 million cards are in use and the interest rate is 5 %, the total
annual interest on the float amounts to 37.5 million euros, without any offsetting costs. In this
example, the amount of interest lost by an individual cardholder is only 3.75 euros, which he
or she will not regard as a major disadvantage. In addition to the interest income from the
float, the purse system operator receives additional income in the form of unspent electronic

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 710 of 1123

676 Smart Cards in Payment Systems

money, due to cards that end up in collections and defective cards that are not returned for
refund.

A second drawback is that a real problem arises if the purse operator goes bankrupt. This
is because the card user has exchanged real money, whose value is guaranteed by the state
within certain limits, for electronic money in a smart card. If the purse operator goes bankrupt,
the electronic money can suddenly become worthless, and the user will have lost his or her
money. Consequently, efforts are now being made in some countries to restrict the operation
of electronic purse systems to banks and similar institutions. At minimum, lodging a security
deposit with a government agency is required, so that the amount of money loaded in the smart
cards is covered in the event that the card issuer goes bankrupt.

There is yet a third significant drawback for the user. What can the holder of an electronic
purse do if it no longer works? If the purse is anonymous, not even the purse system operator
can determine the amount of money that was last loaded into the card. The purse holder will
also find it practically impossible to provide convincing proof of how much money was still
in the card. If the chip is ruined, the electronic money is thus irrevocably lost. Unfortunately,
a smart card is much less robust than banknotes or coins, for understandable reasons.

In practice, a compromise is presently used to deal with this problem. Since the last amount
loaded into the card online is known, as well as the purse balance at the time of this transaction,
the approximate amount in the purse can be calculated. This amount is then paid to the client.
However, if a particular client frequently makes claims due to faulty smart cards, the system
operator will curb his goodwill. The customer, who ultimately bears the risk, is thus denied
any further compensation in the hope that he or she will take better care of the smart card in
the future.

Open and closed system architectures

A distinction must be made between open and closed architectures for electronic payment
systems. An open system is fundamentally available to multiple application providers, and
it can be used for general payment transactions among various parties. In contrast, a closed
system can be used only for payments to a single system operator.

The technical aspects of this can be briefly illustrated using a telephone card with a memory
chip as an example. With memory cards, all that happens when a payment is made is that a
counter is irreversibly decremented. The terminal does not have to keep an exact account of
the number of units that have been deducted; it only has to ensure that the counter in the card
is always properly decremented whenever the service is used (that is, whenever a call is made
using the card). In this case, the terminal is a sort of machine for destroying units of electronic
money. Of course, in practice a balance is kept for each terminal, but the deducted amounts
are only booked to the internal accounts of the purse system operator. Fraud in settlement of
the deducted amounts between the terminal owner and the purse system operator is impossible
in principle, since both parties are part of the same organization (in this case, the telephone
company).

In an open system, the terminal owner and purse system operator can be completely different
bodies. The purse system operator must therefore be able to verify that the accounts for the
terminal receipts are correct and not manipulated. This must be taken into consideration from
the very beginning in the system design, since otherwise account settlement between the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 711 of 1123

12.1 Payment Transactions using Cards 677

terminal owner and purse operator will be very difficult or impossible. In the above example
using a memory card, the system concept makes it impossible for the terminal operator to
convincingly guarantee the purse system operator that the claimed amount is correct. This
is because the terminal operator can only present an invoice for a certain number of units,
instead of forgery-proof signatures for the amounts paid, as would be possible with a genuine
electronic purse system.

System architecture and terminal connections

The system architecture of an electronic payment system using smart cards can be either
centralized or decentralized. With payment systems in particular, system security is the most
important issue. There is thus frequently a tendency to use centralized systems, since this gives
the system operator complete control of the system.

network

terminal ...

Figure 12.2 The basic architecture of a centralized system for electronic payments. All of the illustrated
connections are permanent

In concrete terms, a centralized system means an online system in which every payment
transaction is performed directly and online by the background system. If a communications
link cannot be established, payment is not possible. Nevertheless, a centrally operated system
has certain advantages. For instance, incoming transactions can be directly compared with the
current blacklist in real time. Key exchanges can be carried out directly by the background
system without any delays. The software in the terminals and the general parameters in the cards
can be updated directly and with little additional effort, since a direct link to the background
system must be established for each transaction.

However, these advantages are offset by several major disadvantages. In many countries,
telecommunication charges are so high that it is not reasonable for merchants to have permanent
links to background systems or to dial up a background system for each transaction. In some
areas, the telephone network is not sufficiently reliable to allow an online link to the higher-level
computer to be established at any desired time.

Due to their active nature, smart cards are excellent for use in decentralized systems, since
they contain part of the system security ‘in house’. This is also their main advantage rel-
ative to passive magnetic-stripe cards, which cannot force the system to perform specific
procedures.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 712 of 1123

678 Smart Cards in Payment Systems

In particular, using electronic purses with automated equipment, such as vending machines
and ticket dispensers, compels the use of a decentralized system, since electronic purses can
operate completely independently for weeks or months and do not have any means to connect to
an existing communications system. A decentralized system is thus often preferred. In addition,
a decentralized system has significantly better characteristics with regard to robustness. If the
background system fails in a centralized system, all electronic payments are blocked. In a
decentralized system, by contrast, the consequences of a temporary failure usually do not even
reach as far as the merchant terminals.

Decentralized systems also have certain disadvantages, primarily in the area of system
management. This is because online connections can only be established at certain times, and
as a rule only by the terminals. However, it is essential for system security that the terminals
always use the current blacklist. This is one of the reasons why many systems require each
terminal to establish an online connection to the background system at least once a day. This
is used to transmit the accumulated transaction data to the background system, with various
types of administration data being transmitted to the terminal in return. Some examples of this
administration data are new terminal software, new key sets, the current blacklist and data to
be loaded into customers’ cards.

network

terminal ...

Figure 12.3 The basic architecture of a decentralized system for electronic payments. All of the illus-
trated connections can be established as needed

In practice, mixed solutions that are neither fully centralized nor fully decentralized are
often used, in order to combine the advantages of the two architectures while avoiding their
disadvantages. A mixed solution consists of allowing both the terminals and the smart cards to
compel online connections under certain conditions. If an online connection cannot be estab-
lished, the payment does not take place. Some typical conditions are: (a) online authorization
is required for payments above a certain amount, which can usually be set individually for
each smart card by the system operator; (b) the number of offline transactions and the amount
of time since the last online transaction can be used to decide whether to go online; (c) a
random number generator can be used to force a certain percentage of all transactions to take
place online. Some systems also have a special button on the terminal that forces an online
transaction. This button can be pressed by the sales staff if they suspect that the customer is
using a manipulated card.

All of these criteria ensure that on average, every card makes a direct connection to the back-
ground system within a defined and statistically computable time interval. The system operator
thus recovers direct control over the system, which he initially lost by using a decentralized

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 713 of 1123

12.1 Payment Transactions using Cards 679

Table 12.1 Typical actions and conditions that trigger an online connection between a smart
card and the background system

Action or condition Usual value

Transaction type (e.g., cash disbursement) —
POS conditions (e.g., PIN pad present) —
Parameter-driven random selection 10 %
Manual request at the merchant terminal 1 %
First use of the smart card —
Number of offline transactions performed since the last online transaction 10
Accumulated offline amount since the last online transaction 500 euros
Time since the last online transaction 7 days
Payment amount exceeding a configurable threshold value 200 euros

system. Terminals and automated machines having only a small turnover can be excluded
from these online constraints, since even in the case of fraud only small losses can occur. This
saves the cost of a link to a communications network, since data exchange can be performed
manually by service personnel.

12.1.2 Electronic money

Electronic money must have certain properties if it is to be used with the same flexibility as
normal money. If these properties are wholly or partially absent, the capabilities of electronic
money are necessarily more or less limited. The essential properties necessary to minimize the
difference between electronic money and real money are described below.

Processable

An important, although in principle trivial, property of electronic money is that it can be
completely and automatically processed by machines. This is the only way in which large
systems can be operated economically.

Transferable

Electronic money must not be bound to a particular medium, such as smart cards. It must be
possible to transfer electronic money using any desired medium, such as a network or computer.

Divisible

Electronic money must be divisible, so that any desired amount can be paid without recourse to
using normal money. This is similar to normal money, which although not arbitrarily divisible,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 714 of 1123

680 Smart Cards in Payment Systems

is available in a sufficient number of different denominations that normal purchases can be
made using a small number of coins and banknotes.

Decentralized

Payment systems with centralized architectures can be easily monitored by the purse system
operator, with opportunities for fraud being very limited. The best example of such a system
is the online authorization of credit card purchases. However, centralized systems suffer from
many drawbacks. They are expensive, vulnerable to technical disturbances, inflexible and diffi-
cult to modify or extend. Systems with decentralized architectures minimize these drawbacks.
This can be seen very clearly with payments in the private sphere, in which money changes
hands without any involvement by a central body. Electronic money should also have this
property, since it otherwise cannot compete with normal money. For an electronic payment
system, in concrete terms this means that it must be possible to make offline payments and
to make payments directly from one purse to another one. The property of allowing direct
payments between purses (purse-to-purse transactions) is sometimes called ‘transferability’.

Monitorable

Despite the demand for anonymity, electronic money must allow the purse system operator to
monitor the system, since this is the only way in which manipulations and security gaps can
be recognized and eliminated. This is exactly the same as the situation with normal money,
in which every citizen is obliged to immediately report counterfeit money to the appropriate
authorities. In the case of electronic money, the purse system operator is responsible for
guarding against fraud and forgery, and he can and must monitor the consistency of payment
flows.

Secure

A fundamental property of electronic money must naturally be security against forgery. Any
system will collapse within a short time if it is possible to forge or duplicate money in any form
or manipulate payment flows. This is why cryptographic functions are used so extensively in
the field of electronic payments, since this is the only way to achieve the required level of
security.

Anonymous

Anonymity means that it is impossible for anyone to associate payments with particular per-
sons. The value of this requirement is very much a question of perspective. From a technical
perspective, the purse issuer desires a system with as little anonymity as possible, so he can
monitor the system in the best possible manner. The possibility of fraud is very limited in non-
anonymous systems, since anyone who commits a fraud can quickly be identified. Government

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 715 of 1123

12.1 Payment Transactions using Cards 681

agencies, such as the police and tax authorities, have similar interests. Non-anonymous elec-
tronic money would give them considerably more scope for monitoring financial transactions
than they have enjoyed up to now with normal money.

The position of purse users is diametrically opposite. They consider current payment meth-
ods using normal money to represent an excellent state of affairs, and they regard complete
anonymity and non-traceability of payment transactions as the optimum solution.

Particularly with regard to anonymity, operators of electronic purse systems often choose a
compromise solution in the interest of system security. For instance, in most systems payments
are anonymous, but loading electronic purses is not. This allows the system to be monitored
reasonably well in a simple manner at a relatively low cost.

At first sight, some of these properties appear to be contradictory. For instance, in many
cases complete anonymity and optimum system monitoring are mutually exclusive. However,
this field is in the early stages of development, and there are already systems being planned in
which these two properties can definitely be realized simultaneously.

There are two properties of real money that are not mentioned above, although they are
highly significant. The first is that real money is legal tender that must be accepted by everyone
in a particular country. In almost all countries, vendors of goods or services are obliged to
accept the legal currency of that country as a means of payment. The second property relates
to the stability of the currency. Except for a few countries with high rates of inflation, the legal
currency in circulation has a stable value. If this is not the case, people resort to barter or using
foreign currencies.

12.1.3 Basic system architecture options

Electronic payment systems based on smart cards can be constructed in a wide variety of
manners. For economic reasons, they are often based on existing systems, most of which are
based on magnetic-stripe cards. However, there is no single basic model that applies to all
payment systems, since the requirements vary too widely. We can therefore only describe the
basic principles of such systems in terms of their essential components.

Large smart card payment systems basically consist of four different components. These
are the background system, the network, the terminals and the cards.

Background system

The background system consists of two parts: clearing and management. The clearing sub-
system maintains the accounts of all of the banks, merchants and cardholders participating in
the system, and it books all incoming transaction data. It also provides the system monitoring
functions. A simple example of such a function is maintaining a running balance to check
whether the total of the amounts submitted to the clearing system exceeds the total amount
of money in the electronic purses. If it does, an attacker has loaded money into smart cards
without the knowledge of the background system.

The management part of the background system controls all administrative processes, such
as distributing new blacklists, switching to new key versions, sending software updates to the
terminals and so on. This subsystem also generates data sets for personalizing smart cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 716 of 1123

682 Smart Cards in Payment Systems

The background system has complete control of the electronic payment system, regardless
of the system architecture. Even with systems that work completely offline, the background
system establishes the global system parameters and monitors the security and operation of
the system.

Network

The network links the background system to the terminals. The connections may be
circuit-switched (e.g. ISDN) or packet-switched (e.g. X.25). As a rule, the network is to-
tally transparent to the data traffic, which is passed unmodified from the sender to the
receiver.

Terminals

The various types of terminals can be classified as either loading terminals or payment ter-
minals, according to their functions with respect to payments. They can also be classified as
automated terminals or attended terminals. The classic example of an automated terminal is
a cash dispenser (ATM). In electronic purse systems, automated terminals are primarily used
only to load cards. It would naturally also be conceivable to allow an electronic purse to be
emptied using such a terminal, with the balance being paid out in cash. Attended terminals are
typically located at supermarket checkouts and in retail shops. They are always used to pay for
goods. In some systems, terminals in banks can also be used to load smart cards in exchange
for cash payments.

Smart cards

Smart cards are the most widely distributed component of the system. They can be used as
electronic purses, but they can also be used as security modules in various types of terminals.
Another use is transporting data between various system components. Cards for this purpose,
which are called transfer cards, are used to manually transfer transaction data from a terminal
that works completely offline to one that works online (such as a cash dispenser).

The example system shown in Figure 12.4 illustrates the system components and their logical
connections. The background system, which may be the background system of a different
operator or a component of the system itself, is connected to the other components via a
transparent network.

Electronic purses are must commonly loaded using cash dispensers, most of which operate
online, although they can also operate offline for a limited time in the event of a network failure.
For this reason, they have their own security modules, which hold all of the keys necessary for
normal operation and key derivation.

There are also electronic purse payment systems that operate fully offline. Two examples
are parking meters and terminals in taxis. In such cases, transfer cards can be used to transport
the transaction data from the security modules to a cash dispenser, from which they reach the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 717 of 1123

12.1 Payment Transactions using Cards 683

network

other
financial transaction

systems

online

manual
function

administrative
data

billing
data

partially
online

transfer card

concentrator

cash register

SAM

SAM

terminal SAM terminal SAMterminal SAM

...

... ...

...

cash
dispenser

electronic purse

Figure 12.4 Example architecture of an electronic purse system (SAM = security module)

background system via the network. In exchange, the terminals receive current administration
data, such as blacklists and software updates.

A second type of payment terminal is one that is connected to the network via an online
connection that is established as necessary. This type of terminal normally works offline, but
it periodically connects to the background system in order to exchange any available billing
and administrative data.

A third type of payment terminal has no direct connection to the network. For example, it
could be connected to a supermarket cash register that in turn is connected to a concentrator
located in the facility. This concentrator, which is normally a PC acting as a server, might
connect to the background system once a day via the network. The necessary data exchanges
occur during this connection.

The Quick electronic purse system in Austria and the Geldkarte system in Germany are
similar to the example system just described, and many parts of the Visa Cash electronic purse
system correspond to what has just been described. For large applications, it is quite common
to use a distributed system architecture consisting of several different background systems
operating in parallel. With such an architecture, several different purse systems with more than
one system operator can be operated with mutual compatibility.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 718 of 1123

684 Smart Cards in Payment Systems

12.2 PREPAID MEMORY CARDS

With regard to electronic payment systems, we must not neglect memory cards. They are
produced in very large numbers in the form of prepaid electronic purses, and they are used in
many applications. This situation will certainly not change over the next few years. Although
memory cards will slowly but surely be replaced by microcontroller smart cards, their strength
lies in their unparalled low price. The most common application for prepaid electronic payment
cards is prepaid telephone cards, which are widely used in many countries and simply discarded
once they have been used up.3

A memory card4 only has to contain some control logic and an irreversible down counter to
allow it to do its job. More recent versions also support unilateral authentication of the card by
the terminal. For this purpose, the logic unit has been enhanced by adding a simple encryption

interface terminalmemory card

position card
and make contact

read read
balance

repeat
decrease balance

cycle

write decrease
balance

provide
service

yes

yes

adequate
balance ?

abortno

authentication
test OK?

abortno

read decrease
OK ?

abortno

yes

Figure 12.5 The devaluation cycle of a prepaid memory card as seen by the terminal

3 See also Section 13.6, ‘Public Card Phones in Germany’
4 Chip architecture for memory cards; see also Section 2.3.1, ‘Memory cards’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 719 of 1123

12.3 Electronic Purses 685

function, whose task is to encrypt a random number received from the terminal using a secret
key stored in the card and return the result to the terminal. This is the only way the terminal
can be sure that the memory card being used is genuine.

Beside the fact that it is difficult to ensure the authenticity of memory cards, they have
another drawback that limits their use as a general-purpose medium for electronic payments.
Since such cards can easily be manipulated, it is difficult to construct a payment system that
can support a variety of independent service providers (such as kiosks and taxis). This is
because secure communications between the terminal and the card are not possible, so proper
accounting of the amounts paid, and thus overall system monitoring, are in principle only
possible using indirect methods.

Due to their low cost, memory cards enjoy advantages with respect to microcontroller
cards in certain very restricted application areas, but they are not particularly suitable for
open applications in payment systems. Future electronic payment systems will doubtless use
predominantly microcontroller smart cards, since they are significantly more versatile.

12.3 ELECTRONIC PURSES

The idea of implementing an electronic purse in a smart card goes back to the early days of
smart card technology. However, only since the mid-1990s has this concept been realized,
since that was when the development of large systems first began.

If we take a normal purse containing coins and banknotes as a reference, we can easily see
which properties electronic money has in the eye of the user. Money must be put into a purse
before it can be used, which means it cannot be used like a debit or credit card, where payment
is only made on or after receipt of the goods or services. Instead, it is used like a telephone
card, which must be paid in advance. The actual payment process must be quick and simple,
since otherwise the level of user acceptance will be low. Furthermore, all payments from a
purse are anonymous, which means that it is not possible to reconstruct who bought what at
which time. The most annoying characteristic of a purse becomes apparent if it is lost, since
the money in it is then irretrievably gone. However, this does not necessarily have to be true
of an electronic purse.

The primary advantage of a purse, or rather of the money it contains, is that it is accepted
everywhere within a given country. It is precisely this factor that is missing in most existing
electronic purse systems. With a telephone card, all you can do is make telephone calls, and
nothing else. This is typical of a closed application. An ideal electronic purse, on the other
hand, can be used in more than one sector, and thus allow its user to make payments in many
different businesses using a single purse.

12.3.1 The CEN EN 1546 standard

The European Commission decided in 1990 to have the Comité Européen de Normalisation
(CEN) produce a European standard for a multisector electronic purse system. Work on the
standard started in 1991. Up to 1998, the various project teams had spent around eight man-
years on developing this standard. Since a number of independent experts have participated in
this effort, it very unlikely that there are any security gaps in this standard. It is thus already

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 720 of 1123

686 Smart Cards in Payment Systems

Electronic Purses

electronic money electronic cheques

completely transferrable

transferrable with restrictions

prepaid cards

Figure 12.6 Classification of electronic purse systems based on smart cards. Electronic money is not
tied to a particular card and can be denominated as desired. By contrast, electronic checks have fixed
denominations. Prepaid cards (electronic purses) contain electronic money that is tied to the card and
can be freely denominated

quasi-evaluated. The essential parts are presently no longer subject to change, and they will be
published as a European standard after the final vote takes place.

The EN 1546 standard is a public standard, and the processes of its individual functions are
described in great detail. It is therefore very suitable for demonstrating payment and loading
processes in an electronic purse system. With many existing systems, these processes cannot
be described in the same level of detail, since the relevant commands, processes and internal
functions are confidential. This standard is thus very useful for illustrating the fundamental
external and internal processes of an electronic purse system.

The typical application areas are clearly indicated by the first systems based on this standard.
The Danish system operator Danmønt has introduced a purse compliant with this standard into
its existing system. In Austria, the Eurocheque card issued throughout the country includes an
electronic purse (called Quick) based on the EN 1546 standard, in addition to other applica-
tions. However, the largest international application of this standard is the Visa Cash system.
This is one of several electronic purses offered by Visa. The essential features of the interna-
tional specification for electronic purse systems, which is titled ‘Common Electronic Purse
Specifications’ (CEPS), are also based on EN 1546.

The EN 1546 standard is titled ‘Inter-Sector Electronic Purse’ and is divided into four
parts. The first part, ‘Definition, concepts and structures’, describes the overall system. This
basic document defines and explains, in abstract form, all of the logical components and their
interconnections. In the second part, these basic concepts are used to describe the security
architecture of the overall system and its individual components. This includes not only mech-
anisms for maintaining security, but also possible attacks and the corresponding necessary
countermeasures.

Part three, ‘Data elements and interchanges’, contains descriptions and definitions of the
data elements needed for the electronic purse system. It also describes the commands related
to the smart cards and security modules and their associated responses.

The final part describes the state machines and states for the devices used. It employs
a symbolic representation similar to well-known flowchart diagrams. This formal notation,
which is known as SDL notation, is derived from the CCITT Z.100 recommendation.5

5 See also Section 4.2, ‘SDL Notation’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 721 of 1123

12.3 Electronic Purses 687

This standard, which encompasses around 300 pages, thus contains a complete description
of an electronic purse system, including the smart cards, the terminals with their security
modules and the background and clearing systems. Its objective is to establish a common
standard for large electronic purse systems with very many smart cards and wide geographical
distribution.

The advantage of a general standard for electronic purse systems is primarily that it allows
individual, independently operated systems to be mutually compatible. As with GSM, this
gives the user the option of being able to use his or her card in the future to make payments
using the systems belonging to other purse providers. This is an essential prerequisite for the
success of this sort of payment system.

However, a small comment is in order at this point. The EN 1546 standard provides a large
amount of freedom with regard to actual implementation, and it regards itself as more of a
framework than a precise specification of individual bits and bytes. It is thus perfectly possible
for two different systems to be fully compliant with this standard but mutually incompatible,
for example because they use different cryptographic algorithms.

The basic elements of the system architecture are shown in Figure 12.7. The purse provider
bears the overall responsibility for the system and is also the system manager. He is compa-
rable to a GSM network operator. The term ‘purse holder’ is defined in the standard to refer
to the user of the electronic purse. This is the person who makes payments using the elec-
tronic purse application in the card and receives goods or services in return. There are also
three other parties that perform functions in the system. The ‘service provider’ offers goods

central computer
of the purse provider

money
flow

electronic money flow

goods and
services

multi-sector
electronic purse

purchase device

load agent
central computer
of the acquirer

Figure 12.7 Basic structure of an intersector electronic purse system and associated payment flows
according to EN 1546

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 722 of 1123

688 Smart Cards in Payment Systems

or services that are accepted by the user and paid using an electronic purse. The ‘acquirer’ is
responsible for establishing and managing the data links between the purse issuer and the ser-
vice providers. He may also consolidate the individual transactions arriving from the payment
facilities, so that the purse provider only receives collective certificates. The ‘load agent’ is the
counterpart of the service provider, since he can reload the electronic purse in exchange for a
payment.

These five parties need not all be real persons or firms; they may also be virtual. However,
real technical components are allocated to each of them, classified according to their level
of security. Components that are regarded as secure prevent any external manipulation of the
data that are processed or stored within them. With components regarded as non-secure, such
manipulation is at least theoretically possible. However, the system as a whole is designed
such that the manipulation of any of the components identified as non-secure in Figure 12.8
will not affect the overall security of the system.

Here the abbreviation ‘IEP’ stands for ‘inter-sector electronic purse’ and refers to an in-
tersector electronic purse application in a smart card. A purchase device is used to pay for
received goods or services. It is a terminal with keypad and display, and it must also have a
security module. The term ‘secure application module’ (SAM) is used in the standard to refer
to all types of security modules. A SAM contains all secret keys necessary for transactions
between the IEP and the central computer of the purse provider. Naturally, the keys never leave

central computer
of the purse provider

multi-sector
electronic purse

purchase device

load agent
central computer
of the acquirer

PPSAM

PSAM

LSAM

Figure 12.8 Components and connections of electronic purse systems according to EN 1546. The
components with a single outline are not secure, while those with a double outline are secure

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 723 of 1123

12.3 Electronic Purses 689

the security module, but are used only inside the SAM by the cryptographic algorithms.6 In
many cases, therefore, the links between the system’s secure components are all direct. The
non-secure components are only used to transparently relay sensitive data.

Smart cards have made it possible to convert the idea of an electronic purse system into
reality. They thus form the central subject of the system description in the CEN EN 1546
standard. All of the associated files, commands, states and processes are defined and described
in this standard. In order to define the entire system, there are similar parts that address the
security module and the other components.

However, since this is a standard rather than a specification, the purse provider is naturally
given a great degree of freedom and many options. A variety of functions can be used to
construct the purse. For example, a simple system that only allows loading and paying with the
purse can be easily implemented. This can be further enhanced with functions for canceling
payments, modifying purse parameters and converting currencies. The exact selection of the
many complex options is largely left to the purse provider, who must choose the options that
best meet his particular needs.

The most important aspects of an intersector electronic purse system with regard to the IEP,
which is the smart card, are described below.

EN 1546 data elements

Designations for all data elements were introduced to allow the data used in the entire system for
the electronic purse application to be referred to unambiguously. Data flows and data processing
can be represented, simply and unambiguously, in a mathematically correct notation using these
very short designations. The standard also contains a simple data dictionary, which describes
the corresponding data contents and associated formats for the standardized data elements.

Files

The complete electronic purse application is contained in a dedicated DF in the smart card. All
of the files necessary for proper operation are contained in this DF. In addition, information
relating to the card, the chip, other applications and the like is stored in several files directly
under the MF. The data elements needed for operating the electronic purse are contained in six
EF files located in a DF for the purse. These files are listed and briefly described in Table 12.3.

The EFIEP file specifies the general parameters of the purse, which form the basis for all
transactions that take place. The EFIK file contains specific information for every available key.
EFBAL contains the amount that is currently in the purse and available to the user. The log files
are used exclusively to record all transactions, separated by function. Only with these files is it
possible to cancel a payment or handle errors. There are separate log files for loading, paying,
modifying the purse parameters and making currency conversions. All log files have a cyclic
structure, in order to record the most recent transactions.

6 A possible key management system for an electronic purse system that is compliant with EN 1546 is described in
Section 4.8, ‘Key Management’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 724 of 1123

690 Smart Cards in Payment Systems

Table 12.2 Summary of the most important standard data elements of EN 1546

Data element Description

ALGIEP cryptographic algorithm used by an IEP
AMIEP authentication mode required by an IEP
APIEP application profile of an IEP

BALIEP, BALPSAM, BALPPSAM balance of an IEP, PSAM or PPSAM
BALmaxIEP maximum balance of an IEP
CCIEP,CCPSAM,CCPPSAM completion code from an IEP, PSAM or PPSAM

CT collection status
CURRIEP, CURRLDA, CURRPDA actual currency for an IEP, LDA or PDA
DACTIEP activation date of an IEP

DD discretionary data
DDEAIEP deactivation date of an IEP
DEXPIEP expiry date of an IEP

IDIEP, IDPSAM, IDPPSAM identifier for an IEP, PSAM or PPSAM
IEP intersector electronic purse
IKIEP, IKPSAM, IKPPSAM key information for an IEP, PSAM or PPSAM

LDA load device application
LSAM load SAM
MLDA, MPDA transaction amount for load or purchase

MTOTIEP, MTOTPSAM total transaction amount for a purchase
NC number of collections (designates a final sum)
NI number of individual transactions

NTIEP, NTLSAM, NTPSAM transaction number for an IEP, PSAM or PPSAM
PDA purchase device application
PPIEP, PPPSAM, PPPPSAM purse provider identifier for an IEP, PSAM or PPSAM

PPSAM purse provider SAM
PSAM purchase SAM
R random number

S1 IEP signature
S2 PSAM or PPSAM signature
S3 IEP signature
S4 PSAM signature

SAM secure application module
TM total amount
TRT transaction type and status

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 725 of 1123

12.3 Electronic Purses 691

Table 12.3 The files and data elements needed for an electronic purse, in accordance with EN 1546.
The log files for exchange rate calculations and parameter changes are not shown

File Function Data
elements

Descriptions

EFIEP Fixed data and
parameters for
the purse

PPIEP

IDIEP

DEXPIEP

DACTIEP

DDEAIEP

AMIEP

APIEP

DD

IEP purse provider identifier
IEP identifier
IEP expiry date
IEP activation date
IEP deactivation date
IEP authentication mode
IEP application profile
user-specific data

EFIK Information relating
to all keys

ALGIEP

IKIEP

DD

IEP cryptographic algorithm
IEP key information
user-specific data

EFBAL Purse balance BALIEP

CURRIEP

BALmaxIEP

DD

EP balance
IEP currency
IEP maximum balance
user-specific data

EFTFIELD Transaction field NTIEP IEP transaction number
EFLLOG Log file for loading TRT

NTIEP

BALIEP

MLDA

CURRLDA

IDPPSAM

CCIEP

DD

transaction type and status
IEP transaction number
IEP balance (new balance)
transaction amount for loading
currency for loading
purse provider identifier for PPSAM
IEP completion code
user-specific data

EFPLOG Log file for payment TRT
NTIEP

BALIEP

MPDA

CURRPDA

IDPSAM

NTPSAM

CCIEP

DD

transaction type and status
IEP transaction number
IEP balance (new balance)
transaction amount for purchase
currency for purchase
purse provider identifier for PSAM
PSAM transaction number
IEP completion code
user-specific data

Commands7

The files form the foundation of the purse, and the commands are built on this foundation.
Eight of these commands are needed for operating the purse system. Three commands belong
to the ISO/IEC 7816-4 standard: SELECT FILE, READ BINARY and READ RECORD.

7 For detailed descriptions of the commands, see Section 7.14, ‘Commands for Electronic Purses’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 726 of 1123

692 Smart Cards in Payment Systems

These commands are only used to select the electronic purse application using its AID and
subsequently read various data from the purse files as necessary.

The other five commands were developed specifically for use with electronic purses. They
are always used in pairs for individual transactions, since in principle they act as a sort of mutual
authentication. During authentication, data needed for the transaction are also exchanged. The
corresponding commands and responses are naturally structured such that any manipulations at
the interface between the card and terminal can be immediately detected, resulting in immediate
termination of the transaction and logging of the event.

All purse commands directly access data elements in the purse files for both reading and
writing. The files are automatically selected by the operating system prior to these accesses.
For instance, basic purse data are occasionally needed while a command is being processed. In
this case, the operating system selects the EFIEP file, and the desired data element is provided
to the command. All transactions, as well as the most important data, are recorded in suitable
log files during the command–response cycle.

EN 1546 defines the commands listed in Table 12.4 and specifies their functions inside the
card in detail.

Table 12.4 Specific commands for electronic purses as defined in EN 1546

Command Function

INITIALIZE IEP Initialization for a subsequent purse command
LOAD IEP Loading the purse, canceling a previous payment and

error recovery
DEBIT IEP Paying using the purse and confirming payment
CONVERT IEP CURRENCY Converting currencies
UPDATE IEP PARAMETER Modifying general purse parameters

The standard does not provide commands for verifying or changing PINs, since these
functions are not needed for the proper operation of the purse. However, additional commands
for PIN verification and management can be included in the purse application as necessary,
without causing any interference or problems with the existing purse commands.

States

As may already be apparent from the command summary, each transaction consists of an
introductory initialization command and a subsequent command that completes the transaction.
In order to fix the sequence of commands, state diagrams are used to define the necessary
states and state transitions in the application. This naturally requires the card to contain a state
machine. Depending on its current state, the card will accept or reject various commands.

Cryptographic algorithms

The entire security of the system is based on a cryptographic algorithm. The messages ex-
changed between the components all have appended signatures to allow manipulations to be

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 727 of 1123

12.3 Electronic Purses 693

initial state

ready for
debit

INIT for
Purchase

DEBIT
IEP

initial state

INIT for
Load

INIT for
Load

other
commands

ready for
credit

CREDIT
IEP

initial state
ready for

credit

INIT for
Purchase

ready for
debit

state x

state x

Figure 12.9 Simplified state diagram for loading and paying with an EN 1546 electronic purse

detected. This is the only protection for messages, which are always exchanged in plaintext.8

The message exchange is structured such that any desired type of cryptographic algorithm can
be used to generate the signature. The symmetric DES algorithm is currently most commonly
used, but the standard also allows asymmetric algorithms such as RSA or DSS. This algorithm
independence is a great advantage, since it considerably extends the useful life and flexibility
of the standard.9

Procedures

The standard does not just specify files, commands and states, but also describes and explains
the associated procedures. These are specified in detail in terms of their data elements, using
a pseudolanguage similar to Basic. This is necessary because the security of some processes
strongly depends on the sequence of the operations used for processing commands inside the
card. During a transaction, for example, the appropriate log file must always be updated before
the response is sent to the terminal. The processes and transactions for all components are also
precisely specified. Descriptions are provided for the following electronic purse processes for
smart cards:

� loading

� paying

� canceling a payment

� correcting an error

� converting currencies

� changing the purse parameters.

8 If the DES algorithm is used, a 4-byte MAC is provided as a signature at the end of the message
9 An example of a possible key hierarchy with key derivation is described in Section 4.8.6, ‘Key management example’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 728 of 1123

694 Smart Cards in Payment Systems

The commands for reading files can of course also be used for monitoring purposes. However,
the actions involved may vary, depending on the purse provider and the objective of the
monitoring.

The structure of all specified procedures is determined by a fundamental principle, which
is that it must never be possible to create electronic money by manipulating data transmissions
between the components or by abruptly terminating a transaction. The worst consequence of
such actions is limited to the destruction of electronic money. This automatically excludes
certain types of attack. Incidentally, this principle is incorporated in the designs of nearly all
electronic purse systems.

Each process is basically divided into three phases. Complete initialization of the partici-
pating components occurs in the first phase. Actual execution of the transaction takes place in
the second phase. The third phase, which is optional, is used to confirm the previous actions.
Successful completion of the first two phases amounts to unilateral (or optionally, mutual)
authentication of the two components.

initialize IEP

initialize xSAM

debit / credit IEP

credit / debit xSAM

store
transaction data

verify
payment parameters

debiting /crediting and
debit / credit certificate

initialization

IEP parameters
for authentication

xDA

verify
debit / credit certificate

crediting / debiting and
credit / debit certificate

initialization

PSAM parameters
for authentication

xSAMIEP

debit / credit phase

initialization phase

Figure 12.10 The basic sequence of an EN 1546 electronic purse transaction (phases 1 and 2)

In all of the procedures, unilateral or mutual authentication is interleaved with the actual
purse functions (payment, loading, etc.). This minimizes the time required for the purse trans-
actions and increases security, since it significantly reduces the number of commands needed
to perform the functions. This is similar to the situation with the standard ISO commands
INTERNAL AUTHENTICATE and EXTERNAL AUTHENTICATE, which can be replaced
by the non-standard command MUTUAL AUTHENTICATE without affecting functionality
or security.

Procedure for loading a purse

Before an electronic purse can be used to make payments, it must first be loaded. The procedure
for this is shown in Figure 12.11, which illustrates the option in which the electronic purse

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 729 of 1123

12.3 Electronic Purses 695

is loaded online using a terminal that is directly connected to a background system with
its associated security module (PPSAM). Other options are also possible according to the
standard, such as loading the purse using a security module in a terminal (LSAM). However,
the procedure described here is commonly used in current systems, since it gives the system
operator complete control over loading.

Table 12.5 Abbreviations of functions and procedures used in Figures 12.11 and 12.12,
which illustrate payment transactions according to the EN 1546 standard

Abbreviation Meaning

Ax Unique label for an action
Cx Unique label for a command
Parameters (. . .) Request to a participant using the indicated data elements
Response (. . .) Response to previous request, with the indicated data elements
Rx Unique label for a response
Sign (. . .) Generate a signature for the indicated data elements
Verify (. . .) Verify the indicated data elements or function
Write (. . .) Write the indicated data elements to a file

In the example shown in Figure 12.11, an electronic purse (IEP) is loaded by the background
system via a terminal (LDA) using a security module (PPSAM). The card user first inserts
his card into the terminal, which executes a reset. In the ATR, the card sends the terminal
various general parameters for the subsequent communication process. After this, the terminal
selects the electronic purse DF in the card. Once this has been done successfully, the card user
inserts the amount of money to be loaded into the terminal, using an acceptable currency. This
information is then sent to the PPSAM via the first purse command. The PPSAM verifies the
indicated currency and the amount still allowed to be loaded. In response, it returns three data
elements to the terminal.

The terminal appends the load amount (MLDA) and the associated currency (CURRLDA) to
the data elements received from the PPSAM and sends all of this information to the IEP using
the ‘INITIALIZE IEP for Load’ command. The IEP then checks, among other things, whether
the purse balance after the load amount is added would exceed the maximum allowable amount
in the purse (BALmaxIEP). If it would not, the IEP increments a transaction counter (NTIEP),
computes the session key (KSESIEP) and generates a signature (S1). These are returned to the
terminal, along with several other data elements.

Following this command, the terminal simply relays the received data elements to the
PPSAM. Here they are checked against the permitted range of values, and a card-specific key
(KDPPSAM) and a session key (KSESPPSAM) are generated. If the subsequent verification of
signature S1 is successful, the card has been authenticated, since it must know the secret key
for computing S1. The PPSAM then generates signature S2 and sends it to the terminal, along
with the key information (IKPPSAM). The terminal again only relays these data elements to the
card, this time using the command LOAD IEP.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 730 of 1123

696 Smart Cards in Payment Systems

The IEP now verifies signature S2. If this is successful, the PPSAM has also been au-
thenticated by the IEP. The balance in the purse (BALIEP) is then increased. The IEP next
generates a third signature (S3), which is sent to the terminal for confirmation that the balance
has been successfully increased. The final command transfers this signature to the PSAM,
which completes the entire loading transaction.

IEP LDA PPSAM

R1:

�

C1:
Response (ATR) � RESET

�

C2:
R2: � SELECT

Response (CCIEP) Parameters (DFIEP)

A1:
Input (MLDA ‖ CURRLDA)

C3: � A2:
INITIALIZE PPSAM Verify (CURRLDA)

for Load Verify (BALPPSAM ≥ MLDA)
Parameters (MLDA ‖) Generate R

CURRLDA)

�

R3:
Response (PPPPSAM ‖

IDPPSAM ‖R)

A3:

�

C4:
Verify (PPPPSAM) INITIALIZE for Load
Verify (CURRLDA) Parameters (PPPPSAM ‖
Verify (BALIEP + MLDA ≤ IDPPSAM ‖ R ‖ MLDA‖

BALmaxIEP) CURRLDA)
NTIEP := NTIEP + 1
KSESIEP = f (KDIEP,

DEXPIEP, NTIEP)
S1:=Sign (PPIEP ‖ IDIEP ‖

DEXPIEP ‖ NTIEP ‖
MLDA ‖ CURRLDA ‖
BALIEP ‖ IDPPSAM ‖ R)

Write (EFLLOG)
R4: �

Response (PPIEP ‖ IDIEP ‖
ALGIEP ‖ IKIEP ‖

DEXPIEP | NTIEP ‖
BALIEP ‖ S1 ‖ CCIEP)

Figure 12.11 Procedure for loading an electronic purse (IEP) online via a terminal (LDA) using a
security module (PPSAM)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 731 of 1123

12.3 Electronic Purses 697

C5: � A4:
DEBIT PPSAM Verify (PPIEP)
Parameters (PPIEP ‖ IDIEP ‖ Verify (IDIEP)

ALGIEP ‖ IKIEP ‖ Verify (ALGIEP)
DEXPIEP ‖ NTIEP ‖ Verify (IKIEP)
BALIEP ‖ S1) Verify (DEXPIEP)

KDPPSAM = f (IDIEP,

VKIEP, KMPPSAM)
KSESPPSAM = f (KDPPSAM,

DEXPIEP, NTIEP)
Verify (S1)
S2 := Sign(PPPPSAM ‖

IDIEP ‖ NTIEP ‖ MLDA ‖
CURRLDA)�

BALPPSAM := BALPPSAM −
MLDA

R5:
Response (IKPPSAM ‖ S2 ‖

CCPPSAM

A5:

�

C6:
Verify (S2) CREDIT IEP
BALIEP := BALIEP + MLDA Parameters (IKPPSAM ‖ S2)
S3 := Sign(PPIEP ‖

IDPPSAM, R, CCIEP)
Write (EFLLOG)

R6: �
Response (S3 ‖ CCIEP)

C7: � A6:
PPSAM Load Verify (S3)

Acknowledgement Verify (CCIEP)
Parameters (S3, CCIEP) �

R7:
Response (CCPPSAM)

Figure 12.11 (Cont.)

The procedure just described is one of many possible options. It is frequently used in
practice, since it is very common to perform purse-loading transactions online. EN 1546 also
includes options for loading via a special loading security module (LSAM). Such decentralized
modules can be built into special loading terminals, such as cash dispensers.

Procedure for paying with a purse

The following example, which is illustrated in Figure 12.12, demonstrates a payment procedure
using the components required for this function: the electronic purse (IEP), the terminal (PDA)
and the security module in the terminal (PSAM).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 732 of 1123

698 Smart Cards in Payment Systems

After the purse card has been inserted in the terminal, the terminal executes a reset in order
to request ATRs from the PSAM and the IEP. If either of these ATRs does not match the
expected value, the terminal aborts the payment procedure. If the ATRs match their expected
values, the terminal selects the purse DF in the IEP. If this file cannot be selected, the procedure
is also aborted. For reasons of clarity, however, these processes and general error handling are
not shown here.

After selecting the purse DF in the IEP card, the terminal sends the initialization command
‘INITIALIZE IEP for Purchase’. The IEP receives this command, increments the transaction
counter, computes a key (KSESIEP) and generates a signature (S1) for the various data elements.
It then sends these data elements and the signature to the terminal.

The terminal next sends the initialization command ‘INITIALIZE PSAM for Purchase’ to
the PSAM. This command simply relays the data elements received from the card to the PSAM.
The PSAM verifies these data elements, which means that the expiry date (DEXPIEP), currency
(CURRIEP), cryptographic algorithm used (ALGIEP) and the other received data are compared
with values stored in the PSAM. If all of the comparisons are successful, the transaction counter
(NTPSAM) is incremented. If any of the comparisons fails (e.g., if the expiry date of the IEP

IEP PDA PSAM

C1: � R1:
RESET

�

Response (ATR)

R2:

�

C2:
Response (ATR) � RESET

R3:

�

C3:
Response (CCIEP) � SELECT (DFIEP)

A1:

�

C4:
NTIEP := NTIEP + 1 INITIALIZE IEP
KSESIEP = f (KDIEP, for Purchase

DEXPIEP, NTIEP) Parameters ()
S1 := Sign(PPIEP ‖ IDIEP ‖

DEXPIEP ‖ NTIEP)
Write (EFPLOG)

�
R4:

Response (PPIEP ‖ IDIEP ‖
ALGIEP ‖ IKIEP ‖
DEXPIEP ‖ CURRIEP ‖
AMIEP ‖ NTIEP ‖ S1 ‖
CCIEP)

Figure 12.12 Transaction procedure for making a payment using an electronic purse (IEP) with a
terminal (PDA) and security module (PSAM) in accordance with EN 1546

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 733 of 1123

12.3 Electronic Purses 699

C5: � A2:
INITIALIZE PSAM Verify (PPIEP)

for Purchase Verify (IDIEP)
Parameters (PPIEP ‖ Verify (ALGIEP)

IDIEP ‖ ALGIEP ‖ Verify (IKIEP)
IKIEP ‖ DEXPIEP ‖ Verify (DEXPIEP)
CURRIEP ‖ AMIEP ‖ Verify (CURRIEP)
NTIEP ‖ S1) Verify (AMIEP)

NTPSAM := NTPSAM + 1
KDPSAM = f (IDIEP,

VKIEP, KMPSAM)
KSESPSAM f (KDPSAM,

DEXPIEP, NTIEP)
Verify (S1)
MTOTPSAM := 0
S2 := Sign(PPPSAM ‖

IDPSAM ‖ NTPSAM ‖
MTOTPSAM ‖ IDIEP ‖�

AMIEP ‖ NTIEP)
R5:

Response (IDPSAM ‖
NTPSAM ‖ IKPSAM ‖
S2 ‖ CCPSAM)

A3:
Input (MPDA ‖ CURRPDA)

A4:

�

C6:
Verify (CURRPDA) DEBIT IEP
Verify (BALIEP ≥ MPDA) Parameters (IDPSAM ‖
Verify (S2) NTPSAM ‖ IKPSAM ‖
MTOTIEP := MTOTIEP + S2 ‖ MPDA ‖ CURRPDA)

MPDA

S3 := Sign(PPIEP ‖ IDIEP ‖
AMIEP ‖ NTIEP ‖
IDPSAM ‖ NTPSAM ‖
MTOTIEP ‖ CURRIEP)

BALIEP := BALIEP − MPDA

Write (EFPLOG) �
R6:

Response (S3 ‖ CCIEP)

Figure 12.12 (Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 734 of 1123

700 Smart Cards in Payment Systems

C7: � A5:
CREDIT PSAM Verify (S3)
Parameters (S3, MPDA) MTOTPSAM :=

MTOTPSAM + MPDA�

R7:
Response (CCPSAM)

C8: � A6:
PSAM Complete Purchase TM := TM + MTOTPSAM

Parameters () S4 := Sign(PPPSAM ‖
IDPSAM ‖ NC ‖ NI(NC) ‖
TM(NC) ‖ CURR(NC) ‖
CT(NC))�

R8:
Response (S4, CCPSAM)

Figure 12.12 (Cont.)

has been reached), command processing is immediately terminated and an appropriate return
code is sent to the terminal (PDA).

The PSAM next generates a derived key using the data provided by the IEP and generates
a session key, and then it checks signature S1. If the signature is correct, it follows that all of
the transferred data are authentic, and the IEP has also been authenticated by the PSAM. In
other words, the PSAM knows that the card containing the electronic purse is genuine.

card number

transaction counter

key generation X

Smart Card Security ModuleTerminal

master key KM
(valid for key
generation X)

X

derived
for generation X
(valid for the
current card)

key KD

derived key KD
for generation X

dynamic key KS
(valid only for the

current card and session)

Figure 12.13 A possible key derivation process for an EN 1546 electronic purse system. The key
depends on the combination of a card-specific key from a certain generation that is passed to the card and
a session-specific transaction counter. The key that is so generated may be used for making payments or
debiting monetary units

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 735 of 1123

12.3 Electronic Purses 701

Next, the PSAM also generates a signature (S2), which is sent to the terminal along with
several other data elements. The user now enters amount to be paid (MPDA) and the associated
currency (CURRPDA) at the terminal. The terminal then sends the entered amount (MPDA)
and the data elements previously received from the PSAM to the card, using the DEBIT
IEP command. The IEP now checks whether there is enough money in the purse to make
the payment. If there is, it verifies signature S2. If the signature is correct, the data have not
been manipulated during transmission, and the PSAM has also been authenticated by the IEP,
since only a genuine PSAM can possess the secret key needed to generate signature S2. The
appropriate amount is subtracted from the purse balance, a third signature (S3) is generated to
confirm the debit transaction just performed and the log file is updated.

Signature S3 and the debited amount are sent via the terminal to the PSAM, which verifies
S3. If this signature is correct, the amount debited in the IEP is added to an internal data element
(MTOTPSAM). The following command, PSAM Complete Purchase, updates the PSAM balance
by adding MTOTPSAM to the purse balance (TM). Finally, the PSAM receives a signature (S4)
to confirm that the payment transaction has been successfully completed.

The procedure described above is a very simple example of the various payment procedures
described in EN 1546. There are also other possibilities, including an especially fast debiting
procedure for card phones and a procedure that allows a receipt to be generated at the end of
the transaction.

Files, commands and procedures are also specified for all other important system compo-
nents, just as they are specified for the cards as described above. This primarily applies to the
security modules, since system security relies solely on these modules. Statistical methods
may be employed to monitor the overall operation of the system, which in the case of large
applications may consist of tens of thousands of terminals and several hundred thousand smart
cards. Maintaining full accounting for every individual card would conflict with the demand
for anonymity, and would anyhow require far too much computation. However, as tests have
shown, the security of the overall system can be continuously monitored at an acceptable cost
using random samples.

The European EN 1546 standard established one of the foundations for multisector smart
card electronic purse systems using smart cards. Nearly all procedures and functions that
were in common use when the standard was generated and that were considered worthwhile
are included in the standard. There is only one function that has not yet been described,
although it is very important for card users. This is the ‘purse-to-purse transaction’, which
means transferring electronic money directly from one purse to another. There is presently no
description of this type of money transfer in the EN 1546 standard.

12.3.2 Common Electronic Purse Specifications (CEPS)

In the mid-1990s, many electronic purse systems based on smart cards were developed in-
dependently of each other in many European countries. Some typical examples are Quick in
Austria, Geldkarte in Germany and Proton in Belgium and the Netherlands. All of these purse
systems have similar functionality, but they are all mutually incompatible. The need to make
these purse systems compatible with each has become increasing compelling, in part due to
the introduction of a common European currency in 2002. Since all electronic purse cards

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 736 of 1123

702 Smart Cards in Payment Systems

are generally only valid for a period of three years, it is in principle possible to make gradual
modifications to the purse systems over the course of several years using a migration path that
is yet to be defined.

The fundamental prerequisite for achieving mutual compatibility among several electronic
purse systems is a document specifying the features that the systems must have for compatibil-
ity. This document bears the name ‘Common Electronic Purse Specifications’ (CEPS), and the
first version was published in 1999 by CEPSCO [CEPSCO]. In an earlier specification stage,
the focus of CEPS was on an internationally interoperable electronic purse system, rather than
one limited to European interests.

CEPS includes the standard functions for modern electronic purse systems, such as offline
payment, online loading and online currency conversion. It is based on the European standard
for electronic purses, EN 1546,10 but it contains several extensions and modifications with
respect to this standard. For instance, in contrast to EN 1546, RSQ-based certificates are
used for authentication of terminals and smart cards. Triple DES is recommended as the
cryptographic algorithm.

CEPS, like many electronic purse systems, is optimized for simple smart card microcon-
trollers. A typical implementation of CEPS in assembler or C requires 8 kB of ROM, 4 kB of
EEPROM, 1 kB of RAM and a numeric coprocessor for the asymmetric cryptographic algo-
rithm. In the future, most European electronic purse systems will be compatible with CEPS,
so in the medium term it should be possible to make payments in various European countries
using a single purse card.

12.3.3 Proton

Proton is an internationally used electronic purse system, which up to now has been developed
almost exclusively by Bull, starting as early as 1995. It originates from Belgium and the
Netherlands (where it is known under the brand name ‘Chipknip’), which is also where it is
most widely used and presently has the status of a national electronic purse system. There
are also relatively large purse systems based on Proton in Switzerland and Sweden (under
the ‘Cash’ brand name). As of the spring of 2002, there were approximately 40 million cards
issued internationally and around 360,000 terminals.

This electronic purse system was originally called CC 60, which is a name that originates
from Bull. The current version is designated R3, and the next generation, which is already
available in initial versions and has been strongly extended, is designated R4. R3 is a purse
system that is optimized for inexpensive smart card microcontrollers, and it can be readily
implemented in chips having 16 kB of ROM, 6 kB of EEPROM and 256 bytes of RAM. R4 is
an extended version of R3 and is compatible with CEPS.11

Besides the actual purse system, the specifications for R4 define an operating system for
multiapplication smart cards that includes debit and credit capabilities in accordance with the
EMV specification,12 as well as a digital signature application and Java functionality. There is
also a contactless version of Proton, which is primarily intended to be used in the local public

10 See also Section 12.3.1, ‘The EN 1546 standard’
11 See also Section 12.3.2, ‘Common Electronic Purse Specifications (CEPS)’
12 See also Section 12.4, ‘The EMV Application’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 737 of 1123

12.3 Electronic Purses 703

hardware

operating system

R3

UPE

CEPS
ASPIC EMV D/C JVM

CALC DFM

Figure 12.14 Schematic representation of the basic architecture of the Proton R4 smart card operating
system. The following abbreviations are used: CALC (card application life cycle), DFM (data file man-
agement), UPE (universal purse engine), ASPIC (application for secure personal identification = PKI
functionality), EMV D/C (EMV debit/credit application) and JVM (Java virtual machine)

transportation sector. The publisher of the specification, which is confidential, is Proton World
[Proton].

The electronic purse system includes the usual functions, such as loading, individual pay-
ment, incremental payment (‘sliced payment’) and refunding a payment. The main use for
incremental payment is public card phones, which require small amounts to be repeatedly
debited from the purse balance at short intervals during a session. Transactions are stored
in record-oriented log files. The purse parameters are also stored in files. In order to allow
the system to be implemented using inexpensive microcontrollers, which have relatively little
memory, it is allowed to place the files directly below the MF without a DF. Both DES and
triple DES are used as cryptographic algorithms in R3. Many of the smart card commands used
in the system are based on or compatible with the ISO/IEC 7816-4 and EN 1546 standards.
They are supplemented by several application-specific commands. The actual purse function is
related to the standard EN 154613 procedures in many aspects. However, it is readily apparent
that Proton is several years older than EN 1546.

12.3.4 The Mondex system

There are presently several large payment systems in the world that use smart cards as a key
component. Very few of these systems are based on an electronic purse, in which monetary
units are stored directly in the card and not in a background system. Of these, there is only one
system that can claim to allow electronic payments that correspond to payments using normal
money. This is the Mondex system [Mondex].

The idea behind this concept, which is currently unique, was born in 1990. After five years
of development, the first field trial was carried out in July 1995 in the southern English city
of Swindon. A wide variety of shops were included in this trial, including newsstands, snack
bars, supermarkets and travel agents, as well as filling stations and telephones. The maximum
amount in the purse was set at £500 (approximately €550) for the trial, but this value can in
principle be set to any desired level. Following this trial, which was widely reported in the
press, there have been additional field trials in many different regions, but up to now the system
has not been introduced in any country as a national system.

13 See also Section 12.3.1, ‘The CEN EN 1546 standard’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 738 of 1123

704 Smart Cards in Payment Systems

Mondex was a consortium of three firms: British Telecom, National Westminster Bank and
HSBC. Its purpose was to create a means of payment that can be used like cash but does not
have the disadvantages of cash. The result of this technical development was intended to be
franchised to banks and other firms. After having had several intermediate owners, Mondex
now belongs to the credit-card company MasterCard.

Mondex is one of the few electronic purse systems to be offered as a complete system, from
the cards to the background system. Despite immense marketing expenditures, the high initial
expectations with regard to widespread use of the system have failed to materialize. Currently,
Mondex is an electronic purse application in the Multos smart card operating system,14 and it
is used in a few locations throughout the world.

The smart card operating system used for Mondex is not limited to electronic purse systems.
It is a multifunctional, general-purpose system that can be used for multiple applications in a
single smart card. This operating system is called Multos, and it is marketed internationally by
Maosco [Maosco], primarily in the card-based payment systems sector. A special feature of
Multos is that it supports downloading software to cards in the field. This software is written
using a language similar to C, called Multos Executable Language (MEL), which is processed
by an interpreter in the smart card.

The system

Since the Mondex purse is designed to behave in the same way as real money, purse-to-
purse transactions are naturally possible. This allows cardholders to make payments among
themselves without the intervention or knowledge of a bank or similar organization. The system
is completely open and anonymous, and as many participants as desired can be involved. Figure
12.15 shows the system participants and the possible money flows.

telephone merchant

card cardwallet

bank

network

Figure 12.15 Possible money flows and participants in the Mondex electronic payment system

The electronic purse is located in the chip of a conventional ID-1 card with contacts. A
matchbox-sized key fob with a display can be used to view the balance in the purse. If the card

14 See also Section 5.14.2, ‘Multos’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 739 of 1123

12.3 Electronic Purses 705

is inserted in this mini-terminal, the current purse balance and the last 10 transactions can be
viewed. A ‘wallet’ is needed to transfer electronic money to the purse of another cardholder.
This device, which resembles a pocket calculator, has a small keypad and display. It also has
a built-in security module and a terminal for the electronic purse. To perform a purse-to-purse
transaction, the user inserts the first smart card into the wallet and enters the amount to be
transferred. This amount is then transferred from the electronic purse to the wallet’s security
module. The second card is then inserted into the wallet, and the amount is transferred to it
from the security module. This completes the transaction.

Another device in this payment system is a telephone with a built-in terminal. It allows
money to be transferred over the telephone line during a call. A typical application is ordering
goods from a mail-order catalogue. In this case, payment can be made when the order is placed.
Naturally, this technique can also be used to load the purse via the telephone, or to perform a
transaction between two cardholders. If the card is loaded from a bank account, a four-figure
PIN must of course be entered for security reasons, in order to protect the account holder
against unauthorized withdrawals.

Each electronic purse can accept up to five different currencies. As soon as the balance for
a particular currency reaches zero, a different currency can be loaded into the card. The purse
can be blocked with a simple command and unblocked by entering a four-digit PIN, in order
to prevent unauthorized use.

The merchant terminals contain security modules that use the same type of smart card as
those used by customers. It would thus be possible to use such a security module to pay for
other goods. Interestingly enough, this could make the theft of such a card worthwhile, as
it could then be used just like a normal purse. However, this problem was recognized early
on, and preventive measures were taken. Merchant cards can be configured to allow them to
only receive electronic money, with debiting of the card only being possible during an online
transaction with the merchant’s bank. As can be seen, electronic money is not necessarily
immune to theft. It all depends on whether it can be used by a thief. If a merchant terminal has
online access to the bank (possibly via a dial-up link), it can be configured to automatically
transfer money from the merchant card to the merchant’s bank account whenever a particular
balance is reached.

Security mechanisms and the payment procedure

All specifications related to transaction processes and the security model of the Mondex system
are confidential. This makes it very difficult to obtain detailed technical information about
the system and its individual components. We can therefore provide only a broad technical
summary that illustrates some of the mechanisms and procedures used in the system.

The microcontroller that is used is a Renesas H8/3102. For mass production, a processor
specially developed for Mondex is planned, with a numerical coprocessor and a suitable amount
of memory, since the application requires around 5 kB in EEPROM. A symmetric cryptographic
algorithm, such as DES, is probably used. As a special processor with a numerical coprocessor
will be used in the future, it can be assumed that this will be replaced by an asymmetric algorithm
for increased security. The RSA algorithm could be used, for example. In principle, though, the
system is independent of the cryptographic algorithm used. It does not rely on special properties
of a particular algorithm, but only uses (digital) signatures to protect data transmissions. In this

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 740 of 1123

706 Smart Cards in Payment Systems

regard, it differs little from multi-sector European electronic purse systems that are compliant
with EN 1546.15

Since the Mondex system is operated in a completely decentralized manner, there must be a
special procedure for switching key versions and algorithms. Each issued card contains at least
two totally different cryptographic algorithms with several associated keys. If it is necessary
to switch to another key version, or even to use a different algorithm, an appropriate parameter
is set in all smart cards that make an online connection to the background system. These cards
can in turn set the same parameter in all cards with which they conduct payment transactions.
This snowball effect produces a system-wide switch to the new general parameters within a
very short time, due to the exponential increase in the rate of data propagation. This would
happen even if the background system only modified the parameter in a single card. This is
a very effective, fast and simple method of changing global data in a decentralized payment
system.

Naturally, it must be possible to isolate particular cards in the system. This can be done
in three different ways. First, suspect cards identified by blacklists can be recognized and
retained by the machine into which the card is inserted, although this is usually only possible
with cash dispensers, since only they have the technical resources to retain cards. Second,
the blacklists are loaded into all of the terminals, which can block cards so that they can no
longer be used for transactions. Third, all issued electronic purse cards allow only a certain
number of transactions to occur, after which they are automatically blocked. This block can be
removed by an online query after the card has been checked against the blacklist, so the card
does not have to be replaced. This ensures that a card with an electronic purse cannot be used
indefinitely without any control by the background system.

A typical payment transaction between two smart cards in the Mondex system is divided
into two stages, which are shown graphically in Figure 12.16. In the first stage, the current
transaction is registered, which involves exchanging all of the data needed for the subsequent
money transfer. This is followed by the second stage, in which the second smart card sends the
desired amount to the first smart card. The complete data set is digitally signed, so it cannot be
manipulated during the transfer. After receiving the data, smart card 1 checks the signature to
verify both the authenticity of smart card 2 and the authenticity of the transferred data. If all of
these verifications are successful, the desired amount is debited from smart card 1 and sent to
smart card 2, together with a digital signature. Smart card 2 checks this signature to eliminate
the possibility that the data have been manipulated, which also allows it to authenticate smart
card 1. If all of these verifications are successful, the amount is credited to the purse. Following
this, smart card 2 generates a confirmation that the amount was properly credited, adds a digital
signature and sends this information to smart card 1. The transaction is completed when this
confirmation of payment has been received and successfully verified.

Both cards contain log files, and they have suitable mechanisms to allow a transaction
to be correctly resumed from the appropriate point if it is interrupted. These error recovery
mechanisms are very important, since otherwise electronic money would be destroyed if a
transaction were interrupted. Each of the participating cards has three separate log files for
storing transaction-related data. The first is the transaction log, which stores various data related

15 See also Section 12.3.1, ‘The CEN EN 1546 standard’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 741 of 1123

12.3 Electronic Purses 707

Smart Card 1

basic transaction data

desired amount || signature

electronic money || signature

confirmation || signature

debit
amount

Phase 1

Phase 2
credit
amount

Smart Card 2

Figure 12.16 Information flow for a transaction between two smart cards in the Mondex system

to the 10 most recent successful transactions. The second is the pending log, which contains
all of the data accumulated during a transaction that will be needed if error recovery becomes
necessary. The third is the exception log, which stores all transactions that are not completed
successfully. If all of the records in this file have been written, the smart card is automatically
blocked. The cardholder must then unblock it via an online transaction, during which the log file
entries are loaded into the background system and analyzed. After this, these entries are deleted.

Summary

The Mondex system is currently the only completely open electronic payment system using
electronic purses. It supports all types of transactions that are possible with normal cash. In
addition to this, it allows payments to be made via various telecommunications media, such as
the telephone system. If the card containing the purse is lost, the money held in it is naturally
also lost, just as with a real purse containing cash. However, this makes the system completely
anonymous, which is sure to boost user acceptance. To a certain extent, the Mondex system is
a simulation of a real money circuit. Since many central banks and government bodies have
strong reservations with regard to direct card-to-card money transfers, a version of Mondex in
which purse-to-purse transactions are blocked has also been developed. This yields a money
circuit for the electronic purse system that is similar to that of EN 1546.

Since it is in principle impossible to demand a fee for each individual transaction with such
a system, a question that quite quickly arises is how the system operator can generate any
revenue. After all, the investments needed to establish and operate the system are not exactly
trivial. In the Swindon field trial, each electronic purse user was charged a relatively low fee
of £1.50 (≈€1.70) per month. The merchants naturally also paid fees. Although it would
be possible to charge clearing fees for the merchants’ turnovers, the completely open nature
of the system naturally leaves merchants free to use their accumulated electronic money to
make purchases from each other. The system operator could also generate revenue by offering
various services to cardholders and merchants.

A major advantage of Mondex is that the clearing costs are nearly zero, since clearing in the
usual sense is not necessary. Particularly with very low-value payments (‘micropayments’),
clearing costs in many systems can be very large relative to actual turnover. In some electronic

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 742 of 1123

708 Smart Cards in Payment Systems

purse systems, for example, the complete clearing costs, including transaction logging using
shadow accounts, is around 5 eurocents per transaction. This means that the clearing cost for a
pack of chewing gum bought from a vending machine (for 20 eurocents) is a hefty 25 % of the
purchase price, which is totally unacceptable for the merchant. In the Mondex system, these
costs would not arise.

In the coming years, the Mondex system will influence the market for electronic payment
systems in many ways. At the international level, several large banks are considering the
introduction of such a payment system. The possibility of making card-to-card transactions,
which is viewed by many national banks as a security risk, can be disabled in the latest version
of the system. This has strongly increased its level of acceptance. We can hardly wait to see
what will develop.

12.4 THE EMV APPLICATION

Specifications and standards for using smart cards in a wide variety of application areas have
been available for many years. However, there has traditionally been a strong concentration
on telecommunications applications (telephone cards and GSM cards). This situation has
changed markedly since the mid-1990s. The European electronic purse standard (EN 1546)
is a good example of this trend, but the most important specification in the field of payment
systems is the EMV specification. This specification, which is named after its three initiators
(Europay, MasterCard and Visa), contains detailed descriptions of all aspects of credit cards
containing microcontroller chips. A corresponding specification for matching terminals is also
now available.

In the autumn of 1993, the three internationally active credit card companies Europay,
MasterCard and Visa started work on a specification titled ‘IC Card Specifications for Payment
Systems’. Version 1 was published relatively soon afterwards, in October 1994. In mid-1995, a
revised specification (Version 2) was completed. The final version of this specification, called
‘EMV ’96’, was released at the end of June 1996. It is backward compatible with Version 2.
After ambiguities had been cleared up and small errors corrected, a completely revised and
compatible version of the EMV specification (Version 3) was published in the summer of 1998.
At the end of 2002, the version number was increased to 4 with a few modifications. This is the
presently valid version, and its official name is ‘EMV 2000’. It is also available via the Internet
[EMV], and it can be recommended without reservation to interested parties as a worthwhile
subject of study.

Several factors motivated these credit card issuers to prepare a specification for credit cards
with chips within such a short time. First, existing credit cards with magnetic stripes can be
very easily forged. Nowadays, the only real obstacle is the hologram, which is still moderately
secure against forgery. All other card features can be copied relatively easily. The second
important factor is the value-added services that a microcontroller card can offer. Electronic
purses, bonus points and telephone functions are only some of the possibilities.

The specification for credit cards with chips is divided into four parts, which are called
‘books’. Book 1, Application-independent ICC to terminal interface requirements, draws heav-
ily on the ISO/IEC 7816-1/2/3 family of standards. It describes the electromechanical character-
istics, logical interface and data transmission protocols, which are the application-independent

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 743 of 1123

12.4 The EMV Application 709

parameters. According to this part of the specification, the smart card has an ID-1 format16

with ISO contact locations. It must have a supply voltage of 5 V ± 0.5 V, a maximum cur-
rent consumption of 50 mA and a clock rate of 1–5 MHz, among other things. The contact
force must not exceed 0.6 N per contact. Data transmission at the physical level is essentially
identical to ISO/IEC 7816-3. This applies to the time interval for individual bits,17 the ATR18

and the two transmission protocols19 (T = 0 and T = 1).20 The specification of the APDU21 is
identical to that in the ISO/IEC 7816-4 standard.

The second part of the specification (Book 2, Security and key management) defines the
security mechanisms and key management. Book 3, Application specification, contains the data
elements, commands and processes needed for debit and credit transactions in accordance with
the EMV specification. Book 4, Cardholder, attendant, and acquirer interface requirements,
contains many general specifications for EMV-compliant payment systems that are related to
users and merchants.

Since typical credit cards are mass-produced articles, their manufacturing costs must natu-
rally not be too high. As these costs predominantly depend on the embedded microcontroller,
the credit card application was designed from the start to use a minimum amount of memory.
A conventional EMV application without supplementary functions thus fits into a processor
with 6 kB of ROM, 1 kB of EEPROM and 128 bytes of RAM. Even in the smart card area,
these values represent the lower end of the range of available chips, but they do make for an
inexpensive product.

To a certain extent, the EMV specifications are basic documents that specify the minimum
requirements for the various card issuers. The current version leaves a number of issues open.
For example, risk management of the terminal and the smart card during transactions is not
yet precisely specified. Consequently, the EMV application is only described here in outline,
since many details must be specified by the card issuer.

Files and data elements

The specification for credit cards with chips only states that a tree structure must be used for the
files.22 The actual application is located in its own DF, which is selected using an application
identifier (AID) and which contains all of the data elements for the credit card application.
These data elements are stored in EFs with standard file structures in accordance with ISO/IEC
7816-4. EFs can normally be selected implicitly using short FIDs. The main difference with
respect to similar specifications is that no particular EFs or FIDs are specified. However, this
is not necessary for the functions used for payments, since all of the necessary data can be
processed using existing commands. There is only one file directly below the MF (EFDIR per

16 See also Section 3.1.1, ‘Card formats’
17 See also Section 6.1, ‘The Physical Transmission Layer’
18 See also Section 6.2, ‘Answer to Reset’
19 See also Section 6.4, ‘Data Transmission Protocols’.
20 See also Section 6.5, ‘Message Structure: APDUs’
21 See also Section 6.5, ‘Message Structure: APDUs’
22 See also Section 5.6, ‘Smart Card Files’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 744 of 1123

710 Smart Cards in Payment Systems

ISO/IEC 7816-5), which contains all of the information related to the applications present in
the card.

All data elements in the terminal–card system are specified using unambiguous templates
and tags. They can be addressed within the application using the specified commands, without
any knowledge of their precise locations in the file tree or a particular file. This makes it
possible to leave the definition of the file structure to the card issuer, since it does not affect
the execution of the transactions.

Commands

Strictly speaking, only three commands are necessary for performing the actual payment func-
tions. Additional commands are needed for personalization, management, special functions
and value-added services, but they fall outside the scope of the EMV specification. According
to the requirements of the EMV specification, the following commands must be available, with
all return codes being similar to ISO/IEC 7816-4: 23

� APPLICATION BLOCK (specific to EMV)

� APPLICATION UNBLOCK (specific to EMV)

� CARD BLOCK (specific to EMV)

� EXTERNAL AUTHENTICATE (as a subset of ISO/IEC 7816-4)

� GENERATE APPLICATION CRYPTOGRAM (specific to EMV)

� GET CHALLENGE (ISO/IEC 7816-4)

� GET DATA (specific to EMV)

� GET PROCESSING OPTIONS (specific to EMV)

� PIN CHANGE/UNBLOCK (specific to EMV)

� READ RECORD (as a subset of ISO/IEC 7816-4)

� SELECT (as a subset of ISO/IEC 7816-4)

� VERIFY (as a subset of ISO/IEC 7816-4)

Cryptographic mechanisms

The cryptographic mechanisms used in an application are naturally highly dependent on the
associated general requirements. This can be seen especially well in the EMV application.
A basic initial premise for the system design was that terminals do not necessarily contain
security modules, depending on the system operator. This makes it impossible to use symmetric
cryptographic algorithms, since the keys cannot be kept secret. The reasons for not using

23 See also Section 7.10, ‘Commands for Credit and Debit Cards’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 745 of 1123

12.4 The EMV Application 711

security modules are that they significantly increase the cost of the terminal, and that an
international system for managing keys in terminals, some of which operate offline, would be
very complicated and expensive.

In order to make smart card authentication by the terminal possible under these conditions,
an asymmetric cryptographic algorithm must be used. EMV uses static unilateral authentication
with card-specific keys.24 This does not allow the card to check the authenticity of the terminal,
but this is not essential in the EMV application, since debiting is not performed in the card.
The card only generates a transaction certificate for the terminal. This transaction certificate
is not anonymous with respect to the cardholder, and it can be submitted to the relevant card
issuer only by an authorized (known) merchant. This largely excludes most possible forms of
fraud, since a valid transaction certificate can be ‘converted’ into money only by an authorized
merchant known to the card issuer.

In principle, any desired cryptographic algorithm can be used, since both the associated data
elements and the algorithm itself are unambiguously identified by TLV-coded data structures.
Version 2 of the EMV specification allows either the SHA-1 (as per FIPS 180-1) or the ANSI
X9.30-2 hash function to be used.25 The cryptographic algorithm used is not DSS, as might
be expected from the use of SHA-1, but instead the RSA algorithm26 (ANSI X9.31-1). The
length of the key can vary, depending on the card issuer, and it is indicated by an appropriate
code (signature tag). Small numbers, such as 3 or 216 + 1, are recommended for the public key
in order to minimize computation time.

If the smart card has established an online link to the background system, it is possible
to protect the data transmission by secure messaging27 as specified in ISO/IEC 7816-4. A
symmetrical cryptographic algorithm is used for this end-to-end communication, namely triple
DES. In this case, it is possible to do so without compromising system security, since both the
background system and the card can securely store the secret key.

System architecture and transaction processes

Traditionally, a highly centralized system architecture is used for payment systems in the credit
card sector. There are usually several background systems, which are either individually or
collectively responsible for a certain region (such as Germany). The computer centers for the
background systems, which are equipped with high-performance computers, are interconnected
by the independent network of the card issuer. This network supports data exchanges for
clearing and increases operational reliability, since if one center fails, its activities can be
taken over by other centers. Individual terminals are connected to the background system via
the public telephone system and data networks, such as ISDN and X.25. An acquirer, who
routes and bundles transaction data, may be located between the terminals and the background
systems. However, this strongly depends on the particular card issuer and country. At the
terminal level, there are two different options: data may be exchanged directly with the acquirer,

24 See also Section 4.11.3, ‘Static asymmetric authentication’
25 See also Section 4.9, ‘Hash Functions’
26 See also Section 4.7.2, ‘Asymmetric cryptographic algorithms’
27 See also Section 6.6, ‘Securing Data Transmission’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 746 of 1123

712 Smart Cards in Payment Systems

or a concentrator belonging to a merchant or chain of shops may be used. Both of these options
are possible, and both are used in practice.

acquirer

other
background

systems

concentrator

terminal terminal

...

...

Figure 12.17 Basic architecture of the payment system for EMV cards

The process of making a payment with a ‘smart’ credit card is not much different from
making a payment using a traditional credit card. The customer presents his or her card to the
cashier, and it is inserted into a smart card terminal. If a terminal is not available, payments can
be made in the conventional manner using the magnetic stripe or embossed characters, which
are still present on the card. However, even if a terminal is present, it is still possible to verify
the identity of the card user by means of a signature. In this case, the associated transaction
receipt has a marker that indicates that the card user has been identified in this manner. The
other option is for the card user to enter a four-digit PIN. This can be checked online by
the background system or offline by the smart card. If a PIN is used for identification, the
transaction certificate indicates which type of PIN check was performed. The payment process
is shown graphically in Figure 12.18.

buyer seller terminal

offline payment

online payment

card

data

card issuernetwork

Figure 12.18 Basic infrastructure of a payment process using a smart card, according to the EMV
specification

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 747 of 1123

12.4 The EMV Application 713

At the detail level, the individual functions and the process of a successful payment trans-
action using a smart card are naturally somewhat more complicated. An example is shown in
Figure 12.19, which illustrates the fundamental mechanisms. Both the card and the terminal
determine the exact course of the transaction based on various transaction data, such as the
amount involved. For instance, if the amount to be paid exceeds a certain sum, the card re-
quests online authorization of the payment by the background system. The terminal must then
establish a link to the background system and have the payment approved. Only after the back-
ground system has approved the request does the card generate a valid transaction certificate,
which the merchant can submit for clearing. The purpose of online authorization is to minimize
the financial risk to the card issuer. Since a ‘smart’ credit card must regularly report to the
background system in accordance with a number of conditions, the maximum loss in the event
that a card is stolen or manipulated can be held within precisely calculable limits.

static
asymmetric

authentication

select the
application

PIN verification

online/offline
decision

complete the
payment transaction

read the
relevant data

Reset
SELECT FILE (directory file)
READ RECORD ()
SELECT FILE (DF of the EMV application)

directory file

GET PROCESSING OPTIONS

VERIFY

GENERATE APPLICATION CRYPTOGRAM
(for transaction certificate)

GENERATE APPLICATION CRYPTOGRAM
(for online authorization)

GET DATA (for unilateral authentication
of the smart card by the terminal)

Figure 12.19 A high simplified portrayal of the payment process with a smart card according to the
EMV specification, as seen by the terminal

Future developments

In terms of its structure and contents, the EMV specification allows the card issuer consider-
able room for individual initiative, which makes further developments and individual versions
possible. This flexibility will doubtless be utilized extensively by various firms. For instance,
each of the three credit card issuers involved in drawing up the EMV specification has gen-
erated a specification for an electronic purse 28 that can also be included in the smart card as

28 See also Section 12.3.1, ‘The CEN EN 1546 standard’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 748 of 1123

714 Smart Cards in Payment Systems

necessary. Particularly with vending machines or small purchases, a prepaid electronic purse
definitely has advantages, since the fee that is otherwise charged for a credit card payment is not
applicable.

In the near future, the increasing commercial use of international networks, such as the
Internet, will require secure means of payment that are internationally available and widely
accepted. Credit cards with chips and a few value-added services would be eminently suitable
for this, since they have already achieved international acceptance and widespread use, inde-
pendent of any particular country or currency. Work is presently being carried out in this area.
The difference between this and the payment process described above is not great, since the
Internet or the like could take the place of the acquirer. In principle, all that is necessary is that
the customer has access to a smart card terminal.

The EMV specification has achieved the same significance in the financial transactions
field as GSM 11.11 has for smart cards used in telecommunications applications. There are no
modern smart card operating systems on the market that do not claim to be EMV-compatible.
Due to the number of credit cards with chips that can be expected to be in circulation in the
future, this specification represents the minimum standard for all future applications.

12.5 THE EUROCHEQUE SYSTEM IN GERMANY

Germany is different from other countries with regard to card-based payment systems, in that
traditionally debit cards (Eurocheque cards) have been used much more than credit cards. This
type of card can be used in many places to make payments after the user has entered a four-digit
PIN. The amount to be paid is immediately deducted from an account associated with the card.
The merchant must pay a fixed fee for each payment transaction, but it is not particularly high.
With credit cards, the fee is a percentage of the revenue, and for this reason credit cards have
achieved only moderate acceptance in Germany. There is also a widely used option called
POS ohne Zahlungsgarantie (POZ), in which the customer consents to have the amount of the
purchase transferred from his bank account to that of the merchant via direct debit. In this case,
the Eurocheque card serves only to provide a reference to the customer’s bank account, which
is checked online to see whether the balance is sufficient to cover the amount of the purchase.
However, in this case the merchant does not receive a payment guarantee, as he would with a
credit card transaction or a normal Eurocheque card transaction (ec-Cash or Geldkarte).

Since Eurocheque transactions usually have to be authorized online by a background system,
the merchant must also pay the costs of the individual data transmissions or the rental for a
leased line. Since this is only worthwhile for the merchant if there is a large sales volume
and many purchases are made using Eurocheque cards, improvements to this system have
been sought for some time. The acceptance of Eurocheque cards among merchants would
increase dramatically if the high telecommunications costs could be eliminated. This means
that a system that can work offline is needed.

In 1993, the Zentraler Kreditausschuss (ZKA), which is a working group of the national
associations of the German banking industry, issued a call for tenders for the design of a
multifunctional chipcard (MFC)29 that would be suitable for electronic payment systems.

29 The term ‘multifunctional chip card’ was coined at this time and in this context

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 749 of 1123

12.5 The Eurocheque System in Germany 715

fee

revenue

Geldkarte

credit card (7 %)
credit card (3 %)

debit note
(POZ)

ec-Cash

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0 10 20 30 40 60 50

Figure 12.20 Merchant fees for electronic payments in Germany. With the debit note method (POZ),
the fee is eurocents per transaction, independent of the revenue. With this method, the customer signs a
debit note authorization, which allows the merchant’s bank to debit the amount of the purchase from the
customer’s account. When a purchase is made using a Geldkarte, the merchant must pay at least 0.3 %
of the purchase amount, with a minimum fee of 1 eurocent. If the customer uses ec-Cash, the merchant
must pay at least 0.3 % of the received revenue, with a minimum fee of 7.5 eurocents. With a credit card,
the merchant must pay between 3 % and 7 % of the revenue, depending on the contract, possibly with a
contractual minimum revenue

Several firms offered solutions corresponding to the requested functionality, and one of them
was selected and awarded the rights to the design by the ZKA. Due to changes in the general
technical requirements, this design was then extensively revised. As a result of these revisions,
there is now a family of specifications for Eurocheque cards with chips, each of which addresses
a particular area. Unfortunately, these specifications are confidential, so it is not possible to
publish detailed information. However, we can present brief summaries of the various areas,
which are:

� the SECCOS operating system

� Geldkarte

� ec-Cash with chips

� digital signatures

� EMV

� electronic driver’s license

� electronic marketplace

� personalization

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 750 of 1123

716 Smart Cards in Payment Systems

These documents describe a payment card whose functionality corresponds to that of the
current Eurocheque card and which also contains an electronic purse. It is also possible to load
any desired supplementary applications into the card after it has been issued.

Prior to the nationwide introduction of the new card, a large-scale field trial was conducted
in a region around Ravensburg and Weingarten (near Lake Constance), which has a trading area
with 250,000 inhabitants. The trial involved around 100,000 Eurocheque cards and approxi-
mately 500 terminals. Following this, wide-scale introduction of the card throughout Germany
started in the fall of 1996. Up to now, around 50 million Eurocheque cards with chips have been
issued in Germany, all of which must be replaced every three years. At the end of 1998, 250,000
terminals had been installed in Germany, with 300 million transactions taking place each year
with these terminals. In 1999, the combined turnover for magnetic-stripe and chip-based trans-
actions using ec-Cash and Geldkarte amounted to approximately 19 billion euros. Nearly all
of the 41,000 automated cash dispensers in Germany are equipped with smart card terminals.
There are presently around 30,000 loading terminals for Geldkarte in Germany. This field trial
thus proved to be the precursor to one of the largest smart card payment systems in the world.

In 2001, a statistical survey of the Geldkarte electronic purse system was conducted. The
figures from the survey give a clear picture of the current usage of the system. Of the 50 million
cards that have been issued with the Geldkarte application, only 4 million are actively used,
resulting in approximately 14 million transactions in half a year. The average load amount was
30 euros, and the average payment amount was 2.30 euros.

User functions

The German Eurocheque card with a chip has a variety of user functions. It can be used to make
online or offline payments at a suitable terminal after entering a PIN code. The amount to be paid
is then deducted from the associated account by the bank that issued the card. This application
is referred to in this chapter as ‘ec-Cash’, although there are also other designations for it.

Naturally, it is also possible to use a Eurocheque card with a chip to obtain cash from the
cash dispensers of various banks, but in functional terms, this actually belongs to the realm of
ec-Cash. It goes without saying that the smart card also supports a variety of lobby-machine
functions, such as printing an account statement. The card also contains a prepaid electronic
purse called Geldkarte, which can be used to make payments without entering a PIN code. This
purse is available in anonymous and non-anonymous versions. It can be repeatedly reloaded
using suitable loading terminals (located at bank counters and cash dispensers), either against
a cash payment or via an ec-Cash transaction.

One of the capabilities of the Eurocheque card is downloading additional applications, with
all of their associated files and commands, after the card has been issued to the cardholder.
However, this capability has not been used very much up to now, since the coordination
requirements and conditions for a new application are relatively complex.

The overall system in brief

As is usual with large payment systems, there is no central clearing system for German Eu-
rocheque smart cards. There are four computer centers for processing settlements among the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 751 of 1123

12.5 The Eurocheque System in Germany 717

accounts of the merchants, cardholders and participating financial institutions. Figure 12.21
shows an overview of the clearing process for the non-anonymous version of the electronic
purse application. The clearing body in Germany is called the Börsenevidenzzentrale (BEZ).
There are also approximately 25 loading centers that perform loading operations for Geldkarte
cards in coordination with the BEZ.

merchant terminal

merchant's
bank

cardholder's
bank

loading terminal
purse
card

card account

merchant

notice of
load amount

load
amount

load amount
authorization

credit note for
turnover

debit note for
turnover

credit note
for load amount

debit notes for
load amount
and card fee

card
fee

card
fee

merchant
card

purse
card

cardholder

purse settlement
account

purse clearing
center

loading
center

Figure 12.21 Basic architecture of the payment system for the German Geldkarte, which is an account-
linked electronic purse system and thus not anonymous

All transactions are based on two accounts: the purse settlement account, which always
reflects the current balance of the electronic purse in the card, and the card account, which for
example may be the cardholder’s current account. The purse settlement account is thus a shadow
account, which is maintained in parallel with the electronic purse. If an amount of money is
loaded into the electronic purse, a corresponding booking is made to the purse settlement
account at the same time, since this transaction must always be performed online. Depending
on whether the payment transaction occurs online or offline, the amount of the payment is
booked against the purse settlement account either at the same time or at a later time. The main
advantage of this account-linked system is that the purse balance can be reconstructed after a
certain amount of time if the electronic purse is lost or becomes unusable. Of course, it is not
possible to ensure that payments are anonymous with this approach. However, there is also an
anonymous version of the electronic purse that uses a shadow account, with no reference to a
customer account.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 752 of 1123

718 Smart Cards in Payment Systems

Eurocheque smart cards

Several different types of cards are used in the German Eurocheque system. However, smart
cards for normal bank customers can be classified into several categories, as follows:

� Eurocheque cards (ec-Cash and Geldkarte, account-linked and thus not anonymous)

� Geldkarte linked to an account (non-anonymous)

� Geldkarte not linked to an account (anonymous)

There are two DFs in a Eurocheque card, one of which holds the ec-Cash application and
the other the Geldkarte30 application. If the card contains an electronic purse application, the
DF for ec-Cash is not present. The account reference, which determines whether the card is
anonymous, is provided using only certain data elements.

For merchants, there is merchant card in ID-000 format (plug-in) for use in their terminals.
It contains all of the commands and files needed to conduct payment transactions. This card
can be regarded as the security module of the terminal. One of the unusual and technically
interesting features of this system is that it has both real and virtual merchant cards. A real
merchant card is a normal smart card in plug-in format. A virtual merchant card is simply
a software simulation of a real merchant card, which runs in the protected environment of a
security module (SAM) in a merchant terminal.

This solution was originally a compromise to allow terminals without sockets for plug-in
cards to be used in the new system. In the meantime, it has turned out to have some very
positive technical features. For instance, a virtual merchant card can easily be replaced via
remote maintenance, since it consists only of software. In addition, its useful life is significantly
longer than that of a real card, since it is not subject to the detrimental effects of a limited
number of EEPROM write cycles. Finally, a good hardware security module is at least as
secure as a smart card, since its security mechanisms are always active, thanks to its built-in
power buffer.

The entire informatics concept and the security module of the card are strongly based on the
ISO/IEC 7816 family of standards. The original version, which is now called Type-1 Geldkarte,
included a few application-specific mechanisms, but they have been eliminated in more recent
versions. A complete smart card operating system with PKI functions has now been specified.
It is called Security Card Operating System (SECCOS), and it supports all of the essential
mechanisms of the ISO/IEC 7816 standards. The security and access mechanisms of ISO/IEC
7816-9 have also been included in a very elaborate form, with the result that as of now, the
German Eurocheque smart card probably represents the most complete implementation of this
standard in the world. For reasons of compatibility, elements of the EMV specification for
credit cards also contributed to the specification of the Eurocheque card.

In terms of the general technical parameters prescribed by the specification, the card is
based on many previously existing standards. Naturally, its dimensions match those of the
ID-1 format and are thus the same as the present Eurocheque card. In addition, it is constructed

30 Unfortunately, the term ‘Geldkarte’ is ambiguous, so it must always be understood in context. It can refer to either
an electronic purse as an application in a smart card, or the smart card itself

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 753 of 1123

12.5 The Eurocheque System in Germany 719

as a hybrid card, with both a chip and a magnetic stripe, in order to avoid compatibility problems
during the transition from terminals with magnetic-stripe readers to new terminals with smart-
card contact units. The card uses the T = 0 transmission protocol with PPS. The triple-DES
algorithm is used for the cryptographic processes. One of the interesting security aspects is
that the entire software and hardware of the smart card must be certified in accordance with
the ZKA criteria catalog.31

The file management system supports several levels of DFs, as well as file selection using
short FIDs, FIDs and AIDs. The usual file structures (transparent, linear fixed and cyclic) are
supported, and they can be implicitly selected in the appropriate commands. The maximum
size of the two record-oriented file structures is 254 records of 255 bytes each. Naturally, no
presently existing application fully exploits this maximum size.

The file management system uses a special mechanism to assign EFs to specific applica-
tions. This function, which is implemented using two non-standard commands, allows EFs
to be assigned to applications across DF boundaries. This makes it possible to use a short
FID within a particular DF to select an EF located in a different DF. Consequently, a partic-
ular EF can be assigned to several different DFs. This corresponds in principle to the alias
mechanism used in many PC operating systems. The objective is to make EFs containing
general information available to several applications across application boundaries without
using complicated selection procedures. An EF assigned to several applications in this man-
ner can be selected using a short FID or a FID, and then read or written after the necessary
security state has been attained. All files have specific access conditions, which makes reading
and writing dependent on previously attained states (such as PIN entry). With this object-
oriented system, it is also possible to make access to files depend on secure data transmission.
This means that there are file attributes that can compel the use of secure messaging for any
access.

ec-Cash

Geldkarte

DF

DF

MF

Figure 12.22 Basic file tree of a German Eurocheque smart card containing both the ec-Cash and
Geldkarte applications

The available commands can be divided into four classes. The first class consists of com-
mands that are compliant with ISO/IEC 7816-4, although they have reduced functional scope
compared with the standard. The second class consists of Eurocheque-specific administra-
tion commands, which are used for management purposes in the card. They can be used to

31 See also Section 9.3.1, ‘Evaluation’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 754 of 1123

720 Smart Cards in Payment Systems

create new files, delete existing files and enter new commands into the card. The third class
is extension commands, which are used to achieve the functionality needed for the ecCash
and Geldkarte applications. The administration and extension commands are purely specific
to Eurocheque cards, and in principle they have no connection to any international standards.
The fourth class consists of the initialization and personalization commands.

As can be seen from this brief description, the Eurocheque card has a relatively large
range of functions. This unavoidably results in a large memory requirement. Consequently,
the presently used target hardware predominantly consists of microcontrollers with 100 kB
of ROM, 32 kB of EEPROM and 2 kB of RAM. A pure electronic purse card without the
ec-Cash functions needs only roughly 48 kB of EEPROM, 16 kB of EEPROM and 1 kB of
RAM. Altogether, such memory requirements mean that relatively large chips must be used
to hold the extensive amount of program code, along with the 2.3 kB of application data for
the Geldkarte electronic purse and 1.6 kB for ec-Cash.

Value-added services

The operating system of the Eurocheque card includes commands and mechanisms for down-
loading executable program code. However, this code must be tailored to each type of mi-
crocontroller and operating system being used, since only machine code (which is address
dependent) can be downloaded. The resulting amount of logistical overhead for downloading
new commands is the main reason why this mechanism is presently not used.

However, value-added services do not necessarily require loading programs into the smart
card. In most cases, it is sufficient to have files available that have suitable access privileges.
The Eurocheque card specification includes commands for creating files. However, the ad-
ministrative overhead for implementing supplementary applications for individual cards via
a clearing center is very large, so this mechanism is also very seldom used. Instead, sev-
eral files are stored in the Eurocheque cards when they are personalized, in order to provide
space for storing new applications some time after the cards have been issued. The savings
bank association has given the name ‘Space Manager’ to this technique for managing files for
supplementary applications.

Summary

The German Eurocheque card system is presently one of the largest and most complex payment
systems using smart cards. This applies not only to the transaction procedures, but also to the
logistics of chip fabrication, card personalization and card distribution. After all, every three
years approximately 30 million cards must find their way into customers’ hands within less
than three months.

The security evaluations of the microcontroller hardware, operating system software and
application software have also set new standards, since the acceptance criteria are severe and are
constantly adapted to new circumstances (such as DFA, DPA and the like). Another interesting
aspect is the technically sophisticated compatibility tests, which must ensure that software
produced using a variety of masks on a variety of microcontrollers works smoothly with a
wide variety of terminals.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 755 of 1123

12.5 The Eurocheque System in Germany 721

The original figures of more than 20 different masks used with more than 10 different
microcontrollers have now been reduced to only six masks and three microcontrollers, and in
all likelihood only two mask makers will survive. This is a clear sign of the tendency toward
consolidation exhibited by all large systems.

Field trials for Geldkarte have been conducted or are planned in France, Luxembourg and
Iceland. An additional prospect for this system is shown by several pilot experiments in which
Geldkarte is being used as a payment medium in the German portion of the Internet. All that the
customer needs is a simple, inexpensive terminal connected to his home PC, along with related
software. The merchant’s counterpart is a security module or a special terminal connected to
the customer’s PC via the Internet.

The fact that more than 50 million smart cards are in use in the German Eurocheque system
has an effect on all payment system projects based on smart cards. The experience gained from
using this multiapplication smart card in Germany will provide the stimulus for considerable
further refinement of smart card operating systems and related microcontroller hardware.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 756 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 757 of 1123

13
Smart Cards in Telecommunications

Telecommunications, or communications technology, is the technology used to exchange mes-
sages over arbitrary distances between persons and/or machines. Over the centuries, it has
developed from human messengers and visual signaling techniques to communications using
wire-bound and wireless electrical signals. The pioneers in this field were primarily military
organizations and businessmen, for whom it was a matter of survival to be able to transmit
messages as quickly as possible. Nevertheless, the biggest impetus to the development of
telecommunications has come only in recent years, during which it has become a true mass
application as the result of various favorable conditions, such as deregulation of the market,
inexpensive manufacturing of terminal equipment and a general economic and technical boom.

Although the first proposals for using electricity to convey messages were published as early
as 1753, the first telegraph line between Paris and Lille did not go into service until 1794. In
the following decades, inventions related to conveying messages using electricity were made
by numerous persons in many countries. The most important and most interesting of these
developments were the construction of the electrochemical telegraph by S. Soemmerring in
1809, the invention of induction telegraphy by Carl Friedrich Gauß and Wilhelm Weber in
1833 and the construction of the recording telegraph by Samuel Morse in 1835 (along with
the publication of the Morse code).

However, all of these inventions and constructions, many of which were quite sophisticated,
could only transmit coded electrical signals, rather than the human voice. The latter first became
possible around 1860. As so often with major inventions, it is not possible to credit a single
person with the invention of the telephone. Still, there were essentially two persons who publicly
demonstrated devices that could transmit speech1 using electrical signals: Johann Philip Reis,
a teacher at a school for the deaf, and Alexander Graham Bell, a teacher of the deaf and dumb.
Both of them originally conceived their inventions as teaching aids for helping deaf persons
learn to speak. The major strength of Alexander Graham Bell was his aggressive marketing of

1 According to an anecdote that is now impossible to verify, the first words that Johann Philip Reis transmitted by
telephone in 1863 were ‘Das Pferd frisst keinen Gurkensalat’ [‘Horses do not eat cucumber salad’]. He presumably
chose this somewhat remarkable sentence, rather than something that the person at the other end could readily guess,
in order to be sure that the transmission of human speech actually worked. Something like the presently common
‘Hello world’ could have easily been guessed by the listener

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 758 of 1123

724 Smart Cards in Telecommunications

his invention, with the result that he came to be the better known of the two inventors of the
telephone.

The first local telephone network was constructed in 1878 in New Haven in the USA. In
Berlin, the first local public telephone network was put into operation in 1881. It had human
operators, and naturally it had all the characteristics of the simple electronic technology of
the time. However, the first automatic telephone exchange in Germany, using rotary lifting
selector switches, was installed as early as 1908 in Hildesheim. The worldwide installation
and interconnection of what is known in technical terms as the ‘public switched telephone
network’ (PSTN) began at this date.

After Guglielmo Marconi succeeded in making the first wireless transmission of data over
a distance of several kilometers in 1896, it took only five years for the Atlantic Ocean to
be bridged by wireless telegraphy. The invention of amplifier tubes (valves) stimulated the
technical development of transmitters and receivers for voice communications, with the result
that the first successful transmission of speech over the Atlantic Ocean took place in 1915.
At the 1929 radio exhibition in Berlin, the first ‘picture phone’ was presented. It had the
dimensions of three contemporary telephone booths.2

In the following years, the technical development of telecommunications and mobile radios
accelerated, leading to the inauguration of the first mobile telecommunications network at a
relatively early date.

The first public land mobile networks (PLMNs) came into being around 1950, and at that
time they were reserved for a small and primarily well-to-do social class. For instance, the first
public mobile telephone network in Germany (the A-Netz) started operation in 1958. It had
human operators and used analog signals in the 150MHz band. With a geographic coverage of
approximately 80 % of the Federal Republic of Germany, it had a maximum capacity of 10,500
subscribers. This first mobile telephone network in Germany did not have a cellular architecture,
but instead consisted of a few distributed high-power transmitter and receiver facilities within
whose coverage area it was possible to make telephone calls. It was also necessary to know the
approximate location of the mobile telephone subscriber when placing a call to the subscriber,
so that the proper radio zone could be selected by the human operator. The A-Netz remained
in operation until 1977, when it was replaced by the B-Netz and subsequently the C-Netz, both
of which are also analog systems.

At the beginning of the 1980s, mobile telephone networks with cellular architectures si-
multaneously came into being in many parts of the world. However, these systems were all
mutually incompatible, and due to the expense of the terminal equipment (mobile telephones)
and high usage charges, they were only suitable for a relatively well-to-do clientele. These
networks are presently referred to as the first-generation (1G) mobile telecommunications
networks. They were cell-based, but data transmission at the ‘air interface’ was still analog.
Subscribers were identified by personalized mobile telephones, which means that each mobile
telephone had a fixed association with a particular subscriber. One of the first 1G systems, the
German C-Netz (which is also designated C-450), supported the use of cards. Magnetic-stripe
cards were still used in the first C-Netz mobile telephones, but they were quickly supplanted
by smart cards. This led to a distinction between the telephone and the subscriber, with the
result that the personalization of telephones, which was standard at that time, was no longer
necessary. As a consequence, the telephones, which are quite expensive compared with the

2 A good condensed summary of the history of the methods used in the past for transmitting messages can be found
in (among others) the book Nachrichtentechnik by Oskar Blumtritt [Blumtritt 97]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 759 of 1123

Smart Cards in Telecommunications 725

smart cards, became readily interchangeable. Due to strong competition, the prices of mobile
telephones decreased rapidly, which was in the interest of network operators with regard to
having the largest possible potential market.

The heterogeneous first-generation mobile telecommunication systems in Europe ultimately
led to a desire among European postal authorities in the early 1980s to unify the many different
country-specific systems. The intention behind this was to make it technically possible to use
mobile telephones in more than one country, which above all would allow the prices of system
components and terminals for a common European system to be drastically reduced as the
result of economies of scale.

The end result of several years of work was a specification for the international Global
System for Mobile Communications (GSM).3 The first GSM systems underwent trials in 1991
and were put into regular service in 1992, and they have quickly spread far beyond their orig-
inal European boundaries. However, in many parts of the world there are still other types of
mobile telecommunication systems that are incompatible with GSM. Consequently, as early
as 1985 the International Telecommunications Union (ITU) [ITU], with an eye to the future,
started working on the international unification and functional extension of all existing mobile
telecommunication systems. This concept was called ‘Future Public Land Mobile Telecom-
munication Service’ (FPLMTS). However, it failed to produce an internationally standardized
solution, as was originally intended, so in 1995 it was converted into the IMT-2000 concept
(‘International Mobile Telecommunication at 2000 MHz’). IMT-2000 provides considerably
more room for maneuvering with regard to implementation, and it has come to form the basis
for the current UMTS and other third-generation mobile telecommunication systems.

It is common throughout the world to classify the technology of mobile telecommunications
networks using a generation number. The generations are counted starting at ‘1’, and they
include only networks with cellular architectures. According to this scheme, early examples of
mobile telecommunication networks, such as the German A-Netz and B-Netz, would belong to
generation zero, but this designation is not commonly used. The designation ‘first generation’
(abbreviated as ‘1G’) is applied to cellular mobile telecommunication networks with analog
air interfaces. Some typical examples of 1G networks are AMPS and the German C-Netz.
A second-generation (2G) system is understood to be a cellular mobile telecommunication
network with digital data transmission on the air interface. The two most widely used 2G
systems are GSM and CDMA. Functional extensions of GSM, such as the General Packet
Radio System (GPRS) and EDGE (‘Enhanced Data Rates for GSM and TDMA Evolution’),
which head in the direction of the third generation, are typically referred to as 2.5G systems.
The third generation (3G) also encompasses cellular mobile telecommunication networks with
digital air interfaces, but with major extensions with regard to mobile data communications
and Internet-compatible services compared with 2G systems. Some typical 3G systems are
UMTS and CDMA 2000. Both of these systems are in turn members of the IMT-2000 family.

Details relevant to smart cards with regard to setting up GSM and UMTS mobile telecom-
munication systems are described in the sections of this chapter that are dedicated to these two
systems.

The first efforts to develop concepts for the fourth generation (4G) of mobile telecommu-
nication networks are presently underway. Future telecommunication systems will doubtless
have significantly greater bandwidth efficiency than present systems, since frequency spectra

3 A summary of the development of the GSM is presented in Section 13.2, ‘The GSM System’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 760 of 1123

726 Smart Cards in Telecommunications

are a limited resource, as well as being a very expensive resource in some countries due to the
way in which they are auctioned. In the GSM system, a frequency bandwidth of approximately
5 Hz is required for a transmission bandwidth of 1 bit/s, resulting in a frequency efficiency of
0.2 bit/s per Hz. In the UMTS system, this is already improved to 1 bit/s per Hz, and in systems
still in the research stage, efficiencies of up to 30 bit/s per Hz have already been achieved.

There are many additional ideas and proposals for 4G systems, although none of them have
yet achieved a confirmed status or a uniform development direction. Nevertheless, the basic
features of the two main constraints have already been established: international interoperability
of the terminal devices and high data transmission rates as needed. Interestingly enough, these
two desires were already stated in the mid-1980s as major requirements for FPLMTS and
IMT-2000.

Table 13.1 Some general technical parameters of the most important mobile telecommunication
systems. One possible criterion for differentiating mobile telecommunication systems is the actual data
transmission rate as a function of the system generation. With 2G systems, it is around 10 kbit/s, with
2.5G systems it lies in the range of 64–144 kbit/s, and with 3G systems it is 384–2000 kbit/s

System Generation Usual frequency range Air interface Special features

AMPS 1 ≈850 MHz (824–894 MHz) analog, FDMA No smart card, data
transmission rate
2.4 kbit/s.

C-Netz
(C-450)

1 ≈450 MHz (450–466 MHz) analog, FDMA With smart card, data
transmission rate
2.4 kbit/s.

GSM 2 900 MHz (890–960 MHz),
1800 MHz
(1710–1880 MHz),
1900 MHz

digital, TDMA
with FDMA

With smart card (SIM),
data transmission rate
9.6–14.4 kbit/s.

D-AMPS
(IS-54)

2 ≈850 MHz (824– 894 MHz) TDMA No smart card, extension of
AMPS, data
transmission rate
8 kbit/s.

CDMA 2 ≈850 MHz (824–894 MHz) CDMA No smart card.
(IS-95)

GPRS, 2.5 see GSM see GSM Extension of existing GSM
networks for
packet-switched
services. Data
transmission rate up to
384 kbit/s.

EDGE

UMTS 3 2000 MHz (1900–2170 MHz) digital, With smart card (USIM),
data transmission rate up
to 2 Mbit/s.

WCDMA

CDMA 3 2000 MHz digital, Optional smart card
(R-UIM), data
transmission rate up to
2 Mbit/s.

2000 CDMA

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 761 of 1123

13.1 Survey of Mobile Telecommunication Systems 727

13.1 SURVEY OF MOBILE TELECOMMUNICATION SYSTEMS

This section provides a technical summary of current mobile telecommunication systems, to the
extent that this is necessary for understanding the use of smart cards in this area. Significantly
more detailed descriptions of all of the technical aspects of currently used mobile telecommu-
nications networks can be found in Jörg Eberspächer et al. [Eberspächer 00], Bernhard Walke
[Walke 00] and Raymond Steele et al. [Steele 2001].

In this chapter, the term ‘mobile telecommunication system’ is used instead of ‘mobile
telephone system’, since in all recent systems simple voice transmission is only one of many
possible services, with the transmission of various types of data becoming increasingly more
prominent.

13.1.1 Multiple-access methods

The frequency bandwidth available to a mobile telecommunication system, which is also called
its frequency spectrum, is typically limited to a few tens of megahertz. In order to make this
limited bandwidth quasi-concurrently available to as many subscribers as possible, ‘multiple-
access’ methods must be used. The purpose of such methods is to allow the greatest possible
number of mobile stations within a cell to access the network with acceptable quality by
suitably exploiting radio transmission techniques and information technology.

There are basically four different types of multiple access methods. They differ in their cost
of implementation and the efficiency with which they utilize the available bandwidth. These
four methods are called frequency-division multiple access (FDMA), time-division multiple
access (TDMA), code-division multiple access (CDMA) and space-division multiple access
(SDMA). They are briefly described below.

FDMA (frequency-division multiple access)

With frequency-division multiple access, each transmitter is assigned a reserved frequency
band within the total available frequency range. The transmitter is allowed to continuously
and exclusively transmit within its assigned frequency band. With FDMA, each transmitter
within a cell transmits on a different frequency. Incidentally, this is also the most commonly
used method for conventional radio equipment, which uses a single common channel (a half-
duplex link) for communications. If a full-duplex link is used (i.e., simultaneous uplink to
the base station and downlink to the mobile station), which is usually the case for telephony,
two frequency channels are naturally required to handle each call. Due to its limited technical
complexity, FDMA is relatively well suited to mobile telecommunications using analog data
transmission.

For instance, frequency-division multiple access was used for the air interface between
fixed and mobile stations in the German C-Netz. In this system, separate 4.44-MHz frequency
bands were reserved for uplink and downlink, with each band being divided into 222 frequency
channels, each 20 kHz wide.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 762 of 1123

728 Smart Cards in Telecommunications

time

frequency

frequency channel 1

frequency channel 2

frequency channel 3

frequency channel 4

Figure 13.1 Frequency–time diagram for frequency-division multiple access (FDMA). In this example,
each frequency channel corresponds to one transmission channel. The regions between the frequency
channels are guard bands for suppressing interference between individual frequency bands

TDMA (time-division multiple access)

With time-division multiple access, data are transmitted quasi-concurrently from several trans-
mitters to a single receiver on a single frequency. Each transmitter is assigned a particular time
slot, within which it is allowed to transmit exclusively but not continuously. In the GSM system,
for example, the time slot available for a signal burst is 577 µs (15/26 ms), of which 546 µs are
occupied by the signal burst to be sent within this interval. The difference between these two
values (31 µs) is used as a guard time to accommodate small timing variations. Maintaining
the necessary exact timing of the time slots requires very precise and technically complex
synchronization between the transmitter and the receiver. Furthermore, the signal propagation
time between the transmitter and the receiver must be taken into account when time-division
multiple access is used. For example, the difference in signal propagation time between mobile
stations in the immediate vicinity of a base station and mobile stations 30 km from the base
station is approximately 100 µs. In practice, these propagation time differences must be offset
by ‘premature’ transmission, so that the signals transmitted by the mobile stations always
arrive at the base station exactly within the time slots reserved for them.

Incidentally, the need to offset the transmission time in order to compensate for propagation
time differences is what determines the maximum diameter of a cell in the GSM system.
The maximum allowable interval for equalizing propagation times between the base station
and the mobile station is 116.3 µs. This is the maximum time that a transmission can be
sent prematurely and still arrive at the receiver within the prescribed time slot. This yields a
maximum cell radius in the GSM system of approximately 35 km. Premature transmission is
also called ‘timing advance’.

In order to reduce the effects of frequency-selective interference, time-division multiple
access can be combined with frequency hopping, in which both the transmitter and the receiver
change frequency channels after each time slot in a predefined sequence. As a result, there
is a high probability that interference in particular frequency ranges will only affect isolated
signal bursts. In many cases, the results of such interference can be compensated using error-
correcting transmission codes.

An example of the use of time-division multiple access in combination with frequency-
division multiple access is the air interface between fixed and mobile stations in the GSM
system. In this case, the available frequency band of 25 MHz is divided into 24 individual
channels, each having a bandwidth of 200 kHz. Each of these frequency channels in turn

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 763 of 1123

13.1 Survey of Mobile Telecommunication Systems 729

time

frequency
transmission channel

frequency channel 1

frequency channel 2

frequency channel 3

frequency channel 4

time slot

Figure 13.2 Frequency–time diagram for time-division multiple access (TDMA). In this example, each
frequency channel is allocated four transmission channels. Each of the gray rectangles represents one
signal burst. The regions between the frequency channels and time slots are guard bands and guard times
for suppressing interference between the individual signal bursts

time

frequency
frequency hopping in transmission channel

frequency channel 1

frequency channel 2

frequency channel 3

frequency channel 4

time slot

Figure 13.3 Frequency–time diagram for time-division multiple access (TDMA) with frequency hop-
ping. Here each frequency channel is allocated four transmission channels. Each of the gray rectangles
represents one signal burst. The regions between the frequency channels and time slots are guard bands
and guard times for suppressing interference between the individual signal bursts

is allocated eight call channels. This means that up to eight mobile stations can concurrently
transmit on a single frequency channel, with each mobile station having access to the frequency
channel for an interval of 0.577 ms every 4.615 ms.

CDMA (code-division multiple access)

Code-division multiple access is a multiple access method in which data are transmitted to a
receiver by multiple transmitters that concurrently transmit signals within the entire available
frequency spectrum. Code-division multiple access is based on spread-spectrum technology,
in which an original narrow-band signal is expanded into a wide-bandwidth radio signal using
a transmitter-specific mapping law and then transmitted as a wideband signal. This wide-
band signal is received by the receiver, where it can be transformed back into the original
narrow-band signal by employing the known mapping law used by the transmitter. In the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 764 of 1123

730 Smart Cards in Telecommunications

wideband code-division multiple access (WCDMA) variant, two separate frequency bands
are used for uplink and downlink, for which reason this CDMA variant is often referred to
as frequency-division/code-division multiple access (FD/CDMA). In the time-division/code-
division multiple access (TD/CDMA) variant, the uplink and downlink are separated by using
different time slots.

Code-division multiple access has the advantage of bring highly insensitive to frequency-
selective interference. It also provides weak protection against unauthorized eavesdropping if
the transmitter-specific mapping law is not known to the attacker.

CDMA is used in the UMTS system in the WCDMA variant, using a bandwidth of 5 MHz
each for uplink and downlink.

time

frequency

Figure 13.4 Frequency–time diagram for code-division multiple access (CDMA). Within the gray
rectangle representing the available frequency spectrum, several transmitters transmit concurrently using
transmitter-specific spread-spectrum signals, which can be converted back into the original signals by
the receivers

SDMA (space-division multiple access)

Space-division multiple access is a multiple access method for transmitting data in paral-
lel from multiple transmitters to a receiver using a single frequency. For this purpose, the
transmitters use directionally selective (adaptive) aerials aimed at specific receivers. This re-
quires a relatively high level of technical complexity, so this method is presently used only
to a limited degree for base stations in the mobile telecommunications sector. The direction-
ally selective aerials are usually antenna arrays with electronic beam-steering capability. This
makes it unnecessary to physically aim the aerial towards the receiver. Space-division multiple
access can basically be combined with other multiple access methods, but it is presently
seldom used in the mobile telecommunications sector due to its unfavorable cost/benefit
ratio.

13.1.2 Cellular technology

The frequency band available to a mobile telecommunications system must serve a very large
number of mobile stations. It is thus not sufficient to simply use one or more multiple-access
methods to attempt to service a relatively large region containing a large number of potential
subscribers.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 765 of 1123

13.1 Survey of Mobile Telecommunication Systems 731

1

2

3

Figure 13.5 Schematic representation of space-division multiple access (SCMA) with a single radio
cell. The base station located in the middle of the cell has three array aerials arranged at 120 degrees to
each other. Each aerial covers one-third of the cell, with overlapping coverage areas

Taking the GSM system as an example, this can be briefly illustrated using a few key figures.
Based on the bandwidth available to the GSM system and the multiple-access method used,
it can be calculated that in theory, a maximum of approximately 1000 subscribers could be
conducting telephone conversations at the same time (128 channels with eight time slots each
yields 992 concurrent call channels). In practice, the number is significantly smaller, since
some channels must be used for other purposes, such as signaling.

In order to allow several million subscribers to concurrently converse with each other,
the entire mobile telecommunications system of a network operator is organized into cells,
with a certain number of frequency channels being allocated to each cell. This technique,
which was developed around 1970, is called cellular technology. Each set of neighboring
cells is assigned several different frequency channels from the available frequency spectrum,
thus avoiding interference due to the concurrent use of identical channels in adjacent cells.
These frequency channels can be used again in other cells separated by one or more adjacent
cells, without giving rise to interference problems. Frequency reuse is one of the fundamental
principles of cellular technology. However, a useful side effect of cellular technology is that the
transmit power required from the mobile telephone decreases as the cell size is reduced, which
reduces both power consumption and the amount of ‘electronic smog’ generated by mobile
telephones.

A group of several cells with different assigned frequency channels can be considered to
form a cluster. Clusters of 3, 4, 7, 12 and 21 cells are customary. In network planning, the
entire region to be covered by the network is blanketed using these clusters. In this process,
the individual cells are represented in simplified form as hexagons instead of circles, so the
network plan resembles a honeycomb.

12

7 6

5

43

1

2

3 1

2

4

3

Figure 13.6 Graphic representation of typical clusters with three, four and seven cells. Each of the
sequentially numbered cells has a certain number of assigned frequency channels, which differ from
those of its neighboring cells

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 766 of 1123

732 Smart Cards in Telecommunications

Figure 13.7 Graphic representation of full radio coverage of a region with cells using seven cells per
cluster. It can be clearly seen that any two cells having the same frequency channels are separated by at
least two other cells having different frequency channels

Figure 13.8 Sample section of a cell plan for an actual network. Different sizes of cells are used to
ensure that an acceptable level of network coverage is achieved despite variations in network loading
(which are usually due to high subscriber densities). In this cell plan, for instance, a traffic intersection
with a high density of mobile telephones is located in the middle

13.1.3 Cell types

A decisive factor with regard to obtaining an economical network structure with the best
possible network coverage is the types of cells that are used. The following specifications for
cell dimensions are rough approximations and are primarily intended to illustrate the basic
uses of the different types of cells.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 767 of 1123

13.1 Survey of Mobile Telecommunication Systems 733

For the large-scale coverage of areas with low incident network loading and terrain that
provides little screening, large cells with a typical diameter of 10 to 40 km are used. Such cells
are commonly found in rural areas with low population densities and flat terrain. The next
smaller size of cell is a macrocell, which typically has a diameter of 1 to 10 km. Macrocells
are commonly used in the centers of relatively small settlements and in many suburbs of
agglomeration regions.

Microcells, with a typical diameter of 0.1 to 1 km, are frequently used at traffic intersections
and within inner-city regions with high call volumes. The smallest type of cell is called a
picocell, and it has a diameter of 50 to 100 m. Such cells are often used within buildings, such
as inside offices and meeting rooms.

A special type of cell is the umbrella cell which is a cell containing one or more relatively
small cells that service an area that cannot be covered by the smaller cells it contains. This
special type of cell can be used where there is a highly localized high level of call traffic in a
region that otherwise has a low network load. Naturally, the umbrella cell and the smaller cells
covered by it must use different frequency channels.

An example of using an umbrella cell would be an alpine region in which there is a single
ski hut with snack and drink bars located in a large ski area. In the network, a picocell would
be provided to service the ski hut, with the rest of the surrounding ski area being serviced by
an umbrella cell. In some ski areas, it would be a good idea to install at least one picocell for
each of the lower lift stations, so that skiers can while away the time spent waiting for the lifts
in (telephone) conversation.

An additional subtype of cell is the selective cell, which covers only a sector of a circle
instead of providing uniform circular coverage over 360 degrees. This type of cell is typically
mounted facing an underpass, and thanks to its radiation pattern, which resembles that of a
spotlight, it can provide very good mobile telecommunications coverage within the underpass.
Selective cells are also a proven means to provide coverage inside tunnels.

Approximately 3000 base stations would be needed to provide full coverage for approxi-
mately 5 million subscribers in a country the size of Germany (all 16 federal states), which
has an area of approximately 360,000 km2. With 20 million subscribers, the number of base
stations would rise to approximately 12,000 for nearly 100 % coverage. With a network of this
magnitude, approximately 60 mobile switching centers (MSCs) would be used. Incidentally,
as of mid-May 2001, the four German GSM networks had a combined total of approximately
52,000 base stations and 164,000 cells.

13.1.4 Bearer services

The function of bearer services in a mobile telecommunication system is to transport voice and
data between the terminal and the background system. For the acoustic transmission of voice
at the currently standard telephone quality, a minimum frequency bandwidth of 3100 Hz is
necessary, which is designated ‘telephone bandwidth’. This bandwidth results from the fact that
the human voice primarily uses the frequency range between 300 Hz and 3400 Hz. In the GSM
system, a compressed, discontinuous data stream is generated from this continuous signal,
and in the full-rate mode this data stream requires a data transmission rate of 13 kbit/s. This
transmission rate is sufficient for a half-duplex telephone connection with standard telephone
quality, which means for an uplink or a downlink. If both parties to the conversation wish

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 768 of 1123

734 Smart Cards in Telecommunications

to be able to speak at the same time as usual, a full-duplex link is required, as is commonly
used in telephony. This results in a net transmission rate of 26 kbit/s for the two directions. In
practice, the required transmission rate is rendered considerably greater by control data and
sophisticated error correction codes. In the GSM system, the required gross transmission rate
for uplink and downlink is approximately 34 kbit/s.

Ideally, bear services for data transmission allow data exchange between the two com-
municating parties to be transparent, which means the these parties do not have to give any
consideration to the communications protocols used by intermediate parties. In the GSM sys-
tem, SMS, USSD, CSD, HSCSD and GPRS are used as bearer services. The availability of
these services depends on the technical capabilities of the particular mobile telephone and the
GSM system into which it is logged in.

Short message service (SMS)

If the short message service (SMS) is used as a bearer service, the data to be transmitted must
be packaged in SMS messages. These messages can have a maximum length of 176 bytes, and
the maximum length of a data packet is 140 bytes. The difference of 36 bytes is needed for the
transmission data. Unfortunately, SMS does not guarantee that a series of short messages sent
one after the other will arrive in their original order. A guaranteed transmission rate cannot
be specified with this packet-switched data transmission service, in part because it is strongly
dependent on actual network loading and in part because it depends on whether the mobile
station is logged in to its home network or some other network. Typical elapsed times for short
messages range from 0.5 seconds to 20 seconds. Expressed in terms of a transmission rate,
this corresponds to a range of 2.8 kbit/s to 94 bit/s.

Unstructured supplementary services data (USSD)

The design of the USSD bearer service is similar to that of the SMS. The principal difference
is that USSD is a circuit-switched service with a maximum message length of 182 bytes.

Circuit-switched data (CSD)

In the GSM system, the circuit-switched bearer service CSD simply consists of transmitting
data instead of voice across the air interface. For this purpose, the data are fed into the mobile
station using a modem. The gross transmission rate is typically either 9.6 kbit/s or 14.4 kbit/s.

High-speed circuit-switched data (HSCSD)

HSCSD is a circuit-switched bearer service defined in GSM 02.34, with a technical structure
similar to that of CSD. Theoretically, it has gross data rate of up to 76,800 bit/s for combined
uplink and downlink transmissions.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 769 of 1123

13.2 The GSM System 735

General packet radio system (GPRS)

GPRS is a packet-switched bearer service defined in GSM 01.60 and GSM 02.60. It supports
a theoretical maximum data transmission rate of up to 115.2 kbit/s for uplink and downlink.

13.2 THE GSM SYSTEM

The smart card used in GSM mobile telephones, which is called the ‘subscriber identity module’
(SIM), was and still is the pioneer in terms of functionality and memory capacity. This is in part
due to the fact that smart cards used in mobile telephones, whose manufacturing costs are several
hundred euros, are significantly less price sensitive than other types of smart cards, such as those
used for electronic payments or medical applications. Another decisive factor with regard to
smart card technology is the generally high rate of evolution of the entire telecommunications
sector. The pioneering position with regard to technology and standardization that is presently
held by the SIM, in comparison with all other smart card applications, is the reason why this
topic is described here in such great detail.

GSM, which was commercially inaugurated in 1992, became the international standard for
mobile telecommunications systems within only a few years. This includes transmitting not
only voice but also data, which are presently still primarily transmitted in the form of ‘short
messages’ using SMS. In mid-2001, there were a total of 400 mobile telecommunications
networks in 171 countries based on the GSM standard, with more than 565 million subscribers.
More than 20 billion short messages are transmitted every month.4 Mobile telecommunications
networks based on the GSM standard often have country-specific designations. In Germany,
for instance, the four operational GSM networks are called the D-Netz (900-MHz and 1800-
MHz GSM variants) and the E-Netz (1800-MHz variant), and in Austria the GSM network is
in part also referred to as the A-Netz.

Specification of the GSM system started in 1982 under the auspices of the Conférence
Européenne des Postes et Télécommunications (CEPT). The objective was to generate a speci-
fication for a transnational, interoperable mobile telecommunications network. In the course of
time, these efforts led to the conclusion that it was possible to draft specifications for a transna-
tional, interoperable and ISDN-compatible digital cellular mobile telecommunication system
operating in the 900-MHz band. The Groupe Spécial Mobile was founded for this purpose,
which gave rise to the original abbreviation ‘GSM’. In 1986, the GSM Permanent Nucleus
was established, with headquarters in Paris, to coordinate the generation of the specification. It
was later also responsible for specifying a wide variety of tests for system components. From
a technical perspective, it is interesting to note that a number of the technologies that were
chosen for GSM at that time were fully new and untested in practice. For instance, the air
interface using a combination of time-division multiple access with frequency-division multi-
ple access and digital data transmission was totally unexplored territory for large-scale mobile
telecommunication applications. These decisions led to many technical problems, particularly
in the system development stage, but from the present perspective they can be regarded as a
fortunate choice, since GSM proved to be an innovative system that was not burdened with the
technical ballast of the early days of mobile telecommunications.

4 A good overview of current statistical figures and network operators can be found at GSM World [GSM]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 770 of 1123

736 Smart Cards in Telecommunications

The common contractual basis for operators of GSM networks is the Memorandum of
Understanding (MoU), which was first signed by 15 European network operators in 1987. The
GSM Association is an internationally active body, with offices in Dublin and London, for the
coordination of mobile telecommunications systems. It was founded in Copenhagen in 1987,
and it is responsible for the development and application of the GSM standards. The GSM
Association represents more than 500 network operators, manufacturers and suppliers in the
GSM industry. In 1989, the specifications developed by the various working groups under the
leadership of the GSM Permanent Nucleus were incorporated into the newly founded European
Telecommunication Standards Institute (ETSI), where they have since been further developed.
In 1990, all of the GSM Phase 1 specifications were complete in an acceptable form and were
frozen.

In 1998, the Subscriber Identity Module Expert Group (SIMEG) started work on the spec-
ification for the GSM smart card, which is called the ‘subscriber identity module’ (SIM).
This group was composed of representatives of card manufacturers, manufacturers of mobile
telephones and network operators. Working under the auspices of the ETSI, the SIMEG gen-
erated the specification for the interface between the smart card and the mobile telephone.
This specification bears the name ‘GSM 11.11’. In 1994, the SIMEG was transformed into the
newly founded Special Mobile Group 9 (SMG9), which retained the duties and authorities of
the original group. The SMG9 was given the mandate of further developing and maintaining
all of the SIM specifications up to 2000. In 2000, the SMG9 was dissolved, and its respon-
sibilities were divided between two newly founded expert groups. The ETSI Project Smart
Card Platform (EP SCP) expert group handles all generic issues in the area of smart cards for
telecommunications, while the 3GPP expert group is responsible for the application-specific
interface between the mobile telephone and the SIM or USIM.5

The first operating GSM network was demonstrated at the ITU Telecommunications Fair
in Geneva in 1991. During the fair, approximately 11,000 calls were routed without any major
problems. In 1992, the first GSM systems were put into regular service in several European
countries (Denmark, Finland, France, Germany, Italy, Portugal and Sweden). At that time,
there were approximately 250,000 subscribers. Also in that year, the first ‘roaming agreement’
between two network operators was signed, and the first non-European network operator signed
the MoU, which meant that it officially decided to use the GSM system. Only one year later,
at the end of 1993, the millionth subscriber was registered. In that year, the first GSM-1800
network began operation in Great Britain. In 1995, the first GSM-1900 network went into
operation in the USA, and at the end of July 1998, the 100-millionth GSM subscriber was
registered. In mid-2001, there were 500 million subscribers throughout the world, and it is
anticipated that there will be 1 billion subscribers in 2005.

The GSM specifications were extended in 1991 and 1992. They now also cover the 1800-
MHz frequency band (1710–1785 MHz uplink, 1805–1880 MHz downlink; wavelength ap-
proximately 16.6 cm) with GSM 1800 (previously called Digital Cellular System, or DCS)
and the 1900-MHz band (1850–1910 MHz uplink, 1930–1990 MHz downlink; wavelength
approximately 15.8 cm) with GSM 1900 (previously called Personal Communication System,
or PCS). Since then, GSM in the original 900-MHz frequency band (880–915 MHz uplink,

5 A comprehensive overview of the interesting history of the expert groups for the standardization of the SIM, USIM
and UICC can be found in an article by Klauss Vedder entitled ‘The Subscriber Identity Module: Past – Present –
Future’, in [Hillebrand 02]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 771 of 1123

13.2 The GSM System 737

925–960 MHz downlink; wavelength approximately 33.3 cm) is referred to as GSM 900. Due
to the higher frequencies and lower levels of transmitted power, the maximum diameter of a
cell in the higher-frequency systems is only 20 km. Consequently, they are primarily used in
regions with high subscriber density, and less often in regions with low subscriber density.
The principal difference between GSM 1800 and GSM 1900 is found in the transmitter and
receiver components on either side of the air interface.

The low data transmission rate of the GSM system, which is 9600 bit/s or 14,400 bit/s with
an improved codec for the air interface, has relatively quickly proven to be a weakness of the
system. The rapidly increasing demand of mobile subscribers for transferring large volumes
of data has further exacerbated this shortcoming. Consequently, an evolution path leading to
increased data transmission rates, and particularly packet-switched transport services, has been
specified. The next stage in the development of GSM is the circuit-switched HSCSD (high-
speed circuit-switched data) service. With HSCSD technology, a theoretical data transmission
rate of up to 76,800 bit/s (8 × 9600 bit/s) for uplink or downlink can be achieved by using
‘channel bundling’ to combine several existing time slots in the air interface. Existing GSM
networks can be extended to support HSCSD with relatively little effort by modifying the base
stations and using special mobile telephones. However, the disadvantage of this approach is
that the number of transmission channels can be increased by at most a factor of 8, so HSCSD
will probably not become a major success.

The packet-switched General Packet Radio System (GPRS) service is the following step
in the evolution of GSM. It provides a packet-switched connection with a data transmission
rate of up to 115.2 kbit/s (downlink or uplink) by bundling the eight existing 14.4-kbit/s time
slots. A mobile telephone with GPRS technology is constantly logged in to the network for
data transport, and thus always available for data transmission. For this reason, GPRS is also
quite suitable for discontinuous data transmission. A drawback is the relatively high cost of
upgrading the base stations. GPRS is regarded as a G2.5 technology, and it has a good chance
of becoming a significant factor in extending the lifetime of existing GSM systems.

The final planned stage of enhancement for GSM networks is EDGE (‘Enhanced Data Rates
for GSM and TDMA Evolution’). Using the existing network infrastructure, GSM mobile
telephones with EDGE technology can be connected to base stations with a data transmission
rate of up to 384 kbit/s by using a different modulation method for the air interface. The
extent to which EDGE technology will play a significant role in the future, when it will have
to compete with 3G systems such as UMTS that will then be available, cannot presently be
foreseen.

The designated successor to GSM is UMTS, whose basic architecture is based on GSM. It
thus does not represent a fundamentally new mobile telecommunications technology, as did
GSM at the time it was developed.

13.2.1 Specifications

A large number of interrelated and mutually dependent specifications were necessary to fully
describe the GSM system in technical terms. In total, there are approximately 130 individual
specifications, with a total size of more than 6000 pages.

Particularly in connection with the GSM system, the terms ‘specification’ and ‘standard’
are often used interchangeably. In the case of GSM, both of these terms are actually justified.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 772 of 1123

738 Smart Cards in Telecommunications

Since they are published by the ETSI standardization organization, the specification documents
formally have the status of standards. However, their technical descriptions are so strict that
practically all implementations based on them are mutually compatible, which is a typical
characteristic of a specification. For this reason, in this book we consistently refer to the GSM
numbering scheme (e.g., GSM 11.11) that is commonly used in technical circles, rather than
the corresponding ETSI standards (e.g., TS 100977), which are identical in content.

The course of development of the GSM system is characterized by a series of phases building
on top of each other. The basic services (voice transmission, call forwarding, roaming and the
SMS message service) were implemented in Phase 1, which began in 1992. In Phase 2, which
began in 1996, supplementary services were added, including conference calls, call handover,
call number negotiation and GSM in the 1800-MHz frequency band. This was followed by
Phase 2+, in which these services were augmented with the functions of the SIM Application
Toolkit, HSCSD and GPRS (among others).

As is usual with specifications, the GSM specifications employ their own technical vocab-
ulary. This vocabulary is precisely defined in technical terms in various lists of abbreviations
and glossaries, and is only applicable to the GSM field. A summary is provided by GSM
1.04 (‘Abbreviations and acronyms’). Due to this technical vocabulary, it is generally rela-
tively difficult for newcomers to become familiar with GSM, since it is constantly necessary
to consult the explanations of the abbreviations in the appropriate places when studying the
specifications.

The specification forming the basis for the GSM security module in the mobile telephone
is designated GSM 02.17 (‘SIM Functional Characteristics’) and contains a relatively abstract
description of the functional requirements for the SIM. The most important card-specific
document in the GSM system, GMS 11.11 (‘Specification of the Subscriber Identity Module –
Mobile Equipment (SIM – ME) interface’), is based on this specification. In more than 170
pages, GSM 11.11 precisely and unambiguously specifies the interface to the SIM. This is a
pure interface specification that does not contain any details about the actual implementation.

The specifications of the electrical parameters of smart cards using 3-V and 1.8-V technol-
ogy, which supplement GSM 11.11, are contained in GSM 11.12 (‘Specification of the 3 Volt
Subscriber Identity Module – Mobile Equipment (SIM – ME) interface’) and GSM 11.18
(‘Specification of the 1.8 Volt Subscriber Identity Module – Mobile Equipment (SIM – ME)
interface’).

Besides these specifications, which primarily describe the basic functionality of the SIM,
there is also GSM 11.14 (‘Specification of the SIM Application Toolkit for the Subscriber
Identity Module – Mobile Equipment (SIM – ME) interface’), which describes a platform for
secure supplementary services in the SIM. These are referred to as the SIM Application Toolkit
(SAT). This specification was published in 1996, and it primarily offers network operators the
possibility of loading their own applications into the smart card for controlling the mobile
telephone. GSM 11.14 specifies in detail how functions such as driving the display, polling
the keypad, sending short messages (SMS) and other functions related to suitable value-added
applications must be implemented in the SIM.

The requirements specifications GSM 02.48 (‘Specification of security mechanisms for the
SIM application toolkit, stage 1’) and GSM 03.48 (‘Specification of security mechanisms for
the SIM application toolkit, stage 2’), which is based on GSM 02.48, introduce two impor-
tant security mechanisms for the SIM. The first item that they address is specifying security
mechanisms for end-to-end communications between the background system and the SIM

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 773 of 1123

13.2 The GSM System 739

that are protected against eavesdropping and manipulation. In practice, these mechanisms are
primarily used for secure data transmission via the air interface (‘over the air’, or OTA). The
second item, which is addressed by GSM 03.48, is a description of the basic mechanism for
remote file management (RFM) and remote applet management. This description is in principle
bearer-independent, but in GSM 03.48 it is presented using transport via SMS as an example.

Particularly in the telecommunications environment, smart cards with Java have become
established very quickly, which is why the effects of such cards were seen relatively early in the
GSM specifications. The basis for all smart card operating systems with executable program
code is formed by the GSM 02.19 specification. It contains a list of all basic services for a
language-independent API for executable program code in the SIM. Based on this standard,
GSM 03.19 specifies a detailed implementation of a Java Card API for SIMs based on the Java
Card 2.1 specification. This standard is the key document for using Java Card with GSM. It
is supplemented by GSM 11.13, which specifies the test environment, test applications, test
procedures, test coverage and individual test cases. The described tests are aimed exclusively
at the IT aspects of a Java Card implementation for GSM.

The GSM specifications related to the SIM are not being developed any further, since the
functionality of the SIM is fully adequate for the current needs of the GSM system. The only
modifications that are still routinely made to the relevant specifications involve clarifications
of passages that are subject to interpretation. Since 1999, the focus has been on standardizing

Table 13.2 The most important standards for the SIM and SIM-related services6

GSM 02.09 Security Aspects
GSM 02.17 SIM Functional Characteristics
GSM 02.19 Subscriber Identity Module Application Programming Interface (SIM API);

Service description; Stage 1
GSM 02.48 Specification of security mechanisms for the SIM application toolkit, Stage 1
GSM 03.19 Digital cellular telecommunications system (Phase 2+); Subscriber Identity Module

Application Programming Interface (SIM API);
SIM API for Java Card; Stage 2

GSM 03.48 Specification of security mechanisms for the SIM application toolkit, Stage 2
GSM 09.91 Interworking aspects of the Subscriber Identity Module – Mobile Equipment

(SIM – ME) interface between Phase 1 and Phase 2
GSM 11.11 Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME)

interface
GSM 11.12 Specification of the 3 Volt Subscriber Identity Module – Mobile Equipment

(SIM – ME) interface
GSM 11.13 Test specification for SIM API for Java card
GSM 11.14 Specification of the SIM Application Toolkit for the Subscriber Identity Module –

Mobile Equipment (SIM – ME) interface
GSM 11.17 Subscriber Identity Module (SIM) conformance test specification
GSM 11.18 Specification of the 1.8 Volt Subscriber Identity Module – Mobile Equipment

(SIM – ME) interface

6 A general list of all GSM standards related to the SIM is provided in the directory of standards in Chapter 16. All
of the GSM standards can also be obtained free of charge from the ETSI web server [ETSI]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 774 of 1123

740 Smart Cards in Telecommunications

the UICC (‘universal integrated circuit card’) with the USIM (‘universal subscriber identity
module’) application, which is primarily being pursued under the auspices of the 3GPP.

13.2.2 System architecture and components

Every GSM network can be divided into three general subsystems, which are described in
general terms in the GSM 01.02 specification (‘General description of a GSM Public Land
Mobile Network (PLMN)’). These three subsystems are the radio subsystem (RSS), the network
and switching subsystem (NSS) and the operation subsystem (OSS).

The radio subsystem is composed of the mobile telephone, which is called the mobile station
(MS), and the base station subsystem (BSS). The mobile station consists of two physically and
logically separate components, which are called the mobile equipment (ME) and the subscriber
identity module (SIM). The mobile equipment is the radio and encryption component with the
user interface, while the SIM is the correct designation (in GSM nomenclature) for a GSM-
specific smart card. These two components together form the operational mobile telephone.

As a rule, the base station subsystem is formed by the base stations located at the center
of each cell. The functions of the base station subsystem are to establish contact with the
mobile telephones via the air interface and to supply data to the higher-level components
of the network. A base station consists of one or more base transceiver stations (BSTs) and
a base station controller (BSC). The base station transceiver, with its aerial and associated
radio-frequency components, is the actual transmission and reception component. A typical
receiver module for a base station transceiver has eight 200-kHz channels, so in theory it can
concurrently maintain eight active links to mobile stations. In practice, only seven active links
are usually used, since one channel is usually reserved for administrative communications.
One, three or six receiver modules are usually fitted in each base transceiver station. One
or more base transceiver stations are in turn managed by a base station controller. A typical
setup consists of three base station transceivers arranged at 120 degrees to each other, all
connected to a base station controller. If a mobile station moves from the send/receive region
of one base transceiver station into that of another base transceiver station, and both base
transceiver stations are assigned to the same base station controller, the base station controller
can independently initiate the handover after signaling this to the responsible mobile switching
center.

Data transmission via the air interface is encrypted and has a net transmission rate of 13 kbit/s
in full-rate mode. It employs a lossless compression method with technically sophisticated error
correction mechanisms, such as frequency hopping, convolutional coding and interleaving.

The network and switching subsystem essentially consists of the mobile switching center
and the visitor location register (VLR). A mobile switching center (MSC) manages multiple
base station subsystems. It forms the link between the base station subsystems connected to
it, other mobile switching centers and, of course, the public switched telephone network. The
mobile switching center is responsible for setting up, managing and shutting down connections,
handling call charges and supervising supplementary services, such as call forwarding, call
blocking and conference calling. The visitor location register (VLR) contains information
about all mobile stations currently within range of the associated mobile switching center.
This information is needed for functions such as routing a call to a particular mobile telephone
via the proper base station subsystem and radio cell. The VLR also maintains a list of mobile

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 775 of 1123

13.2 The GSM System 741

stations belonging to subscribers of other networks that have logged into the network of the
associated mobile switching center via roaming.

The topmost hierarchical level in a GSM system is the operation subsystem. It consists of the
operation and maintenance center (OMC), the authentication center (AuC), the home location
register (HLR) and the equipment identity register (EIR). The operation and maintenance
center is responsible for regular network operation, subscriber administration and call billing.
The authentication center is the security component on the network side, and in a manner
of speaking it is the counterpart to the SIM on the mobile side. It generates and manages
all keys and algorithms needed for operating the system, especially for authentication of the
mobile stations (i.e., the SIMs). Another central component is the home location register,
which contains all of the subscriber data as well as the localization data for each of the mobile
stations. The equipment identification register is the complement to the HLR for mobile stations
instead of subscribers. It contains essential data, such as the serial numbers of all mobile stations
represented in the network.

13.2.3 Important data elements

This section describes a selection of important data elements that are primarily related to
the SIM and its functions. The coding of the described data elements can be found in the
descriptions of the typical data of a SIM.

Coding of alphanumeric characters

In the original middle-European GSM system, alphanumeric characters were and still are
coded using a 7-bit code derived from the ASCII code. This code is defined in the GSM 03.08
specification. However, the spread of the GSM to other countries made it necessary to extend
the character set. Consequently, the UCS-2 16-bit subvariant of the Universal Character Set
(UCS) is used for characters that cannot be represented using the west-European character set
as defined by GSM 03.38. The UCS-2 character set allows the most important characters of
all living languages to be represented.7

Three different schemes are defined for character coding using the USC-2 character set, in
the interest of minimizing memory space. The preferred scheme (Scheme 1), which, however,
requires the most memory, is identified by having a value of '80' for the first byte. This is
followed by the 16-bit USC-2 character code, with the most significant byte first. Unused
bytes are set to'FF'.

Scheme 2 is identified by having a value of'81' in the first byte. The second byte contains
the number of characters in the character string. The two following bytes represent a 16-bit
pointer to the UCS character set, which is used to select a language-specific character within
the UCS. Bits 1–7 and bit 16 of this pointer are set to'0'. If bit 8 of one of the following bytes
has a value of ◦1◦, bits 1–7 of that byte are added to the pointer value, with the resulting pointer
value then indicating the actual character in the UCS character set. If bit 8 has a value of ◦0◦,
the character in question is a member of the 7-bit character set defined by GSM 03.38.

7 See also Section 4.2, ‘Coding Alphanumeric Data’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 776 of 1123

742 Smart Cards in Telecommunications

MSC

BTS (Base Transceiving Station)

MS (Mobile Station)

Air interface

RSS (Radio Subsystem)

OMC

HLR (Home Location Register)

SIM

ME

MS

VLR (Visitor Location Register)

EIR (Equipment Identity Register)

AUC (Authentication Center)

BSC

BTS

BSS

...

SIM (Subscriber Identity Module)

ME (Mobile Equipment)

...

...

SMSC

VLR

AUC

HLR

EIR

BSS (Base Station Subsystem)

...

...SMSC (Short Message Service Center)

Figure 13.9 Basic architecture of a typical mobile telecommunications system compliant with the
GSM 01.02 specification. In this example, the EIR and HLR databases are centralized. Since many
aspects of the PLMN configuration are left to the operator of a particular network, the databases may
be decentralized and distributed among several MSCs if necessary (e.g., due to high network loading).
For ease of understanding, a link to a short message service center (SMSC) is also shown here, although
this is not a direct GSM system component. One or more radio subsystems may be combined to form
a location area (LA), and one or more network and switching subsystems may be combined to form a
service area (SA)

Scheme 3 is identified by having an initial byte value of'82'. As with Scheme 2, the second
byte contains the length of the character string, while the third and fourth bytes represent a
complete 16-bit pointer to the USC character set table. If bit 8 of the following byte has a value
of ◦1◦, the following seven bits must be added to the pointer value to uniquely determine the
UCS character. If bit 8 has a value of ◦0◦, the character in question is a member of the 7-bit
character set defined by GSM 03.38.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 777 of 1123

13.2 The GSM System 743

Table 13.3 The databases essential to the operation of a GSM system, and the most important data
elements in these databases

Database Data elements

HLR Subscriber information
(home location register) IMSI (international mobile subscriber identity)

MSISDN (mobile station ISDN number)
Service restrictions (e.g. roaming not allowed)
Subscribed services
Parameters for supplementary services
Information about the subscriber’s equipment
Authentication data (i.e. RAND, SRES, Kc triplet)
(implementation-dependent)
Localization data (mobile location information)
MSRN (mobile station roaming number)
Address of current VLR (if available)
Address of current MSC (if available)
TMSI (if available)

VLR Subscriber information
(visitor location register) IMSI (international mobile subscriber identity)

MSISDN (mobile station ISDN number)
Parameters for supplementary services
Information about the subscriber’s equipment
Authentication data (i.e. RAND, SRES, tuple)
(implementation-dependent)
Localization data (mobile location information)
TMSI (temporary mobile subscriber identity)
MSRN (mobile station roaming number)
LAI (location area information)
TMSI (if available)

EIR IMEI (international mobile equipment identity) of all mobile stations
(equipment identity register) (white list)

IMEI of mobile stations to be reported (graylist)
IMEI of blocked mobile stations (blacklist)

SIM service table (SST)

The SST contains a table of services that can be used with or enabled in addition to voice
service, such as short message service or fixed dialing number service.

Fixed dialing numbers (FDN)

Fixed dialing numbers are a special type of dialing numbers that can be selected even when
all other dialing numbers are blocked in the mobile telephone.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 778 of 1123

744 Smart Cards in Telecommunications

ICC identification (ICCID)

The ICCID is a unique identification number for the smart card. It is BCD-coded and 10 bytes
long, and it can be right-padded with'F'as necessary.

International mobile equipment identity (IMEI)

The IMEI is a unique device number for the mobile station. It contains 15 digits and thus usually
occupies eight bytes. It is composed of the six-digit type approval code, two manufacturer code
digits, a six-digit serial number and a check digit. The IMEI is stored in the mobile telephone
and in the equipment identification register (EIR) in a central location.

International mobile subscriber identity (IMSI)

The IMSI is the unique subscriber identity within the GSM system. It is BCD-coded and has a
length of nine bytes, which may be right-padded with'F'as necessary. It consists of the mobile
country code (MCC), the mobile network code (MNC) and a serial number assigned by the
network operator. The IMSI is normally never transmitted over the air interface in cleartext,
in order to prevent the location of a mobile station from being illicitly traced. Instead of the
IMSI, the TMSI is normally used together with the LAI for identification purposes.

Individual key (Ki) and cipher key (Kc)

The keys Ki and Kc are secret keys for symmetric cryptographic algorithms. Ki is the card-
specific key for the cryptographic computation of the authenticity of the SIM, and Kc is used
for encrypting data transmitted between the mobile station and the base station via the air
interface.

Short message service (SMS)

The short message service allows messages with a maximum length of 160 alphanumeric
characters to be transmitted between the network and the mobile station via the signaling
channel. SMS service is used not only for conveying short messages for subscribers, but also
as a bearer service for transmitting data to the mobile telephone or the SIM, for instance for
the WAP and OTA services.

Abbreviated dialing numbers (ADN)

Abbreviated dialing number are dialing numbers stored in the mobile telephone or the SIM
along with supplementary information, which can be easily and quickly selected using a menu
or special buttons.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 779 of 1123

13.2 The GSM System 745

Location area information (LAI)

The LAI is the unique position information of the mobile station. It is used in combination with
the TMSI to generate a unique subscriber identity. The LAI consists of a three-digit country
code (CC), a two-digit mobile network code (MNC) and a location area code (LAC), which
has a maximum length of five digits.

Mobile station ISDN number (MSISDN)

The MSISDN is the dialing number of the mobile station. It is independent of the subscriber
identity (IMSI).

Temporary mobile subscriber identity (TMSI)

The TMSI is a temporally and spatially limited subscriber identity with a length of four bytes.
It is used to protect the true subscriber identity. The TMSI is only unique in combination with
the location area information (LAI). The TMSI is assigned by the VLR, where it is also stored.

13.2.4 The subscriber identity module (SIM)

The SIM is a mandatory security module located in the mobile telephone of a GSM system
as an exchangeable component. It is defined as follows in the GSM 02.17 specification: ‘The
SIM is an entity that contains the identity of the subscriber. The primary function of the SIM
is to secure the authenticity of the mobile station with respect to the network’.

Besides its primary functions of holding the identity of the subscriber, which is realized
using a PIN, and authenticating the mobile station with respect to the network, the SIM also
performs a number of other functions. It allows program execution to be protected against
manipulation, and it makes it possible to store data such as dialing numbers, short messages
and personal configuration settings for the mobile telephone. In addition, it is the bearer for
secure supplementary services used with mobile telecommunications.

Two different SIM formats are used in the GSM system. In mobile telephones designed to
allow the SIM to be exchanged relatively often, the ID-1 format is used. This is based on the
idea of a company or family telephone with a separate card for each user. Mobile telephones
with small dimensions, whose SIMs are intended to be exchanged only rarely, use plug-in
SIMs in the ID-000 format. However, the only difference between the two types of SIMs is the
physical size of the card. Their logical and physical characteristics are otherwise fully identical.
Since the mid-1990s, mobile telephones have become more or less personal accessories. This
has had an effect of the size of card used, since it is no longer necessary to exchange the card
depending on who is using the telephone. Already in 1995, half of all ID-1 cards sold were
punched to allow a card in ID-000 format to be broken loose, and since 1998 practically all
cards have this feature.

Communications between the mobile equipment and the SIM use the T = 0 protocol with
the standard parameters, as specified in ISO/IEC 7816-3. The data transmission convention can

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 780 of 1123

746 Smart Cards in Telecommunications

SIM

security subscriber identification

data storage

managing services and
supplementary applications

(VAS)

subscriber administration

SIM authentication

data encryption

dialing numbers

short messages

mobile telephone settings

subscriber information

Figure 13.10 Classification of the basic functions of the SIM in the GSM system

be freely selected by the card via the ATR. There is provision for a PPS, and this capability is
frequently used to increase the data transmission rate. The divider value (clock rate conversion
factor) typically used by many mobile telephones is 64, which yields a data transmission rate
of 78 kbit/s with a 5-MHz clock rate. In isolated cases, a value of 31 (≈156 kbit/s at a 5-MHz
clock rate) is even used. For historical reasons, the T = 0 communications command GET
RESPONSE is incompatible with ISO/IEC in two regards.8 If data can be fetched from the
terminal using GET RESPONSE, the SIM indicates this by putting '9F' in the SW1 byte,
rather than '61' as specified in ISO/IEC 7816-3. GET RESPONSE also has another special
feature. According to GSM 11.11, the data provided by the SIM can be fetched a byte at a
time using GET RESPONSE, and a transmit buffer pointer is maintained in the SIM for this
purpose. This is not possible with ISO/IEC 7816-3, which specifies that the data to be fetched
using GET RESPONSE can only be requested starting with the first byte or as an entire block.
However, these two incompatibilities do not lead to any problems in practice.

In 1998, on the occasion of the tenth anniversary of the standards for the SIM, the SMG9
published the slogan shown in Figure 13.11. This was the first statement to quite clearly show
the significance and size already achieved by the GSM system at that time, as well as the pride
felt for one of the essential components of the system, the SIM.

The specifications for the SIM formed the basis for many other specifications for smart cards
used in the field of mobile telecommunications. The most important of these specifications are
briefly described below.

8 Strictly speaking, in this case the ISO/IEC 7816-3 standard is de facto incompatible with GSM 11.11, since the
latter was chronologically first. However, in terms of standardization, an ISO/IEC standard has a higher rank, so
GSM is de jure incompatible

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 781 of 1123

13.2 The GSM System 747

Billions of Calls
Millions of Subscribers

Thousands of Different Types of Telephones
Hundreds of Countries

Dozens of Manufacturers ...

... and only one Card
The SIM

Figure 13.11 The slogan of the SIM standardization group SMG9 for its tenth anniversary in 1998

In 1992, as part of the European standardization of ‘digital enhanced cordless telecom-
munications’ (DECT) by ETSI (DECT is a standard for cordless telephones using cellular
technology operating in the 1.9-GHz band), the first version of a specification for the DECT
authentication module (DAM) was published. This specification was frozen in 1995 under the
ETSI number ETS 300 331. Unfortunately, the DAM is specified as being optional, with the
result that it was never converted into an actual product; it fell victim to the cost reduction
programs of all manufacturers of cordless telephones.

The digital terrestrial trunked radio system TETRA [TETRA] also has provision for an
optional smart card called the TETRA-SIM, whose specifications are based on the SIM for
GSM mobile telephones. The EN 300 812 specification for the TETRA-SIM also allows it to
be implemented as an application in the UICC if so desired. Since the TETRA-SIM is optional,
it can also exist as a software implementation in the terminal device.

Another type of smart card whose specification is based on the SIM is the R-UIM (removable
user identity module) in 3G mobile telecommunications systems, which was defined by the
Third Generation Partnership Project 2 (3GPP2). The R-UIM is envisaged as an optional
component of the associated terminals, and its functionality is similar to that of the SIM.
It is specified in the TIA/EIA/IS-820 and TIA/EIA/IS-839 standards. A significant difference
between the R-UIM and the SIM is that the former includes the CAVE (‘cellular authentication,
voice privacy and encryption’) cryptographic algorithm, which as its full name suggests, can
be used in the R-UIM for a wide variety of cryptographically secured functions. A UIM
application toolkit (UATK), which borrows heavily from the SIM application toolkit, has also
been specified for the R-UIM.

In the satellite-based Inmarsat mobile telephone network [Inmarsat], which has been in
operation since the early 1989s, modified GSM cards are also used now as a means of estab-
lishing subscriber identity. Another extension of the SIM, which features a few additional files
and a special cryptographic algorithm, is the smart card for the international Iridium mobile
telecommunications system [Iridium]. In its ultimate form, this system is intended to consist
of 66 satellites orbiting at a height of 780 km that are equivalent to GSM base stations. The fre-
quency used for the air interface between the mobile stations and the satellites is 1616 MHz. The
medium- to long-term survival of this technically interesting and unquestionably sophisticated
mobile telecommunications system depends on the somewhat precarious financial situation of
its operating consortium.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 782 of 1123

748 Smart Cards in Telecommunications

SIM commands

The GSM 11.11 specification defines 22 operational commands for the SIM, which are identi-
fied by a class byte value of'A0'.9 The commands can be classified into commands related to
security, commands for operations on files and commands belonging to the SIM Application
Toolkit. Table 13.4 contains a summary of these commands.10

Table 13.4 The commands specified for the SIM in GSM 11.11

Command Brief description

Security commands
CHANGE CHV Change the PIN
DISABLE CHV Disable PIN queries
ENABLE CHV Enable PIN queries
RUN GSM ALGORITHM Execute the GSM-specific cryptographic algorithm
UNBLOCK CHV Reset the PIN retry counter from its terminal count
VERIFY CHV Verify the PIN

Commands for operations on files
INCREASE Increase the value of a counter in a file
INVALIDATE Reversibly block a file
READ BINARY Read from a file with a transparent structure
READ RECORD Read from a file with a record-oriented structure
REHABILITATE Unblock a file
SEEK Seek a text string in a file with a record-oriented structure
SELECT Select a file
STATUS Read various data from the currently selected file
UPDATE BINARY Write to a file with a transparent structure
UPDATE RECORD Write to a file with a record-oriented structure

SIM Application Toolkit commands
ENVELOPE Pass data to a value-added service of the SIM forming part of the

SIM Application Toolkit
FETCH Retrieve a SIM Application Toolkit command from the SIM in the

mobile equipment
TERMINAL PROFILE List all functions of the mobile equipment with respect to the

SIM Application Toolkit
TERMINAL RESPONSE Convey the response of the mobile equipment to a previous

SIM Application Toolkit command of the SIM

Miscellaneous commands
GET RESPONSE Command specific to T = 0 for requesting data from the smart card
SLEEP Obsolete command for putting the smart card into a low-power state

There is a special feature with regard to entering the four-digit PIN, which incidentally is
designated ‘cardholder verification’ (CHV) in GSM. The user can disable further queries for
the user PIN by using a special command (DISABLE CHV) together with the proper PIN,

9 See Section 6.5.1, ‘Structure of the command APDU’, for a description of the command structure
10 See Chapter 7, ‘Smart Card Commands’, for descriptions of typical smart card commands

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 783 of 1123

13.2 The GSM System 749

thus making it unnecessary to enter the PIN before logging in to a mobile telecommunications
network. The disadvantage of this, which is that a lost card can be used illicitly for telephoning
until it has been blocked by the network operator, falls under the responsibility of the user.
Another command (ENABLE CHV) can be used as desired to again enable PIN queries.

A SIM usually has two CHVs. The idea behind this is to differentiate between the card user
and the cardholder, in order to distinguish the functions that can be used or allow only the
cardholder to use certain functions. This can be briefly explained using the EFFDN file holding
the fixed dialing numbers as an example. The card user only knows CHV 1, which is sufficient
for dialing the numbers stored in EFFDN. However, the cardholder also knows CHV 2, so he or
she can alter the entries in EFFDN, since the access conditions for UPDATE RECORD require
successful verification of CHV 2. One example of how this feature can be used is restricting
the numbers that children can call with the mobile telephone to the numbers stored in EFFDN,
since they only need to know CHV 1 in order to use the telephone. Their parents, who also
know CHV 2, can edit the numbers stored in EFFDN.

For reasons of compatibility, all SIMs also support the SLEEP command, although it has
been obsolete for many years. Its original function, which was to save energy in terminal
equipment, has now been taken over by the hardware of the smart card microcontroller or the
operating system.

The STATUS command is used for two purposes. The first is requesting information about
the currently selected file, while the second is verifying that a SIM is present. The mobile
equipment periodically sends a STATUS command to the SIM at an interval of approximately
30 seconds, in order to confirm that the SIM is present. If no response to the STATUS command
is received from the SIM within five seconds, the SIM is deactivated and the call is terminated.
In addition, there is usually some sort of mechanical contact present to detect or prevent
exchanging the SIM while the mobile telephone is in use.

The relevant GSM specifications do not specify any administrative commands for file man-
agement. Such commands were originally not necessary, since for a long time smart card
operating systems did not support creating or deleting files, due to a lack of memory space.
However, this situation has fundamentally changed, with the result that these file management
functions, which in principle are very important, are now available. They can be used to down-
load files into SIMs at any desired time using remote file management functions, assuming
sufficient free memory space is available. The administrative commands are described in the
TS 102.222 specification, which originates from the 3GPP environment and was originally
conceived for the USIM. However, since the administrative commands for smart card file
systems do not exhibit any fundamental differences between SIM and USIM, in practice this
standard has also become firmly established in the SIM environment.

SIM files

The SIM has a hierarchical file system, with an MF and two DFs directly below the MF. EFs
containing data for the application are located under the MF and in the DFs. The EFs may have
transparent, linear fixed or cyclic file structures.

The file identifiers (FIDs) of the SIM files have a special feature, which is that the first byte
of each DF under the MF always has the value '7F', DFs directly below the GSM DF have
the value '5F' and EFs have the value '5F'. EFs directly below the MF must have the value

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 784 of 1123

750 Smart Cards in Telecommunications

Table 13.5 Smart card file management commands specified in TS 102.222

Command Brief description

ACTIVATE FILE Unblock a file
CREATE FILE Create a new file
DEACTIVATE FILE Reversibly block a file
DELETE FILE Delete a file
TERMINATE CARD USAGE Irreversibly block a smart card
TERMINATE DF Irreversibly block a DF
TERMINATE EF Irreversibly block an EF

'2F' in the first byte of their FIDs, EFs under the TELECOM DF must have the value '6F'
and EFs in an MExE EF must have the value '4F'. These conventions are largely a remnant
of the early days of smart card microcontrollers, and they have long since ceased to have any
practical significance.

The access conditions for all files are state-oriented and are individually specified for the
four file access commands READ, UPDATE, INVALIDATE and REHABILITATE for each
file. There are 16 different states for file access, which are numbered from 0 to 15 in increasing
order of security. State 0 as an access condition means always, which means that the file
may always be accessed using the associated command. State 15 represents the other extreme,
which is that the file may never be accessed using the associated command. State 1 means that
access is allowed following successful verification of CHV 1, which means PIN number 1.
Similarly, State 2 requires successful verification of CHV 2 prior to access to the file. State 3
is not presently used and is reserved for future use. States 4 through 14 are reserved for
administrative use, which means that the network operator can access files using these access
conditions with special PINs or authentications.

All EFs containing general information about the smart card, such as a unique card serial
number (ICCID), are located directly below the MF. All EFs relevant to the GSM system
are located in the TELECOM DF. A typical example of such EFs is the EF containing the
abbreviated dialing numbers. The GSM DF, by contrast, contains all EFs holding information
specific to the network operator, such as the IMSI.

In total, 70 different EFs are defined in the GSM 11.11 specification, of which only 12
(with a total content of approximately 110 bytes of data) are obligatory. The rest of the EFs are
optional, so their presence in the file system of the SIM depends on the network operator and
the services that are provided. In addition to the files defined in the specification, the network
operator can place its own files in the SIM file tree for maintenance or administrative purposes.
In practice, intensive use is made of this possibility, with the result that typically around 40
files containing approximately 12 kB of user data are present in the SIM.

Some of the EFs in the file tree of the SIM must be written especially often. One example
is the LOCI (location information) EF. This file stores the currently valid temporary mobile
subscriber identity (TMSI) along with the supplementary location area information (LAI).
The data in this file must be modified for each change in base station and each new call.
Consequently, a SIM operating system must support a special file attribute called ‘high update
activity’. The technical implementation of this involves storing several file bodies under a

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 785 of 1123

13.2 The GSM System 751

GSM

MF

DF

Telecom

EF

MF

EF

EF EF EF EF

EF

DF

EF EF EF EF EF

EF EF EF EF EF

ICCID ELP

ACC ACMmax AD BCCH CBMI

DCK ECC FPLMN HPLMN IMSI

Kc KcGPRS LOCI LOCIGPRS LP

EF EF EF EF EF
Phase PLMNsel PUCT SPN SST

EF
SUME

EF EF EF EF EF
ADN FDN LND MSISDN SDN

EF EF EF EF
SMS SMSP SMSR SMSS

Graphics

DF

EF
IMG

...

...

EF
IMGData

...

Figure 13.12 Overview of the most important SIM files

single file header. If an error occurs in a file body, the operating system automatically switches
to a replacement file body. This file attribute came into existence at a time when EEPROM
pages had only 10,000 guaranteed write/erase cycles. However, technical refinements have
increased the number of cycles to around half a million, which means that this attribute has
effectively become obsolete. Nevertheless, it is still present in the GSM specification, although

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 786 of 1123

752 Smart Cards in Telecommunications

Table 13.6 Typical SIM files according to GSM 11.11, with the coding of the data elements and
illustrative decoded examples

MF Root directory

Description: This is the source directory for the entire SIM.

File: FID ='3F00'

DFTELECOM Telecom directory

Description: This directory holds all files specific to the services.

File: FID ='7F10'

DFGSM GSM directory

Description: This directory holds all files specific to the GSM network.

File: FID ='7F20'(or'7F21'for compatibility with older-model
GSM 1800 mobile telephones)

DFGRAPHICS Graphics directory

Description: This directory holds all files containing graphics information.

File: FID ='5F50'

MF.EFELP Extended language preference (ELP)

Description: This file holds an extended list of the preferred languages for the
user interface.

File: FID ='2F05'; structure: transparent, file size: 2n bytes;
accesses: READ: always, UPDATE: CHV 1

Coding: Each country code consists of two alphanumeric characters
according to ISO 639, using the GSM 03.38 alphabet.
bytes 1& 2: highest-priority language
. . .
bytes 2 (n – 1) & 2n: lowest-priority language

Example: '64 65'⇒ highest-priority language: German
'65 6E'⇒ second highest-priority language: English
'66 72'⇒ third highest-priority language: French
'65 73'⇒ lowest-priority language: Spanish

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 787 of 1123

13.2 The GSM System 753

Table 13.6 (Cont.)

MF.EFICCID ICC identification (ICCID)

Description: This file holds a unique identification number for the smart card.

File: FID ='2FE2'; structure: transparent, file size: 10 bytes;
accesses: READ: always, UPDATE: never

Coding: sequential number, BCD-coded, left-justified and padded with
'F'as necessary
byte 1, bits 1– 4: digit 1
byte 1, bits 5–8: digit 2
byte 2, bits 1–4: digit 3 etc.

Example: '98 94 20 00 00 10 81 85 39 11'⇒ 89 49 02 00 00 01 18
58 93 11

DFGSM.EFACM Accumulated call meter (ACM)

Description: This file holds the number of call charge units accumulated
since a particular starting time.

File: FID ='6F39'; structure: cyclic, 3n bytes;
accesses: READ: CHV 1; UPDATE: CHV 2

Coding: bytes 1–3: accumulated number of call charge units

DFGSM.EFACMmax Accumulated call meter maximum (ACM)

Description: This file holds the maximum amount of call charge units.

File: FID ='6F37'; structure: transparent, 3 bytes;
accesses: READ: CHV 1; UPDATE: CHV 2

Coding: bytes 1 –3: maximum amount of call charge units

DFGSM.EFFPLMN Forbidden public land mobile network (FPLMN)

Description: This file holds a list of forbidden network operators.

File: FID ='6F7B'; structure: transparent, 12 bytes;
accesses: READ: CHV 1; UPDATE: CHV 1

Coding: bytes 1–3: forbidden PLMN no. 1
bytes 4–6: forbidden PLMN no. 2; etc.
See EFPLMNsel for the data structure and an example.

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 788 of 1123

754 Smart Cards in Telecommunications

Table 13.6 (Cont.)

Example: 'FF FF FF FF FF FF FF FF FF 62 F2 20'
'62 F2'⇒ MCC ⇒'262'⇒ Germany
'10' ⇒ MNC ⇒'01' ⇒ Germany D1

DFGSM.EFHPLMN Home public land mobile network search period
(HPLMN)

Description: This file holds a time interval for searching for the home
network.

File: FID ='6F31'; structure: transparent, 1 byte;
accesses: READ: CHV 1; UPDATE: ADM

Coding: Time interval for searching for the home network
in minutes; coding: per GSM 02.11

Example: '05'⇒ search for home network every 5 minutes

DFGSM.EFIMSI International mobile subscriber identity (IMSI)

Description: This file holds the international subscriber identity number.

File: FID ='6F07'; structure: transparent, file size: 9 bytes;
accesses: READ: CHV 1; UPDATE: ADM

Coding: byte 1: length of the IMSI in bytes
byte 2, bits 1–3: ◦100◦

byte 2, bit 4: parity of the IMSI, coded per GSM 04.08
byte 2, bits 5 –8: digit 1 of the IMSI
bytes 3–9: digits 2 –10 of the IMSI
IMSI = MCC || MNC || serial number of the network operator,
BCD-coded and right-padded with'F'as necessary
Coding: from MCC; for MNC see EFPLMNsel

Example: '08 92 62 01 71 00 10 92 67'
'08' ⇒ length ⇒ 8 bytes
'9'||'2 62' ⇒ MCC ⇒ Germany
'01' ⇒ MNC ⇒ Germany D1
'71 00 10 92 67'⇒ serial number of the network operator

DFGSM.EFKC Kc key

Description: This file holds the key Kc for encrypting data on the air
interface.

File: FID ='6F20'; structure: transparent, file size: 9 bytes;
accesses: READ: CHV 1; UPDATE: CHV 1

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 789 of 1123

13.2 The GSM System 755

Table 13.6 (Cont.)

Coding: bytes 1–8: key Kc
byte 9, bits 1–3: serial number of the key

DFGSM.EFLOCI Location information (LOCI)
Description: This file holds current location information for the mobile

telephone.

File: FID ='6F7E'; structure: transparent, file size: 11 bytes;
accesses: READ: CHV 1; UPDATE: CHV 1

Coding: bytes 1–4: TMSI (temporary mobile subscriber identity)
bytes 5–9: LAI (location area information)
byte 10: TMSI TIME (not used from Phase 2 onwards)
byte 11: Location update status:

b3–b1 = ◦000◦: updated
b3–b1 = ◦001◦: not updated
b3–b1 = ◦010◦: forbidden PLMN
b3–b1 = ◦011◦: forbidden location area

Coding: per GSM 04.08

Example: '5F 40 96 46 62 F2 10 80 04 FF 00'
'5F 40 96 46' ⇒ TMSI
'62 F2 10 80 04'⇒ LAI
'FF' ⇒ TMSI TIME ⇒ not used
'00' ⇒ location update status ⇒ updated

DFGSM.EFLP Language preference (LP)
Description: This file holds a list of the preferred languages for the user

interface.

File: FID ='6F05'; structure: transparent, file size: n bytes,
n ≥ 1; accesses: READ: always, UPDATE: CHV 1

Coding: per GSM 03.38
byte 1: highest-priority language
. . .
byte n: lowest-priority language

Sample languages: Valid for the GSM alphabet according to GSM 03.38
'00': German '01': English
'02': Italian '03': French
'04': Spanish '05': Dutch
'06': Swedish '07': Danish
'08': Portuguese '09': Finnish
'0A': Norwegian'0B': Greek
'0C': Turkish '0D': Hungarian
'0E': Polish '0F': Unspecified language

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 790 of 1123

756 Smart Cards in Telecommunications

Table 13.6 (Cont.)

Example: '00 01 03 05'
'00'⇒ highest-priority language: German
'01'⇒ second highest-priority language: English
'03'⇒ third highest-priority language: French
'05'⇒ lowest-priority language: Dutch

DFGSM.EFPHASE Phase information

Description: This file holds information about the phase supported
by the SIM.

File: FID ='6FAE'; structure: transparent, file size: 1 byte;
accesses: READ: always, UPDATE: ADM

Coding: byte 1: 00 = Phase 1; 02 = Phase 2

Example: '02'⇒ Phase 2

DFGSM.EFPLMNsel Public land mobile network selector (PLMNsel)

Description: This file holds a list of the preferred network operators.

File: FID ='6F30'; structure: transparent, 3n bytes (n ≥ 8);
accesses: READ: CHV 1; UPDATE: CHV 1

Coding: bytes 1–3: PLMN for the highest selection priority
bytes 4–6: PLMN for the second-highest selection
priority

Data structure:
2 bytes MCC (mobile country code) || 1 byte MNC
(mobile network code), BCD-coded per GSM 04.08,
high and low nibbles swapped;
'FFFFFF'⇒ entry not used

Sample MCC codes: 262: Germany
208: France
234: Great Britain
222: Italy
232: Austria
310: USA

Sample MNC codes 01: Germany D1
for Germany: 02: Germany D2

03: Germany E-plus
07: Germany Viag Intercom

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 791 of 1123

13.2 The GSM System 757

Table 13.6 (Cont.)

Example: '62 F2 20 72 F0 10 32 F4 01 32 F2 30 32 F0 10 62
F2 10 62 F0 20 42 F0 10 22 F8 10', remainder'FF'
'62 F2'⇒ MCC ⇒'262'⇒ Germany
'20' ⇒ MNC ⇒'02' ⇒ Germany D2
etc.

DFGSM.EFPUCT Price per unit and currency table (PUCT)

Description: This file holds the price per call unit and the currency,
for the current summary of call charges.

File: FID ='6F41'; structure: transparent, file size: 5 bytes;
accesses: READ: CHV 1; UPDATE: CHV 1 or CHV 2

Coding: bytes 1 –3: currency code, character coded using the
GSM alphabet bytes 4 & 5: price per unit = EPPU×10 EX

EPPU: elementary price per unit; EX: exponent
EPPU component:
B5.b1: 20 B5.b2: 21 B5.b3: 22 B5.b4: 23

B4.b1: 24 B4.b2: 25 B4.b3: 26 B4.b4: 27

B4.b5: 28 B4.b6: 29 B4.b7: 210 B4.b8: 211

Exponent component (EX):
B5.b6: 20 B5.b7: 21 B5.b8: 22

B5.b5: sign of the exponent: 0: +, 1: –

Examples: '44 45 4D 01 57'
'44 45 52'⇒ currency code ⇒''EUR''
'01 57'= ◦0000 0001◦ || ◦0101 0001◦ ⇒ price per unit

⇒ 17 × 10–2 = 0.17

DFGSM.EFSPN Service provider name (SPN)

Description: This file holds the name of the service provider.

File: FID ='6F46'; structure: transparent, file size: 17 bytes;
accesses: READ: always, UPDATE: ADM

Coding: byte 1: conditions for display
'00': display of PLMN name not required
'01': display of PLMN name required
bytes 2–17: service provider name, coded per GSM 03.38,
left-justified and right-padded with'F'as necessary

Example: '01 50 72 6F 76 69 64 65 72 20 41'
'01'⇒ display of PLMN name required
'50 72 6F 76 69 64 65 72 20 41'

⇒name of service provider ⇒''Provider A''

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 792 of 1123

758 Smart Cards in Telecommunications

Table 13.6 (Cont.)

DFGSM.EFSST SIM service table (SST)

Description: This file holds a table of available and activated services
supplementary to the voice service.

File: FID ='6F38'; structure: transparent, file size: ≥ 2 bytes;
accesses: READ: CHV 1; UPDATE: ADM

Coding: byte 1, bits 1 & 2: service no. 1
byte 1, bits 3 & 4: service no. 2
byte 1, bits 5 & 6: service no. 3
byte 1, bits 7 & 8: service no. 4
byte 2, bits 1 & 2: service no. 5 etc.
Bit coding:
b1, b3, b5, b7 = 1 / 0: service available / not activated
b2, b4, b6, b8 = 1 / 0: service enabled / not activated

Sample services: Service no. 1: disable CHV testing
Service no. 2: abbreviated dialing numbers (ADN)
Service no. 3: fixed dialing numbers (FDN)
Service no. 4: short message service (SMS)
Service no. 18: service dialing numbers (SDN)
Service no. 35: status report for short messages
Service no. 38: GPRS
Service no. 39: image (IMG)

Example: 'DF 3F DF FF 03'= ◦1101 1111◦ || ◦0011 1111◦ ||
◦1101 1111◦ || ◦1111 1111◦ || ◦0000 0011◦
◦11◦ ⇒ disable PIN available and activated
◦11◦ ⇒ abbreviated dialing numbers available

and activated
◦01◦ ⇒ fixed dialing numbers available and not activated
◦11◦ ⇒ short message service available and activated
etc.

DFGSM.DFGRAPHICS. Image (IMG)
EFIMG

Description: This file holds references to files containing graphics that
can be shown on the display of the mobile telephone.

File: FID ='4F20'; structure: linear fixed, (9n + 2) bytes;
accesses: READ: CHV 1; UPDATE: ADM

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 793 of 1123

13.2 The GSM System 759

Table 13.6 (Cont.)

Coding: byte 1: number of references to image files
bytes 2–10: description of the reference to image file 1
bytes 11 –19: description of the reference to image file 2
. . .
byte 9n + 2: RFU

Coding of the byte 1: width of the image in pixels
references: byte 2: height of the image in pixels

byte 3: image coding scheme
bytes 4 & 5: FID of EFIMGData
bytes 6 & 7: offset to the image data in EFIMGData
bytes 8 & 9: size to the image data in EFIMGData in bytes

DFGSM.DFGRAPHICS. Image data (IMGData)
EFIMGDattaX

Description: Each of these files holds a bitmapped graphic that
can be shown on the display of the mobile telephone.

File: FID ='4Fxx'; structure: transparent, n bytes;
accesses: READ: CHV 1; UPDATE: ADM

Coding: bytes 1 – n: image data

DFTELECOM.EFADN Abbreviated dialing numbers (ADN)
Description: This file holds the abbreviated dialing numbers. Each

record contains a name and the associated dialing number.

File: FID ='6F3A'; structure: linear fixed, record size:
n + 14 bytes; accesses: READ: CHV 1; UPDATE: CHV 1

Coding: bytes 1 – n: name coded in characters per GSM 03.38
byte n + 1: length of the BCD-coded dialing number

in bytes
byte n + 2: type of dialing number, coded per GSM 04.08

e.g.:'81'= unknown type of dialing number,
ISDN dialing number scheme

'91'= international type of dialing number,
ISDN dialing number scheme

bytes (n + 3) – (n + 12): BCD-coded dialing number
with upper and lower nibbles
swapped in byte

bytes (n + 13) – (n + 14): pointer to supplementary
data for this entry in EFCCP
and EFEXT1, generally not
used (i.e.'FF')

Unused bytes are set to'FF'

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 794 of 1123

760 Smart Cards in Telecommunications

Table 13.6 (Cont.)

Example 1: Record content:'57 4F 4C 46 47 41 4E 47 FF FF FF FF
FF FF FF FF 07 91 94 98 69 35 24 46 FF FF FF FF FF FF'
'57 4F 4C 46 47 41 4E 47' ⇒''Wolfgang''
'FF FF FF FF FF FF FF FF'⇒ not used

'07'⇒ length of the dialing number
(7 bytes)

'91'⇒ international dialing number,
ISDN dialing number scheme

'94 98 69 35 24 46' ⇒ dialing number 49 89 96 53 42 64
'FF FF FF FF' ⇒ not used
'FF FF' ⇒ EFCCP and EFEXT1 not used

Example 2: Record content:'57 4F 4C 46 47 41 4E 47 FF FF FF FF
FF FF FF FF 07 91 94 98 69:'57 4F 4C 46 47 41 4E 47
FF FF FF FF FF FF FF FF 07 81 80 99 56 43 62
F4 FF FF FF FF FF FF'
'57 4F 4C 46 47 41 4E 47' ⇒''Wolfgang''
'FF FF FF FF FF FF FF FF'⇒ not used
'07' ⇒ length of the dialing number

(7 bytes)
'81' ⇒ unknown type of dialing number,

ISDN dialing number scheme
'80 99 56 43 62 F4' ⇒ dialing number 089 96 53 42 64
'FF FF FF FF' ⇒ not used
'FF FF' ⇒ EFCCP and EFEXT1 not used

DFTELECOM.EFFDN Fixed dialing numbers (FDN)

Description: Fixed dialing numbers can be stored in this file as needed.
These dialing numbers are used when the subscriber is
only allowed to dial certain numbers.

File: FID ='6F3B'; structure: linear fixed, record size: (n + 14) bytes;
accesses: READ: CHV 1; UPDATE: CHV 2

Coding: same as EFADN

Example: see EFADN

DFTELECOM.EFLND Last number dialed (LND)

Description: The most recently dialed numbers are stored in this file.

File: (optional file)
FID ='6F44'; structure: cyclic, record size:
(n + 14) bytes; accesses: READ: CHV 1; UPDATE: CHV 1

Coding: same as EFADN

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 795 of 1123

13.2 The GSM System 761

Table 13.6 (Cont.)

DFTELECOM.EFMSISDN Mobile station ISDN number (MSISDN)

Description: This file holds the dialing number of the mobile station.

File: FID ='6F40'; structure: linear fixed, record size:
(n + 14) bytes; accesses: READ: CHV 1;
UPDATE: CHV 1

Coding: same as EFADN

DFTELECOM.EFSDN Service dialling numbers (SDN)

Description: This file holds the service dialing numbers, which
may for example be dialing numbers for directory
information or schedule information.

File: FID ='6F49'; structure: linear fixed,
record size: (n + 14) bytes;
accesses: READ: CHV 1;
UPDATE: ADM

Coding: same as EFADN

DFTELECOM.EFSMS Short message service (SMS)

Description: This file belongs to the short message service.
It holds the short messages sent to and received
from the network.

File: FID ='6F3C'; structure: linear fixed,
record size: 176 bytes;
accesses: READ: CHV 1;
UPDATE: CHV 1

Coding: byte 1: status of the record in question:
'00'= free record
'01'= message coming from the network and read
'03'= message coming from the network and still

to be read
'05'= message sent to the network
'07'= message to be sent to the network

bytes 2–176: message coded per GSM 03.40;
unused bytes at the end of the message
are set to'FF'

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 796 of 1123

762 Smart Cards in Telecommunications

Table 13.6 (Cont.)

Coding of a message byte 2: number of bytes in the SMSC dialing number,
from the network to including the dialing number type
the mobile telephone next 2–12 bytes: SMSC dialing number:

'81'= unknown type of dialing number (no “+”),
'91'= international type of dialing number (“+”),

data nibblewise swapped
next byte: control information (generally'04')
next byte: number of digits in the dialing number of the

sender, excluding the dialing number type
next 2–12 bytes: dialing number of the sender, with data

nibblewise swapped
next byte: protocol tag ('00'= text message)
next byte: data coding ('00'= GSM standard alphabet)

next 7 bytes: SMSC time stamp, data nibblewise swapped:
year || month || day || hours || minutes ||
seconds || time zone ('00'= GMT)

next byte: number of characters in the message
next 1 –140 bytes: message (if the GSM standard alphabet

is used, the text portion is compressed,
which means the 7-bit codes are
continuously packed into bytes)

Coding of a message byte 2: number of bytes in the SMSC dialing
from the mobile telephone number, including the dialing number type
to the network next 2–12 bytes: SMSC dialing number:

'81'= unknown type of dialing number,
(no “+”)

'91'= international type of dialing
number, (“+”), data nibblewise swapped

next byte: relative time of the mobile telephone
(generally'FF')

next byte: message reference
next 2–12 bytes: dialing number of the destination,

with data nibblewise swapped
next byte: protocol tag ('00'= text message)
next byte: data coding ('00'= GSM standard

alphabet)
next X bytes: term of validity of the message:

1–143: t = (X + 1) × 5 min
144–167: t = 12 h + (X – 143) × 30 min
168–196: t = (X – 166) × 1 day
197–255: t = (X – 192) × 1 week

next byte: number of characters in the message

Sample SMS message '01 07 91 94 71 01 67 05 00 04 0C 91 94 71 71 46 53 42 00 00 00 60
from the network to a 52 31 63 15 00 17 C8 A0 93 28 AC 0E 91 20 62 51 0A 1A 22 93 D0
mobile telephone 65 50 4A 2D 3A 01'|| remainder of record is'FF'

'01'⇒ message coming from the network and read
'07'⇒ number of bytes in the SMSC dialing number, including the
dialing number type

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 797 of 1123

13.2 The GSM System 763

Table 13.6 (Cont.)

'91 94 71 01 67 05 00'⇒ SMSC dialing number = +49 17 10 76 50 00
'04'⇒ no further messages
'0C'⇒ 12 ⇒ number of digits in the dialing number of the
sender, excluding the dialing number type, is 12
'91 94 71 71 46 53 42'⇒ sender dialing number = +49 17 17 64 35 24
'00'⇒ test message
'00'⇒ GSM standard alphabet
'00 60 52 31 63 15 00'⇒ SMSC time stamp = 00 06 25 13 36 51 00
⇒ 25.06.0013 : 36 : 51,time zone 0 (GMT)
'17'⇒ 23 ⇒ number of characters in the message is 23
'C8 A0 93 28 AC 0E 91 20 62 51 0A 1A 22 93 D0 65 50 4A 2D 3A 01'
⇒ message:''Handbuch der Chipkarten''

Sample SMS message '07 02 81 F0 11 FF 00 81 00 00 00 08 D7 27 D3 78 0C 3A 8F FF'||
from a mobile remainder of record is'FF'
telephone to the network '07'⇒ message to be sent to the network

'02'⇒ number of bytes in the dialing number, including this length
specification �

'81'⇒ unknown dialing number �
'F0'⇒ control information
'11'⇒ relative time of mobile telephone
'FF'⇒ message reference �
'00'⇒ length of the dialing number of the destination = 0 �
'81'⇒ unknown dialing number �
'00'⇒ test message
'00'⇒ GSM standard alphabet
'00'⇒ validity interval �
'08'⇒ number of characters in the message is 8
'D7 27 D3 78 0C 3A 8F FF'⇒ message:''WOLFGANG''
Note 1: The record structure depends on the implementation in the
actual mobile telephone and is not universally valid.
Note 2: After this SMS record has been read from the SIM, the data
elements above marked with � are expanded before being sent from
the mobile telephone. After the message has been sent to the network,
the first byte of this data set is changed from ‘07’ to ‘05’.

DFTELECOM.EFSMSP Short message service parameters (SMSP)

Description: This file belongs to the short message service. It holds
the settings for sending short messages.

File: FID ='6F42'; structure: linear fixed, record size:
(28 + n) bytes;
accesses: READ: CHV 1;
UPDATE: CHV 1

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 798 of 1123

764 Smart Cards in Telecommunications

Table 13.6 (Cont.)

DFTELECOM.EFSMSS Short message service status (SMSS)

Description: This file belongs to the short message service. It holds
the status of the stored short messages.

File: FID ='6F43'; structure: linear fixed, record size:
(2 + n) bytes; accesses: READ: CHV 1; UPDATE: CHV 1

Coding: byte 1: last used SMS message reference number per GSM 03.40
byte 2: b1 = 0: no space for the message in the SIM memory

b1 = 1: enough space for the message in the SIM memory
b2 – b7: RFU; set to ‘1’

Example: '70 FF'
'70'⇒ last used SMS message reference number
'FF'⇒ memory space available in the SIM

current smart card operating systems do not treat files having this attribute any differently than
files that do not have it.

It was originally planned to replace GSM smart cards every two years in order to avoid
failures due to the limited number of EEPROM write/erase cycles. However, since practically
no problems have arisen in this regard up to now, most network operators replace smart cards
only in the event of actual failure. This yields considerable cost savings for the provider, since
his logistics only have to deal with replacing defective cards. The number of cards that have
to be replaced is also considerably reduced by the fact that the useful life of most cards is
significantly longer than two years. This markedly decreases procurement costs, since it is
only necessary to replace smart cards when they no longer work properly. Practical experience
has shown that cards must be replaced every five to seven years.

Authenticating the SIM

Besides storing data, one of the primary functions of the SIM is performing authentication
with respect to the GSM network. This involves a unilateral authentication of the SIM by the
background system. The SIM thus does not test whether the background system is authentic;
instead, the background system only tests whether the SIM is authentic. If the authenticity of
the SIM is confirmed, the network operator knows that it can bill the call to the owner of the
mobile telephone. However, this unilateral authentication has the disadvantage that the user of
the mobile telephone cannot be certain that he is connected to an authentic network instead of
a counterfeit network. As a consequence, it is possible to eavesdrop on calls using a suitable
piece of equipment, called an IMSI catcher, without knowing the secret keys. The operating
principle of the IMSI catcher is based on having the device establish its own radio cell by acting
as a counterfeit base station, which allows it to interpose itself in the air interface between a
genuine base station and the mobile telephones by representing itself as a base station to the
mobile telephones and as a mobile telephone to the base station. Such an attack would not be

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 799 of 1123

13.2 The GSM System 765

possible with mutual authentication followed by encryption of all call data between the SIM
and the background system.

The SIM is identified using a number that is unique within the entire GSM system. This
number, which has a maximum length of eight bytes, is called the ‘international mobile sub-
scriber identity’ (IMSI). The subscriber can be identified using the IMSI in all GSM networks
throughout the world. In order to keep the identity of the subscriber as confidential as possible
within the network, whenever possible a temporary mobile subscriber identity (TMSI) is used
instead of the IMSI. The TMSI is generated from the visitor location register (VLR) and is
thus valid only within a portion of the GSM network in question. Nevertheless, in combination
with the location area information (LAI) the TMSI is unique within the entire GSM network.
For all further identification transactions, only the TMSI is used once it has been assigned. The
relationship between the IMSI and the TMSI is stored in the visitor location register (VLR)
for the duration of its actual use. In the exceptional case that the TMSI is not known in the
VLR, the IMSI must be transmitted in cleartext over the air interface in order to identify the
subscriber.

The card-specific keys for authentication and encrypting data on the air interface can be
derived from the IMSI. However, the SIM cannot encrypt data for the air interface, since the pro-
cessing and data transmission capacity of a smart card are not adequate for real-time encryption
of voice data. Instead, the SIM computes a derived temporary key for transmission encryption
and passes it to the mobile equipment. The mobile equipment has a high-performance encryp-
tion unit in the form of a signal processor, which can encrypt and decrypt voice data on the air
interface in real time. The encrypted data on the air interface are usually decrypted back into
cleartext by the base station controller (BSC).

If a subscriber wishes to make a call, his mobile telephone establishes a connection to
the base station with the best reception and gives it the TMSI from the SIM memory along
with the LAI, or in exceptional cases the IMSI. If the subscriber is located in the region of
his or her home network, a ‘triple’ of authentication and encryption data is generated by the
authentication center (AuC). This data set includes the ciphering key (Kc) for encrypting data
on the air interface, a random number (RAND) and the resulting signed response (SRES).
The advantage of this procedure is that the secret individual key (Ki) and the authentication
algorithm, which is partly confidential, never have to leave the authentication center. This triple
is then passed to the home location register (HLR).

If the mobile telephone is logged in to its home network, the triple (Kc, RAND and SRES)
is sent to the appropriate visitor location register (VLR). There the result of encrypting the
random number (SRES) is requested from the SIM by the mobile switching center (MSC) and
compared with the result received from the AuC (SRES’). If the two results match, the SIM
has been authenticated and the system can start encrypting the data on the air interface using
the A5 cryptographic algorithm and associated key (Kc).

On the other hand, if the mobile telephone is logged in to a foreign network the triple is
passed to the foreign network, where it can be used in the same manner as in the home network.
This situation clearly shows the cleverness of this authentication and encryption scheme, since
the A3 and A5 cryptographic algorithms are specific to individual network operators and cannot
be computed in a foreign network, even if the secret key is known. Only the A5 cryptographic
algorithm, which is used for encrypting data on the air interface, is common throughout the
GSM system, in order to allow these data to be given suitable cryptographic protection if the
key Kc is known.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 800 of 1123

766 Smart Cards in Telecommunications

Air Interface
BSS & MSC

(base station subsystem &
mobile switching center)

SRES

old LAI || old TMSI

or IMSI if LAI & TMSI not available
Ki = f (IMSI or LAI || TMSI)

RAND (random number)

RAND

algorithm A3
(specific to network operator)

algorithm A3
(specific to network operator)

algorithm
(specific to network operator)

A8

SRES

Ki

RAND Kc

RAND SRES'

Ki

SIM
(subscriber identity module)

SRES = ?SRES'

subscriber not
authenticated,

break the
connection

subscriber is
authenticated

Generate RAND or
fetch RAND, SRES tuple
from HLR or AuC

Ki

store Kc in the ME for
data encryption on the

air interface

identification

authentication

Figure 13.13 Procedure for the identification and subsequent authentication of the SIM by the GSM
background system using the A3 and A8 cryptographic algorithms, which are specific to the individual
network operator. Key Kc is later used for encrypting the data transmitted between the mobile station
and the base station via the air interface

The cryptographic algorithms used in the GSM system are generally confidential, which is
the only departure from Kerckhoff’s principle11 in this system. All other information about the
system is publicly accessible. Originally, an algorithm called COPM 128 was often used for
the A3 and A8 cryptographic algorithms, which are specific to individual network operators.
However, this algorithm was cracked in 1998, since its key was too short. In retrospect, this
shows the value of Kerckhoff’s principle, since cryptologists would have probably recognized
that the key was too short if the algorithm had been made public. The COMP 128 cryptographic
algorithm is still presently used, but in an improved form called COMP 128-2. The A5 crypto-
graphic algorithm, which is the same throughout the GSM system, is a stream cipher consisting
of three linear feedback shift registers (LFSRs) with lengths of 19, 22 and 23 [Anderson 01],
incremented by the TDMA frame number.

11 See also Section 4.7, ‘Cryptology’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 801 of 1123

13.2 The GSM System 767

Air Interface

S1

S2

algorithm A5
(uniform for GSM)

voice data

Kc

voice data

Kc

S1 S1

algorithm A5
(uniform for GSM)

ME
(mobile equipment)

...

BSS & MSC
(base station subsystem &
mobile switching center)

Figure 13.14 Data transmitted between the mobile station and the base station via the air interface are
encrypted using the A5 cryptographic algorithm and the secret key Kc. This process must be preceded
by authentication of the SIM by the GSM background system

SRES

RAND

TDMA frame number

downlink

uplink

Mobile Station Network

RAND

authentication
of the SIM

Ki Ki

KcKc

A8 A3

A5 A5

A3 A8

Figure 13.15 Functional overview of the cryptographic functions of the SIM, mobile equipment and
background system in the GSM system

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 802 of 1123

768 Smart Cards in Telecommunications

Switch-on and switch-off procedures for the mobile telephone

The procedures associated with switching a mobile telephone on and off are briefly described
below, with a strong focus on the role of the SIM.

When the mobile telephone is switched on, hardware self-tests are first run and the operating
system, which occupies several megabytes, is then started up. In order to distract the impatient
user during the several seconds taken by this process, entertaining animations are often shown
on the display. Once the operating system is fully active, one of the next steps is to initiate the
activation sequence for the SIM. The activation sequence is followed by several measures for
configuring the optimum transmission parameters, such as analyzing the ATR and executing
a PPS procedure.12 Following this, it is now common practice to create a virtual SIM in the
memory of the mobile telephone. For this purpose, the mobile telephone reads a large amount
of data from the files in the SIM, such as the abbreviated dialing numbers, and stores them
in appropriate data fields in the mobile telephone. The objective of this is to ensure fast read
and write access to the SIM data, which would otherwise not be possible due to the low data
transmission rate between the mobile telephone and the SIM and the amount of time taken
for EEPROM write accesses. Consequently, most mobile telephones primarily work with the
copies of the SIM data that are located in their memories. Of course, this technique cannot be
used with all of the data in the SIM. Activities such as PIN verification and authentication must
always be performed in combination with the SIM, since the data needed for these activities
are not allowed to leave the SIM.

One of the side effects of using a virtual SIM is that it considerably increases the life
expectancy of the SIM, since a large number of EEPROM write accesses that would otherwise
be necessary simply never occur. The stress on certain files within the SIM resulting from
frequent write accesses is thereby considerably reduced. A typical example of this is the
EFLOCI file, which contains information about the current location of the mobile telephone. The
EEPROM locations containing this file are especially heavily stressed in mobile telephones
that frequently change GSM cells, for which reason this file has the attribute ‘high update
activity’. If the data in this file are primarily updated in the RAM of the mobile telephone,
the problem of an excessive number of write accesses to the EEPROM of the SIM is rendered
insignificant.

The data in the virtual SIM in the memory of the mobile telephone are written back to the
SIM following critical operations, so the data stored in the files in the SIM are again current data
following the writeback operation. This is frequently performed asynchronously by the mobile
station using a low-priority operating system task, so the user is not aware that it is happening.
Updating the SIM at critical points in time is also important because the SIM should always
hold essentially current data in its EEPROM in the event of a sudden loss of power, such as
may happen when the batteries are removed. For instance, it would be extremely annoying if
removing the batteries resulted in the loss of all of the dialing numbers painstakingly entered
into the telephone since the last time the mobile telephone was switched on.

When the mobile telephone is switched off, the user usually sees only a brief sequence
of animated characters on the display. However, all the files in the virtual SIM are written to
the physical SIM while this is happening, in order to bring it up to date. After this, a SIM

12 See also Section 6.2, ‘Answer to Reset (ATR)’, and Section 6.3, ‘Protocol Parameter Selection (PPS)’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 803 of 1123

13.2 The GSM System 769

Listing 13.1 Typical activities of a mobile telephone that are related to the SIM, shown in proper
temporal sequence. The portrayed activities and command sequences correspond to a typical mobile
telephone, although it must be borne in mind that the GSM specifications generally leave the relevant
details to the manufacturer of the mobile telephone. In this example, the SIM used in the mobile
telephone essentially has only the functionality necessary for making telephone calls, with the
exception of the files for abbreviated dialing numbers and short messages. In the case of a SIM or
mobile telephone with a greater range of functions, the activities of the two communicating parties
would increase accordingly.

The user switches on the mobile telephone.
Perform SIM activation
sequence

Activate the SIM.

Receive ATR Determine whether a SIM is present and ascertain the
parameters of the transmission protocol.

Execute PPS Modify the transmission protocol parameters as necessary.

The mobile telephone has now established a working communications link with the SIM.

SELECT DFGSM
GET RESPONSE

Select the GSM directory and retrieve information about
the directory.

SELECT EFPHASE Select and read the EF containing the phase data.
READ BINARY

SELECT EFLP Select the language preference EF, retrieve information
about the file structure and read the file.GET RESPONSE

READ BINARY

The user enters a PIN.
VERIFY CHV Test the PIN, and then query the state of the retry counter.
STATUS

SELECT EFSST Select the SIM service table EF, retrieve information about
the file structure and read the file.GET RESPONSE

READ BINARY

TERMINAL PROFILE Transfer information about the properties of the mobile
telephone to the SIM. (important for SIM Toolkit
applications)

SELECT MF Select the root directory.

SELECT EFICCID Select the ICC identification number EF, retrieve
information about the file structure and read the file.

GET RESPONSE
READ BINARY

SELECT DFGSM Select the GSM directory.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 804 of 1123

770 Smart Cards in Telecommunications

SELECT EFIMSI
GET RESPONSE
READ BINARY

Select the international mobile subscriber identity EF,
retrieve information about the file structure and read the
file.

SELECT EFAD
GET RESPONSE
READ BINARY

Select the administrative data EF (which contains the
administrative data for the mobile station), retrieve
information about the file structure and read the file.

SELECT EFLOCI Select and read the location information EF.
READ BINARY
SELECT EFKC Select and read the cipher key EF.
READ BINARY
SELECT EFBCCH
READ BINARY

Select and read the broadcast control channels EF, which
contains network-specific information.

SELECT EFFPLMN Select and read the forbidden PLMN EF.
READ BINARY

SELECT EFHPLMN Select and read the HPLMN search period EF.
READ BINARY

SELECT DFTELECOM Select the telecom directory.

SELECT EFSMSS
GET RESPONSE
READ BINARY

Select the SMS status EF (which contains information
about stored messages), retrieve information about the file
structure and read the file.

SELECT EFSMSP Select the SMS parameters EF, retrieve information about
the file structure and read the file.GET RESPONSE

READ BINARY

SELECT EFSMS Select the SMS EF, retrieve information about the file
structure and read all n records of the file.GET RESPONSE

n × READ RECORD

SELECT EFADN Select the abbreviated dialing numbers EF, retrieve
information about the file structure and read all n records
of the file.GET RESPONSE

n × READ RECORD
The mobile telephone is now ready to make a call or transmit data.

The user makes a call.
SELECT DFGSM Select the GSM directory.

RUN GSM ALGORITHM Authenticate the SIM with respect to the background
system.

GET RESPONSE

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 805 of 1123

13.2 The GSM System 771

SELECT EFKC
UPDATE BINARY

Select the cipher key (Kc) EF and write the updated cipher
key to the EF.

SELECT EFLOCI
UPDATE BINARY

Select the location information EF and write the updated
location information to the EF.

SELECT EFBCCH Select the broadcast control channels EF and write
network-specific data to the EF.UPDATE BINARY

The user switches off the mobile telephone.
SELECT EFLOCI
UPDATE BINARY

Select the location information EF and write the updated
location information to the EF.

SELECT EFBCCH Select the broadcast control channels EF and write
network-specific data to the EF.UPDATE BINARY

deactivation sequence is executed and the operating system of the mobile telephone is then
shut down.

The procedures and mechanisms just described are not part of the GSM specification.
Consequently, they are generally implemented in completely different manners in different
types of mobile telephones. What has been described here should be regarded as only a possible
and technically effective implementation. With the GSM system in particular, it should also
be borne in mind that it is quite common for mobile telephones that are already 10 years old
to still be in use. It can confidently be assumed that such telephones do not have virtual SIMs,
but instead perform all read and write operations directly in the SIM.

Example of a typical command sequence

Reading dialing numbers from an EF with a record-oriented structure, such as EFADN, is a
practical example of a typical command sequence. The first step is to select the appropriate file
in the proper directory. Since the number of records in the file is left up to the network operator,
the first thing that must be done is to determine the size of the file. The number of entries is
then calculated from the file size and the record length. After this, each record containing a
dialing number can be read using READ RECORD with the number of the record in question.
This process is shown in detail in Figure 13.16.

SIM Application Toolkit

In the original specifications for the GSM system, the GSM card was simply seen as a means
to identify the user using PIN and an authentication token, in the interest of billing security,
that was independent of the mobile telephone. However, in the course of time the desire to
utilize the GSM card for additional functions, particularly supplementary services, became
increasingly pronounced. For instance, a mobile telephone is also a competent medium for
checking the balance of a bank account or receiving vital news, such as football scores and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 806 of 1123

772 Smart Cards in Telecommunications

Terminal SIM

SELECT FILE �
Command [DFTELECOM] return code := file selection result
IF (return code = OK) �

Response [return code]
THEN file successfully selected
ELSE abort
SELECT FILE �
Command [EFADN] return code := file selection result
IF (return code = OK) �

Response [return code]
THEN file successfully selected
ELSE abort
GET RESPONSE � Ascertained file size s

Ascertained record length m
IF (return code = OK) �

Response [s || m || return code]
THEN command successfully executed
ELSE abort
Computer number of records n
n := s ÷ m
VERIFY CHV � Test CHV
Command [CHV 1] return code: = result of CHV testing
IF (return code = OK) �

Response [return code]
THEN CHV testing successful
ELSE abort
FOR x := 1 TO n {
READ RECORD �
Command [record number n]
IF (return code = OK) �

Response [record data || return code]
THEN record successfully read
ELSE abort }

Figure 13.16 Basic command sequence for reading the abbreviated dialing numbers from the EFADN file.
The illustrated sequence shows only the essential aspects of the process and assumes that all commands
are successfully executed

daily horoscopes. However, the modest capabilities of the GSM were not sufficient to permit
the technical implementation of these value-added services (VAS). The response to this was the
development of the GSM 11.14 specification, entitled ‘SIM Application Toolkit’ (SAT). The
first version of this specification was published in 1996 by ESTI.

The SIM Application Toolkit enables the SIM to directly access functions of the mobile
station, such as driving the display, polling the keypad, sending short messages and other
functions needed in connection with a value-added service. Ultimately, the SIM Application
Toolkit is a construction kit that allows almost any desired application to be implemented in a
SIM.

A number of new commands had to be defined for the SIM Application Toolkit. A notewor-
thy feature of these commands is that they are sent to the mobile equipment by the SIM, which
requires a certain change in mental attitude. The data part of these ‘proactive’ commands is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 807 of 1123

13.2 The GSM System 773

BER-TLV coded.13 This makes it possible to easily achieve expansion capability while ensur-
ing downward compatibility. However, the greatest advantage of this is the enormous flexibility
obtained by using TLV-coded data.

With the SIM Application Toolkit, it was necessary to devise a way to circumvent the
usual master–slave arrangement between the terminal and the smart card for the SIM, but for
reasons of compatibility, modifying the transmission protocol was not allowed. The solution
to this problem was relatively simple. In a process called ‘polling’, the mobile equipment
sends the query command STATUS to the SIM at a definable regular interval (such as every 20
seconds), and if necessary the SIM can indicate in its response that a command for the mobile
equipment is ready to be sent and should be fetched from the SIM. In practice, the polling
interval is not maintained all that exactly by the mobile equipment, but this is not critical. This
circumvention of the master–slave principle is designated ‘proactivity of the SIM’, and the
associated commands are called ‘proactive commands’.

TERMINAL RESPONSE
[response to command to terminal]

FETCH
occurrance
of triggering
event

response [OK]

response [command to terminal]

Mobile Equipment SIM

Figure 13.17 The extended protocol process between the mobile equipment and the SIM for the proac-
tive commands of the SIM Application Toolkit, as specified in GSM 11.14. The response of the smart card
to a command contains a command to the terminal in the data part. The terminal executes this command
and returns the associated response to the smart card in the data part of a command. The sequence shown
here is based on the transmitted APDUs and shows only successful results

This technique effectively reverses the master–slave relationship between the mobile equip-
ment and the SIM. This makes it possible for the card, acting on its own initiative, to poll the
keypad, show its own data and menu structures on the display of the mobile telephone and emit
a beep sound. The SMS mechanism can also be used to exchange data between the SIM and
the GMS background system via the air interface. For instance, a news server can be regularly
polled in this manner, with the result being presented on the display of the mobile telephone
as an e-mail or short message.

The commands that make this mechanism possible are FETCH, TERMINAL RESPONSE
and ENVELOPE. The mobile equipment uses FETCH to retrieve a command from the SIM.
After processing this command, the mobile equipment returns the associated result to the SIM
using TERMINAL RESPONSE. The ENVELOPE command allows data to be transferred to
the SAT application of the mobile equipment.

In addition to this proactivity, the SIM can also inform the mobile equipment of certain
events for which the SIM must be immediately notified if they occur.

13 See also Section 4.1, ‘Structuring Data’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 808 of 1123

774 Smart Cards in Telecommunications

Table 13.7 The proactive SIM smart card commands specified for the SIM Application Toolkit in
GSM 11.14. Note that the commands listed here are sent to the terminal by the smart card, rather than
from the terminal to the smart card as usual. Certain commands can only be used if they are supported
by the hardware configuration of the mobile equipment

Command Brief description

User interface
DISPLAY TEXT Show a text or icon passed with the command on the display of

the mobile station.
GET INKEY Show a text or icon passed with the command on the display of

the mobile station, followed by requesting a character from the
keypad.

GET INPUT Show a text or icon passed with the command on the display of
the mobile station, followed by requesting one or more
characters from the keypad.

LANGUAGE NOTIFICATION Advise the mobile equipment of the language used by the SIM
Application Toolkit in the text fields.

PLAY TONE Instruct the mobile equipment to issue a tone.
SELECT ITEM Transfer a selection list to the mobile equipment with the

instruction that the user is to select an item.
SET UP IDLE MODE TEXT Show a text or icon passed with the command on the display of

the mobile station while the mobile station is switched on but
not in use.

SET UP MENU Transfer a menu list to the mobile equipment with the
instruction to integrate it into the menu structure of the mobile
equipment.

Second card terminal
GET READER STATUS Request the status of a supplementary card terminal in the

mobile station.
PERFORM CARD APDU Send an APDU to the smart card located in a supplementary

card terminal in the mobile station.
POWER OFF CARD Deactivate the smart card located in a supplementary card

terminal in the mobile station.
POWER ON CARD Activate the smart card located in a supplementary card

terminal in the mobile station.

Network interface
CLOSE CHANNEL Instruct the mobile equipment to close a data channel.
GET CHANNEL STATUS Instruct the mobile equipment to return the status of a data

channel.
OPEN CHANNEL Instruct the mobile equipment to open a data channel.
RECEIVE DATA Instruct the mobile equipment to receive data via an open data

channel.
RUN AT COMMAND Transfer an AT command to the mobile equipment and execute

the command in the mobile equipment, followed by passing the
result back to the SIM.

SEND DATA Instruct the mobile equipment to transmit data via an open data
channel.

SEND DTMF Transmit a DTMF during a current voice connection.
SEND SHORT MESSAGE Transmit a short message.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 809 of 1123

13.2 The GSM System 775

Table 13.7 (Cont.)

Command Brief description

SEND SS Transmit a supplementary service (SS) message, which is
a control sequence, to the network.

SEND USSD Transmit an unstructured supplementary services data
(USSD) message, which can be used to send any desired
type of data.

SET UP CALL Establish a connection.

Miscellaneous
MORE TIME Request the mobile equipment to give the SAT

application more time for processing.
POLL INTERVAL Start cyclic polling of the SIM and specify the interval.
POLLING OFF Stop cyclic polling of the SIM.
PROVIDE LOCAL INFORMATION Request the mobile equipment to provide current

location information to the SIM.
REFRESH Advise the mobile equipment that the data content of the

SIM has changed, so it should read this data anew.
SET UP EVENT LIST Transfer an event list to the mobile equipment with the

request to inform the SIM if one of these events occurs.
TIMER MANAGEMENT Start, end or configure the eight possible timers in the

mobile equipment that can generate an event.
LAUNCH BROWSER Start a microbrowser supported by the smart card

operating system.

There are several different ways to launch SAT-based supplementary services in the SIM.
The simplest manner involves an action on the part of the user. For example, if the user selects
a certain function from the menu of the mobile telephone and this function is based on a
supplementary SIM application, a corresponding command is sent to the SIM by the mobile
equipment. The further course of events is then determined by the value-added service in the
SIM. However, certain events in the mobile telephone, such as call setup, call termination
or changing network cells, can be used to invoke a SAT-based application in the SIM. The
simplest method for invoking a SAT application in the SIM is cyclic polling of the SIM by the
mobile equipment. In practice, it is possible to implement SIM-based value-added services at
a relatively moderate cost using these three basic invocation methods.

The actual capability for controlling supplementary services in the SIM Application Toolkit
is achieved using executable program code, which can be generated using any desired pro-
gramming language, such as assembler, C or Java.

The typical sequence of events with a SIM Application Toolkit application is as follows:
first, following the activation sequence of the SIM, various types of data are read by the mobile
equipment, including the EFPhase file, which indicates which GSM phase the SIM supports. If
the code for Phase 2+ is stored in the EFPhase file, the terminal concludes that the SIM Appli-
cation Toolkit is fully supported. Following this, the terminal uses the TERMINAL PROFILE
command to inform the SIM of its properties that are relevant to the SIM Application Toolkit.
This completes the initialization, and any other commands related to the GSM application that
do not belong to the SIM Application Toolkit can then be sent as necessary.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 810 of 1123

776 Smart Cards in Telecommunications

Typically, the next process is installing a selection menu in the mobile equipment. This is
done by placing BER-TLV coded data for the menu in the response to a FETCH command
requested by the SIM and sent by the mobile equipment. The mobile equipment then integrates
the new selection menu into its menu structure and acknowledges having done so with a
confirmation in the subsequent TERMINAL RESPONSE command. The selection menu is
thus installed in the mobile equipment and activated. After this, the usual GSM commands
can be exchanged and processed. As soon as the user of the mobile telephone selects a menu
entry, the ENVELOPE command is sent to the SIM with information about the selected menu
entry. The SIM confirms receipt of the command and can then start a wide variety of processes
belonging to the application and user selection.

For example, a share price on the stock exchange could be requested as the result of selecting
a SIM application. This function can be implemented in a wide variety of manners. One simple
method would be to send an SMS message to a server of the network operator with a request
for the current share price for a particular company. If this request is successfully processed,
the server could then send a SMS reply message to inform the application in SIM of the share
price, and the application could then advise the mobile telephone user of the current share
price using a DISPLAY TEXT command.

This is only a very simple example of what can be done using the SIM Application
Toolkit, but clearly shows that the SIM Application Toolkit is a very powerful tool for pro-
ducing value-added services in the SIM, and that it is relatively easy to implement such
services. Things can start to become difficult when a value-added service must be imple-
mented using functions of the mobile equipment that are not supported by the SIM Application
Toolkit. Other well-known hindrances to SAT-based applications are the large variety of meth-
ods for presenting data on the display and fundamental incompatibilities or implementation
errors in the mobile equipment. However, all of these hurdles can be overcome with a certain
amount of effort and experience. In summary, it can thus be said that the SIM Application
Toolkit is still the most technically mature and secure means to implement value-added ser-
vices in mobile telephones. The SIM Application Toolkit forms a very powerful interface for
value-added services in the SIM, and it can be integrated into the existing system without any
modifications.

The ETSI Project Smart Card Platform (EP SCP) expert group is in the process of defining
a generic foundation for all application toolkits for smart cards in mobile telecommunications,
based on the SIM Application Toolkit. This toolkit will be called the Card Application Toolkit
(CAT), and it will form the basis for the SIM Application Toolkit (SAT), the USIM Application
Toolkit (USAT) and the UIM Application Toolkit (UATK).

Over-the-air (OTA) communication

After a SIM has been issued, it is sometimes necessary to establish a direct connection from
the background system to the SIM. This type of communication is particularly essential for
managing existing applications and generating new value-added services in the SIM. Con-
sequently, mechanisms have been created in the GSM 03.48 specification to allow secure
end-to-end communications to be established between the background system and the SIM via
the air interface.

Since this requirement was not dealt with by the original GSM specifications and it is
nearly impossible to make changes in a system of this magnitude, a trick is used for end-to-end

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 811 of 1123

13.2 The GSM System 777

TERMINAL RESPONSE [Rsp: OK]

test for a
Phase 2+ SIM
(one that supports
proactive commands)

inform the SIM of
the properties of the
mobile equipment

FETCH

response [OK]

response [OK]

response [file content]

response [Cmd: SET UP MENU]

Mobile Equipment SIM

TERMINAL PROFILE

SELECT FILE [EF]Phase

response [OK]

response OK[]

READ BINARY initialize the
SIM
Application
Toolkit

install menu
entry in the
mobile
equipment

menu entry
selected by
user

wait for event
or

exchange GSM commands

the remainder of the process
depends on the application

ENVELOPE [menu selection]

Figure 13.18 Typical example of using the SIM Application Toolkit to install a supplementary menu
entry in the mobile equipment. The procedure illustrated here is based on the transmitted APDUs and
shows only successful command execution

communication with the GSM card. The short messages available in the system are used as
containers for messages to and from the SIM. All that this requires is modifications to the
background system and issuing new smart cards, with all intermediate systems remaining
unchanged. Nevertheless, short messages are presently only one of several possible bearers for
OTA, although they are the most widely used type.

OTA communication offers a relatively wide range of protective mechanisms for the trans-
mitted data. For instance, the simplest security level consists of using a CRC checksum to
protect the data against transmission errors. In the realm of cryptographic protection, it is also

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 812 of 1123

778 Smart Cards in Telecommunications

possible to provide the data with a send sequence counter and encrypt them using DES or triple
DES (with two or three keys). If necessary, a MAC or digital signature can also be computed
for the data to be transmitted.

The operating principle of using the SMS as a bearer service is as follows. If the background
system wishes to send a command (for example) to a particular SIM, it generates a short
message to the card in question and embeds the command in the message, using the necessary
cryptographic protective mechanisms. As soon as a mobile station containing the SIM in
question logs in to the system, the short message is transmitted via the signaling channel. This
does not require establishing a voice connection via a traffic channel. Based on the coding of
the message as specified in GSM 03.40, the mobile equipment recognizes that the message
contains SIM-specific data and uses the SIM Application Toolkit ENVELOPE command to
send it to the SIM. The message is thus not automatically stored in the EFSMS file by the mobile
equipment using the UPDATE RECORD command, as is otherwise usual. The SIM stores the
message received via the ENVELOPE command in a separate buffer. If the message is part
of a set of chained messages, the next task of the SIM is to restore the correct sequence of
the messages, since as is well known, SMS does not ensure that messages are received in the
proper order.

The SIM then interprets the received message, extracts the command or commands from
it and processes it or them. A SMS message may optionally be generated by the SIM as a
response. This message is transferred to the mobile equipment in the response to a FETCH
command requested by the SIM, and the mobile equipment forwards it to the background
system in the usual manner via the service channel.

With this trick, it is possible to establish a bidirectional end-to-end link between the back-
ground system and the SIM that is fully transparent to all of the intermediate system compo-
nents. This allows the SIM to be addressed just as though it were located in a terminal connected
to a PC. This communications channel can be used for tasks such as modifying existing data in
files as part of remote file management. A common use for OTA communication is updating the
service dialing numbers stored in the SIM. It can also be used to carry out significantly more
complex tasks. For instance, it can be used to download executable program code in the form
of applets for supplementary applications in SIMs based on Java Card. The possibilities that
OTA communication offers to the network operator are immense. Unfortunately, many parts
of GSM 03.48 do not represent a specification, which is precisely defined at the bit level, but
instead a standard, which offers a wide range of options, not all of which are specified in detail,
that can be used by individual card manufacturers for their SIMs in the manner that best suits
their purposes. This naturally has detrimental consequences for the mutual compatibility of
SIMs from different manufacturers, which must be compensated in normal network operation
by libraries in the background system of the network operator that are specific to the various
smart card manufacturers.

Remote file management (RFM)

The mechanisms provided by OTA allow direct end-to-end communication between the
background system and the SIM. This forms the basis (with regard to data transmis-
sion technology) for the remote management of the files in the SIM, which is called
remote file management (RFM) in GSM terminology. This bearer-independent basic

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 813 of 1123

13.2 The GSM System 779

does the SMS
msg contain a

command?

store SMS msg in EF
using UPDATE RECORD

SMS

send SMS msg to SIM
using ENVELOPE

1. temporarily store SMS message in SMS buffer
2. interpret SMS message
3. execute the command contained in the SMS msg
4. optional: generate SMS message for response
 and send it to the ME via the SAT

no

Air InterfaceMobile Equipment

SMS msg [command to smart card]

optional:
SMS msg [response from smart card]

SIM

Figure 13.19 Procedure for exchanging data using SMS messages passed between the background
system and the GSM card. This procedure is commonly called ‘over the air’ (OTA) communication

functionality is specified in GSM 03.48, which is in turn based on the requirements of
GSM 02.48.

Only certain SIM commands are allowed to be used for remote file management, but it is
possible to achieve a broad scope of functionality using these commands. They are divided
into input commands, which send data to the SIM, and output commands, which request data
from the SIM. The background system is allowed to send not only individual commands to the
SIM within an OTA message, but also lists containing several commands. However, such lists
are subject to the restriction that only the final command in the list is allowed to request data
from the SIM. The reason for this restriction, which does not cause any difficulties in practice,
is primarily that it significantly simplifies the remote file management software in the SIM.
Due to this restriction, several OTA messages must be sent to the SIM if several files or records
have to be read.

Table 13.8 Smart card commands allowed to be sent to the SIM for remote
file management, as specified by GSM 03.48

Input commands Output commands

SELECT VERIFY CHV READ BINARY
UPDATE BINARY CHANGE CHV READ RECORD
UPDATE RECORD DISABLE CHV GET RESPONSE
SEEK ENABLE CHV
INCREASE UNBLOCK CHV

INVALIDATE
REHABILITATE

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 814 of 1123

780 Smart Cards in Telecommunications

The operating principle of remote file management using SMS as a bearer service can briefly
be explained using a typical practical example. If a background system wants to modify an
abbreviated dialing number stored in the EFADN file, it can proceed as follows. In the first OTA
message, which may consists of a series of SMS messages, it selects the EFADN file by means
of a SELECT command specifying the path within the DFTelecom directory. The final command
in this OTA message is a READ RECORD command with a record number known to the
background system, which causes the service number to be read from the file and returned via
OTA. If this service number is not current, an UPDATE RECORD command is sent to the SIM
using another OTA message, and the appropriate record is overwritten with the new number.

Naturally, caution must be exercised in using remote file management to modify files that
are significant for an open session. A typical example of such files is EFSST, which contains
the SIM service table. This table lists all the available and potentially activated services of
the SIM. Under certain conditions, modifying the content of this file can cause the mobile
telephone to behave unpredictably, and in the worst case it can render the SIM unusable.

The SIM also contains two EFs for which modification is simply forbidden. These are the
EFICCID file, which holds the identification number of the smart card (ICCID), and the EFKc

file, which holds the key for encrypting data transmitted between the mobile station and the
base station via the air interface. From a logical perspective, it makes no sense to modify either
of these files, since the ICCID is a unique identification number for the smart card and plays
no role in normal operation. The key (Kc) is always computed by the SIM for each session,
so it would be pointless to modify it via RFM. If it is nevertheless modified during an open
session, the connection to the network might be broken, since the mobile equipment would
use an incorrect key for encrypting data on the air interface.

Remote applet management

The GSM 03.48 specification also contains a section related to remote applet management,
which is similar to remote file management. Remote applet management makes it possible to
manage applications based on Java Card via a direct end-to-end link between the background
system and the SIM.

A general prerequisite is that the smart card in question must be a SIM that is compliant with
GSM 03.19, which is essentially based on the Java Card 2.1 specifications.14 All management
commands for applets and packages are based on the Open Platform specification, which is
effectively the industry standard for these mechanisms.15

The application management functions include loading, installing, deleting, locking and
unlocking Java applets in the SIM and retrieving parameters from these Java applets. Similar
mechanisms are defined for loading packages into the SIM and deleting packages from the SIM.

All of the procedures and mechanisms are basically independent of any particular bearer
service, but the SMS is presently the most commonly used means for managing applets and
packages in SIMs via OTA. If SMS is used as the bearer, data transmission to and from the
SIM takes place in exactly the same manner as described above for remote file management
using OTA.

14 See also Section 5.14.1, ‘Java Card’
15 See also Section 5.11, ‘Open Platform’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 815 of 1123

13.2 The GSM System 781

receive
SMS messages

end

sort SMS
messages into
correct order

check
cryptographically

protected
message

OK ?

execute
command

contained in
SMS message

additional command
to be executed ?

SMS
reply

required?

generate
response with
the necessary
cryptographic

protection

send response
to ME

abort

no

yes

no

1

1start

all messages
received?

Figure 13.20 Flow chart of the basic program sequence for remote file management (RFM) via the
air interface using OTA, as specified in GSM 03.48. Remote file management is essentially performed
by the processes shown in the upper right branch of the flow chart, with the remainder of the processes
serving to establish secure communications in accordance with GSM 03.48

Table 13.9 Smart card commands allowed to be sent to the SIM
for remote applet management via the air interface, as specified by
GSM 03.48. These commands correspond to the Open Platform
specification with regard to functionality and coding

Input commands Output commands

DELETE READ BINARY
SET STATUS READ RECORD
INSTALL GET RESPONSE
LOAD
PUT KEY

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 816 of 1123

782 Smart Cards in Telecommunications

Dual IMSI

In the commercial realm, accrued call charges for a mobile telephone belonging to a company
are usually paid by the company in question. However, if a person having such a mobile
telephone also uses it for private calls, he or she must later settle the charges for such calls
with the company, which is only possible with an itemized telephone bill. In practice, such
a person will probably make private calls at the expense of the company, otherwise he or
she must carry two telephones in order to make both business and private calls. Needless to
say, this is too much to expect. This scenario is the reason why there are ‘dual-IMSI’ mobile
telephones, which contain SIMs having an additional file holding two IMSIs and possibly also
two Ki keys, depending on the implementation. This file is actually not part of any standard.
A supplementary SAT-based application in the SIM generates a new menu entry in the mobile
equipment that allows the user to select whether he or she wishes to make a business call or
a private call. Depending on the user’s selection, a particular IMSI is copied to the EFIMSI

file, and if necessary a different, related Ki key is used. This means that the mobile telephone
has two different identities in terms of the IMSI, and the network operator can generate two
separate bills. This makes it possible to charge separately for business calls and private calls.

This capability can be further extended, for example by activating the fixed dialing numbers
for the IMSI used for business calls, thus limiting the possible dialing numbers to a particular
set of numbers. This means that the user of such a mobile telephone cannot charge private calls
to the company, since only the numbers related to the company can be dialed. If the second
IMSI is activated using the value-added service in the SIM, the fixed dialing numbers are
deactivated and the company is not billed for the calls. In this way, a single mobile telephone
can be used to make both business and private calls without creating problems in settling the
calling charges.

There is yet another use for multiple IMSIs, which it is not very elegant from a technical
perspective. If IMSIs for several different network operators are stored in a SIM such that
they can be individually selected by the user via a menu, the mobile telephone can be used
for manual roaming. The user selects the IMSI belonging to the network in whose territory he
or she happen to be located, and can then log into this network using the selected IMSI. The
user will then receive a telephone bill from each network operator as appropriate. This sort of
roaming using multiple IMSIs is practiced in large parts of India, for example, since regular
roaming agreements between some of the network operators do not exist.

Implementing a home zone

Some network operators offer person-specific special rates for restricted local regions. Such
a region is usually an approximately circular zone defined around the place of residence of
the subscriber, within which calls are charged at the rate for the fixed network instead of the
more expensive rate for the mobile network. For the user, the primary benefits of this type of
location-specific service are that he or she no longer needs a connection to the fixed telephone
network, and that it eliminates the need to coordinate two sets of abbreviated dialing numbers
(one for the regular telephone and another one for the mobile telephone).

The most suitable way to implement such a service is to use a value-added service in the
SIM and the functions of the SIM Application Toolkit. This also ensures that all information

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 817 of 1123

13.2 The GSM System 783

about the home zone is stored in the person-specific SIM, rather than somewhere else such as
in the mobile telephone.

In the GSM system, each base station continuously transmits a unique identifier via the air
interface. This identifier consists of the location area information (LAI) and a cell identity (CI).
One approach to implementing home zone capability would be to have the mobile telephone
pass this information to the SIM, where it could be compared with one or more stored values.
These values would preferably be stored in a file, so that they could be modified or updated
at any desired time using remote file management. The drawback of this approach is the
relatively large amount of memory needed in the SIM, since it is fundamentally necessary to
accommodate regions with a high density of base stations, which would lead to large LAI and
CI lists.

A similar approach would be to use the advance timing information of the air interface. With
this approach, the current location of a mobile station could be determined to within signifi-
cantly less than 10 meters by using cross-polling. This is more than adequate for implementing
a home zone.

However, in practice a different solution is often preferred, in which all of the base stations
belonging to a network operator periodically transmit their location coordinates on the signaling
channel using the cell broadcast service.16 The SIM has an EF containing reference values,
which are read by the mobile equipment and compared with the received location coordinates.
If the mobile equipment determines that the mobile telephone is located within the home zone,
a suitable symbol (such as a small house icon) is shown on the display. Since the background
system knows the location of the mobile telephone, it can switch incoming and outgoing calls
over to a more favorable rate. The data for the coordinates of the home zone are stored in an
EF in the SIM, so they can be easily modified using remote file management. This also allows
home zones to be conveniently established or changed to a different location using remote
maintenance. The drawback of this solution is that it requires special software in the mobile
equipment, instead of being implemented as a value-added service in the SIM using the SIM
Application Toolkit.

Operating principle of SIM Lock

SIM Lock is the name given to a technique for binding the mobile equipment to a particular
SIM or group of SIMs. The SIM Lock function is used by network operators to bind mobile
telephones subsidized by a network operator to a particular SIM and its payment mode for a
certain length of time. It is based on the GSM 02.22 specification. The operating principle of
the SIM Lock is always based on data that are stored in both the SIM and the mobile equipment
and are compared by one of the two components each time the mobile telephone is switched
on, with the telephone only being enabled for use if the two sets of data match.

There are two practical implementations of the SIM Lock function. With the more commonly
used option, the mobile telephone reads certain data from the SIM and compares them with
data stored in the mobile telephone. This usually consists of the group identifiers, which are
stored in the EFGID1 (group identifier level 1) and EFGID2 (group identifier level 2) files. These

16 Harald Bögeholz and Dusan Zivadinovic, ‘Telefon-Zellen’, c’t 1999, Volume 18

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 818 of 1123

784 Smart Cards in Telecommunications

group identifiers can be used to specify classes of SIMs, which can then be used to specify
class-based pairings of particular SIMs to particular (subsidized) items of mobile equipment.
The advantage of this variant is that the SIM and the mobile equipment do not have to be
individually ‘married’. The IMSI from the EFIMSI file, or other static SIM-specific data stored
in EFs, is sometimes used instead of the group identifiers as a reference value for forming
pairs.

The second option, which is rarely used in practice, involves having the SIM use the SIM
Application Toolkit to read unique data from the mobile equipment and compare it with stored
data. If these data match, the mobile telephone can be used to make the desired call after being
enabled by the SIM.

It is usually possible to disable the SIM Lock function, either via the air interface or by
entering a secret key into the mobile telephone, in order to allow other SIMs to be used in
mobile equipment previously protected by a SIM Lock. The reference value for this is usually
the individual mobile equipment identity (IMEI) of the mobile equipment in question.

Operating principle of prepaid systems

The proportion of prepaid SIMs ranges from around 30 % to as much as 80 %, depending on
the country. The principal reasons why people use prepaid SIM are that they provide better
control of costs and avoid the need to pay subscription charges.

The operating principle of a system designed to work with prepaid SIMs is generally as
follows. A card-shaped voucher, which often has the dimensions of an ID-1 card but is not as
thick, has a 13-digit number printed underneath a rub-off coating, which acts as a seal. If a user
wishes to ‘reload’ his mobile telephone, he or she purchases a voucher, whose integrity can be
verified by the fact that the rub-off coating is still intact. After rubbing off the coating covering
the number, the user must enter the now-visible number into her mobile telephone using a
special menu. This reference value is immediately passed to the background system, where it
is compared with the reference value for the issued voucher, which is stored in a database. If
the result of the comparison is positive and if the voucher has not already been used, the load
amount associated with the reference value is credited to the SIM in question.

At this point, the possible implementations diverge. The solution originally envisaged in the
GSM specifications was a units counter in a file (the accumulated call meter file EFACM), whose
value would be continuously updated by advice of charge data from the mobile equipment and
compared with the value stored in the ‘accumulated call meter maximum value’ file (EFACMmax)
by the SIM. If the actual value reached the maximum value, the mobile telephone would
prohibit further calls until the actual value was again reset, which could be done via remote
file management or some other means. Although this solution is certainly technically feasible,
it is not used in practice, since communications between the mobile equipment and the SIM
are not secure and thus could be manipulated relatively easily.

In practice, prepaid SIMs are managed by a centralized system, with two different ap-
proaches being used. The first approach entirely dispenses with using supplementary data in
the SIM and runs entirely in the background system. The drawback of this approach is that the
background system computer must have real-time capability, which increases its cost. With
the second approach, a suitable value-added service must be present in the SIM, but there is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 819 of 1123

13.2 The GSM System 785

no need for general real-time capability in the background system. The disadvantage of this
approach is that when the prepaid amount has been used up, there may be a delay before the
connection is broken.

A typical background system for prepaid SIMs, which does not necessarily have to have
real-time capability, can be described using the components shown in Figures 13.21 and 13.22.
A number of supplementary components must be integrated into an existing GSM system in
order to support prepaid SIMs. In this example, one of these components is the call management
subsystem, which is a supplementary component of the mobile switching center (MSC) that
can route or prohibit calls in real time, and which maintains an interface to the prepaid system.
The prepaid system is the central component of the system, whose task is to coordinate the
call management subsystem and the billing system. In the billing system, the credit balances
in the individual SIM accounts are managed using a database. With this arrangement, the SIM
contains only a few special commands along with corresponding data.

When a call to a mobile telephone arrives in the background system, the first thing that
happens is that the call management subsystem advises the prepaid system that a call to
particular mobile telephone having a particular SIM is pending. The prepaid system then has
the billing system calculate the maximum allowable length of the call, based on the outstanding
credit balance for the SIM, and passes this information to the call management subsystem.
If the credit balance is sufficient, the call management subsystem routes the call. It will also
interrupt the call if the maximum call duration is reached. On completion of the call, the call
management subsystem informs the prepaid system of the duration of the call, and the prepaid
system uses this information to update the credit balance of the account via the billing system.
The updated balance can then be shown on the display of the mobile telephone.

call manager
subsystem

telephone
network

prepaid
system

billing
system

(6) call duration

(7) call billing

information flow

call data

(4) call release

(5)(1)

(2) call request

(3) check balance and calculate
 maximum call duration

(8) update
 account

Figure 13.21 Basic architecture of a system for prepaid SIMs using the SICAP Prepaid Roaming
solution as an example. This diagram shows the progress of a call made to a mobile telephone, with the
numbers in parentheses indicating the sequence of events. The call management subsystem is part of the
GSM background system, and may for example be a component of the mobile switching center (MSC)

When a call is made from a mobile telephone, a similar process occurs. First, the maximum
allowable call duration is computed via a USSD query to the prepaid system and the billing

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 820 of 1123

786 Smart Cards in Telecommunications

system and then passed to the call management subsystem. If the maximum duration is reached
during the call, the call is interrupted. Otherwise, the balance of the call account is updated on
completion of the call and the corresponding amount is stored in the database. Naturally, the
remaining credit can also optionally be displayed on the mobile telephone.

call manager
subsystem

telephone
network

prepaid
system

billing
system

(1) call request

(2) check balance and calculate
 maximum call duration

information flow

call data

(3) call release

(4)(5)

(6) call duration

(7) call billing

(8) update
 balance

Figure 13.22 Basic architecture of a system for prepaid SIMs using the SICAP Prepaid Roaming
solution as an example. The diagram shows the progress of a call originating from the mobile telephone,
with the numbers in parentheses indicating the sequence of events. The call management subsystem is
part of the GSM background system, and may for example be a component of the mobile switching
center (MSC)

13.2.5 General Packet Radio System (GPRS)

The General Packet Radio System (GPRS) is an extension of the original GMS system. It has
been defined as an ETSI standard, and its purpose is to provide a packet-switched data service
with a high data transmission rate, as specified in GSM 01.60 (‘Requirements specification of
GPRS’) and GSM 02.60 (‘Service description; Stage 1’). GPRS can be dynamically adapted
to actual capacity demand, so only the actually necessary capacity is used. A maximum data
transmission rate of 115.2 kbit/s can be achieved by bundling the eight available time slots,
each of which has a capacity of 14,400 kbit/s. A mobile telephone with GPRS technology is
constantly logged in to the network with respect to data transport, and thus always available
for data transmission without requiring a connection to first be established for this purpose.
Consequently, GPRS is highly suitable for discontinuous data transmission. GPRS also forms
the basis for mobile telecommunications services based on the Internet protocol (IP).

With regard to system architecture, GPRS is based on a GSM system augmented by several
new components. The serving GPRS support node (SGSN), which coordinates the exchange of
data packets with the mobile equipment at the MSC level, is analogous to the MSC. The SGSN
is subordinate to a gateway GPRS support node (GGSN), whose primary function is to provide
an interface to other packet-switched data services, such as X.25 and IP. The GGSN transforms
GPRS-specific data packets into packets corresponding to the other packet-switched services

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 821 of 1123

13.2 The GSM System 787

MSC

SIM (Subscriber Identity Module)

BTS (Base Transceiving Station)

ME (Mobile Equipment)

MS (Mobile Station)

Air interface

RSS (Radio Subsystem)

HLR

GR GPRS Register)(

SIM

ME

MS

GGSN (Gateway GPRS Support Node)

BSC

BTS

BSS

...

...

...

BSS (Base Station Subsystem)

...

SGSN

GGSN

...

...

GR

... ...

HLR (Home Location Register)

SGSN (Serving GPRS Support Node)

...

Figure 13.23 Architecture of a portion of a GSM network belonging to a single network operator, with
a superimposed GPRS network as specified by GSM 01.60 and GSM 02.60

and vice versa. The central component of the system is the GPRS register (GR), which is
analogous to the HLR and manages all of the data related to specific GPRS subscribers.

13.2.6 Future developments

The GMS application represented the international breakthrough for smart cards, and it is
still the standard for smart cards and smart card operating systems. Compared with the latest
developments in the smart card world, some of the commands and mechanisms in the GSM
realm may appear outdated, but GSM was and still is the pioneer for large international smart
card applications. Ultimately, all subsequent applications can only learn and benefit from the
experience gained and problems encountered using this application. In many respects, GSM in

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 822 of 1123

788 Smart Cards in Telecommunications

the form of the GSM 11.11 and 11.14 specifications forms the foundation for all more recent
and more sophisticated smart card applications.

Recent models of mobile telephones are incorporating an increasing number of the func-
tions of personal digital assistants (PDAs), in addition to pure telephone functions. Since it
is relatively difficult to externally manipulate the software of a mobile telephone, it can be
considered to be a trusted device. The consequences of this can be seen in many service func-
tions and telephones with hardware extensions. For example, there are mobile telephones with
IrDA-compliant infrared interfaces or Bluetooth interfaces, as well as mobile telephones with
larger and more powerful displays.

This makes it technically possible to use mobile telephone to make payments from an
electronic purse at a suitably equipped POS station. If the user has to enter a PIN, in the
future he can do so using his relatively tamper-proof telephone keypad instead of an unfamiliar
terminal. The corresponding data can be exchanged using an infrared or Bluetooth interface,
with no need to establish (and pay for) a telephone connection. The potential uses of such
capabilities are extremely varied, so they can only be outlined in broad terms at present.

For a variety of reasons, dual-slot mobile telephones have failed to achieve widespread
use. This is probably more due to the business strategies of network operators than technical
reasons, such as the size of the mobile telephone. Up to now, network operators have shown
little interest in encouraging the use of third-party applications in the smart cards of their
highly subsidized mobile equipment. Presently, the development trend is focused on value-
added services in SIMs. The wide-scale introduction of digital signature applications as part of
WIM, which despite its name cannot be used for WAP, at least creates the necessary technical
conditions for the entire spectrum of mobile business applications.

A microbrowser implemented in the SIM will doubtless continue to form the basis for
secure data-based applications in the coming years, which could inevitably lead to a market
shakeout between this technology and GSM-capable Java cards. However, in the first instance
the primary uses for the latter types of cards will be in the area of value-added services based
on program code.

MExE (Mobile Station Execution Environment) is a framework for integrating procedures
defined by the network operator and executable program code into the mobile station. Stage
1 of MExE specifies the integration of WAP browsers for the WML markup language in the
mobile equipment. The subsequent step, Stage 2, adds a Java virtual machine (JVM) to these
functions. This allows Java programs to be loaded into mobile telephones and run there, and
it allows value-added services to be implemented directly in the mobile telephone, rather than
in the SIM (as is presently common).

CAMEL (Customized Applications for Mobile Enhanced Logic) provides the GSM network
with a new option that extends functionality in the direction of intelligent networks (IN). With
CAMEL, it is for example possible for the network to modify dialing numbers during call setup.
This would permit services such as international roaming with prepaid cards or standardized
international service numbers to be implemented significantly more simply than at present.

Even an established system such as GSM must be further developed in order to meet
new requirements and satisfy additional customer desires. This is presently taking place in
small steps, and it has led to modifications and extensions such as proactive SIM commands,
OTA, WIM, microbrowsers and RFM, as well as extended capabilities such as HSCSCD,
GPRS and EDGE. Nevertheless, at some point in time it will be necessary to make a major
evolutionary step in order to convert all of these extensions, modifications and special cases

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 823 of 1123

13.3 The UMTS System 789

into a new system that is once again self-contained. This new system will be the Universal
Mobile Telecommunication System (UMTS), which provisionally can be expected to exist
alongside the GSM system for many years, and which may at some time supplant the GMS
system.

13.3 THE UMTS SYSTEM

In 1998, a group of five standards organizations consisting of ANSI T1 (USA), ARIB (Japan),
ETSI (Europe), TTA (Korea) and TTC (Japan) initiated the Third Generation Partnership
Project (3GPP), whose purpose was to specify a successor to the GSM in the form of an in-
ternational IMT-2000-compliant mobile telecommunications system based on the GSM spec-
ifications. This mobile telecommunications system is generally known throughout the world
as a 3G (third-generation) system, but in Europe it has predominantly come to be known as
the Universal Mobile Telecommunication System (UMTS).17 This system initially enjoyed
widespread public interest due to the enormous license fees paid for the necessary frequency
spectrum, rather than because of the new capabilities it will offer. In Germany alone, network
operators paid approximately 50 billion euros for the UMTS frequency spectrum in an auction,
and the total amount paid for the spectrum in Europe was 112 billion euros. Constructing the
network will soak up another 30 billion euros in Germany alone.

A relatively short time later, the first UMTS network went into operation in Japan at the end
of 2001. The development of UMTS was primarily pushed by a few countries, such as Japan,
in which subscriber density is so high that there was no point in further extending existing
mobile telecommunications systems. In the remainder of this section, some of the essential
differences between UMTS and GSM are described.

For the air interface, which is called the ‘UMTS radio access network’ (UTRAN), UMTS
uses code-division multiple access (CDMA) for communication between base stations and
mobile stations. The transmission frequency is in the 2000-MHz band (wavelength approxi-
mately 15 cm), in compliance with IMT-2000. The architecture is very similar to that of GSM,
with the main difference being that the components of the UMTS system are linked via IP.

From the smart card perspective, the greatest difference between GMS and UMTS is that
UMTS uses a completely redefined security module called the ‘universal subscriber identity
module’ (USIM). This security module is based on the ISO/IEC 7816 family of standards. It
is thus the first such module in the world of smart cards for mobile telecommunications to
guarantee compatibility with other smart cards specified in accordance with these standards,
such as EMV-2000 compliant smart cards used in electronic payment systems.

At this point, we recommend that you carefully read Section 13.2 (‘The GMS System’)
before continuing, since the SIM and USIM smart cards are very similar, and in the following
material we primarily concentrate on the differences. As can be readily seen, the UMTS system
is based on the GMS system, and many of the proven principles and mechanisms of the GMS
system have been incorporated into the UMTS system.

17 The term ‘UTMS’ is always used in this book instead of ‘3G’, since it unambiguously describes a particular mobile
telecommunication system that is only one of several 3G systems. For instance, CDMA-2000 is also a 3G system,
but it has an optional smart card called the removable user identity module (R-UIM), which differs from the USIM
for UMTS in many respects

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 824 of 1123

790 Smart Cards in Telecommunications

MSC

GMSC

SGSN

GGSN

USIM (Universal Subscriber Identity Module)

Node B

ME (Mobile Equipment)

Air interface

HLR (Home Location Register)

USIM

ME

UE

VLR (Visitor Location Register)

EIR (Equipment Identity Register)

AuC (Authentication Center)

RNC

Node B

RNS

...

...

VLR

AuC

HLR

EIR

RNS (Radio Network Subsystem)

... ...

......... ...

GGSN (Gateway GPRS Support Node)

CSD (Circuit Switched Domain)

PSD (Packet Switched Domain)

SGSN (Serving GPRS
 Support Node)

Figure 13.24 The basic architecture and most important designations for the components of a typical
mobile telecommunications system that is compliant with the TS 123.002 UMTS standard

‘USIM’ is the usual designation for the smart card application for UMTS, and this ap-
plication resides in a UICC. Nevertheless, in practice the term ‘USIM’ is used not only
for the application but also for the UMTS smart card, even though this is not entirely cor-
rect. The USIM is primarily the bearer of the identity of the subscriber, and its principal
function is to ensure the authenticity of the mobile station with respect to the network and
vice versa.

The specification for the USIM is based on the TS 102.221 specification, which is the
fundamental specification for telecommunications smart cards and characterizes the physical
and logical parameters of a ‘universal integrated circuit card’ (UICC). Based on this specifica-
tion for a general-purpose smart card for telecommunications applications, the requirements

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 825 of 1123

13.3 The UMTS System 791

Table 13.10 The most important standards for the USIM

Standard Title

TS 21.111 USIM and IC card requirements
TS 31.102 Characteristics of the USIM Application
TS 31.110 Numbering system for telecommunication IC card applications
TS 31.111 USIM Application Toolkit (USAT)
TS 31.121 USIM Application Test Specification
TS 31.122 USIM Conformance Test Specification
TS 102.221 Physical and Logical Characteristics
TS 102.222 Administrative Commands

specification TS 21.111 defines the basic requirements for the USIM application, which are in
turn described in detail in TS 31.102. These specifications are complemented by TS 31.111,
which contains an extensive description of the USIM Application Toolkit (USAT). The com-
mands for managing applications in a UICC are contained in TS 102.222, which is now also
used as a quasi-standard specification in the SIM environment. Finally, TS 31.122 contains
specifications for conformity tests.

Table 13.11 The characteristic physical, electrical and logical properties of a USIM
based on the UICC specification

Property Remark

Card format ID-1 or ID-000
Supply voltage UICC: 1.8 V and/or 3 V and/or 5 V

In practice, USIMs typically have the following
voltage ranges: (1.8 V & 3 V) or (3 V & 5 V)

Transmission protocol PPS (mandatory)
T = 0 (mandatory)
T = 1 (optional)

Logical channels Up to 4
Commands See the summary of commands in Table 13.12
Access conditions for files As specified in ISO/IEC 7816-9

An operating system for UICCs must comply with the ISO/IEC 78126 family of standards
in all of its essential properties, which means it must be fully multiapplication capable. This
applies in particular to the commands, file management and the file access conditions, which
are rule-based in accordance with ISO/IEC 7816-9, with access being controlled by an ‘access
rule reference’ EF (EFARR). However, there are many similarities to the SIM with respect to
commands and file management. With regard to file types, USIM has a special feature in the
form of the ‘application dedicated file’ (ADF) type. This is a special type of DF containing all
of the DFs and EFs for a particular application that does not have the MF as its root directory.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 826 of 1123

792 Smart Cards in Telecommunications

An ADF can thus be considered to be similar to an MF in this regard, since it does not have
any higher-level file type. An ADF is selected using an AID stored in the EFDIR file.

MF

MF

DF

DF

MF

ADF

EF

EF EF

...

...

...

...

...

EF
DIR

EF

EF

EF

EF

Figure 13.25 The relationships between the MF, DFs and ADFs in the UICC or USIM. An ADF can
be selected using an AID stored in the EFDIR file, and it contains all the files for an application

In the UICC, the USIM represents nothing more than one of many possible applications
located in their own ADFs. Due to the multiapplication capability of the UICC, it is not
particularly difficult to implement a SIM in addition to the USIM and thereby create a smart
card that can be used in both UMTS and GSM systems. In fact, this will probably be the
standard configuration for the foreseeable future, since logistics costs for the network operator
can be reduced by having a single smart card for the two different mobile telecommunications
technologies.

Most of the files for a USIM application can also be found in the same or similar form in
a SIM. The only significant modification that has been made relates to the storage of dialing
numbers. For USIM, a relatively obscure concept involving optional and mandatory files linked
by pointers is specified. A wide variety of data for dialing numbers and subscribers can be
stored in these files.

A USIM has two PIN codes called PIN 1 and PIN 2, which are fully analogous to CHV1
and CHV 2 in a SIM. The access conditions for the files are specified such that the card user
knows PIN 1 and the cardholder knows PIN 2. This allows the majority of the functions of the
mobile equipment to be flexibly managed.

Several cryptographic functions named f1, f2, f3, f4 and f5 (‘function 1’ through ‘func-
tion 5’) are used for USIM authentication in the UMTS system. They are used to authenticate

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 827 of 1123

13.3 The UMTS System 793

Table 13.12 Smart card commands for the USIM as specified in TS 102.221

Command Brief description

Security commands
CHANGE PIN Change the PIN
DISABLE PIN Disable PIN queries
ENABLE PIN Enable PIN queries
UNBLOCK PIN Reset the PIN retry counter from its terminal count
VERIFY PIN Verify the PIN
AUTHENTICATE Authentication of the USIM by the outside world

Commands for operations on files
INCREASE Increment a counter in a file
READ BINARY Read from a file with a transparent structure
READ RECORD Read from a file with a record-oriented structure
SEARCH RECORD Search for a text string in a file with a record-oriented structure
SELECT Select a file
STATUS Read various data from the currently selected file
UPDATE BINARY Write to a file with a transparent structure
UPDATE RECORD Write to a file with a record-oriented structure
DEACTIVATE FILE Reversibly block a file
ACTIVATE FILE Unblock a file

USIM Application Toolkit commands
ENVELOPE Pass data to a value-added service of the USIM in the USIM

Application Toolkit environment
FETCH Retrieve a USIM Application Toolkit command from the USIM and

provide it to the mobile equipment
TERMINAL PROFILE List all functions of the mobile equipment in the USIM Application

Toolkit environment
TERMINAL RESPONSE Convey the response of the mobile equipment to a previous USIM

Application Toolkit command of the USIM

Miscellaneous commands
GET RESPONSE Command specific to T = 0 for requesting data from the smart card
MANAGE CHANNEL Control logical channels

the network and the USIM, as well as for establishing cryptographically secured communica-
tion via the air interface. The kernel of these security functions is a symmetrical cryptographic
algorithm that can be parameterized using additional linked input values. The USIM specifi-
cation proposes the MILENAGE algorithm as a sample algorithm.

Just as the SIM has a SIM Application Toolkit, an application toolkit called the USIM
Application Toolkit (USAT) is specified for the USIM. It is nearly identical to the SAT, and
like the SAT, it is used for implementing value-added services in the USIM. ETSI also specified
a microbrowser called ‘USAT Interpreter’ for the USIM. Despite what may be suggested by
its name, this microbrowser cannot be implemented in SIMs as well.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 828 of 1123

794 Smart Cards in Telecommunications

Table 13.13 The mandatory application-independent files for a USCC, which must therefore be
present in a USIM

MF.EFDIR Application directory file (DIR)

Description: This file contains information about the applications present in the
smart card.

File: FID ='2F00'; structure: linear fixed, number of records: ≥1,
file size: n bytes; accesses: READ: always; UPDATE: ADM

File content: Each record contains a BER-TLV coded data object in accordance
with ISO/IEC 7816-5 that describes an application in the smart
card, with the mandatory specification of its AID.

MF.EFICCID ICC identification (ICCID)

Description: This file holds a unique identification number for the smart card.

File: FID ='2FE2'; structure: transparent, file size: 10 bytes;
accesses: READ: always; UPDATE: never

MF.EFPL Preferred language (PL)

Description: This file holds a list of the preferred languages for the user
interface.

File: FID ='2F05'; structure: transparent, file size: 2n bytes;
accesses: READ: always; UPDATE: PIN

MF.EFARR Access rule reference (ARR)

Description: This file holds a list of the access rules for files directly below the
MF.

File: FID ='2F06'; structure: linear fixed, file size: n bytes;
accesses: READ: always; UPDATE: ADM

File content: Each record holds an access rule according to ISO/IEC 7816-9.

13.4 MICROBROWSERS

A significant portion of the success of the World Wide Web can without doubt be attributed to the
web browsers. They made it possible to view stored content in the form of hypertext documents,
navigate among these documents and run program code embedded in hypertext documents
without undesirable side effects in the client computer, all without requiring computer-specific
programs to be installed in the remote servers.

Browsers with simple structures and requiring only small amounts of memory and process-
ing power are often referred to as ‘microbrowsers’. Generally speaking, such browsers cannot

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 829 of 1123

13.4 Microbrowsers 795

Table 13.14 The mandatory files for a USIM in addition to the mandatory application-independent
files. For the coding of the data elements and illustrative decoded examples of the files, see Section
13.2.4, ‘The subscriber identity module (SIM)’

MF Root directory

Description: This is the source directory for the entire USIM.

File: FID ='3F00'

MF.DFGSM GSM directory

Description: This directory holds a collection of files specific to the
GSM network.

File: FID ='7F20'

MF.DFTELECOM Telecom directory

Description: This directory holds all files specific to the services.

File: FID ='7F10'

MF.DFPHONEBOOK Telephone book directory

Description: This directory holds all files belonging to the telephone
book.

File: FID ='5F3A'

ADFUSIM USIM application directory

Description: This directory holds all files belonging to the USIM
application.

File: AID = RID ='A0 00 00 00 87'

ADFUSIM.DFPHONEBOOKH Telephone book directory

Description: This directory holds all files belonging to the telephone
book

File: FID ='5F3A'

ADFUSIM.DFGSM - ACCESS GSM directory

Description: This directory holds all files needed for access to the
GSM network.

File: FID ='5F3B'

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 830 of 1123

796 Smart Cards in Telecommunications

Table 13.14 (Cont.)

ADFUSIM.DFMExE Mobile station execution environment (MExE)
directory

Description: This directory holds all files specific to MExE.

File: FID ='5F3C'

ADFUSIM.EFIMSI International mobile subscriber identity (IMSI)

Description: This file holds the international subscriber identity.

File: FID ='6F07'; SFI ='07';
structure: transparent,
file size: 9 bytes;
accesses: READ: PIN; UPDATE: ADM

ADFUSIM.EFKeys Keys

Description: This file holds the encryption key CK (ciphering key), the
integrity testing key IK (‘integrity key’) and the key
identifier KSI (key set identifier).

File: FID ='6F08'; SFI ='08';
structure: transparent,
file size: 33 bytes;
accesses: READ: PIN; UPDATE: PIN

ADFUSIM.EFKeysPS Keys for packet-switched services (packet-switched
domain)

Description: This file holds keys for the packet-switched services,
consisting of the encryption key CKPS (ciphering key
packet switched domain), the integrity testing key IKPS
(integrity key packet switched domain) and the key
identifier KSIPS (key set identifier packet switched
domain).

File: FID ='6F09'; SFI ='09';
structure: transparent,
file size: 33 bytes;
accesses: READ: PIN; UPDATE: PIN

ADFUSIM.EFHPLMN Home public land mobile network search period
(HPLMN)

Description: This file holds a time interval for searching for the home
network.

File: FID ='6F31'; SFI ='12';
structure: transparent, 1 byte;
accesses: READ: PIN; UPDATE: ADM

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 831 of 1123

13.4 Microbrowsers 797

Table 13.14 (Cont.)

ADFUSIM.EFUST USIM service table (UST)

Description: This file holds a table of available and activated services
supplementary to the voice service.

File: FID ='6F38'; SFI ='12';
structure: transparent,
file size: ≥ 1 byte;
accesses: READ: PIN; UPDATE: ADM

ADFUSIM.EFACC Access control class (ACC)

Description: This file holds data regarding network accesses attempts
and access priorities.

File: FID ='6F78'; SFI ='12';
structure: transparent, 1 byte;
accesses: READ: PIN; UPDATE: ADM

ADFUSIM.EFFPLMN Forbidden public land mobile network (FPLMN)

Description: This file holds a list of forbidden network operators.

File: FID ='6F7B'; SFI ='0D';
structure: transparent, 3n bytes;
accesses: READ: PIN; UPDATE: PIN

ADFUSIM.EFLOCI Location information (LOCI)

Description: This file holds current location data for the mobile
telephone.

File: FID ='6F7E'; SFI ='0B';
structure: transparent,
file size: 11 bytes;
accesses: READ: PIN; UPDATE: PIN

ADFUSIM.EFAD Administrative data (AD)

Description: This file holds the administrative data for the USIM.

File: FID ='6FAD'; SFI ='03';
structure: transparent,
file size: (4 + n) bytes;
accesses: READ: always; UPDATE: ADM

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 832 of 1123

798 Smart Cards in Telecommunications

Table 13.14 (Cont.)

ADFUSIM.EFECC Emergency call codes (ECC)

Description: This file holds the emergency dialing numbers.

File: FID ='6FB7'; SFI ='01';
structure: linear fixed,
file size: (4+n) bytes;
accesses: READ: always; UPDATE: ADM

ADFUSIM.EFPSLOCI Packet-switched location information (PSLOCI)

Description: This file holds information about the current location of
the mobile telephone for the packet-switched services.

File: FID ='6F73'; SFI ='0C';
structure: transparent,
file size: 14 bytes;
accesses: READ: PIN; UPDATE: PIN

ADFUSIM.EFSTART - HFN Initial value of the hyperframe number

Description: This file holds information for data transmission via the air
interface.

File: FID ='6F7B'; SFI ='0F';
structure: transparent,
file size: 6 bytes;
accesses: READ: PIN; UPDATE: PIN

ADFUSIM.EFTHRESHOLD Maximum value of the hyperframe number

Description: This file holds information for data transmission via the air
interface.

File: FID ='6F5C'; SFI ='10';
structure: transparent,
file size: 3 bytes;
accesses: READ: PIN; UPDATE: ADM

ADFUSIM.EFARR Access rule reference (ARR)

Description: This file holds a list of access rules for the files in the ADF.

File: FID ='6F06'; SFI ='17';
structure: linear fixed,
file size: n bytes;
accesses: READ: always; UPDATE: ADM

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 833 of 1123

13.4 Microbrowsers 799

Table 13.14 (Cont.)

MF.EFNETPAR Network parameters (NETPAR)

Description: This file holds data related to the physical parameters of data
transmission via the air interface.

File: FID ='2FC4';
structure: transparent,
file size: ≥ 46 bytes;
accesses: PIN: always; UPDATE: PIN

run program code embedded in hypertext documents, and they are also adapted to a particular
target system with regard to memory usage and the required processing capacity. A micro-
browser can be regarded as sort of extension to a smart card operating system, in which case it
is categorized as a ‘SIM microbrowser’. The alternative is a microbrowser integrated into the
software of the mobile telephone, which is called a ‘mobile equipment (ME) microbrowser’.
Probably the best known example of such a microbrowser is the WAP browser, which runs fully
in the mobile telephone and only optionally accesses a smart card application called ‘wireless
identification module’ (WIM)18 in order to use cryptographic functions.

SIM-based microbrowsers were first announced for the GMS environment in 1998 by the
Across Wireless, which is now known as Smarttrust [Smarttrust]. These microbrowsers can
interpret a WML dialect that has been optimized to meet the needs of SIMs, and they also
allow supplementary functions, such as generating digital signatures using the RSA algorithm,
to be retrofitted by means of downloadable plug-ins. The size of the program code of a typical
microbrowser is around 15 to 25 kB, with an additional 1 to 2 kB being required in RAM or
EEPROM for working buffers.

In 1999, the SIM Alliance [SIM Alliance] consortium was founded by Gemplus, Giesecke
& Devrient, ORGA and Schlumberger, with the objective of allowing services developed for
WAP to also be used in mobile telephones lacking WAP capability. At that time, this was still
a very attractive possibility, since the market penetration of WAP-enabled mobile telephones
was rather small. For the realization of such capability, the SIM must have a SIM-Alliance
compatible microbrowser (also called a ‘S@T browser’), while the mobile telephone only needs
to support GSM Phase 2+. This gives the SIM sufficient control over the mobile telephone
via the SIM Application Toolkit to allow portions of WML contents and their functionalities
to be reproduced.

A major advantage of microbrowsers in the SIM relative to microbrowsers in the mobile
equipment is their secure execution environment. It is certainly conceivable that a WAP browser
that runs in the mobile equipment could have its various functions manipulated to the point that
it would be possible to make both the processor and the memory accessible to manipulation. A
SIM microbrowser, by contrast, is fully integrated into a SIM and can thus take advantage of
all protective mechanisms inherent to smart cards. With a SIM microbrowser, an end-to-end
link at the application level can be implemented between an application on the application
server and the SIM without any loss of security. This is not possible with a WAP browser.

The Smarttrust browser and the SIM Alliance browser are both company- or consortium-
specific browsers that do not originate from a standardization body. They are also not mutually

18 See also Section 13.5, ‘The WIM’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 834 of 1123

800 Smart Cards in Telecommunications

Gateway

SAT

SIMMESMSCServer

SMS
specific to

network operator
XML (e.g.: HTML,
 WML, S@TML)

SMS security mechanisms

security mechanisms GSM 03.48 as specified by

security mechanisms of the application

Figure 13.26 Schematic representation of the basic data transmissions and hierarchically structured
security mechanisms of microbrowser applications

Listing 13.2 Example of a simple WML application. The WML document is located on a server.
Using a converter, it is transformed into a 20-byte WML bytecode and then transmitted to the
microbrowser in the SIM using a SMS message. The microbrowser interprets the WML bytecode and
then uses the SIM Application Toolkit DISPLAY TEXT command to output the text ‘Hello World’ to
the display of the mobile equipment

<?xml version=''1.0'' WML version and character encoding specification
encoding=''ISO-8859--1''?>
<wml> Start of the WML document
<card> Start of a new card
Hello World Text to be displayed

</card> End of the card
</wml> End of the WML document

'00 12 02 0C 48 65 6C 6C WML document converted to WML bytecode
6F 20 57 6F 72 6C 64 20
06 00 06 00'

compatible. However, at the end of 2001 ETSI published the first version of the specification
for the USIM Application Toolkit Interpreter (USAT Interpreter), which represents the result
of a working group founded in mid-2000 to address this set of issues. Contrary to what its
name suggests, the USAT Interpreter can quite definitely be implemented in SIMs as well as
USIMs. It is likely that the USAT Interpreter will fully supplant both the Smarttrust browser
and the SIM Alliance browser in the medium term. The name ‘interpreter’ is also based on the
new capability of incorporating branches in interpreted bytecode. There are also a variety of
variable types that can be used from within bytecode for intermediate storage across session
boundaries. Browsers are by their nature typical examples of the ‘pull principle’, which means

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 835 of 1123

13.4 Microbrowsers 801

transferring information by fetching information from a higher-level system. Nevertheless, the
USAT Interpreter also includes a push function, which refers to the transfer of information by
sending information from a higher-level system to a lower-order system. This is very attractive
for certain applications, since it allows users of mobile telephones to be explicitly informed of
certain things by the application server.

Table 13.15 The most important standards for the USAT Interpreter

Standard Title

TS 22.112 USAT Interpreter – Stage 1
TS 31.112 USAT Interpreter Architecture Description; Stage 2
TS 31.113 USAT Interpreter Byte Codes
TS 31.114 USAT Interpreter Protocol and Administration

Generally speaking, an online system (such as GSM or UMTS) must be available before a
microbrowser can be used in a smart card. The contents to be displayed or executed are located
in an application server belonging to the content provider. This server is connected to a gateway
server by means of the usual Internet protocols and secure communication mechanisms (such
as SSL and TSL), which guarantee the application server the appropriate communications
security. In the case of communication with the SIM via SMS messages, the gateway server is
in turn connected to a short message service center (SMSC). The data to be sent to the SIM are
reformatted into GSM 03.48-compliant data packets, and at the same time they are provided
with the required cryptographic features for secure communications. The data packets are then
sent transparently to the SIM via the GMS system using SMS messages. The SIM recognizes
that these messages contain GSM 03.48-compliant data, decodes the data accordingly and if
necessary reassembles the original message from several short messages. If no errors have
occurred, the result is then passed to the SIM microbrowser, which interprets the message

time
0 %

penetration

100 %

time when the application is modified

application located
on a central server

application decentralized
in smart cards

Figure 13.27 Penetration curves for a new application, showing the difference between centralized
storage of the application on a server and decentralized storage in SIMs. Depending on the particular
mobile telecommunications network and the application in question, it can take up to several weeks to
achieve 90 % penetration

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 836 of 1123

802 Smart Cards in Telecommunications

and executes the corresponding SIM Application Toolkit commands. Finally, a response may
optionally be generated and returned to the application server using the reverse sequence.

There are cases in which the microbrowser does not receive its messages in the form of online
content from an application server connected via the network, but instead in the form of XML-
compliant bytecode stored in a file in the SIM. This offline content provides an elegant way to
store frequently used applications locally for rapid access, while also reducing the network load
in the process. However, the drawback of this approach is that these locally stored applications
must be explicitly updated by the background system. The principal advantage of applications
that are centrally stored on a server is that such individual updating is not necessary.

13.5 THE WIRELESS IDENTIFICATION MODULE (WIM)

In 2001, ‘WAP’ was widely extolled in the mass media as the long-awaited new Internet technol-
ogy for mobile telephones. For a variety of reasons, including a lack of content, poor availability
of suitable mobile telephones, low data transmission rates and disappointing reproduction of
content on the displays of mobile telephones, some of which were text-based and monochrome,
WAP was unable to gain a foothold among end users. ‘WAP’ has now come to be regarded as
a synonym for useless multibillion-euro investments in technologies that miss the mark with
end users. However, it is entirely possible that following this phase of practically boundless
disappointment, sooner or later a sense of reality will prevail and WAP will come to be regarded
and used as a simple means to view contents that happen to be largely text-based.

The term ‘WAP’, which is short for ‘wireless application protocol’, actually refers to a
number of specifications for implementing connections between mobile terminals (mobile
telephones, PDAs etc.) and a server via a wireless network (such as GSM, CDMA or TDMA),
for the direct exchange of data. Presently, the most common application for WAP is imple-
menting Internet services in mobile telephones in a manner that is largely independent of the
mobile telecommunications standard used. Nevertheless, besides the technology referred to in
the common usage of the term, the designation ‘wireless application protocol’ also refers to
the protocol used between the terminal device and the background system.

The internationally active standardization body for WAP is the WAP Forum [WAP], which
was founded in June 1997 by Phone.com, Ericsson, Motorola and Nokia and is presently
composed of representatives of more than 350 companies.

Since June 2000, the specifications for WAP also include a security module in the mobile
device called the ‘wireless identification module’ (WIM). Only with such a module is it possible
to establish secure communications with applications in the background system in a reasonable
manner. Two possible versions of the WIM have been specified: as an application in a dedicated
smart card, or as a supplementary application in a SIM, USIM or UICC. Since dual-slot mobile
telephones have failed to become established in the market, the second version, in which the
WIM is a supplementary application in an existing smart card, will come to prevail.

The WIM specification is based on the PKCS #15 specification [RSA] for digital signature
applications in smart cards, which are now also addressed in a compatible form by ISO/IEC
7816-15. In order to understand the following material, you should have at least a cursory
knowledge of PKCS #15-compatible signature applications. If necessary, you should read
Section 14.5, ‘PKCS #15-Compliant Signature Applications’, before continuing.

The primary task of the WIM is to provide cryptographic functions for securing WAP data
transmissions at the transport level in the form of ‘wireless transport layer security’ (WTLS).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 837 of 1123

13.5 The Wireless Identification Module (WIM) 803

Interestingly enough, these functions of the WIM can be used not only in the WAP context,
but also in the environment of the SIM Application Toolkit. This makes the WIM a general-
purpose signature application for telecommunications cards. Consequently, it has become a
standard component in many SIMs and USIMs.

The WIM specification contains a number of primitives in abstract form that describe basic
functions. Table 13.16 presents a summary of these generic functions, which are used in the
WTLS protocol. In a subsequent stage, these primitives are linked to suitable commands or
command sequences.

Table 13.16 The primitives defined in the WIM specification and related smart card
commands

Primitive Smart card command

Device control
Open Service MANAGE CHANNEL
Close Service MANAGE CHANNEL

Verification
Perform Verification VERIFY
Disable Verification Requirement DISABLE VERIFICATION REQUIREMENT
Enable Verification Requirement ENABLE VERIFICATION REQUIREMENT
Change Reference Data CHANGE REFERENCE DATA
Unblock Reference Data RESET RETRY COUNTER

Data access
Open File SELECT
Close File —
Read Binary READ BINARY
Update Binary UPDATE BINARY

Cryptography
Compute Digital Signature MANAGE SECURITY ENVIRONMENT

PERFORM SECURITY OPERATION
Verify Signature MANAGE SECURITY ENVIRONMENT

PERFORM SECURITY OPERATION
Get Random ASK RANDOM
Key Transport MANAGE SECURITY ENVIRONMENT

PERFORM SECURITY OPERATION
Key Agreement MANAGE SECURITY ENVIRONMENT

PERFORM SECURITY OPERATION
Derive Master Secret MANAGE SECURITY ENVIRONMENT
PHash MANAGE SECURITY ENVIRONMENT

PERFORM SECURITY OPERATION
Decipher MANAGE SECURITY ENVIRONMENT

PERFORM SECURITY OPERATION

Exception

Exception This can apply to any type of command.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 838 of 1123

804 Smart Cards in Telecommunications

WIM files generally have a transparent structure in order to simplify access and avoid
creating unnecessary overhead. From a software engineering perspective, this does not make
access any more difficult, since the pointer structure on which PKCS #15 is based ensures that
access to the desired data objects can be made in a relatively easily understood and extensible
manner. All data are described in ANS.1 format and coded using the Distinguished Encoding
Rules (DER).

Besides the usual PKCS #15 files and data objects, the WIM also has a ‘peers’ data object
and a ‘sessions’ data object. These two data objects are used to store specific linkage data in
order to allow an abbreviated authentication handshake to be used in a subsequent session.

With regard to its physical properties, the WIM must comply with the applicable GSM
specifications, such as GSM 11.11. It must support the T = 0 transmission protocol; the T = 1
protocol can also be optionally provided by the WIM. This can be selected as necessary by the
terminal via a PPS process. Table 3.17 provides a summary of the basic properties of a WIM.

Table 13.17 Basic properties of a WIM

Property Remark

Card format: ID-000 Optional
Card format: ID-1 Optional
Commands See command summary in Table 13.18.
Logical channels Optional
T = 0 transmission protocol Mandatory
T = 1 transmission protocol Optional
3-V supply voltage Mandatory
5-V supply voltage Optional

The commands needed for executing the functions with the WIM application are fully
compliant with ISO/IEC 7816-4 and -8. This makes it relatively easy to implement a WIM in
a smart card having a standard-compliant operating system, such as a UICC.

In order to invoke the WIM application, in practice a new logical channel is opened to
the smart card (if this is supported by the operating system). The first step is then to select
the application using its AID. In this case the RID has the value 'A0 00 00 00 63', and the
associated PIX is the ASCII encoding of''WAP-WIM'', which has the hexadecimal value'57
41 50 2D 57 49 4D'. After the application has been selected, the usual command sequences
for WLTS or the signature application are used.

13.6 PUBLIC CARD PHONES IN GERMANY

Starting in the summer of 1989, the German state telephone company (Telekom) began intro-
ducing public card phones throughout the entire country. Prior to this, several field tests were
carried out using systems from various manufacturers. These started as early as 1983 in four
different regions in Germany with different characteristics (conurbations, cities and rural ar-
eas). Several different types of cards were also tested in these trials, including magnetic-stripe
cards, hologram cards and cards made from different types of material (paper and plastic).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 839 of 1123

13.6 Public Card Phones in Germany 805

The conclusion drawn from these initial field tests was that plastic memory cards were
the most suitable for use with card phones. The decisive factors were the achievable level of
security and upward compatibility, as compared with other types of cards. In December of 1986
and July of 1987, large-scale field trials of a system based on memory cards were started in 16
major cities. These were successfully concluded in May of 1989. In the spring of 1999, there
were more than 90,000 public card phones in Germany, and more than 300 million prepaid
phone cards had been sold since the system was introduced. Internationally, the numbers at
that time were 8.3 million card phones and more than 1100 million cards.

The card phones installed by Telekom in Germany can in principle be used with two
different types of cards. The first type is the phone card, which is produced and used in very
large numbers. In financial terms, this is an electronic purse that the customer purchases before
using it. In technical terms, it is a memory card with an irreversible counter, a security feature
and synchronous data transmission.

Table 13.18 Summary of the smart card commands defined in the WIM specification

Command Brief description

Logical channels
MANAGE CHANNEL Control logical channels; optional command per

ISO/IEC 7816-4.

Verification
VERIFY Verify passed-in PIN data; command per ISO/IEC 7816-4.
ENABLE VERIFICATION Enable PIN queries; optional command per ISO/IEC 7816-8.

REQUIREMENT
DISABLE VERIFICATION Enable PIN queries; optional command per ISO/IEC 7816-8.

REQUIREMENT
CHANGE REFERENCE DATA Change the PIN; command per ISO/IEC 7816-8.
RESET RETRY COUNTER Reset the retry counter; command per ISO/IEC 7816-8.

Data storage
SELECT Select a file; command per ISO/IEC 7816-4.
READ BINARY Read from a file with transparent structure; command per

ISO/IEC 7816-4.
UPDATE BINARY Write to a file with transparent structure; command per

ISO/IEC 7816-4.

Cryptographic operations
MANAGE SECURITY Modify the parameters for using cryptographic algorithms in

the smart card; command per ISO/IEC 7816-8.ENVIRONMENT
PERFORM SECURITY Run a cryptographic algorithm in the smart card; command per

ISO/IEC 7816-8.OPERATION
ASK RANDOM Request a random number from the smart card; command per

ISO/IEC 7816-4.

Miscellaneous
GET RESPONSE T = 0 command for requesting data from the smart card;

command per ISO/IEC 7816-4.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 840 of 1123

806 Smart Cards in Telecommunications

The other type of card is the telephone charge card, which is not as widely used. It resembles
a credit card in that the user pays for the services (telephone calls) only after they have been
received, by means of a monthly settlement against his or her bank account. In technical terms,
a charge card is a smart card with a microcontroller. Data transmission to the card phone takes
place using the block-oriented, asynchronous T = 14 transmission protocol. Since this type of
card is not particularly important, we will not discuss it any further.

The entire card phone system is constructed as a distributed (decentralized) system with
several successive layers of computers. In the event of a system breakdown, the lower levels
can work fully autonomously for several days without affecting normal telephone operations.
The two parts of the system that the normal user sees, which are the phone cards and the card
phones, are described here.

Table 13.19 Examples of typical files in a WIM19

MF.DFWIM WIM application
Description: This directory holds all files belonging to the

PKCS #15-compliant WIM application.

File: AID ='A0 00 00 00 63 57 41 50 2D 57 49 4D'

MF. DFWIM.EFTokenInfo General information file (TokenInfo)

Description: This file holds general information about the WIM
and the functions supported by the WIM.

MF. DFWIM.EFODF Object directory file (ODF)

Description: This file holds a directory of all files containing
data objects that are present in the card, with
corresponding pointers to these files.

MF. DFWIM.EFAODF Authentication object directory file (AODF)

Description: This file holds a list of the available authentication
objects and corresponding pointers to these objects.

MF. DFWIM.EFPrKDF Private key directory file (PrKDF)

Description: This file holds a list of the available private keys
and corresponding pointers to these keys in
EFPrKDFData 1 and EFPrKDFData 2.

MF.DFWIM.EFPrKDFData 1 Private keys for authentication and key
exchange

Description: This file holds the private keys for authentication
and key exchange.

19 See also Section 14.5, ‘The PKCS #15 Signature Application’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 841 of 1123

13.6 Public Card Phones in Germany 807

Table 13.19 (Cont.)

MF.DFWIM.EFPrKDFData 2 Private keys for digital signatures

Description: This file holds the private keys for digital
signatures.

MF.DFWIM.EFCDF 1 Certificate directory file (CDF)

Description: This file holds a list of the available private
certificates for the user and corresponding pointers
to these certificates in EFCDFData 1 and
EFCDFData 2.

MF.DFWIM.EFCDFData 1 Authentication and key exchange certificates for
users

Description: This file holds the certificates for authentication
and key exchange for the user.

MF.DFWIM.EFCDFData 2 Signature certificates for users

Description: This file holds the certificates for digital signatures
for the user.

MF.DFWIM.EFCDF 2 Certificate directory file (CDF) – for certificates
from the certification authority

Description: This file holds a list of the available certificates
from the certification authority that can be
modified by the user, as well as corresponding
pointers to these certificates in EFCDFData 3.

MF.DFWIM.EFCDFData 3 Certificates from the certification authority for
the user

Description: This file holds the certificates of the certification
authority that can be modified by the user.

MF.DFWIM.EFCDF 3 Certificate directory file (CDF) – for read-only
certificates from the certification authority

Description: This file holds a list of the available certificates
from the certification authority that cannot be
modified, as well as corresponding pointers to
these certificates in EFCDFData 4.

MF.DFWIM.EFCDFData 4 Read-only certificates from the certification
authority

Description: This file holds the certificates of the certification
authority that cannot be modified.

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 842 of 1123

808 Smart Cards in Telecommunications

Table 13.19 (Cont.)

MF.DFWIM.EFDODF Data object directory file (DODF)

Description: This file holds a list of the available master secrets
for the WTLS session and corresponding pointers
to these objects.

MF.DFWIM.EFDODFData 1 Data objects

Description: This file holds the available master secrets for the
WTLS session.

MF.DFWIM.EFPeers Peers file

Description: This file holds data for the WTLS authentication
handshake.

MF.DFWIM.EFSessions Sessions file

Description: This file holds data for the WTLS authentication
handshake.

MF.DFWIM.EFUnusedSpace Free memory directory file
Description: This file holds a list of memory locations that are

available in the EFs of the WIM application but are
not used.

In order to survive as long as possible under the severe operational conditions to which
it is exposed, the card phone has a sturdy metallic enclosure with openings for the controls
and indicators, such as the keypad and display. The terminal is fully electrically isolated from
the rest of the electronic assemblies. It is also short-circuit-proof, in order to protect it against
vandalism and other attempts to disturb its operation by shorting its contacts.

The card phone is controlled by a powerful microcontroller. The control software can be
remotely updated, which means that it is not necessary for a service technician to update the
software on site by replacing EPROMs. The control processor of the card phone can also directly
exchange information with the higher-level computer systems while a conversation is taking
place, using a data-over-voice (DOV) modem. This is primarily necessary for telephone charge
cards, since the accumulated charges are immediately sent to the background system for billing.

The main control processor of the card phone also handles communication with the phone
card or charge card. With a charge card, it communicates using the T = 14 protocol, which is
specified by Telekom and is used only in Germany. Otherwise, it uses the synchronous protocol
employed by the memory card in question.

The built-in terminal can supply the memory card with an external programming voltage
that is adjustable between 5 V and 25.5 V in 255 steps. However, since practically all new
memory cards have an internal voltage converter that generates the programming voltage from
the normal supply voltage, this is actually no longer technically necessary. It is only present
for compatibility with older generations of phone cards, whose contents are still good.

If a charge card is used (a ‘real’ smart card), the terminal can choose a clock frequency
ranging from 1.2 to 9.8 MHz. With synchronous cards, the clock frequency must be reduced

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 843 of 1123

13.6 Public Card Phones in Germany 809

to around 20 kHz in order to obtain usable communications.
The terminals have massively constructed shutters for protection against ‘dummy’ cards.

The shutter has an impact cutter that slices through any wires or cables that pass through the
card slot. This prevents tapping or manipulating the communications between the card and the
terminal.

The chips that are used for phone cards have both ROM (which can be mask programmed by
the semiconductor manufacturer) and EEPROM. These hold card-specific data and the counter
for the card balance.

A charge pump in the chip generates the programming voltage for the EEPROM, so it is
no longer necessary to supply this voltage externally. This means that the chip needs only
the normal supply voltage. For protection against fraud using counterfeit cards, the chip has
a hardware security feature whose operation is secret. In the future, memory chips that allow
unilateral authentication of the card by the outside world will also be used.

Modern phone card chips have only six contacts. This is because only five contacts are
actually necessary for the full functionality of the memory chip, with all other contacts being
unused. Using eight contacts would increase production costs, since the module would be
larger and thus more expensive. It would also take longer to mill the cavity for the module
in the card body, thus reducing the throughput of the production equipment and increasing
the unit cost. Consequently, practically all new phone cards have only six contacts. The six or
eight leads brought out from the chip to the contacts are assigned as shown in Figure 13.28.

C1

C2

C3

C4

C5

C6

C7

C8

top edge of card

left edge of card

Figure 13.28 Contact assignments for a phone card. The contacts that are not listed are not used.
C1 supply voltage (5 V ± 5 %) C5 ground
C2 control input C7 data transmission
C3 clock input (≈20 kHz)

Prepaid Telekom phone cards contain the data described below in the chip memory.

Serial number Each phone card has a 7-digit serial number. This allows individual cards to
be blocked if there is suspicion of fraud. The serial number is stored in a part of the EEPROM
that is blocked against overwriting or erasing.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 844 of 1123

810 Smart Cards in Telecommunications

Date of manufacture When the chip is manufactured, the year and date of its fabrication are
permanently written to the EEPROM. This date refers only to the embedded chip, rather than
the card.

Manufacturer code After the chip has been embedded in the card body, the card manufacturer
writes a specific code to the memory of the card. This identifies the manufacturer, and it cannot
later be altered.

Initial value The initial value of the card is also stored in every phone card, in addition to the
current value.

Remaining balance This is the only data element in the card that is functionally necessary for
a prepaid phone card. The card phone deducts the individual billing units one after the other
from a five-digit irreversible octal counter in the EEPROM. The counter thus consists of five
bytes of eight bits each. This gives a maximum count capacity of 32,768 (85). When the card is
completed, the counter is set to the desired initial value of the card, which means that its count
is equal the value of the card in units of eurocents. After this, the counter can be decremented
toward zero whenever the card is used. Once the counter has reached zero, the card has been
fully used up.

Transaction process

If you insert a phone card in a card phone, the first thing that happens is that the shutter closes
the card slot, and at the same time the terminal’s contacts are applied to the contact surfaces of
the card. After this, the card phone executes an ISO activation sequence to initialize the card.
Following this, the terminal sets the address pointer in the card to zero and reads the first 16 bits.
If this is successful, the phone card is in good working order. The 16 bits are interpreted by the
terminal as a sort of ATR containing various operating parameters for the card. The terminal
next checks these parameters to see whether the inserted card is one of the allowed card types
whose functions it can properly use. The card number, which the terminal has also read from
the card, is at the same time sent via the DOV modem to the next higher level of the system.
Here it is compared with the blacklist of blocked cards. If the blacklist contains no entry for
this card, the card may be used, and the card phone receives a corresponding response.

The address pointer is now set to point to the region of the tariff counter, and the current
value of the card is read from the EEPROM and shown on the display. After the user has
entered the telephone number and a connection has been successfully made, the card phone is
regularly advised via the DOV modem when it is time to deduct charge units. Each time this
occurs, the card phone decrements the counter in the memory card and immediately reads out
its new value. This allows it to check whether the amount was correctly deducted. If this is not
the case, the connection is immediately broken. If the card phone calculates that the remaining
balance of the card will be used up within the next 20 seconds, it generates a warning tone,
and the card can be exchanged for a new one without interrupting the conversation.20

20 Devaluation cycle for a memory card; see also Section 12.2, ‘Prepaid Memory Cards’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 845 of 1123

14
Sample Applications

In this chapter, we present some sample smart card applications and describe them in broad
terms. They are all based on the previous chapters, which deal with all relevant aspects of
smart card technology, and they illustrate the extent and complexity of relatively large smart
card applications.

Another objective of this chapter is to show smart card systems in which the cards are only
one of several components. In such systems, the functionality, user friendliness and (in most
cases) nearly all of the system security depend on the smart cards used in the system. However,
such systems should always be viewed as a whole, since they operate satisfactorily only when
all of their components work together harmoniously.

14.1 CONTACTLESS MEMORY CARDS FOR AIR TRAVEL

The system described in this section differs from the usual applications for smart cards in
several basic aspects. These relate to the fundamental system architecture and data transmission
mechanism, as well as how the cards are powered. This system is the ticket-free flight system
of the German airline Lufthansa. It is based on contactless memory cards, which do not have to
be inserted into a terminal.1 The basic system concept also differs from that of all other smart
card applications described here, in that the cards are only used to identify the users, with all
application data being held in the background system.

For some time now, Lufthansa has been issuing frequent-flyer cards and cards for its bonus
system. Originally, they used embossed cards and cards with magnetic stripes for automatic pro-
cessing. In addition, certain types of cards could also be provided with a chip, so that they could
be used with German public card phones and have a supplementary credit card function. This
existing family of cards was to be extended by adding supplementary applications for boarding
and ticketing in an upwardly compatible manner. In addition to the requirement for compati-
bility, a second objective was to make as few modifications as possible to existing systems. An
equally important consideration was that the new cards should be easy for customers to use.

1 See also Section 2.3.3, ‘Contactless smart cards’

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 846 of 1123

812 Sample Applications

In the ultimate stage of development, this would result in a multiapplication card with
a magnetic stripe, embossing, a hologram, a memory chip with contacts and a contactless
memory chip. Such a card could provide a large variety of functions without creating any
compatibility problems with previously issued cards.

Before the planned system-wide introduction of the new cards, a pilot project was conducted
on the Frankfurt–Berlin route. The new cards were issued to 600 customers of all different
types, and many thousands of flights were made on this route between May and December of
1995. To allow customers to use the cards, suitable automated service kiosks were installed at
both airports. Each kiosk was a PC-based system with a touch-sensitive color screen, a printer
and a transceiver for contactless smart cards.

Applications in the card

The new card offers customers a wide variety of applications. The following descriptions relate
to the fully equipped version of the card. Naturally, there are also simpler versions, such as
cards having only the functions of the contactless memory chip. With such a card, travelers
can check themselves in at a service kiosk. This naturally leads to higher throughput, with
shorter waiting times and/or faster processing. Lufthansa’s bonus system is also integrated
into the contactless-chip version of the card, making it unnecessary to use any other card or
enter additional information.

Using suitable automated equipment located in the air terminal, a traveler can check in
and receive a printed ‘boarding information’ form. This form contains all of the essential
information regarding the booked flight, similar to what is on the actual ticket. If necessary,
a seat selection for the booked flight can be made at the kiosk. Flights can also be booked by
telephone using the number embossed on the card. In the future, Lufthansa plans to manage all
of this without paper tickets, since all relevant information can be retrieved from the background
system via the card. Naturally, this does not rule out making flight reservations by telephone
or fax, which will continue to be possible.

In addition to these functions, the card can also serve as a credit card by incorporating
a hologram and a magnetic stripe with the necessary data. It is also possible to embed a
contact-type chip in the ISO location. This is currently used to implant a phone-card chip.

The overall system

All of the applications based on the contactless chip are structured very simply with respect
to the smart card. The card is used only for identification, with the memory chip being used
to allow dynamic authentication by the background system.2 After authentication, all of the
information stored in the card is read out. Currently, this consists of the customer number,
customer name and customer profile. With this information, the background system can match
the card to a particular person, after which the booking data, bonus system points and all
other functions are available. The card is thus used only as a kind of key, with the data and
mechanisms belonging to the various applications remaining in the background system. This

2 See also Section 4.11.1, ‘Symmetric unilateral authentication’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 847 of 1123

14.1 Contactless Memory Cards for Air Travel 813

has considerable advantages in this case, since the background system and all of its required
databases, programs and interfaces are already well established.

Another advantage of this system is the way it deals with lost or defective cards. This is
a difficult issue, which up to now has always been neglected in other systems using multi-
application cards. If applications have been loaded into a card after personalization, when
the cardholder receives a new card, he or she must individually contact all of the application
providers in order to have them reload their applications into the card. Thanks to its centralized
system architecture, the Lufthansa smart card system does not have this problem. If a card
is lost or becomes defective, the customer receives a new card and the old card is blocked
system-wide by means of its number. This does not require a large amount of logistical effort,
since all airports served by Lufthansa have access to the necessary data via the well-established
Lufthansa network.

The contactless card

The smart card has the internationally standard ID-1 format. The memory chip embedded in
the card body uses inductive coupling, with a single coil for both power and data transfers.
With this technology, the terminal can both read and write data at a distance of up to 10 cm.3 If
the card is in an ordinary purse, it is even possible to exchange data with the terminal without
removing the card from the purse. It is only necessary to hold the purse next to the terminal.
Since the chip and the coil are both located inside the card, the graphic layout need not be
affected by these components. Furthermore, contactless technology eliminates the problem of
contact wear, since there simply aren’t any contacts.

magnetic stripe (rear side)

chip with coil (inside card)

embossing (front side)

chip with contacts (front side)

Figure 14.1 Physical layout of the Lufthansa smart card in the full-up version

The typical transaction time between the terminal and the card in this system is around
100 ms, and a clock frequency of 13.56 MHz is used. The memory chip used (SLE 44R35)
contains 1 kB of EEPROM and can be unilaterally authenticated by the outside world. Since
presently only 48 bytes of data are stored in the memory (the customer number, customer name
and customer profile), other applications could be incorporated in the future – although in this
system, new applications naturally do not require additional memory in the smart card.

3 See also Section 3.6, ‘Contactless Cards’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 848 of 1123

814 Sample Applications

Summary

The field trial on the Frankfurt–Berlin route was very successful. Nevertheless, implementation
of the system in this form was not further pursued.

Although this smart card application is atypical with regard to system architecture, it brings
an interesting new perspective to the smart card world. Since the application data are located
in the background system, all aspects related to protection of personal data are also shifted to
this system. This means that data privacy legislation, regardless of which country is involved,
cannot have any influence on the data stored in the card. This approach also circumvents the
well-known memory space problems that arise when several applications are located in a single
card, since the issue of which user is allowed to write which data to the card simply does not
exist. The separation of applications on the card is also complete, since the system design avoids
any possible interference between individual applications. Finally, it can be remarked that the
data that are valuable to the system operator are always securely stored in his background
system, rather than in smart cards where they can potentially become lost.

This new system is also an exemplary illustration of a seamless transition from one card
technology to the following one. This sort of ‘soft’ migration from one stage of technology
to the next one is a very important consideration, since it preserves previous investments and
avoids the need to construct an entirely new system.

14.2 HEALTH INSURANCE CARDS

In Germany, each member of a public health insurance plan was issued a health insurance card
(Krankenversichertenkarte or KVK) by the end of 1994. In 1996, the private health insurance
plans also began to issue their own smart cards, which are compatible with the public KVKs.
These cards, of which more than 72 million have been issued, have thus achieved a level of
penetration in the whole of the German population that exceeds that of phone cards.

Originally, it was only planned to introduce a magnetic-stripe card, but in consideration
of possible future developments it was decided to use smart cards instead. The least costly
solution was to use memory cards, since at that time microcontroller cards were much more
expensive. However, the system is designed such that memory cards can be replaced by ‘real’
smart cards in further development stages over the course of several years. The result is a
nationwide system that can form the basis for a future smart card health-care system, should
this be necessary.

The health insurance member card has two basic functions for the insured person. Its first
function is to identify the person to the doctor who treats that person. It thus replaces the paper
health insurance card. Its second function is to act as a machine-readable data storage medium
for the computer in the doctor’s clinic. Usually, the terminal is connected to a PC in the clinic,
which also controls the terminal. The card can be read using the terminal, and the billing data
obtained in this manner can be further processed automatically. If the doctor manages his or
her practice using traditional methods (that is, without a computer), the terminal can directly
transfer the data from the card to a printer and thereby to a printed form.

Three different entities can access the health insurance card. The first is the doctor’s clinic,
where data can only be read from the card. Here there is no intention of allowing data to be
written to the card, and the terminal software prevents such access. The second entity is the
health insurance organization, which again can only read the data in the card. Here the insured

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 849 of 1123

14.2 Health Insurance Cards 815

person can read and check the personal information stored in the card. The health insurance
organization also has special terminals that allow data to be written to the card. This can for
example be necessary if the insured person moves to a new address. However, many insurers
simply issue a new card to the insured person instead of modifying the data in the existing card,
and request the cardholder to destroy the old one. This is logistically significantly simpler and
thus less costly.

In the initial phase of the KVK project, consideration was given to storing a wide variety
of patient information in the card. Some people wanted to include all possible information in
the card, ranging from the blood type to allergies, so it would be a sort of emergency card.
However, after all the objections related to the protection of personal data had been resolved,
only the personal information listed in Table 14.1 was left to be stored in the chip in the card.
The information contained in the card is essentially also present on the outside of the card, so
the insured person knows his own information – although only to the extent that it is fixed and
person-specific. The address is held only in the memory of the card, so that in principle it is
not necessary to generate a new card if the insured person changes addresses.

Table 14.1 Data elements and TLV coding of German health insurance cards as
defined in the technical specifications for German health insurance cards (1993)

Data element Length Tag

Checksum for the entire template (XOR) 1 byte '8E'
Date of birth of the insured person (DDMMYYYY) 8 bytes '88'
Expiry date of the card (MMYY) 4 bytes '8D'
Federal state 1–3 bytes '8A'
Given name of the insured person 1–28 bytes '85'
Insurance card number (VKNR) 5 bytes '8F'
Legal system (east/west) 1 byte '90'
Name extensions of the insured person 1–15 bytes '86'
Name of the city or town 2–22 bytes '8C'
Name of the insurer 2–28 bytes '80'
Number of the insured person 6–12 bytes '82'
Number of the insurer 7 bytes '81'
Postal code 4–7 bytes '8B'
Status of the insured person 4 bytes '83'
Street name and house number 2–28 bytes '89'
Surname of the insured person 2–28 bytes '87'
Template for data regarding the insured person 70–212 bytes '60'
Title of the insured person 2–15 bytes '84'

The requirement that the information in the card be generally known was also one of the
prerequisites for the approval of the overall system. No information that is secret or not known
to the insured person is allowed to be present in the card. It must also not be possible to write
additional data to the card at a later date without authorization. To exclude the possibility of
writing data to the card, neither doctors nor insurance organizations receive terminals that have
this capability. Only a few administrative terminals located in the insurance organizations can
write data to the cards. However, no special authentication key is needed for this, so data could
easily be written using any suitably equipped terminal.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 850 of 1123

816 Sample Applications

From a purely external perspective, a health insurance card behaves as though it contains
only a single transparent file. Data can be freely read from this file using offset and length
parameters. Certain administrative terminals can also write data to the memory, but for reasons
of personal data privacy this only occurs as an exception.

heath insurance
organization(s)

issue medical
insurance
card

patient

bill

doctor visit

accumulated
bills

money transfer

doctor

billing
location(s)

Figure 14.2 Basic architecture of the German health insurance card system

When the arrangement of the data elements was specified, it was very important for it to
be possible to make future extensions or modifications without creating any compatibility
problems. Consequently, all personal data in the health insurance card are structured using the
ANS.1 data description language. They are stored in the card’s memory in a TLV structure.
This makes it possible to add other data objects in the future or change the codes used for
existing data objects. The tags to be used are prescribed by a specification, so the data elements
of all health insurance cards are structured in the same manner.

The health insurance card is not a microprocessor card. It is a memory card, with hardware
similar to what has been used for years in phone cards. The EEPROM that is used must have
a capacity of at least 256 bytes. This is equal to the amount of all necessary data located in
the health insurance card. If the EEPROM is exactly this large, the necessary data just fit and
it is physically impossible to write any additional data to the card in violation of data privacy
legislation.

The clock-synchronous data transmission protocols depend on the specific type of chip that
is used. Each terminal must therefore be able to fully process all possible protocols. The card
body can be manufactured using injection molding or a multilayer technology. The useful life
of the health insurance card is specified to be six years. After this time, the insured person
automatically receives a new card. This means that around 15 million new cards must be issued
each year.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 851 of 1123

14.2 Health Insurance Cards 817

Figure 14.3 Sample KVK data set for a privately insured person, with all data elements decoded. The
data shown here correspond to a non-existent person, and the XOR checksum is intentionally incorrect.
The following abbreviations are used: T: tag; L & L2: length of the following data; L1: tag within the
length code indicating that the next byte (L2) is the actual length code; NU: not used; V1: personalizer tag

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 852 of 1123

818 Sample Applications

Figure 14.3 (Cont.)

If the terminal is connected to a computer, it is controlled by the computer using the T = 1
transmission protocol as specified in ISO/IEC 7816-3. There is one restriction in this regard,
which is that data chaining may not be used in the protocol. Doing so would not add any
functionality to the application, but it would increase the amount of memory needed in the
terminal. Incidentally, this is a typical example of the fact that real applications often use only
the necessary parts of standards, and it is uncommon for all of the functions specified in a
standard to actually be implemented.

There are only three possible commands that the terminal can execute. The first command is
a reset to the health insurance card, followed by reception or reading of the ATR. This command
is always used at the start of a session to activate the health insurance card. The second command
is READ BINARY with the ISO coding, which can be used to read selected portions of the data
or all of the data via the terminal. The third command is WRITE BINARY, also in accordance
with ISO/IEC 7816-4, although this command is only available in administrative terminals. It
is blocked in all other types of terminals. The health insurance cards of the private insurers have
write protection implemented using PINs that are known only to the insurance organization.
The cards for the public health insurance plans can be freely written if the necessary commands
are known.

If the terminal is directly connected to a computer, its essential function is only to provide
a conversion between the T = 1 protocol and the hardware-dependent synchronous protocol
of the health insurance card. Nevertheless, it can be clearly seen that it would be possible to
switch to microprocessor cards without undue effort or expense. With microprocessor cards,
the only function of the terminal would be to transparently relay the commands received from
the clinic computer. The response from the card could also be transparently returned to the
control computer, without any processing by the terminal.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 853 of 1123

14.3 Electronic Toll Systems 819

14.3 ELECTRONIC TOLL SYSTEMS

In some countries, it is common to charge a toll for using certain roads. In contrast to flat-rate
fees collected by selling windscreen stickers, tolls are collected according to usage. In other
words, the amount collected depends on the frequency of use and the type of vehicle. Up
to now, tolls have usually been paid in cash at tollbooths. In a few isolated cases, electronic
systems using various types of cards have been used over the past few years in toll systems
(road-pricing systems). However, all systems used up to now have the drawback that they
significantly impede the flow of traffic, since vehicles must either stop or slow to a walking
pace. The toll stations also require a large amount of space.

In light of this, the German traffic ministry decided in 1993 to start a large-scale field trial
of automatic toll collection systems. The road selected for this test was the A555 Autobahn
between Cologne and Bonn. Various systems provided by 10 different firms were tested on
this stretch of road between May 1994 and June 1995.

The systems that were tested were evaluated in terms of several basic requirements. First,
traffic should be able to flow normally and unimpaired past the toll collection points. In
Germany ‘normal traffic flow’ can mean anything up to 250 km/h. Therefore, it should not
be possible to evade toll collection by driving very fast. Furthermore, tollbooths or collection
baskets were not allowed be used for paying tolls, since the equipment of the desired system
had to be suitable for mounting on flyovers and sign bridges. In addition, the systems had to
support both single-lane and multi-lane traffic. It is technically undesirable to channel traffic
into individual lanes, since this strongly restricts traffic flow.

A supplementary requirement, which was not originally foreseen in this form, arose during
the course of the project. This was complete anonymity with respect to toll collection, and this
increasingly came to be regarded by the general public as the crucial factor for the entire trial.
It should not be possible to generate vehicle movement profiles or monitor the routes traveled
by specific vehicles. All proposed systems had a payment option that maintained vehicle
anonymity as long as the toll was paid. As soon as a toll collection failed, the vehicle was
photographed. The registered owner could then be tracked down and sent a suitable penalty
notice. Naturally, this did not actually occur during the trial, since only ‘play money’ was used.

Almost all of the proposed automated toll collection systems used smart cards to hold
the electronic currency. That is why we address this subject here, since it may well become
important to the smart card industry in the future.

All tested systems have a device mounted in the vehicle called either the OBU (onboard
unit) or IVU (in-vehicle unit), as well as additional equipment as necessary. This equipment
is powered by the car battery. Inside the passenger compartment, each system has a smart
card terminal, a display and a simple keypad. There is also a link to the outside world, which
may be unidirectional or bidirectional, depending on the system. This is usually a microwave
link in the 5.795–5.805 GHz frequency band, as recommended by CEPT for this application.
Alternatively, some systems used radio signals in the 400–500 MHz range or infrared light.
The disadvantage of using infrared light is naturally that transmission is strongly affected by
weather conditions, such as heavy snow or fog. In the systems that participated in the trial, the
stated mass-production price of the OBU was between 50 and 150 euros, depending on the
configuration.

The control stations were installed along the motorway on flyovers and sign bridges as
necessary. No modifications to the roadway construction were necessary. The smart cards did

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 854 of 1123

820 Sample Applications

not contain sophisticated electronic purses, but only very simple and fast debiting commands.
This was in part due to the fact that no real money was used, and in part due to the short
time available for transactions. In some systems, the optimization process went so far as to
reduce the ATR to four bytes, in order to leave sufficient time for the actual debiting. This is
understandable in light of the requirement for unrestricted traffic flow. At 250 km/h, a vehicle
covers 70 m per second. The control station has a communications range of approximately
5 m in the 5.8-GHz frequency band. This yields a dwell time (the interval during which the
vehicle is within range of the station) of around 70 ms. The card must perform the following
processes within this interval:

� card reset and ATR transmission (≈10 ms)

� DES encryption to authenticate the card (≈12 ms)

� EEPROM write access to store the new balance (≈2 × 3.5 ms)

� data transmission from and to the card (≈30 ms)

Additional time is needed for data transmission between the OBU and the electronic toll
station. You can calculate that the amount of time available is very tight. The smart cards
were all operated at the maximum allowable clock frequency (usually 5 MHz). The data
transmission rate between the OBU and the toll station, at 1 Mbit/s, was substantially higher
than that between the OBU and the card. It thus has little influence on the total transmission
time.

Here we describe three representative systems chosen from the 10 systems involved in the
field trial. Since some of the systems tested were nearly identical except for technical details,
none of the systems described here is identified by name. The described systems can thus be
considered to be representative of the types of systems that were tested.

System 1

The first system has a classic infrastructure design. The necessary equipment is installed on two
successive flyovers or sign bridges. The system is naturally designed so that toll collection is
not affected if vehicles change lanes between the two stations. There are two different payment
modes. In the postpaid mode, accumulated toll fees are collected from a bank account, as with
a credit card. This makes it very difficult to preserve vehicle anonymity. In the prepaid mode,
prepaid smart cards are used, and the appropriate amount is deducted from the balance in the
card each time a toll is collected.

Technically, the system works as follows. At the first station, the OBU and smart card are
activated. Following this, the toll is levied and a general assessment of the vehicle is made in
order to classify it as a car or lorry. Since the amount of the toll depends on the vehicle class,
it is necessary to verify the class recorded in the card. This is done by measuring the vehicle’s
height profile when it passes under the station, which is sufficient for reliable classification.
When the vehicle is within the communications range of the subsequent second station, another
link to the card is established via the OBU. The second electronic toll station checks whether
the toll payment initiated by the first station has been successfully completed. If this is not

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 855 of 1123

14.3 Electronic Toll Systems 821

the case, the vehicle is photographed. Nowadays, a vehicle can be uniquely identified from its
number plate using a completely automatic process. The registered owner of the vehicle can
then be sent an appropriate fine.

The system can be further extended as desired with various other functions. For example,
the card can be checked against a blacklist when a payment is made, in order to eliminate the
use of stolen cards. Another thing that was discussed was whether the cameras should be able
to photograph all passing vehicles in certain special cases, such as after bank robbery with
escape by car, in order to obtain information about escape routes.

The advantage of this system is that the OBUs are simple in construction and thus inex-
pensive. However, this means that the electronic toll stations must be correspondingly more
complicated and expensive.

System 2

The second system is not based on a roadway infrastructure. Instead, it uses virtual toll stations,
which exist only as databases in the vehicle OBUs. The OBUs contain the coordinates of all
available toll stations, along with toll rates for the corresponding road segments. As soon as a
vehicle enters a defined road segment, the amount of the toll is deducted from the smart card.
Naturally, this process is much less time-critical than the process used in the first system.

The OBU knows the vehicle’s coordinates at any point in time by means of an attached Global
Positioning System (GPS) module. GPS is a worldwide system for determining positions that
was originally developed in the USA for military purposes under Department of Defense
contracts. This started in 1973, and the system was operationally complete in 1993. The GPS
consists of 24 satellites that transmit encoded radio signals from an altitude of 20,000 km.
Each signal contains the time of transmission, the satellite position and a satellite identifier.
A suitable receiver, which is only as large as a pack of cigarettes, can receive the satellite
signals in the 1.6-GHz band and use them to determine its geographic position. The accuracy
for civilian applications is around 10–20 m. This can be reduced to a few meters with an
improved technique using differential measurements (differential GPS), which relies on an
additional signal broadcast by a terrestrial transmitter. Presently, this signal can be received
only in Central Europe. For military use, positions can be located with an accuracy of around
one meter throughout the world.

Of course, the second toll system also requires monitoring, but this is done by means of
random samples, similar to current speed controls. The main advantages of this system are that
it is not necessary to install any equipment along the roadway and that the tolls are levied at
virtual locations. However, control is more difficult, and the smart cards cannot be used in the
postpaid mode, since no information is exchange between the OBU and the outside world. On
the other hand, this provides an advantage in terms of anonymity.

System 3

The third system represents the most ambitious technical solution to automatic vehicle toll
collection. The OBU is equipped with a GPS receiver and a GSM mobile telephone. The
position of the vehicle is determined using the GPS unit, and mobile telephone is used to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 856 of 1123

822 Sample Applications

obtain specific pricing data. As with the other two systems, the OBU contains a terminal with
a smart card that is used for toll collection.

As in System 2, the toll stations are only virtual locations along the road that are defined
by geographic coordinates. In this system, the road operator can also modify the rates at will
using bidirectional communications with the OBU. The toll can thus be made to depend on
the time of day, location, vehicle class and environmental considerations. The amount to be
paid is computed by the OBU in the vehicle.

In order to ensure a certain level of anonymity, the tolls deducted from the smart card in the
OBU are not immediately forwarded to the background system. Instead, they are accumulated
in the card until a certain level is reached. The accumulated amount is then transmitted by
mobile telephone for verification and billing. Thanks to the bidirectional data exchange, this
system can naturally support both debit (prepaid) cards and credit (postpaid) cards. However,
anonymity cannot be maintained if the tolls are paid after the fact. With prepaid smart cards,
which are used like electronic purses, the fact that only cumulative tolls are paid means that
the motorway operator cannot generate vehicle movement profiles. However, it is naturally
possible for the GSM network operator to continuously determine the location of a moving
vehicle by means of its permanently activated mobile telephone.

In this system, as in the others, continuous monitoring of moving traffic is necessary to
check for drivers who try to avoid paying tolls. This is done using automatic cameras mounted
on flyovers and mobile checkpoints. The associated monitoring computers can read vehicle
registration numbers from OBUs or smart cards via the mobile telephones and compare them
with vehicle number plates. If they do not match, or if no link to the OBU can be established,
the vehicle is photographed and a penalty procedure is initiated.

The main advantage of this system is that no specific infrastructure has to be constructed,
apart from that needed for monitoring. However, this means that the OBU is distinctly
more expensive than in the other two systems. Two other advantages of this system are
that it supports two different payment methods (prepaid and postpaid) and that data can be
transmitted to the vehicle.

14.4 DIGITAL SIGNATURES

There are two fundamental prerequisites for the use of legally binding digital signatures. The
first is a microcontroller smart card with a powerful numeric coprocessor, and the second is
a clearly defined general legislative framework. The smart card is used to securely store the
secret signature key and generate the digital signature. The legislation establishes the binding
conditions that apply to all parties involved in this smart card application.

Of course, digital signatures can also be used in the form of a closed application that
is completely independent of any legal context. However, in this case suitable contractual
arrangements between the participating parties are necessary to make a digital signature binding
on the person who generates the signature. In the business-to-business sector, for example,
the use of digital signatures has been standard practice for several years. However, if the
objective is an open system that can be used by parties that are not known to each other,
suitable legal conditions are required. This legislative framework allows digital signatures to
be made equivalent to normal signatures and makes it possible to bring suit in court with regard
to a document so signed, just as with a handwritten signature.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 857 of 1123

14.4 Digital Signatures 823

The potential applications for legally recognized digital signatures, which are thus equivalent
to handwritten signatures, are practically unlimited. In the simplest case, they can be used to
sign electronic letters and orders, but they can also be used in an electronic payment system
to sign direct debit authorizations or in a home banking system to sign remittance orders.
The most important application for digital signatures will doubtless be signing all types of
contractual agreements.

General conditions specified in standards

In order for digital signatures to be utilized interoperably in an open commercial environment,
they must meet the relevant security requirements of various standards. As far as signature
cards are concerned, the applicable standards are the ISO/IEC 7816-4 standard for general
smart card commands and the 7816-8 standard for signature commands. With regard to card
bodies, electrical properties and data transmission, the relevant standards of the ISO/IEC 7816
family must be taken into consideration. The authentication process between the smart card
and the rest of the world is covered by ISO/IEC 9796-2. Basic mechanisms and methods for
digital signatures are handled by ISO/IEC 14888. In addition, the structure and coding of the
certificate normally comply with the X.509 standard.

A digital signature card can be used to generate a signature that is equivalent to a real
signature. This means that large monetary or material values can be involved, depending on
circumstances and the document bearing the signature. The system elements relating to security
must therefore be evaluated in the context of a digital signature application. The proven means
for this is an evaluation using the ITSEC or Common Criteria (CC) criteria catalog.

General statutory conditions in Germany

In order for digital signatures to be recognized as signatures that are generally valid, binding and
subject to suit, there is no alternative to providing the necessary general statutory conditions.
The state of Utah in the USA was the first to introduce legislation in this area, in 1995. This
legislation has served as a model for legislation in many other countries, including German
signature legislation.

The essential requirements of the German Signaturgesetz (Digital Signature Act) are the
following:

� Operating a certification authority (a trust center) is subject to approval by the responsible
public authority.

� Any person who requests a certificate must be reliably identified by the certification authority.

� The certificate for the signature key may bear a pseudonym of the key holder, in place of
the actual name of the key holder.

� The actual name behind a pseudonym must be revealed in response to a formal request by
certain public agencies.

� The certification authority must make the certificate for the public signature key available
in a manner that allows it to be verified online.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 858 of 1123

824 Sample Applications

� A certificate can be blocked under certain conditions, such as if this is requested by the
holder of the signature key.

� The technical components for generating and verifying digital signatures must clearly and
unambiguously represent the data referenced by the digital signature.

� Digital signatures from other countries can also be recognized in Germany by means of
suitable agreements.

According to the German Digital Signature Act, a signature key certificate, which usually
complies with the X.509 standard, must contain the following information:

� the name or pseudonym of the signature key holder

� the public signature key assigned to the signature key holder

� the designations of the hash algorithm and signature algorithm used for the certificate

� the serial number of the certificate

� the initial and final validity dates for the certificate

� the name of the certification agency

� statements as to whether the signature key can only be used for particular applications.

On June 13, 1997, the Gesetz zur Regelung der Rahmenbedingungen für Informations- und
Kommunikationsdienste (IuKDG) was adopted by the German federal legislature (Bundestag).
It came into force on August 1, 1997, and a revised version was published on 22 May, 2001.
Article 3 of this act is the Digital Signature Act, which is called the Signaturgesetz (SigG)
for short. This article is divided into 16 sections. The first paragraph of the first section states
the objective of the Signature Act. It reads, ‘The objective of the Act is to establish general
conditions for digital signatures, under which they can be considered to be secure and which
allow forgeries of digital signatures or falsifications of the signed data to be reliably detected.’
This statement clearly indicates that no particular technical solution is specified, but only gen-
eral conditions with regard to the use of digital signatures. As a natural consequence, the legal
requirements are described at a relatively abstract level. The regulation and description of dig-
ital signature applications cannot be handled by legislation alone. A hierarchy of requirements
is necessary for this, with the legal regulation – the Digital Signature Act – standing at the top
of the hierarchy. This is followed by the associated implementation rules, which in Germany
are called the Digital Signature Ordinance (Signaturverordnung, or SigV). On the next lower
level, which already describes the requirements for digital signatures in technically very con-
crete terms, we find the measures catalogs. In Germany, these are issued by the regulatory
agencies for the telecommunications and postal services. These three levels are obligatory for
all applications of digital signatures in Germany, to the extent that the digital signatures are to
be equivalent to regular signatures.

The level below the measures is the technical specifications. These define concrete solutions
in unambiguous and non-interpretable form. The specifications depend on the application
operator in question, and they must be aligned to the three higher levels of the hierarchy.
However, if an application operator does not require the digital signature to have a legally

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 859 of 1123

14.4 Digital Signatures 825

binding character, he can naturally set up his system in whatever manner best meets his
objectives. This is referred to as a legally non-compliant solution, as opposed to a legally
compliant solution.

signature act

level of
abstraction

implemention
requirements

signature ordinance

measures catalog

specification

Figure 14.4 The hierarchic structure of the requirements for a digital signature application in Germany.
The system of requirements is fashioned in a top-down manner, which means that the lower-level docu-
ments are based on those that are higher up in the list

The German Digital Signature Ordinance (SigV), which was adopted by the federal govern-
ment on October 8, 1997 and came into force on November 1, 1997, contains the implemen-
tation regulations for the Digital Signature Act (SigG). For each of the 16 sections of the
Signature Act, it contains detailed descriptions that are worded significantly less abstractly
than the law. The following statements are contained in the SigV, among others:

� A person who requests a certificate must be identified by means of a personal identity
document, passport or other suitable means.

� The data storage medium (usually a smart card with a signature key) must be held in personal
safekeeping, and the associated identification data (e.g., a PIN) must be kept secret.

� When verifying a digital signature, it is necessary to also verify that the signature key
certificate was valid when the signature was generated, and a check must be made to see if
there are any restrictions on the use of the signature.

� A certificate cannot be valid for more than five years.

� Unblocking a blocked certificate is not allowed.

� A measures catalog with suitable security measures must be generated.

� The certification authority (trust center) must be audited by the responsible public authority.

� The signature keys must be generated in a manner such that the probability of two keys
being the same verges on zero.

� Signature keys may not be duplicated.

� All security modifications to technical components must be recognizable to the user in
question.

� The signature key may be used only after its holder has been identified by means of possession
and knowledge.

� The actual signature key is not allowed to be revealed when it is used.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 860 of 1123

826 Sample Applications

� A list of suitable algorithms for generating signature keys, computing hash values of signed
data and generating and verifying digital signatures will be published in the Bundesanzeiger
(Federal Gazette). The time interval during which they may be used will also be stated.

� If signed data are to remain valid for longer than the term of validity of the approved
algorithm, the data must be signed anew, with a time stamp, before the expiry date of the
algorithm.

� The essential components of a legally compliant signature application must be tested against
the ITSEC criteria using the mechanism strength ‘high’. The testing level depends on the
individual component and how it is used. Table 14.2 lists the components and associated
test levels.

Table 14.2 Comparison of the essential differences between the ITSEC E2 and E4 test levels with
respect to signature cards

ITSEC test level E2 (high) ITSEC test level E4 (high)

� components for acquiring and testing
identification data, and for displaying the data
to be signed

� components for generating keys

� components for displaying signed data and
testing certificates

� components for storing and using signature
keys (usually smart cards)

� components for generating time stamps � components for generating and testing digital
signatures that are commercially offered to
third parties for their own use

The measures catalogs for the Signature Act and Signature Ordinance specify the technical
requirements for this system. They are distinctly more concrete than the Signature Act. The
technical specifications are in turn based on the measures catalogs. They specify the technical
implementation in detail. In Germany, the most important technical specification for digital
signatures is the DIN specification entitled Spezifikation der Schnittstelle zu Chipkarten mit
digitaler Signatur-Anwendung/Funktion nach SigG und SigV (‘Specification of the Interface
to Smart Cards with Digital Signature Applications / Functions according to the SigG and the
SigV’). The following subjects related to signature cards are dealt with in the DIN specification:

� answer to reset (ATR) and protocol parameter selection (PPS)

� data transmission protocols (T = 0 and T = 1)

� files, data objects and data formats

� authentication of the cardholder

� computation and verification of signatures

� logging the signature generation process

� procedures for generating and verifying signatures

� cooperation with terminals and the associated command sequences.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 861 of 1123

14.4 Digital Signatures 827

System architecture

The two essential components of a system for digital signatures are the trust center and the
signature card. These two entities thus command most of our attention, since all of the processes
related to security take place in them. In this regard, in a system for digital signatures we can
make a fundamental distinction between issuing a card and the processes of signing and
verifying signatures.

Issuing a digital signature card

The future user of a digital signature card must first register at a registration authority. The
person to be registered must appear in person and present a recognized proof of identification,
such as a personal identification card. At this point, the future user of the digital signature
card can elect to have a pseudonym appear in place of his or her actual name. The registration
authority transfers the information it has received and verified to the trust center, which initiates
the generation of a key and the personalization of a signature card. These activities can take
place in the trust center, but they can also be carried out by a third party or directly within
the registration authority. In the process, the public key of the new smart card is signed by the
certification service of the trust center, which makes it a recognized authentic public key. The
signed public key is then entered into the public key directory of the trust center as a valid key,
which makes it available for use by every system subscriber. After all this is finished, the new
subscriber receives his or her digital signature card along with a PIN letter. This completes the
issuing of the card, which can now be used.

Signing and verifying documents

When an electronic document is signed, it is compressed to a hash value and then signed
using the digital signature card with the private key. This process can be initiated only after
the cardholder (the signer) has unambiguously been identified, which currently means after
the cardholder’s PIN code has been entered. In the future, a test based on a biometric feature
(such as a fingerprint) could be used for identification. The system components that are used
for signing the data are the signature card, a terminal, and usually a PC.

The digitally signed document can now be sent in any desired manner. In order to verify
the document, it is necessary to again compute the hash value. If necessary, the public key
of the signer can be retrieved from the public key directory of the trust center. With this key,
it is possible to verify whether the digital signature of the electronic document is genuine. In
order to be sure that the private key of the signer has not been compromised, the revocation
list (blacklist for keys) of the trust center must be consulted. The signature verifier can thereby
be assured that the private key of the signer has not been blocked.

If the verifier needs to have confirmation of consulting the revocation list in a form that
can be verified by a third party, he can obtain a suitable confirmation with reference to the
verification data via the time stamp service of the trust center.

The system architecture and procedures for issuing digital signature cards and signing and
verifying document with a digital signatures that are shown here are examples, which may
differ from actual implementations. However, they provide a realistic if simplified overview
of a typical digital signature system.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 862 of 1123

828 Sample Applications

personal
registration

register the
cardholder

process or load
various keys

produce a
new card

sign the
public key

publish the
signed
public key

digital
signature card

registration
authority

key generation and
personalization

cardholder

registration
time stamp

servicepublic key
directory

directory services

blacklist

certificate
service

trust center

Figure 14.5 The basic procedure for issuing a digital signature card

The trust center (TC)

The trust center is the most important component of a digital signature system, aside from
the signature cards. It supports six different functions: registering new users (registry); gen-
erating keys and personalizing new digital signature cards; a certification service; a directory
service for public keys; a directory service for blacklists (revocation lists); and a time stamp
service.

The registry service collects personal information and verifies the identity of a new user of
a digital signature card. A registration agency normally acts as an intermediary between the
trust center and a new user, so that the user does not have to personally appear at the trust
center. It is only necessary to generate a key and personalize the signature card when a new
card is issued. This does not necessarily have to take place within the trust center; it can for
example be done by the card manufacturer. The key can be generated either internal to or
external from the card. The certification service of a trust center signs public keys for digital
signature cards using a private key belonging to the trust center, so that they can be recognized
as being genuine. Naturally, a trust center can have more than one private key for generating
certificates.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 863 of 1123

14.4 Digital Signatures 829

for
signing

transfer the
signed

document

public key
of the signer,
signed by the
trust center

validity of the
public key

of the signer

signer signature
 card

terminal

signing a document

electronic
document

for
verification

verifiersignature
 card

terminal

verifying a signed document

signed
electronic
document

registration time stamp
servicepublic key

directory

directory services

blacklist
certificate
service

trust center

Figure 14.6 Basic procedures for signing and verifying a document using a digital signature

The directory service for public keys contains the public keys for the digital signature cards
signed by the trust center. The directory service for the revocation list contains a list of all
blocked keys, which are keys belonging to digital signature cards that may have been lost
or compromised. According to the German Signature Act, these directory services must be
accessible via generally available public networks.

The time stamp service need not necessarily be integrated into a trust center, but it is certainly
available in most trust center implementations. This service is used to attach the current date
and time to electronic information presented to the trust center. The information received by the
trust center, together with the date and time, are signed using the private key of the time stamp
service. This allows the supplier of the information to prove to a third party that the information
signed by the time stamp service must have been available no later than the indicated time.

The digital signature card

A secure hardware environment is necessary for storing and using private signature keys.
Smart cards represent an ideal solution to this requirement, since they are physically small,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 864 of 1123

830 Sample Applications

inexpensive and offer a high level of protection against externally reading or modifying the
stored data. It can be asserted without reservation that digital signatures only became possible
with the advent of smart cards.

The cryptographic algorithms used for this purpose require a microcontroller with a sup-
plementary numeric processing unit (NPU) to allow signatures to be generated and tested in
an acceptable length of time. In theory, a signed document could also be tested outside of the
signature card, since all of the necessary information is also available there. Whether this will
become significant in practice remains to be seen. In terms of security, however, it is better to
perform the test inside the card.

Public and private keys for digital signature cards can be generated in either a centralized or
a decentralized manner. In any case, the keys must be generated in a cryptographically secured
environment, such as inside a security module or smart card. It is also important for the public
key to then be signed using the private key of the trust center. This is necessary to ensure that
the private and public keys of the signature card are recognized as authentic by the trust center.
Without this recognition, it is not possible for a third party to verify that the digital signature
of an electronic document actually comes from a genuine subscriber of a digital signature
system.

Key generation for signature cards

centralized decentralized

oncard generationoncard generation

offcard generation

Figure 14.7 The possible options for generating keys for signature cards

With centralized key generation, all key pairs are generated in one place and signed using
the private key of the trust center immediately after they are generated. The keys can be
generated and then signed by the trust center either inside the card (oncard) or outside the card
(offcard). Decentralized key generation can only be performed oncard, since the card is the only
cryptographically secured environment in this situation. The advantages and disadvantages of
the two methods are listed in Table 14.3. In practice, centralized key generation will probably
become predominant, since it is very secure and also fits with the conventional manufacturing
process for smart cards.

In Germany, the most important document for the signature card interface is the previ-
ously mentioned DIN specification. It extensively describes the necessary commands, files
and processes for a digital signature card.

The signature application is located in a DF directly under the MF. The DIN specification
provides nine EFs for this application, which contain all of the necessary data for the application.
All data elements used are TLV encoded. The EFs and their contents are summarized in Table
14.4.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 865 of 1123

14.4 Digital Signatures 831

Key generation for signature cards

offcard key generation oncard key generation

smart card sends
a public key to the
trust center

smart card sends a
signed public key to
the trust center

keys loaded into
the smart card

Figure 14.8 The three basic options for generating keys and distributing keys to signature cards and
trust centers

Table 14.3 Comparison of the three methods that can be used for generating keys. The method shown
in the middle column is usually used in large real-life applications

Method Offcard key generation Oncard key generation,
with the public key given
to the trust center for
signing

Oncard key generation,
with the signed public
key given to the trust
center

Pro � fast personalization � the private signature key � the private signature key
� reproducing identical

cards is possible
never leaves the smart
card

never leaves the smart
card

Neutral � key escrow technically
possible and easy

� key escrow difficult � key escrow difficult

Con � the private key is
generated offcard

� the public key must be
brought to the trust
center via a secure route

� the private key of the
trust center is in the
smart card

� reproducing identical
cards is not possible

� reproducing identical
cards is not possible

� personalization
time-consuming

The following commands are used for signature cards:

APPEND RECORD MANAGE SECURITY ENVIRONMENT
EXTERNAL AUTHENTICATE PERFORM SECURITY OPERATION
GET CHALLENGE READ BINARY
GET RESPONSE (optional for T = 0) READ RECORD
INTERNAL AUTHENTICATE SELECT FILE
MANAGE CHANNEL (optional) UPDATE BINARY

The hash functions and signature algorithms that are approved for German signature cards
are SHA-1, RIPEMD-160, RSA, DSA and ECC. Since it would take too long to compute the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 866 of 1123

832 Sample Applications

Table 14.4 Simplified file tree of a signature card according to the German Signature Act, showing
the most important files

File type FID Structure and size Description

MF '3F00' — Root directory
MF.EFGDO '2F02' transparent, n bytes Serial number of the card and

name of the card owner

DFSigG not defined — Digital signature application DF
(AID ='D2 76 00 00 66 01')

DFSigG.EFKEY — undefined, n bytes PINs; public and private keys
DFSigG.EFSSD '1F00' transparent, n bytes Security service description

(SSD) (information about the
properties of the signature card)

DFSigG.EFC.ICC.AUT 'C000' transparent, n bytes Authentication certificate of the
signature card

DFSigG.EFC.CA.AUT 'C008' transparent, n bytes Authentication certificate of the
certification authority

DFSigG.EFDM 'D000' transparent, 8 bytes Display message (DM) for the
terminal so the user can
recognize it as genuine

DFSigG.EFC.CH.DS 'C100' transparent, n bytes Signature certificate of the card
owner

DFSigG.EFC.CA.DS 'C108' transparent, n bytes Signature certificate of the
certification authority

DFSigG.EFPK.CA.DS 'B000' transparent, n bytes Public key of the certification
authority

DFSigG.EFPROT 'A000' cyclic, n bytes Signature generation log

hash value of a large electronic document inside the smart card, the hash value can be computed
in a PC and then passed to the card for signing. Alternatively, the hash value can be computed
in the PC up to the final block, following which the final block can be computed from the
corresponding part of the document in the smart card and then signed. It is also possible to
completely compute the hash value in the smart card, but this is frequently not practical, due
to the well-known performance limitations of smart cards.

Summary and prospects

In Germany, the Digital Signature Act has created the legal framework necessary to allow digital
signatures to be used reliably in everyday life. They will probably not be used extensively for
things such as private house purchase contracts or wills, but instead for daily activities such as
sending e-mail and ordering or paying for goods via public networks, which by definition are
not secure.

It can safely be assumed that besides legally compliant solutions, there will also be many
that are not legally compliant, since the implementation of a non-compliant solution is easier
and much less costly. The requirements imposed on the security of the components used for
digital signatures are set very high in Germany, which means that they do not favor quick and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 867 of 1123

14.5 The PKCS #15 Signature Application 833

inexpensive solutions. However, this level of security is necessary if digital signatures are to
be made equivalent to handwritten signatures. If it were possible to successfully manipulate
digital signatures, the entire concept of digital signatures would lose its credibility, and in the
worst case it would have to be abandoned.

Another important consideration in this regard is the behavior of multinational organizations,
which are not inclined to pay significant attention to the legislation of any individual country.
This means that it would certainly be possible for a solution that is not legally compliant to
become established as an international quasi-standard.

Despite these risks, the German digital signature implementation has international influence,
both on legislation and on the technical implementation of similar projects. If the potential
of this system is utilized, Germany will find itself with a technically superior and exemplary
solution to the implementation of digital signature systems.

14.5 THE PKCS #15 SIGNATURE APPLICATION

In 1998, RSA Inc. [RSA] presented a document titled ‘Cryptographic Token Information For-
mat Standard’. This specification encompasses the description of files and associated data
formats for a cryptographic token. Such a token is preferably a smart card with a crypto-
graphic processor. ‘PKCS’ stands for ‘public key cryptography standards’, and the PKCS #15
specification draws on the Digital Certificates on Smart Cards (DC/SC) and Secured Elec-
tronic Information in Society (SEIS) specifications for digital signature applications using
smart cards. Presently, the PKCS #15 specification is also covered in a compatible form by
the ISO/IEC 7816-5 international smart card standard, but here we refer to the PKCS #15
specification, since it has become an internationally established reference.

Various requirements criteria were taken into consideration in generating the PKCS #15
specification. It was intended to be neutral with regard to specific platforms, manufacturers and
applications, and to comply with the usual standards. Furthermore, it had to have a modular
and extendable structure. Another requirement was that all data of the application must be
adequately described, in order to allow them to be used as references for access.

The ISO/IEC 7816 family of standards was selected as the basis for representing files, with
ASN.1 being used to describe formats. The commands necessary for processing the various
data items do not form part of the PCKS #15 specification. For all of these reasons, PCKS #15
can be implemented relatively easily in a smart card having a typical multiapplication operating
system. However, the concept allows any desired security token to be used for the PCKS #15
functions.

Up to now, PCKS #15 has been implemented in a number of large smart card applications.
It is used for the Finnish FINEID4 personal identification smart card, the Wireless Identifica-
tion Module (WIM),5 signature applications in SIMs and USIMs for the Wireless Application
Protocol (WAP) and similar operational purposes in the telecommunications area. Within a
relatively short time, the PCKS #15 specification has become established as broad-based inter-
national industry standard for data representation in smart-card digital signature applications.

The entire PCKS #15 application is located in a DF with a fixed AID. The RID has the value
'A0 00 00 00 63'. The associated PIX is the ASCII encoding of''PKCS-15'', and thus consists

4 See also Section 14.6, ‘The FINEID Personal Identification Card’
5 See also Section 13.5, ‘The WIM’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 868 of 1123

834 Sample Applications

of the byte sequence '50 4B 43 53 2D 31 35'. However, the PIX may also have a different
value, depending on the implementation.

An entry in an optional EFDIR file located directly below the MF, as specified in ISO/IEC
7816, may be used as a reference to the DF holding the PCKS #15 application. If several
PCKS #15-compatible applications are present in the smart card, they can be uniquely identified
and selected via the EFDIR file. All other files for the application are contained in a directory
named DFPKCS #15.

The EFTokenInfo file in the DFPKCS #15 directory contains general information about the smart
card containing the PCKS #15 application. This includes a serial number, manufacturer iden-
tifier and supported cryptographic algorithms.

The central and most important EF of the PCKS #15 application is the object directory file
(EFODF), which contains a directory of the directory files. These files can be referenced using
two pointers, in order to allow them to be uniquely identified. This EF is effectively a sort of
root directory, from which all other EFs of the application can be accessed using pointers.

The directory files EFPrKDF, EFPuKDF, EFSKDF, EFCDF and EFAODF have a common internal
structure consisting of a directory and pointers to the associated data (one pointer for each
directory entry). These data can be stored in EFs inside the DFPKCS #15 directory, or in files
located in another DF in the smart card. The use of pointer addressing also allows data in EFs
with a transparent structure to be referenced using offset and length parameters. It would thus
have been at least theoretically conceivable to store all of the data in a single large EF, although
this would hardly be sensible with regard to data organization. The pointer linking system is
even designed to allow data external to the card to be referenced using URLs. A typical use
for this mechanism would be depositing a signature verification certificate in a trust center so
that it does not have to be stored in the smart card. The smart card would then only reference
the certificate by means of its URL.

At least one set of directory files must be present in the card, but it is allowed to have
several files with the same functional use in a single card. In this case, the EFODF file acts as a
dispatcher for the various files.

The private key directory file (EFPrKDF) and public key directory file (EFPuKDF) contain
directories of private and public keys, respectively, that are present in the smart card. These
two files thus effectively contain keys for asymmetric cryptographic algorithms, such as RSA,
DAS and elliptic curves. Pointers to the associated keys are held in the directories. The secret
key directory file (EFSKDF), which has a similar structure, contains a directory with pointers to
the secret keys for symmetric cryptographic algorithms present in the smart card. The certificate
directory file (EFCDF) and the authentication object directory file (EFAODF) contain directories
with pointers to certificates and authentication objects, respectively. X.509 certificates are
typically used, and some examples of authentication objects are PINs and data for biometric
user identification. Similarly, the data object directory file (EFDODF) contains a directory with
pointers to data objects.

The optional EFUnusedSpace file is intended to be used for managing unused memory in EFs
that belong to the PCKS #15 application and are already present in the smart card.

In the original specification, the ASN.1 description of the possible data for a PKCS #15
application encompasses 14 pages. We do not consider it to be worthwhile to reproduce this
description line by line here, since the original document can be obtained at no charge via the
Internet [RSA], and we are not enchanted by multi-page listings in this or any other book.
Nevertheless, as an example of such descriptions, Listing 14.1 shows a slightly compressed
ASN.1 description of the attributes of PINs.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 869 of 1123

14.5 The PKCS #15 Signature Application 835

PKCS #15

MF

DF

EF

MF

EF

EF

EF

DIR

ODF

authentication object no. x

secret key no. x

certificate no. x

data object no. x

public key no. x

private key no. x
PrKDF

PuKDF

EF
SKDF

EF
CDF

EF
AODF

EF
DODF

EF

EF

unused

Token Info

Files Data Objects

Figure 14.9 Overview of the files and file reference pointers used in a PKCS #15 signature application.
The variable x represents a non-zero positive integer index that can assume different values for the various
data objects

The PKCS #15 specification allows access to certain data objects, such as signature keys,
private and secret keys and certificates, to be governed by rules. In accordance with the concept
of this specification, this is also implemented using pointers to link the data objects to be pro-
tected to corresponding directory files containing information about the types of authentication
to be used. One way this can be used is as a simple means to require the user to enter a PIN
before using a signature key. In this case, a pointer would be used to link the information about
the signature key in EFPrKDF to an entry in EFAODF containing information about the PIN to
be used. Pointers referring to the corresponding EFs containing the actual data would also be
stored in each of the relevant records in the EFPrKDF and EFAODF files. Finally, a pointer in
EFPrKDF would correspondingly identify an entry in EFCDF containing information about the
certificate belonging to the signature key, in order to allow the signature to be verified by third

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 870 of 1123

836 Sample Applications

Table 14.5 Typical files for a PKCS #15 application. There are two different types of access
conditions: those for read-only (R/O) smart cards, which are used in high-security applications and
cannot be modified after being issued, and those for read/write (R/W) smart cards used in normal
security applications

DFPKCS #15 PKCS #15 application

Description: This directory holds all of the files belonging to the PKCS #15
application.

File: AID ='A0 00 00 00 63 50 4B 43 53 2D 31 35'

MF.DFPKCS #15.EFODF Object directory file (ODF)

Description: This file holds a directory of all files containing data objects that
are present in the card, with corresponding pointers to these
files.

File: FID ='5031'
R/O accesses: READ: always; UPDATE: never;

APPEND: EXTERNAL AUTHENTICATE / never
R/W accesses: READ: always;

UPDATE: EXTERNAL AUTHENTICATE / never;
APPEND: EXTERNAL AUTHENTICATE / never

MF.EFPKCS #15.EFPrKDF Private key directory file (PrKDF)

Description: This file holds a directory of the available private keys and
corresponding pointers to these keys.

File: FID = to be specified by the application provider
R/O accesses: READ: always / PIN; UPDATE: never;

APPEND: EXTERNAL AUTHENTICATE /never
R/W accesses: READ: always / PIN; UPDATE: PIN;

APPEND: PIN

MF.DFPKCS #15.EFPuKDF Public key directory file (PuKDF)

Description: This file holds a directory of the available public keys and
corresponding pointers to these keys.

File: see EFPrKDF

MF. DFPKCS #15.EFSKDF Secret key directory file (SKDF)

Description: This file holds a directory of available secret keys and
corresponding pointers to these keys.

File: see EFPrKDF

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 871 of 1123

14.5 The PKCS #15 Signature Application 837

Table 14.5 (Cont.)

MF. DFPKCS #15.EFCDF Certificate directory file (CDF)

Description: This file holds a directory of the available certificates and
corresponding pointers to these certificates.

File: see EFPrKDF

MF. DFPKCS #15.EFAODF Authentication object directory file (AODF)

Description: This file holds a directory of the available authentication objects
and corresponding pointers to these authentication objects.

File: FID = to be specified by the application provider

R/O accesses: READ: always; UPDATE: never;
APPEND: never

R/W accesses: READ: always;
UPDATE: PIN / EXTERNAL AUTHENTICATE / never;
APPEND: PIN / EXTERNAL AUTHENTICATE / never

MF.DFPKCS #15.EFDODF Data object directory file (DODF)

Description: This file holds a directory of the available data objects and
corresponding pointers to these data objects.

File: see EFPrKDF

MF.DFPKCS #15.EFTokenInfo General information file (TokenInfo)

Description: This file holds basic information about the application and
supported functions.

File: FID ='5032'
R/O accesses: READ: always; UPDATE: never;

APPEND: never
R/W accesses: READ: always;

UPDATE: PIN / AUTHENTICATE / never; APPEND: never

MF.DFPKCS #15.EFUnusedSpace Free memory directory file

Description: This file holds a directory of unused memory space present in
the EFs of the PKCS #15 application.

File: FID ='5033'
see EFPrKDF

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 872 of 1123

838 Sample Applications

Listing 14.1 Sample ASN.1 description of the attributes of PINs as specified by PKCS #15, in a
slightly simplified form

PinAttributes :: = SEQUENCE { Definition of the PIN attributes data object

pinFlags PinFlags, The possible binary PIN attributes are defined in the
pinFlags data object.

pinType PinType, The coding of the PIN is defined in the pinType data
object.

minLength INTEGER, The minimum allowed length of the PIN.

storedLength INTEGER, Length specification for the stored PIN.

maxLength INTEGER
OPTIONAL,

Optional specification of the maximum allowed length
of the PIN.

padChar OCTET STRING
OPTIONAL,

Optional specification of a fill character for padding
the PIN.

lastPinChange
GeneralizedTime OPTIONAL,

Optional time parameter used for logging the PIN.

path Path OPTIONAL
}

Optional specification of a path to the DF for which
the PIN is used.

PinFlags ::= BIT STRING { Definition of the binary attributes of the PIN

case-sensitive(0), Specifies whether it is necessary to distinguish
between upper- and lower-case characters.

local(1), Specifies whether this is a local (application-specific)
or global (card-wide) PIN.

change-disabled(2), Specifies whether the PIN can be changed.

unblock-disabled(3), Specifies whether the retry counter for the PIN is
allowed to be reset.

initialized(4), Specifies whether the PIN has been initialized.

needs-padding(5), Specifies whether the transferred PIN must be padded
with a fill character.

unblockingPin(6), Specifies whether the PIN is allowed to be used for
resetting a PIN retry counter.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 873 of 1123

14.5 The PKCS #15 Signature Application 839

soPin(7), Specifies whether this is a security officer PIN per
PKCS#11.

disable-allowed(8), Specifies whether PIN queries are allowed to be
disabled for this PIN.

integrity-protected(9), Specifies whether the PIN is only allowed to be made
known to the smart card using secure messaging
(secured by a MAC).

confidentiality-
protected(10),

Specifies whether the PIN is only allowed to be made
known to the smart card using secure messaging
(secured by encryption).

exchangeRefData(11)
}

Specifies whether both the old and new values must be
given when the PIN is changed, or only the new value.

PinType :: = ENUMERATED { Definition of representation of the PIN value

bcd, ascii-numeric, utf8,
..., half-nibble-bcd,

iso9561-1
}

The PIN can be coded as follows: BCD, ASCII,
UTF8, half-nibble-BCD or ISO 9561-1.

parties. This example is illustrated in Figure 14.10. Although it takes a while to get used to this
pointer-based concept, it is very powerful, flexible and above all open to future extensions.

PKCS #15

MF

DF

EF

EF

MF

EF

EF

EF

DIR

certificate

private key

ODF

AODF

EF

PrKDF

EF

CDF

EF
PIN

Figure 14.10 Example of a typical PKCS #15 pointer structure for protecting a signature key using
prior PIN query and a link to a certificate that can be used to verify the data signed using the signature
key. This diagram shows only the files necessary for a basic understanding of the structure

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 874 of 1123

840 Sample Applications

14.6 THE FINEID PERSONAL IDENTIFICATION CARD

In December 1999, Finland became the first country in the world to begin issuing electronic
personal identification cards. The name of this system is Finnish Electronic Identification
Card (FINEID). Each personal identification card is issued in ID-1 format with a photograph,
signature and various other information. The card also has a smart card microcontroller in the
standard position for contact-type data transmission.

The FINEID smart cards are part of a public-key infrastructure and are based on a PKCS #15-
compliant signature application.6 The related specifications are public and can be obtained
free of charge via the Internet [FIENID]. Each FINEID smart card is valid for three years,
and it can be used as a travel document in most European countries. Only the human-readable
visual information on the card is necessary for this purpose, which does not require using a
microcontroller.

However, the signature application in the smart card allows the FINEID card to also be used
to generate legally valid digital signatures, which makes the entire spectrum of e-commerce
and e-government applications available to the card user.

14.7 TACHOSMART

According to an ordinance of the Council of the European Community [EC 98], the control
devices for road transport, which are called tachographs (or in common usage, ‘trip recorders’),
are to be replaced in the medium term by electronic tachographs using smart cards. These driver
cards are referred to in the ordinance in question in highly simplified terms as ‘memory cards’,
since they must be able to store data.

The operating principle of the Tachosmart system is as follows. Using suitable distance and
speed sensors, the tachograph (which is protected against manipulation) measures the distance
traveled by the vehicle as well as its speed. It also includes a real-time clock that is protected
against external influences, as well as a smart card terminal. The driver of the vehicle receives
his or her own personalized smart card, called a ‘driver card’, which can be used to identify
the driver with respect to the tachograph unit.

The tachograph can thus monitor and log the amount of time each driver spends at the wheel
and the speed of the vehicle. The EC ordinance provides that this information must be held
in the smart card for at least 28 calendar days for each driver. Data older than this may be
overwritten as necessary. However, the actual tachograph must store data for the previous 365
days in a manner that is secure against manipulation.

As is usual with EC ordinances, the details are governed by national legislation and speci-
fications generated by tachograph manufacturers. Unfortunately, the technical documents are
confidential, so it is not possible to publish any details. However, it presently appears that each
smart card will use digital signatures that are compliant with the ISO/IEC 7816-4 and 7816-8
standards. Digital signatures are necessary to protect the data for the last 365 days stored in
the tachograph against modification.

6 See also Section 14.5, ‘The PKCS #15 Signature Application’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 875 of 1123

14.7 Tachosmart 841

There are also other types of cards in this system. They include test-station cards, which are
issued by official agencies to bodies authorized to calibrate and program tachographs; control
cards, which are used by official agencies; and company cards, which are used by vehicle
owners to access the data stored in the tachographs and driver cards.

A relatively extensive public key infrastructure (PKI) is necessary to allow this rather
elaborate infrastructure to be used securely, economically and throughout all of Europe.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 876 of 1123

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 877 of 1123

15
Application Design

The first section of this chapter contains general information and characteristic data related to
using smart cards. This information, which has been distilled from many applications, can be
directly used for designing smart card applications. It thus represents a brief summary of the
current state of the technology.

Much of the technical information in this chapter is strongly dependent on the actual hard-
ware used, but it can nevertheless be used to generate estimates for a projected application that
are adequate for practical purposes. In part, this is because physical and electrical character-
istics of all commonly used smart card microcontrollers are largely the same within certain
limits. They primarily differ only in their memory capacities.

In the second section of this chapter, we describe the operating principles of a number
of tools that allow even complex applications to be created simply and quickly, without any
need for programming. In the final section, several possible applications are illustrated by
means of examples. These examples are constructed systematically, in order to make it easy
to understand the reasons for using certain mechanisms and procedures.

The notes and examples presented in this chapter have been intentionally structured in a
general and flexible manner, so that they can be used as design templates to fashion any desired
application.1

15.1 GENERAL INFORMATION AND CHARACTERISTIC DATA

15.1.1 Microcontrollers

Production

If a new application requires a special smart card operating system to be developed, this will
take a great deal of time. As a general rule, it takes around 12 months to design, program and

1 Additional design information, particularly with regard to security, can be found in Section 8.2.4.2, ‘Attacks at the
logical level’

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 878 of 1123

844 Application Design

test a completely new operating system. If library routines and existing modules can be used,
a single programmer will still need around four to six months for this task. Performing these
activities in parallel is possible only to a limited extent, due to the highly complex nature of
programming in assembly language or C. As a result, generating a new smart card operating
system takes a minimum of two to three months with current software technology, even if
no expense is spared and as many people as possible are assigned to the task. Developing an
operating system that supports executable program code is even more complex and laborious.
As a guideline value, under favorable conditions a development time of around 18 months can
be assumed if it is not possible to use existing designs and source code.

Once microcontroller fabrication is started by the semiconductor manufacturer, it takes
from eight to 12 weeks until finished dice are available in moderate quantities (several tens of
thousands). Placing the dice in the modules takes another one to two weeks. The lead time for
producing microcontrollers is thus around 12 weeks.

Service life

The useful life of a smart card microcontroller primarily depends on the stiffness of the card
body, the corrosion resistance of the module contacts and the number of possible EEPROM
write/erase cycles.

The life expectancy of the card body is heavily dependent on the application area. With
typical telecommunications cards (SIM and USIM), which are permanently located in a mobile
telephone and never exchanged, there is practically no limit to the useful life of the card with
respect to the card body. At the other extreme, such as an employee identification card that is
used in the canteen as well as for access control, the card body may crack after two to three
years. Keeping the card in a wallet carried in a hip pocket further increases the probability of
failure of the card body.

The second limitation on the life expectancy of the card is the maximum number of insertion
cycles. The card contacts have hard gold plating to increase their wear resistance, and they can
survive approximately 20,000 contact cycles. After this, the contact surfaces will have become
so scratched that dirt and grease will adhere to them and interfere with reliable electrical
contact. In addition, the gold plating will be largely worn off, which leads to oxidation. This
also adversely affects the electrical conductivity of the contact surfaces. Naturally, the life
expectancy of the contacts (and thus the card) also depends very much on the type of contact
unit used and the applied contact force. If the contact unit has an optimal design, the life
expectancy of the card may be increased by a factor of two to four.

The primary limitation to the life expectancy of a smart card arises from the limited number
of write/erase cycles in the EEPROM.2 Most semiconductor manufacturers usually guarantee
at least 100,000 write/erase cycles for each EEPROM page. However, in practice the EEPROM
will not fail until after 500,000 to 1 million cycles if it is used at room temperature with a
closely regulated supply voltage.

An EEPROM page fails gradually, rather than abruptly. Two signs of incipient failure are
that the EEPROM cannot be set to the desired value on the first write attempt and that data
written to the EEPROM are no longer present in the memory after a few hours. If a memory
page continues to be used under these conditions, it will not be possible to store any data at

2 See also Section 3.4.2, ‘Memory types’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 879 of 1123

15.1 General Information and Characteristic Data 845

Figure 15.1 Photograph of a module after 50,000 insertion cycles using very high-quality contact
elements in a testing machine constructed for this sort of testing. In practice, the contacts may be abraded
considerably faster, depending on the type of contact unit used

all in the EEPROM page after a few thousand additional cycles, since the contents will be lost
immediately. However, only one page at a time is affected (typical page sizes are 4 bytes and
32 bytes). Other memory pages remain unaffected by the failure of a particular page. This fact
can be utilized to devise error recovery strategies when designing memory structures.

Data bits are stored in EEPROM as electrical charges held in tiny capacitors. Like all such
devices, they have leakage currents that cause charge to be lost over time, which results in loss
of the stored data. This effect is accelerated at high temperatures. The data retention time of
EEPROM is thus not unlimited, and the value guaranteed by the manufacturer is only 10 years.
The difficulty with specifying the data retention time is that it cannot be measured directly,
since this would require waiting 10 years. Instead, the discharge time must be calculated by
determining the value of the leakage current. Since it is almost impossible to measure this
current, the maximum data retention time is determined indirectly by extrapolating the results
of tests made with various values of certain ambient conditions, such as temperature and
programming voltage. The data retention time also depends on the number of write/erase
cycles. The specified value of 10 years applies to maximum-stress conditions, so a much
longer lifetime can be expected under normal conditions. In terms of application design, it can
be assumed that data will be retained for 10 years, although this limit should not actually be
reached if at all possible.

A blanket statement about the life expectancy of a smart card can only be made if all of
the general conditions are taken into consideration. A practical guideline is three to five years
for a normal application without special requirements. In some areas, such as GSM, many
organizations have decided to replace cards only as necessary (when they actually fail), which
is economically advantageous.

Data transfer

The speed at which commands can be processed with a smart card depends primarily on the
data transmission rate of the interface between the terminal and the smart card, in addition to
internal processing speed.3

3 See also Section 6.4, ‘Data Transmission Protocols’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 880 of 1123

846 Application Design

Since an asynchronous serial interface is used, each transmitted byte has to be extended to
12 bits, since a start bit, a parity bit and two stop bits must be transmitted in addition to the
8 bits of user data. This means that a working value of 1.25 ms per byte can be assumed at a
data transmission rate of 9600 bit/s. Adding a margin of 20% for the obligatory transmission
protocol overhead yields a value of 1.5 ms per byte. This is sufficiently accurate for making
practical estimates of the durations of data transfers.

Table 15.1 Typical data transmission rates for smart cards

Function Data rate with a Data rate with a
3.5-MHz clock 4.9-MHz clock

Data transmission with divider = 372 9600 bit/s 13,212 bit/s
Data transmission with divider = 512 6975 bit/s 9600 bit/s
Data transmission with divider = 372, T = 0 or T = 1 ≈ 7680 bit/s 10,570 bit/s
Data transmission with divider = 372, T = 1 and

secure messaging (authentic mode)
≈ 3800 bit/s ≈ 5200 bit/s

Data transmission with divider = 372, T = 1 and
secure messaging (combined mode)

≈ 1900 bit/s ≈ 2600 bit/s

Algorithm execution times

Since smart cards are often used as secure computers for executing algorithms, several typical
values of processing times for cryptographic algorithms are provided separately in Section 4.7,
‘Cryptology’, arranged by algorithm type.

15.1.2 Applications

Besides the factors specifically related to the microcontroller, there are other aspects that should
be considered in the conceptual design and development of a smart card application. With regard
to conceptual design, these primarily relate to key distribution, managing application data and
the basic principles of data exchange.

Key management

In all applications that use cryptographic algorithms, security is based on the secrecy of the
associated keys. If a secret key becomes known for any reason, all of the security mechanisms
based on it are rendered worthless. In principle, this eventuality cannot be ruled out with
complete certainty, so suitable precautions must be taken.4 The most trivial and most expensive
option is to replace all of the cards, but this is economically out of the question in a large

4 See also Section 4.8, ‘Key Management’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 881 of 1123

15.1 General Information and Characteristic Data 847

application. As a general rule, the direct cost of such replacement can be assumed to be
30 euros per card. In practice, therefore, the following measures are used to minimize the
consequences of a key becoming known:

� Fundamentally, only card-specific keys should be located in smart cards. This means that
each card has its own keys, which can only be used to clone a particular card if they become
known. The associated master key must remain secret under all conditions.

� In order to provide protection in case a master key becomes compromised, several genera-
tions of card-specific keys can be stored in the cards. This makes it possible to switch over
to a new key generation if necessary.

� Keys can be separated according to their intended uses. In practice, this means that (for
example) an authentication key is not allowed to be used for data encryption. This helps
minimize the consequences of a key becoming known.

These three principles should always be observed in every large application, as they guar-
antee the application operator a significantly more secure system. They may even save him a
great deal of money that would otherwise be spent on replacing all of the cards. However, each
of these measures increases the number of keys in the system. This can quickly lead to mem-
ory problems, and it requires a more-or-less elaborate key management system. In practice,
therefore, it is necessary to very carefully consider whether all three of these measures should
be used, or whether it is possible to accept certain compromises.

Data management

The principles that are standard in the informatics industry should be observed with regard
to storing data in smart cards. For an application, this means that numerical classification
schemes should be avoided as much as possible, since even small modifications or extensions
often cause such schemes to collapse. Numerical identification schemes, on the other hand,
are often excessively abstract, so in practice mixed schemes predominate.

Telephone-number systems provide a good example of a mixed numbering scheme. The first
part of the number (the exchange number) is classificatory. If this number is known, the region
where the telephone is located can be positively determined. The second part of the number
(the subscriber number) is purely identificatory, since at least in small towns, it provides no
information about the location of the subscriber. The two parts together form a typical mixed
number, which can be extended in a fairly straightforward manner.

ASN.1-coded data objects5 are very suitable for flexibly handling data objects having several
different versions. Based on actual practice, the coding overhead using BER-TLV can be
assumed to be approximately 25 % of the user data volume. This applies only to small data
sets, but this is precisely the most common case in the smart card domain.

A basic remark relating to the memory capacities of smart cards can be made here: appli-
cations with more than 10 kB of user data are rare, since the available amount of memory is
usually very limited.

5 See also Section 4.1, ‘Data Structures’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 882 of 1123

848 Application Design

When a new application is being planned, the amount of memory that will have to be
reserved in the smart card should be at least approximately estimated. This should include not
only the user data, but also the necessary amount of administrative data. In modern operating
systems, which have object-oriented file management systems and allow several applications
to be present in a single smart card at the same time, the proportion of administrative data is
relatively high. The size of the header for each file is usually 16 to 32 bytes. The amount of
administrative data per file is fixed, which means that it does not depend on the amount of
user data in the file. It makes no difference to the size of the file header whether there is only
1 byte or 200 bytes of user data in the file. Consequently, an effort is made to avoid creating
a separate file for each data element, since otherwise too much memory would be taken up by
administrative data.

Data exchange

Two primary considerations must be borne in mind with regard to data exchange between the
terminal and the smart card. The first is that the card’s serial interface is very slow compared
with the performance of modern computer systems. Although the commonly used rate of
9600 bit/s makes data transmission very robust with respect to interference, it also means that
data exchanges take a great deal of time. It is therefore a good idea to restrict the data exchanged
between the terminal and the card to essential items. During a session, the terminal should not
again request any data it has already received. Naturally, this does not apply to applications in
which time has a very low priority. However, if people are involved in the process, minimizing
the volume of data exchanged via the interface must always be given high priority.

With regard to data exchange, the following considerations are also relevant. If secure
messaging6 is used, in principle all of the data exchanged via the terminal/card interface can
be very well protected, thus making an attack via this interface nearly impossible. However,
secure messaging reduces the effective transmission rate. Consequently, it should only be
used for data transmission when it is indispensable for reasons of system security. With the
exception of secret keys, it is almost always sufficient to simply use a MAC to protect the user
data (authentic mode). This does not reduce the transmission rate as severely as the additional
encryption required by the combined mode. In addition, the authentic mode yields transparent
data transmission at the interface, so the data can easily be checked externally. In some cases,
this may be necessary in connection with data privacy legislation, since it allows the data
passing across the interface to be monitored at any time without knowledge of the secret keys.

15.1.3 System considerations

Security

Many applications use triple DES as the cryptographic algorithm. There are many reasons for
this, but in most cases the main reason is probably that DES and its cascaded version, triple DES,

6 See also Section 6.6, ‘Securing Data Transmission’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 883 of 1123

15.1 General Information and Characteristic Data 849

are very well known, so there is no need to venture into unknown territory. However, there are
many other good data encryption and decryption algorithms besides DES. The fact that DES
is well known also means that it is subject to the greatest number of attacks, one of which may
sometimes be successful. In the case of a large smart card project, therefore, consideration
should be given to using a cryptographic algorithm other than DES. This will minimize the
consequences to the system if there is a successful attack on the DES algorithm. The current
GSM cryptographic algorithms provide an excellent illustration of this philosophy. They were
specially developed for this application, and to a certain extent they are fully independent of
the DES algorithm.

User interface

User acceptance is critical to the success of a smart card project. Although this primarily relates
to the man–machine interface of the terminal, the interface between the terminal and the card
also has an effect. Experience shows that user acceptance suffers when transactions take longer
than one second. In such cases, users often assume that there is a technical problem and attempt
to pull the card out of the terminal, resulting in an uncontrolled termination of the session. In
order to avoid this, all processes between the terminal and the smart card should be optimized
to take less than one second to complete.

Above all, in this regard it is important to bear in mind that if the level of user acceptance is
inadequate, the system will experience a significantly higher level of technical problems due
to unforeseeable interventions, such as prematurely withdrawing the card from the terminal.

Design

Kerckhoff’s principle should always be applied in the process of designing a data processing
and management system that uses smart cards. This principle states that the security of a system
should rely solely on its secret keys. It is very difficult to test a system whose security is based
on confidentiality of the data, because the tests can only be performed by a very limited number
of people. Since this group of people has usually been involved in the design of the system, the
quality of testing performed on this basis cannot be very high. The alternative of making all of
the internal data available to the testers has its own drawbacks, since this could give a potential
attacker free access to the data. In practice, it is generally a good idea to use a compromise
approach, in which the fundamental design of the system is open but some special items are
kept confidential.

If, completely counter to Kerckhoff’s principle, certain information in a smart card project
must remain secret, it is a good idea to divide this knowledge among several people, rather
than having the security of this information depend on a single person. In this way, each person
is familiar with part of the system, but no single person knows the entire system.

With regard to designing a system based on smart cards, it is important to always keep
the entire system in mind, rather than concentrating only on the cards and their immediate
environment. This is the most commonly observed mistake in the course of many projects.
Since smart cards are active devices, systems that employ them are always distributed systems,
whose individual elements must act autonomously and in which pure master–slave relationships

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 884 of 1123

850 Application Design

do not prevail. After the system has been integrated, it is essential that all of its components
work harmoniously together, rather than just the cards and terminals. It is thus necessary to
acquire and maintain an overall project perspective from the very beginning.

15.1.4 Compliance with standards

Smart cards are one of the very few components in the entire realm of informatics that are
strongly based on international standards. This is in part due to the necessity for mutual
compatibility among the products of various manufacturers of smart cards and terminals,
and in part due to the requirement for interoperability among various smart card systems.
Consequently, here we list a number of general standards and specifications that normally
should be supported by current smart card operating systems, or with which such systems
should be compatible.7 Naturally, relevant national standards and specifications must also be
observed for actual applications.

The most important family of standards is ISO/IEC 7816. It specifies the essential general
physical and informatic constraints. With regard to file systems, commands and file access
conditions, Parts 4, 8 and 9 of this family are of major significance. However, in this regard it
should be borne in mind that this family of standards specifies a sort of ‘construction kit’ from
which various items may be selected as desired. In other words, it is not necessary for every
smart card to fully satisfy all aspects of every item specified in the standard.

In the realm of telecommunications, the TS 102.221 UICC specification is a key document.
In addition, the GSM 11.11 specification for the SIM and the TS.31.102 specification for the
USIM are fundamental documents for international telecommunications applications.

In the payment systems field, the EMV specification is a de facto standard that must be
recognized by all other specifications. With regard to electronic purses, EN 1546 represents a
basic standard, while CEPS is an exemplary model of an international purse system.

Presently, smart card operating systems with executable program code are practically lim-
ited to Java Card and its associated specification. The Open Platform specification is almost
exclusively used as the reference for downloading applications.

Smart cards used in the digital signature environment are frequently based on the PKCS #15
standard. Certificates for use with digital signatures are frequently stored in X.509-compliant
formats.

15.2 FORMULAS FOR ESTIMATING PROCESSING TIMES

In the process of developing the conceptual design of a smart card application or designing
new smart card commands, it is frequently necessary to estimate processing times. Even when
values acquired from experience are used, it is relatively difficult to obtain sufficiently accurate
numbers using empirical estimates. In this section, we provide a collection of basic formulas
for calculating processing times for smart card operating systems using contact-type interfaces
for data transfer. If these formulas are used properly, they will give results that are acceptably

7 A directory of smart card standards with comments can be found in Section 16.4, ‘Annotated Directory of Standards
and Specifications’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 885 of 1123

15.2 Formulas for Estimating Processing Times 851

accurate. However, they should by no means be regarded as foolproof or perfectly accurate
under all circumstances. They are intended to be used to make numerical estimates with an
error tolerance on the order of 10 %. We can thus highly recommend adding an appropriate
safety margin in critical situations.

The names of the variables in the following formulas are intended to be self-explanatory,
which makes relatively long names necessary. Unless otherwise explicitly stated, all fixed times
are based on a standard clock frequency of 3.5712 MHz. However, the indicated times can be
adjusted for other clock frequencies using the proportionality factor PF from Formulas (15.9)
and (15.10). In all cases, it is assumed that the command in question is processed without any
errors and that no errors occur during EEPROM operations or data transmission. With regard
to data transmission, it is further assumed that command processing starts immediately after
the last bit has been received, which means that the shortest possible character waiting time
(CWT) has been chosen.

Command processing

The following three formulas form the basis for all timing calculations. They divide the total
processing time into two parts: the data transfer time and the processing time inside the smart
card:

t total = tdata transter + t ICC internal (15.1)

tdata transfer = tdata transfer command + tdata transfer response (15.2)

t ICC internal = tcommand interpreter + tcommand execution (15.3)

The time that the command interpreter needs for its activities depends only on the frequency
of the applied clock signal, which is here taken to be 3.5712 MHz:

tcommand interpreter ≈ 1.5 ms (15.4)

tcommand execution = tEEPROM + tcryptographic algorithm + tcommand code (15.5)

The exact processing time for a command can only be determined by a detailed analysis
of program execution at the machine-code level. Given the large number of program branches
and loops, as well as the various command options, this would lead to very complex formulas
that would be unusable in practice. Consequently, we have simply divided the commands into
three groups according to their complexity. Simple commands, such as SELECT FILE and
READ BINARY, take the least time. Moderately complex commands, such as INTERNAL
AUTHENTICATE, require somewhat more time for their internal processes. Highly complex
commands, such as DEBIT IEP, take the longest time. Here it should be borne in mind that these
global values do not include actions such as running cryptographic algorithms or executing
EEPROM write accesses, but only the essential internal computations and queries.

tcommand code ≈ 5 ms (for simple commands) (15.6)

tcommand code ≈ 12 ms (for moderately complex commands) (15.7)

tcommand code ≈ 20 ms (for highly complex commands) (15.8)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 886 of 1123

852 Application Design

Table 15.2 Definitions and descriptions of the variables for Formulas (15.1) through (15.8)

Variable Unit Description

tdata transfer s Data transfer time for a command and its associated response
tdata transfer response s Data transfer time for the response to a command
tdata transfer command s Data transfer time for a command
tEEPROM s Time required to write data to the EEPROM
ttotal s Time required to receive a command, process it and send the

associated response
tICC internal s Time required to process a command inside the smart card
tcommand execution s Time required to execute a command
tcommand code s Time required to execute a specific program for a particular

command (such as a cryptographic algorithm)
tcommand interpreter s Time required to analyze a command and call the associated program

code
tcryptographic algorithm s Time required to execute a cryptographic algorithm

Proportionality factor for predefined functions

If the predefined time values given for certain functions assume that a particular clock frequency
is used, the proportionality factor PF can be used as necessary to convert them to values
corresponding to the clock frequency that is actually used.

PF = f reference
f actual

(15.9)

tactual = t reference · PF (15.10)

Table 15.3 Definitions and descriptions of the variables for Formulas (15.9) and (15.10)

Variable Unit Description

factual MHz Actual clock rate
freference MHz Reference clock rate for a given interval that depends on the clock rate
tactual s Actual duration of an action
treference s Stated duration of a given interval that depends on the clock rate
PF — Proportionality factor for routines whose processing time depends on the

clock rate

EEPROM operations

Before data can be written to the EEPROM, the affected part of the EEPROM may first
have to be erased, depending on the content of the data to be written. With some smart card
microcontrollers, the page size for erasing can be different from the page size for writing. This
is taken into account in the following formulas.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 887 of 1123

15.2 Formulas for Estimating Processing Times 853

To determine whether an EEPROM page must first be erased, the current content of the
page and the content of the new data must be known. For conservative estimates, however, it
should always be assumed that the page to be written must first be erased.

One small comment is appropriate with regard to the durations of EEPROM write and erase
operations. Microcontrollers that are currently commonly used in smart cards do not have
internal clocks, so the only timing reference for the operating system is the externally applied
clock signal. If the microcontroller has a maximum specified clock frequency of 5 MHz, for
example, all EEPROM write routines will be designed for this frequency. This means that
if the actual clock frequency is less than the maximum value, the EEPROM write time will
be proportionally longer. For precise calculations, this should be taken into account by using
the proportionality factor. However, this all depends on the maximum clock frequency, which
varies according to the microcontroller type and is also a parameter of the smart card operating
system. Consequently, this effect is not taken into account here. In the future, it will not be
such a significant factor, since the latest microcontrollers have internal clocks and can thus
perform EEPROM operations with fixed timing, independent of the frequency of the applied
clock.

tEEPROM = tEEPROM erase + tEEPROM write (15.11)

tEEPROM erase = tpage erase
PSerase

· n (15.12)

tEEPROM write = tpage write
PSwrite

· n (15.13)

Table 15.4 Definitions and descriptions of the variables for Formulas (15.11) through (15.13) for
EEPROM operations

Variable Unit Example Description

n byte 20 bytes Number of bytes to be written to the EEPROM; must
be rounded up to the actual page size

PSerase byte 32 bytes Page size for erasing
PSwrite byte 4 bytes Page size for writing
tEEPROM s 21 ms Time required to write n bytes to the EEPROM,

including prior erasing if necessary
tEEPROM erase s 3.5 ms Time required to erase n bytes in the EEPROM
tEEPROM write s 17.5 ms Time required to write n bytes in the EEPROM
tpage erase s/byte 3.5 ms (4 bytes) Time required to erase one EEPROM page
tpage write s/byte 3.5 ms (4 bytes) Time required to write one EEPROM page

Data transfer

The time required to transfer the command and the subsequent response depends primarily on
the amount of data to be transmitted. The structures of the basic transmission protocol data
units (TPDUs) and application protocol data units (APDUs) are described in detail in Sections
6.4.2 (‘The T = 0 transmission protocol’) and 6.4.3 (‘The T = 1 transmission protocol’).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 888 of 1123

854 Application Design

tdata transfer command = tbyte transfer · ncommand data (15.14)

tdata transfer response = tbyte transfer · nresponse data (15.15)

ncommand data = nlevel 2 + nheader + nbody (15.16)

nresponse data = nlevel 2 + ntrailer + nbody (15.17)

Table 15.5 Definitions and descriptions of the variables for Formulas (15.14) through (15.17)

Variable Unit Typical value Description

ncommand data byte — Amount of data transferred
nresponse data byte — Amount of data transferred
nheader byte 4 Number of bytes in the command header. For the T = 1

protocol, these are the CLS, INS, P1 and P2 bytes
nbody byte — Number of bytes in the command body or associated

response body. If the command includes a data part, it
includes a 1-byte or 2-byte length parameter for the
command body or response body

nlayer 2 byte 4 Number of bytes for transport layer (layer 2) For the
T = 1 protocol, these are the NAD, PCB, LEN and
EDC bytes

nlayer 2 byte 4 Number of bytes for transport layer (layer 2) For the
T = 1 protocol, these are the NAD, PCB, LEN and
EDC bytes

tdata transfer command s — Time required to transmit a command
tdata transfer response s — Time required to transmit the response to a command
tbyte transfer s — Time required to transmit one byte

The total time required to transmit a single byte depends on the clock rate, the bit-rate
adjustment factor and the clock-rate conversion factor:

tbyte transfer = 1

D
· F

f
· n (15.18)

Table 15.6 Definitions and descriptions of the variables for Formula (18)

Variable Unit Typical value Description

D bit·byte/MHz·ms 1 bit·byte/MHz·ms Bit-rate adjustment factor
f MHz 3.5712 MHz Clock frequency
F 1 372 Clock-rate conversion factor
n bit 12 bits Number of bits per byte (1 start bit, 8

data bits, 1 parity bit, 2 stop bits)
tbyte transfer ms 1.25 ms Transmission time for one byte

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 889 of 1123

15.2 Formulas for Estimating Processing Times 855

Calculated example: smart card READ BINARY command

Here we present a sample calculation of the estimated processing time for a smart card command
with a simple structure. We have chosen the READ BINARY command for this example. As
general conditions, we have selected the T = 1 transmission protocol with a divider value of
372 and a clock frequency of 5 MHz.

The time required for the data transfer can be calculated using Formula (18):

tbyte transfer = 1

D
· F

f
· n = 1

1 bit · byte
MHz · ms

· 372

5 MHz
· 12 bits ≈ 0.89 ms/byte

For data transmission using the T = 1 protocol, four bytes are needed for layer 2 in addition to
the data for layer 7. The command header of READ BINARY has a length of four bytes (CLA,
INS, P1, and P2), and the associated body contains one byte (Le). The response consists of
the data that have been read, with a length of (Le), and a trailer consisting of the status bytes
SW1 and SW2. With this information, we can use Formulas (15.16) and (15.17) to express the
amount of data to be transmitted as a function of the value of Le:

ncommand data = nlayer 2 + nheader + nbody

ncommand data = (4 + 4 + 1) bytes = 9 bytes

nresponse data = nlayer 2 + ntrailer + nbody

nresponse data = (4 + Le + 2) bytes = (Le + 6) bytes

From this, we can determine the times required to transmit the command and the response
using Formulas (15.14) and (15.15), respectively:

tdata transfer command = tbyte transfer · ncommand data = (0.89ms/byte) · (9 bytes) = 8.01 ms

tdata transfer response = tbyte transfer · nresponse data

tdata transfer response = (0.89 ms/byte) · (Le + 6 bytes) = 0.89 (Le + 6 bytes) ms/byte

This command is a simple command, so an execution time of 5 ms at a clock frequency of
3.5712 MHz can be assumed. We can modify this to correspond to the actual clock frequency
of 5 MHz using Formulas (9) and (15.10):

PF = f reference
f actual

= 3.5712 MHz
5 MHz = 0.714

tactual = t reference · PF = (5 ms) · 0.714 = 3.57 ms

READ BINARY does not require any data to be written to the EEPROM, nor is it necessary
to call a cryptographic algorithm. The time required for the command processing inside the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 890 of 1123

856 Application Design

smart card can thus be calculated as follows:

tcommand execution = tEEPROM + tcryptographic algorithm + tcommand code

tcommand execution = 0 ms + 0 ms + 3.57 ms = 3.57 ms

Under the additional assumption that the command interpreter needs around 1.5 ms to do its
job with a 3.5712-MHz clock, we can now calculate the processing execution time for the
command:

tactual = t reference · PF = (1.5 ms) · 0.714 ≈ 1 ms

t ICC internal = tcommand interpreter + tcommand execution = 1 ms + 3.5 ms = 4.5 ms

All of the values determined thus far can now be inserted into Formula (15.2), yielding an
expression for the total processing time for the READ BINARY command as a function of the
amount of data read:

tdata transfer = tdata transfer command + tdata transfer response

tdata transfer = 8.01 ms + (Le + 6 bytes) ms/byte

t total = tdata transfer + t ICC internal = 8.01 ms + (Le + 6 bytes) ms/byte + 4.5 ms

t total = (12.51 + 0.89 (Le + 6 bytes) byte–1) ms = (17.85 + 0.89 Le byte–1) ms

The result of these calculations is a reasonably good order-of-magnitude match to the
empirically determined formula for READ BINARY at a clock rate of 3.5712 MHz (see
Formula (15.21) in the following section). The difference between the two results arises from
deviations in the data transfer times and the assumptions made above regarding times for
processes inside the operating system.

Calculated example: smart card initialization

In the following numerical example, we calculate a rough estimate of the time required to
initialize a smart card. Here we assume that 5 kB of data must be written to the EEPROM in
order to initialize the card. The initialization data are transmitted using the T = 1 protocol with
a divider value of 372 and a clock rate of 3.5712 MHz.
From Formula (15.18), the calculated time for transmitting a single byte is:

tbyte transfer = 1

D
· F

f
· n = 1

1 bit · byte
MHz · ms

· 372

3.5712 MHz
· 12 bits ≈ 1.25 ms/byte

Assuming that the initialization command has a 4-byte header (CLA, INS, P1 and P2), the
length parameter is 1 byte (Lc), 100 bytes of user data are transmitted per command and the
response consists only of SW1 and SW2, we can calculate the number of bytes of data that are

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 891 of 1123

15.2 Formulas for Estimating Processing Times 857

transmitted for the command and response:

ncommand data = nlevel 2 + nheader + nbody

ncommand data = (4 + 4 + 1 + 100) bytes = 109 bytes

nresponse data = nlevel 2 + ntrailer + nbody = (4 + 0 + 2) bytes = 6 bytes

From this, we can determine the duration of the transmission for the command and response:

tdata transfer command = tbyte transfer · ncommand data

= (1.25 ms/byte) · (109 bytes) = 136.25 ms

tdata transfer response = tbyte transfer · nresponse data

= (1.25 ms/byte) · (6 bytes) = 7.5 ms

One hundred bytes of data must be written to the EEPROM. Under the additional assumption
that one EEPROM page is 4 bytes and the write time is 3.5 ms per page, we can determine the
time required to write the data to the EEPROM for each command:

tEEPROM write = tpage write

PSwrite
· n = 3.5 ms

4 bytes
· 100 = 3.5 ms · 25 = 87.5 ms

We also assume that the EEPROM does not have to be erased before the write operation, since
this has already taken place during microcontroller testing:

tEEPROM = tEEPROM erase + tEEPROM write = 0 ms + 87.5 ms = 87.5 ms

It is not necessary to call a cryptographic algorithm for initialization, and the command
that is used has a simple internal structure. An execution time of around 5 ms can therefore be
assumed for the command code:

tcommand execution = tEEPROM + tcryptographic algorithm + tcommand code

tcommand execution = 87.5 ms + 0 ms + 5 ms = 92.5 ms

Now we have to insert the values calculated using Formulas (15.3) and (15.2), and this
completes our calculation of the time required for an initialization command with 100 bytes
of data. The command interpreter needs 1.5 ms on top of this:

t ICC internal = tcommand interpreter + tcommand execution = 92.5 ms + 1.5 ms = 94 ms

tdata transfer = tdata transfer command + tdata transfer response

tdata transfer = 136.5 ms + 7.5 ms = 144 ms

t total = tdata transfer + t ICC internal = 144 ms + 94 ms = 238 ms

We have thus calculated that it takes 238 ms to transmit 100 bytes of data to the smart
card, write the data to the EEPROM and return a response to the terminal in order to confirm

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 892 of 1123

858 Application Design

successful processing of the command. However, according to our initial assumptions, a total
of 5 kB of data (5120 bytes) must be written to the memory. To simplify the calculations, we
assume that this takes approximately 52 times as long:

t initialization = t total · 52 = 12.4 s ≈ 13 s

According to our calculations, the initialization process should take 12.4 seconds. If we
include a small safety margin, we can assume that the initialization will not take longer than
13 seconds. However, any transmission errors or EEPROM errors that may occur during
initialization are not taken into account in our calculations. Such errors must be regarded as a
sort of ‘force majeure’ that can only be dealt with statistically.

15.3 TIMING FORMULAS FOR TYPICAL SMART
CARD COMMANDS

The formulas in this section are based on timing measurements made using actual smart card
operating systems. Linear equations have been fitted to these measurements. All of these for-
mulas are based on a smart card operating system with the T = 1 transmission protocol, a clock
rate conversion factor of 372 and a bit-rate adjustment factor (D) of 1. The microcontroller

0 ms

20 ms

40 ms

60 ms

80 ms

100 ms

120 ms

140 ms

160 ms

180 ms

200 ms

0 10 20 30 40 50 60 70 80 90 100

READ BINARY/RECORD
UPDATE BINARY/RECORD without erasing
UPDATE BINARY/RECORD with erasing

amount of user data [bytes]

command processing time
including data transfer

Figure 15.2 Processing times for smart card commands as a function of the amount of user data,
including the data transfer times for the command and response. This chart is based on the T = 1
transmission protocol with a clock-rate conversion factor of 372, a clock frequency of 3.5712 MHz and
an EEPROM write/erase cycle time of 3.5 ms for a 4-byte page

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 893 of 1123

15.3 Timing Formulas for Typical Smart Card Commands 859

is clocked at 3.5712 MHz, and the write/erase cycle time of the EEPROM is 3.5 ms for a
4-byte page. It is also assumed that no error occurs during data transmissions or any neces-
sary EEPROM write/erase operations. The formulas are valid for all values of n between 1
and 254.

Formulas (15.19) and (15.20) are intended to be used to calculate times for the
SELECT FILE command, with the option of file selection using a 2-byte FID or an n-byte DF
name:

t total SELECT FILE with FID ≈ 23 ms (15.19)

t total SELECT FILE with DF name ≈ (20.75 + 1.26 · n) ms (15.20)

Formulas (15.21) through (15.24) can be used to estimate the times required by read com-
mands for files with transparent and record-oriented structures. The variable n is the number
of bytes to be read. These formulas can also be used if READ BINARY or READ RECORD
is used with implicit file selection, since the time difference due to processing the implicit file
selection is negligible:

t total READ BINARY ≈ (20.77 + 1.26 · n) ms (15.21)

t ICC internal READ BINARY ≈ (2.02 + 0.01 · n) ms (15.22)

t total READ RECORD ≈ (20.70 + 1.26 · n) ms (15.23)

t ICC internal READ RECORD ≈ (1.95 + 0.01 · n) ms (15.24)

Formulas (15.25) through (15.32) can be used to estimate the processing times for UPDATE
BINARY and UPDATE RECORD commands, with and without implicit file selection. The
command duration depends primarily on whether it is necessary to erase the associated
EEPROM page prior to the write operation. The formulas are therefore divided into two sets
according to this condition. With the formulas that include erasing prior to writing, it is al-
ways assumed that all pages must be erased. The number of bytes to be written is denoted
by n.

t total UPDATE BINARY without erasing ≈ (25.55 + 1.39 · n) ms (15.25)

t ICC internal UPDATE BINARY without erasing ≈ (6.8 + 0.14 · n) ms (15.26)

t total UPDATE BINARY with erasing ≈ (27.26 + 1.54 · n) ms (15.27)

t ICC internal UPDATE BINARY with erasing ≈ (8.51 + 0.29 · n) ms (15.28)

t total UPDATE RECORD without erasing ≈ (25.35 + 1.38 · n) ms (15.29)

t ICC internal UPDATE RECORD without erasing ≈ (6.7 + 0.14 · n) ms (15.30)

t total UPDATE RECORD with erasing ≈ (27.13 + 1.54 · n) ms (15.31)

t ICC internal UPDATE RECORD with erasing ≈ (8.4 + 0.28 · n) ms (15.32)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 894 of 1123

860 Application Design

 4.9152
 4.0000
 3.5712
 3.0000

 2.0000

 1.0000

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

time [ms]

20 40 60 80 100 120 140 160 180 200 220 240
data volume [bytes]

clock rate [Mhz]

Figure 15.3 Data transfer time as a function of data volume and clock frequency. The values shown are
based on the T = 1 data transmission protocol with a clock-rate conversion factor of 372, no extra guard
time (N = 12), no chaining, XOR checksum procedure, no transmission errors and a case 2 or case 3
command (e.g., READ BINARY or UPDATE BINARY)

Several graphs of data transmission time versus data volume and clock frequency have been
generated using the above formulas. They are shown in Figures 15.3 through 15.5. The
EEPROM write time versus data volume and page size is shown in Figure 15.6.

15.4 TYPICAL COMMAND PROCESSING TIMES

The tables in this section are based on average times for the successful processing of smart card
commands. Measurements were made on various types of smart cards with various operating
systems. The listed values are averages. Actual values can differ significantly from the listed
values in individual cases, depending on the operating system. All measurements were made
with the T = 1 transmission protocol, a clock-rate conversion factor of 372, a clock frequency
of 3.5712 MHz, an EEPROM write/erase cycle time of 3.5 ms for a 4-byte page and a software-
based DES algorithm with a processing time of 17 ms for each 8 bytes.

Execution times for the commands marked with ‘⊗’ exhibit a strong dependence on the
manner in which the command is implemented and the scope of the supported functions.
Consequently, processing times for these commands can vary widely.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 895 of 1123

15.4 Typical Command Processing Times 861

Table 15.7 Average processing times for the READ BINARY command, as measured with
several different smart card operating systems. The time behavior of this command is similar to
that of READ RECORD. The values listed in parentheses are the amount of data read. The
measurement conditions are described in the text

Command Processing time Processing time
excluding data transfer including data transfer

READ BINARY (1 byte) 2.02 ms 22.02 ms
READ BINARY (2 bytes) 2.03 ms 23.28 ms
READ BINARY (3 bytes) 2.04 ms 24.54 ms
READ BINARY (4 bytes) 2.04 ms 25.79 ms
READ BINARY (5 bytes) 2.05 ms 27.05 ms
READ BINARY (10 bytes) 2.12 ms 33.37 ms
READ BINARY (20 bytes) 2.23 ms 45.98 ms
READ BINARY (50 bytes) 2.54 ms 83.79 ms
READ BINARY (100 bytes) 2.98 ms 146.73 ms

 4.9152
 4.0000
 3.5712

 3.0000

 2.0000

 1.0000

20 40 60 80 100 120 140 160 180 200 220 240
data volume [bytes]

time [ms] clock rate [Mhz]

0

10

20

30

40

50

60

70

80

90

100

Figure 15.4 Data transfer time as a function of data volume and clock frequency. The values shown are
based on the T = 1 data transmission protocol with a clock-rate conversion factor of 64, no extra guard
time (N = 12), no chaining, XOR checksum procedure, no transmission errors and a case 2 or case 3
command (e.g., READ BINARY or UPDATE BINARY)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 896 of 1123

862 Application Design

Table 15.8 Average processing times for the UPDATE BINARY command without prior erasing
of the affected EEPROM pages, as measured with several different smart card operating systems.
The time behavior of this command is similar to that of UPDATE RECORD. The values listed in
parentheses are the amount of data read. The page size is 4 bytes and the read/erase time is 3.5 ms.
All other measurement conditions are described in the text

Command Processing time Processing time
excluding data transfer including data transfer

UPDATE BINARY, no erase (1 byte) 6.95 ms 26.95 ms
UPDATE BINARY, no erase (2 bytes) 7.01 ms 28.26 ms
UPDATE BINARY, no erase (3 bytes) 7.03 ms 29.53 ms
UPDATE BINARY, no erase (4 bytes) 7.11 ms 30.86 ms
UPDATE BINARY, no erase (5 bytes) 7.12 ms 32.12 ms
UPDATE BINARY, no erase (10 bytes) 7.33 ms 38.58 ms
UPDATE BINARY, no erase (20 bytes) 12.33 ms 56.08 ms
UPDATE BINARY, no erase (50 bytes) 18.16 ms 99.41 ms
UPDATE BINARY, no erase (100 bytes) 18.81 ms 162.56 ms

 4.9152
 4.0000
 3.5712
 3.0000

 2.0000

 1.0000

20 40 60 80 100 120 140 160 180 200 220 240
data volume [bytes]

0

20

40

60

80

100

120

140

160

180

200

time [ms] clock rate [Mhz]

Figure 15.5 Data transfer time as a function of data volume and clock frequency. The values shown are
based on the T = 1 data transmission protocol with a clock-rate conversion factor of 31, no extra guard
time (N = 12), no chaining, XOR checksum procedure, no transmission errors and a case 2 or case 3
command (e.g., READ BINARY or UPDATE BINARY)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 897 of 1123

15.4 Typical Command Processing Times 863

Table 15.9 Average processing times for the UPDATE BINARY command with prior erasing of the
affected EEPROM pages, as measured with several different smart card operating systems. The time
behavior of this command is similar to that of UPDATE RECORD. The values listed in parentheses
are the amount of data read. The page size is 4 bytes and the read/erase time is 3.5 ms. All other
measurement conditions are described in the text

Command Processing time Processing time
excluding data transfer including data transfer

UPDATE BINARY, with erase (1 byte) 9.42 ms 29.42 ms
UPDATE BINARY, with erase (2 bytes) 9.51 ms 30,76 ms
UPDATE BINARY, with erase (3 bytes) 9.52 ms 32.02 ms
UPDATE BINARY, with erase (4 bytes) 9.48 ms 33.23 ms
UPDATE BINARY, with erase (5 bytes) 9.62 ms 34.62 ms
UPDATE BINARY, with erase (10 bytes) 9.85 ms 41.10 ms
UPDATE BINARY, with erase (20 bytes) 17.41 ms 61.16 ms
UPDATE BINARY, with erase (50 bytes) 25.87 ms 107.12 ms
UPDATE BINARY, with erase (100 bytes) 35.34 ms 179.09 ms

 32/4 wE

 32/4 nE

 8/8 wE

 8/8 nE

 32/32 wE

 32/32 nE

 4/4 wE

 4/4 nE

0 20 40 60 80 100 120 140 160 180 200 220 240
data volume [bytes]

time [ms] page size [bytes]

40

0

80

120

160

200

240

280

320

360

400

440

Figure 15.6 EEPROM write time as a function of data volume for various page sizes, independent of
the clock frequency. Here it is assumed that no errors occur in the erase/write cycles. In the notation
‘p1/p2 xE’, the first numeric value (p1) indicates the page size for erasing, the second numeric value
(p2) indicates the page size for writing, ‘wE’ indicates that all pages are erased before being written and
‘nE’ indicates that all pages are written without first being erased

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 898 of 1123

864 Application Design

Table 15.10 Average processing times of typical commands, as measured with several different
smart card operating systems. The measurement conditions are described in the text

Command Processing time Processing time
excluding data transfer including data transfer

ASK RANDOM (8-byte random number) 26 ms 55 ms
⊗ CREDIT 175 ms 222 ms
⊗ DEBIT 235 ms 270 ms
EXTERNAL AUTHENTICATE 22 ms 51 ms
GET CARD DATA (8 bytes) 4 ms 33 ms
⊗ INITIALIZE IEP for Load 89 ms 173 ms
⊗ INITIALIZE IEP for Purchase 135 ms 201 ms
INTERNAL AUTHENTICATE 26 ms 65 ms
INVALIDATE 15 ms 34 ms
MUTUAL AUTHENTICATE 95 ms 163 ms
REHABILITATE 15 ms 33 ms
SEEK 3 ms 22 ms
SELECT FILE (with an 8-byte AID) 3 ms 32 ms
SELECT FILE (with a 2-byte FID) 3 ms 24 ms
⊗ VERIFY (8-byte PIN) 27 ms 56 ms

15.5 APPLICATION DEVELOPMENT TOOLS

Several PC-based programs are available for developing smart card applications. They al-
low users to quickly and easily develop complete applications without having any particular
knowledge of the internals of the operating system used in the smart card.

With such tools, the first task is usually to construct a file tree to hold the various ap-
plications (i.e., DFs) and their associated EFs. Naturally, it is necessary to specify the file
structures and relevant access conditions for the EFs. If the smart card operating system
has a state machine for commands, its parameters can also be defined using the graphical
user interface of the application generation program. Some application generator programs
can also check the consistency of state machines. Since the application needs various data
and keys in its EFs, a link to a database can be established after the files have been de-
fined, in order to link the contents of the EFs in the individual cards to data sets in the
database.

Once the complete application has been defined using the application generator, various
general parameters of the smart card operating system can be configured, such as the transmis-
sion protocol and associated divider value. The application can then be experimentally loaded
into one or more smart cards with appropriate memory capacity. After several test cards have
been produced in this manner, they can be tested in a terminal. If this shows that modifications
are necessary, it is possible to delete the application from the smart card and then load a revised
version.

Besides these application development tools, smart card simulators are also available. A
smart card simulator behaves exactly the same as a normal smart card, but it only consists

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 899 of 1123

15.5 Application Development Tools 865

Figure 15.7 Screen display of a PC-based smart card application generator. The file tree in the smart
card can be seen at the left, with a pane for entering the access conditions for a file at the right. A pane
for displaying the data transmitted at the APDU level is located at the bottom (Source: Giesecke and
Devrient)

of a dummy smart card connected to a PC interface by a cable. Suitable software in the PC
simulates the card in real time. Naturally, applications can also be generated and tested in the
PC, as described above. However, a PC is always needed to perform the simulation, which
frequently creates difficulties due to the size of the equipment.

If all of the tests have been concluded satisfactorily and a larger quantity of cards is needed,
the desired number of smart cards can be produced using a standard card production facility or a
personalization machine. The application data generated by the PC program (files, commands,
states, and so on) form the basis for the completion, initialization and personalization of the
smart cards. The turnaround time for producing finished cards thus remains very low, despite
the high degree of flexibility provided by this process.

If smart cards that support the downloading of executable program code (such as Java
Card smart cards) are used, an extra step for generating the smart card application must be
added to the process described above. However, since in practice the actual applications are
indistinguishable from applications based on traditional smart card operating systems, even
with current Java-Card based operating systems, the remaining steps stay the same.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 900 of 1123

866 Application Design

Figure 15.8 Screen display of a PC-based smart card application generator. The file tree of the smart
card can be seen at the left. To the right of the file tree, the content of the currently selected file is shown
in the background, and the access rules contained in an EFARR file can be edited in the superimposed
window (Source: Giesecke and Devrient)

Figure 15.9 Example of a development environment with an integrated Java Card simulator for devel-
oping and testing Java programs for smart cards. The classes and methods are shown at the upper left in
a tree structure. The Java source code and the bytecode translated from the source code are shown in an
adjacent pane to the right. The panes to the far right show the stack, the heap and several variables. Panes
showing the script processor and decoding are located at the bottom (Source: Giesecke and Devrient)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 901 of 1123

15.5 Application Development Tools 867

Figure 15.10 Terminal window of the Smart Card Simulator program [Rankl]

Figure 15.11 Smart card window of the Smart Card Simulator program [Rankl]

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 902 of 1123

868 Application Design

15.6 ANALYZING AN UNKNOWN SMART CARD

It is sometimes necessary to analyze an unknown smart card, for example to determine which
smart card operating system it uses or which applications it contains. It is usually desirable to
keep the necessary expense within appropriate limits, so the equipment available for performing
the analysis often consists of nothing more than a computer and a terminal.

The method for analyzing an unknown smart card described here is only one of many
possible methods. However, it has frequently proved itself in practice, although we should not
fail to mention that considerable experience and extensive knowledge of smart card applications
are necessary for successfully evaluating the results. Naturally, the method described here
cannot be used to determine secret data or commands that are blocked by state machines.
However, experience has shown that this method can at least allow a unknown smart card to
be roughly classified.

The procedure is outlined in Figure 15.12 and Listing 15.1. The first step is to deter-
mine whether the smart card is actually operational. If this question can be answered in the

smart card
operational?

end

configure
transmission

protocol

ascertain all
available data
and read out

data if possible

start

smart card =
 microcontroller card?

smart card =
memory card?

ascertain all
available

commands

read out all
available data

 if possible

configure
transmission

protocol

end

no

abort

no

no

ascertain all
available data

objects and read
out data objects

 if possible

Figure 15.12 Basic outline of a possible procedure for analyzing an unknown smart card

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 903 of 1123

15.6 Analyzing an Unknown Smart Card 869

Listing 15.1 Pseudocode of a sample procedure for analyzing an unknown contact-type smart card

AnalysisUnknownCard: Program for analyzing an unknown smart card
Perform an activation sequence for a
microcontroller smart card, selecting the
supply voltage according to ISO/IEC
7816–3 and ISO/IEC 7816–3 Amd.1

A typical activation sequence for a
microcontroller smart card with appropriate
selection of the supply voltage is a promising way
to start the analysis. This sequence is described in
Section 3.3.2, ‘Supply voltage’.

IF (ATR received) THEN
AnalysisSmartCard

If an ATR can be received, this is a
microcontroller smart card.

Perform an activation sequence for a
memory smart card

Not a microcontroller smart card, so try a memory
card activation sequence.

IF (ATR received) THEN
AnalysisMemoryCard

If an ATR can be received, this is a memory smart
card.

STOP The smart card could not be identified, since it did
not send an ATR, so terminate the analysis.

AnalysisSmartCard: The unknown card is a microcontroller smart
card

OUTPUT: received ATR From the ATR, it may be possible to draw
conclusions about the smart card or the
applications in the card.

Configure requested transmission
protocol

Configure the transmission protocol (T = 0 or
T = 1) requested in the ATR, using the
appropriate parameters.

// scan all files
Select EFDIR

IF (EFDIR present) THEN (If an EFDIR file is present, it will contain data for
read the content of EFDIR the applications in the smart card.
OUTPUT: content of EFDIR)

Select typical AIDs In this step, selection attempts are made using
typical AIDs. The list of AIDs in Chapter 16 can
be used for this purpose. If one or more selection
attempts using an AID are successful, the
corresponding application(s) has/have been
positively identified.

OUTPUT: results of the selection
attempts

Output the results of the selection attempts.

Using FIDs, select all EFs in the MF and
attempt to read the contents of the
selected EFs

It may be possible to draw conclusions about the
smart card and its applications from the EF
structures, access conditions and EF contents.

OUTPUT: results of the selection
attempts, access conditions and read
attempts, as well as any file contents
read

Output the results of the selection and read
attempts.

Using FIDs, select all EFs in each
selectable DF and attempt to read the
contents of the selected EFs

It may be possible to draw conclusions about the
smart card and its applications from the EF
structures, access conditions and EF contents. If
the DF has a registered AID, the file contents can
be interpreted using the corresponding
specification (if available).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 904 of 1123

870 Application Design

OUTPUT: results of the selection
attempts, access conditions and read
attempts, as well as any file contents
read

Output the results of the selection and read attempts.

// scan all data objects
Attempt to read out all data objects
using GET DATA
OUTPUT: results of the read
attempts and the contents of any data
objects read

It may be possible to draw conclusions about the
smart card and its applications from the data objects.
If the DF has a registered AID, the contents of the
data objects can be interpreted using the
corresponding specification (if available).

// scan all commands
Test all combinations of CLA and INS This method, which is described in detail in

Section 8.2.4.2, ‘Attacks at the logical level’, can be
used to determine the commands and secure
messaging used by the smart card operating system.

OUTPUT: possible allowed
combinations of CLA and INS

Output the results of the command analysis.

STOP End of the analysis.

AnalysisMemoryCard: The unknown smart card is a memory card
Configure transmission protocol Try each memory card transmission protocol in turn,

and as soon as correct data are received, use the
currently configured transmission protocol.

OUTPUT: detected transmission
protocol

Output the transmission protocol that has been found.

Read all data from the memory card
OUTPUT: data content of the
memory card

Under certain conditions, conclusions can be drawn
about the memory card and its application from its
data content.

STOP End of the analysis.

affirmative, the next step is to determine whether it is a memory card or a microcontroller
card. Following this, for both types of card an attempt is made to configure the appropriate
transmission protocol and read data present in the memory, files or data objects. Based on this
information, an attempt is then made to manually determine which applications are present
in the smart card. In the case of a microcontroller card, it is often possible to also determine
which commands are supported, and thereby draw conclusions about the smart card operating
system present in the card.

15.7 LIFE-CYCLE MODELS AND PROCESS MATURITY

There are various methods that can be used to produce software. All of them can be generally
described using life-cycle models, thus allowing them to be used for a variety of software
development projects. Life-cycle models are also often referred to as ‘process models’. A

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 905 of 1123

15.7 Life-Cycle Models and Process Maturity 871

life-cycle model describes, in general terms, the activities to be performed, the sequence of
these activities, and the responsibilities and competences. Incidentally, most types of software
development life-cycle model can also be used to direct the realization of nearly all types of
creative activities and activities involving the development of something new.

In the ‘trivial’ life-cycle model for software development, the programmer sits down in
front of his or her computer, after having received brief oral instruction regarding the task
to be performed, and generates a program, which he or she then modifies until most of the
objectionable errors have been eliminated and the customer for the software is more or less
satisfied. Surprisingly enough, this simple method can be found not only in stories of the early
days of software development, but also in many modern-day forms, in both small and large
development projects. It is unquestionably possible to generate innovative and competitive
programs with this ‘garage company’ mentality. However, with this life-cycle model the results
with regard to compliance with deadlines, development costs and software quality can only
be predicted within very broad limits. In the case of software development projects involving
complicated tasks and several developers, the resulting complexity of the project can become so
large that either the available budget and schedule are vastly exceeded or the entire project must
be cancelled before being completed. Consequently, life-cycle models are used in professional
software development to provide a development framework, in order to make the three classical
factors (schedule, cost and quality) as accurately predictable as possible.

relative cost of
correcting an error

stage of
software
life cycle

analysis

1

3-6
10

15-40
30-70

40-1000

design code test
(development)

test
(acceptance)

use

1

10

100

1000

Figure 15.13 The cost of correcting an error as a function of the life-cycle stage of the software relative
to the analysis stage. This diagram is based on a publication by Boehm [Boehm 81]

Industrial production processes – which naturally also include the development of software –
have four characteristic features, as follows:

1. The development process is divided into stages.

2. Each development stage produces results that form the basis for the following stage.

3. The results of a particular stage are checked before the next stage is started.

4. The results of the individual stages are abstract representations of the product that become
increasingly concrete from one stage to the next, with the actual product emerging from the
final stage.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 906 of 1123

872 Application Design

These characteristics actually originate from classical mechanical engineering, but in principle
they are equally applicable to competent software engineering. They form the basis for the
life-cycle models described here.

Developing software, and incidentally most other development activities as well, requires
four general activities. The objective of the first activity is to answer the cardinal question,
‘What has to be developed?’ This means that the objective of the development must be defined
as accurately and unambiguously as possible. Here ‘unambiguously’ means that the highly
popular subjunctive terms ‘should’, ‘could’, and ‘ought to’ are not allowed to be used in
the definition. Practical experience has shown that documents generated during this activity
should contain as little prose as possible. Tabular listings and diagrams are ideal, since they
leave little room for imprecision and ambiguity. The document resulting from this action is
called a requirements specification document, or sometimes a user requirements specification.
The activity of generating this document is called analysis or requirements analysis.

The requirements specification document forms the basis for all further development activ-
ities. Completeness and clarity are thus fundamentally important attributes of this document,
which is not allowed to be altered after its final review. In some cases, changing even a single
word in the requirements specification could have large consequences for all subsequent de-
velopment steps.

Here we can use the requirements for the UMTS mobile telecommunication system as an
example. The original requirements specified the exclusive use of asymmetric cryptographic
algorithms. After extensive discussion, at a relatively late point in time the letter ‘a’ was deleted
from the word ‘asymmetric’. As a result, specifications based on these requirements, as well
as a number of already existing implementations, had to be completely revised. This extreme
example is intended to serve as a persuasive indication of the importance of the requirements
specification for all subsequent development steps.

The second cardinal question in the development process is, ‘How is the development to
be done?’ There are two aspects to this ‘how’. The first aspect relates to organizational con-
straints, while the second aspect relates to the structure and architecture of the software to be
developed. Answering this question involves fully and unambiguously describing all of the
functions and data of the software to be produced. The principlal objectives here are to reduce
the complexity of the entire development project to a manageable level, to ensure the modifia-
bility and reusability of the developed components, and as necessary to make preparations for
partitioning the implementation work. In professional software development, answering the
‘how’ question is the most costly component of the entire development process. This activity
is called design, and the result of the design activity is called the design specification document
or the software specification. In this book, this activity is consistently referred to as ‘design’,
and the resulting document is referred to as the ‘software specification’.

Like the requirements specification, the software specification must of course be unam-
biguous and not leave any room for interpretation. Ideally, it should be possible to give the
finished and reviewed software specification to persons who have not been involved in the
design process and have the software be correctly generated on the basis of this document
alone, without any requests for clarification.

After the questions of what is to be developed, how it is to be developed and how it is to be
constructed have been answered, implementation can begin. This is where software developers
with a ‘garage company’ mentality actually start the whole development process. If the devel-
oper can work from a complete software specification that is not subject to interpretation, the
amount of effort that must be expended on implementation is significantly less than the effort

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 907 of 1123

15.7 Life-Cycle Models and Process Maturity 873

required for the two previous stages. With a proper software specification, the software can be
simply programmed module by module, with debugging being performed by the person who
does the programming. The result of this activity is the software modules, which generally
should be free of trivial errors.

The developer documentation is generated in parallel with the programming. This consists
of all of the documents produced by the programmers during their development activities. Here
practical experience has convincingly shown that software should be documented directly in
the source code, in part because this makes it significantly easier to find the documentation,
but primarily because with this approach, the least amount of information is lost over time.
Generating developer documentation is also supported by suitable tools, such as Javadoc,
which can automatically generate adequate developer documentation from the information in
the source code. In general, appropriate guidelines must also be followed with regard to the
structure and documentation of the source code.

Following implementation, the module that has been generated, or several modules together,
are tested together with the portion of the program that has already been produced up to that
point. This is naturally called the test stage. Ideally, testers should be able to perform their
tasks with the least possible amount of dependence on the programmers, and the programmers
should receive only ‘OK’ or ‘not OK’ as a result. The advantage of this approach is that since
the programmers do not know exactly what will be tested, they are compelled to debug their
programs as completely as possible. This yields a relatively good ‘four eyes’ situation, with
the result that significantly more errors are found than when programmers have a detailed
knowledge of the tests their programs will be exposed to and thus ‘polish’ their code to
successfully pass these tests.

The activities of designing and executing tests are governed by their own methodologies,
which are extensively described in Chapter 9.

In large systems having a variety of components and multiple component suppliers, com-
patibility testing is performed after the software has successfully passed the development tests.
After the compatibility tests have been successfully completed, there is usually a formal accep-
tance of the software by the customer. However, this acceptance may be based on previously
performed tests and inspections and thus has a purely formal character. Following acceptance,
the software is released and can be used.

After the software has been delivered and while it is being used, it may be necessary to expend
effort on maintenance and updating, depending on the application. This consists of eliminating
unacceptable errors and making relatively small functional modifications and upgrades to the
existing software. An almost inevitable result of software maintenance is that the structure of the
software tends to become increasingly vague with each new revision, even if the software was
originally well structured. In many cases, the associated documentation or underlying software
specification is not updated when maintenance is performed, leading to discrepancies between
the abstract representation in the software specification and the actual product. There are two
remedies to this situation. In the case of relatively small and simple programs, maintenance is
performed without expending a lot of additional effort, but it is accompanied by planning for
a new, completely revised version (‘refactoring’). However, this approach is only permissible
for relatively small programs and prototypes. In the case of larger programs, extreme care
must be taken when performing maintenance, which means that all software specifications and
documents must be suitably updated. Modifications to source code must be performed equally
carefully. It may even be necessary to rewrite relatively large portions of the source code in
order to ensure that the software continues to have a clearly structured structure.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 908 of 1123

874 Application Design

effort

analysis design implement test maintain

ideal process

actual process

start of
development

delivery end of life

life cycle stage
of the software

Figure 15.14 Comparison of development effort versus software life-cycle stage for an ideal develop-
ment process and many actual development projects

analysis design

implementation test maintenance

idea

requirements specification

program and
documentation

released
program

Figure 15.15 Data flow diagram showing the essential activities and documents of a typical software
development project for smart cards

15.7.1 Life-cycle models

The life-cycle models described below show all of the activities related to the development
process in a uniform, graphical manner. An IT-compliant notation similar to data flow diagrams
has been used for this graphic representation, in order to make the life-cycle models readily
understandable and allow them to be easily compared with each other. Only models that
represent pure forms are shown, rather than those representing mixed forms. Pure forms have
the advantage that both the positive and the negative features of the model can be clearly seen.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 909 of 1123

15.7 Life-Cycle Models and Process Maturity 875

Furthermore, only those models that can reasonably be used in the development of software
for smart cards have been included in the selection. The description of each life-cycle model
contains enough information to allow its basic features to be understood, applied and possibly
used in certain cases.

There are many other life-cycle models for software development besides the ones de-
scribed here. However, they are often mixed forms or specialized versions of the described
models. Some clients define their own life-cycle models, particularly in areas where security
and reliability are particularly critical, such as military applications, nuclear engineering and
aeronautical engineering. More extensive information on this subject can be found in [Blazert
98], among other sources.

percentage of
total effort

testing (16-37 %)

implementation (68-12 %)

documentation (5-33 %)

management (11-18 %)

total effort1 PM 10 PM 100 PM 1 kPM 10 kPM 100 kPM
0 %

40 %

60 %

80 %

20 %

Figure 15.16 Comparison of the distribution of effort in a development project as a proportion of total
effort. The sum of the individual efforts is always 100 %. The abbreviation ‘PM’ stands for ‘person-
month’. These data are based on a publication by C. Jones [Jones 91]

15.7.1.1 The waterfall model

The principle of the waterfall model was published in 1956 by Benington, and the addition
of integrated retrograde jumps was published by Royce in 1970. The name of this model,
from Boehm in 1981, arises from the stepwise arrangement of the activities, which resembles
a waterfall. It was the first life-cycle model, and it represents a significant advance over the
trivial ‘brain to keyboard’ model.

The essential features of the waterfall model are a sequential development process and a
straight-line, top-down procedure. Each of the activities shown in Figure 15.17 is performed
completely and in prescribed sequence, although it is also allowed regress to the previous
activity. This life-cycle model is strongly document-driven, which means that specific docu-
ments are generated during each activity and are used in subsequent activities on completion
of the activity in which they are generated. This completion is usually marked by a review of
the documentation. The waterfall model allows customer involvement only at the beginning,
during the definition stage. After this, only the developers are involved in the process until the
ultimate release of the software.

The waterfall model is a simple life-cycle model that requires only a small amount of coor-
dination effort. Using this model yields a clearly defined and readily understood development

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 910 of 1123

876 Application Design

idea

analysis

design

implementation

test

Figure 15.17 Schematic representation of the waterfall model in a form adapted to the development of
software for smart cards

process. However, if the objectives are not fully defined or not fully known, the prescribed
sequential process of the activities can easily lead to problems, since each activity in the
sequence can only be started after the previous activity has been fully completed. The waterfall
model thus has no provision for activities such as building simple prototypes or conducting
simple tests in the definition or design stages, in order to explore implementation options.
The fact that the customer is only involved at the beginning, during the definition phase, is a
related drawback.

The waterfall model is well suited to development projects that do not explore unknown
technical territory and have previously been carried out at least once in a similar form. Such
development projects generally do not produce any surprises, since most of the general technical
and organizational premises are well known at the start. An example from the realm of smart
cards is porting a smart card operating system from one type of chip to another type. In this
case, all that has to be done is to adapt the software to the technical specifications and features
of the microcontroller in question, and to the extent that the code is programmed in assembler,
recode the relevant machine instructions.

In summary, it can be said that the waterfall model is primarily suitable for non-creative
development activities. As soon as unexplored technical territory is entered and innovative,
creative developments are necessary, the waterfall model should not be used in any form, since
it is not suitable for such projects. If it is nevertheless used, it can lead to massive problems
in implementation, since it does not allow critical items to be adequately studied in advance
during the analysis and design stages.

15.7.1.2 The V model

The V model is essentially a waterfall model with integrated quality assurance. It takes its name
from the typical V-shaped diagram used to portray the required activities. Like the waterfall
model, the V model has a sequential flow of activities. Each of the individual development

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 911 of 1123

15.7 Life-Cycle Models and Process Maturity 877

activities (analysis, design and implementation) has a corresponding test activity. If necessary,
it is possible to jump back to the previous activity. The V model was originally developed for
embedded systems – which include smart card microcontrollers – and is a relatively sophisti-
cated life-cycle model. The large amount of effort that it requires, particularly with regard to
documentation, is balanced by the very high quality of the developed software. Consequently,
the V model is primarily used in relatively large developments where high quality is required,
such as smart card operating systems and military applications. A detailed presentation of the
V model can be found in [Dröschel 99].

idea

analysis

design

implementation

test cases

test cases

application scenarios

module test

acceptance test

system test

Figure 15.18 Schematic representation of the V model in a form adapted to the development of software
for smart cards

The V model is very suitable for developing software for smart cards when it is important
to translate prescribed specifications into program code at a high level of quality. One example
would be implementing a GSM 11.11 application in an existing smart card operating system.
In this case, the individual commands and the file system can be programmed according to the
detailed GSM 11.11 interface specification without a large amount of creative effort. In this
case, the most important consideration is complete compliance with the specifications in the
GSM 11.11 document.

The V model should not be used for completely new developments, since like the waterfall
model, it does not provide for iterative development steps or customer involvement after
the analysis stage. In summary, the V model is ideal for developments that do not involve
exploring unknown technical territory and in which a low level of errors and compliance with
specifications have the highest priority.

15.7.1.3 The prototyping model

The waterfall model and the V model both envisage a clearly demarcated series of activities
following each other in a defined sequence. However, this leads to problems in many software
development projects, since it leaves little room for creative solutions resulting from experi-
ments. The prototyping model introduces this additional degree of freedom into the life-cycle
model.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 912 of 1123

878 Application Design

The purpose of a software prototype is to demonstrate only certain parts of an entire software
system. In the ‘horizontal’ version, only certain layers of a software system are implemented.
In the case of a smart card operating system, an example of a horizontal prototype would be a
complete implementation of all of the transmission protocols, but without processing the actual
commands, which would only return dummy responses. This prototype could be used to fully
test communication between the terminal and the card. Such a prototype might be used to exper-
imentally demonstrate that a high data transmission rate can be achieved using software alone,
without hardware support provided by a universal asynchronous receiver/transmitter (UART).

Logically enough, the opposite of a horizontal prototype is a ‘vertical’ prototype, in which
only certain parts of the software are implemented across all layers. With reference to the
previous example, such a prototype could be a complete implementation of a single command,
such as INTERNAL AUTHENTICATE, together with a single transmission protocol, possibly
only in rudimentary form. This prototype could be used to thoroughly measure the timing
behavior of smart card authentication, including all data communications. Incidentally, this
approach is the only possible way to perform such a task, since accurate and reliable timing
data can only be obtained by experiment, not by analysis.

idea

test

analysis

design

implementation

prototype 1

prototype 2

...

Figure 15.19 Schematic representation of the prototyping model in a form adapted to the development
of software for smart cards

A prototype used in software development demonstrates specific features of the software
in practical use, in order to allow alternative solution options to be experimentally tested in
advance of the overall implementation. Based on the results of prototype testing, the design is
then completed or the prototype is further refined, so that it can be used as part of the software
to be developed.

Since critical requirements can be verified in advance using prototypes, the prototyping
life-cycle model is well suited to development projects whose objectives are not precisely
specified. Another positive feature of this life-cycle model is that the customer can review and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 913 of 1123

15.7 Life-Cycle Models and Process Maturity 879

approve the prototypes and then refine his – possibly scanty – requirements, which leads to a
more harmonious relationship with the developers. The combination of prototypes that can be
used for experiments and an improved relationship with the customer leads to a reduction of
risks in the development process.

Besides these benefits, there are also several drawbacks that should not be underestimated.
Progressing experimentally from prototype to prototype is costly in terms of both time and
money, since it is generally necessary to pass through several development stages a number
of times while searching for the proper solution. However, the greatest hazard in software
development using the prototyping model is not so much technical as organizational. There is
a risk that due to schedule or cost pressure, a prototype will be declared to be a finished product
and thus delivered much too early. This leads to software that lacks the required functionality
and is not fully tested, which means it probably still contains a large number of errors. With
software that is generated in this manner, it also frequently happens that the documentation is
incomplete or, in the worst case, non-existent.

As an aside, it can be noted that the prototyping model corresponds to the software devel-
opment method used by many hobbyists. They start with a relatively small central program,
usually without any formal definition or design, and extend it step by step while testing each
extension, thus developing an increasingly larger program. Many programs, particularly those
in the public domain and freeware realm, unfortunately quite clearly demonstrate the result of
such a process: an ambitious core functionality has been completely programmed and tested,
but the auxiliary functionality is only partially present, and in many cases the documentation
is limited to the original core functions.

With respect to developing software for smart cards, the prototyping model is very suitable
for studies and feasibility analyses in the areas of transmission protocols, cryptographic algo-
rithms and file systems. However, the resulting prototype should not be incorporated ‘as is’
into the final product. Instead, it must be brought up to the same level of quality as the rest of
the developed software. It is certainly possible for large blocks of prototype source code to be
incorporated into the final product, as long as they are adapted to meet the requirements of the
overall implementation.

Prototype development should not be limited to only the risky components of the program
code in an effort to minimize development expenses and effort. In order to minimize the risk of
having a prototype being declared to be a product, experienced developers generally implement
only subsystems as prototypes, never complete systems.

15.7.1.4 The evolutionary and incremental models

The life-cycle models described up to this point require relatively exact requirements analy-
ses and specifications. However, in some cases the requirements and specifications cannot
be fully defined or can only be determined in very vague terms, such as when a totally
new software concept is involved. In addition, actual use of the software gives rise to new
requirements and desires on the part of users. The evolutionary and incremental life-cycle
models allow these types of requirements to be incorporated into the software development
process.

With both of these models, the full breadth and depth of the software is developed in a
generational sequence, which means that both models are code-driven. After each generation is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 914 of 1123

880 Application Design

released, user experience is analyzed, and the results of this analysis enter into the development
of the following generation as general requirements. The difference between the evolutionary
and incremental models is that in the evolutionary model, a complete requirements analysis is
performed for each new generation, while in the incremental model, a complete requirements
analysis is only performed at the beginning of the overall development process. Both models
are well suited to use in development projects where some of the requirements are unknown,
since the functionality of the software can be adapted to the actual requirements step by step
in the course of successive generations. Both models are program-code-driven, which means
that the product is used in actual practice between successive generations, which differs from
the prototyping model.

idea

test

analysis of use

analysis

design

implementation

generation 1

generation 2

...

idea

test

analysis of use

analysis

design

implementation

generation 1

generation 2

...

Figure 15.20 Left: schematic representation of the evolutionary process model in a form adapted to the
development of software for smart cards. Right: comparative schematic representation of the incremental
process model

Both the evolutionary model and the incremental model lead to a minimization of devel-
opment risks. They also allow the direction of development to be steered within certain limits
during the development process. However, these benefits come at the price of higher devel-
opment costs and the risk that extensive modifications to the software architecture may be
necessary in later generations, due to incomplete analysis at the beginning of the development
process. This problem can become particularly severe with the evolutionary model, since a new
analysis must be performed for each new generation. In the incremental model, the complete
development is analyzed at the beginning, following which only differences with respect to
the initial analysis are generated between successive generations. Consequently, changes from
one generation to the next should not have any fundamental effect on the software architecture.

The evolutionary and incremental models can be used to advantage with completely new
developments of a research nature. They allow a high degree of requirements coverage to

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 915 of 1123

15.7 Life-Cycle Models and Process Maturity 881

be achieved in the course of several generations, which preferably should follow each other
relatively quickly. Consequently, these two life-cycle models are usually used for implement-
ing new smart card operating systems. Another application area is the development of new,
loosely defined smart card applications that are interactively adapted to meet their ultimate
requirements over the course of several generations.

15.7.1.5 The spiral model

The spiral model is a metamodel, which means that it is a model that can incorporate any of
the previously described life-cycle models in order to use the most suitable model for each
version of a software product. The spiral model takes its name from the spiral shape of the
diagram used to represent this method, in which the area inside the spiral corresponds to the
sum of the development costs.

The development process is divided into four stages in the spiral model. The objectives
for the software to be developed are defined in the first stage, and in the next stage, possible
options for attaining these objectives are determined using risk analysis. In the third stage, the
software is developed using the most suitable life-cycle model. If the entire development is not
thereby completed, the following cycle is planned in the fourth stage, based on the results of the
previous stages. After this, the first stage is repeated again with the setting of new objectives.

Fundamentally, the spiral model is primarily suitable for large development projects, since it
requires a relatively large amount of coordination effort due to its complex sequence. However,
it has the advantage of being very flexibly adaptable to a variety of different tasks, and it is
highly suitable for developing software over the course of several generations.

start

A

nC D

O

stop

development process
finished?

define objectives
of development (O)

test alternative
solutions (A)

develop according to
process model (D)

plan next cycle (nC)

yes

Figure 15.21 Schematic representation of the spiral model in a form adapted to the development of
software for smart cards. The area of the spiral approximately corresponds to the amount of development
effort

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 916 of 1123

882 Application Design

For example, a card operating system can be developed using the spiral model as follows.
First, versions 1, 2 and 3 of the operating system are developed using the evolutionary model.
This produces three research versions that are used for studies and experimental purposes,
during which the operating system is incrementally refined and adapted to meet the necessary
requirements. The next version (version 4) is then developed as a deliverable customer version
using the V model. The V model is chosen here because one of its characteristics is very high
software quality. Customer versions of smart card software are sometimes formally evaluated
(using ITSEC or CC), and most of the documents required for this purpose must be generated
if the V model is used properly. In our example, the next software development task is porting
the operating system to a different microcontroller. Since this involves only very small risks
and has only a small creative element, it is preferably performed using the waterfall model.
This example clearly shows how the spiral model can be used as a metamodel in which suitable
life-cycle models can be used to best advantage for developing each version of a smart card
operating system.

To take another example, we use the waterfall model to produce each new edition of the
Smart Card Handbook. We first generate an analysis (the outline), which defines which topics
must be revised or expanded and which completely new chapters are to be produced. Next,
in collaboration with the publisher we decide how the changes and additions are to be imple-
mented. This is followed by a period in which the text is written, the illustrations are generated
and the book is laid out. After this, the publisher’s proofreaders and production staff check
whether everything has been done properly. The individual editions of the book are in turn
embedded in an evolutionary process, since a complete analysis is performed for each new
edition.

15.7.2 Process maturity

Several different methods are used within organizations to assess the quality of software
development processes. Presently, the best-known method involves assessing process maturity
using the Capability Maturity Model (CMM). The Software Engineering Institute (SEI), an
American organization, began working on this model in late 1986 and published the first
version in 1991. The currently valid version is Version 1.1, which dates from 1993 [CMM 93].
Besides CMM, there is also a relatively new method for assessing process maturity based on
the ISO 15 504 standard, but up to now it has not been widely used in practice. Consequently,
here we provide a general summary of this subject based on the CMM.

There are five levels of process maturity in the CMM scheme, with level 1 corresponding
to the lowest process quality and level 5 corresponding to the highest process quality. At the
first level, which is called the ‘initial level’, the person or organization doing the development
is assigned a task and ultimately produces a product, using a process characterized by poorly
predictable expenditures of time, uncertain costs and equally unpredictable quality. The indi-
vidual steps in the development processes are not defined, and the developers behave more like
artists than skilled or industrial workers. The product to be developed is sometimes produced
just within the allowable limits of effort, schedule and quality, thanks to the heroic efforts of in-
dividual persons, using a development process that can unquestionably be described as chaotic.

At leve1 2, the ‘repeatable’ level, individual activities are defined within a specific frame-
work, such as analysis, design, implementation and testing. The details of what happens within

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 917 of 1123

15.7 Life-Cycle Models and Process Maturity 883

idea

idea

idea

idea

idea

C

C

C

C

C

C

C

C

C

result

result

result

result

result

level 1
(initial process)

level 2
(repeatable process)

level 3
(defined process)

level 4
(managed process)

level 5
(optimizing process)

Figure 15.22 Schematic representation of the five CMM levels of process maturity. The blocks marked
‘C’ represent control processes

the contexts of these general activities are not specified. At the next level, the ‘defined’ level,
the details of the individual activities are indeed defined. At this level, there is a sufficient
degree of agreement on the content of the activities in the development process that they can
be repeated or reconstructed at any time. As a result, the quality of the development process is
significantly higher, and the range of variance in compliance with schedule and cost parameters
during the development project is smaller than at the previous levels. At level 3, the process
is also characterized by being independent of specific individuals, since all of the required
activities are defined. By contrast, there is a high degree of dependence on individual persons
at levels 1 and 2. At level 3, the quality of the developed software is still not predictable,
since the process is rigidly defined in advance and cannot be flexibly adapted to the various
requirements of the development process.

Level 4, which is called the ‘managed’ level, incorporates control loops within the individual
activities, thus allowing the development process to be adapted to the varying requirements
of development projects. The individual process stages are controlled using measured data
acquired during the development process on the basis of software metrics.

The highest quality level is level 5, the ‘optimizing’ level. It involves applying controls
not only to individual activities, but also across several activities. These activities can also be
replaced as necessary by new, improved activities, allowing the overall development process
to be constantly adapted to optimally satisfy varying requirements. Compliance with the three
cardinal criteria – schedule, cost and quality – can be achieved within suitable limits by using
process parameters recorded during the development process.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 918 of 1123

884 Application Design

problem

subproblem 1

very high
risk

high riskmedium risklow risk

subproblem 1.1 subproblem 1.2

subproblem ...

subproblem 1.m

subproblem 2 subproblem n

already
solved once?

problem analysis
conducted?

problem analysis
conducted?

borderline? borderline?

yes

yes yes

yes

yes

no

no no

no

no

...

...

...

...

...

Figure 15.23 Flow chart for dividing and classifying a problem into risk classes. This flow chart
forms a highly suitable basis for generating time and risk assessments of development projects. Ideally,
subproblems should be broken down to the level where each one requires around one week to handle,
with time and risk assessments being generated for each of these subproblems

With its five levels of maturity, the CMM is naturally a highly abstract representation of
development processes. An existing process is assessed by having the persons involved in
the process anonymously answer a list of approximately 100 yes/no questions. The objective
of this is to obtain truthful responses, and thus an objective assessment of the development
process within an organization.

In most companies, process quality is at level 1 or 2. Only a handful of companies throughout
the world, most of which are active in typical high-end software areas such as aerospace, nuclear
technology and military technology, can boast level 5 quality for all of their development
activities.

Of course, the quality of software does not depend on process quality alone, and it is cer-
tainly possible for software produced using a poor-quality development process to be highly
innovative and extremely successful commercially. However, the likelihood of meeting targets
for cost, quality and completion deadlines decreases as the quality of the development process

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 919 of 1123

15.8 The Course of a Smart Card Project 885

drops. In the worst case, it may be necessary to prematurely terminate a development project
because the development budget has been exhausted, the completion date is no longer accept-
able or the majority of the software will never function in a satisfactory manner, due to its
high level of complexity. These risks decrease as the quality level in the development process
increases.

degree of completion

0 %

0 % 50 %

100 %
90 %

50 %

100 %

subjective
impression

reality

time & effort

Figure 15.24 Comparison of the actual (measured) course of software development and the course of
the development process as subjectively experienced by the software developer. This diagram assumes a
constant total development effort

15.8 THE COURSE OF A SMART CARD PROJECT

The course of a smart card project is shown in Figure 15.25. Currently, card manufacturers
also develop the associated microcontroller software. This means that the first phase (A)
and last phase (E) of the project are performed by the same company. Phases B and C are
performed by a semiconductor manufacturer. The dice can be built into the modules either
directly by the semiconductor manufacturer or by the card manufacturer. Phase E, which
includes initialization, personalization and related activities, is always fully performed by the
card manufacturer. The card manufacturer also usually manages the smart card project, with
the rest of companies more or less acting as subcontractors.

This brief description says very little about the time required for the individual production
processes. However, this should not be underestimated, since several different companies work
together to produce smart cards, and the elapsed time for some processes can be many weeks.
Typical times for the completion time of the most important production steps are also shown
in Figure 15.25. This example is based on the following assumptions:

� 50,000 cards are to be produced

� a new operating system must be generated, based largely on existing libraries

� all companies involved have mid-range production capacities

� each production process can start immediately after the necessary parts are received.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 920 of 1123

886 Application Design

Phase A

Phase B

Phase C

Phase D

Phase E

time [weeks]
0 2 10 26 36 38 42 46

Figure 15.25 Gantt chart showing the phases of a typical smart card project

Phase A: mask generation 6 months
Phase B: semiconductor fabrication 10 weeks
Phase C: module production 2 weeks
Phase D: card body production 4 weeks
Phase E: initialization and personalization 4 weeks

15.9 DESIGN EXAMPLES FOR SMART CARD APPLICATIONS

There are basically two different ways to implement applications in smart cards. The first type
of implementation is based on files with defined access conditions. With such an implementa-
tion, the necessary commands generally comply with the usual smart card standards, such as
ISO/IEC 7816-4. The other type of implementation is based on program code executed in the
smart card. There are several different variants of this type of implementation. The program
code can be directly executed by the processor in the smart card (native code), or it can be
interpreted. In the case of interpreted code, a distinction can be made between microbrowsers
(such as XML derivatives) and virtual machines (such as Java). Detailed descriptions of the
various options, including their advantages and disadvantages, can be found in Chapter 5,
‘Smart Card Operating Systems’.

Smart card applications

file-based applications

code-based applications

native program code

interpreted program code

Java (and similar)

markup languages
(generally XML derivatives)

Figure 15.26 Classification of the basic options for implementing smart card applications

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 921 of 1123

15.9 Design Examples for Smart Card Applications 887

The following examples illustrate three typical smart card applications. These are mid-
range electronic data-processing applications that do not require elaborate system designs.
They might typically be used by medium-sized companies. The background system employed
could be a PC located a secure environment, which means that the acquisition and operating
costs would both be at the low end of the scale.

These simple examples clearly illustrate how a typical smart card application is constructed.
The construction is explained step by step, gradually building up to the finished application in
the smart card. In each case, we give only cursory attention to the terminals and the background
system, but these aspects of the system can be deduced from the provided information.

All of these examples are based on the principle of distributing data among many indi-
vidual, separate systems. This contrasts with commonly used centralized mainframe solu-
tions, in which all of the information is stored in one place. If such an approach is translated
into a smart card application, the result is that the card is only a sort of proof of identifica-
tion, with all of the information being held in an omniscient background system. Whenever
an application constructed this way must be extended, a regularly observed consequence is
that the all-powerful background system must undergo an expensive and time-consuming
upgrade.

Here we have attempted to take a different approach. The background system is only
responsible for the management and consistency of the overall system. All other information
is held locally in the cards. A global database is of course necessary for system administration,
so that lost or faulty cards can be reproduced from data on hand. However, the information in
this database should not be necessary for normal operation of the system.

A distributed smart card system may be thought of as a large tree with many branches, which
like all trees draws its energy from photosynthesis in its many leaves. Energy production
is distributed among the leaves, and it occurs in many places simultaneously. Figuratively
speaking, an effective and well-designed smart card application behaves in the same way. The
information is stored in decentralized cards and is thus protected against every form of attack.
The large mass of information also does not burden the background system, which only has
to deal with the centralized management tasks. The actual system processes are decentralized,
just like the process of photosynthesis in the leaves of a tree, and they take place in parallel
in localized terminals and smart cards. This makes it very easy to extend the overall system
by adding more terminals and cards, without needing to worry about any major impact on the
background computer system.

The opposite approach to the system just outlined is to concentrate all of the necessary
activities in a central background system. In our analogy, this would amount to moving pho-
tosynthesis from the tree’s leaves to its trunk, which would result in a huge trunk. The overall
system would not only be very large and expensive, it would also be extremely vulnerable to
disturbances in the background system. This should be avoided as much as possible.

In their ignorance of the characteristics of smart cards, many novice system operators make
the mistake of designing the entire system from the top down. When it comes to the parts of
the system that are most critical in terms of security, namely the terminals and smart cards, in
many cases they simply stipulate that these components can be made secure in some more or
less unknown manner.

By contrast, the designs described here represent a bottom-up approach, in which the system
and its required features are defined by starting with the lowest-level object (the smart card)
and working upwards. The risk of security gaps can be very effectively minimized using this
approach, since the system is constructed securely from the smallest entity all the way to the top.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 922 of 1123

888 Application Design

15.9.1 An electronic purse system for arcade games

Situation and objectives

This smart card application is intended to provide functions that allow small amounts of money
to be paid into arcade game machines. Smart cards are to replace the coins conventionally used
with such machines, in order to reduce operating costs.

There are two types of terminals. The first type is a loading terminal, which has a coin
slot with a coin tester and can load electronic ‘currency’ into smart cards. The second type is
a debiting terminal, which operates largely autonomously and debits the electronic currency
from the smart card.

Requirements

The entire system should be anonymous, while still allowing all money flows to be monitored.
If there is a suspicion of fraud, it must be possible to identify individual cards and selectively
block them.

Since this is a payment system application, and considering that the equipment used is fully
automatic and operates without human supervision, the design should aim for a medium level
of security.

Proposed solution

The solution is based on a simple closed purse system that is specifically designed to meet the
requirements of this application. Naturally, it could easily be used for similar applications by
making small modifications to the files and procedures. We have avoided using an electronic
purse system that is compliant with the CEN EN 1546 standard, since such a solution would
be more expensive for the application provider than the proposed solution. In addition, our
objective is to demonstrate the principles of a simple closed purse system.

In a central location, there is an automated machine that can accept both coins and banknotes
and load the equivalent amount of electronic currency into a smart card. Neither a PIN nor
any other user input is necessary, as the electronic purse is anonymous. The only accounting
performed for the amounts loaded into the cards is based on individual card numbers, each of
which is unique within the system.

A PC administers all of the data and the money flows. The PC also contains a database that
holds general information for all issued cards. A daily or weekly balance calculation can be
used to check that the money flows in the system remain closed.

At a payment (debit) terminal, the monetary units loaded into the smart card are debited
from the electronic purse. A display on this terminal shows the user the amount that has been
debited. To keep the cost of the terminals as low as possible, data transfers are protected by
secure messaging instead of a shutter. Each terminal has a security module to store the secret
key and keep track of the amounts paid, sorted by card number. At regular intervals, the data
so obtained are transferred by cable or a special transfer card to the administration PC, which

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 923 of 1123

15.9 Design Examples for Smart Card Applications 889

evaluates this information. The file tree of the proposed solution is shown in Table 15.11. It
requires around 100 bytes in EEPROM, depending on the smart card operating system.

Table 15.11 File tree of the ‘arcade games’ sample application

File FID Structure Description

MF '3F00' — Smart card root directory
DF — — Directory for the ‘arcade games’ application
DF.EF 1 '0001' Transparent Date of issue and card number
DF.EF 2 '0002' Cyclic Amount
DF.EF 3 '0003' Linear fixed Key 1

Key 2
Key 3
Key 4

Regular data exchanges between the debiting terminals and the administration computer
can be used to maintain a blacklist of blocked cards in the terminals. If a terminal determines
that an inserted card is on the blacklist, it blocks the EF2 file containing the electronic money.
After this, the card can no longer be used to make payments. The user must have the card
unblocked at the administration terminal, and when this is done, a check can be made to see
why the card was put on the blacklist.

The keys needed for this application are listed in Table 15.12. In the interest of having a
simple overall system, we have not used derived keys or card-specific keys.

Table 15.12 Keys required for the ‘arcade games’ sample application

Key Used for Function State transition

Key 1 MUTUAL Mutual authentication of the x → 1
AUTHENTICATE terminal and the smart card:

– paying with the purse
– blocking the purse

Key 2 MUTUAL Mutual authentication of the x → 2
AUTHENTICATE terminal and the smart card:

– unblocking the purse
– card management

Key 3 MUTUAL Mutual authentication of the x → 3
AUTHENTICATE terminal and the smart card:

– loading the purse
Key 4 Secure messaging Protecting data transmission —

– authentic mode

The proposed solution is very suitable for paying for services received from automatic
equipment. Human supervision is unnecessary. However, it is not essential to use a special
machine to automatically load ‘money’ into the cards. Cards could also be loaded manu-
ally at a service counter, in exchange for a cash payment equal to the amount to be loaded.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 924 of 1123

890 Application Design

Table 15.13 Access conditions for the ‘arcade games’ application
(≥ 0: always, < 0: never, SM: secure messaging)

File Read Write Block Unblock Increase Decrease
amount amount

EF 1 ≥ 0 = 2 < 0 < 0 < 0 < 0
EF 2 ≥ 0 ∧ SM < 0 = 1 = 2 = 3 = 1
EF 3 < 0 < 0 = 1 = 2 < 0 < 0

With minor modifications, the system outlined here can also be used in a launderette or
canteen.

Figure 15.27 illustrates the basic process for loading electronic currency into the electronic
purse, while Figure 15.28 similarly illustrates the process for making a payment.

Smart card Terminal User

SELECT FILE (DF) Output
SELECT FILE (EF 1) ''Insert money''
READ BINARY
SELECT FILE (EF 2)
READ BINARY
ASK RANDOM
MUTUAL AUTHENTICATE
enable secure messaging

� INCREASE
Response [. . . || � IF (return code = OK) Output
return code] THEN command successfully executed ''xx euros loaded in

ELSE abort the smart card''

Figure 15.27 Basic command sequence for loading electronic monetary units into the purse in the
‘arcade games’ application

15.9.2 Access control system

Situation and objectives

The objective of this application is to create a smart card based, graduated access control system
for a number of rooms and computer systems. This means that certain doors and computers
will be fitted with terminals that will allow people to pass through the associated door or use the
associated computer after communication with a smart card. It is important to be able to define
various security levels, for which access can be limited to specific groups of users. Access will
be granted after successful authentication and identification of the user. The necessary proof

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 925 of 1123

15.9 Design Examples for Smart Card Applications 891

Smart card Terminal User

SELECT FILE (DF)
SELECT FILE (EF 1)
READ BINARY
SELECT FILE (EF 2)
READ BINARY
ASK RANDOM
MUTUAL AUTHENTICATE
enable secure messaging

� DECREASE
Response [. . . || � IF (return code = OK) Output
return code] THEN command successfully executed ''xx euros debited

ELSE abort from the smart card''

Figure 15.28 Basic command sequence for making a payment from the purse in the ‘arcade games’
application

will be possession of a genuine card and knowledge of its associated PIN. If both of these
criteria are satisfied, access will be granted. The terminals must be able to maintain simple
blacklists, so that ‘lost’ cards cannot be used for access, and such cards can be permanently
blocked if necessary.

Requirements

In order to maximize user acceptance of the solution, the time required for any communication
process between the terminal and the smart card, together with the subsequent granting of
access, must not significantly exceed one second. A longer interval will sooner or later sig-
nificantly impede user acceptance of the system and encourage users to use various tricks to
circumvent security measures, such as propping open doors. Users must be able to select their
own PIN codes so that they do not resort to writing their PIN codes on the cards.

The system should be designed for a moderately low level of security, as it is fairly unlikely
to be subjected to elaborate attacks or analysis. The acquisition and operating costs of the
system must not exceed those of a good conventional key–lock system, since the latter would
otherwise represent a more economical alternative.

The system and smart card must be designed to allow timecard and canteen billing functions
to be incorporated into the system at a later date.

Proposed solution

Simple terminals with 10-digit numeric keypads will be firmly attached to the appropriate doors
and computers. These terminals can work autonomously, and they are fitted with economical,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 926 of 1123

892 Application Design

exchangeable security modules (such as smart cards in plug-in format). They can grant autho-
rized persons access to the associated doors or computers. Any terminal at a critical or sensitive
location can if necessary independently establish a link to the PC that serves as the central
system computer, via a two-wire cable. This simple architecture satisfies the requirement for
low operating costs.

The central computer has a simple multitasking operating system to allow it to execute
several tasks in parallel. It is connected to a supplementary terminal that is responsible for
administering the entire system.

The smart cards used in this system must have an operating system that can manage several
applications and can create files (DFs and EFs) in the smart card file tree after the card has
been issued, so that additional applications can be loaded as necessary after the cards have
been issued. The amount of EEPROM required by the current application and projected future
applications will not exceed 1 kB. The cards will be purchased from a card manufacturer
complete with the operating system, and then configured appropriately using the administration
computer.

All cards will initially have a standard and easily remembered PIN. The simplest option in
this case is''0000''. This eliminates the cost of generating PINs and preparing PIN letters. Upon
receipt of the card, each user must change the standard PIN to some other number using the
administration terminal, since all terminals will reject a PIN entry of''0000''.

If the user forgets the PIN or the retry counter reaches its limit, the system terminal can be
used to enter a new PIN and reset the retry counter after an authentication.

Since the system is required to have an intermediate level of security, and system man-
agement should not be too costly, a severely limited key management scheme is appropriate.
Neither derived keys nor multiple generations of keys are used in this system. The keys only
need to be separated by function, which leads to the arrangement shown in Table 15.14. The
file tree that must be present in the smart card is described in Table 15.15, and the file access
conditions are listed in Table 15.16.

File EF2, which contains the authorization data for access to rooms and computers, has
a record-oriented structure. All records have the same length (linear fixed). Each record has
an entry that indicates which rooms the cardholder is allowed to enter. It is also possible to
define security levels, so that it is not necessary to explicitly list each room. Access can then
be globally restricted to certain areas.

Table 15.14 The keys needed for the ‘access control’ application

Key Used for Function State transition

C 1 MUTUAL Application management: x → 1
AUTHENTICATE – creating new files

– writing to files
– unblocking an application

V 2 MUTUAL Mutual authentication of the x → 2
AUTHENTICATE terminal and the smart card:

– access authorization
– blocking an application

PIN VERIFY CHV User identification 2 → 3

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 927 of 1123

15.9 Design Examples for Smart Card Applications 893

Table 15.15 The file tree for the ‘access control’ application

File FID Structure Description and contents

MF '3F00' — Smart card root directory
DF — — Directory for the ‘access control’ application
DE.EF 1 '0001' Transparent Last name, first name, department
DE.EF 2 '0002' Linear fixed Authorization level
DE.EF 3 '0003' Linear fixed Key 1; key 2; PIN

Table 15.16 File access conditions for the ‘access control’ application
(≥0: always, <0: never)

File Read Write Block Unblock Create
DFs and EFs

DF — — — — = 1
EF 1 ≥ 0 = 1 < 0 = 1 —
EF 2 = 3 = 1 = 2 = 1 —
EF 3 < 0 < 0 = 2 = 1 —

Since experience shows that it is frequently necessary to modify and restructure access
control systems, the data content of each record should have a TLV structure. This allows
extensions and modifications to be implemented in a technically elegant manner.

Only standard commands provided by commercially available ISO-compliant or ETSI-
compliant operating systems are used for the smart cards. This means that nothing has to be
programmed in the smart cards, which considerably reduces acquisition costs. The following
commands are needed:

ASK RANDOM READ BINARY
CHANGE CHV REHABILITATE
CREATE SELECT FILE
INVALIDATE UNBLOCK CHV
MUTUAL AUTHENTICATE VERIFY CHV

WRITE BINARY

Figure 15.29 shows the typical command sequence for an access control session. If neces-
sary, the terminal can use READ BINARY directly following the ATR to read the user’s name
from the file and check it against a blacklist. If the user’s name is on the blacklist, further use
of the card for access control can be prohibited by using the INVALIDATE command to block
all EFs. If necessary, the application can be reactivated at the administration terminal using
REACTIVATE, following mutual authentication.

If the system operator decides to also use the smart cards for canteen billing, a new ap-
plication with its own DF and EFs must be generated. There are two ways to do this. Either
all employees must bring their cards to the administration terminal, or the necessary files can
be automatically downloaded during access checks. The second approach is certainly less
expensive and more user-friendly, since it does not require any extra administrative effort.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 928 of 1123

894 Application Design

Smart card Terminal User

� Reset
ATR � IF ATR = OK

THEN continue
ELSE abort
SELECT FILE (DF) Output

''Please enter PIN''
VERIFY CHV
SELECT FILE (EF 2)
READ RECORD
evaluate file contents
IF (permission = yes)
THEN actuate door opener Output

''Please enter''

Figure 15.29 Access control command sequence for the ‘access control’ application

The required control of access to computer systems is completely analogous to the process
just described. The only difference is that instead of a door release mechanism being activated,
a signal is sent to the computer to tell it to grant access to the user.

15.9.3 Testing the genuineness of a terminal

Situation and objectives

There are situations in which it should be possible for a card user to verify the authenticity of
a terminal. One example is a terminal in a supermarket, in which the user must enter a PIN
after inserting the card. A counterfeit terminal could be used to spy out secret PIN codes.8 If
the card is subsequently stolen by a person who already knows the PIN, the thief could use the
card to make purchases or obtain money from a cash dispenser.

In the summer of 1997, a counterfeit cash dispenser at the Marienplatz in Munich was used
in a comparable manner to illicitly collect magnetic-stripe data and associated PIN codes. If
smart cards are used, good protection against this type of attack can be provided with a suitable
application design.

Requirements

It is necessary to design a component of a smart card application that allows the card user to
recognize a counterfeit smart card terminal (but not a manipulated terminal). The user must
not need any additional technical aids or equipment to check the terminal.

8 See also Section 8.1.1, ‘Testing a secret number’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 929 of 1123

15.9 Design Examples for Smart Card Applications 895

Proposed solution

The proposed solution involves storing a password that is known only to the card user in a file in
the smart card. This file can be read by the terminal only after it has successfully authenticated
itself with respect to the smart card via a secret key.

After this authentication process, the terminal is allowed to read the password from the
file and show it on its display. As soon as the card user sees the password and verifies that it
is correct, he or she can assume that the terminal is genuine, since only the user knows the
password. Only after he or she has verified the password will the user enter the PIN that makes
the rest of the transaction possible.

The procedure just described is recommended in the DIN specification for German signature
cards, for example, in order to allow card users to determine whether public signature terminals
are genuine.9

An important limitation of the solution must be mentioned. This is that it allows a counterfeit
terminal to be recognized, but not a manipulated terminal. If the terminal software could be
modified without losing the secret key in the process, it would be possible for a manipulated
terminal to correctly authenticate itself with respect to the smart card and then display the pass-
word. This limitation should be taken into account in any application in which this technique
is used. However, this is basically not a critical issue, since a terminal that can be manipulated
to this extent will allow significantly more extensive forms of attack than just spying out PIN
codes.

The proposed solution, which is presented in the form of specific files and access conditions
in Tables 15.17 and 15.18, is not a complete smart card application. Instead, it is a sort of design
template that can be merged into any desired application. Consequently, the FIDs and state
transitions, as well as the procedure illustrated in Figure 15.30, can be modified as necessary
to use different values or command sequences. This example is primarily intended to convey
the basic idea of how the genuineness of a terminal can be tested, rather than to serve as a
concrete application.

Table 15.17 Keys needed for testing the genuineness of a terminal

Key Used for Function State transition

key 1 EXTERNAL Authentication of the x → 1
AUTHENTICATE terminal by the smart card

PIN VERIFY CHV Identification of the user 1 → 2

Table 15.18 File tree and access conditions for testing the genuineness of a
terminal (≥0: always, <0: never)

File FIC Structure Read Write File contents

EF 1 '0001' transparent = 1 = 2 password
EF 2 '0002' linear fixed < 0 < 0 key 1, PIN

9 See also Section 14.4, ‘Digital Signatures’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 930 of 1123

896 Application Design

Smart card Terminal User

� Reset
ATR � IF ATR = OK

THEN continue
ELSE abort
EXTERNAL AUTHENTICATE
(with key 1)
IF (authentication is successful)
THEN continue
ELSE abort
SELECT FILE (EF 1)
READ BINARY Output the content of

the password file
IF (password correct)
THEN terminal is
genuine
ELSE abort

VERIFY CHV Output
''Please enter PIN''

Figure 15.30 Command sequence for verifying the genuineness of a terminal

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 931 of 1123

16
Appendix

16.1 GLOSSARY

The following pages contain a list of terms typically used in the smart card world. Precise,
comprehensive definitions of terms can also be found in the ISO/IEC 7816 family of standards.
The equivalent standard in the area of electronic purses with regard to terminology is EN 1546,
which comprehensively and concisely defines and explains all of the associated technical terms.

The keywords in this glossary are listed as abbreviations or in full according to customary
usage. An arrow symbol (→) in front of a term refers to another entry in the glossary in which
the term (set in italics) is explained.

Larger collections of general terms used in informatics can be found in the DIN 44 300
standard and numerous lexicons devoted to EDP terminology, such as [Pfaffenberger 97,
Dictionary of Computing 91].

µµP card

An alternate designation for → microprocessor card.

0-PIN

A common, known PIN used for all newly issued → smart cards, which does not allow access
to the actual user functions. It is thus a type of → trivial PIN. The first time the card is used, the
0-PIN must be changed to a user-selected PIN using the usual mechanisms (usually CHANGE
CHV), with the value of the 0-PIN not being an allowed value for the new PIN. The purpose of
a 0-PIN is to allow the user to unambiguously determine whether the card is still in its original
issued state when he or she receives it or has been illicitly used while underway. The term
‘0-PIN’ comes from the fact that the value “0000” is often used for this type of PIN.

Smart Card Handbook, Third Edition. W. Rankl and W. Effing
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85668-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 932 of 1123

898 Appendix

1-µµm/0.8-µµm/. . . technology

In the fabrication of semiconductor chips, the performance of the technology used is tradition-
ally expressed in terms of the dimension of the smallest possible transistor structure on the
semiconductor material. This is usually the width of the gate oxide strip of a transistor. Cur-
rently, the smallest possible structure widths are approximately 0.25 µm and 0.13 µm. Naturally,
it is always possible to make structures on the chip that are larger than the minimum dimension.

1K/2K/4K/. . . /nK-chip

The designation ‘nK-chip’ (where n is a positive integer) is frequently used as a simplified type
designation for a → microcontroller with a certain size of → EEPROM in kilobytes. A 32K-
chip is thus a smart card microcontroller with 32 kB of EEPROM. Specifying the size of the
EEPROM is sufficient for rough comparisons of commonly used smart card microcontrollers.

1G (first generation)

Refers to the first generation of mobile telecommunication networks, which have a cellular
architecture and use analog technology. Typical examples of 1G systems are AMPS and the
German C-Netz.

2G (second generation)

Refers to the second generation of mobile telecommunication networks, which have a cellular
architecture and use digital technology. Typical examples of 2G systems are → GSM and →
CDMA.

3DES

→triple DES

3G (third generation)

Refers to the third generation of mobile telecommunication networks, which have a cellular
architecture and use digital technology. A typical example of a 3G system is → UMTS, which
in turn is a member of the → IMT-2000 family.

3GPP (Third Generation Partnership Project) [3GPP]

The task of the Third Generation Partnership Project, which was founded by the five standards
institutes ANSI T1 (USA), ARIB (Japan), ETSI (Europe), TTA (Korea) and TTC (Japan), is

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 933 of 1123

16.1 Glossary 899

to generate internationally usable technical specifications for third-generation (→ 3G) mo-
bile telecommunications systems based on an enhanced GSM core system (→ GSM). The
participating standards bodies will then translate these specifications into corresponding stan-
dards. 3GPP was founded in Copenhagen by the leading international standards organizations
in the field of telecommunications. The Third Generation Partnership Project 2 (3GPPP2) has
similar responsibilities, although the latter project focuses on further development of non-GSM
systems (such as CDMA systems) in the direction of the third generation.

3GPP2

→ 3GPP

4G (fourth generation)

Refers to the fourth generation of mobile telecommunication networks, which is currently only
in the conceptual stage.

8-bit/16-bit/32-bit CPU

An important characteristic with regard to the processing power of a → microprocessor is the
width of the register for data to be processed in the processing unit. It is expressed in terms of
the number of bits.

A2C (administration to customer)

Public administration and end users.

A3 (algorithm 3)

Designation for a cryptographic algorithm used in → GSM for the authentication of the SIM
by the background system using a challenge–response procedure. A3 is chosen by the network
operator and is thus not the same for the entire GSM system.

A5 (algorithm 5)

Designation for a cryptographic algorithm used in → GSM for encrypting data on the air
interface between the mobile station and the base station or background system. A5 is the
same for the entire GSM system.

A8 (algorithm 8)

Designation for a cryptographic algorithm used in → GSM for generating session keys (Kc)
used for encrypting speech data on the air interface. A8 is chosen by the network operator and
is thus not the same for the entire GSM system.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 934 of 1123

900 Appendix

Access conditions (AC)

In connection with the file system of a smart card, a finite number of conditions that must
be satisfied prior to accessing the associated file using one of the various types of access
supported by the operating system (e.g., read, write, delete). Access conditions are usually
specified independently for each type of access.

Acquirer

An entity that establishes and manages data links and data exchanges between the operator of
a payment system and individual service providers. An acquirer may consolidate individual
transactions that it receives, so that the system operator receives only collective certificates.

Activation sequence

Specifies the order of events for activation of the electrical signals for a → smart card micro-
controller when powering up a → smart card. It does not say anything about the sequence
of events for mechanical contacting. The objective of the activation sequence is to protect
the smart card microcontroller, which is sensitive to charges and voltages on its contacts.
(→ deactivation sequence)

Administrative data

Data that are used only for managing → user data and no other particular significance with
respect to an → application.

AES (Advanced Encryption Standard)

A symmetric → cryptographic algorithm, originally developed by Joan Daemen and Vincent
Rijmen and published as the Rijndael algorithm. Following a public competition and evaluation
process, the → NIST selected this algorithm as the successor to the DES in 2000 and published
it as a US standard (FIPS 197) in 2001.1

AFNOR (Association Française de Normalisation)

A French standards organization based in Paris.

AID (application identifier)

An AID identifies an → application in a → smart card, as specified in ISO/IEC 7816-5. Part
of the AID may be registered nationally or internationally, in which case it is reserved for the

1 See also Section 4.7.1, ‘Symmetric cryptographic algorithms’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 935 of 1123

16.1 Glossary 901

registered application and is unique in the entire world. An AID consists of two data elements:
a registered identifier (RID) and a proprietary identifier (PIX).2

AMPS (Advanced Mobile Phone System)

A cellular mobile telephone standard, predominantly used in the USA, Latin America, Australia
and parts of Asia. It employs analog technology and operates in the 800-MHz band. AMPS
mobile telephones do not have → smart cards and are often successfully attacked, in part for
this reason. The upgraded version of AMPS is D-AMPS, a digital system that also operates in
the 800-MHz band.

Analog

Refers to systems in which signals may assume an unlimited number of values.

Analysis

In the sense of software development, the process of determining the customer requirements
for an informatics system and completely and unambiguously describing these requirements.
In simplified terms, the result of analysis is a description of ‘what’ is to be produced. The
subsequent step in a sequential software development project is → design.

Anonymization

Modifying person-specific data in such a manner that it is no longer possible to associate the
modified data with the original person. (→ pseudo-anonymization)

ANSI (American National Standards Institute) [ANSI]

An American standards organization based in New York.

Anticollision method

A method that permits access to multiple contactless cards without interference.

APDU (application protocol data unit)

A software data container used to package data for an → application for exchange between
a → smart card and a → terminal. The APDU is converted into a transmission protocol
data unit (TPDU) by the transmission protocol and then sent by the smart card or terminal

2 See also Section 5.6.1, ‘File types’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 936 of 1123

902 Appendix

via the serial interface. APDUs can be classified into → command APDUs and → response
APDUs.3

API (application programming interface)

A software interface, specified in detail, that provides access to specific functions of a program.

Application

All of the data, files, → commands, processes, states, mechanisms, algorithms and programs in
a → smart card that allow it to be used in a particular system. An application and its associated
data are usually located in a dedicated DF directly below the MF. Such an application is
often called an ‘oncard application’. The opposite to this is an ‘offcard application’, which
encompasses all of the programs and data not present in the smart card that are necessary for
using the oncard application in the smart card.

Application operator

An entity that operates an → application using → smart cards. The application operator is
usually the same as the application provider.

Applet

A program written in the Java programming language and executed by the virtual machine of
a computer. For reasons of security, the functionality of an applet is restricted to a previously
defined program environment. In the realm of → smart cards, applets are sometimes called
‘cardlets’. An applet usually corresponds to a smart card → application.

Applet developer

A person or organization that develops an → applet.

ASK(amplitude-shift keying)

A modulation method in which the amplitude of the carrier wave is switched between two
states.

ASN.1 (Abstract Syntax Notation 1)

A description language (syntax and grammar) for data that allows data and data types to be
unambiguously defined and represented independent of the type of computer system used. The

3 See also Section 6.5, ‘Message Structure: APDUs’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 937 of 1123

16.1 Glossary 903

corresponding data can then be coded in concrete terms using the → BER (Basic Encoding
Rules) and the → DER(Distinguished Encoding Rules). ASN.1 is defined by ISO/IEC 8824
and ISO/IEC 8825.4

Assembler

A program that translates assembly-language programs into machine language, which can
be executed by a processor. After the assembly process, it is usually necessary to link the
resulting code using a linker program. ‘Assembler’ is also often used as a short form for
‘assembly-language program code’.

Asymmetric cryptographic algorithm

→cryptographic algorithm

Asynchronous data transmission

Data transmission in which the data are transmitted independent of any prescribed timing
reference. (→ synchronous data transmission)

Atomic operation

One or more operations in a program that are executed either entirely or not at all. In → smart
cards, atomic operations are frequently used in connection with EEPROM write routines, in
order to ensure that the data content is consistent at all times.5

ATR (answer to reset)

A sequence of bytes sent by a → smart card in response to a (hardware) reset. The ATR
includes various parameters relating to the transmission protocol for the smart card.6

Attribute

In the sense of → object-oriented programming, a data container holding an → object
(in the procedural sense, the variables). Attribute values can be read or modified using →
methods.

4 See also Section 4.1, ‘Structuring Data’
5 See also Section 5.10, ‘Atomic Operations’
6 See also Section 6.2, ‘Answer to Reset (ATR)’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 938 of 1123

904 Appendix

Authentication

The process of verifying the genuineness of an entity (such as a smart card) using a cryp-
tographic procedure. Put simply, authentication amounts to using a prescribed procedure to
determine whether someone is actually the person he or she claims to be.

Authenticity

A property possessed by an entity or message that is genuine and unaltered.

Authorization

Testing whether a particular action is allowed to be performed; equivalent to granting someone
the authority to do something. For example, when a credit card transaction is authorized by the
credit card issuer, the card data are checked to see if the data are correct, the amount of
the purchase is less than the permitted limit and so on. The payment is then allowed if all
checks are satisfactory. An authorization can be achieved by means of authentication of the
party in question (such as a smart card). Put simply, authorization amounts to giving someone
permission to perform a particular action.

Auto-eject reader

A terminal that can automatically eject an inserted card in response to an electrical or mechan-
ical signal.

B2A (business to administration)

Designates the handling of → e-commerce business between enterprises and public adminis-
trations.

B2B (business to business)

Designates the handling of → e-commerce business between enterprises.

B2C (business to customer)

Designates the handling of → e-commerce business between enterprises and end users.

Background system

Any type of computer system above the level of the terminal that processes and manages data.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 939 of 1123

16.1 Glossary 905

Bad case

The case in which a logical decision leads to an unfavorable or undesired result.

Bad-day scenario

Another expression for → bad case.

Baud

Designates the number of state changes per second during a data transmission. Depending on
the transmission method used, one or more data bits can be transmitted for each change of
state. For this reason, the baud rate is equivalent to the transmission rate in bits per second
only in the special case that only one bit is transmitted for each change in state.

Bearer

Designates the bearer service used to transport data to a terminal device. For example, SMS is
a possible bearer for WAP

Bellcore attack

→differential fault analysis

BER (Basic Encoding Rules)

The BER, which are defined in → ASN.1, allow data to be coded in the form of data objects.
A BER-coded data object has a tag, a length and a value (the actual data component), and
optionally an end marker, and is thus also referred to as TLV-coded data. The BER format also
permits chained data objects. The Distinguished Encoding Rules (DER), which are a subset
of the BER, indicate among other things how the length parameter of the data object is to be
coded (1, 2 or 3 bytes).7

Big-endian

→endianness

Binary-compatible program code

A program that can be executed directly by a → microprocessor without using auxiliary
programs or the like (→ program code).

7 See also Section 4.1, ‘Structuring Data’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 940 of 1123

906 Appendix

Blacklist

A list in a database identifying all cards or devices that are no longer allowed to be used in a
particular → application. (→ hotlist, graylist, whitelist)

Blackbox test

A test based on the assumption that the party performing the test has no knowledge of the
internal processes, functions and mechanisms of the software being tested.

Bluetooth [Bluetooth]

A wireless network technology intended to be used for short-range communications (<100 m)
in the 2.4 GHz band, with a maximum gross data transmission rate of around 1 Mbit/s. Ericsson,
as the initiator of this technology, chose the name in memory of the Danish king Harald II, who
lived approximately 1000 years ago and was nicknamed ‘Bluetooth’. His major achievement
was merging many separate regions into a unified kingdom.

Bond-out chip

A microcontroller mounted in a multi-pin ceramic package providing free access to all of
the memory busses internal to the chip, thus allowing the commonly used mask-programmed
→ROM to be replaced by memory external to the chip. A bond-out chip is used to allow
software to be tested in the target hardware without using a → ROM mask.

Boot loader

A small, simple program whose only purpose is to load other, larger programs into memory,
for example via a serial interface, and run them from memory (→ loader). A boot loader is
typically used to load the actual program code into a new chip or a new piece of electronic
equipment. In many cases, the boot loading process can be performed only once.

BPSK (binary phase shift keying)

180-degree phase shift keying, yielding two phase states.

Browser

A program for viewing hypertext documents, navigating among such documents and run-
ning → program code embedded in hypertext documents. Browsers with simple structures
that require little memory and processing capacity are often called microbrowsers. Some mi-
crobrowsers run as → applications within a → smart card operating system (such as the
SIM Alliance browser, also known as the S@T browser), while others are integrated into the

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 941 of 1123

16.1 Glossary 907

software of the mobile telephone (e.g., WAP browsers). The functionality of browsers can be
extended using downloadable software components called browser plug-ins.

Brute-force attack

An attack on a cryptographic system based on computing all possible values of a key.

BSI (Bundesamt for Sicherheit in der Informationstechnik) [BSI]

The German Bundesamt for Sicherheit in der Informationstechnik (BSI) was founded in 1991
as the successor to the Zentralstelle für das Chiffrierwissen. The functions of the BSI include
investigating the security risks of IT applications, testing and evaluating the security of IT
systems, formally approving IT systems for government agencies and assisting criminal in-
vestigation agencies and agencies charged with the protection of the German constitution. It
also advises manufacturers, operators and users with regard to IT security, and in this regard
it often specifies the general conditions for using cryptography in Germany.

Buffering

A typical type of attack on magnetic-stripe cards involving first reading and storing (buffering)
the data on the magnetic stripe. After the data have been modified using a terminal (e.g.,
changing the state of the retry counter), the original data are written back to the magnetic
stripe.

Bug fix

In software development, supplementary →program code used to remedy a known error (bug).
In contrast to a →work-around, a bug fix eliminates the actual error.

Burst

→signal burst

Bytecode

This term has several different meanings and can only be correctly interpreted in the context
in which it is used. One widely used meaning is related to the Java system, in which bytecode
is the name given to the intermediate code produced (compiled) from the source code by a
Java compiler. This bytecode is standardized by the Sun Corporation and is interpreted by
the Java virtual machine. The term ‘bytecode’ is also used in the context of microbrowsers
(→browser), where it is understood to mean the translated code produced from a hypertext
document by the bytecode converter. The result of this translation is the bytecode, which is
then interpreted by the microbrowser.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 942 of 1123

908 Appendix

CAD (card acceptance device)

In the realm of electronic payment systems, the designation CAD is frequently used to refer
to a smart card terminal, in place of the ISO abbreviation → IFD (interface device).

CAMEL (Customized Applications for Mobile Enhanced Logic)

Supplementary possible feature of →GSM for supporting the functionality of intelligent net-
works (IN). With CAMEL, for example, it is possible to modify a dialing number during call
setup on the network. This allows applications such as international →roaming using prepaid
cards and internationally available standard service numbers to be implemented in a simple
manner.

CAP file (card application file)

A data format used to exchange data between the Java Offcard Virtual Machine and the Java
Oncard Virtual Machine.

Card

General term used to refer to a thin rectangular piece of material with rounded corners whose
physical dimensions comply with an international standard. A card can have various card
components, including a semiconductor chip (→chip card, →smart card).

Card accepter

An entity with which cards can be used for a particular type of transaction (such as payment).
A typical example is a merchant who accepts credit cards for making payments.

Card body

A plastic card forming an intermediate product in the production of smart cards. It is further
processed in subsequent production steps and receives additional functional components, such
as the embedded chip.

Card component

A supplementary functional unit of a →card, such as a →signature panel, →embossing, a
→magnetic stripe, a chip (→memory card, →microprocessor card) or a keypad (→system
on card).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 943 of 1123

16.1 Glossary 909

Card issuer

An entity responsible for issuing cards. In the case of mono-application cards, the card issuer
is usually also the application provider, but this is not necessarily the case.

Card manufacturer

An entity that produces card bodies in which it embeds modules.

Card Modeling Language (CML)

An abstract, operating-system independent description language for defining smart card
→applications.

Card owner

A natural or legal person having legal control over a card who can do whatever he wishes with
the card. In the case of a credit or debit card, the bank issuing the card is often the card owner,
and the customer who uses the card is only the →cardholder.

Card reader

A device having a relatively simple electrical and mechanical construction used to accept
→ smart cards and make electrical contact with them. Unlike a terminal, a card reader does
not have a display or a keypad. Despite the name, a card reader can usually also be used to
write data to a card.

Card user

A person using a card, who is usually but not necessarily the → cardholder.

Cardholder

A person actually having a card in his possession and having the legal right to use the card.
The cardholder need not necessarily be the same as the →card owner.

Cardholder verification method (CVM)

A method for the →identification of persons. This usually consists of PIN testing, but biometric
user identification may be used in more sophisticated systems.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 944 of 1123

910 Appendix

Cardlet

→applet

Cavity

The recess in the card body for the module to be implanted, usually produced by milling.

CCITT (Comité Consultatif International Télégraphique et Téléphonique)

Originally, an international committee for telephone and telegraph services, based in Geneva.
With the assumption of additional responsibilities, it is now known as the → ITU.

CCS (cryptographic checksum)

A cryptographically generated checksum for data, which is used to allow manipulation of the
data during storage to be recognized. A CCS used to protect data during transmission is called
a message authentication code (→ MAC).

CDMA (code division multiple access)

A multiple-access method for the concurrent transmission of data from multiple transmitters
to a single receiver within a frequency band. For this purpose, the narrow-band radio signal is
mapped onto a wideband radio signal, or ‘spread’, using a transmitter-specific mapping rule.
If this mapping rule is known, the receiver can recover the original narrowband signal from the
received wideband signal. CDMA is used in UMTS for a the air interface between the mobile
telephone and the base station.8 With wideband code division multiple access (WCDMA),
two separate frequency bands are used for → uplink and → downlink, for which reason this
method is often referred to as frequency division / code division multiple access (FD/CDMA).
With time division / frequency division multiple access (TC/CDMA), the uplink and downlink
are separated using different time slots.

CDMA 2000 (Code Division Multiple Access 2000)

Third-generation (→ 3G) mobile telecommunication system using the 2000-MHz frequency
band and having features similar to those of → UMTS. The smart card intended to be used in
CMDA, which is called the → R-UIM, is optional.

Cell

In mobile telecommunications systems, the smallest subdivision of the geographic structure
of the network.
8 See also Section 13.1.1, ‘Multiple-access methods’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 945 of 1123

16.1 Glossary 911

Cellular technology

Refers to an analog or digital mobile telecommunication system organized in the form of cells.
The transmitter and receiver stations of the network, which are commonly called base stations,
are usually located at the approximate centers of the cells.9

CEN (Comité Européen de Normalisation)

A European standards organization based in Brussels. It is composed of all national European
standards organizations and is the official institution of the European Union for generating
European standards.

CEPS (Common European Electronic Purse Specifications) [CEPSCO]

A specification for → electronic purses, with emphasis on international interoperability
(→ interoperable), including all components necessary for operating an electronic purse sys-
tem. The first version of CEPS was published in 1999 by CEPSCO. It is based on many of the
principles of EN 1546, the European standard for electronic purses.

CEPT (Conférence Européenne des Postes et Télécommunications)

A European standards organization for national telecommunications companies.

Certificate

A public key that has been signed by a trustworthy body and provided with associated admin-
istrative data, in order to allow it to be recognized as authentic by third parties (→PKI). The
most widely used and best-known specification for the structure and coding of certificates is
the X.509 standard.

Certification authority (CA)

A certification body in a public-key infrastructure (→ PKI) that certifies public keys for
→digital signatures, which means that it guarantees their authenticity by signing the user’s
public key using its own private key. If necessary, the certification authority makes the signed
public keys available in a directory (→directory service) in the form of →certificates. A CA
can itself generate the necessary key pairs (private and public). For organizational reasons,
certification authorities often have a hierarchical structure, with the highest-level certification
authority being called the ‘top-level CA’ or ‘root CA’.

9 See also Section 13.1.2, ‘Cellular technology’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 946 of 1123

912 Appendix

Certificate revocation list (CRL)

A list, held by a → directory service, that identifies all certificates within a → PKI that are
blocked and no longer accepted.

Challenge–response procedure

A commonly used authentication procedure in the smart card realm that is based on a secret key
for a cryptographic algorithm, with the key being a shared secret of the communicating parties.
One of the communicating parties sends the other party a random number (the challenge). The
latter encrypts it using a cryptographic algorithm and sends the result (the response) back to
the challenger. The challenger then applies the reverse function of the cryptographic algorithm
to the encrypted version of the random number it has received and compares the result to the
originally sent random number. If they match, the challenger knows that the other party also
knows the secret key, and from this it concludes that the other party is authentic.10

Chinese remainder theorem

A technique used to accelerate the RSA algorithm. Since it requires knowing both of the prime
numbers (p and q), it is only used for decryption or signing.

Chip card

A general term for a card, usually plastic, containing one or more semiconductor chips. A
chip card can be either a → memory card or a → microprocessor card. In English-speaking
countries, the term → smart card is generally used instead.

Chip module

A carrier and support for a die, with a set of contact elements arranged on its surface. The short
form ‘module’ is frequently used to refer to the chip module.

Chip-on-tape (COT)

A packaging arrangement in which chip modules are placed in adjacent pairs on a thin, flexible
tape that is typically 35 mm wide.

Chip size

The surface area of a chip, usually measured in square millimeters. The chip price is to a
large degree directly proportional to the chip size. The maximum chip size for smart card
microcontrollers is approximately 25 mm2, due to the types of modules currently used.
10 See also Section 4.11.2, ‘Symmetric mutual authentication’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 947 of 1123

16.1 Glossary 913

CHV

→PIN

CICC (contactless integrated chip card)

The official ISO name for a card for which data and power are transferred using electromagnetic
fields without contact with the card. The chip may be a memory chip or a microcontroller
chip.

Circuit-switched

Circuit-switched data transmission employs a direct connection (i.e., a physical line) between
the two parties. In general, the charges for a circuit-switched connection are based on the
duration of the connection, rather than the amount of data exchanged (→packet-switched).
Some typical examples of circuit-switched data transmission are analog and ISDN telephone
connections using the fixed telephone network.

Class

In the context of →object-oriented programming, a sort of abstract set of instructions for
constructing an object, or in other words, for constructing the →attributes and →methods of
an object and its relationships to other objects.

Class file

A class file stores a compiled Java program (one that has been translated into bytecode), along
with supplementary information. After being loaded, the class file is executed by the Java
virtual machine.

Cleanroom VM

→Java Card virtual machine

Clearing

In an electronic payment system, the process of settling accounts between a party that accepts
electronic payments (usually a merchant) and the associated bank.

Clearing system

A computer-based background system that performs centralized account settlements in an
electronic payment application.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 948 of 1123

914 Appendix

CLIP

Europay brand name for several technologically different electronic purse systems using smart
cards.

Clock-rate conversion factor

The clock-rate conversion factor (CRCF) defines the length of one bit (the bit interval) for data
transmission, in terms of the number of clock cycles per bit interval. The short form ‘divider’
is commonly used as an equivalent term.

Clone

→cloning

Cloning

Attacking a smart card system by making a complete copy of the ROM and EEPROM of a
microcontroller.

Closed application

A smart card → application that is only available to the application operator and cannot be
used for general purposes.

Closed purse

An instance of a closed → application for an electronic purse. A closed purse can be used
only within the limits defined by the application operator, and not for general payment trans-
actions.

CMM (Capability Maturity Model)

An internationally used model for ascertaining the degree of maturity of software development.
The degree of maturity is determined using a standardized list of questions and has five levels.
The first maturity, Level 1 designates a more or less chaotic development process, while the
highest possible maturity level, Level 5, designates a orderly and continually self-improving
development process.11

11 See also Section 15.7, ‘Life Cycle Models’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 949 of 1123

16.1 Glossary 915

CODEC (compressor/decompressor or coder/decoder)

A hardware chip or algorithm intended to be used for the compression and decompression or
encryption and decryption of data.

Cold reset

→reset

Collision

A collision occurs when two or more contactless cards located within the active range of a
terminal concurrently transmit data to the terminal with the result that the received data cannot
be decoded or unambiguously recognized.

Combicard

A registered trademark of ADE, which designates a → dual-interface card.

Command

In the realm of → smart card operating systems, an instruction to the smart card to perform
a specific action. The result of a command is a response returned by the smart card, which at
minimum contains status information and optionally may contain data related to the executed
command. Commands are transferred to the smart card using → command APDUs, while
responses are transferred using → response APDUs.

Command APDU

A → command sent from a terminal to a smart card, consisting of a command header and an
optional command body. The command header in turn consists of a class byte, an instruction
byte and two parameter bytes P1 and P2 (→ APDU).12

Common Criteria (CC) [CC]

A criteria catalog for the development and → evaluation of information technology systems,
which is intended to replace national and international criteria catalogs such as → TCSEC and
→ ITSEC. The Common Criteria were first published in 1996 by the → NIST as Version 1.0,
and since then they have been internationally standardized as ISO 15408. The currently valid
revision is Version 2.0 of 1998.

12 The command APDU is described in detail in Section 6.5.1, ‘Structure of the command APDU’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 950 of 1123

916 Appendix

Compiler

A program that translates a program written in a language such as Basic or C into a machine
language that can be directly executed by a processor. After a program has been compiled, it
is normally necessary to link the code using a linker program.

Completion

The process of completing the operating system by loading the EEPROM portion. This allows
the operating system to be modified and updated after the chips have been manufactured
without requiring a new ROM mask to be generated. Identical data are written to each smart
card during completion, so in principle it is a sort of initialization.

Contacts

The six or eight contact elements located on the front side of a → smart card form the electrical
interface between the terminal and the microcontroller in the smart card. All electrical signal
pass via these contacts.

Contactless card

Abbreviated designation for a type of → smart card for which energy and data are transferred
using electromagnetic fields without any contact with the card (→ CICC).

Core foil

An alternate name for → internal foil.

Core voltage

The voltage used by a microprocessor or microcontroller directly within the chip. If the core
voltage is lower than the external voltage applied to the chip, the external voltage must be
suitably reduced by a voltage converter integrated into the chip. Low core voltages are necessary
to compensate for reduced breakdown voltages resulting from increasingly smaller structure
widths and to reduce the charge and discharge currents resulting from internal capacitances.
A microcontroller built using 0.13-µm-technology, for instance, typically has a core voltage
of 1.8 V.

COS (card operating system)

Common designation for a → smart card operating system. It often forms part of the product
name of the operating system (e.g., STARCOS).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 951 of 1123

16.1 Glossary 917

CP8

Brand name of a → multiapplication smart card operating system from Bull [Bull], available
in several versions.

CPU (central processing unit)

→ microprocessor

CRC (cyclic redundancy check)

A simple, widely used type of error detection code (→ EDC) for protecting data. A CRC must
be specified using an initial value and a divider polynomial before it can be used.

Credit card

A card, with or without a chip, that indicates that the cardholder has been extended credit within
certain limits, and with which payment takes place some time after the goods or services have
been received. This type of payment is often called ‘buy now, pay later’. The widely used
embossed credit cards are typical examples of this type of card.

Cryptoalgorithm

→ cryptographic algorithm

Cryptocard

→ microprocessor card

Cryptographic algorithm

A computational rule with at least one secret parameter, the → key, that can be used to encrypt
or decrypt data. There are symmetric cryptographic algorithms (such as the DES algorithm)
that use the same key for encryption and decryption, and asymmetric cryptographic algorithms
(such as the RSA algorithm) that use a public key for encryption and a secret (private) key for
decryption.

Cryptoprocessor

In the realm of smart cards, a supplementary numerical processing unit in a microcontroller
that is optimized for the rapid computation of secret-key algorithms (such as DES) and/or
public-key algorithms (such as RSA, DSA and ECC).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 952 of 1123

918 Appendix

CT-API (Chipcard Terminal – Application Programming Interface)

An application-independent interface specification for connecting → MKT terminals to PCs;
widely used in Germany. It is published by Teletrust Deutschland.

Customer card

In an electronic payment system, a → smart card used by customers to make payments at
merchant terminals.

D-AMPS

→ AMPS

DEA (Data Encryption Algorithm)

Another name for → DES.

Deactivation sequence

Specifies the order of events for deactivation of the electrical signals for a → smart card
microcontroller when powering down a → smart card. It does not say anything about the
sequence of events for mechanical decontacting. The objective of the deactivation sequence
is to protect the smart card microcontroller, which is sensitive to charges and voltages on its
contacts. (→ activation sequence)

Debit card

A card, with or without a chip, that indicates that the cardholder has been granted certain powers
of disposition, with which payment takes place when the goods or services are received. For
this purpose, a debit card is linked to a bank account to allow the amount of the payment to
be immediately transferred. This form of payment is often referred to as ‘pay now’. A typical
example of a debit card is the Eurocheque card.

Debugging

Searching for and eliminating errors, with the objective of detecting and correcting as many
errors in a software program as possible. Debugging is normally performed by software de-
velopers during → implementation and is not the same as testing (→ test).

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 953 of 1123

16.1 Glossary 919

DECT (Digital Enhanced Cordless Telecommunications; previously
‘Digital European Cordless Telecommunications’)

A specification for cordless telephones operating the 1.9-GHz band using → cellular technol-
ogy with digital data transmission; published by → ETSI. Although the DECT standard has
provisions for using a smart card in the mobile part of the telephone, it is specified as being
optional, with the result it is not used.

Defragmentation

The process of shifting data stored at different physical locations in memory until the data
occupy a contiguous region of memory. The essential portions of a defragmentation process
must operate in an atomic manner in order to prevent memory inconsistency in the event of
premature termination of the process.

Delamination

The undesired separation of foils that have been attached to each other (laminated) using heat
and pressure. Delamination of a card can for example be caused by using a non-thermoplastic
ink to print overly large areas between the core foil and overlay foil. Such inks are commonly
used in offset printing.

Depersonalization

Reversing the electrical → personalization of a smart card. If the → smart card operating
system allows depersonalization, it may be performed using a special command following
authentication. One use for depersonalization is to restore incorrectly personalized cards to
their original condition, so that they can be reused.

DER (Distinguished Encoding Rules)

→ BER

DES (Data Encryption Standard)

The best known and mostly widely used symmetric → cryptographic algorithm, which was
developed by IBM in combination with the NBS and published in 1977 as a US standard
(FIPS 46) with the name ‘Data Encryption Algorithm’ (DEA).13 The official successor to the
DES is the → AES.

13 See also Section 4.7.1, ‘Symmetric cryptographic algorithms’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 954 of 1123

920 Appendix

Design

In the context of software development, constructing a software architecture based on the
requirements defined during → analysis. In simplified terms, the result of the design process
is a description of ‘how’ the requirements are implemented in the software. In a sequential
software development process, the subsequent stage is → implementation.

Deterministic

Designates a process or procedure that always produces the same result for a given set of initial
conditions. It is the opposite of → probabilistic.

DF (dedicated file)

A directory in a smart card file system. The root directory (MF) is a special type of DF.

DF name

The DF name, like the file identifier (FID), is a DF attribute with a length of 1–16 bytes. It is
used for selecting the DF, and it may contain a registered application identifier (AID), which
has a length of 5–16 bytes and makes the DF internationally unique.14

Die, dice

A die (plural ‘dice’) is a small, flat piece of crystalline silicon on which a single semiconductor
integrated circuit (such as a microcontroller) has been fabricated.

Differential fault analysis (DFA)

The principle of differential fault analysis was published in 1996 by Dan Boneh, Richard A.
DeMillo and Richard J. Lipton, all of whom were employees of Bellcore [Boneh 96]. The
method is based on intentionally introducing scattered errors into a cryptographic computation
in order to determine the secret key. In the original method, only public-key algorithms were
named, but within a few months this method of attack was rapidly extended [Anderson 96a],
with the result that all cryptographic algorithms can in principle be attacked in this manner if
they do not employ protective measures.

Differential cryptanalysis

A computational method for determining the value of a secret key using plaintext–ciphertext
pairs having certain differences but the same key. The manner in which these differences

14 See also Section 16.6, ‘Registration Authorities for RIDs’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 955 of 1123

16.1 Glossary 921

propagate with further DES cycles is analyzed to determine the key. This method was published
by Eli Biham and Adi Shamir in 1990.

Digital

Designates a system in which signals can assume only a limited number of values.

Digital fingerprint

A commonly used designation for the hash value of a message (e.g., generated using the SHA-1
algorithm).

Digital signature

Digital signatures are used to establish the authenticity of electronic messages and documents.
They are usually based on asymmetric cryptographic algorithms, such as the RSA algorithm.
The legal validity of digital signatures is governed by legislation in many countries (such as
the → Signaturgesetz in Germany). Digital signatures are sometimes referred to as ‘electronic
signatures’.

Digital watermark

A marking in an image or audio file, ideally invisible or inaudible, that cannot be removed
and is used to protect proprietary rights. An analysis program can be used as necessary to
check image or audio files for the presence of digital watermarks. Steganographic methods
(→ steganography) are often used to generate digital watermarks.

Directory service

A service in a database that provides requestors with lists containing specific information. A
typical example of such lists is a → certificate revocation list, which identifies all certificates
that are no longer valid or accepted in a → PKI.

Divider

A short form for ‘clock-rate conversion factor’ (CRCF), which is commonly used in the smart
card world. The CRCF specifies the duration of one bit interval during data transmission, in
terms of the number of periods of the signal on the clock line.

Downlink

A connection from a higher-level system (such as a base station) to a lower-level system (such
as a mobile telephone); the opposite of → uplink.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 956 of 1123

922 Appendix

Download

Transferring data from a higher-level system (background or host system) to a lower-level
system (e.g., a terminal); the opposite of → upload.

DPA (differential power analysis)

A method of attacking smart cards that represents an improvement on simple power analysis
(→ SPA). It involves first making repeated measurements of the current consumption of a
microcontroller for certain operations using known data with high time resolution and elimi-
nating random noise by averaging. Following this, the current consumption is measured using
unknown data, and conclusions regarding the unknown data are then drawn by analyzing the
differences between the results for the known and unknown data. DPA was first made known
in a publication by Paul Kocher, Joshua Jaffe and Benjamin Jun in June 1998 [Kocher 98].15

DRAM (dynamic random access memory)

A type of RAM having a dynamic structure that requires a continuous supply voltage and pe-
riodic refreshing to retain its content. DRAM cells are effectively capacitors. DRAM occupies
less space on the chip than SRAM and is thus less expensive, but SRAM has shorter access
times.

Dual-band mobile telephone

A mobile telephone that can operate in two different frequency bands (e.g., 900 MHz and
1800 MHz).

Dual-interface card

Designation for a → smart card having both contactless and contact-type interfaces for data
transmission to and from the card.

Dual-mode mobile telephone

A mobile telephone that can operate in two different mobile telecommunication systems (e.g.
GSM and AMPS).

Dual-slot mobile telephone

Designation for a mobile telephone having a second, externally accessible card contact unit,
usually for an ID-1 → smart card, in addition to the contact unit for the user card (i.e., the

15 See also Section 8.2.4.1, ‘Attacks at the physical level’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 957 of 1123

16.1 Glossary 923

SIM). A dual-slot mobile telephone could for example be used with an existing smart card
electronic purse to make payments via the mobile telecommunication network.

Dual-slot solution

A smart card application based on using the second card contact unit in a dual-slot mobile
telephone.

Duplicating

Transferring genuine data to a second card with the objective of producing one or more identical
(cloned) cards. Generally synonymous with → cloning.

Dynamic STK (dynamic SIM Application Toolkit)

An outmoded expression for microbrowser solutions (→ browser) that are compliant with the
→ SIM Alliance specification.

ECBS (European Committee for Banking Standards) [ECBS]

A European organization founded in 1992 to develop technical solutions and standards for the
infrastructure of → interoperable trans-European financial transaction systems.

ECC (elliptic curve cryptosystem)

Designation for a cryptographic system (generally speaking, a cryptographic algorithm) based
on elliptic curves.

ECC (error correction code)

A data checksum. An ECC can be used to allow errors in the data to be detected with a certain
probability and in some cases fully corrected.

E-commerce (electronic commerce)

Refers to all forms of service, trade and associated financial transactions using public networks
(primarily the Internet). The term → m-commerce is used when mobile terminals are used for
e-commerce.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 958 of 1123

924 Appendix

EDC (error detection code)

A data checksum. An EDC can be used to allow errors in the data to be detected with a certain
probability. Typical examples of EDCs are the XOR and CRC checksums used in various data
transmission protocols.

EDGE (Enhanced Data Rates for GSM and TDMA Evolution)

EDGE is intended to be the final evolutionary step for GSM networks. The EDGE specification
allows a GSM mobile telephone to connect to a base station with a data rate of up to 384 kbit/s
by using a different modulation scheme, without altering the existing network infrastructure.

EEPROM (electrically erasable programmable read-only memory)

A type of non-volatile memory, which is used in → smart cards. An EEPROM is divided
into ‘pages’ of memory, with the page size being called its → granularity. The content of a
memory page can only be altered or erased as an entity, and there is a physically determined
upper limit to the number of write or erase cycles.16 Data storage in an EEPROM cell is based
on the Fowler–Nordheim effect, rather than hot electron injection as with → Flash EEPROM.
The typical write time for EEPROM is 3 ms per memory page.

EF (elementary file)

The actual data storage element in a smart card file tree. An EF has either the attribute ‘working’
(for use by the terminal) or ‘internal’ (for use by the smart card operating system), and an
internal structure (transparent, linear fixed, linear variable, cyclic, etc.).17

Electronic check

An → electronic purse variant using fixed, non-divisible monetary amounts. This type of
payment is often referred to as ‘pay before’.18

Electronic purse (e-purse)

A card with a chip that must be loaded with an amount of money before it can be used for
making payments. This type of payment is often called ‘pay before’. Some typical examples are
the German Geldkarte, the Austrian Quick purse, Visa Cash, Proton and Mondex. Electronic
purses may also support → purse-to-purse transactions.19

16 See also Section 3.4.2, ‘Memory types’
17 See also Section 5.6.4, ‘EF file structures’
18 See also Section 12.1.2, ‘Electronic money’
19 See also Section 12.1.2, ‘Electronic money’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 959 of 1123

16.1 Glossary 925

Embossing

Part of the physical personalization of a card, consisting of raised characters stamped into the
plastic card body.

Emulator

A device that imitates the operation of some other device or equipment (the target system).
An emulator implemented in software is called a → simulator. Emulators are frequently used
in developing software for not yet existing target systems. A smart card emulator is thus
hardware circuitry that completely imitates the electrical and logical properties of a real smart
card. Since the majority of the functionality is implemented in hardware, emulators are usually
faster (closer to real-time) than simulators.

EMV (Europay, MasterCard, Visa) [EMV]

A joint specification for payment cards with chips and associated terminals belonging to Eu-
ropay, MasterCard, Visa and American Express. These specifications have achieved the status
of international industry standards for credit and debit cards and electronic purses. In the pay-
ment system sector, they thus represent the counterpart to the GSM 11.11 telecommunications
standard.

EMV specification

→EMV

End-to-end link

Direct communication between two parties using the communication paths of one or more other
entities that do not alter the information content of the actual data exchange. If the messages
exchanged by the two originating parties are cryptographically secured, the term → tunneling is
used. A typical example of an end-to-end link is direct communication between an application
provider and a SIM that is compliant with GSM 03.48.

Endianness

The term ‘endianness’ refers to the order of the bytes within a byte string. ‘Big-endian’ means
that the most significant byte stands at the beginning of the byte string, which consequently
means that the least significant byte stands at the end of the string. ‘Little-endian’ refers to the
opposite order, which means that the least significant byte comes first and the most significant
bit comes last.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 960 of 1123

926 Appendix

Enrollment

The process of originally acquiring the biometric data of a → cardholder and entering it into the
corresponding smart card. The data stored in the smart card then form the basis for subsequent
biometric user identification.

Envelope stuffing

Automatically folding letters and inserting them into envelopes.

EP SCP

→SMG9

EPROM (erasable programmable read-only memory)

A type of non-volatile memory, which was formerly used in smart cards but has been fully
supplanted by → EEPROM technology. Since EPROM can only be erased by ultraviolet light,
it can only be used for WORM storage (write once, read multiple) in smart cards.20

Error counter

A counter that accumulates negative results and determines whether a particular secret (PIN
or key) may continue to be used. If the error counter reaches its maximum value, the secret
is blocked and can no longer be used. The error counter is normally reset to zero when the
operation is completed successfully (positive result). Also called a retry counter.

ETS (European Telecommunication Standard)

Designation for standards issued by → ETSI, which are primarily concerned with European
telecommunications.

ETSI (European Telecommunications Standards Institute) [ETSI]

The standards institute of the European telecommunication companies, with headquarters in
Sophia Antipolis, France. ETSI is responsible for defining standards in the field of European
telecommunications. The most important ETSI standards are the family of standards for GSM
(e.g., GSM 11.11 for the SIM) and UMTS (e.g., TS 31.102 for the USIM). Meetings of
the expert groups of the ETSI are usually held in a wide variety of (touristically attractive)
locations in Europe and throughout the world, for which reason some people are convinced
that the abbreviation ‘ETSI’ stands for ‘European travel and sightseeing institute’.

20 See also Section 3.4.2, ‘Memory types’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 961 of 1123

16.1 Glossary 927

etu (elementary time unit)

The duration of one bit in smart card data transmission. The length of the etu is not defined
in absolute terms, but instead in terms of the frequency of the clock signal applied to the card
and the value of the clock-rate conversion factor (divider).

Eurosmart [Eurosmart]

An organization founded in 1994 to represent the interests of European manufacturers of
smart cards, with offices in Brussels. The functions of Eurosmart are promoting and standard-
izing (→ standard) → smart cards and smart card systems, providing a forum for exchang-
ing market data and technical data, and forging links to national and international standards
committees.

Evaluation

The unbiased, objective, repeatable and reproducible assessment of an information technology
system (hardware and/or software) by a reliable body according to the specifications of a
criteria catalog. The IT system to be evaluated is called the → target of evaluation. Commonly
used international criteria catalogs for the evaluation of → smart cards are the → ITSEC and
→ Common Criteria.

f1, f2, f3, f4, f5 (function 1 – function 5)

Designations for cryptographic functions used in → UMTS for authenticating the network and
the → USIM and establishing cryptographically secured data transmission on the air interface.
The central element of these security functions is a symmetric → cryptographic algorithm
that can be parameterized using supplementary linked initial values. As an example algorithm
for f1–f5, the USIM specification proposes the MILENAGE algorithm, which is essentially
based on the → AES.

Fab

A semiconductor fabrication facility.

Face

The face of a semiconductor chip is the side holding the functional structures produced using
semiconductor fabrication processes. Consequently, an expression such as ‘face-to-face con-
tacting’ means that two chips with suitably configured functional structures are placed together
such that they are electrically connected to each other.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 962 of 1123

928 Appendix

FAT (file allocation table)

A table used in a file management system in which the storage area to be managed is divided
into sections, called ‘clusters’. Data related to the occupancy and addresses of these sections
are stored and managed using the file allocation table.

Fault tree analysis

A test method in which every program execution path in the program code is traversed in order
to search for possible errors.

FD/CDMA (frequency division / code division multiple access)

→CDMA

FDMA (frequency division multiple access)

Ag →multiple-access method for concurrently transferring data from several transmitters to a
single receiver using several different frequency bands. Each transmitter is allocated a particular
frequency band within the total available frequency spectrum, within which it may exclusively
transmit. Many mobile telephone systems (such as the German C-Netz) use FDMA for the air
interface between the mobile telephone and the basis station.21

FIB (focused ion beam)

A device for generating a focused beam of ions for removing or depositing material on a
semiconductor device.

FID (file identifier)

A two-byte attribute of a file. Each MF, DF and EF has a FID. The FID of the MF is always
'3F00'.22

File body

→ file header

21 See also Section 13.1.1, ‘Multiple-access methods’
22 See also Section 5.6, ‘Smart Card Files’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 963 of 1123

16.1 Glossary 929

File header

Files in smart cards are usually divided into two separate parts, consisting of the file header
(which holds information about the → file structure and → access conditions) and the file
body, which is linked to the file header by a pointer and holds the modifiable user data.

File structure

The externally visible structure of an → EF. File structures allow user data to be stored in
a logically structured and compact manner. The standard file structures defined by ISO/IEC
7816-4 are transparent, linear fixed, linear variable and cyclic.23

File type

Identifies the sort of file for purposes of file management within a smart card, i.e., whether it
is a directory file (MF or DF) or a file for storing user data (EF).

FIPS (Federal Information Processing Standard)

US American standards issued by the → NIST.

Firewall

An entity (hardware or software) that provides a security barrier between particular → appli-
cations or other entities. For example, a firewall can separate two applications in a smart card
such that they cannot access each other’s data across the firewall. The name comes from a type
of wall used in building construction to contain possible fires.

Flash

Commonly used short form for → Flash EEPROM.

Flash EEPROM (Flash electrically erasable programmable read-only
memory)

A type of non-volatile memory, which will be used in smart cards in the future. A Flash
EEPROM resembles an → EEPROM in terms of its functionality and semiconductor structure,
but data storage in Flash EEPROM cells is based on hot-electron injection, instead of the
Fowler–Nordheim effect as in regular EEPROMs. In the hot-electron injection process, ‘fast’
electrons are generated by a high potential difference between the source and the drain, and
some of these fast electrons penetrate the tunnel oxide layer and are stored in the floating

23 See also Section 5.6.4, ‘EF file structures’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 964 of 1123

930 Appendix

gate. This effect reduces the write time to approximately 10 µs. Due to their large memory
pages (typically 128 bytes at present), Flash EEPROMs are quite suitable for replacing mask-
programmed → ROM.24

Floor limit

Defines the level at which a purchase must be authorized (→ authorization) by a third party.
Authorization is not required below the floor limit, but it must always be obtained above the
floor limit, since otherwise payment may not be possible or guaranteed.

Footprint

More precisely, ‘memory footprint’: refers to the allocation of memory for a particular purpose.

Foundry

A semiconductor fabrication facility operating on a contract basis to manufacture semicon-
ductor devices developed by third parties.

FPLMTS (Future Public Land Mobile Telecommunications Service)

→ IMT-2000

FRAM (ferroelectric random-access memory)

A type of non-volatile memory, which is very rarely used in → smart cards. A FRAM is
divided into memory pages (the page size is also called the → granularity). Data storage in
this type of memory is based on the properties of a ferromagnetic substance placed between
the control gate and the floating gate. FRAM cells typically have a write time of 100 ns per
page and do not require a special erase voltage. However, the number of erase cycles is limited,
and manufacturing FRAM involves processes that are difficult to master. Consequently, it has
been used only rarely in smart card microcontrollers up to now.

Frame

A sequence of data bits and optional error detection bits bounded by frame delimiters. Frames
for contactless data transmission with smart cards are defined in ISO/IEC 14 433.

24 See also Section 3.4.2, ‘Memory types’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 965 of 1123

16.1 Glossary 931

Full duplex

Data transmission method in which each of the communicating parties can transmit and receive
concurrently. (→ half duplex)

Garbage collection

A function that collects memory no longer used by an → application and makes it available
as free memory. In the past, garbage collection was implemented by interrupting regular
program execution. In modern computer systems, garbage collection is a low-priority thread
that constantly searches the memory for regions that are no longer needed and returns them to
the free memory pool.

Geldkarte

Brand name of an electronic purse introduced in Germany in 1996. ‘Geldkarte’ refers to both
the application in a → multiapplication smart card and the smart card itself. The smart card
operating system used for the Geldkarte or debit functionality is → SECCOS.

Glitch

A very short voltage dropout or voltage spike.

Global Platform [Global Platform]

An internationally active association founded in 1999 by various smart card companies to
standardize technologies for → multiapplication smart cards. The most important specification
published by Global Platform is the Open Platform specification (→ OP).

Good case

The case in which a logical decision yields a favorable or intended result.

GPRS (General Packet Radio System)

An extension of → GSM, standardized by → ETSI, for achieving higher data transmission rates
with mobile telephones. GPRS provides a packet-switched connection with a data transmission
rate of up to 115.2 kbit/s by bundling the eight available time slots, each of which has a
capacity of 14,400 bit/s. A mobile telephone with GPRS technology is constantly connected
to the network with respect to data transport and thus always available for data transmission.
The data transmission rate is dynamically adapted to the currently required capacity, so only
the capacity actually needed is used. For this reason, GPRS is very suitable for discontinuous
data transfers.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 966 of 1123

932 Appendix

Granularity

A frequently used alternative term for expressing the page size of an → EEPROM. For example,
an EEPROM with a granularity of 32 has a page size of 32 bytes.

Graybox test

A mixed form combining elements of blackbox and whitebox tests, in which the party per-
forming the test knows some but not all of the internal processes, functions and mechanisms
of the software being tested.

Graylist

A list in a database identifying all → smart cards or devices that are under observation.
(→ blacklist, hotlist, white list)

GSM (Global System for Mobile Communications)

A digital, cellular, interoperable, transnational and ground-based second-generation (→ 2G)
mobile telecommunication system. The frequency bands allocated to this mobile telecommu-
nications system are 900 MHz (GSM 900), 1800 MHz (GSM 1800) and 1900 MHz (GSM
1900). The GSM system is defined by a family of specifications published by → ETSI. The
alliance of the major network operators and manufacturers is the → GSM Association. Origi-
nally, GSM was only planned to be used in certain central European countries as a successor
to country-specific analog mobile telephone systems. However, it has developed into an in-
ternational standard for mobile telecommunication systems. Due to the low data transmission
rates of the GSM system (9600 bit/s and 14,400 bit/s), improvements to the system have be-
come necessary. The evolutionary path of the GSM system with respect to data transmission
capacity thus envisages circuit-switched → HSCSD and packet-switched → GPRS as the
next steps in the further development of the system. Afterwards, the GSM data transmission
rate can be further increased using → EDGE technology. The designated successor to GSM
is → UMTS.25

GSM Association [GSM Association]

An internationally active body for coordinating mobile telecommunications systems, with
offices in Dublin and London. It was founded in Copenhagen in 1987 and is responsible for
the development and use of → GSM standards. The GSM Association represents more than
500 network operators, manufacturers and suppliers in the GSM industry.

25 See also Section 13.3, ‘The UMTS System’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 967 of 1123

16.1 Glossary 933

Guilloches

Decorative patterns of interwoven lines, usually circular or oval, found on many banknotes and
share certificates. Due to their fine structures, these patterns can only be reproduced at high
quality using printing techniques, so they are difficult to copy.

HAL (hardware abstraction layer)

An intermediate layer in an operating system, which is used to conceal all hardware-specific
features of the target platform from the rest of the operating system. The objective of this is
to markedly simplify porting of the operating system, since changing the hardware platform
only requires modifications within the HAL.26

Half-byte

→ nibble

Half duplex

Data transmission method in which each of the communicating parties cannot concurrently
send and receive data. A → full-duplex connection is required for concurrent transmission and
reception.

Handover

In a mobile telecommunication network, the interruption-free transfer of a mobile telephone
from one cell to the next. In GSM, a handover is always initiated by the network.

Happy-day scenario

Another expression for → good case.

Hard mask

The term ‘hard mask’ means that the entire → program code is predominantly stored in ROM
(→ ROM mask). This saves space compared with a soft mask, since ROM cells are significantly
smaller than EEPROM cells. However, it has the disadvantage that the full duration of the
process of producing a customer-specific semiconductor device is required to generate hard-
masked microcontrollers. Consequently, the lead time for a hard mask is significantly longer
than for a soft mask. Hard masks are normally used with large numbers of chips for smart
cards having largely common functionality. The opposite of a hard mask is a → soft mask,
which involves storing essential functions in EEPROM.
26 See also Section 5.2, ‘Basics’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 968 of 1123

934 Appendix

Hash function

A hash function is a procedure for compressing data using a one-way function such that it is
not possible to recompute the original data. A hash function produces a fixed-length result for
an input with any arbitrary length, and it is designed so that any change to the input data has a
very high probability of affecting the computed hash value (output data). SHA–1 is a typical
representative of hash algorithms. The result of a hash function is a hash value, which is often
also referred to as a digital fingerprint.27

HBCI (Home Banking Computer Interface)

A standard defined by the German banking industry for the implementation of home banking
in Germany, with optional smart card support.

Hologram

A photographic exposure made using a holographic process. It produces a three-dimensional
image of the photographed object. The object in the photograph can thus be seen from different
angles, depending on the viewing angle of the observer. The holograms normally used with
smart cards are embossed holograms, which produce reasonably satisfactory three-dimensional
images under normal lighting conditions.

Home net

With respect to a customer of a mobile telecommunications system, the mobile telecommuni-
cation network operated by the company for which he or she is a customer.

Home zone

In a mobile telecommunications network, a→ location-based service in which calls are charged
at a significantly lower rate (normally the fixed-network rate) within a certain region (usually
the immediate vicinity of the user’s residence). As a result, the subscriber may not need to
have a connection to the fixed telephone network.

Horizontal prototype

→ prototype

Hotlist

A database list of → smart cards and devices that probably have been manipulated and must
not be accepted under any circumstances. (→ blacklist, graylist, white list)
27 See also Section 5.2, ‘Hash Functions’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 969 of 1123

16.1 Glossary 935

HSCSD (High-Speed Circuit-Switched Data)

The circuit-switched HSCSD technology is an extension to the GSM standard for increasing the
data transmission rate over the air interface to a theoretical value of 76,800 bit/s (8 × 9600 bit/s)
for uplink or downlink by supplementary utilization of existing time slots. Existing GSM
networks can be extended to support HSCSD at a relatively low cost by upgrading the base
stations and using special mobile telephones. The drawback is that the demand for transmission
channels can increase by as much as factor of eight.

HSM (hardware security module, host security module)

→ security module

HTML (hypertext markup language)

A logical markup language for hypertext documents in the WWW, which is conceptually based
on XML. (→ WML, WWW, XML, hypertext)

Hybrid card

A card having two different card technologies. Cards having both magnetic stripes and chips,
and smart cards with optical storage on the card surface, are typical examples.

Hypertext

Compared with normal text, hypertext has supplementary cross-references (hyperlinks) to other
locations in the text or to other documents. These cross-references can be invoked by suitable
user actions (usually by clicking on them). As opposed to normal linearly structured text, such
as in books, hypertext allows any desired interlinking of texts to be achieved using cross-
references. Typical examples of markup languages for hypertext documents are → HTML
and → WML.

ICC (integrated chip card)

The official ISO name for a card with a chip, which may be a memory chip or a microcontroller
chip.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 970 of 1123

936 Appendix

ID-l card

Standard format for → smart cards as specified by ISO 7810 (length ≈85.6 mm, width
≈54 mm, thickness ≈0.76 mm).28 However, the ID-000 (plug-in) format is predominately
used in the mobile telecommunications area.

Identification

The process of verifying the authenticity of a device or a person by comparing a password
provided by the device or person to a stored reference password. Identification can be considered
to be a special case of → authentication, in which the identity of a person is authenticated.
The method used for identification is sometimes referred to as the → cardholder verification
method.

IEC (International Electrotechnical Commission) [IEC]

The IEC was founded in 1906 and is based in Geneva, Switzerland. Its function is to generate
international standards for electrical and electronics technology.

IFD (interface device)

The official ISO name for a smart card terminal.

Implanter

A production machine for smart cards whose function is to insert modules in the cavities of
smart cards, which is called ‘implanting’ in trade jargon.

Implementation

In the context of software development, producing a program on the basis of a software
architecture defined in the → design stage. Implementation also includes debugging, but not
testing (→ test), which occurs in the subsequent stage in a sequential software development
project.

IMSI catcher

A device that taps GSM conversations by setting up its own cell. An IMSI catcher works by
interposing itself between the mobile telephone and the base station; it represents itself as a
base station with respect to the mobile telephone and as a mobile telephone with respect to the
base station.

28 See also Section 3.1.1, ‘Card formats’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 971 of 1123

16.1 Glossary 937

IMT-2000 (International Mobile Telecommunication 2000)

A concept of the → ITU for third-generation (→ 3G) mobile telecommunications systems
operating in the 2000-MHz frequency band. IMT-2000 arose in 1995 as a successor to the
Future Public Land Mobile Telecommunication Service (FPLMTS), a mobile telecommuni-
cations concept initiated by the ITU in 1985 that failed to be translated into reality as an
international standardized system in its original form. One possible realization of IMT-2000
is → UMTS.

Individualization

→ personalization

Initializer

An entity that performs →initialization.

Initialization

The process of loading the fixed, person-independent data of an → application into EEPROM.
A synonym for initialization is ‘pre-personalization’.

Instrumenting

Introducing special → program code into a program in order to allow the procedures and calls
of the program to be analyzed for test purposes.29

Intelligent memory card

A memory card having additional logic circuitry for supplementary security functions that
monitor memory accesses.

Internal foil

A foil located inside the stack of foils laminated together to make a card body; synonymous
with ‘core foil’. Normally, an internal foil is laminated between two outer (cover) foils, with
these three foils together forming the card body. The internal foil often carries security features
or electrical components, such as the coil for a contactless smart card.

29 See also Section 9.3.3, ‘Dynamic testing of operating systems and applications’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 972 of 1123

938 Appendix

Interoperable

This adjective is used in the smart card world to designate solutions that are not tailored
to a particular smart card → application or the equipment of a particular manufacturer. An
→ open smart card operating system is usually interoperable. The opposite of an interoperable
solution is a → proprietary solution. An example of an interoperable smart card is the SIM,
which can be used equally well in all types of GSM mobile telephones without compatibility
problems.

Interpreter

A program that translates the instructions of a programming language such as Basic or Java
into machine-language instructions that can be executed by a microprocessor, and immedi-
ately executes each instruction after it has been translated. Interpreted programs always run
more slowly than compiled → program code, since the translation occurs at run time. How-
ever, a significantly higher level of hardware independence in programming is possible with
interpreted code than with compiled code.

ISDN (Integrated Services Digital Network)

Designation for an internationally standardized digital telephone network that supports both
telephone conversations and data transmission. An ISDN link consists of two base channels,
each having a transmission rate of 64 kbit/s, and a control channel with a transmission rate of
16 kbit/s.

ISO (International Organization for Standardization) [ISO]

ISO was founded in 1947 and is based in Geneva, Switzerland. Its function is to support
the generation of international standards in order to promote the free exchange of goods and
services. The first ISO standard was published in 1951 and deals with temperatures with regard
to length measurements.

ITSEC (Information Technique System Evaluation Criteria)

A catalog of criteria for the → evaluation and certification of the security of information
technology systems in Europe, published in 1991. The → Common Criteria resulted from
refining the ITSEC and combining the ITSEC with various national criteria.

ITU (International Telecommunications Union)

An international organization for the coordination, standardization and development of global
telephone services, based in Geneva. It is the successor to the CCITT.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 973 of 1123

16.1 Glossary 939

Java

A hardware-independent, object-oriented programming language (→ object-oriented pro-
gramming) developed by the Sun Corporation, which is widely used on the Internet. Java
source code is translated by a compiler into standardized bytecode, which is then usually inter-
preted by a virtual machine based on the target hardware (Intel, Motorola, etc.) and operating
system (Windows, MacOS, Unix, etc.) platforms. There are also microprocessors (such as
picoJava) that can directly execute Java bytecode.

Java card, Java Card

A Java card is a → smart card with a → microcontroller containing a → Java Card virtual
machine and a → Java Card runtime environment. Java cards are → multiapplication smart
cards incorporating the Java Card operating system, which can manage and run programs
written in Java. Strictly speaking, Java Card is not a true → operating system, in part because
the original specification does not include file management. However, in practice Java Card is
considered to be the archetype of an → open smart card operating system.

Java Card Forum [JCF]

An internationally active organization founded by several smart card companies in 1997 to
promote Java Card technology and develop related specifications (→ Java Card).

Java Card runtime environment (JCRE)

The Java Card runtime environment essentially consists of the → Java Card virtual ma-
chine (JCVM) and the Java Card API.

Java Card virtual machine (JCVM)

(→ virtual machine) A simulation of a microprocessor (usually implemented in software)
whose function is to execute Java bytecode and manage Java classes and objects. The Java
Card virtual machine also ensures application separation by means of firewalls and allows
common utilization of data. In principle, it can be regarded as a type of interpreter. A Java VM
implemented using publicly accessible information, i.e. without using additional information
subject to a licensing agreement with Sun, is called a ‘cleanroom VM’. Cleanroom implemen-
tations of the Java VM are generally considered to be free of any obligation to pay licensing
fees to Sun.

Java development kit (JDK)

A collection of software tools supporting the development of Java software.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 974 of 1123

940 Appendix

Kerckhoff’s principle

A principle named after August Kerckhoff (1835–1903) that asserts that the entire security of
a cryptographic algorithm should be based exclusively on the confidentiality of its key, rather
than the confidentiality of the algorithm.

Kernel

The central part of a → operating system, which provides basic operating system functions to
the overlying layers of the operating system.

Key

For a → cryptographic algorithm, the parameter that individualizes the encryption or de-
cryption process. With a symmetrical cryptographic algorithm that is used to ensure security,
the key must be secret, but the public key of an asymmetric cryptographic algorithm may be
generally known.

Key fault presentation counter

→error counter

Key management

Collectively, all administrative functions used for generating, distributing, storing, updating,
destroying and addressing cryptographic keys.

Kinegram

A kinegram shows different images when viewed at different angles. It can show an apparently
‘moving’ image that changes in jerks, or it can show completely unrelated images at different
viewing angles. Kinegrams are similar to holograms, which show three-dimensional images,
but are not identical to them.

Lamination

The process of gluing together thin sheets of material using heat and pressure. Cards are
generally laminated from several plastic foils.

Laser cutter

A device for drilling and cutting, preferably on a semiconductor chip, with a precision of a
fraction of a micrometer using a high-energy laser beam.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 975 of 1123

16.1 Glossary 941

Laser engraving

A process for blackening special plastic layers by ‘burning’ them with a laser beam. This is
also colloquially referred to as ‘lasing’.

Lead-frame module

A type of low-cost module having contacts stamped from a copper alloy electroplated with
a gold film and held together by a plastic mold body. A chip is placed on the lead-frame
module by a pick-and-place robot and electrically bonded to the rear surfaces of the contacts
using wire bonding. After this, the chip is covered by a blob of opaque epoxy resin for its
protection.

Lead-frame process

Currently one of the least expensive ways to produce modules without incurring penalties with
regard to mechanical stability.

Lead time

In semiconductor fabrication, the time between when the mask is provided (→ ROM mask)
and the time when the first samples are ready.

Life cycle

The aggregate of the stages in the life of a → smart card, beginning with the production of the
chip and the card, progressing through → personalization and use and ending with the logical
or physical end of the card’s life. The individual stages in the smart card life cycle are used
to define specific security measures and functionalities. An example of the partitioning of the
life cycle of a card is the→ Open Platform specification.

Life cycle model

A model, sometimes referred to as a process model, that specifies, in abstract form, the orga-
nizational framework, work processes and activities of a development process, including the
associated prerequisites and results. The objective is to achieve a uniform, general-purpose ap-
proach to software development. Some examples of life-cycle models are the waterfall model,
the V model and cyclic development models.30

30 See also Section 15.7, ‘Life-Cycle Models’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 976 of 1123

942 Appendix

Linker

The function of a linker is to convert the symbolic memory addresses of compiled or assembled
program code into absolute or relative memory addresses.

Little-endian

→endianness

Load agent

An entity that loads electronic money into an electronic purse. In a manner of speaking, a load
agent is the counterpart of a service provider.

Loader

A program that can be used to load other programs (→ boot loader), for example via a serial
interface.

Location-based services

Value-added services for mobile telephone subscribers that are based on knowledge of the
subscriber’s current geographic position. Some examples are local weather forecasts, city
maps that are dynamically adapted to the user’s current location and integrated location data
for service calls.

Logical channels

Logical channels allow data to be exchanged concurrently and independently with several
→ applications in a smart card. Although communication with the smart card still takes place
via the single serial interface in the card, logical channels allow the applications in the smart
card that receive the → APDUs to be individually addressed.31

M-commerce (mobile commerce)

Collective term for all types of services, trade and associated financial transactions using
mobile terminals (such as mobile telephones and PDAs). If fixed terminals are used, the term
→ e-commerce is used.

31 See also Section 6.7, ‘Logical Channels’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 977 of 1123

16.1 Glossary 943

M/Chip

The name given to an → EMV-compliant implementation of a chip-based debit/credit card from
Europay and MasterCard. The M/Chip Select version uses both symmetric and asymmetric
cryptographic algorithms and is a superset of M/Chip, which is a simplified version that uses
only symmetric cryptographic algorithms.

MAC (message authentication code)

A cryptographic checksum for data that allows manipulation of the data during transmission
to be detected. An equivalent checksum used to protect stored data is called a CCS (→ cryp-
tographic checksum).

Magnetic card

A commonly used but technically incorrect short form of → magnetic-stripe card.

Magnetic-stripe card

A card with a magnetic stripe for recording and subsequently reading data. The magnetic
stripe usually has three data tracks with different data recording densities. Tracks 1 and 2 are
used only for reading after the card has been issued, but data may also be written to track 3
during normal use. The magnetic substance in the stripe may have either a high-coercivity
characteristic or a low-coercivity characteristic.

Maosco

→ Multos

Mask

An abbreviated form of → ROM mask.

Memory card

A card with a chip that has a simple logic circuit along with memory that can be read and/or
written. Memory cards can also have supplementary security logic units, which for example
can allow the card to be authenticated.

Memory footprint

The structure of memory allocation in a computer system.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 978 of 1123

944 Appendix

Merchant card

In an electronic payment system, a → smart card located in a merchant terminal and serving
as a security module.

Method

In the context of → object-oriented programming, a function used to alter the values of the
→ attributes of an → object, which is generated by the → class of the object.

MexE (Mobile Station Execution Environment)

A Java framework for integrating a Java virtual machine (JVM) into a mobile telephone.
It allows Java programs to be loaded into the mobile telephone and executed. This allows
supplementary applications to be implemented directly in the mobile telephone, rather than in
the SIM (as in current practice).

MF (master file)

The master file of a smart card file system is a special type of DF. It is the root directory of the
file tree and is automatically selected after the smart card has been reset.

Microbrowser

→ browser

Microcontroller

A microcontroller consists of a → microprocessor, volatile memory (→ RAM), non-volatile
memory (→ ROM, → EEPROM, → Flash EEPROM) and suitable interfaces for off-chip
communications, all integrated into a single chip. It is thus a self-contained and fully functional
computer on a single chip. Microcontrollers are primarily used in smart cards and control
technology.

Microprocessor

The most important component of a → microcontroller. The microprocessor resolves the
machine instructions specified by the program code into microinstructions and executes the
microinstructions. A microprocessor contains the registers needed for instruction processing,
a control mechanism and a processing unit. The actual processing unit of a microprocessor
is sometimes simply called the ‘processor’. The term ‘central processing unit’ (CPU) is often
used as a synonym for ‘microprocessor’.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 979 of 1123

16.1 Glossary 945

Microprocessor card

A card containing a → microcontroller with a CPU, volatile memory (RAM) and non-volatile
memory (→ ROM, → EEPROM etc.). A microprocessor card may also contain a numeric
coprocessor (→ cryptoprocessor) to quickly execute public-key cryptographic algorithms.
Such a card is sometimes called a cryptocard or cryptocontroller card.

MILENAGE algorithm

The symmetrical sample algorithm for the f1–f5 (→ f 1) functions of → USIM. The kernel of
the MILENAGE algorithm is based on the → AES.

MKT (Multifunktionales Kartenterminal)

The German abbreviation (and name) of a specification for multifunctional smart card → ter-
minals and the connections to such terminals using the → CT-API interface specification. It
supports both → memory cards and → microprocessor cards. The specification is published
by Teletrust Deutschland.

Module

→ chip module

Module manufacturer

An entity that attaches dice to blank modules and electrically connects each die to the module
contacts.

Mondex [Mondex]

An → electronic purse system using smart cards that allows → purse-to-purse transactions.

Mono-application smart card

A smart card containing only one → application.

Monofunctional smart card

A microprocessor card whose operating system supports only one specific → application, and
which may even be optimized for this application. Such cards provide little or no support for
administrative functions, such as file creation and deletion.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 980 of 1123

946 Appendix

Monolayer card

A card composed of only one layer of plastic (→ multilayer card).

MoU (Memorandum of Understanding)

The common legal basis for all GSM network operators. The organization behind the MoU is
the → GSM Association.

Multiapplication smart card

A smart card containing several → applications, such as a bank card with a phone-card
function.

Multifunctional card (MFC)

Usually, a microprocessor card that supports multiple → applications and has corresponding
administrative functions for storing and deleting applications and files.

Multilayer card

A card made up of several layers of plastic foil, consisting of the outer or cover foils (overlay
foils) and the inner foils (core foils). (→ monolayer card)

Multiple-access method

Any of several methods used in radio communications and information technology to make
a limited frequency bandwidth concurrently or quasi-concurrently available to the largest
possible number of users. The four commonly used multiple-access methods are frequency
division multiple access (→ FDMA), time division multiple access (→ TDMA), code division
multiple access (→ CDMA) and space division multiple access (→ SDMA).32

Multiple-copy sheet

In printing, a collection of small items (such as cards) printed on a single large sheet, which is
divided into individual items after printing. This allows the printing process to be technically
optimized, since many items can be printed in one pass on a large sheet instead of in several
separate passes. For instance, a typical multiple-copy sheet for printing cards holds 42 cards
on a large plastic sheet.

32 See also Section 13.1.1, ‘Multiple-access methods’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 981 of 1123

16.1 Glossary 947

Multitasking

A computer system that supports multitasking allows several programs to be run quasi-
concurrently. Each of the concurrently running programs is usually located in a separate
address space that is protected against access by other programs, and it can exchange data
with other programs only by means of special mechanisms. Multitasking is not the same as
multithreading, in which a single program performs several different tasks quasi-concurrently.
A computer system may support both multitasking and multithreading.

Multithreading

A computer system that supports multitasking allows a single program to perform several
different tasks quasi-concurrently. The individual threads of a program normally use a common
address space. Multithreading is not the same as multitasking, in which several different
programs run concurrently, each with its own separate address space. A computer system may
support both multitasking and multithreading.

Multos

Brand name of an open, multiapplication → smart card operating system (→ open smart card
operating system).33 The Maosco Consortium [Maosco] publishes the specification, licenses
the software and operates the certification services for Multos.

Name space

A set of names in which all of the names are unique.

Native code

A program whose instructions are in the specific machine language of the microprocessor that
executes the program.

NBS (National Bureau of Standards)

The name of the → NIST prior to 1988.

NCSC (National Computer Security Center) [NCSC]

The NCSC is a subagency of the US National Security Agency (NSA). It is responsible for
testing security products and publishing criteria for secure computer systems, including the
TCSEC.

33 See also Section 5.14.2, ‘Multos’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 982 of 1123

948 Appendix

Negative file

→blacklist

Negative result

→bad case

Nibble

The four most significant or least significant bits of a byte; also called a half-byte.

NIST (National Institute of Standards and Technology) [NIST]

A section of the US Department of Commerce responsible for US national standards for
information technology. The NIST, which was called the NBS until 1988, publishes the FIPS
standards.

Noiseless

A property of a → cryptographic algorithm that always takes the same amount of time to
encrypt or decrypt data, irrespective of the → key, plaintext and ciphertext involved. If a
cryptographic algorithm is not noiseless, the size of the key space can be markedly reduced
by analyzing the processing-time characteristics of the algorithm. This allows the key to be
determined significantly faster than by using a brute-force attack.

Non-repudiation

A usually cryptographic method to ensure that the recipient of a message cannot refuse to
acknowledge (repudiate) receipt of the message, thus enabling the sender of the message to
prove that the intended recipient actually received the message. Non-repudiation is similar to
a registered letter with return receipt in an ordinary postal system.

Non-volatile memory

A type of memory (such as ROM, EPROM or EEPROM) that retains its content even in the
absence of power.

NPU (numeric processing unit)

→cryptoprocessor

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 983 of 1123

16.1 Glossary 949

NSA (National Security Agency) [NSA]

The official communications security agency of the US government. It reports directly to the
Department of Defense, and one of its functions is to monitor and decode foreign communica-
tions. Developing new cryptographic algorithms and restricting the use of existing algorithms
also fall under the authority of this agency.

Null PIN

→ 0−PIN

Numbering

Embossing or printing a number on a smart card; typically used in the manufacturing of
anonymous prepaid phone cards to give each card a visible, unique number so it can be
unambiguously identified.

Object

In the context of → object-oriented programming, a software structure that is built according
to the instructions defined by a → class and contains data, which means that it has → attributes
that can be read and altered using the → methods defined in the class.

Object-oriented programming

Object-oriented programming is based on storing all of the data of a software application in
→ objects, which also provide → methods that can be used to read or modify the data. Objects
are defined by → classes. A key aspect of object-oriented programming is that it focuses on
the data to be processed, rather than on the processes as does → procedural programming.
Some typical object-oriented programming languages are C++ and → Java.

OCF (Open Card Framework) [OCF]

The Open Card Framework specification describes a platform-independent, Java-based in-
terface for integrating smart cards into any desired application on a PC. It presupposes the
availability of a suitable driver for each type of terminal to be used with the PC in question,
and that the smart cards are OCF-compatible.

Offcard application

→ application

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 984 of 1123

950 Appendix

Oncard application

→ application

Oncard matching

The ability of a → smart card to compare biometric data measured either oncard or offcard
with reference stored in the smart card for the purpose of user → identification.

One-way function

A one-way function is a mathematical function that is easily computed but whose inverse
function requires a large amount of computational effort.

OP (Open Platform)

Previously Visa Open Platform (VOP); an interface in a smart card operating system, originally
specified by Visa International, that supports the management of smart card applications. The
specification encompasses, among other things, downloading smart card applications, securing
the application life cycle and linking a smart card application to the smart card operating system.
The OP specification is effectively the international industry standard for multiapplication
smart cards and application management. The current publisher of the OP standard is the
Global Platform association.

Open application

An → application in a smart card that is available to a variety of service providers (such as
merchants and vendors of services) without requiring a mutual legal relationship.

Open platform

→open smart card operating system, → OP

Open purse

An instance of an open → application for an → electronic purse. It can be used for general
payment transactions with various service providers.

Open smart card operating system

A → smart card operating system is characterized as being open if it is possible for third parties
to load applications and programs into the smart card and run them in a secure environment,
all without the involvement of the → operating system producer. The three best-known open

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 985 of 1123

16.1 Glossary 951

smart card operating systems are → Multos, → Java Card and → Windows for Smart Cards.
Open smart card operating systems are usually → interoperable, rather than → proprietary.
The term ‘open platform’ is also used to refer to an open smart card operating system, but
it should not be confused with Open Platform (→ OP), which is an interface for managing
applications in smart cards.

Operating system (OS)

An operating system encompasses all of the programs of a digital computer system that, in
combination with the hardware features of the computer system, form the basis for its possible
operational modes, in particular monitoring and controlling the execution of programs.34

Operating system producer

An entity that programs and tests an → operating system.

Optical memory card

A card in which information is ‘burnt’ into a reflective surface layer (similar to a CD).

OTA (over-the-air)

In → GSM and → UMTS systems, OTA refers to the possibility of establishing an → end-
to-end link between the background system and the → SIM via the air interface between the
base station and the mobile station. Such a link makes it possible to (for example) send a
command directly and transparently from the background system to the SIM. OTA is also one
of the foundations for all → value-added services in the SIM, since such services can also
exchange data directly and transparently with higher-order systems via the air interface. The
Short Message Service (→ SMS) is frequently used as the transport service (→ bearer) for
OTA.

Package

Ag →name space in Java Card, and the smallest entity in the Java language. A package may
have classes and interfaces.35

Packet-switched

With a packet-switched link, the sender partitions the data to be exchanged into packages, which
are then transmitted individually to the recipient, possibly via separate paths. The recipient

34 Based on the text of the German DIN 44 300 standard
35 See also Section 5.14.1, ‘Java Card’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 986 of 1123

952 Appendix

then reassembles the packages to recover the original data. Charges for a packet-switched link
usually depend on the amount of data exchanged, rather than the duration of the connection.
Some typical examples of packet-switched links are X.25 and GPRS.

Padding

Extending a data string with filler data in order to bring it to a particular length. This is necessary
if the length of the string must be an integral multiple of a certain block size (such as 8 bytes)
to allow it to be further processed, for example by a cryptographic algorithm.

Page-oriented

A set of bytes in a memory that can only be written or erased as a group. In → smart card
microcontrollers, only EEPROM and Flash EEPROM are page-oriented. Typical page sizes
are 4, 32, 64 and 128 bytes. However, there are now microcontrollers with page sizes that are
variable within a certain range, such as 1–128 bytes, instead of fixed.

Parallel data transmission

The concurrent transmission of several data bits (e.g. 8, 16 or 32) using a corresponding number
of data lines. (→ serial data transmission)

Parity bit

Probably the best-known type of error detection code (EDC) is a parity bit appended to the
byte to be protected. Before the parity bit can be calculated, it is necessary to specify whether
even or odd parity is to be used. With even parity, the value of the parity bit is chosen such that
the total number of bits with a value of 1 in the combined data byte and parity bit is an even
number. With odd parity, the total number of bits with a value of 1 must be an odd number.
With a single parity bit, one incorrect bit per byte can be reliably detected. However, it is not
possible to correct a bit error, since the parity bit does not provide any information about the
location of the altered bit.

Passivation

A protective layer on top of a semiconductor chip that screens it against oxidation and other
chemical processes. The passivation layer must be partially or fully removed before the semi-
conductor can be physically manipulated.

Patch

In software development, a small program, sometimes written in machine code, that extends
or alters the functionality of an existing program. Patches are commonly used to make quick,

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 987 of 1123

16.1 Glossary 953

simple corrections to program errors. They can be implemented either as → work-arounds or
as → bug fixes.

Patent

A document granting an inventor the right to the exclusive exploitation of an invention for a
limited period in one or more countries. The maximum term of a patent is usually 20 years.

Pay before

This expression refers to money flow for cards used in payment systems. With pay-before,
the real money flows out of the cardholder’s account before the goods or services are actually
purchased. A typical example of a pay-before card is an → electronic purse, which the user
must load with electronic money before making purchases. In the telecommunications sector,
this form of payment is called → prepaid.

Pay later

This expression refers to money flow for cards used in payment systems. With pay later, the
real money flows out of the cardholder’s account only some time after the goods or services
are actually purchased. A typical example of a pay-later card is a credit card, for which it may
take up to several weeks after a purchase before the money is transferred from the account of
the purchaser to the account of the merchant.

Pay now

This expression refers to money flow for cards used in payment systems. With pay now, the
real money flows out of the cardholder’s account at the same time as the goods or services are
purchased. A typical example of a pay-now card is a debit card, such as the Eurocheque card,
which allows the money to be transferred from the account of the purchaser to the account of
the merchant at the time that the purchase is made.

PC/SC (Personal Computer/Smart Card) [PC/SC]

The PC/SC specification describes an interface for integrating smart cards into any desired
application, independent of the platform and programming language used. The prerequisites
are that a suitable driver must be available for the terminal used with the PC, and the smart
card must be PC/SC-compatible. Version 1.0 of the ‘Interoperability Specification for ICCs
and Personal Computer Systems’ was published in December 1997.36

36 See also Section 11.4.1, ‘PC/SC’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 988 of 1123

954 Appendix

PCD (proximity coupling device)

A card terminal for communicating with a contactless card. (→ PICC)

Persistent

Attribute of an object that continues to exist after its run time (as opposed to a → transient
object). A persistent object thus continues to exist after the end of a session, as well as after a
sudden loss of power, without any loss of data or data inconsistency.

Personalizer

An entity that performs → personalization.

Personalization

The process of associating a card with a person. This can be done using physical personalization
(e.g. embossing or laser engraving) as well as by electronic personalization (loading personal
data in the memory of the smart card). The term ‘individualization’ would be a more exact
description of this process, since it is not always necessary to enter personal data into the chip
when electronic personalization is performed, for instance in the production of anonymous
→ prepaid SIMs.

Phase 1, Phase 2, Phase 2+

These phases mark the successive evolutionary stages in the development of the GSM system.
In Phase 1, the basic services were realized (including speech transmission, call forwarding,
→ roaming and→SMS). In Phase 2, which began in 1966, the Phase 1 services were augmented
by additional services, including conference calls, call handoff, calling number conveyance and
GSM in the 1800-MHz band. In Phase 2+, these services were extended with the functions of
the → SIM Application Toolkit, HSCSD (High-Speed Circuit-Switched Data) and → GPRS,
among other things.

PICC (proximity integrated-circuit card)

A contactless smart card with a range of approximately 10 cm.

PIN (personal identification number)

A secret number, usually consisting of four digits, used for the → identification of a person.
In the telecommunications world, the designation ‘CHV’ (cardholder value) is usually used
for the PIN.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 989 of 1123

16.1 Glossary 955

PIN pad

Originally, a data-entry keypad with special mechanical and cryptographic protection for use
in a terminal. In general usage, the entire terminal is often called a PIN pad.

PKCS #1/2/. . . /15 (Public Key Cryptographic Standard Number
1/2/. . . /15)

Public-key cryptography specifications published by RSA Inc. that focus on the use of asym-
metric cryptographic algorithms, such as the RSA algorithm.37

PKI (public key infrastructure)

All of the facilities and systems needed to exchange and manage data using asymmetric
cryptographic protection, including a → certification authority, a → registration authority, a
→ directory service for blacklists (→ certificate revocation list), a time-stamp service (→ time
stamp) and → signature cards.

PLMN (public land-mobile network)

Technical term for a terrestrial mobile telecommunications system.

Plug-in card

A small-format smart card as specified in GSM 11.11 and TS 102.221, primarily used in the
mobile telecommunications sector. The official ISO designation for this format is ‘ID000’, in
contrast to the larger ID-1 format (→ ID-1 card) used for common smart cards. A plug-in card
has a length of ≈25 mm, a width of ≈15 mm and a thickness of ≈0.76 mm.38

Polling

Periodic program-driven querying of an input channel in order to detect an incoming message.
Depending on the repetition rate of the queries, polling can require significant processing ca-
pacity, for which reason it is usually avoided in favor of hardware-supported querying using
interrupts. An example of polling is in mobile telephones, where it is used in connnection with
the → SIM Application Toolkit to allow the → SIM to send proactive commands (→ proac-
tivity) to the mobile telephone.

POS (point of sale)

The location where a particular item or service is sold.

37 See also Section 4.7.2, ‘Asymmetric cryptographic algorithms’
38 See also Section 3.1.1, ‘Card formats’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 990 of 1123

956 Appendix

Positive result

→ good case

Postpaid

Refers to money flow for cards used in the telecommunications sector in which the real money
of the cardholder flows only after the service (usually a telephone call or data transmission)
has been received. With regard to their payment function, postpaid cards are comparable to
credit cards. In payment systems, this form of payment is called → pay later.

Power-on reset

→ reset

Pre-personalization

Another name for → initialization.

Prepaid

Refers to money flow for cards used in the telecommunications sector in which the real money
of the cardholder flows before the service (usually a telephone call or data transmission) is
received. With regard to their payment function, postpaid cards are comparable to electronic
purses. In payment systems, this form of payment is called → pay before.

Prepaid SIM

A prepaid and usually reloadable SIM. All billing and reloading functions are usually provided
by the background system, so they have no effect on data objects or functions in the SIM. The
opposite of this is a → postpaid SIM.

Proactivity

A transaction mechanism for smart cards that allows a smart card to independently initi-
ate actions in the terminal. This circumvents the rigid master–slave relationship between
the terminal and the smart card. Proactivity is realized by cyclic polling of the smart card
by the terminal, with the polling interval being configurable in advance by the smart card.
Proactivity originated with SIMs, and it is still predominantly used to allow SIMS to ef-
fectively assume control of certain functions of the mobile telephone in accordance with
GSM 11.14.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 991 of 1123

16.1 Glossary 957

Probabilistic

Designates a process or an algorithm that yields varying results from identical input conditions;
the opposite of → deterministic.

Procedural programming

A programming method based on formulating a program as a series of instructions for a
→ microprocessor. For purposes of simplification, the program flow can be broken down
into functions, with the necessary data being held in variables. A key aspect of procedural
programming is that it focuses on the processes of the program, rather than on the data to be
processed as does object-oriented programming. Some typical programming languages used
for procedural programming are Basic and C.

Process model

Another term for → life-cycle model.

Processor

→ microprocessor

Processor card

A short form of → microprocessor card.

Program code

Designation for a program that can be directly executed by an → interpreter or → micropro-
cessor. (→ native code)

Proprietary

An adjective used in the smart card world, often in a deprecatory sense, to refer to a company-
specific solution whose specifications are not fully public or belong to a single company.
The opposite of a proprietary solution is an open solution, which can also be used by third
parties. However, these terms are used in a far from unambiguous manner. Seen objectively,
many ‘open’ smart card operating systems are rather proprietary and dependent on a single
company. An example of a proprietary smart card → application would be an electronic purse
system for use in a specific area that does not comply with relevant specifications and that has
been developed by a particular company as a special solution.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 992 of 1123

958 Appendix

Protection profile (PP)

In the context of an → evaluation, an implementation-independent set of security requirements
(→ security target) adapted to particular application areas for specific → targets of evaluation.

Proton [Proton]

Brand name of an internationally used electronic purse system with approximately 50 million
issued cards (as of spring 2002). The specifications for Proton also define a multiapplication
→ smart card operating system.

Prototype

A (software) prototype is an executable model of the ultimate product with restricted func-
tionality. It is used to experimentally investigate specific properties of the ultimate product.
A horizontal prototype implements only one or more specific layers of the software, while a
vertical prototype implements a specific portion of the software across all of the layers.

Pseudonymization

The process of modifying person-specific data using an assignment rule such that it is afterwards
not possible to associate the data with the original persons without knowing the assignment
rule. The term is based on the fact that in the simplest case, the original name of each person
is replaced by a unique pseudonym. A separate assignment table (the assignment rule) can be
used to restore the links between the pseudonyms and the original names. (→ anonymization)

PSTN (public switched telephone network)

Designates the regular public wire-bound telephone network.

Public-key algorithm

→ cryptographic algorithm

PUK (personal unblocking key)

A special → PIN for resetting a PIN error counter that has reached its maximum value. A
PUK is usually longer than a PIN (e.g., 8 digits), since users do not need the PUK unless they
have forgotten the PIN, at which time they can search for it in their documents. If the PUK is
successfully used, a new PIN is established at the same time, since the old PIN is evidently no
longer known to the user.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 993 of 1123

16.1 Glossary 959

Pull technology

Information transfer resulting from fetching information from a higher-level system (such as a
server) by a lower-level system (such as a mobile telephone). The opposite to pull technology
is → push technology.

Purse holder

A person possessing a → smart card containing an electronic purse.

Purse provider

The entity responsible for the overall functionality and security of an electronic purse system.
This is usually the issuer of the electronic money for the cards. The purse provider normally
also guarantees the redemption of the electronic money.

Purse-to-purse transaction

Transfer of electronic monetary units from one electronic purse directly to another, without
intervention by a third, higher-level system. Normally, such capability requires the purse system
to operate anonymously and the electronic purses to use a single common key for this function.

Push technology

Information transfer resulting from sending information from a higher-level system (such as a
server) to a lower-level system (such as a mobile telephone). The opposite to push technology
is → pull technology.

Quick

Brand name of an electronic purse system introduced throughout Austria in 1995. The essential
components of the Quick system are based on EN 1546, which is the European standard for
interoperable electronic purse systems.39

Radicchio [Radicchio]

An international initiative of companies and organizations for developing mobile → e-
commerce solutions using the → PKI.

39 See also Section 12.3.1, ‘The CEN EN 1546 standard’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 994 of 1123

960 Appendix

RAM (random-access memory)

A type of volatile memory, which is used in smart cards as working memory. RAM loses its
content in the absence of power. SRAM and DRAM are types of RAM with special technical
properties.40

Record

A record (data set) is a specific quantity of data, similar to a string.

Redlist

→hotlist

Registration authority (RA)

An entity in the → PKI that receives requests for certification from requesting parties and
forwards them to the → certification authority after verifying the authenticity of the request-
ing parties. A registration authority is thus the entity that generates a unique assignment of
certificates to persons.

Remote applet management

The management (creation, deletion etc.) of → applets in a smart card by a background system.
For example, in various → GSM systems applets can be loaded into a SIM or deleted from a
SIM via the air interface.

Remote file management

The management (creation, deletion, writing, reading, modification of access conditions etc.)
of files in a smart card by a background system. For example, various → GSM systems allow
new files to be created in a SIM and data to be written to these files, all via the air interface.

Reset

Restoring a computer (in this case, a smart card) to a clearly defined initial state. A cold reset,
or power-on reset, is initiated by switching the supply voltage off and then on again. A warm
reset is initiated by a signal on the reset lead of the smart card without altering the supply
voltage.

40 See also Section 3.4.2, ‘Memory types’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 995 of 1123

16.1 Glossary 961

Response

→command

Response APDU

A reply sent by a → smart card in response to a → command APDU received from a terminal
(→ command). It consists of optional response data and a mandatory 1-byte portion containing
status words SW1 and SW2 (→ APDU).41

Reticule

→ROM mask

Retry counter

→error counter

Roaming

Accessibility of a mobile telephone in a network other than its → home net.

Roll back

Functionality of an operating system for maintaining data consistency in the event of an error or
abnormal termination. With roll-back functionality, the data used in an improperly executed or
aborted operation are replaced by the original data. This process can be initiated automatically
or on demand, and in smart card operating systems it is often implemented using → atomic
operations. Another strategy for maintaining data consistency is → roll-forward functionality.

Roll forward

Functionality of an operating system for maintaining data consistency in the event of an error or
abnormal termination. With roll-forward functionality, in the event of an improperly executed
or aborted operation the data that are available but inconsistent are fed back into the operation
in such a way that on completion, they are again consistent. This process can be initiated
automatically or on demand, but it is rarely implemented in smart card operating systems
due to their high security requirements. Another strategy for maintaining data consistency is
→ roll-back functionality.

41 See Section 6.5, ‘Message Structure: APDUs’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 996 of 1123

962 Appendix

ROM (read-only memory)

A type of non-volatile memory, which is used in smart cards. It is mainly used to store programs
and static data, since the content of a ROM cannot be altered.42

ROM mask

In ordinary language, this term is used in a highly context-specific manner. The original
meaning of ‘ROM mask’ is an exposure mask used in semiconductor fabrication to produce
the ROM. However, the term ‘mask’ is only used when the mask is not reduced in scale when
exposing the → wafer. If the structures are reduced in scale for imaging onto the wafer, the
mask is referred to as a ‘reticule’.

The expression ‘mask’ is also used in connection with → smart card microcontrollers to
refer to the data content of the ROM, and in some cases it is even synonymous with the entire
→ smart card operating system (→ soft mask,→ hard mask).

ROMed application

A smart card application that is not located in the EEPROM, but instead is permanently located
in the mask-programmed ROM of the → smart card microcontroller.

Round-trip engineering

A software development method in which the design and implementation activities are per-
formed concurrently so that they influence each other. The software architecture and program
code are automatically kept mutually consistent using software. This process is based on a for-
mal modeling language (such as UML), from which at least the basic body of the program is
generated using automatic program code generation. The insights and improvements obtained
by refining and testing this program code flow back into the modeling of the program via a
reverse engineering process. It is possible to produce software based on ‘practical experience’
in a relatively short time, with source code that is consistent with the software architecture,
by cycling through this code generation / reverse engineering loop several times. Round-trip
engineering is almost exclusively used with object-oriented languages (e.g. C++ and Java) in
combination with UML.

RSA (Rivest, Shamir, Adleman)

The best known and most widely used asymmetric cryptographic algorithm. It was published
by Ronald L. Rivest, Adi Shamir and Leonard Adleman in 1978, and its name comes from the
initial letters of the last names of its authors. Its very simple operating principle is based on
the arithmetic of large integers.43

42 See also Section 3.4.2, ‘Memory types’
43 See also Section 4.7.2, ‘Asymmetric cryptographic algorithms’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 997 of 1123

16.1 Glossary 963

R-UIM (removable user identity module)

The usual designation for a CDMA-specific smart card. It is an optional security module that
can be present in removable form in a mobile telephone of the CDMA 2000 mobile telecommu-
nication system. The functionality of the R-UIM is similar to that of the → SIM, although the
CAVE (cellular authentication, voice privacy and encryption) cryptographic algorithm is used
for a large number of cryptographically secured functions in the R-UIM. A UIM Application
Toolkit (UATK) based on the SIM Application Toolkit is also specified for the R-UIM.

Rule-based programming

A programming method based on formulating general rules to be applied to the problems to
be solved. A computer can then independently solve these problems by using the rules. A key
aspect of rule-based programming is that it does not focus on processes, as does → procedural
programming, or the data to be processed, as does → object-oriented programming, but only
on general rules. Some typical rule-based programming languages are Lisp and Prolog.

Salt

A random sequence used to extend a password in order to hinder dictionary attacks on stored
passwords.

SAM (secure application module)

→security module

Sandbox

→virtual machine

SCOPE (Smart Card Open Platform Environment)

Specification for a type of → HAL (hardware abstraction layer) for → Global Platform.

Scrambling

A jumbled arrangement of the address, data and control busses on a microcontroller chip,
such that it is not possible to recognize the functions of individual bus lines without inside
information. With static scrambling, the busses of a given series of chips are all scrambled in
the same way, while with dynamic scrambling, the busses are scrambled differently for each
individual chip or even each individual session.44

44 See also Section 8.2.4.1, ‘Attacks at the physical level’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 998 of 1123

964 Appendix

Scratch card

A card in the usual → ID-1 format but thinner than usual, with a secret number printed
underneath an opaque cover layer that can be scratched off. This cover layer acts as a seal that
allows the integrity of the card to be visually checked before it is used. The functional purpose
of a scratch card is similar to that of a PIN letter. Scratch cards are often used as vouchers for
distributing one-time passwords for reloading → prepaid SIMs.

Script

Any interpreted program that is primarily used to implement a simple, short application or
automate a frequently repeated procedure.

SDMA (space division multiple access)

A multiple-access method for concurrently transferring data from several transmitters to a
receiver using a single frequency. For this purpose, the transmitters use directionally selective
aerials aimed at the receiver in question. Due to the high cost of this method, in mobile
telecommunication systems it can only be used with base stations, for instance using array
aerials (adaptive aerials).45

SECCOS (Security Card Operating System)

A multiapplication → smart card operating system used for German Eurocheque cards with
chips and → Geldkarte.

Secret-key algorithm

→ cryptographic algorithm

Secure messaging

All methods, protocols and cryptographic algorithms used to protect → smart card data trans-
missions against manipulation and tapping.46

Security environment (SE)

In a smart card, a designation for a logical container holding a set of fully defined security mea-
sures used by → commands related to security or used for → secure messaging. Security envi-
ronments are very suitable for items such as technical measures used to ensure the security of

45 See also Section 13.1.1, ‘Multiple-access methods’
46 See also Section 6.6, ‘Securing Data Transmission’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 999 of 1123

16.1 Glossary 965

the various stages of the → life cycle of a smart card. In the simplest case different security
environments would be defined for the personalization and subsequent use of the card, so that
different file → access conditions would be specified for the different stages of the smart card
life cycle. Write access would be allowed to all files for personalization, but for normal use
the access conditions would be specified according to the actual → application.

Security module

A component that is secured both mechanically and computationally and is used to store secret
data and execute cryptographic algorithms. It is also known as a secure application module
(SAM), hardware security module (HSM) or host security module (HSM).

Security target

In the context of an → evaluation, security targets describe the mechanisms to be tested for the
→ target of evaluation. They thus represent a sort of requirements catalog for the evaluation.
The security targets for specific types of targets of evaluation and specific application areas
for targets of evaluation can be described using → protection profiles.

Seed number (seed)

A random number used as the initial value for a pseudorandom number generator.

Sequence control

A method for specifying a compulsory sequence of activities. For example, the correct sequence
of → commands for mutual authentication of a → smart card and a background system can
be enforced using sequence control in the smart card. This is done by specifying the states
and state transitions of a state machine in the → smart card operating system that defines the
command sequence that must be followed.47

Serial data transmission

A type of data transmission in which individual data bits are sent sequentially along a data
line. (→ parallel data transmission)

Service provider

In a smart card system, an entity offering services that are used and paid for by a user. In the
case of an electronic purse system, a service provider is an entity that receives money from the
electronic purse of a purse holder in exchange for goods or services.

47 See also Section 5.8, ‘Sequence Control’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1000 of 1123

966 Appendix

Session

The time between the activation and deactivation sequences of a smart card, during which both
the complete data exchange and the necessary computational mechanisms occur.

SET (Secure Electronic Transaction Standard)

A financial transaction protocol for secure payment via the Internet using credit cards, published
by Visa and MasterCard in 1966. SET doe not compel the payer to have a smart card, since it
can be implemented fully in software on a PC. An extension of SET called Chip-SET (C-SET)
is presently only used inside France and not yet internationally standardized.

Shall, should & may

These auxiliary verbs are often found in international standards. Their meanings in this context
are precisely defined and differ in part from their lax usage in common speech. ‘Shall’ means
that the item in question must be implemented in accordance with the description. ‘Should’,
although it may appear to be a recommendation, actually means that the described item is to
be provided or complied with if at all possible. Only ‘may’ provides a true opportunity for
choice with regard to implementation.

Shared secrets

A principle according to which no single person knows everything about a particular system.
The intentional distribution of knowledge avoids making individual persons subject to attack,
as well as preventing individual persons from acquiring excessive power over a system due to
their knowledge. Distributing knowledge over several persons is a commonly used technique
in the development of security components.

Short FID (SFI)

A 5-bit identifier for an EF that can have a value of 1 through 31. It is used with a write or read
command (such as READ BINARY) to implicitly select an EF in a smart card.48

Shrink

Refers to reducing the surface area of a semiconductor chip by using a semiconductor tech-
nology with a smaller structure width. A smaller chip surface area allows a larger number
of chips to be placed on an individual wafer. This in turn reduces the cost of the individual
semiconductor chips, since the chip price is approximately proportional to the amount of space
occupied by the chip on the wafer.

48 See also Section 5.6.2, ‘File names’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1001 of 1123

16.1 Glossary 967

Shutter

A mechanical device in a terminal that severs any wires leading out of the terminal from the
card. This is intended to prevent manipulation of communications. If the wires cannot be cut,
the inserted smart card will not be electrically activated.

Signal burst

A cohesive data packet transmitted between a base station and a mobile station via the air
interface. Frequently simply referred to as a burst.

Signature Act

In general, a legislative act that governs the use of → digital signatures. In Germany, this is
understood to mean the Signaturgesetz (SigG), or in full the Gesetz über Rahmenbedingungen
für elektronische Signaturen of 22 May 2001. This Act prescribes the general conditions
for the use of digital signatures in Germany,49 which are given more concrete form in the
→ Signaturverordnung.

Signature card

A →smart card with a →microcontroller whose principal function is to secure the storage
and use of secret keys for →digital signatures.

Signaturgesetz (SigG)

The legislative act that governs the use of digital signatures in Germany (→Signature Act).

Signaturverordnung (SigV)

The German Signaturverordnung (Digital Signature Ordinance) of 1997,8 October, translates
the general conditions prescribed by the → Signaturgesetz into concrete terms to the extent
necessary to allow lists of specific measures to be generated as recommendations for the prac-
tical use of digital signatures. For example, the Signaturverordnung describes the necessary
procedure for generating signature keys and identification data, as well as the necessary secu-
rity concepts and the necessary testing stages for the signature components according to the
ITSEC.50

49 See also Section 14.4, ‘Digital Signatures’
50 See also Section 14.4, ‘Digital Signatures’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1002 of 1123

968 Appendix

SIM (subscriber identity module)

The usual designation for a GSM-specific smart card.51 It is a mandatory security module that
is present in mobile telephones in an exchangeable form. It may be the same size as a standard
credit card (ID-1 format), or it may be a small plug-in card in the ID-000 format. The SIM
bears the identity of the subscriber, and its primarily function is to secure the authenticity
of the mobile station with respect to the network. Additional functions include executing
programs with protection against manipulation (authentication), user identification (using a
PIN) and storing data, such as telephone numbers. The equivalent of the SIM in the UMTS is
the → USIM.52

SIM Alliance [SIM Alliance]

A consortium founded in 1999 by Gemplus, G + D, ORGA and Schlumberger in order to allow
services developed for WAP to also be used with non-WAP-capable mobile telephones. For this
purpose, the SIM must have a SIM-Alliance-capable browser and the mobile telephone must
support GSM Phase 2+.This allows the → SIM to control the mobile telephone via the → SIM
Application Toolkit to the extent that the majority of WAP contents and their functionality can
be reproduced on the mobile telephone.53

SIM Application Toolkit (SAT; also STK (uncommon and outdated))

An extension to the GSM 11.11 specification, resembling a construction set and standardized
in GSM 11.14, that allows the SIM to assume an active role in controlling the mobile tele-
phone. For example, with the SIM Application Toolkit a SIM can output items to be shown
on the display, request keypad entries and send and receive messages via the air interface.
The SIM Application Toolkit forms the basis for most supplementary applications in mobile
telephones. The equivalent of the SIM Application Toolkit for the UMTS is the → USIM
Application Toolkit (USAT),54 and for the → R-UIM the equivalent is the UIM Application
Toolkit (UATK). The future generic foundation for all application toolkits for smart cards
used in mobile telecommunications will be the Card Application Toolkit (CAT) defined by the
→ EP SCP expert group.

SIM Lock

A technique that firmly links a particular → smart card (a → SIM) to a particular mobile
telephone. It involves either having the mobile telephone read certain data from the SIM and
compare them with data stored in the mobile telephone, or having the SIM read unique data
from the mobile telephone and compare them with stored data. If the data match, the mobile
telephone can be used. It is generally possible to disable the SIM Lock function via the air

51 See also Section 13.2, ‘The GSM System’
52 See also Section 13.3, ‘The UMTS System’
53 See also Section 13.5, ‘The WIM’
54 See also Section 13.3, ‘The UMTS System’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1003 of 1123

16.1 Glossary 969

interface or by entering a secret key using the keypad of the mobile telephone, in order to allow
other smart cards to subsequently be used. The SIM Lock function is used to bind a mobile
telephone subsidized by a network operator to a particular smart card and its payment mode
(→ prepaid) for a certain length of time.55

SIM toolkit

Short for → SIM Application Toolkit.

SIMEG (Subscriber Identification Module Expert Group)

SIMEG was an expert group founded in 1988 that developed the specification for the interface
between the smart card and the mobile telephone (GSM 11.11) under the authority of the
→ ETSI. In 1994, the name of the group was changed to → SMG9.

Simulator

Software that imitates the operation of a device (a target system). By contrast, an imitation
using hardware is called an → emulator. Simulators are frequently used in developing soft-
ware for target systems that do not yet exist. For instance, a smart card simulator consists of
software that fully imitates a real smart card on the logical level. Simulators are generally
slower than emulators, which means that they often cannot simulate the target system in real
time.

Single sign-on (SSO)

A technique in which several different user identities for various applications are replaced by a
single central user identity. This is realized using software that sends the corresponding iden-
tification names (→ identification) and passwords to the associated identification authorities
on successful completion of central user identification. This avoids the need for the user to
remember many different passwords.

Skimming

A typical type of attack on magnetic-stripe cards. It involves illicitly reading the magnetic-
stripe data from a card not belonging to the attacker and copying it to the magnetic stripe of
a blank card, which can then be used in the same way as the original card with respect to its
magnetic stripe.

55 See also Section 13.2, ‘The GSM System’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1004 of 1123

970 Appendix

Smart card

Strictly speaking, the term ‘smart card’ is an alternate name for a microprocessor card, in that
it refers to a chip card that is ‘smart’. Memory cards thus do not properly fall into the category
of smart cards. However, the expression ‘smart card’ is generally used in English-speaking
countries to refer to all types of cards containing chips.

Smart card application

→ application

Smart card microcontroller

A → microcontroller specifically optimized for the needs of smart cards. These optimiza-
tions primarily relate to chip security aspects (e.g., protective layers and detectors), chip size
and special functional units for requirements specific to smart cards (such as a UART for
communications).

Smart card operating system

Often also referred to as ‘card operating system’ (COS). A specialized form of → operating
system tailored to the needs of smart cards, encompassing all programs in a → smart card
microcontroller that allow smart card → applications to be used and managed. For this purpose,
the data, files, → commands, processes, states, mechanisms, algorithms and programs needed
by one or more programs must be supported in a suitable manner. If a smart card operating
system allows several applications to be run concurrently, it is called ‘multiapplication capable’.
The trend in the development of smart card operating systems is toward → open smart card
operating systems. Some typical examples of smart card operating systems are → Multos,
→ Java Card, → Windows for Smart Cards and → STARCOS.

Smart label

A data storage medium with a thin construction using contactless data transmission for com-
munications. With the simplest versions, many of which do not contain chips, it is only possible
to read data from the smart label. More sophisticated types of smart labels also allow data to
be written to the label and/or processed in the label, similar to the functionality of a → smart
card.

Smart object

A → smart card microcontroller packaged in a form other than the usual card. Some examples
of smart objects are USB plugs and rings fitted with smart card microcontrollers.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1005 of 1123

16.1 Glossary 971

Smartcard [Groupmark]

The term ‘Smartcard’ is a registered trademark of the Canadian company Groupmark.

SMG9 (Special Mobile Group 9)

SMG9 was an expert group operating under the authority of the → ETSI that developed
specifications for the interface between the smart card and the mobile telephone (e.g. GSM
11.11, GSM 11.14 and so on). It was composed of representatives of card manufacturers,
mobile telephone manufacturers and network operators. It was previously called → SIMEG.
In 2000, SMG9 was dissolved and its tasks were divided between two new expert groups. The
3GPP T3 expert group is responsible for the application-specific interface between the mobile
telephone and the → SIM or → USIM, while the ETSI Smart Card Platform (EP SCP) expert
group deals with all generic topics in the area of smart cards used in the telecommunications
sector.

SMS (short message service)

A GMS service for sending short messages having a maximum length of 160 alphanumeric
characters. SMS messages are sent via the signaling channel instead of the data channel, which
means that they can also be sent and received during an active telephone conversation. SMS
is used not only for conveying short messages for subscribers, but also as a → bearer service
for transmitting data to the mobile telephone (e.g., → WAP) or the SIM (→ OTA).

Soft mask

The term ‘soft mask’ means that part of the program code of the → smart card operating
system is located in EEPROM and built on top of the code stored in ROM. Routines stored in
EEPROM can be easily modified by overwriting, which means that they are ‘soft’. The term
‘mask’ in this case is actually not correct, since it is not necessary to produce a semiconductor
exposure mask for program code stored in EEPROM. Soft masks are typically not used for
large quantities of cards, rapid → prototyping or extensions, but instead for applications such
as field trials. The opposite of a soft mask is a → hard mask, which means that all of the
essential functions are stored in the ROM.

Software specification

An unambiguous, complete and non-redundant description of a software item. Its content
must not include anything subject to interpretation, and it must be comprehensible to all reader
groups having various functions (developers, testers, QA officers etc.) within an acceptable
length of time.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1006 of 1123

972 Appendix

SPA (simple power analysis)

A method for attacking smart cards that involves measuring the current consumption of a
microcontroller with high time resolution. Conclusions about the internal processes and the
data processed within the microcontroller can be drawn from its current consumption. SPA
was made known in June 1998 in a publication by Paul Kocher, Joshua Jaffe und Benjamin
Jun [Kocher 98] (→ DPA).56

SPA/DPA-resistant

Property of a cryptographic algorithm that does not allow the secret key being used to be
determined using → SPA or → DPA.

Specification

In this book, and generally speaking, the term specification is used to refer to any document
that resembles a standard but is generated or issued by (for example) a company or an industrial
group, rather than by a national or international standards authority. (→ standard)

SRAM (static random-access memory)

A static RAM needs a constant supply of power to retain its contents, but it does not have to
be periodically refreshed like DRAM. The access time of SRAM is less than that of DRAM,
but SRAM occupies more space on the chip and is thus more expensive.57

Stack

A data structure in which the most recently entered data object is the first to be retrieved (last
in, first out – LIFO). Probably the best-known stack is the program stack, which is used to hold
return addresses when subroutines are called.

Standard

A document containing technical descriptions and/or precise criteria used as rules and/or
definitions of characteristics and features in order to ensure that materials, products, processes
and services can be used for their intended purposes. In this book, the term ‘standard’ is
consistently used in connection with a national or international standards authority (such as
ISO, CEN, ANSI or ETSI).

56 See also Section 8.2.4.1, ‘Attacks at the physical level’
57 See also Section 3.4.2, ‘Memory types’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1007 of 1123

16.1 Glossary 973

STARCOS

Brand name of a multiapplication → smart card operating system from Gieseke & Devrient
[GD], available in various versions since 1991.

State machine

A part of a program that specifies a sequence of events by means of a predefined state diagram,
which consists of specific states and state transitions.

Steganography

The objective of steganography is to conceal messages within other messages such that they
cannot be perceived by a naı̈ve observer (man or machine). For example, a text could be
encoded and hidden in an image file in such a way that it only marginally modifies the image,
so the changes to the image are practically invisible (→ digital watermark). With a suitable
analysis program, the text message (such as a copyright text) hidden in the image file can
subsequently be reconstructed and again made visible.

Super smart card

A smart card with integrated complex card elements, such as a display or keypad.

Symmetric cryptographic algorithm

→ cryptographic algorithm

Synchronous data transmission

A form of data transmission in which data transmission depends on a predefined timing refer-
ence. This timing reference may for example be derived from the clock signal applied to the
chip. (→ asynchronous data transmission)

System on card

In the smart card realm, a designation for a smart card containing supplementary card com-
ponents in addition to the chip module. Commonly used supplementary components include
displays, power sources (batteries and solar cells), keypads, aerials, sensors for biometric user
identification (e.g., fingerprint readers) and loudspeakers. These card components can be driven
from within the chip in the module, but this is not mandatory. Another designation for such
cards is ‘super smart card’, although this is used less often.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1008 of 1123

974 Appendix

T = 0

A transmission protocol governing data transmission between a terminal and smart card. The
T = 0 protocol was the first internationally standardized transmission protocol for smart cards.
It is a byte-oriented half-duplex protocol that operates asynchronously and is designed for
minimum memory usage and maximum simplicity. It is used internationally for GSM cards,
and is thus the most widely used of all smart card protocols. The T = 0 protocol is specified
in the ISO/IEC 7816-3 standard. Compatible specifications are present in GSM 11.11, TS
102.221 and the EMV specification documents.

T = 1

A transmission protocol governing data transmission between a terminal and smart card. It is
a block-oriented half-duplex protocol that operates asynchronously and provides separation
between the data transport and application layers. The T = 1 protocol is specified in the
ISO/IEC 7816-3 standard. Compatible specifications are present in TS 102.221 and the EMV
specification documents.

T3

→SMG9

Tag

Identifier for a data object, primarily used in ASN.1 coding.58

Tape out

The time at which the chip design is completed and the resulting design data are passed to
mask generation (→ ROM mask). This is an important milestone in chip production. The term
comes from the fact that the mask data were formerly output to magnetic tape.

Target of evaluation (TOE)

The IT system to be evaluated (→ evaluation), or in other words, the object under test. For
example, a TOE could be a microcontroller smart card (→ smart card microcontroller) with
integrated software that must meet certain → security targets.

TCSEC (Trusted Computer System Evaluation Criteria)

A catalog of criteria for the development and → evaluation of the security of information
technology systems in the US, published in 1983 by the National Computer Security Center

58 See also Section 4.1, ‘Structuring Data’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1009 of 1123

16.1 Glossary 975

(→ NCSC). The successor to the national TCSEC is the internationally applicable → Common
Criteria.

TD/CDMA (time division / code division multiple access)

→CDMA

TDES

→triple DES

TDMA (time division multiple access)

A multiple-access method for the quasi-concurrent transfer of data from multiple transmitters
to a receiver using a single frequency. For this purpose, each transmitter is allocated a particular
time slot for its exclusive use, which requires very precise synchronization. TDMA is used
together with FDMA in GSM systems for the air interface between mobile telephones and
base stations.59

Terminal

The counterpart to a smart card. A device, possibly having a keypad and display, that provides
electrical power to the smart card and enables it to exchange data. The official ISO designation
for a smart card terminal is ‘interface device’ (IFD), while in the financial transaction realm
the usual designation for a terminal is ‘card accepting device’ (CAD).

Test

Development stage in which an already debugged program is methodically tested for proper
functionality and compliance with the requirements established in the → analysis stage. The
primary objective is not searching for errors in the program, but instead verifying the required
functions. Testing is thus not the same as → debugging.

TETRA (Terrestrial Trunked Radio; previously Trans-European
Trunked Radio)

Specification for a digital trunked radio system operating in the 380–420-MHz band using →
TDMA, published by ETSI. Like → GMS, TETRA envisages the use of a → SIM, usually
called a TETRA SIM, for subscriber identification. However, the TETRA SIM is optional and
thus can be implemented in the form of software in the mobile station.

59 See also Section 13.1.1, ‘Multiple-access methods’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1010 of 1123

976 Appendix

TETRA SIM

→TETRA

Thread

→multithreading

Time stamp

An attestation generated by an agency and bearing the digital signature of that agency, to the
effect that certain digital data were present at this agency at a particular time.

TLV format

Commonly used expression for → BER-coded data objects conforming to → ASN.1, in which
a prefixed label (tag) and length parameter (length) are used to uniquely describe a data item
(value).

TPDU

→APDU

Transaction

A set of related → commands sent sequentially to a smart card in order to perform a specific
task. A typical example of a transaction is the sequence of commands used to load an electronic
purse.

Transaction number (TAN)

In contrast to a PIN, a TAN is valid for only one transaction, which means it can be used only
once. The user typically receives several TANs printed on a slip of paper (as a list of five-digit
numbers, for example), and these numbers must be used exactly in the prescribed order for
individual transactions or sessions.

Transfer card

A → smart card used as a transport medium to exchange data between two entities. It has a
large data memory and usually contains authentication keys for verifying whether the data to
be transferred are allowed to be read or written by the entity in question.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1011 of 1123

16.1 Glossary 977

Transient

Property of an object that exists only during the run time of a process; the opposite of → per-
sistent.

Transmission protocol

In the smart card world, ‘transmission protocol’ refers to the mechanisms used for transmitting
and receiving data between a terminal and a smart card. A transmission protocol describes in
detail the OSI protocol layers used, data exchange in the good case, error detection mechanisms
and response mechanisms in the event of errors.60

Transport protocol

An alternate and less commonly used name for → transmission protocol.

Trap door

A mechanism or algorithm intentionally included in software that can be used to bypass security
functions or protective mechanisms.

Triple-band mobile telephone

A mobile telephone that can work in three frequency bands (e.g., GSM 900, GSM 1800 and
GSM 1900).

Triple DES

Also known as TDES and 3 DES; a modified form of DES encryption consisting of invoking
the DES algorithm three times in succession with alternating encryption and decryption. If the
same key is used for all three DES invocations, triple-DES encryption corresponds to normal
DES encryption. However, if two or three different keys are used, triple DES encryption is
significantly stronger than single DES encryption.61

Trivial PIN

A → PIN that is easily guessed, such as “1234” (→ 0-PIN).

60 See also Chapter 6, ‘Smart Card Data Transmission’
61 See also Section 4.7.1, ‘Symmetric cryptographic algorithms’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1012 of 1123

978 Appendix

Trojan horse

Historically, the wooden horse that allowed Odysseus to gain entry to the strongly fortified
city of Troy. In modern usage, a program that performs a specific ‘foreground’ task, but which
can also perform other functions unknown to the user. A Trojan horse is introduced purposely
into a computer system or host program. In contrast to a virus, it cannot reproduce itself.

Trust center (TC)

Besides the → signature card, the essential component of a → PKI. A trust center is the
entity that generates, distributes and administers certificates. Depending on its constitution,
it thus provides the functions of a → certification authority, a → registration authority, a
→ verification service and/or a → time stamp service.

Trusted third party (TTP)

A party recognized by two or more other parties as trustworthy, which may for example issue
→ certificates.

Tunneling

A technique for establishing a cryptographically secured end-to-end link between two parties
using the communications paths of one or more other parties that do not modify the information
content of the actual data exchange.

UART (universal asynchronous receiver/transmitter)

A general-purpose component operating independently of a → microprocessor to asyn-
chronously transmit and receive data. When a UART is used, it is not necessary for the
microprocessor to handle communications at the bit and byte level. This leads to a simpli-
fication of the communications protocol, and it can also result in higher data transmission rates
than what can be realized by the microprocessor using a pure software solution.62

UCS (Universal Character Set)

An extension of the ASCII and Unicode encodings of character sets, specified in the ISO/IEC
10 646 international standard. UCS uses 32 bits for character encoding, although only half of
the available address space is used (232/2 = 2,147,483,648). This address space is sufficient to
represent all characters of all of the languages in the world. UCS is defined such that → Unicode
forms a subset of UCS, and the encoding of the first 128 characters corresponds to the ASCII
encoding.63

62 See also Section 3.4.3, ‘Supplementary hardware’
63 See also Chapter 4.2, ‘Coding Alphanumeric Data’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1013 of 1123

16.1 Glossary 979

UICC (universal integrated chip card)

A smart card having a → smart card operating system in accordance with ISO/IEC 7816
that is optimized for telecommunications applications. The UICC is based on the TS 102.221
standard, which is published by → ETSI. The UICC forms the basis for the → USIM. It
may have the usual credit-card dimensions or be made as a small plug-in card in ID000
format.

UIM (user identity module)

An outdated term for → USIM.

UML (Unified Modeling Language) [OMG]

A graphically oriented, method-independent modeling language for abstractly describing the
static and dynamic aspects of object-oriented programs. The current version of UML is 1.3.
The foundations of the semantics and notation of UML were created in the 1990s by Grady
Booch, James Rumbaugh und Ivar Jacobson. UML is independent of any particular → life-
cycle model for software development.64 The Object Management Group (OMG) is responsible
for the ongoing development of UML.

UMTS (Universal Mobile Telecommunication System)

The European successor to GSM and a member of the → ITM-2000 family. UMTS is a third-
generation (→ 3G) digital, cellular, interoperable, transnational land-based mobile telecom-
munication system. The frequency band allocated to this mobile telecommunication system
lies at 2000 MHz. The UMTS system is defined by a number of specifications generated under
the auspices of the → 3GPP and published by → ETSI. UMTS represents the next major
evolutionary step for → GSM. The essential changes with respect to GSM are a new air in-
terface using → CDMA technology and a significantly higher data transmission rate of up to
2 Mbit/s.65

Unicode [Unicode]

An extension of the well-known ASCII character code. In contrast to the 7-bit ASCII code,
Unicode employs 16 bits for coding. This allows the characters of the most widely used
languages of the world to be supported. The first 256 Unicode characters are identical to the
ISO 8859-1 ASCII characters.66

64 See also Section 15.7, ‘Life-Cycle Models’
65 See also Section 13.3, ‘The UMTS System’
66 See also Section 4.2, ‘Coding Alphanumeric Data’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1014 of 1123

980 Appendix

Uplink

A connection from a lower-level system (such as a mobile telephone) to a higher-level system
(such as a base station); the opposite of → downlink.

Upload

Transferring data from a lower-level system (such as a terminal) to a higher-level system (such
as a background system or host system); the opposite of → download.

URL (uniform resource locator)

A unique alphanumeric address in the → WWW.

User

A person who uses a → smart card; not necessarily the same as the → cardholder.

User data

All data directly needed by an → application.

USIM (universal subscriber identity module)

The common name of the smart card → application for UMTS,67 which resides in a → UICC.
However, in practice the term ‘USIM’ is also used to refer to the UMTS smart card as well
as the application, although this is not entirely correct. The USIM bears the identity of the
subscriber, and its primary function is to secure the authenticity of the mobile station with
respect to the network and vice versa. Additional functions include executing programs with
protection against manipulation (authentication), user identification (using a PIN) and storing
data, such as the telephone numbers. The USIM is based on the TS 31.102 standard published
by → ETSI. The equivalent of the USIM in the → GSM system is the → SIM.68

USIM Application Toolkit (USAT)

A collection of functions standardized by TS 31.111 that allow a USIM card to assume an active
role in controlling a mobile telephone. For example, a USIM can use the USIM Application
Toolkit to output items to be shown on the display, request inputs from the keypad and transmit
or receive messages via the air interface. The USIM Application Toolkit forms the basis for most

67 See also Section 13.3, ‘The UMTS System’
68 See also Section 13.2.4, ‘The SIM’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1015 of 1123

16.1 Glossary 981

supplementary applications in mobile telephones. The equivalent of the USIM Application
Toolkit in GSM is the → SIM Application Toolkit (SAT).69

Value-added service (VAS)

A supplementary smart card → application present in a smart card in addition to the main
application. Such services usually presuppose a → multiapplication smart card.

Vertical prototype

→ prototype

Virgin card

A card that has not yet been implanted with a chip or visually or electronically personalized. A
virgin card is essentially a printed, non-specific → card body, as used in the mass production
of cards.

Virtual machine (VM)

A software simulation of a → microprocessor, usually having its own opcodes for machine
instructions as well as a simulated address space. It allows software to be generated that is
independent of the features of specific hardware. For instance, the virtual address space of a
VM can be many times larger than the address space provided by the hardware. In the Java
environment, the closed environment of the VM is often called the sandbox.70

Virtual merchant card

→ virtual smart card

Virtual smart card

A software simulation of a smart card in a different system, such as in a security module or
a mobile telephone. A virtual merchant card, which is the simulation of a smart card in a
merchant terminal, is a special case of a virtual smart card.

Visa Cash

Visa brand name for several technically different electronic purse systems using smart cards.

69 See also Section 13.2.4, ‘The SIM’
70 See also Section 5.14.1, ‘Java Card’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1016 of 1123

982 Appendix

Visa Easy Entry (VEE)

A method for easy migration from magnetic-stripe credit cards to credit cards with micro-
controller chips. This is accomplished by storing the name of the cardholder and all of the
data on the magnetic stripe in an EF under a DF that is reserved for Visa. When a payment is
made using the credit card, the terminal reads the data needed for the transaction from the chip
instead of from the magnetic stripe. The advantage of this approach is that it is only necessary
to upgrade the POS terminals to include smart card contact units, while the entire background
system can be used as before without any modifications.

Volatile memory

A type of memory (e.g. RAM) that retains its contents only as long as power is applied.

VOP

→ OP

Wafer

A thin disc of silicon on which chips are built using semiconductor fabrication techniques.
Wafers typically have a diameter of 150 mm (6 inches), 200 mm (8 inches) or 300 mm
(12 inches).

WAP (wireless application protocol)

A term used to refer to a number of specifications for creating a link between a mobile
terminal (mobile telephone, PDA etc.) and a server via a wireless network, for the purpose of
directly exchanging data. The usual application for WAP is implementing Internet services in
mobile telephones in a manner that is largely independent of the mobile telecommunications
standard used. Incidentally, the designation ‘wireless application protocol’ refers not only to
the technology, but also to the protocol used between the terminal and the background system.
The WAP Forum, founded in June 1997 by Phone.com, Ericsson, Motorola and Nokia, is the
internationally active standards committee for WAP. It is composed of representatives of more
than 350 companies.71

WAP Forum

→ WAP

71 See also Section 13.5, ‘The WIM’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1017 of 1123

16.1 Glossary 983

Warm reset

→reset

WCDMA (wideband code division multiple access)

→CDMA

Whitelist

A list in a database indicating all smart cards and devices allowed to be used in a particular
→ application. (→ blacklist, → graylist, →hotlist)

White plastic

Refers to non-personalized blank cards used with fraudulent intent. The term originally comes
from the typical blank cards made from white plastic that are used to produce test cards.
However, it is now understood to also refer to cards that have been printed and have a wide
variety of → card components, such as credit cards with magnetic stripes and holograms that
have not yet been embossed.

Whitebox test

A test, also often also called a glassbox test, in which it is assumed that the party performing
the test has complete knowledge of all of the internal processes and data of the software to be
tested.

WIM (WAP identity module)

A security module for a → WAP terminal. The specification describes a PCKS #15-compatible
smart-card → application. The principal functions of a WIM are generating and verifying
digital signatures and encrypting data. A WIM may be either a separate, physical smart card
or one of several applications in a multiapplication smart card. It is typically an application in
a → SIM or → USIM.

Windows for Smart Cards [Microsoft]

An → open smart card operating system from Microsoft, also known as WfSC and WSC,
that supports multiple → applications (→ multiapplication smart card) and downloadable
programs. One of the special features of Windows for smart cards is that it uses a → FAT-
based file system.72

72 See also Section 5.7, ‘File Management’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1018 of 1123

984 Appendix

WML (wireless markup language)

A logical markup language based on XML used to generate applications for WAP. WML is
very similar to HTML. WML applications stored in a WML site on a WAP server are translated
on-the-fly into compact WML bytecode, which is transmitted via the wireless network to a the
mobile terminal, where it is interpreted by a microbrowser (→ browser).

Work-around

In the context of software development, circumventing a known problem by ‘programming
around’ it. A work-around avoids the negative effects of an error on the rest of the program,
but it does not eliminate the actual error. For example, work-arounds in EEPROM are typically
used to correct errors in ROM-based → smart card operating systems that are found after
the chips have been produced, in order to prevent such errors from having negative effects
on the operation of the operating system. However, it is entirely possible for the functionality
of the operating system to be reduced relative to its original scope as a consequence of using
work-arounds.

WWW, W3 (World-Wide Web)

A part of the international Internet, primarily characterized by its ability to link any desired
documents using hyperlinks and the integration of multimedia objects into documents.

X.509

The X.509 standard published by the → ITU defines the structure and coding of → certificates.
It is the most widely used standard for certificate structures (→ PKI) throughout the world.

XML (extended markup language)

A logical markup language that is both a successor to and an extension of HTML. XML can
be used to define new language elements, which means that other markup languages, such as
HTML and WML, can be defined using XML. XML is a subset of the powerful ‘standard
generalized markup language’ (SGML), which is specified by an ISO standard.

ZKA (Zentraler Kreditausschuss)

The coordinating body for the electronic payment transactions of the German banks. The ZKA
is composed of the following banking associations: the Deutsche Sparkassen- und Girover-
band (DSGV), the Bundesverband der Deutschen Volks- und Raiffeisenbanken (BVR), the
Bundesverband deutscher Banken (BdB) and the Verbund öffentlicher Banken (VÖB). The
chairmanship of the ZKA is assumed by each of the four member associations in yearly rota-
tion.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1019 of 1123

16.3 Literature 985

16.2 RELATED READING

The Smart Card Handbook focuses on smart cards and their applications. However, there are a
large number of other disciplines that strongly affect smart cards and their further development,
each of which has its own particular areas of interest and specialist literature. The authors of
the Smart Card Handbook wish to maintain the focus of this book within its own field, rather
than providing extensive descriptions of related disciplines, since that would vastly exceed the
scope of this book. For readers who wish to increase their knowledge of these related subjects,
we have prepared the following short list of related reading.

Subject Reference
Operating systems [Tanenbaum 02]
Smart card manufacturing [Haghiri 02]
Java as a programming language [Arnold 00]
Cryoptography [Menezes 97], [Schneier 96]
RFID [Finkenzeller 02]
Security of components and systems [Anderson 01]
Software development [Balzert 98]
Software development for Java Card [Chen 00]

16.3 LITERATURE

The following publications are sorted first by the last name of the author and then in ascending
order of publication date. ‘Internet’ is listed as the source of publications that appeared in
newsgroups or discussion forums on the Internet.

[Anderson 01] Ross J. Anderson: Security Engineering, Wiley,
Chichester 2001

[Anderson 92] Ross J. Anderson: Automatic Teller Machines, Internet,
December 1992

[Anderson 96a] Ross J. Anderson, Markus G. Kuhn: Improved
Differential Fault Analysis, Internet, November 1996

[Anderson 96b] Ross J. Anderson, Markus G. Kuhn: Tamper Resistance
– a Cautionary Note, USENIX Workshop, November
1996

[Arnold 00] Ken Arnold, James Gosling, David Holmes: The Java
Programming Language, 3rd edn, Addison Wesley,
Boston 2000

[Balzert 98] Helmut Balzert: Lehrbuch der Software-Technik, Vol.2,
2nd edn, Spektrum Akademischer Verlag, Heidelberg
1998

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1020 of 1123

986 Appendix

[Bellare 95a] Mihir Bellare, Juan Garay, Ralf Hause, Amir Herzberg,
Hugo Krawczyk, Michael Steiner, Gene Tsudik,
Michael Waidner: iKP – A Family of Secure Electronic
Payment Protocols, Internet, 1995

[Bellare 95b] Mihir Bellare, Philip Rogaway: Optimal Asymmetric
Encryption – How to Encrypt with RSA, Internet, 1995

[Bellare 96] Mihir Bellare, Philip Rogaway: The Exact Security of
Digital Signatures – How to Sign with RSA and Rabin,
Internet, 1996

[Beutelsbacher 93] Albrecht Beutelsbacher: Kryptologie, 3rd edn, Vieweg
Verlag, Braunschweig 1993

[Beutelsbacher 96] Albrecht Beutelsbacher, Jörg Schwenk, Klaus-Dieter
Wolfenstetter: Moderne Verfahren der Kryptografie,
Vieweg Verlag, Braunschweig 1996

[Biham 91] Eli Biham, Adi Shamir: Differential Cryptoanalysis of
DES-like Cryptosystems, Journal of Cryptology, Vol. 4,
No. 1, 1991

[Biham 93] Eli Biham, Adi Shamir: Differential Cryptoanalysis of
the Data Encryption Standard, Springer-Verlag, New
York 1993

[Biham 96] Eli Biham, Adi Shamir: A New Cryptoanalytic Attack on
DES, Internet, 1996

[BIS 96] Bank for International Settlements: Security of
Electronic Money – Report by the Committee on
Payment and Settlement Systems and the Group of
Computer Experts of the Central Banks of the Group of
Ten Countries, Basel, August 1996

[Blumtritt 97] Oskar Blumtritt: Nachrichtentechnik, 2nd edn, Munich,
Deutsches Museum, 1997

[Boehm 81] Barry W. Boehm: Software Engineering Economics,
Prentice Hall, Upper Saddle River, New Jersey 1981

[Boneh 96] Dan Boneh, Richard A. DeMillo, Richard J. Lipton: On
the Importance of Checking Computations, Math and
Cryptography Research Group, Bellcore 1996

[Bronstein 96] I. N. Bronstein, K. A. Semendjajew: Taschenbuch der
Mathematik, 7th edn, B. G. Teubner Verlagsgesellschaft,
Leipzig 1997

[Buchmann 96] Johannes Buchmann: Faktorisierung großer Zahlen,
Spektrum der Wissenschaft, September 1996

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1021 of 1123

16.3 Literature 987

[Chen 00] Zhiqun Chen: Java Card Technology for Smart Cards,
Addison Wesley, Boston 2000

[CMM 93] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, Charles
V. Weber: Capability Maturity Model for Software,
Version 1.1, Software Engineering Institute, Pittsburg
1993

[Dhem 96] J. F. Dhem, D. Veithen, J.-J. Quisquater: SCALPS:
Smart Card Applied to Limited Payment Systems, UCL
Crypto Group Technical Report Series, Université
Catholique de Louvain, 1996

[Dictionary of Computing 91] Dictionary of Computing, Oxford University Press,
Oxford 1991

[Diffie 76] Whitfield Diffie, Martin E. Hellman: New Directions in
Cryptography, Internet, 1976

[Dröschel 99] Wolfgang Dröschel, Manuela Wiemers: Das V- Modell
97, Oldenbourg Verlag, Munich 1999

[Eberspächer 97] Jörg Eberspächer, Hans-Jörg Vögel: GSM – Global
System for Mobile Communication, B. G. Teubner
Verlag, Stuttgart 1997

[EFF 98] Electronic Frontier Foundation: Frequently Asked
Questions (FAQ) about the Electronic Frontier
Foundation’s “DES Cracker” Machine, Internet,
1998

[EC 91] Commission of the European Communities:
Information Technology Security Evaluation Criteria
(ITSEC), Version 1.2, June 1991

[EC 98] Council of the European Communities:
Council Regulation (EC) No 2135 of 24 September 1998
Amending Regulation (EEC) No 3821/85 on recording
equipment in road transport and Directive 88/599/EEC
concerning the application of Regulations (EEC)
No 3820/85 and (EEC) No 3821/85, Version 1.2, June
1991

[Fenton 96] Norman E. Fenton, Shari Lawrence Pfleeger: Software
Metrics, Thomson Computer Press, London 1996

[Finkenzeller 02] Klaus Finkenzeller: RFID-Handbuch, 3rd edn, Carl
Hanser Verlag, Munich/Vienna 2002

[Franz 98] Michael Franz: Java – Anmerkungen eines
Wirth-Schülers, Informatik Spektrum, Springer-Verlag,
Berlin 1998

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1022 of 1123

988 Appendix

[Freeman 97] Adam Freemann, Darrel Ince: Active Java – Object
Oriented Programming for the World Wide Web,
Addison-Wesley, Reading, MA 1997

[Fumy 94] Walter Fumy, Hans Peter Ries: Kryptographie, 2nd edn,
R. Oldenbourg Verlag, Munich/Vienna 1994

[Gentz 97] Wolfgang Gentz: Die elektronische Geldbörse in
Deutschland, Diplomarbeit an der Fachhochschule
München, Munich 1997

[Glade 95] Albert Glade, Helmut Reimer, Bruno Struif: Digitale
Signatur, Vieweg Verlag, Braunschweig 1995

[Gora 98] Walter Gora: ASN.1 – Abstract Syntax Notation One, 3rd
edn, Fossil Verlag, Köln 1998

[Gosling 95] James Gosling, Henry McGilton: The Java Language
Environment – A White Paper, Sun Microsystems, USA
1995

[Grün 96] Herbert Grün: Card Manufacturing Materials and
Environmental Responsibility, Presentation at
CardTech/SecurTech, Atlanta, GA, May 1996

[GSM 95] Proceedings of the Seminar for Latin America Decision
Makers by GSM MoU Association and ECTEL:
Personal Communication Services based on the GSM
Standard, Buenos Aires 1995

[Guthery 02] Scott B. Guthery, Mary J. Cronin: Mobile Application
Development with SMS and the SIM Toolkit,
McGraw-Hill, New York 2002

[Gutmann 96] Peter Gutmann: Secure Deletion of Data from Magnetic
and Solid-State Memory, USENIX Conferenz, San Jose,
CA 1996

[Gutmann 98a] Peter Gutmann: Software Generation of Practically
Strong Random Numbers, Internet, 1998

[Gutmann 98b] Peter Gutmann: X.509 Style Guide, Internet, 1998

[Haghiri 02] Yahya Haghiri, Thomas Tarantino: Smart Card
Manufacturing: A Practical Guide, Wiley, Chichester
2002

[Hassler 02] Vesna Hassler, Martin Manninger, Mikhail Gordeev,
Christoph Muller: Java Card for E-Payment
Applications, Artech House, London 2002

[Hellmann 79] Martin E. Hellmann: The Mathematics of Public-Key
Cryptography, Scientific American, August 1979

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1023 of 1123

16.3 Literature 989

[Hillebrand 2002] Friedhelm Hillebrand (editor): GSM and UMTS, Wiley,
Chichester 2002

[IC Protection 97] Common Criteria for IT Security Evaluation Protection
Profile – Smartcard Integrated Circuit Protection
Profile, Internet, 1997

[Isselhorst 97] Hartmut Isselhorst: Betreiberorientierte
Sichrheitsanforderungen für Chipkarten-Anwendungen,
Card-Forum, Lüneburg 1997

[Jones 91]. C. Jones: Applied Software Measurement, McGraw-Hill,
New York 1991

[Jun 99] Benjamin Jun, Paul Kocher: The Intel Random Number
Generator, Internet, 1999

[Kaliski 93] Burton S. Kaliski Jr.: A Layman’s Guide to a Subset of
ASN.1, BER and DER, RSA Laboratories Technical
Note, Internet, 1993

[Kaliski 96] Burton S. Kaliski Jr.: Timing Attacks on Cryptosystems,
RSA Laboratories, Redwood City, CA 1996

[Karten 97] Zeitschrift Karten: Zur Sicherheit der ec-Karte PIN:
Das Urteil des OLG Hamm, Fritz Knapp Verlag,
Frankfurt, August 1997

[Knuth 97] Donald Ervin Knuth: The Art of Computer
Programming, Volume 2: Seminumerical Algorithms,
3rd edn, Addison-Wesley/Longman, Reading, MA
1997

[Kocher 95] Paul C. Kocher: Timing Attacks on Implementations of
Diffie-Hellmann, RSA, DSS, and Other Systems,
Internet, 1995

[Kocher 98 a] Paul C. Kocher, Joshua Jaffe, Benjamin Jun:
Introduction to Differential Power Analysis and Related
Attacks, Internet, 1998

[Kocher 98b] Paul C. Kocher, Joshua Jaffe, Benjamin Jun: Differential
Power Analysis: Leaking Secrets, Internet, 1998

[Kömmerling 99] Oliver Kömmerling, Markus G. Kuhn, Design
Principles for Tamper-Resistant Smartcard Processors,
USENIX Workshop on Smartcard Technology, Chicago,
USA, 10–11 May 1999

[Kuhn 97] Markus G. Kuhn: Probability Theory for Pickpockets –
ec-PIN Guessing, COAST Laboratory, Purdue
University, West Lafayette, Indiana 1997

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1024 of 1123

990 Appendix

[Kuhn] Markus G. Kuhn: Attacks on Pay-TV Access Control
Systems, University of Cambridge, Internet, year
unknown

[Lamla 00] Michael Lamla: Hardware Attacks on Smart Cards –
Overview, Eurosmart Security Conference, Marseille,
13–15 June 2000

[Leiberich 99] Otto Leiberich: Vom diplomatischen Code zur
Falltürfunktion, Spektrum der Wissenschaft, June 1999

[Lender 96] Friedwart Lender: Production, Personalisation and
Mailing of Smart Cards – A Survey, Smart Card
Technologies and Applications Workshop, Berlin,
November 1996

[Levy 99] Steven Levy: The Open Secret, Wired, April 1999

[Lindholm 97] Tim Lindholm, Frank Yellin: The Java Virtual Machine
Specification, 2nd edn, Addison-Wesley, Reading, MA
1999

[Massey 88] James L. Massey: An Introduction to Contemporary
Cryptology, Proceedings of the IEEE, Vol. 76, No. 5,
May 1988, pp 533–549

[Massey 97] James L. Massey: Cryptography, Fundamentals and
Applications, 1997

[Meister 95] Giesela Meister, Eric Johnson: Schlüsselmanagement
und Sicherheitsprotokolle gemäß ISO/SC 27 – Standards
in Smart Card-Umgebungen, in: Albert Glade, Helmut
Reimer, Bruno Struif: Digitale Signatur, Vieweg Verlag,
Braunschweig 1995

[Menezes 93] Alfred J. Menezes: Elliptic Curve Public Key
Cryptosystems, Kluwer Academic Publishing, Boston,
MA 1993

[Menezes 97] Alfred J. Menezes, Paul C. van Oorschot, Scott A.
Vanstone: Handbook of Applied Cryptography, CRC
Press, Boca Raton, FL 1997

[Merkle 81] Ralph C. Merkle, Martin E. Hellman: On the Security of
Multiple Encryption, Internet, 1981

[Messerges 99] Thomas S. Messerges, Ezzy A. Dabbish, Robert H.
Sloan: Investigations of Power Analysis Attacks on
Smartcards, USENIX Workshop on Smartcard
Technology, Chicago, USA, 10–11 May 1999

[Meyer 82] Carl H. Meyer, Stephen M. Matyas: Cryptography,
Wiley, New York 1982

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1025 of 1123

16.3 Literature 991

[Meyer 96] Carsten Meyer: Nur Peanuts – Der Risikofaktor
Magnetkarte, c’t, July 1996

[Montenegro 99] Sergio Montenegro: Sichere und fehlertolerante
Steuerungen, Carl Hanser Verlag, Munich/Vienna 1999

[Moore 02] Simon Moore, Ross Anderson, Paul Cunningham,
Robert Mullins, George Tayler: Improving Smart Card
Security using Self-timed Circuits, Internet, May 2002

[Müller-Maguhn 97a] Andy Müller-Maguhn: “Sicherheit” von EC-Karten,
Die Datenschleuder, Ausgabe 53, 1997

[Müller-Maguhn 97b] Andy Müller-Maguhn: EC-Karten Unsicherheit, Die
Datenschleuder, Ausgabe 59, 1997

[Myers 95] Glenford J. Myers: The Art of Software Testing, 5th edn,
Wiley, New York 1995

[Nebelung 96] Brigitte Nebelung: Das Geldbörsen-Konzept der
ec-Karte mit Chip, debis Systemhaus, Bonn 1996

[Nechvatal 00] James Nechvatal, Elaine Barker, Lawrence Bassham,
William Burr, Morris Dworkin, James Foti, Edward
Roback, NIST: Report on the Development of the
Advanced Encryption Standard (AES), Internet, 2000

[Odlyzko 95] Andrew. M. Odlyzko: The Future of Integer
Factorization, AT&T Bell Laboratories, 1995

[Otto 82] Siegfried Otto: Echt oder falsch? Die maschinelle
Echtheitserkennung, Betriebswirtschaftliche Blätter,
Heft 2, February 1982

[Peyret 97] Patrice Peyret: Which Smart Card Technologies will you
need to Ride the Information Highway Safely?,
Gemplus, 1997

[Pfaffenberger 97] Bryan Pfaffenberger: Dictionary of Computer Terms,
Simon & Schuster/Macmillan, New York 1997

[Piller 96] Ernst Piller: Die “ideale” Geldbörse für Europa,
Card-Forum, Lüneburg 1996

[Pomerance 84] C. Pomerance: The Quadratic Sieve Factoring
Algorithm, Advances in Cryptology – Eurocrypt 84

[Press 92] William H. Press, Saul A. Teukolsky, William T.
Vetterling, Brian P. Flannery: Numerical Recipes in C –
The Art of Scientific Computing, 2nd edn, Cambridge
University Press, Cambridge 1992

[Rivest 78] Ronald L. Rivest, Adi Shamir, Leonard Adleman:
Method for Obtaining Digital Signatures and
Public-Key Cryptosystems, Internet, 1976

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1026 of 1123

992 Appendix

[Robertson 96] James Robertson, Suzanne Robertson: Vollständige
Systemanalyse, Carl Hanser Verlag, Munich/Vienna
1996

[Rother 98a] Stefan Rother: Prüfung von Chipkarten-Sicherheit,
Card-Forum, Lüneburg 1998

[Rother 98b] Stefan Rother: Prüfung von Chipkarten-Sicherheit, in
Tagungsband Chipkarten, Vieweg Verlag,
Braunschweig 1998

[RSA 97] RSA Data Security Inc.: DES Crack Fact Sheet, Internet,
1997

[Scherzer 00] Helmut Scherzer: Chipkarten-Betriebssysteme –
Gefahrenpotentiale und Sicherheitsmechanismen,
Forum IT-Sicherheit Smartcards, 14 March 2000

[Schief 87] Rudolf Schief: Einführung in die Mikroprozessoren und
Mikrocomputer, 10th edn, Attempto Verlag, Tübingen
1987

[Schindler 97] Werner Schindler: Wie sicher ist die PIN?, speech
presented at the ‘Kreditkartenkriminalität’conference,
Heppenheim, October 1997

[Schlumberger 97] Schlumberger: Cyberflex – Programmers Guide, Version
6d, April 1997

[Schneier 96] Bruce Schneier: Applied Cryptography, 2nd edn, Wiley,
New York 1996

[Schneier 99] Bruce Schneier: Attack Trees – Modeling Security
Threats, Dr. Dobb’s Journal, December 1999

[Sedgewick 97] Robert Sedgewick: Algorithmen, 3rd edn,
Addison-Wesley, Bonn/München/Reading, MA
1997

[SigG 01] Gesetz über Rahmenbedingungen für elektronische
Signaturen, 22 May 2001

[Silverman 97] Robert D. Silverman: Fast Generation of Random,
Strong RSA Primes, RSA Laboratories Crypto Byte,
Internet, 1997

[Simmons 92] Gustavus J. Simmons (editor): Contemporary
Cryptology, IEEE Press, New York 1992

[Simmons 93] Gustavus J. Simmons: The Subliminal Channels in the
U.S. Digital Signature Algorithm, Proceedings of
Symposium on the State and Progress of Research in
Cryptography, Rome 1993

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1027 of 1123

16.3 Literature 993

[Skorobogatov 02] Sergei Skorobogatov, Ross Anderson: Optical Fault
Induction Attacks, Internet, May 2002

[Sommerville 90] Ian Sommerville: Software Engineering, Addison-Wesley,
Wokingham 1990

[Steele 01] Raymond Steele, Chin-Chun Lee, Peter Gould:GSM,
cdmaOne and 3G Systems, Wiley, Chichester 2001

[Stix 96] Gary Stix: Herausforderung “Komma eins”, Spektrum der
Wissenschaft, February 1996

[Stocker 98] Thomas Stocker: Java for Smart Cards, in:
Tagungsband Smart Cards, Vieweg Verlag, Braunschweig
1998

[Tanenbaum 02] Andrew S. Tanenbaum: Moderne Betriebssysteme,
3rd edn, Addison-Wesley Longman, Reading, MA
2002

[Thaller 93] Georg Erwin Thaller: Qualitätsoptimierung der
Software-Entwicklung. Das Capability Maturity Model
(CMM), Vieweg Verlag, Braunschweig 1993

[Tietze 93] Ulrich Tietze, Christoph Schenk:
Halbleiter-Schaltungstechnik, 10th edn, Springer-Verlag,
Berlin 1993

[Vedder 97] Klaus Vedder, Franz Weikmann: Smart Cards –
Requirements, Properties and Applications, ESAT-COSIC
course, Catholic University of Leuven, 1997

[Walke 00] Bernhard Walke: Mobilfunknetze und ihre Protokolle,
Band 2: Bündelfunk, schnurlose Telefonsysteme, W-ATM,
HIPERLAN, Satellitenfunk, UPT, B. G. Teubner Verlag,
Stuttgart 2000

[Weikmann 92] Franz Weikmann: SmartCard-Chips – Technik und weitere
Perspektiven, Der GMD-Spiegel 1’92, Gesellschaft for
Mathematik und Datenverarbeitung, Sankt Augustin 1992

[Weikmann 98] Franz Weikmann, Klaus Vedder: Smart Cards
Requirements, Properties and Applications, in:
Tagungsband Smart Cards, Vieweg Verlag, Braunschweig
1998

[Wiener 93] Michael J. Wiener: Efficient DES Key Search, Crypto 93,
Santa Barbara, CA 1993

[Yellin 96] Frank Yellin: Low Level Security in Java, Internet, 1996

[Zieschang 98] Thilo Zieschang: Differentielle Fehleranalyse und
Sicherheit von Chipkarten, Internet, 1998

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1028 of 1123

994 Appendix

16.4 ANNOTATED DIRECTORY OF STANDARDS AND
SPECIFICATIONS

This section contains an extensively commented directory of international standards, industry
standards and specifications relevant to cards with and without chips. This directory primarily
focuses on international standards, rather than local, country-specific standards. It lists stan-
dards produced by official standards organizations (such ANSI, CEN, ETSI and ISO), as well
as quasi-standards that are relevant to smart cards, such as the EMV specification and Internet
RFCs.

In addition to the annotated directory, Table 16.1 provides a summary of potentially helpful
compilations, summaries and sources of standards and specifications related to specific sub-
jects. Industry standards in particular are often available free of charge on the WWW. Unfortu-
nately, this is not generally the case with official standards published by standards organizations.

Table 16.1 Summary of the most important Web servers for downloading standards and information
related to smart cards

Standards or Web server Remarks
specification organization

ANSI [ANSI] —
CEN [CEN] —
DIN [DIN] —
EMV [EMVCO] The specification can be downloaded from the

Web server free of charge.
ETSI [ETSI] All ESTI standards (including those for GSM and

UMTS) can be downloaded from the Web
server free of charge.

FIPS [NIST] All FIPS standards can be downloaded from the
Web server free of charge.

Global Platform [Global Platform] The specification can be downloaded from the
Web server free of charge.

IEEE [IEEE] —
ISO/IEC [ISO] —
ITU [ITU] —
Java Card Forum [JCF] The specification can be downloaded from the

Web server free of charge.
RFC [RFC] The specification can be downloaded from the

Web server free of charge.
RSA Inc. [RSA] The specification can be downloaded from the

Web server free of charge.
SEIS [SEIS] The specification can be downloaded from the

Web server free of charge.

All standards and specifications are listed below in order of the name of the issuing orga-
nization and the numerical designation, ignoring prefixes (such as ‘pr’) and status indications
(such as ‘DIS’). The date listed is the date at which the currently valid version first appeared.
The most important standards for smart cards are marked with a ‘�’.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1029 of 1123

16.4 Annotated Directory of Standards and Specifications 995

A few brief remarks are in order regarding the naming of individual standards. First, ex-
tensions to ISO and ISO/IEC standards are usually contained in an amendment (Amd.). Each
time a standard is revised, which normally takes place every five years, any amendments
are incorporated into the main body of the standard as necessary. The title of a revised ver-
sion of a standard thus differs from the title of its predecessor only by the year number
and the sequential version number. New versions of CEN standards are identified in a sim-
ilar manner. In the case of FIPS standards, the number of the revised edition forms part of
the name of the standard (e.g., FIPS 140–2). Telecommunications standards from ETSI use
a three-digit version number to distinguish different versions. In the case of industry stan-
dards, the revision level is indicated by a year number or a version number, depending on the
publisher.

ANSI X9.8 Banking – Personal Identification Number
Management and Security

– 1: 1995 Part 1: PIN Protection Principles and Techniques

– 2: 1995 Part 2: Approved Algorithms for PIN
Encipherment

ANSI X 9.9: 1986 Financial Institution Message Authentication

ANSI X 9.17: 1985 Financial Institution Key Management

ANSI X 9.19: 1996 Financial Institution Retail Message
Authentication

ANSI X 9.30 Public Key Cryptography Using Irreversible
Algorithms for the Financial Services Industry

– 1: 1997 Part 1: The Digital Signature Algorithm (DSA)

– 2: 1997 Part 2: The Secure Hash Algorithm (SHA-1)

ANSI X 9.31: 1998 Digital Signatures Using Reversible Public Key
Cryptography for the Financial Services
Industry

ANSI X9.55: 1997 Public Key Cryptography for the Financial
Services Industry: Extensions to Public Key
Certificates and Certificate Revocation Lists

ANSI X9.84: 2001 Biometric Information Management and Security

This very comprehensive standard specifies the
basic architectural principles of a wide variety of
biometric identification methods, as well as the
requirements for the use, management and
security of biometric data.

ANSI X 3.92: 1981 Data Encryption Algorithm

Describes the DES algorithm.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1030 of 1123

996 Appendix

ANSI X 3.106: 1983 American National Standard for Information
Systems – Data Encryption Algorithm – Modes
of Operation

ANSI / IEEE 829: 1991 Standard for Software Test Documentation

Describes the methods and necessary
documentation for testing software.

ANSI / IEEE 1008: 1987 Standard for Software Unit Testing

Describes basic methods for testing software.

ANSI / IEEE 1012: 1992 Software Verification and Validation Plans

Specifies the necessary test activities and test
plans for software development. This standard is
based on the waterfall model for software
development.

CCITT Z.100: 1993 CCITT Specification and Description Language
(SDL)

CEPS, Version 2.1.3: 2001 Joint Specification for Common Electronic Purse
Cards

CEPS is an important standard for electronic
purses and is based on EN 1546. It provides the
foundation for the majority of present and future
European purse systems.

Common Criteria, Version 2.1: 1999 Identical to ISO/IEC 15 408 (q.v.)

DIN 9781-10: 1985 Büro- und Datentechnik; Identifikationskarten aus
Kunststoff oder kunststofflaminiertem Werkstoff;
Anforderungen an Echtheitsmerkmale

This very short standard defines the terms used in
the context of authenticity features and lists
general requirements for such features.

DIN 44 300 – 1 . . . 9: 1988 Informationsverarbeitung – Begriffe

Defines many information technology concepts.

EMV 2000 Integrated Circuit Card Specification for Payment
Systems
� This is the most important family of standards
for smart cards used in payment systems. It is
jointly published by EMVCo [EMV]. The family
consists of four parts, called ‘books’, which deal
with smart cards, associated debit and credit
payment applications and related terminals.73

73 See also Section 12.4, ‘The EMV Application’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1031 of 1123

16.4 Annotated Directory of Standards and Specifications 997

Book 1 Version 4.0: 2000 Application Independent ICC to Terminal
Interface Requirements

This part contains the specifications for the
mechanical and electrical properties of the smart
cards and terminals, including definitions of the
activation and deactivation sequences, data
transmission at the electrical level, the ATR and
its associated parameters. In addition, it specifies
the T = 0 and T = 1 transmission protocols, the
APDU structure, logical channels and several
fundamental card commands and application
selection mechanisms.

Book 2 Version 4.0: 2000 Security and Key Management

This part describes static and dynamic data
authentication, PIN encryption and secure
messaging. It also contains general conditions for
managing the public keys of a payment system
and requirements for terminal security, including
associated key management.

Book 3 Version 4.0: 2000 Application Specification

This part of the EMV specification defines a
number of commands needed for smart cards and
smart card applications for debit and credit cards
and specifies transaction procedures. The
appendix includes descriptions of all of the data
objects, including their coding, specifications for
the TLV coding of data and general approaches to
integrating EMV smart cards into SET-based
payment systems.

Book 4 Version 4.0: 2000 Cardholder, Attendant and Acquirer Interface
Requirements

Book 4 lists the mandatory and optional
requirements for terminals that support
EMV-compliant smart cards. This includes
conceivable configurations, functional and
security requirements for terminals, possible and
permitted user messages including the character
set used, and the interface to the acquirer. This
standard also defines the basic features of the
architecture of the terminal software and a model
of a terminal-resident interpreter for executable
program code. The appendix contains a listing of
data objects relevant to the terminal and

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1032 of 1123

998 Appendix

recommendations for the technical design of the
terminal, as well as examples of point-of-sale, cash
dispenser and goods dispenser terminals.

EN 726 Identification Card Systems – Telecommunications
Integrated Circuit(s) Card and Terminals

Up until the mid-1990s, this family of standards
occupied a leading position with regard to
describing the functionality of smart card
operating systems. However, it has now been
completely supplanted by the ISO/IEC 7816 family
of standards, the UICC standards and the EMV
specifications, and is thus no longer significant.

– 1: 1994 Part 1: System Overview

– 2: 1995 Part 2: Security Framework

– 3: 1994 Part 3: Application Independent Card
Requirements
� Defines file structures, commands, return codes
and files for general-purpose applications, as well
as basic mechanisms for smart cards for
telecommunications applications. This standard is
the ETSI counterpart of ISO/IEC 7816-4 and the
corresponding framework for GSM 11.11.

– 4: 1994 Part 4: Application Independent Card Related
Terminal Requirements

– 5: 1999 Part 5: Payment Methods

Defines various payment methods and associated
file structures, data elements and processes for
smart cards. The payment methods are intended to
be used for telecommunication applications.

– 6: 1995 Part 6: Telecommunication Features

– 7: 1999 Part 7: Security Module

EN 753 Identification Card Systems – Intersector Thin
Flexible Cards

– 1: 1997 Part 1: General Technical Specifications

– 2: 1997 Part 2: Magnetic Recording Technique

– 3: 1999 Part 3: Test Methods

EN 1038: 1995 Identification Card Systems – Telecommunication
Applications – Integrated Circuit(s) Card Payphone

Defines basic considerations for using smart cards
with public card phones. This standard primarily
contains references to previous standards, and it

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1033 of 1123

16.4 Annotated Directory of Standards and Specifications 999

identifies the various places in the system where a
security module can be effectively used to
authenticate a phone card.

prEN 1105: 1995 Identification Card systems – General concepts
applying to systems using IC cards in intersector
environments – Rules for Inter-application
Consistency

Defines the basic demands placed on a smart card
in order to ensure interapplication use. It
primarily contains references to prior standards,
as well as various regulations for smart cards and
terminals.

prEN 1292: 1995 Additional Test Methods for IC Cards and
Interface Devices

Defines tests for the general electrical
parameters of smart cards and terminals and the
basic data transfer between smart cards and
terminals. This standard is an extension to
ISO/IEC 10 373.

EN 1332 Identification Card Systems – Man–Machine
Interface

– 1: 1999 Part 1: Design Principles and Symbols for the
User Interface

– 2: 1998 Part 2: Definition of a Tactile Identifier for ID-1
cards

Specifies a perceptible recess in ID-1 cards for
detecting the orientation of the card.

– 3: 1999 Part 3: Keypads

– 4: 1999 Part 4: Coding of User Requirements for People
with Special Needs

EN 1362: 1997 Identification Card Systems – Device Interface
Characteristics – Classes of Device Interfaces

EN 1387: 1996 Machine Readable Cards – Health Care
Applications – Cards: General Characteristics

EN 1545-1: 1998 Identification Card Systems – Surface Transport
Applications – Part 1: General

EN 1545-2: 1998 Identification Card Systems – Surface Transport
Applications – Part 2: Transport Payment

prEN 1545-3: 1995 Identification Card Systems – Surface Transport
Applications – Part 3: Tachograph

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1034 of 1123

1000 Appendix

prEN 1545-4: 1995 Identification Card Systems – Surface Transport
Applications – Part 4: Vehicle and Driver
Licencing

EN 1546 Identification Card Systems – Inter-sector
Electronic Purse

� The internationally most important standard
for electronic purses, which forms the foundation
for most purse systems. This family of standards
has been kept relatively general, so it includes
many options, but it is a very good and complete
description of an electronic purse.

– 1: 1999 Part 1: Definition, Concepts and Structures

Defines terms used in the entire family of
standards and describes the basic concepts and
structures of intersector electronic purse systems.

– 2: 1999 Part 2: Security Architecture

Describes the notation used for security
mechanisms, the security architecture and
associated procedures and mechanisms for
intersector electronic purse systems.

– 3: 1999 Part 3: Data Elements and Interchanges

Describes the data elements, files, commands and
return codes used by all components of an
intersector electronic purse system.

– 4: 1999 Part 4: Data Objects

Describes the TLV mechanism for reading
arbitrary data objects from files, and also
provides a detailed presentation of the
components and states of a state machine for a
intersector electronic purse system. Also includes
a list of tags for all data objects used.

EN 1867: 1997 Machine-readable Cards – Health Care
Applications – Numbering System and
Registration Procedure for Issuer Identifiers

EN 13 343 Identification Card Systems –
Telecommunications IC Cards and Terminals –
Test Methods and Conformance Testing for
EN 726-3

– 1 prEN: 1998 Part 1: Implementation Conformance Statement
(ICS) Pro-forma Specification

– 2 prEN: 1998 Part 2: Test Suite Structure and Test Purposes
(TSS & TP)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1035 of 1123

16.4 Annotated Directory of Standards and Specifications 1001

– 3 prEN: 1998 Part 3: Abstract Test Suite (ATS) and
Implementation Extra Information for Testing
(IXIT) Pro-forma Specification

EN 13 344 Identification Card Systems –
Telecommunications IC Cards and Terminals –
Test Methods and Conformance Testing for
EN 726-4

– 1 prEN: 1998 Part 1: Implementation Conformance Statement
(ICS) Pro-forma Specification

– 2 prEN: 1998 Part 2: Test Suite Structure (TSS) and Test
Purposes (TP)

– 3 prEN: 1998 Part 3: Abstract Test Suite (ATS) and
Implementation Extra Information for Testing
(IXIT) Pro-forma Specification

EN 13 345 Identification Card Systems –
Telecommunications IC Cards and Terminals –
Test Methods and Conformance Testing for
EN 726-7

– 1 prEN: 1998 Part 1: Implementation Conformance Statement
(ICS) pro-forma Specification

– 2 prEN: 1998 Part 2: Test Suite Structure and Test Purposes
(TSS & TP)

– 3 prEN: 1998 Part 3: Abstract Test Suite (ATS) and
Implementation extra Information for Testing
(IXIT) pro-forma Specification

EN 1750: 1999 Identification Card Systems – Intersector
Messages between Devices and Hosts – Acceptor
to Acquirer Messages

EN 300812, Version 2.1.1: 2001 Terrestrial Trunked Radio (TETRA); Security
Aspects; Subscriber Identity Module to Mobile
Equipment (SIMME) Interface

ENV 1257 Identification Card Systems – Rules for Personal
Identification Number Handling in Intersector
Environments

Illustrates and explains security aspects related to
using PINs, from transfering the PIN to the
cardholder (PIN letter) to entering the PIN using
a keypad (PIN pad).

– 1 prENV: 1997 Part 1: PIN Presentation

– 2 prENV: 1997 Part 2: PIN Protection

– 3 prENV: 1997 Part 3: PIN Verification

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1036 of 1123

1002 Appendix

ENV 13 729: 2000 Health Informatics – Secure User Identification –
Strong Authentication using Microprocessor
Cards

ETS 300 331: 1995 Digital Enhanced Cordless Telecommunications
(DECT); DECT Authentication Module (DAM)

Describes the smart card (DAM) for the DECT
system. Includes all associated commands, files,
access conditions and authentication methods.
Also defines the dimensions of the mini-ID and
plug-in card formats. This standard is strongly
based on the GSM 11.11 specification.

FIPS 46-3: 1999 Data Encryption Standard (DES)
� Describes the DES and triple-DES algorithms.

FIPS 74: 1981 Guidelines for Implementing and Using the NBS
Encryption Standard

FIPS 81: 1980 DES Modes of Operation

FIPS 140-2: 2001 Security Requirements for Cryptographic
Modules
� A fundamental, internationally used standard
with regard to security requirements for security
modules, which includes smart cards. It defines
four different security levels for security modules
and describes in detail seven security-related
requirement areas. The content of this standard is
very practically oriented and also addresses
technical implementation details, such as criteria
for the quality of random number generators.

FIPS 180-1: 1995 Secure Hash Standard (SHA-1)
� Describes the SHA-1 hash function.

FIPS 186-2: 2000 Digital Signature Standard (DSS)
� Describes the DSS algorithm.

FIPS 197: 2001 Advanced Encryption Standard (AES)
� Describes the AES algorithm.

GSM 01.02, Version 6.0.1: 2001 Digital Cellular Telecommunications System
(Phase 2+) (GSM); General Description of a
GSM Public Land Mobile Network (PLMN)

Forms the basis for the architecture of all GSM
mobile telecommunications networks.

GSM 01.04, Version 8.0.0: 1999 Digital Cellular Telecommunications Systems
(Phase 2) (GSM); Abbreviations and Acronyms

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1037 of 1123

16.4 Annotated Directory of Standards and Specifications 1003

GSM 01.60, Version 6.0.0: 1998 Digital Cellular Telecommunications System
(Phase 2+); General Packet Radio Service
(GPRS) Requirements Specification of GPRS

GSM 02.09, Version 7.0.1: 1998 Digital Cellular Telecommunications Systems
(Phase 2) (GSM); Security Aspects

GSM 02.17, Version 8.0.0: 1999 Digital Cellular Telecommunications Systems
(Phase 2) (GSM); SIM Functional Characteristics

A short standard specifying the basic
functionality required of a security module (SIM)
for a GSM mobile telecommunications network. It
is the GSM equivalent of the TS 21.111 standard
for UMTS.

GSM 02.19, Version 7.1.0: 1998 Digital Cellular Telecommunications System
(Phase 2+) (GSM); Subscriber Identity Module
Application Programming Interface (SIM API);
Service Description; Stage 1

A short standard listing all of the basic services of
a language-independent API for executable
program code (e.g., Java) in the SIM. Based on
this standard, GSM 03.19 provides a detailed
specification of a specific implementation to
provide a Java Card API for SIMs.

GSM 02.22, Version 7.0.0: 1999 Digital Cellular Telecommunications System
(Phase 2+) (GSM); Personalization of GSM
Mobile Equipment (ME); Mobile Functionality
Specification

Describes mechanisms for personalizing and
depersonalizing mobile equipment using specific
data in the SIM (commonly known as SIM Lock).

GSM 02.34, Version 6.0.0: 1997 Digital Cellular Telecommunications System
(Phase 2+); High Speed Circuit Switched Data
(HSCSD); Stage 1

GSM 02.48, Version 8.0.0: 2000 Digital Cellular Telecommunications System
(Phase 2+) (GSM); Security Mechanisms for the
SIM Application Toolkit; Stage 1

A short standard describing the basic
application-independent security mechanisms
used with the SIM Application Toolkit as defined
in GSM 11.14. Based on this standard, GSM 03.48
provides a detailed implementation specification.

GSM 02.60, Version 6.3.0: 1997 Digital Cellular Telecommunications System
(Phase 2+); General Packet Radio Service
(GPRS); Service Description; Stage 1

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1038 of 1123

1004 Appendix

GSM 03.19, Version 8.2.0: 2001 Digital Cellular Telecommunications System
(Phase 2+); Subscriber Identity Module
Application Programming Interface (SIM API);
SIM API for Java Card; Stage 2
� Specifies a Java Card variant for use as a SIM
with the SIM Application Toolkit, based on the
Java Card 2.1 specifications. This standard is the
key document for using Java Card in GSM. The
basis for this is provided by GSM 02.19.

GSM 03.20, Version 8.1.0: 1999 Global System for Mobile Communication
(GSM) (Phase 2+); Security Related Network
Functions

GSM 03.38, Version 7.2.0: 1999 Digital Cellular Telecommunications System
(Phase 2+) (GSM); Alphabets and
Language-specific Information

Specifies a GSM character set based on ASCII.

GSM 03.40, Version 7.4.0: 2000 Digital Cellular Telecommunications System
(Phase 2+) (GSM); Technical realization of the
Short Message Service (SMS)

GSM 03.48, Version 8.7.0: 2001 Digital Cellular Telecommunications System
(Phase 2+); Security Mechanisms for the SIM
Application Toolkit; Stage 2
� Contains specifications for all security
mechanisms needed for a connection between the
background system and the SIM that is secure
against eavesdropping and manipulation. Also
describes the basic mechanism of a remote file
management system using the SIM. The basis for
this document is provided by GSM 02.48.

GSM 09.91: 1995 European Digital Cellular Telecommunications
System (Phase 2); Interworking Aspects of the
Subscriber Identity Module – Mobile Equipment
(SIM – ME) Interface between Phase 1 and
Phase 2

GSM 11.10 Version 8.2.0: 2000 Digital Cellular Telecommunications System
(Phase 2+) (GSM) – Mobile Station (MS)
Conformance Specification

A very comprehensive test specification for GSM
mobile stations.

GSM 11.11 Version 8.5.0: 2001 Digital Cellular Telecommunications System
(Phase 2+) – Specification of the Subscriber

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1039 of 1123

16.4 Annotated Directory of Standards and Specifications 1005

Identity Module – Mobile Equipment (SIM –
ME) Interface
� Specifies the physical and logical properties of
the SIM by means of a description of the interface
between the SIM and the GSM mobile telephone.
Defines the dimensions of ID-1 and plug-in cards
and the general mechanical parameters of the
card and the contacts. Specifies general electrical
parameters and the the structures and contents of
the ATR and PPS. Also defines the possible data
structures, security mechanisms, commands and
return codes. Lists all data elements and files
necessary for a SIM, along with typical command
sequences. This standard is the GSM equivalent
of the TS 31.101 and TS 31.102 UMTS standards.

GSM 11.12 Version 4.3.1: 1998 Digital Cellular Telecommunications System
(Phase 2); Specification of the 3 Volt Subscriber
Identity Module – Mobile Equipment (SIM–ME)
Interface

Specifies 3-V SIMs, including a compatibility list
for SIMs programmed according to previous
specifications. It only includes differences and
extensions relative to GSM 11.11 with regard to
3V SIMs.

GSM 11.13 Version 7.2.0: 2000 Digital Cellular Telecommunications System
(Phase 2+); Test Specification for SIM API for
Java Card

Specifies the test environment, test applications,
test procedures, test coverage and individual test
cases for the SIM API for Java Card as specified
in GSM 03.19. The described tests exclusively
address the IT aspects of a Java Card SIM for
GSM. This standard provides an excellent and
comprehensive illustration of how tests for a Java
card can be described, constructed and executed.

GSM 11.14 Version 8.8.0: 2001 Digital Cellular Telecommunications System
(Phase 2+); Specification of the SIM Application
Toolkit for the Subscriber Identity Module –
Mobile Equipment (SIM – ME) Interface

Defines and extensively describes the SIM
Application Toolkit (SAT) for SIMs. SAT describes
an interface between the mobile telephone and
the SIM for the partial control of the mobile

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1040 of 1123

1006 Appendix

telephone by SIM-resident supplementary
applications. This standard introduces proactive
commands for the SIM and defines many new
commands related to controlling the mobile
telephone, such as display output, keypad polling
and sending short messages. The UMTS
equivalent of this standard is TS 31.111.

GSM 11.17 Version 7.0.2: 1998 Digital Cellular Telecommunications System
(Phase 2+) (GSM); Subscriber Identity Module
(SIM) Conformance Test Specification

Specifies the test environment, test equipment, test
hierarchy and individual test cases for testing
SIMs. The described tests exclusively address the
electrical and IT aspects. Tests covering these
aspects are specified in detail, including electrical
power, data transmission, file management,
commands and typical processes used in the GSM
application. This specification is a very good and
extensive illustration of how GSM tests can be
described, constructed and executed. The UMTS
equivalent of this standard is TS 31.122.

GSM 11.18 Version 7.0.1: 1998 Digital Cellular Telecommunications System
(Phase 2 +); Specification of the 1.8 Volt
Subscriber Identity Module – Mobile Equipment
(SIM – ME) Interface

GSM 11.19 Version 7.0.3: 1998 Digital Cellular Telecommunications System
(Phase 2+) (GSM) – Specification of the
Cordless Telephony System Subscriber Identity
Module for both Fixed Part and Mobile

IEEE 828: 1990 Standard for Software Configuration
Management Plans

IEEE 1363: 2000 Standard for RSA, Diffie-Hellman and Related
Public-Key Cryptography
� A very extensive and comprehensive standard,
which addresses almost all aspects of asymmetric
cryptographic algorithms, including generating
keys, using digital signatures, key exchange and
encryption.

ISO 639 Codes for the Representation of Names of
Languages

– 1: 2001 Part 1: Alpha-2 Code

– 2: 1998 Part 2: Alpha-3 Code

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1041 of 1123

16.4 Annotated Directory of Standards and Specifications 1007

ISO/IEC 646: 1991 Information Technology – ISO 7-bit Coded
Character Set for Information Interchange

ISO 3166 Codes for the Representation of Names of
Countries and their Subdivisions

– 1: 1997 Part 1: Country Codes

– 2: 1998 Part 2: Country Subdivision Code

– 3: 1999 Part 3: Code for Formerly Used Names of
Countries

ISO/IEC 4217: 1995 Codes for the Representation of Currencies and
Funds

ISO 4909: 2000 Bank Cards – Magnetic Stripe Data Contents for
Track 3

ISO/IEC 7501 Identification Cards – Machine Readable Travel
Documents

– 1: 1997 Part 1: Machine Readable Passport

– 2: 1997 Part 2: Machine Readable Visas

– 3: 1997 Part 3: Official Travel Documents

ISO 7810: 1995 Identification Cards – Physical Characteristics

Describes the most important physical properties
of cards without chips, and defines the ID-1, ID-2
and ID-3 card formats.

ISO 7811 Identification Cards – Recording Technique

This family of standards is an important reference
for the mechanical aspects of cards. It specifies
the mechanical implementation of the essential
card components.

– 1: 1995 Part 1: Embossing

An exact definition of the 10 numeric characters
and the basic method used to emboss cards.

– 2: 2001 Part 2: Magnetic Stripe – Low Coercivity

Defines the size and position of the magnetic
stripe on the card. Also specifies the physical
properties of the magnetic material and the
coding of the characters on the magnetic stripe.

– 3: 1995 Part 3: Location of Embossed Characters on ID-1
Cards

Defines the possible locations for embossing on
ID-1 cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1042 of 1123

1008 Appendix

– 4: 1995 Part 4: Location of Read-only Magnetic Tracks –
Tracks 1 and 2

Defines the positions of the read-only tracks
(tracks 1 and 2) on an ID-1card.

– 5: 1995 Part 5: Location of Read–Write Magnetic Track –
Track 3

Defines the position of the read/write track
(track 3) on an ID-1card.

– 6: 2001 Part 6: Magnetic Stripe – High Coercivity

– 7 WD: 2001 Part 7: Magnetic Stripe – High Coercivity High
Density

ISO 7812 Identification Cards

– 1: 2000 Part 1: Numbering System

Specifies a numbering scheme for manufacturers
of ID cards.

– 2: 2000 Part 2: Application and Registration Procedures

Defines the registration authority and a form for
registering applications. Also contains an
algorithm for generating a Luhn checksum
(modulo-10 checksum).

ISO 7813: 1995 Identification Cards – Financial Transaction Cards

Defines the basic physical properties, dimensions
and embossing of ISO 7810-compliant ID-1 cards
for use in the financial transaction field. Also
defines the data contents of tracks 1 and 2 of the
magnetic stripe.

ISO/IEC 7816 Identification Cards – Integrated Circuit(s) Cards
with Contacts
� The most important family of ISO standards for
microcontroller smart cards. The first three parts
primarily focus on the card and chip hardware.
The remaining parts specify all mechanisms and
properties of applications and operating systems
for smart cards, as well as the associated
informatics aspects.

– 1: 1998 Part 1: Physical Characteristics

Defines the physical characteristics of a card with
a contact-type chip, as well as the tests to be used
for such a card.

– 2: 1999 Part 2: Dimensions and Location of the Contacts

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1043 of 1123

16.4 Annotated Directory of Standards and Specifications 1009

Defines the sizes and positions of the contacts of a
smart card, as well as the possible arrangements
of the chip, magnetic stripe and embossing. Also
describes the method to be used to measure the
positions of the contacts on the smart card.

– 3: 1997 Part 3: Electronic Signals and Transmission
Protocols

� The most important ISO standard for the
general electrical parameters of a
microcontroller smart card. It specifies all basic
electrical characteristics, such as the supply
voltage (3-V and 5-V), stopping the clock and
reset behavior (cold and warm reset). It also
defines the parameters, structure and possible
sequences for the ATR and PPS. A large part of
this standard deals with basic aspects of data
transmission at the physical level (such as the
divider) and the definition of the two transmission
protocols (T = 0 and T = 1), and it includes
extensive examples of communications sequences.

– 4: 1995 Part 4: Inter-industry Commands for Interchange

� The most important application-level ISO
standard for smart cards. It defines the file
organization, file structures, security architecture,
TPDUs, APDUs, secure messaging, return codes
and logical channels. The majority of this
standard is taken up by an extensive description
of commands for smart cards. Fundamental smart
card mechanisms for general industrial
applications are also described.

– 4 Amd. 1: 1997 Part 4 – Amendment 1: Use of Secure Messaging

– 5: 1994 Part 5: Numbering System and Registration
Procedure for Application Identifiers

Defines the numbering scheme for uniquely
identifying national and international
applications in smart cards. Also defines the exact
data structure of the AID and describes the
procedure for registering applications.

– 5 Amd. 1: 1996 Part 5 – Amendment 1: Registration of Identifiers

– 6 CD: 2001 Identification cards – Integrated Circuit(s) Cards
with Contacts – Part 6: Inter-industry Data
Elements

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1044 of 1123

1010 Appendix

Defines the data objects (DOs) and associated
TLV tags for general industrial applications, and
describes the associated TLV structures and
procedures for reading data objects from smart
cards.

– 7: 1999 Part 7: Inter-industry Commands for Structured
Card Query Language (SCQL)

Defines supplementary smart card commands as
an extension to ISO/IEC 7816-4. Defines the
basic principles of a database system based on
SQL, and specifies the commands for the
associated SCQL accesses to smart cards.

– 8: 1999 Part 8: Security Related Inter-industry Commands

This part of the family of standards is fully
dedicated to functions and commands related to
security. As an extension to ISO/IEC 7816-4, it
defines additional mechanisms for secure
messaging, as well as numerous commands for
cryptographic functions, such as digital
signatures, hash computation, MAC computation
and the encryption and decryption of data.

– 9: 2000 Part 9: Enhanced Inter-industry Commands

This standard is divided into three parts. The first
part describes the life cycle of a smart card
application at the file level in terms of states. The
large second part describes access control objects
(ACOs) that can be used to govern file accesses.
The extensive third part defines search commands
for file contents and administrative commands for
creating and deleting files, which are necessary
for managing applications.

– 10: 1999 Part 10: Electronic Signals Answer to Reset for
Synchronous Cards

For memory cards, this is the counterpart to
Part 3 of this family of standards. It specifies the
essential electrical characteristics of memory
cards and defines the parameters and structure of
the ATR and possible ATR procedures for
synchronous cards.

– 11 CD: 2000 Part 11: Card Structure and Enhanced Functions
for Multiapplication Use

Defines commands for biometric user
indentification and the associated data objects. In

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1045 of 1123

16.4 Annotated Directory of Standards and Specifications 1011

addition, the appendix illustrates the basic
features of methods for recording biometric data
in the card (enrollment) and describes a scenario
for verifying this biometric information.

– 15 CD: 2001 Part 15: Cryptographic Information Application

This part of the family, which is based on the
PKCS #15 standard, defines all necessary data
objects for an interoperable smart card for digital
signatures. It includes descriptions of all data
objects, directories and files needed for signature
cards, as well as ASN.1 descriptions of all of the
certificates, keys and other administrative data
stored in the files.

ISO 8372: 1987 Information Processing – Modes of Operation for
a 64-Bit Block Cipher Algorithm
� Defines the four operating modes for
encryption algorithms using a 64-bit block size
(e.g., DES): electronic codebook (ECB), cipher
block chaining (CBC), output feedback (OFB)
and cipher feedback (CFB). The block encryption
modes described in ANSI X 3.106 and FIPS 81
form a subset of this standard.

ISO 8583 Financial Transaction Card Originated Messages
– Interchange Message Specifications

Standard for data transmission between a
terminal and its host system. In Germany,
communications between debit card terminals and
the background system are based on this standard.

– 1 CD: 1998 Part 1: Messages, Data Elements and Code Values

– 2: 1998 Part 2: Application and Registration Procedures
for Institution Identification Codes (IIC)

– 3: 1988 Part 3: Maintenance Procedures for Messages,
Data Elements and Code Values

ISO 8730: 1990 Banking – Requirements for Message
Authentication

Fundamentals of securing data transmission and
generating and testing MACs. The appendix
contains extensive numerical examples, as well as
a description of a DES pseudorandom number
generator.

ISO 8731 Banking – Approved Algorithms for Message
Authentication

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1046 of 1123

1012 Appendix

– 1: 1987 Part 1: DEA

A very short standard in which DEA is described
as being suitable for MAC computation. Also
contains a brief description of parity calculation
for DES keys.

– 2: 1992 Part 2: Message Authenticator Algorithm

Defines a fast algorithm for MAC computation in
banking applications. The appendix contains
numerical examples as well as an exact
description of the algorithm.

ISO 8732: 1988 Banking – Key Management

Extensive standard addressing principles and
methods for key management among two or more
participating parties using symmetric
cryptographic algorithms.

ISO/IEC 8824 Information technology – Open Systems
Interconnection – Specification of Abstract
Syntax Notation One (ASN.1)

Defines the basic ASN.1 coding rules.

– 1: 1998 Part 1: Specification of Basic Notation

– 1: 1998 / Amd 1: 2000 Part 1 – Amendment 1: Relative Object Identifiers

– 1: 1998 / Amd 2: 2000 Part 1 – Amendment 2: ASN.1 Semantic Model

– 1: 1998 / Amd 3: 2000 Part 1 – Amendment 3: XML Value Notation

– 1: 1998 / Amd 4: 2000 Part 1 – Amendment 4: Version Number Support

– 2: 1998 Part 2: Information Object Specification

– 2: 1998 / Amd 1: 2000 Part 2 – Amendment 1: ASN.1 Semantic Model

– 2: 1998 / Amd 2 Part 2 – Amendment 2: XML Value Notation

– 3: 1998 Part 3: Constraint Specification

– 4: 1998 Part 4: Parameterization of ASN.1 Specifications

– 4: 1998 / Amd 1: 2000 Part 4 – Amendment 1: ASN.1 Semantic Model

ISO/IEC 8825 Information technology – Open Systems
Interconnection – Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1)

Defines the ASN.1 data description language.

– 1:1998 Part 1: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)

– 1:1998 / Amd 1:2000 Part 1 – Amendment 1: Relative Object Identifiers

– 2:1998 Part 2: Specification of Packed Encoding Rules
(PER)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1047 of 1123

16.4 Annotated Directory of Standards and Specifications 1013

– 2:1998 / Amd 1:2000 Part 2 – Amendment 1: Relative Object Identifiers

– 3 FCD: 2001 Part 3: Specification of Encoding Control
Notation (ECN)

– 3: FCD / Amd 1: 2001 Part 3 – Amendment 1: ASN.1 Extensibility
Notation

– 4: WD 2000 Part 4: XML Encoding Rules (XER)

ISO/IEC 8859 - 1: 1998 Information Technology – 8-bit single-byte coded
graphic character sets – Part 1: Latin Alphabet
No. 1

ISO/IEC 9075 Information Technology – Database Languages –
SQL2

Defines the structured query language (SQL),
database query language, which is a superset of
the smart card database query language (SCQL).

– 1: 1999 Part 1: Framework (SQL/Framework)

– 1: 1999 / Amd 1: 2001 Part 1 – Amendment 1: On-Line Analytical
Processing (SQL/OLAP)

– 2: 1999 Part 2: Foundation (SQL/Foundation)

– 2: 1999 / Amd 1: 2001 On-Line Analytical Processing (SQL/OLAP)

– 3: 1999 Part 3: Call-Level Interface (SQL/CLI)

– 4: 1999 Part 4: Persistent Stored Modules (SQL/PSM)

– 5: 1999 Part 5: Host Language Bindings (SQL/Bindings)

– 5: 1999 / Amd 1: 2001 Part 5 – Amendment 1: On-Line Analytical
Processing (SQL/OLAP)

– 9: 2001 Part 9: Management of External Data
(SQL/MED)

– 10: 2000 Part 10: Object Language Bindings (SQL/OLB)

– 11: CD 2001 Part 11: Information and Definition Schemas
(SQL/schemata)

– 12: AWI 2000 Part 12: Replication

– 13: FCD 2001 Part 13: Java Routines and Types (SQL/JRT)

– 14: WD 2001 Part 14: XML-Related Specifications (SQL/XML)
ISO/IEC 9126: 1991 Information Technology –
Software product evaluation – Quality
Characteristics and Guidelines for their Use

ISO/IEC 9126 Software Engineering – Product Quality

– 1: 2001 Part 1: Quality Model

– 2: CD 2001 Part 2: External Metrics

– 3: CD 2001 Part 3: Internal Metrics

– 4: CD 2001 Part 4: Quality in Use Metrics

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1048 of 1123

1014 Appendix

ISO 9564 Banking – Personal Identification Number
Management and Security

– 1: 1991 Part 1: PIN Protection Principles and Techniques

Fundamentals of PIN selection, PIN management
and PIN protection for general banking
applications. The appendices define general
requirements for PIN entry devices, among other
things, as well as recommendations for the layout
of suitable keypads and advice regarding erasing
sensitive data on various media, such as magnetic
tape, paper and semiconductor memories.

– 2: 1991 Part 2: Approved Algorithm(s) for PIN
Encipherment

A very short standard that defines DES as an
algorithm for PIN encryption.

– 3: 2002 Part 3: PIN Protection Requirements for Offline
PIN Handling in ATM and POS Systems

ISO/IEC 9646-3: 1998 Information Technology – Open Systems
Interconnection – Conformance Testing
Methodology and Framework – Part 3: The Tree
and Tabular Combined Notation (TTCN)

An extensive standard that describes a general
high-level language for specifying tests. TTCN is
used in a few isolated cases in the smart card
environment.

ISO/IEC 9796 Information Technology – Security Techniques –
Digital Signature Scheme giving Message
Recovery

Defines methods for generating and verifying
digital signatures with message recovery. The
appendix contains several numerical examples of
key generation, signature generation and
signature verification.

– 1: 1999 Part 1: Mechanisms using Redundancy

– 2: 1997 Part 2: Mechanisms using a Hash Function

– 3: 2000 Part 3: Discrete Logarithm Based Mechanisms

ISO/IEC 9797 Information Technology – Security techniques –
Message Authentication Codes (MACs)

– 1: 1999 Part 1: Mechanisms using a Block Cipher

– 2: 1999 Part 2: Mechanisms using a Dedicated Hash
Function

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1049 of 1123

16.4 Annotated Directory of Standards and Specifications 1015

ISO/IEC 9798 Information Technology – Security techniques –
Entity Authentication

� This family of standards contains detailed
descriptions of various cryptographic methods for
authenticating one, two or three participating
parties. It is the most important reference on the
subject of authentication.

– 1: 1997 Part 1: General

Defines the terms and notation used in the other
parts of this family of standards.

– 2: 1999 Part 2: Mechanisms using Symmetric
Encipherment Algorithms

Specifies authentication methods based on
symmetric cryptographic algorithms.

– 3: 1998 Part 3: Mechanisms using Digital Signature
Techniques

Specifies authentication methods based on
asymmetric cryptographic algorithms.

– 4: 1999 Part 4: Mechanisms using a Cryptographic Check
Function

Specifies authentication methods based on
cryptographic check functions.

– 5: 1999 Part 5: Mechanisms using Zero Knowledge
Techniques

Specifies authentication methods based on
zero-knowledge techniques.

ISO 9807: 1991 Banking and Related Financial Services –
Requirements for Message Authentication (retail)

ISO/IEC 9979: 1999 Information Technology – Security techniques –
Procedures for the Registration of Cryptographic
Algorithms

ISO 9992 Financial Transaction Cards – Messages between
the Integrated Circuit Card and the Card
Accepting Device

– 1: 1990 Part 1: Concepts and Structures

– 2: 1998 Part 2: Functions, Messages (Commands and
Responses), Data Elements and Structures

Defines commands, procedures, and data
elements for smart cards used in financial
transaction systems. Contains the definitions of

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1050 of 1123

1016 Appendix

tags used in financial transaction systems and
many cross-references to other standards in the
ISO/IEC 7816 family.

– 4 DIS: 1993 Part 4: Common Data for Interchange

– 5 CD: 1991 Part 5: Organization of Data Elements

ISO/IEC 10 116: 1997 Information Technology – Security techniques –
Modes of Operation for an n-bit Block Cipher
Algorithm

Describes the four standard opearting modes
(ECB, CBC, CFB, OFD) for a block-oriented
encryption algorithm. An appendix contains
detailed comments regarding the use of each of
the four modes, and another appendix contains
corresponding numerical examples.

ISO/IEC 10 118 Information Technology – Security techniques –
Hash Functions

General principles of hash functions, as well as
associated padding methods.

– 1: 2000 Part 1: General

– 2: 2000 Part 2: Hash Functions using an n-bit Block
Cipher Algorithm

Defines hash functions based on block-oriented
encryption algorithms and describes algorithms
with single-length and double-length keys.
The appendix contains a numerical example
for each type of key, based on the DES
algorithm.

– 3: 1998 Part 3: Dedicated Hash Functions
– 4: 1998 Part 4: Hash Functions using Modular

Arithmetic

ISO 10 202 Financial Transaction Cards – Security
Architecture of Financial Transaction Systems
using Integrated Circuit Cards

– 1: 1991 Part 1: Card Life Cycle

– 2: 1996 Part 2: Transaction Process

– 3: 1998 Part 3: Cryptographic Key Relationship

– 4: 1996 Part 4: Secure Application Modules

– 5: 1998 Part 5: Use of Algorithms

– 6: 1994 Part 6: Card holder Verification

– 7: 1998 Part 7: Key Management

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1051 of 1123

16.4 Annotated Directory of Standards and Specifications 1017

Defines general mechanisms for key management
and key derivation. Both symmetrical and
asymmetrical mechanisms are described.

– 8: 1998 Part 8: General Principles and Overview

ISO/IEC 10 373 Identification Cards – Test Methods
� Fundamental standard for card testing.
Contains precise descriptions of test methods for
card bodies and card bodies with implanted chips.
The individual tests are described in detail, with
many explanatory drawings.

– 1: 1998 Part 1: General Characteristics Tests

– 2: 1998 Part 2: Cards with Magnetic Stripes

– 3: 2001 Part 3: Integrated Circuit(s) Cards with Contacts
and Related Interface Devices

Specifies the test environment, test methods and
test procedures for electrical tests for contact-type
smart cards. Also specifies detailed procedures for
checking contact locations, electrical power, ATR
and PPS data transmission and data transmission
protocols.

– 4 CD: 1998 Part 4: Contactless Integrated Circuit Cards

– 5: 1998 Part 5: Optical Memory Cards

– 6: 2001 Part 6: Proximity Cards

– 7: 2001 Part 7: Vicinity Cards

ISO/IEC 10 536 Identification Cards – Contactless Integrated
Circuit(s) Cards
� This standard descibes contactless smart cards
whose application areas limit them to direct
contact with the terminal.

– 1: 2000 Part 1: Physical Characteristics

Defines the physical characteristics of contactless
smart cards and associated test methods.

– 2: 1995 Part 2: Dimension and Location of Coupling Areas

Specifies the dimensions and locations of the
coupling areas for contactless cards, and their use
wih card terminals having card slots or surface
interfaces.

– 3: 1996 Part 3: Electronic Signals and Reset Procedures

Defines the electrical signals of the inductive and
capacitive elements used to couple the smart card
to the terminal.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1052 of 1123

1018 Appendix

– 4 CD: 1997 Part 4: Answer to Reset and Transmission
Protocols

Specifies data transmission at the physical level,
as well as the structure and parameters of the
ATR and PPS for contactless smart cards. Defines
the T = 2 data transmission protocol, with many
sample scenarios for protocol procedures.

ISO/IEC 10646 Information Technology – Universal
Multiple-Octet Coded Character Set (UCS)

– 1: 2000 Part 1: Architecture and Basic Multilingual Plane

– 2: 2001 Part 2: Supplementary Planes

ISO 11 568 Banking – Key Management

– 1: 1994 Part 1: Introduction to Key Management

– 2: 1994 Part 2: Key Management Techniques for
Symmetric Ciphers

– 3: 1994 Part 3: Key Life Cycle for Symmetric Ciphers

– 4: 1998 Part 4: Key Management Techniques for Public
Key Cryptosystems

– 5: 1998 Part 5: Key Life for Public Key Cryptosystems

– 6: 1998 Part 6: Key Management Schemes

ISO/IEC 11 693: 2000 Identification Cards – Optical Memory Cards

ISO/IEC 11 694 Identification Cards – Optical Memory Cards and
Devices – Linear Recording Method

– 1: 2000 Part 1: Physical Characteristics

– 2: 2000 Part 2: Dimensions and Location of the
Accessible Optical Area

– 3: 2001 Part 3: Optical Properties and Characteristics

– 4: 1996 Part 4: Logical Data Structures

ISO/IEC 11 770 Information Technology – Security Techniques –
Key Management

– 1: 1996 Part 1: Framework

– 2: 1996 Part 2: Mechanisms using Symmetric Techniques

– 3: 1999 Part 3: Mechanisms using Asymmetric
Techniques

ISO/IEC 12 207: 1995 Information technology – Software Life Cycle
Processes

ISO/IEC 13 239: 2000 Information Technology – Telecommunications
and Information Exchange between Systems –
High-level Data Link Control (HDLC) Procedures

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1053 of 1123

16.4 Annotated Directory of Standards and Specifications 1019

ISO 13 491 Banking – Secure Cryptographic Devices

– 1: 1998 Part 1: Concepts, Requirements and Evaluation
Methods

– 2: 2000 Part 2: Security Compliance Checklists for
Devices used in Magnetic Stripe Card Systems

ISO/IEC 13 888 Information Technology – Security Techniques –
Non-repudiation

– 1: 1997 Part 1: General

– 2: 1998 Part 2: Mechanisms using Symmetric Techniques

– 3: 1997 Part 3: Mechanisms using Asymmetric
Techniques

ISO/IEC 14 443 Identification Cards – Contactless Integrated
Circuit(s) Cards – Proximity Cards
� This standard describes contactless smart
cards that can be used at a distance of up to
several tens of centimeters from a terminal.

– 1: 2000 Part 1: Physical Characteristics

– 2: 2001 Part 2: Radio Frequency Power and Signal
Interface

– 3: 2001 Part 3: Initialization and Anticollision

– 4: 2001 Part 4: Transmission Protocol

ISO/IEC 14 888 Information Technology – Security Techniques –
Digital Signature with Appendix

This standard specifies basic mechanisms and
methods for digital signatures with appendix. It is
independent of any particular asymmetric
cryptographic algorithm.

– 1: 1998 Part 1: General

– 2: 1999 Part 2: Identity-based Mechanisms

– 3: 1998 Part 3: Certificate-based Mechanisms

ISO/IEC 15 292: 2001 Information Technology – Security Techniques –
Protection Profile Registration Procedures

ISO/IEC 15 408 Information Technology – Security Techniques –
Evaluation Criteria for IT Security

– 1: 1999 Part 1: Introduction and General Model

– 2: 1999 Part 2: Security Functional Requirements

– 3: 1999 Part 3: Security Assurance Requirements

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1054 of 1123

1020 Appendix

ISO/IEC 15 693 Identification Cards – Contactless Integrated
Circuit(s) Cards – Vicinity Cards

This standard describes contactless smart cards
that can be used at a distance of up to one meter
from a terminal.

– 1 CD: 2000 Part 1: Physical Characteristics

– 2 WD: 2000 Part 2: Air Interface and Initialization

– 3 WD: 2001 Part 3: Anticollision and Transmission Protocol

– 4 WD: 1996 Part 4: Extended Command Set and Security
Features

ISO 15 782 Banking – Certificate Management for Financial
Services

– 1 DIS: 2000 Part 1: Public Key Certificates

– 2: 2001 Part 2: Certificate Extensions

ISO/IEC 15 946 Information Technology – Security Techniques –
Cryptographic Techniques based on Elliptic
Curves

– 1 FDIS: 2001 Part 1: General

– 2 FDIS: 2001 Part 2: Digital Signatures

– 3 FDIS: 2001 Part 3: Key Establishment

– 4 CD: 2000 Part 4: Digital Signatures giving Message
Recovery

ISO 17 090 Public Key Infrastructure

– 1 CD: 2001 Part 1: Framework and Overview

– 2 CD: 2001 Part 2: Certificate Profile

– 3 CD: 2001 Part 3: Policy Management of Certification
Authority

ITU X.509: 2000 Information Technology – Open Systems
Interconnection – The Directory: Authentication
Framework
� Specifies the structure and coding of
certificates. Internationally, it is the most
commonly used basis for certificate structures,
and it is identical to ISO/IEC 9594-8.

Java Card 2.1: 2000 � This industrial standard forms the basis for
Java Card. It was generated by the Java Card
Forum and published by the Sun Corporation. All
of the standards in this family are mutually
complementary and address various aspects of
Java Card implementations.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1055 of 1123

16.4 Annotated Directory of Standards and Specifications 1021

– Application Programming Interface

Specifies the complete interface (API) available to
an applet in a Java Card environment. It
esssentially consists of a comprehensive listing of
all classes and interfaces of the Java Card API.

– Runtime Environment (JCRE) Specification

Specifies the Java Card runtime environment,
which essentailly consists of the Java virtual
machine and the Java Card API. It addresses the
following topics in detail: the lifetime of the
virtual machine, the lifetimes of applets, selecting
applets, transient objects, sharing objects,
transactions, the extent to which transactions are
atomic and installing applets.

– Virtual Machine Specification

Specifies the Java Card virtual machine,
including its detailed architecture, its instruction
set and the format of CAP files

Multifunktionale Karten Terminals The MKT specification, which is published by
Spezification, Version 1.0: 1999 Teletrust Deutschland, is the quasi-standard in

Germany for connecting terminals to PCs.

– Part 1 MKT-Basiskonzept

– Part 2 CT-ICC-Interface – MKT-Schnittstelle für
kontaktorientierte Chipkarten mit synchroner und
asynchroner Übertragung

– Part 3 CT-API 1.1 – Anwendungsunabhängiges Card
Terminal Applikation Programming Interface

– Part 4 CT-BCS – Anwendungsunabhängiges Card
Terminal Basic Command Set

– Part 5 Chipkarten mit synchroner Übertragung – ATR
und Datenbereiche

– Part 6 Chipkarten mit synchroner Übertragung –
Übertragungsprotokolle

– Part 7 Chipkarten mit synchroner Übertragung –
Anwendung von Interindustry Commands

OCF – API Docs V1.2: 2001

OCF – Programmer’s Guide V 1.2: 2001

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1056 of 1123

1022 Appendix

Open Platform Card Specification 2.1: 2001
� The most important specification with regard to
managing applications in multiapplication smart
cards. This very comprehensive specification
contains a detailed presentation of the software
and security architectures of multiapplication
smart cards and a thorough description of the
commands needed for this purpose. The appendix
includes the specification of an API for application
management with Java Card, which has become
the de facto standard for this type of smart card.74

PC/SC V1.0: December 1997 Interoperability Specification for ICCs and
Personal Computer Systems

This extensive, detailed specification forms the
basis for linking smart cards and terminals to the
resource management system of 16-bit and 32-bit
Microsoft operating systems.

– 1 Part 1: Introduction and Architecture Overview

– 2 Part 2: Interface Requirements for Compatible IC
Cards and Readers

– 3 Part 3: Requirements for PC-Connected Interface
Devices

– 4 Part 4: IFD Design Considerations and Reference
Design Information

– 5 Part 5: ICC Resource Manager Definition

– 6 Part 6: ICC Service Provider Interface Definition

– 7 Part 7: Application Domain and Developer Design
Considerations

– 8 Part 8: Recommendations for ICC Security and
Privacy Devices

PKCS The Public Key Cryptography Standards (PKCS)
are industry standards published by RSA Inc. that
focus on the use of asymmetric cryptographic
algorithms.

– PKCS #1 V 2.1: 2001 RSA Encryption Standard
� Describes mechanisms for encryption and
decryption using the RSA algorithm.

– PKCS #3 V 1.4: 1993 Diffie–Hellman Key-Agreement Standard

Describes the mechanism of a key exchange
procedure between two parties using the
Diffie–Hellman procedure.

74 See also Section 5.11, ‘Open Platform’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1057 of 1123

16.4 Annotated Directory of Standards and Specifications 1023

– PKCS #5 V 2.0: 1999 Password-Based Cryptography Standard

Contains recommendations for the
implementation of encryption, key derivation and
MAC generation based on keys generated from
passwords.

– PKCS #11 V 2.11: 2001 Cryptographic Token Interface Standard
� The de facto international standard for an API
for invoking cryptographic functions. This API is
called ‘Cryptoki’ (cryptographic token interface)
and includes functions such as RC2, RC4, RC5,
MD5, SHA-1, DES, triple-DES, IDEA, RSA, DSA,
MAC computation and key generation for a wide
variety of cryptographic algorithms.

– PKCS #13 V 1.0: 1998 Elliptic Curve Cryptography Standard

– PKCS #14 V 1.0 Pseudorandom Number Generation Standard

(Proposal: 1998) This unfinished standard with a relatively small
scope contains suggestions for the conceptual
design of random number generators.

– PKCS #15 V 1.1: 2000 Cryptographic Token Information Format
Standard
� Internationally, this is the de facto standard for
the data objects needed for an interoperable
smart card for digital signatures. It includes
descriptions of all directories and files needed for
a signature card and ASN.1 descriptions of all
certificates, keys and administrative data stored in
the files.

RFC 1319: 1992 The MD2 Message-Digest Algorithm

RFC 1320: 1992 The MD4 Message-Digest Algorithm

RFC 1321: 1992 The MD5 Message-Digest Algorithm

RFC 1750: 1994 Randomness Recommendations for Security

Describes the operating principles of various
types of random number generators, and based on
these principles, recommends methods for
designing high-quality pseudorandom number
generators for PCs.

RFC 2706: 1999 ECML V1: Field Names for E-Commerce

SET Book 1, Version 1.0: 1997 Secure Electronic Transaction Specification,
Book 1: Business Description

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1058 of 1123

1024 Appendix

SET Book 2, Version 1.0: 1997 Secure Electronic Transaction Specification,
Book 2: Programmer’s Guide

SET Book 3, Version 1.0: 1997 Secure Electronic Transaction Specification,
Book 3: Formal Protocol Definition

TIA/EIA/IS-820: 2000 Removable User Identity Module (R-UIM) for
TIA/EIA Spread Spectrum Standards

TIA/EIA/IS-820-1: 2001 Removable User Identity Module (R-UIM) for
TIA/EIA Spread Spectrum Standards,
Addendum 1

TIA/EIA/IS-839: 2000 R-UIM Overview, Operation, and File Structure
Support in TIA/EIA-136

TR 33.900, V 1.2.0: 2000 3rd Generation Partnership Project; Technical
Specification Group SA WG3; A Guide to 3rd
Generation Security Architecture

An overview of the security architecture,
available security functions and possible attack
scenarios for 3G mobile telecommunications
networks. Details related to security are
described in the relevant standards (TS 33.102,
TS 33.120 and TS 21.133).

TS 21.111, Version 4.0.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; USIM and IC
card requirements

A short standard that specifies the basic
functionality required for a security module
(USIM) for a UMTS mobile communications
network. This standard is the UMTS equivalent of
the GSM 02.17 standard.

TS 21.133, Version 4.0.0: 2001 Universal Mobile Telecommunications System
(UMTS); 3G Security; Security Threats and
Requirements

TS 22.038, Version 4.1.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; USIM/SIM
Application Toolkit (USAT, SAT); Service
description; Stage 1

TS 22.112, Version 5.0.0: 2001 Technical Specification; 3rd Generation
Partnership Project; Technical Specification
Group Terminals; USAT Interpreter – Stage 1

TS 23.038, V 4.3.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; Alphabets and
language-specific information

Specifies the character coding used for SMS and
USSD and the character sets used for UMTS.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1059 of 1123

16.4 Annotated Directory of Standards and Specifications 1025

TS 23.040, V 4.3.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; Technical
realization of the Short Message Service (SMS)

TS 23.048, Version 5.1.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; Security
Mechanisms for the (U)SIM Application Toolkit;
Stage 2

TS 31.102, Version 4.2.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; Characteristics of
the USIM Application

� Specifies the logical characteristics of the
USIM smart card application by describing the
interface between the USIM and the UMTS
mobile telephone. Includes detailed descriptions
of all files and their data objects, definitions of
several somewhat less UMTS-specific commands
and examples of command sequences for typical
processes. Together with TS 31.101, it is the
UMTS equivalent of the GSM GMS 11.11
standard.

TS 31.110, Version 4.0.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; Numbering
system for telecommunication IC card
applications

Future versions of this standard will be published
as TS 101.220.

TS 31.111, Version 4.4.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; USIM
Application Toolkit (USAT)

Defines and extensively describes the USIM
Application Toolkit for USIMs. The USAT
describes an interface between the mobile
telephone and the USIM that allows
supplementary applications in the USIM to
assume partial control of the telephone. It
introduces proactive commands for the USIM and
defines many new commands related to control of
the telephone for functions such as display output,
keypad polling and sending short messages. The
GSM equivalent of this standard is GSM 11.14.

TS 31.112, Version 5.0.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; USAT Interpreter
Architecture Description; Stage 2

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1060 of 1123

1026 Appendix

TS 31.113, Version 5.0.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; USAT Interpreter
Byte Codes

TS 31.114, Version 1.1.0: 2002 3rd Generation Partnership Project; Technical
Specification Group Terminals; USAT Interpreter
Protocol and Administration

TS 31.121, Version 4.0.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; UICC-Terminal
Interface; USIM Application Test Specification

TS 31.122, Version 3.0.0: 2000 3rd Generation Partnership Project; Technical
Specification Group Terminals; USIM
Conformance Test Specification

Specifies the test environment, test equipment, test
hierarchy and individual test cases for testing
USIMs. The described tests exclusively address
electrical and informatics aspects. Detailed
specifications are provided for tests covering a
wide range of subjects, such as electrical power,
data transmission, file management, commands
and typical processes in the UMTS application.
This standard is a very good example of how
USIM tests can be described, constructed and
executed. It is the USIM equivalent of the
GSM 11.17 standard for testing SIMs.

TS 31.900, Version 3.1.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; SIM/USIM
Internal and External Interworking Aspects

TS 33.102, Version 4.1.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Services and System
Aspects; 3G Security; Security Architecture

A key standard for the entire security architecture
of a UMTS mobile telecommunications network
with regard to network access, authentication,
confidentiality and data integrity. Includes
complete descriptions, independent of any
specific cryptographic algorithm, of network
security functions, authentication protocols and
encryption methods, as well as generating
authentication vectors and the key derivations
that are used.

TS 33.103, Version 4.1.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Services and System
Aspects; 3G security; Integration guidelines

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1061 of 1123

16.4 Annotated Directory of Standards and Specifications 1027

TS 33.105, Version 4.1.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Services and System
Aspects; 3G Security; Cryptographic Algorithm
Requirements

TS 33.120, Version 4.0.0: 2001 Universal Mobile Telecommunications System
(UMTS); 3G Security; Security Principles and
Objectives

TS 35.205, Version 4.0.0: 2001 Universal Mobile Telecommunications System
(UMTS); 3G Security; Specification of the
MILENAGE algorithm set: An example
algorithm set for the 3GPP Authentication and
Key Generation functions f1, f1*, f2, f3, f4, f5
and f5*; Document 1: General

TS 35.206, Version 4.0.0: 2001 Universal Mobile Telecommunications System
(UMTS); 3G Security; Specification of the
MILENAGE algorithm set: An example
algorithm set for the 3GPP Authentication and
Key Generation functions f1, f1*, f2, f3, f4, f5
and f5*; Document 2: Algorithm Specification

TS 35.207, Version 4.0.0: 2001 Universal Mobile Telecommunications System
(UMTS); 3G Security; Specification of the
MILENAGE algorithm set: An example
algorithm set for the 3GPP Authentication and
Key Generation functions f1, f1*, f2, f3, f4, f5
and f5*; Document 3: Implementors’ Test Data

TS 35.208, Version 4.0.0: 2001 Universal Mobile Telecommunications System
(UMTS); 3G Security; Specification of the
MILENAGE algorithm set: An example
algorithm set for the 3GPP Authentication and
Key Generation functions f1, f1*, f2, f3, f4, f5
and f5*; Document 4: Design Conformance

TS 35.909, Version 4.0.0: 2001 Universal Mobile Telecommunications System
(UMTS); 3G security; Report on the design and
evaluation of the MILENAGE algorithm set;
Deliverable 5: An example algorithm for the
3GPP Authentication and Key Generation
functions

TS 42.009, V4.0.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Services and System
Aspects; Digital cellular telecommunications
system (Phase 2+); Security aspects

Fundamental document containing an overview
of the important security aspects of a PLMN.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1062 of 1123

1028 Appendix

TS 51.011, Version 4.2.0: 2001 3rd Generation Partnership Project; Technical
Specification Group Terminals; Specification of
the Subscriber Identity Module – Mobile
Equipment (SIM – ME) interface

Identical to GSM 11.11 in the new ETSI
numbering system.

TS 101.220, V 4.0.0: 2001 Integrated Circuits Cards (ICC); ETSI numbering
system for telecommunication application
providers

Specifies the AIDs, PIX and TAR for the SIM,
TETRA-SIM and USIM. Also defines the code
space of the PIX for the various types of
supplemenatary applications of this type of
telecommunications smart card.

TS 102.221, Version 4.4.0: 2001 Smart cards; UICC–Terminal interface; Physical
and logical characteristics
� Specifies the logical characteristics of a
USIM by means of a description of the interface
between the USIM and the UMTS mobile
telephone. Includes definitions of the ID-1 and
plug-in card formats and specifies the general
mechanical parameters of the card and its
contacts, as well as all general electrical
parameters. It also specifies the structure and
data content of the ATR and PPS and defines
transmission protocols, file structures, security
mechanisms, commands and return codes. In
addition, it lists all files and associated data
objects that are independent of any particular
telecommunications application. This standard
forms the basis for smart card operating systems
for the USIM. It is complemented by TS 31.103,
which addresses all application-specific
components of a USIM. These two standards
form the UMTS equivalent of the GMS 11.11
standard.

TS 102.222, Version 3.3.0: 2001 Integrated Circuit Cards (ICC); Administrative
commands for telecommunications applications

Specifies the administrative commands for
file management and associated security
conditions for use with telecommunications smart
cards.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1063 of 1123

16.4 Annotated Directory of Standards and Specifications 1029

TS 102.223, Version 4.1.0: 2001 Smart Cards; Card Application Toolkit (CAT)

Defines and thoroughly describes a generic
application toolkit for telecommunications
smart cards. CAT describes an interface
between the mobile telephone and the smart card
that allows supplementary applications in the
smart card to assume partial control of the
telephone. This standard defines commands
related to controlling the telephone for functions
such as display output, keypad polling and
sending short messages. It forms the basis for
other standards, such as GSM 11.14 and
TS 31.111.

TS 102.224, Version 1.0.0: 2001 Smart Cards; Security mechanisms for the Card
Application Toolkit; Functional requirements

TS 102.225, Version 1.0.0: 2001 Smart Cards; Secured packet structure for UICC
applications

TS 102.226, Version 1.0.0: 2001 Smart Cards; Remote APDU Structure for UICC
based Applications

TS 102.230, Version 4.0.0: 2001 Smart Cards; UICC-Terminal Interface; Physical,
Electrical and Logical Test Specification

Specifies physical and electrical tests for UICCs,
and describes basic tests for the communications
link to the UICC and tests for the T = 0 and T = 1
transmission protocols.

TS 102.240, Version 1.0.0: 2001 Smart Cards; UICC Application Programming
Interface (UICC API); Service description

TS 102.241, Version 1.0.0: 2001 UICC Application Programming Interface (UICC
API); UICC API for Java Card

TS 123.002, Version 4.4.0: 2002 Universal Mobile Telecommunications System
(UMTS); Network architecture

Unicode Standard, Version 3.1.1: 2001

Universal Serial Bus Specification,
Revision 2.0, 2000

This very comprehensive specification forms the
basis for the USB interface.

Wireless Application Protocol
Identity Module Specification,
Version 260: July 2001

Specifies the physical and electrical properties of
a WIM, which is the digital signature application
for telecommunications smart cards. Lists all
mechanisms, commands, data objects and files
needed for a WIM application.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1064 of 1123

1030 Appendix

16.5 CODING OF DATA OBJECTS

Additional tables of tags for data objects can be found in Chapter 5, which describes accesses
to smart card resources in accordance with ISO/IEC 7816-9.

16.5.1 Data objects compliant with ISO/IEC 7816-4

Table 16.2 The coding of a number of important data objects as defined in ISO/IEC 7816-4

Tag Data object Template Length Description
(bytes)

'62' File control parameters
(FCP) template

--- --- The FCP template contains file
control parameters (FCP).

'64' File management data
(FMD) template

--- --- The FMD template contains file
management data (FMD).

'6F' File control information
(FCI) template

--- --- The FCI template contains file
control parameters (FCP) and file
management data (FMD).

'80' Number of data bytes in the
file, excluding structure
data

'62' 2 For EFs with transparent structure.

'81' Number of data bytes in the
file, including structure
data

'62' 2 For all files.

'82' File description '62' 1–4 File access:
◦00-- ----◦: file is not shareable

(concurrent access via
several logical channels
not possible)

◦01-- ----◦: file is shareable
(concurrent access via
several logical channels
is possible)

File type:
◦--00 0---◦: working EF
◦--00 1---◦: internal EF
◦--11 1---◦: DF
EF structure:
◦---- -000◦: no data
◦---- -001◦: transparent
◦---- -010◦: linear fixed
◦---- -011◦: linear fixed,

content
simple-TLV-coded

◦---- -100◦: linear variable

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1065 of 1123

16.5 Coding of Data Objects 1031

Table 16.2 (Cont.)

◦---- -101◦: linear variable,
content
simple-TLV-coded

◦---- -110◦: cyclic
◦---- -111◦: cyclic,

content
simple-TLV-coded

'83' FID '62' 2 For all files.
'84' DF name '62' 1–16 For DFs.
'86' Security attribute '62' variable
'88' Short file identifier (SFI) '62' 1 Definition of EFs from ISO/IEC

7816-9.
SFI = b8 . . . b4 || ◦000◦

'8A' Life cycle status indicator
(LCSI tag)

'62' 1 Bit coding specified in
ISO/IEC 7816-9.

◦0000 0000◦: no data
◦0000 0001◦: creation state
◦0000 0011◦: initialization state
◦0000 01x1◦: operational state:

activated
◦0000 01x0◦: operational state:

deactivated
◦0000 11xx◦: termination state
◦yyyy xxxx◦: y �= 0, proprietary

16.5.2 Data objects compliant with ISO/IEC 7816-6

Table 16.3 The coding of a number of important data objects as defined in ISO/IEC 7816-6

Tag Data object Template Length Description
(bytes)

'4F' AID '61'/'6E' 5–16 —
'50' Application name '61'/'6E' variable
'59' Card expiry date '66' 3 Format: YYMMDD
'5B' Name '65' 39 max.
'5F24' Application expiry date '6E' 3 Format: YYMMDD
'5F25' Date of issue of the card '6E' 3 Format: YYMMDD
'5F26' Date of issue of the application '66' 3 Format: YYMMDD
'5F28' Country identifier '66' 2 Format: 3 digits, coded per ISO 3166
'5F2A' Currency identifier '6E' 2 Format: 3 digits, coded per ISO 3166
'5F2B' Date of birth '65' 4 Format: YYYYMMDD
'5F42' Address '65' variable Address of a person
'5F4D' Chip manufacturer '66' 1 See Section 16.5.3.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1066 of 1123

1032 Appendix

16.5.3 Data objects for chip manufacturers as specified by ISO/IEC
7816-6
Table 16.4 Coding of data objects for chip manufacturers as defined in ISO/IEC
7816-6. This table provides a good overview of the manufacturers of smart card
microcontrollers. The tag for chip manufacturers is ‘5F4D’.

Code Company Code Company

'01' Motorola '0D' Mitsubishi Electric
'02' ST Microelectronics '0E' Samsung Electronics
'03' Renesas '0F' Hyundai Electronics Industries
'04' Philips Semiconductors '10' LG-Semiconductors
'05' Infineon Semiconductors '11' Emosyn-EM Microelectronics
'06' Cylinc '12' Inside Technologies
'07' Texas Instrument '13' ORGA Kartensysteme
'08' Fujitsu '14' Sharp Corporation
'09' Matsushita Electronic '15' ATMEL
'0A' NEC '16' EM Microelectronic-Marin
'0B' Oki Electric '17' KSW Microtec
'0C' Toshiba '19' Xicor

16.6 REGISTRATION AUTHORITIES FOR RIDs

The form for registering an RID is located in the appendix of the ISO/IEC 7816-5 standard.
An application for an international RID is normally made via the relevant national authority,
and there is a fee. The addresses of national registration authorities, as well as the registration
procedures for RIDs, can usually be obtained from national standardization bodies.

Table 16.5 Registration authorities for RIDS compliant with
ISO/IEC 7816-5

Region Organization

International TeleDanmark KTAS
attn: ISO/IEC 7816-5 Registration Authority
Teglholmsgade 1
1790 Copenhagen V
Denmark

Germany RID German National Registration Authority
c/o GMD Bruno Struif
Rheinstraße 75
D - 64 295 Darmstadt, Germany

16.7 SELECTED RIDS

Table 16.6 lists a number of examples of publicly known RIDs and AIDs. Unfortunately, RIDs
are treated as confidential by registration authorities, so the list is not very long.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1067 of 1123

16.8 Trade Fairs, Conferences and Conventions 1033

Table 16.6 Selected RIDs of typical smart card applications and organizations that use smart cards

Smart card applications AID (application identifier) = RID || PIX

3GPP (UICC, USIM, USAT) RID ='A0 00 00 00 87'
PIX = specific to the card issuer

Eurocheque card with chip in Germany RID ='D2 76 00 00 25'
PIX ='45 50 01 00'

ETSI RID ='A000000009'
(SIM, SAT, Java Card SIM API, TETRA)

FINEID RID ='A0 00 00 00 63'
(Finnish personal ID card) PIX ='50 4B 43 53 2D 31 35'

Giesecke & Devrient RID ='D2 76 00 00 05'

PKCS #15 RID ='A0 00 00 00 63'
PIX ='50 4B 43 53 2D 31 35'=''PKCS-15''

WIM RID ='A0 00 00 00 63'
PIX ='57 41 50 2D 57 49 4D'=''WAP-WIM''

Wolfgang Rankl RID ='D2 76 00 00 60'

16.8 TRADE FAIRS, CONFERENCES AND CONVENTIONS

Table 16.7 lists trade fairs, congresses and conventions that have smart cards or related subjects
as at least one of their major themes. The listed places and dates are typical for the past several
years, but they can change in the future, depending on the event organizer. As can be seen, a
traveler with an interest in the subject can visit an event in a different country every month of
the year.

Table 16.7 Selected annual events related to smart cards and cryptology

Event name Place Date

Asia Crypt Asia Fall
Card Tech / Secure Tech [CTST] USA September
Cards Africa South Africa (Johannesburg) November
Cards Asia Singapore February
Cards Australia Australia (Melbourne) August
Cards Latin America Chile (Santiago de Chile) July
Cartes France (Paris) October
CeBit Germany (Hanover) March
Crypto USA (Santa Barbara, California) Summer
Euro Crypt Europe Spring
GSM World Congress France (Cannes) February
Java One San Francisco, USA June
OmniCard Germany (Berlin) January
Smart Card Great Britain (London) February

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1068 of 1123

1034 Appendix

16.9 WORLD WIDE WEB ADDRESSES

The following list of World Wide Web addresses does not claim to be complete. It should be
seen as a cross-section of the various companies and institutions that are active in the field of
smart cards. The listed addresses are thus entirely suitable for use as starting points for further
research. Thanks to the hypertext structure of HTML documents, many of the listed sites
contain links to other interesting documents and World Wide Web locations. Large collections
of links are explicitly identified as ‘link farms’.

When using this list, you should bear in mind that the Internet is very dynamic, so addresses
can very quickly become outdated. This is also why we do not list specific documents, but have
limited the listings to subdirectories. Even these are frequently changed when a Web server is
reorganized, so in case of doubt we recommend that you use the address up to the organization
or country code (*.com, *.de and so on). After this, you can manually select currently valid
directories on the Web server via the home page.

The classification of the Internet addresses and firms is based on their principal areas of
activity. However, many of the listed firms are active in several of the indicated areas; this is
normally shown explicitly. To the extent that it makes sense to do so, the country in which the
firm or organization is located is also noted.

As a rule, you can find the postal address of a firm and the telephone number of a contact
person on the home page of the firm. Consequently, postal addresses are not included in the list.
If you have a specific need for particular information, we generally advise you to use appropriate
search terms (keywords) and a powerful search engine to comb through the World Wide Web.
This at least will ensure that you are working with a current cross-section of information.

Table 16.8 Summary of the descriptive categories used in the list of Web addresses

Category Description

attacks attacks on smart cards, smart card terminals, security
modules etc.

card issuer issuer of cards and/or smart cards
card manufacturer manufacturer of cards with or without chips
card production machinery machinery and equipment for producing cards
cryptography cryptography related to smart cards
events seminars, conferences and congresses related to smart

cards
link farm collection of links to other Internet sites
operating systems operating systems for smart cards
patents patents related to smart cards
publisher journals and books related to smart cards
security technology security technology related to smart cards
semiconductor manufacturer manufacturer of semiconductors for smart cards, memory

chips and/or microcontrollers
software PC software for smart cards, smart card simulations
standards standards related to smart cards and cryptography
terminal manufacturer manufacturer of terminals for cards with or without chips
university university or technical institute

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1069 of 1123

16.9 World Wide Web Addresses 1035

[3GPP] 3GPP
standards
http://www.3gpp.org/

[3GPP2] 3GPP2
standards
http://www.3gpp2.org/

[AC] Austria Card, Austria
card manufacturer
http://www.austriacard.at/

[ACG] ACG, Germany
chip merchant
http://www.acg.de/

[ActivCard] ActivCard, USA
card manufacturer
http://www.activcard.com/

[AltTech] alt.technology.smartcards FAQ
smart card FAQ site
http://www.scdk.com/atsfaq.htm

[AM] American Magnetics, USA
terminal manufacturer
http://www.magstripe.com/

[AmEx] American Express, USA
card issuer
http://www.americanexpress.com/

[Anderson] Ross Anderson’s Home Page, Great Britain
information about attacks on smart cards
http://www.cl.cam.ac.uk/users/rja14/

[ANSI] ANSI, USA
standards
http://www.ansi.org/

[ARM] ARM Ltd., Great Britain
processor core for smart card microcontrollers
http://www.arm.com/

[ASM] ASM Lithography, The Netherlands
machinery for semiconductor manufacturing
http://www.asml.com/

[Atmel] Atmel, USA
smart card microcontrollers
http://www.atmel.com/

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1070 of 1123

1036 Appendix

[Basiccard] Basic Card
smart card operating systems
http://www.basiccard.com/

[BSI] Bundesamt for Sicherheit in der Informationstechnik (BSI), Germany
information about security
http://www.bsi.bund.de/

[Card Forum] Card Forum, Germany
publisher in the smart card field
http://www.card-forum.com/

[Cardshow] The Smart Card Cyber Show, France
http://www.cardshow.com/

[CC] Common Criteria
http://www.commoncriteria.org/

[CCC] Chaos Computer Club e.V., Germany
attacks on smart cards and cryptographic algorithms
http://www.ccc.de/

[CDG] CDMA Development Group (CDG)
information about CDMA
http://www.cdg.org/

[CEN] CEN
standards
http://www.cenorm.be/

[CEPS] CEPSCO
information about CEPS
http://www.cepsco.com/

[Certicom] Certicom Corp., Canada
cryptography, ECC
http://www.certicom.ca/

[Counterpane] Counterpane, USA
cryptography
http://www.counterpane.com/

[CR] Cryptography Research
attacks
http://www.cryptography.com/

[CTST] CardTech/SecurTech Conference, USA
events relating to smart cards
http://www.ctst.com/

[Dai Nippon] Dai Nippon Printing Co. Ltd., Japan
smart card manufacturer
http://www.dnp.co.jp/

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1071 of 1123

16.9 World Wide Web Addresses 1037

[Dallas Semi] Dallas Semiconductor, USA
semiconductor manufacturer; security processors
http://www.dalsemi.com/

[Datacard] Datacard, USA
production machinery for smart cards
http://www.datacard.com/

[De La Rue] De La Rue Card Systems, Great Britain
smart card manufacturer
http://www.delarue.com/

[DIN] Deutsches Institut für Normung e.V. (DIN), Germany
standards
http://www.din.de/

[DPA] Deutsches Patentamt, Germany
patents
http://www.deutsches-patentamt.de/

[Drexler] Drexler Technology Corp., USA
cards with optically writeable and readable regions
http://www.lasercard.com/

[ECBS] European Committee for Banking Standards
standards and specifications
http://www.ecbs.org/

[ECC] The Error Correcting Codes (ECC) Home Page, Japan
link farm for error detection and correction codes
http://www.csl.sony.co.jp/person/morelos/ecc/codes.html

[Emosyn] Emosyn
manufacturer of smart card microcontrollers
http://www.emosyn.com/

[EMV] EMVCO
information about EMV
http://www.emvco.com/

[Entrust] Entrust, Canada
cryptography
http://www.entrust.com/

[ETSI] ETSI
standards
http://www.etsi.org/

[Europay] Europay International, Belgium
card issuer
http://www.europay.com/

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1072 of 1123

1038 Appendix

[Eurosmart] Eurosmart
information about smart cards
http://www.eurosmart.com

[FINEID] FINEID, Finland
information about FINEID
http://www.fineid.fi/

[GD] Giesecke & Devrient GmbH, Germany
smart cards; operating systems; terminals
http://www.gieseckedevrient.com/
http://www.gi-de.com/

[Gemplus] Gemplus S.C.A., France
smart cards, operating systems, terminals
http://www.gemplus.com/

[Global Global Platform
Platform] information about Global Platform

http://www.globalplatform.org/

[Groupmark] Groupmark Ltd., Canada
smart card manufacturer
http://www.groupmark.com/

[GSM] GSM MoU Association
link farm relating to GSM
http://www.gsmworld.com/

[Gutmann] Peter Gutmann’s Security and Encryption Links
http://www.cs.auckland.ac.nz/∼pgut001/

[Hanser] Carl Hanser Verlag GmbH, Germany
pubisher (Handbuch der Chipkarten, The Smart Card Simulator)
http://www.hanser.de/

[Hypercom] Hypercom Corp., USA
terminals
http://www.hypercom.com/

[ICMA] ICMA – International Card Manufacturers Association
information about smart cards
http://www.icma.com/

[IEC] IEC
standards
http://www.iec.ch/

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1073 of 1123

16.9 World Wide Web Addresses 1039

[IEEE] IEEE
standards
http://www.ieee.org/

[Infineon] Infineon AG, Germany
semiconductor manufacturer
http://www.infineon.com

[Ingenico] Ingenico, France
terminal manufacturer
http://www.ingenico.com/

[Integri] Integri, Belgium
testing smart card operating systems
http://www.integri.com/

[Iridium] Iridium, USA
information about the Iridium mobile telecommunications network
http://www.iridium.com/

[ISO] ISO
standards
http://www.iso.ch/

[ITU] ITU
standards
http://www.itu.ch/

[JavaPOS] JavaPOS
Java for POS terminals
http://www.javapos.com/

[Javasoft] Javasoft, USA
Java for smart cards
http://www.javasoft.com/

[JCF] Java Card Forum, USA
Java, specifictions for Java in smart cards
http://www.javacardforum.org/

[JTC1] ISO, Joint Technical Committee One
international standardization
http://www.jtc1.org/

[Logika] Logika Comp Spa, Italy
personalization systems
http://www.logika.it/

[MagTek] MagTek Inc., USA
terminals
http://www.magtek.com/

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1074 of 1123

1040 Appendix

[Maosco] Maosco Ltd., Great Britain
smart card operating system
http://www.multos.com/

[MasterCard] MasterCard International, USA
card issuer
http://www.mastercard.com/

[Microsoft] Microsoft, USA
Crypto-API, PC/SC
http://www.microsoft.com/

[MIPS] MIPS
manufacturer of processors
http://www.mips.com/

[MobM] Mobile Mind, USA
smart card company
http://www.mobile-mind.com

[Mondex] Mondex International Ltd., Great Britain
electronic purse system
http://www.mondex.com/

[Mühlbauer] Mühlbauer GmbH, Germany
card production machinery
http://www.muehlbauer.de/

[MUSCLE] MUSCLE (Movement for the Use of Smart Cards in a Linux
Environment)
MUSCLE project for linking smart cards to Linux systems
http:// www.linuxnet.com/

[NIST] National Institute of Standards and Technology (NIST), USA
standards
http://www.nist.gov/

[NSA] National Security Agency (NSA), USA
information about security and cryptography
http://www.nsa.gov/

[Oberthur] Oberthur Smart Cards, USA
smart card manufacturer
http://www.oberthur.com/

[OCF] OCF
OCF specification
http://www.opencard.org/

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1075 of 1123

16.9 World Wide Web Addresses 1041

[Oki] Oki, Japan
manufacturer of smart card microcontrollers and terminals
http://www.oki.com/
http://www.oki.co.jp/

[OMA] Open Mobile Alliance
successor to the WAP Forum
http://www.openmobilealliance.org

[Omni] Omnikey
smart card terminals
http://www.omnikey.com

[Orga] Orga GmbH, Germany
smart card manufacturer
http://www.orga.com/

[PC/SC] PC/SC Working Group, USA
PC/SC specification
http://www.smartcardsys.com/

[Philips] Philips, Germany
manufacturer of smart card microcontrollers
http://www.philips.com/
http://www.semiconductors.philips.com/

[Protechno] Protechno Card GmbH, Germany
manufacturer of desktop personalization machinery
http://www.protechno-card.com/

[Proton] Proton
Proton electronic purse system
http://www.protonworld.com/

[Radicchio] Radicchio
PKI
http:// www.radicchio.org/

[Rankl] Home page of Wolfgang Rankl
errata lists for the Handbuch der Chipkarten, the Smart Card Handbook
and the Smart Card Simulator (available as HTML documents)
http://www.wrankl.de

[Renesas] Renesas Technology Corporation, Japan
smart card microcontrollers, terminals
http://www.renesas.com/

[RFC] RFC Server
Internet standards; RFC
http://www.rfc.net/

[RFID] RFID Handbook
information about RF ID
http://www.RFID-handbook.de

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1076 of 1123

1042 Appendix

[RSA] RSA Inc., USA
cryptography, PKCS specifications
http://www.rsa.com/

[SCA] Smart Card Allliance
information about smart cards
http://www.smartcardallilance.org

[SCARD] Smart Card Developer Association, USA
attacks, software
http://www.scard.org/

[SCDK] Smart Card Developer’s Kit
book
http://www.scdk.com/

[Schlumberger] Schlumberger Ltd., France
smart card manufacturer
http://www.slb.com/

[SET] Secure Electronic Transaction LLC, USA
SET home page
http://www.setco.org/

[SETEC] SETEC, Finland
smart card manufacturer
http://www.setec.fi/

[Siemens] Siemens, Germany
smart card operating system
http://www.siemens.com/

[SIM Alliance] SIM Alliance
S@T browser
http://www.simalliance.org/

[Smart Card The Smart Card Club
Club] http://www.smartcardclub.co.uk/

[Smarttrust] Smarttrust
microbrowser technology for smart cards
http://www.smarttrust.com/

[SOSSE] Simple Operating System for Smartcard Education
smart card operating system
http://www.mbsks.franken.de/sosse

[STM] ST Microelectronics, France
manufacturer of smart card microcontrollers
http://www.st.com/

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1077 of 1123

16.9 World Wide Web Addresses 1043

[Techno Data] Techno Data, Germany
magnetic-stripe cards, smart cards
http://www.technodata-ibk.com/

[Teletrust] Teletrust, Germany
http://www.teletrust.de/

[TETRA] TETRA
information about TETRA
http://www.tetramou.com/

[TI] Texas Instruments Inc., USA
semiconductor manufacturer
http://www.ti.com/

[TIA] Telecommunications Industry Association
standards
http://www.tiaonline.org/

[TNO] TNO (Netherlands Organization for Applied Research),
The Netherlands
hardware testing of microcontrollers
http://www.tno.nl/

[Topac] Topac GmbH
holograms
http://www.topac.de/

[Ubiq] UbiQ Inc., USA
personalization
http://www.ubiqinc.com/

[UCL] UCL Microelectronics Laboratory, Belgium
cryptography
http://www.dice.ucl.ac.be/

[UCL-LL] UCL Microelectronics Laboratory – smart card link list
link farm
http://www.dice.ucl.ac.be/crypto/card.html

[UMTS Forum] UMTS Forum
information about UMTS
http://www.umts-forum.org/

[USB] USB
http://www.usb.org/

[Verifone] Verifone Inc., USA
terminal manufacturer
http://www.verifone.com/

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1078 of 1123

1044 Appendix

[Visa] Visa International, USA
card issuer
http://www.visa.com/
http://www.visa.de/

[WAP] WAP Forum
information about WAP
http://www.wapforum.org/

[Wiley] John Wiley & Sons, Inc., Great Britain
publisher (Smart Card Handbook)
http://www.wiley.co.uk/

[Zeitcontrol] Zeitcontrol Cardsystems GmbH, Germany
smart card manufacturer
http://www.zeitcontrol.de/

16.10 CHARACTERISTIC DATA AND TABLES

16.10.1 ATR interval

Table 16.9 Time interval within which the ATR must be sent following a reset

Clock rate Minimum time (400 clocks) Maximum time (40,000 clocks)

1.0000 MHz 0.400 ms 40.000 ms
2.0000 MHz 0.200 ms 20.000 ms
3.0000 MHz 0.133 ms 13.333 ms
3.5712 MHz 0.112 ms 11.201 ms
4.0000 MHz 0.100 ms 10.000 ms
4.9152 MHz 0.081 ms 8.138 ms
5.0000 MHz 0.080 ms 8.000 ms
6.0000 MHz 0.067 ms 6.667 ms
7.0000 MHz 0.057 ms 5.714 ms
8.0000 MHz 0.050 ms 5.000 ms
9.0000 MHz 0.044 ms 4.444 ms

10.0000 MHz 0.040 ms 4.000 ms

16.10.2 ATR parameter conversion tables

The following tables are based on the definition of the ATR parameters CWT and BWT in the
ISO/IEC 7816-3 standard. The indicated times are for a clock rate of 3.5712 MHz with various
values of the clock rate conversion factor (divider) F.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1079 of 1123

16.10 Characteristic Data and Tables 1045

Table 16.10 CWI/CWT conversion table (all times are based on a 3.5712-MHz clock with D = 1)

F = 4 F = 8 F = 16 F = 31 F = 93

work etu: 1.120 µs 2.240 µs 4.480 µs 8.681 µs 26.042 µs

CWI CWT (etu) CWT (ms)

0 12 0.013 0.027 0.054 0.104 0.313
1 13 0.015 0.029 0.058 0.113 0.339
2 15 0.017 0.034 0.067 0.130 0.391
3 19 0.021 0.043 0.085 0.165 0.495
4 27 0.030 0.060 0.121 0.234 0.703
5 43 0.048 0.096 0.193 0.373 1.120
6 75 0.084 0.168 0.336 0.651 1.953
7 139 0.156 0.311 0.623 1.207 3.620
8 267 0.299 0.598 1.196 2.318 6.953
9 523 0.586 1.172 2.343 4.540 13.620

10 1,035 1.159 2.319 4.637 8.984 26.953
11 2,059 2.306 4.612 9.225 17.873 53.620
12 4,107 4.600 9.200 18.401 35.651 106.953
13 8,203 9.188 18.376 36.752 71.207 213.620
14 16,395 18.364 36.727 73.454 142.318 426.953
15 32,779 36.715 73.430 146.859 284.540 853.620

Table 16.11 BWI/BWT conversion table (all values are based on a 3.5712-MHz clock with D = 1)

F = 4 F = 8 F = 16 F = 31 F = 93

work etu: 1.120 µs 2.240 µs 4.480 µs 8.681 µs 26.042 µs

BWI BWT (ms) BWT (etu)

0 100 89,291 44,651 22,331 11,531 3,851
1 200 178,645 89,323 44,661 23,051 7,684
2 400 357,131 178,571 89,291 46,091 15,371
3 800 714,251 357,131 178,571 92,171 30,731
4 1,600 1,428,491 714,251 357,131 184,331 61,451
5 3,200 2,856,971 1,428,491 714,251 368,651 122,891
6 6,400 5,714,005 2,857,003 1,428,501 737,291 245,764
7 12,800 11,427,925 5,713,963 2,856,981 1,474,571 491,524
8 25,600 22,855,765 11,427,883 5,713,941 2,949,131 983,044
9 51,200 45,711,445 22,855,723 11,427,861 5,898,251 1,966,084

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1080 of 1123

1046 Appendix

16.10.3 Determining the data transmission rate

Table 16.12 Data transmission rate in bit/s for various clock frequencies in MHz with a clock rate
conversion factor (F) of 372 and various values of the bit rate adjustment factor (D)

D = 1 D = 2 D = 4 D = 8 D = 12 D = 16 D = 20 D = 32

F/D 372.00 186.00 93.00 46.50 31.00 23.25 18.60 11.63

Frequency
1.0000 2,688 5,376 10,753 21,505 32,258 43,011 53,763 86,022
2.0000 5,376 10,753 21,505 43,011 64,516 86,022 107,527 172,043
3.0000 8,065 16,129 32,258 64,516 96,774 129,032 161,290 258,065
3.5712 9,600 19,200 38,400 76,800 115,200 153,600 192,000 307,200
4.0000 10,753 21,505 43,011 86,022 129,032 172,043 215,054 344,086
5.0000 13,441 26,882 53,763 107,527 161,290 215,054 268,817 430,108
6.0000 16,129 32,258 64,516 129,032 193,548 258,065 322,581 516,129
7.0000 18,817 37,634 75,269 150,538 225,806 301,075 376,344 602,151
8.0000 21,505 43,011 86,022 172,043 258,065 344,086 430,108 688,172
9.0000 24,194 48,387 96,774 193,548 290,323 387,097 483,871 774,194

10.0000 26,882 53,763 107,527 215,054 322,581 430,108 537,634 860,215

Table 16.13 Data transmission rate in bit/s for various clock frequencies in MHz with a clock rate
conversion factor (F) of 512 and various values of the bit rate adjustment factor (D)

D = 1 D = 2 D = 4 D = 8 D = 12 D = 16 D = 20 D = 32

F/D 512.00 256.00 128.00 64.00 42.67 32.00 25.60 16.00

Frequency
1.0000 1,953 3,906 7,813 15,625 23,438 31,250 39,063 62,500
2.0000 3,906 7,813 15,625 31,250 46,875 62,500 78,125 125,000
3.0000 5,859 11,719 23,438 46,875 70,313 93,750 117,188 187,500
3.5712 6,975 13,950 27,900 55,800 83,700 111,600 139,500 223,200
4.0000 7,813 15,625 31,250 62,500 93,750 125,000 156,250 250,000
5.0000 9,766 19,531 39,063 78,125 117,188 156,250 195,313 312,500
6.0000 11,719 23,438 46,875 93,750 140,625 187,500 234,375 375,000
7.0000 13,672 27,344 54,688 109,375 164,063 218,750 273,438 437,500
8.0000 15,625 31,250 62,500 125,000 187,500 250,000 312,500 500,000
9.0000 17,578 35,156 70,313 140,625 210,938 281,250 351,563 562,500

10.0000 19,531 39,063 78,125 156,250 234,375 312,500 390,625 625,000

16.10.4 Sampling times for serial data

Table 16.14 is based on data transmission in compliance with the ISO/IEC 7816-3 standard.
The indicated times have been calculated for a clock rate of 3.5712 MHz.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1081 of 1123

16.10 Characteristic Data and Tables 1047

Table 16.14 Serial bit sampling times for data transmission with a divider value of 372

Start Lower limit Midrange Upper limit End

Start bit 0 clocks 112 clocks 186 clocks 260 clocks 372 clocks
0.000 µs 31.250 µs 52.083 µs 72.917 µs 104.167 µs

Data bit 1/8 372 clocks 484 clocks 558 clocks 632 clocks 744 clocks
104.167 µs 135.417 µs 156.250 µs 177.083 µs 208.333 µs

Data bit 2/7 744 clocks 856 clocks 930 clocks 1004 clocks 1116 clocks
208.333 µs 239.583 µs 260.417 µs 281.250 µs 312.500 µs

Data bit 3/6 1116 clocks 1228 clocks 1302 clocks 1376 clocks 1488 clocks
312.500 µs 343.750 µs 364.583 µs 385.417 µs 416.667 µs

Data bit 4/5 1488 clocks 1600 clocks 1674 clocks 1748 clocks 1860 clocks
416.667 µs 447.917 µs 468.750 µs 489.583 µs 520.833 µs

Data bit 5/4 1860 clocks 1972 clocks 2046 clocks 2120 clocks 2232 clocks
520.833 µs 552.083 µs 572.917 µs 593.750 µs 625.000 µs

Data bit 6/3 2232 clocks 2344 clocks 2418 clocks 2492 clocks 2604 clocks
625.000 µs 656.250 µs 677.083 µs 697.917 µs 729.167 µs

Data bit 7/2 2604 clocks 2716 clocks 2790 clocks 2864 clocks 2976 clocks
729.167 µs 760.417 µs 781.250 µs 802.083 µs 833.333 µs

Data bit 8/1 2976 clocks 3088 clocks 3162 clocks 3236 clocks 3348 clocks
833.333 µs 864.583 µs 885.417 µs 906.250 µs 937.500 µs

Parity bit 3348 clocks 3460 clocks 3534 clocks 3608 clocks 3720 clocks
937.500 µs 968.750 µs 989.583 µs 1010.417 µs 1041.667 µs

Guard time/ 3720 clocks 3832 clocks 3906 clocks 3980 clocks 4092 clocks
Stop bit 1 1041.667 µs 1072.917 µs 1093.750 µs 1114.583 µs 1145.833 µs
Guard time/ 4092 clocks 4204 clocks 4278 clocks 4352 clocks 4464 clocks
Stop bit 2 1145.833 µs 1177.083 µs 1197.917 µs 1218.750 µs 1250.000 µs

16.10.5 The most important smart card commands

The following tables list the most important smart card commands with brief descriptions of
their functions. These commands are taken from the following standards and specifications:
ISO/IEC 7816-4, -7, -8, -9, EMV, GSM (GSM 11.11 & GSM 11.14), UICC (TS 31.111,
TS 102.221, TS 102.222, TS 102.223), OP (Open Platform) and EN 1546.

Table 16.15 Summary of important standard smart card commands

Command Function INS Standard

ACTIVATE FILE Reversibly unblock a file. '44' ISO/IEC 7816-9
APPEND RECORD Insert a new record in a file with a linear

fixed structure.
'E2' ISO/IEC 7816-4

APPLICATION
BLOCK

Reversibly block an application. '1E' EMV

APPLICATION
UNBLOCK

Unblock an application. '18' EMV

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1082 of 1123

1048 Appendix

Table 16.16 (Cont.)

ASK RANDOM Request a random number from the smart
card.

'84' EN 726-3

CHANGE CHV Change the PIN. '24' GSM 11.11
CHANGE REFERENCE

DATA
Change the data used for user

identification (e.g., a PIN).
'24' ISO/IEC 7816-8

CLOSE
APPLICATION

Reset all attained access condition levels. 'AC' EN 726-3

CONVERT IEP
CURRENCY

Convert currency. '56' EN 1546-3

CREATE FILE Create a new file. 'E0' ISO/IEC 7816-9
CREATE RECORD Create a new record in a record-oriented

file.
'E2' EN 726-3

CREDIT IEP Load the purse (IEP). '52' EN 1546-3
CREDIT PSAM Pay from IEP to the PSAM. '72' EN 1546-3
DEACTIVATE FILE Reversibly block a file. '04' ISO/IEC 7816-9
DEBIT IEP Pay from the purse. '54' EN 1546-3
DECREASE Reduce the value of a counter in a

file.
'30' EN 726-3

DECREASE
STAMPED

Reduce the value of a counter in a file
that is protected using a cryptographic
checksum.

'34' EN 726-3

DELETE Delete a uniquely identifiable object
(such as a load file, application or
key).

'E4' OP

DELETE FILE Delete a file. 'E4' ISO/IEC 7816-9
DISABLE CHV Disable PIN queries. '26' GSM 11.11

EN 726-3
DISABLE

VERIFICATION
REQUIREMENT

Disable user identification (e.g., PIN
queries).

'26' ISO/IEC 7816-8

ENABLE CHV Enable PIN queries. '28' GSM 11.11
EN 726-3

ENABLE
VERIFICATION
REQUIREMENT

Enable user identification (e.g., PIN
queries).

'28' ISO/IEC 7816-8

ENVELOPE Embed a second command in a smart
card command.

'C2' EN 726-3
ISO/IEC 7816-4

ERASE BINARY Set the content of a file with a transparent
structure to the erased state.

'0E' ISO/IEC 7816-4

EXECUTE Execute a file. 'AE' EN 726-3
EXTEND Extend a file. 'D4' EN 726-3
EXTERNAL

AUTHENTICATE
Authenticate the outside world with

respect to the smart card.
'82' ISO/IEC 7816-4

GENERATE
AUTHORISATION
CRYPTOGRAM

Generate a signature for a payment
transaction.

'AE' EMV-2

GENERATE PUBLIC
KEY PAIR

Generate a key pair for an asymmetric
cryptographic algorithm.

'46' ISO/IEC 7816-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1083 of 1123

16.10 Characteristic Data and Tables 1049

Table 16.15 (Cont.)

GET CHALLENGE Request a random number from the smart
card.

'84' ISO/IEC 7816-4

GET DATA Read TLV-coded data objects. 'CA' ISO/IEC 7816-4
GET PREVIOUS IEP

SIGNATURE
Repeat the computation and output of the

last signature received IEP.
'5A' EN 1546-3

GET PREVIOUS PSAM
SIGNATURE

Repeat the computation and output
of the last signature received from the
PSAM.

'86' EN 1546-3

GET RESPONSE Request data from the smart card (used with
the T = 0 transmission protocol).

'C0' GSM 11.11
ISO/IEC 7816-4

GET STATUS Read the life-cycle state information
of the card manager, application and load
file.

'F2' OP

GIVE RANDOM Send a random number to the smart card. '86' EN 726-3
INCREASE Increase the value of a counter in a file. '32' GSM 11.11

EN 726-3
INCREASE STAMPED Increase the value of a counter in a file that

is protected using a cryptographic
checksum.

'36' EN 726-3

INITIALIZE IEP Initialize IEP for a subsequent purse
command.

'50' EN 1546-3

INITIALIZE PSAM Initialize PSAM for a subsequent purse
command.

'70' EN 1546-3

INITIALIZE PSAM
for Offline Collection

Initialize PSAM for offline booking of the
amount.

'7C' EN 1546-3

INITIALIZE PSAM
for Online Collection

Initialize PSAM for online booking of the
amount.

'76' EN 1546-3

INITIALIZE PSAM
for Update

Initialize PSAM for changing the
parameters.

'80' EN 1546-3

INSTALL Install an application by invoking various
oncard functions of the card manager
and/or security domain.

'E6' OP

INTERNAL
AUTHENTICATE

Authenticate the smart card with respect to
the outside world.

'88' ISO/IEC 7816-4

INVALIDATE Reversibly block a file. '04' GSM 11.11
EN 726-3

ISSUER
AUTHENTICATE

Verify a signature of the card issuer. '82' EMV-2

LOAD Load an application by transferring the load
file.

'E8' OP

LOAD KEY FILE Load keys in files using cryptographic
protection.

'D8' EN 726-3

LOCK Irreversibly block a file. '76' EN 726-3
MANAGE CHANNEL Control the logical channels of a smart

card.
'70' ISO/IEC 7816-4

MANAGE SECURITY
ENVIRONMENT

Change the parameters for using
cryptographic algorithms in the smart
card.

'22' ISO/IEC 7816-8

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1084 of 1123

1050 Appendix

Table 16.15 (Cont.)

MUTUAL
AUTHENTICATE

Mutually authenticate the smart card and
the terminal.

'82' ISO/IEC 7816-8

PERFORM SCQL
OPERATION

Execute an SCQL instruction. '10' ISO/IEC 7816-7

PERFORM SECURITY
OPERATION

Execute a cryptographic algorithm in the
smart card.

'2A' ISO/IEC 7816-8

PERFORM
TRANSACTION
OPERATION

Execute an SCQL transaction instruction. '12' ISO/IEC 7816-7

PERFORM USER
OPERATION

Manage users in the context of SCQL. '14' ISO/IEC 7816-7

PSAM COLLECT Execute PSAM online booking of an
amount.

'78' EN 1546-3

PSAM COLLECT
Acknowledgement

End PSAM online booking of an
amount.

'7A' EN 1546-3

PSAM COMPLETE End paying the IEP against the PSAM. '74' EN 1546-3
PSAM VERIFY

COLLECTION
End PSAM offline booking of an amount. '7E' EN 1546-3

PUT DATA Write TLV-coded data objects. 'DA' ISO/IEC 7816-4
PUT KEY Write one or more new keys or replace

existing keys.
'D8' OP

REACTIVATE FILE Unblock a file. '44' ISO/IEC 7816-9
READ BINARY Read from a file with a transparent

structure.
'B0' GSM 11.11

ISO/IEC 7816-4
READ BINARY

STAMPED
Read data from a file with a transparent

structure that is secured with a
cryptographic checksum.

'B4' EN 726-3

READ RECORD
/ READ RECORD(S)

Read data from a file with a
record-oriented structure.

'B2' GSM 11.11
ISO/IEC 7816-4

READ RECORD
STAMPED

Read data from a file with a
record-oriented structure that is
secured with a cryptographic
checksum.

'B6' EN 726-3

REHABILITATE Unblock a file. '44' GSM 11.11
EN 726-3

RESET RETRY
COUNTER

Reset an error counter. '2C' ISO/IEC 7816-8

RUN GSM ALGORITHM Execute a GSM-specific cryptographic
algorithm.

'88' GSM 11.11

SEARCH BINARY Search for a text string in a file with a
transparent structure.

'A0' ISO/IEC 7816-9

SEARCH RECORD Search for a text string in a file with a
record-oriented structure.

'A2' ISO/IEC 7816-9

SEEK Search for a text string in a file with a
record-oriented structure.

'A2' GSM 11.11
EN 726-3

SELECT/
SELECT (FILE)

Select a file. 'A4' GSM 11.11
ISO/IEC 7816-4

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1085 of 1123

16.10 Characteristic Data and Tables 1051

Table 16.15 (Cont.)

SET STATUS Write life-cycle state data for the card
manager, application and load file.

'F0' OP

SLEEP Obsolete command for placing the smart
card in a power-saving state.

'FA' GSM 11.11

STATUS Read various data from the currently
selected file.

'F2' GSM 11.11
EN 726-3

TERMINATE CARD
USAGE

Irreversibly block a smart card. 'FE' ISO/IEC 7816-9

TERMINATE DF Irreversibly block a DF. 'E6' ISO/IEC 7816-9
TERMINATE EF Irreversibly block an EF. 'E8' ISO/IEC 7816-9
UNBLOCK CHV Reset a PIN retry counter that has

reached its maximum value.
'2C' GSM 11.11

EN 726-3
UPDATE BINARY Write to a file with a transparent

structure.
'D6' GSM 11.11

EN 726-3
ISO/IEC 7816-4

UPDATE IEP
PARAMETER

Change the general parameters of a
purse.

'58' EN 1546-3

UPDATE PSAM
Parameter (offline)

Modify the parameters in the PSAM
(offline).

'84' EN 1546-3

UPDATE PSAM
Parameter (online)

Modify the parameters in the PSAM
(online).

'82' EN 1546-3

UPDATE RECORD Write to a file with a linear fixed, linear
variable or cyclic structure.

'DC' GSM 11.11
ISO/IEC 7816-4

VERIFY Verify the transferred data (such as a
PIN).

'20' ISO/IEC 7816-4
EMV-2

VERIFY CHV Verify the PIN. '20' GSM 11.11
EN 726-3

WRITE BINARY Write to a file with a transparent
structure using a logical AND/OR
process.

'D0' EN 726-3
ISO/IEC 7816-4

WRITE RECORD Write to a file with a record-oriented
structure using a logical AND/OR
process.

'D2' EN 726-3
ISO/IEC 7816-4

16.10.6 Summary of utilized instruction bytes

Tables 16.16 through 16.18 identify the INS codes that are used with various class bytes. The
odd-numbered codes in the shaded columns cannot be used to encode commands, since the
T = 0 transfer protocol uses these codes to control the programming voltage.75

75 See also Section 6.4.2,‘The T = 0 transmission protocol’. There is a proposal to revise ISO/IEC 7816-3
to eliminate the possibility of controlling an external programming voltage via the instruction byte in the
future

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1086 of 1123

1052 Appendix

Table 16.16 Summary of the INS byte codes used with a class byte (CLA) of'00'as specified in the
ISO/IEC 7816-4, -7, -8 and -9 standards. The suffix number of the corresponding standard is shown for
each code that is used

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0y 9 4
1y 7 7 7
2y 4 8 8 8 8 8 8
3y

4y 9 9 8
5y
6y
7y 4

8y 4.8 4 4
9y
Ay 9 9 4
By 4 4

Cy 4 4 4
Dy 4 4 4 4 4
Ey 9 4 9 9 9
Fy 9

Table 16.17 Summary of the INS byte codes used with a class byte (CLA) of'80'as specified in the
EMV, EN 1546 and OP standards. The initial letters of the corresponding standard are shown for each
code that is used

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0y
1y OP OP OP
2y OP
3y

4y
5y EN EN EN EN EN
6y
7y EN EN EN EN EN EN EN EN

8y EN EN, EN EN
9y EMV
Ay OP OP,
By EMV

Cy OP
Dy OP
Ey OP OP
Fy OP OP

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1087 of 1123

16.10 Characteristic Data and Tables 1053

Table 16.18 Summary of the INS byte codes used with a class byte (CLA) of'80'as specified in
the GMS 11.11 standard

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0y X
1y X X X
2y X X X X X
3y X

4y X
5y
6y
7y

8y X
9y
Ay X X
By X X

Cy X X
Dy X X
Ey
Fy X X

16.10.7 Smart card command coding

Tables 16.19 through 16.24 show the most important codes for some sample smart card com-
mands. For the sake of clarity, it is assumed that neither secure messaging nor logical channel
addressing is used. Refer to the ISO/IEC 7816-4 standard for the complete coding of these and
other smart card commands.76

Table 16.19 Coding of the Case 4 command SELECT FILE, with the principal options

Data Code Remark
element

CLA '00' Class byte reserved for ISO/IEC 7816 commands without secure messaging.
INS 'A4' Instruction byte for SELECT FILE, which is the command for selecting a file

(MF, DF or EF).
P1 . . . P1 ='00'∧ Lc = 0 Select the MF

P1 ='00'∧ Lc �= 0 Select a file using its FID (FID in DATA)
P1 ='04' Select a file using its DF name (DF name in DATA)
P1 ='08' Select a file by specifying a FID-based path from the MF

(path in DATA)
P1 ='09' Select a file by specifying a FID-based path from the

currently selected DF (path in DATA)
P2 . . . P2 ='00' Return optional FCI

P2 ='04' Return optional FCP
P2 ='08' Return optional FMD

Lc . . . Coding described under ‘P1’
DATA . . . Coding described under ‘P1’
Le Le = 0 Return all data belonging to the selected item.

76 See also Section 6.5.1, ‘Structure of the command APDU’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1088 of 1123

1054 Appendix

Table 16.20 Coding of the Case 2 command READ BINARY as specified by ISO/IEC 7816-4, with
the principal options

Data Code Remark
element

CLA '00' Class byte reserved for ISO/IEC 7816 commands without secure messaging.
INS 'B0' Instruction byte for READ BINARY, which is the command for reading data

from a file with a transparent structure.
P1 . . . P1.b8 = 0 Read data from the currently selected file using an offset.

Offset = (P1.b7 . . . P1.b1 || P2)
P1.b8 = 1 After implicit file selection using a short FID, read data using

an offset. Short FID = (P1.b5 . . . P1.b1), offset = P2
P2 . . . Coding described under ‘P1’
Le . . . Le = 0: Read all data until the end of the file.

Le > 0: Le is the number of bytes to be read.

Table 16.21 Coding of the Case 3 command UPDATE BINARY as specified by ISO/IEC 7816-4,
with the principal options

Data Code Remark
element

CLA '00' Class byte reserved for ISO/IEC 7816 commands without secure messaging.
INS 'D6' Instruction byte for UPDATE BINARY, which is the command for writing data

to a file with a transparent structure.
P1 . . . P1.b8 = 0 Write data to the currently selected file using an offset.

Offset = (P1.b7 . . . P1.b1 || P2).
P1.b8 = 1 After implicit file selection using a short FID, write data

using an offset. Short FID = (P1.b5 . . . P1.b1), offset = P2.
P2 . . . Coding described under ‘P1’
Lc . . . Lc is the number of bytes to be written.
DATA . . . The bytes to be written, with a length of Lc.

Table 16.22 Coding of the Case 2 command READ RECORD as specified by ISO/IEC 7816-4, with
the principal options

Data Code Remark
element

CLA '00' Class byte reserved for ISO/IEC 7816 commands without secure messaging.
INS 'B2' Instruction byte for READ RECORD, which is the command for reading data

from a file with a record-oriented structure.
P1 . . . P1 = 0 Read the current record.

P1 �= 1 Read the record number having the record number or record
identifier given in P1.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1089 of 1123

16.10 Characteristic Data and Tables 1055

Table 16.22 (Cont.)

P2 . . . P2.b8 . . . P2.b4 = ◦00000◦ Read data from the currently selected file.
P2.b8 . . . P2.b4 �= ◦00000◦ Read data after implicit file selection using a

short FID. Short FID = (P1.b8 . . . P1.b4)
P2.b3 . . . P2.b1 = ◦000◦ Read the first record, using the record

identifier passed via P1.
P2.b3 . . . P2.b1 = ◦001◦ Read the last record, using the record

identifier passed via P1.
P2.b3 . . . P2.b1 = ◦010◦ Read the next record, using the record

identifier passed via P1.
P2.b3 . . . P2.b1 = ◦011◦ Read the previous record, using the record

identifier passed via P1.
P2.b3 . . . P2.b1 = ◦100◦∧ P1 = 0 Read the current record.
P2.b3 . . . P2.b1 = ◦100◦∧ P1 �= 0 Read the record having the record number

given in P1.
P2.b3 . . . P2.b1 = ◦101◦ Read all records from the record number

given in P1 until the end of the file.
P2.b3 . . . P2.b1 = ◦110◦ Read all records from the end of the file

back to the record number given in P1.
Le . . . Le = 0: Read all bytes until the end of the record(s).

Le > 0: Le is the length of the record(s).

Table 16.23 Coding of the Case 3 command UPDATE RECORD as specified by ISO/IEC 7816-4,
with the principal options

Data Code Remark
element

CLA '00' Class byte reserved for ISO/IEC 7816 commands without secure messaging.
INS 'DC' Instruction byte for UPDATE RECORD, which is the command for writing

data to a file with a record-oriented structure.
P1 . . . P1 = 0 Write the current record.

P1 �= 0 Write the record having the record number given in P1.
P2 . . . P2.b8 . . . P2.b4 = ◦00000◦ Write data to the currently selected file.

P2.b8 . . . P2.b4 �= ◦00000◦ Write data following implicit file selection using
a short FID. Short FID = (P1.b8 . . . P1.b4).

P2.b3 . . . P2.b1 = ◦000◦ Write the first record.
P2.b3 . . . P2.b1 = ◦001◦ Write the last record.
P2.b3 . . . P2.b1 = ◦010◦ Write the next record.
P2.b3 . . . P2.b1 = ◦011◦ Write the previous record.
P2.b3 . . . P2.b1 = ◦100◦ Write the record having the record number

given in P1.
Lc . . . Lc is the length of the record to be written.
DATA . . . The record to be written.

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1090 of 1123

1056 Appendix

Table 16.24 Coding of the Case 3 command VERIFY as specified by ISO/IEC 7816-4, with the
principal options

Data Code Remark
element

CLA '00' Class byte reserved for ISO/IEC 7816 commands without secure messaging.
INS '20' Instruction byte for VERIFY, which is the command for comparing

transferred data to reference data (typically a PIN).
P1 '00' —
P2 . . . P2 ='00' No explicit data is transferred.

P2.b8 = ◦0◦ Reference data valid for the entire smart card
(global reference data) is used.

P2.b8 = ◦1◦ Reference data valid for one or more specific
applications (local reference data) is used.

P2.b7 || P2.b6 =◦00◦ RFU bits.
P2.b5 . . . P2.b1 Reference data identification number.

Lc . . . Lc is the length of the transferred comparison value.
DATA . . . The transferred comparison value (usually a PIN).

16.10.8 Smart card return codes

The return codes described in Table 16.25 are classified according to the scheme used in the
ISO/IEC 7816-4 standard.77 The following status codes are used:

NP: process completed, normal processing EE: process aborted, execution error
WP: process completed, warning processing CE: process aborted, checking error

Table 16.25 Selected standard smart card return codes as specified by ISO/IEC 7816-4

Return code Status Meaning Standard

'61xx' NP Command successfully executed; ‘xx’ bytes
of data are available and can be requested
using GET RESPONSE.

ISO/IEC 7816-4

'6281' WP The returned data may be erroneous. ISO/IEC 7816-4
'6282' WP Fewer bytes than specified by the Le

parameter could be read, since the end of
the file was encountered first.

ISO/IEC 7816-4

'6283' WP The selected file is reversibly blocked
(invalidated).

ISO/IEC 7816-4

'6284' WP The file control information (FCI) is not
structured in accordance with ISO/IEC
7816-4.

ISO/IEC 7816-4

'62xx' WP Warning; state of non-volatile memory not
changed.

ISO/IEC 7816-4

77 See also Section 6.5.2, ‘Structure of the response APDU’

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1091 of 1123

16.10 Characteristic Data and Tables 1057

Table 16.25 (Cont.)

'63Cx' WP The counter has reached the value ‘x’ (0 ≤ x
≤ 15) (the exact significance depends on
the command).

ISO/IEC 7816-4

'63xx' WP Warning; state of non-volatile memory
changed.

ISO/IEC 7816-4

'64xx' EE Execution error; state of non-volatile memory
not changed.

ISO/IEC 7816-4

'6581' EE Memory error (e.g. during a write operation). ISO/IEC 7816-4
'65xx' EE Execution error; state of non-volatile memory

changed.
ISO/IEC 7816-4

'6700' CE Length incorrect. GSM 11.11
ISO/IEC 7816-4

'67xx'. . . CE Check errors. ISO/IEC 7816-4
'6Fxx'

'6800' CE Functions in the class byte not supported
(general).

ISO/IEC 7816-4

'6881' CE Logical channels not supported. ISO/IEC 7816-4
'6882' CE Secure messaging not supported. ISO/IEC 7816-4
'6900' CE Command not allowed (general) ISO/IEC 7816-4
'6981' CE Command incompatible with file structure. ISO/IEC 7816-4
'6982' CE Security state not satisfied. ISO/IEC 7816-4
'6983' CE Authentication method blocked. ISO/IEC 7816-4
'6984' CE Referenced data reversibly blocked

(invalidated).
ISO/IEC 7816-4

'6985' CE Usage conditions not satisfied. ISO/IEC 7816-4
'6986' CE Command not allowed (no EF selected). ISO/IEC 7816-4
'6987' CE Expected secure messaging data objects

missing.
ISO/IEC 7816-4

'6988' CE Secure messaging data objects incorrect. ISO/IEC 7816-4
'6A00' CE Incorrect P1 or P2 parameters (general). ISO/IEC 7816-4
'6A80' CE Parameters in the data portion are incorrect. ISO/IEC 7816-4
'6A81' CE Function not supported. ISO/IEC 7816-4
'6A82' CE File not found. ISO/IEC 7816-4
'6A83' CE Record not found. ISO/IEC 7816-4
'6A84' CE Insufficient memory. ISO/IEC 7816-4
'6A85' CE Lc inconsistent with TLV structure ISO/IEC 7816-4
'6A86' CE Incorrect P1or P2 parameter. ISO/IEC 7816-4
'6A87' CE Lc inconsistent with P1 or P2. ISO/IEC 7816-4
'6A88' CE Referenced data not found. ISO/IEC 7816-4
'6B00' CE Parameter 1 or 2 incorrect. GSM 11.11

ISO/IEC 7816-4
'6Cxx' CE Bad length value in Le; ‘xx’ is the correct

length.
ISO/IEC 7816-4

'6D00' CE Command (instruction) not supported. GSM 11.11
ISO/IEC 7816-4

'6E00' CE Class not supported. GSM 11.11
ISO/IEC 7816-4

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1092 of 1123

1058 Appendix

Table 16.25 (Cont.)

'6F00' CE Command aborted – more exact diagnosis not
possible (e.g., operating system error).

GSM 11.11
ISO/IEC 7816-4

'9000' NP Command successfully executed. GSM 11.11
ISO/IEC 7816-4

'920x' NP Writing to EEPROM successful after ‘x’
attempts.

GSM 11.11

'9210' CE Insufficient memory. GSM 11.11
'9240' EE Writing to EEPROM not successful. GSM 11.11
'9400' CE No EF selected. GSM 11.11
'9402' CE Address range exceeded. GSM 11.11
'9404' CE FID not found, record not found or

comparison pattern not found.
GSM 11.11

'9408' CE Selected file type does not match command. GSM 11.11
'9802' CE No PIN defined. GSM 11.11
'9804' CE Access conditions not satisfied, authentication

failed.
GSM 11.11

'9835' CE ASK RANDOM or GIVE RANDOM not
executed.

GSM 11.11

'9840' CE PIN verification not successful. GSM 11.11
'9850' CE INCREASE or DECREASE could not be

executed because a limit has been reached.
GSM 11.11

'9Fxx' NP Command successfully executed; ‘xx’ bytes
of data are available and can be requested
using GET RESPONSE.

GSM 11.11

16.10.9 Selected chips for memory cards

Table 16.26 lists a selection of various types of typical memory chips for smart cards, which
makes no claim to being complete or entirely correct. The primary purpose of this table is to give
a general idea of the very wide selection of available memory chips. Here we would like to ex-
plicitly state that tables of this sort quickly become outdated, due to ongoing technical progress.
Current general technical specifications are best obtained directly from the web servers of the
various manufacturers, such as Infineon [Infineon], Philips [Philips] and ST Microelectronics
[STM]. Similar components are also available from a variety of other manufacturers.

Table 16.26 Summary of selected memory chips for smart cards

Manufacturer/type Memory capacity Additional information

Infineon ROM: 16 bits Vcc: 5 V
SLE 4404 PROM: 144 bits Icc: 3 mA

EEPROM: 256 bits W/E cycles: 100,000
W/E time: 5 ms
HW: —

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1093 of 1123

16.10 Characteristic Data and Tables 1059

Table 16.26 (Cont.)

Infineon ROM: 24 bits Vcc: 5 V
SLE 4406S PROM: 72 bits Icc: 1 mA

EEPROM: 32 bits W/E cycles: 100,000
W/E time: 5 ms
HW: counter for ≈20,000 units

Infineon ROM: — Vcc: 5 V
SLE 44R35 PROM: — Icc: 3 mA

EEPROM: 1 KB W/E cycles: 100,000
W/E time: 2 ms
HW: PIN logic for extra write

protection, unilateral
authentication; for
contactless memory cards

Infineon ROM: — Vcc: 5 V
SLE 4442 PROM: 32 bits Icc: 10 mA

EEPROM: 256 bytes W/E cycles: 100,000
W/E time: 2.5 ms
HW: —

Infineon ROM: 24 bits Vcc: 5 V
SLE 5536 PROM: 177 bits Icc: 2.5 mA

EEPROM: 36 bits W/E cycles: 100,000
W/E time: 3 ms
HW: counter for ≈ 20,000

units, unilateral
authentication

Infineon ROM: 24 bits Vcc: 3–5 V
SLE 7736 PROM: 177 bits Icc: 1 mA

EEPROM: 36 bits W/E cycles: 100,000
W/E time: 3 ms
HW: counter for ≈20,000 units

Philips ROM: — Vcc:
MF1 S70 PROM: — Icc:

EEPROM: 4 KB W/E cycles: 100,000
W/E time:
HW: 4-byte serial number,

unilateral authentication,
ISO/IEC 15 443A
contactless I/F

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1094 of 1123

1060 Appendix

Table 16.26 (Cont.)

Philips ROM: — Vcc:
I-Code PROM: — Icc:
SLI ICPCB 7960 EEPROM: 896 bits W/E cycles:

W/E time:
HW: 8-byte serial number,

unilateral authentication,
ISO/IEC 15 693 contactless
I/F

ST Microelectronics ROM: — W/E cycles: 100,000
LR 1512 PROM: — W/E time: 5 ms

EEPROM: 512 bits HW: ISO/IEC 15 693

ST Microelectronics ROM: — W/E cycles: 100,000
M35101 PROM: — W/E time: 5 ms

EEPROM: 2048 bits HW: ISO/IEC 14 443B

ST Microelectronics ROM: 16 bits Vcc: 5 V
ST1335D PROM: — Icc: 500 µA

EEPROM: 272 bits W/E cycles: 500,000
W/E time: 3.5 ms
HW: counter for 32,767 units,

unilateral authentication

16.10.10 Selected microcontrollers for smart cards

Table 16.27 lists a selection of various types of typical microcontrollers for smart cards, which
makes no claim to being complete or entirely correct. The primary purpose of this table is to
give a general idea of the wide selection of available smart card microcontrollers. Here we
would like to explicitly state that tables of this sort quickly become outdated, due to ongoing
technical progress. Current general technical specifications are best obtained directly from the
web servers of the various manufacturers, such as Atmel [Atmel], Renesas [Renesas], Infineon
[Infineon], Philips [Philips] and ST Microelectronics [STM]. Similar components are also
available from a variety of other manufacturers.

The following abbreviations are used in the table:

Vcc: Supply voltage range
Clock: Clock frequency range
Icc: Current consumption of the chip at the stated clock frequency (first value:

operating; second value: low-power state with clock; third value:
low-power state without clock)

Size (optional): Die size
Structure: Minimum structure width on the chip
Page: EEPROM page size

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1095 of 1123

16.10 Characteristic Data and Tables 1061

W/E cyc.: Guaranteed number of write/erase cycles per EEPROM page
W/E time: Cycle time for writing or erasing one EEPROM page
HW: Additional on-chip hardware
Timer: Timer for counting clock cycles
UART: Universal asynchronous receiver/transmitter (hardware-based data

transmission)
CRC: CRC processing unit
PLL: Internal clock multiplier (phase-locked loop)
MMU: Memory management unit
RNG: Random number generator
DES: DES accelerator (generally includes triple-DES accelerator)
AES: AES accelerator
RSA: RSA accelerator (generally includes EC accelerator)

No publicly available information for this item

Table 16.27 Summary of selected microcontrollers for smart cards

Manufacturer Memory capacity Additional information
and type

Atmel Flash: 64 kB CPU: AVR
AT90 EEPROM: 64 kB Vcc: 2.7–3.3 V, 4.5–5.5 V
SC6464C RAM: 3 kB Clock: 1–10 MHz

Icc: ,
Size: 24 mm2

Structure: 0.35 µm
EEPROM
Page: 1–128 bytes
W/E cyc.: 500,000
W/E time: 5 ms
Flash EEPROM
Page: 128 bytes
W/E cyc.: 500,000
W/E time: 5 ms
HW: RISC CPU, two 16-bit timers, MMU,

RNG, DES, RSA

Atmel Flash: 192 kB CPU: AVR
AT90 EEPROM: 64 kB Vcc: 2.7–3.3 V, 4.5–5.5 V
SC19264RC RAM: 6 kB Clock: 1–16 MHz

Icc: ,
Size: 24 mm2

Structure: 0.35 µm
EEPROM
Page: 1–128 bytes
W/E cyc.: 500,000
W/E time: 5 ms
HW: RISC CPU, two 16-bit timers, UART,

CRC, PLL, MMU, RNG, DES, RSA

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1096 of 1123

1062 Appendix

Table 16.27 (Cont.)

Infineon SLE ROM: 64 kB CPU: 8051 derivative
66C160P EEPROM: 16 kB Vcc: 2.7–5.5 V

RAM: 2.3 kB Clock: 1–10 MHz
Icc: ,
Structure: 0.25 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 500,000
W/E time: 4.5 ms
HW: Two 16-bit timers, UART, CRC,

PLL, MMU, RNG, DES

Infineon SLE ROM: 136 kB CPU: 8051 derivative
66C640P EEPROM: 64 kB Vcc: 2.7–5.5 V

RAM: 4.3 kB Clock: 1–10 MHz
Icc: ≤ 10 mA,
Structure: 0.22 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 500,000
W/E time: 4.5 ms
HW: Two 16-bit timers, UART, CRC,

PLL, MMU, RNG

Infineon SLE ROM: 200 kB CPU: 8051 derivative
66CX642P EEPROM: 64 kB Vcc: 1.62–5.5 V

RAM: 4.3 kB Clock: 1–15 MHz
Icc: ≤ 10 mA,
Structure: 0.22 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 500,000
W/E time: 4.5 ms
HW: Two 16-bit timers, UART, CRC,

PLL, MMU, RNG, DES, RSA

Infineon SLE ROM: 240 kB CPU: 32-bit Infineon 88
88CX720P EEPROM: 80 kB Vcc: 1.62–5.5 V

RAM: 8 kB Clock: 1–15 MHz
Icc: ≤ 30 mA,
Structure: 0.22 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 500,000
W/E time: 4.5 ms
HW: Two 16-bit timers, UART, CRC,

PLL (≤ 55 MHz), MMU, RNG,
DES, RSA

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1097 of 1123

16.10 Characteristic Data and Tables 1063

Table 16.27 (Cont.)

Philips ROM: 32 kB CPU: 8051
P8WE6004 EEPROM: 4 kB Vcc: 2.7–5.5 V

RAM: 768 bytes Clock: 1–8 MHz
Icc: ,
Structure: 0.35 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 100,000
W/E time: 2 ms/2 ms
HW: Two 16-bit timers, UART, RNG, DES

Philips ROM: 32 kB CPU: 8051
P8RF6004 EEPROM: 4 kB Vcc: 2.7–5.5 V

RAM: 1280 bytes Clock: 1–8 MHz; 13.56 MHz (for RF)
Icc: ,
Structure: 0.35 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 100,000
W/E time: 2 ms/2 ms
HW: Two 16-bit timers, UART for

ISO/IEC 7816 and ISO/IEC
14 433A, MMU, RNG, DES

Philips ROM: 64 kB CPU: 8051
P8RF5016 EEPROM: 16 kB Vcc: 2.7–5.5 V

RAM: 2300 bytes Clock: 1–8 MHz; 13.56 MHz (for RF)
Icc: ,
Structure: 0.35 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 100,000
W/E time: 2 ms/2 ms
HW: Two 16-bit timers, UART for

ISO/IEC 7816 and ISO/IEC
14 433A, MMU, RNG, DES, RSA

Philips ROM: 208 kB CPU: XA2
P16WX064 EEPROM: 64 kB Vcc: 2.7–5.5 V

RAM: 7 kB Clock: 1–6 MHz
Flash (opt.): 32 kB Icc: ,

Structure: 0.18 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 100,000
W/E time: 2 ms/2 ms
HW: Two 16-bit timers, UART, CRC,

MMU, RNG, DES, RSA

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1098 of 1123

1064 Appendix

Table 16.27 (Cont.)

Philips ROM: 320 kB CPU: MIPS
P9CC160 EEPROM: 64 kB Vcc: 1.62–5.5 V

RAM: 7 kB Clock: 1–6 MHz
Flash: 96 kB Icc: ,

Structure: 0.18 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 100,000
W/E time: 2 ms/2 ms
HW: Two 16-bit timers, UART, MMU,

RNG, DES, AES, RSA

Renesas ROM: 32 kB CPU: H8
H8/3166 EEPROM: 2.2 kB Vcc: 2.7–5.5 V

RAM: 1 kB Clock: 1–10 MHz
Icc: ≤ 10 mA, ≤ 100 µA
Structure: 0.35 µm
EEPROM
Page: 32 bytes
W/E cyc.: 100,000
W/E time: 3 ms/1.5 ms
HW: RNG

Renesas ROM: 48 kB CPU: AE-3
AE350 EEPROM: 32.5 kB Vcc: 2.7–5.5 V

RAM: 1280 bytes Clock: 1–10 MHz
Icc: ≤ 10 mA, ≤ 100 µA
Structure: 0.35 µm
EEPROM
Page: 64 bytes
W/E cyc.: 100,000
W/E time: 3 ms/1.5 ms
HW: RNG

Renesas ROM: 128 kB CPU: AE-4
AE45X-B/C EEPROM: 36 kB Vcc: 2.7–5.5 V

RAM: 4.5 kB Clock: 1–10 MHz
Icc: ≤ 10 mA, ≤ 100 µA
Structure: 0.35 µm
EEPROM
Page: 64 bytes
W/E cyc.: 500,000
W/E time: 3 ms/1.5 ms
HW: Two 16-bit timers, UART for ISO/IEC

7816 and ISO/IEC 14 433, PLL, MMU,
RNG, DES, RSA

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1099 of 1123

16.10 Characteristic Data and Tables 1065

Table 16.27 (Cont.)

Renesas ROM: 96 kB CPU: AE-4
AE460 EEPROM: 64.5 kB Vcc: 2.7–5.5 V

RAM: 3 kB Clock: 1–10 MHz
Icc: ≤ 10 mA,≤ 100 µA
Structure: 0.35 µm
EEPROM
Page: 128 bytes
W/E cyc.: 100,000
W/E time: 3 ms/1.5 ms
HW: MMU, RNG, DES

Renesas ROM: 196 kB CPU: AE-4
AE46C EEPROM: 68 kB Vcc: 2.7–5.5 V

RAM: 6.5 kB Clock: 1–10 MHz
Icc: ≤ 10 mA, ≤ 100 µA
Structure: 0.35 µm
EEPROM
Page: 128 bytes
W/E cyc.: 500,000
W/E time: 3 ms/1.5 ms
HW: Two 16-bit timers, UART, PLL, MMU,

RNG, DES, RSA

ST Micro ROM: 16 kB CPU: 6805
ST16SF4x EEPROM: Vcc: 2.7–5.5 V

1.25/2/4/8/16 kB Clock: 1–5 MHz
RAM: 384 bytes Icc: ,

Structure: 0.7 µm
EEPROM
Page: 1–32 bytes
W/E cyc.: 300,000
W/E time: 2.5 ms
HW: MMU, RNG

ST Micro ROM: 32 kB CPU: ST7
ST19RF08 EEPROM: 8 kB Vcc: 2.7–5.5 V

RAM: 960 bytes Clock: 1–10 MHz
Icc: ,
Structure: 0.6 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 100,000
W/E time: 1 ms
HW: One 16-bit timer, UART for ISO/IEC 7816

and ISO/IEC 14 433B, CRC, MMU,
RNG, DES

(Cont.)

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1100 of 1123

1066 Appendix

Table 16.27 (Cont.)

ST Micro ROM: 176 kB CPU: ST7
ST19WG34 EEPROM: 34 kB Vcc: 1.6–5.5 V

RAM: 6 kB Clock: 1–10 MHz
Icc: ,
Structure: 0.18 µm
EEPROM
Page: 1–64 bytes
W/E cyc.: 500,000
W/E time: 2 ms
HW: Three 16-bit timers, CRC, MMU, RNG,

DES

ST Micro ROM: 224 kB CPU: ST22
ST22WJ64 EEPROM: 64 kB Vcc: 2.7–5.5 V

RAM: 8 kB Clock: 1–30 MHz
Icc: ,
Structure: 0.18 µm
EEPROM
Page: 1–128 bytes
W/E cyc.: 500,000
W/E time: 4.5 ms
HW: Two 16-bit timers, UART,

PLL (≤ 30 MHz), MMU, RNG, DES

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1101 of 1123

Index

0-PIN, 897

1-µm / 0.8-µm /. . . technology, 898
16-bit code, 163
1G, 724, 898

2-DES, 188
2G, 725, 898
2.5G, 725

3-DES, 188
32-bit code, 163
3DES, 898
3G, 725, 898
3GPP, 789, 898
3GPP2, 747, 899

4004 , 66
4G, 725, 899

7-bit code, 161
8-bit code, 161

A-Netz, 724
A-PET, 41
A2C, 899
A3, 899
A5, 899
A8, 899
Abort test, 586
ABS, 40
Abstract Syntax Notation 1, 156, 902
Access conditions, 268, 900

command-oriented, 268
object-oriented, 555, 556
state-oriented, 268

Access control descriptor, 168
Access control system, 890
ACD, 168
Acquirer, 688, 900
Acrylonitrile butadiene styrene, 40
Activation sequence, 61, 900
ADF, 791
Administrative data, 900
ADN, 744
Advanced Encryption Standard, 186, 900
Advanced Mobile Phone System, 901
AES, 900

algorithm, 185
computation times, 186

AFNOR, 900
location, 660

AID, 260, 900
Algorithm

cryptographic, 917
execution times, 846

American National Standards Institute,
901

Amplitude-shift keying, 97, 902
AMPS, 725, 901
AMS, 650
Analog, 901
Analysis, 583, 901
Analyzing a smart card, 868
Anonymization, 901
ANSI, 901
Answer to Reset, 377, 903
Answer to Select, 143
Antenna array, 730
Anticollision method, 901
APDU, 901
API, 902

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1102 of 1123

1068 Index

Applet, 305, 902
commands for managing, 474

Applet developer, 902
Applet management system, 650
Application, 902

closed, 914
encapsulation, 555
files, 257
open, 950

Application areas for smart cards, 5
APPLICATION BLOCK, 470
Application dedicated file, 791
Application generator, 367, 864
Application identifier, 260, 900
Application operator, 902
Application programming interface, 902
Application protocol data unit, 901
Application-specific commands, 297, 490
Arimura, Kunitaka, 3
ARM processor, 68
ASC, 297
ASCII, 161
ASK, 97, 902
ASK RANDOM, 458
ASN.1, 156, 834, 902
Assembler, 903
Assessment, 884
Asymmetric cryptographic algorithm, 179, 189,

903
Asymmetric static authentication, 222
Asynchronous data transmission, 903
Asynchronous transmission protocols

comparison, 421
Atomic operation, 288, 903
ATQB, 133
ATR, 377, 554, 903

practical examples, 389
use for EEPROM write operations, 378

ATR file, 387
ATR interval, 1044
ATR test, 573
ATS, 143
Attack

brute-force, 181
chosen-plaintext, 181
ciphertext-only, 180
differential fault analysis, 550
differential power analysis, 537
fault analysis, 550
known-plaintext, 181

meet-in-the-middle, 188
power analysis, 537
simple power analysis, 537
timing analysis, 549
trial and error PIN attack, 360

Attackers, 511
classification, 514

Attacks, 511, 517, 520, 521
avalanche effect, 511
classification, 512
classification of attractiveness, 516
consequences, 514

Attractiveness of an attack, 516
ATTRIB, 136
Attribute, 903
Attributes of files, 270
AuC, 741
Authentic mode, 428, 429
Authentication, 216, 904

commands, 457
mutual, 219
unilateral, 218

Authentication center, 741
Authenticity, 904
Authorization, 904
Auto-eject reader, 904

B-Netz, 725
B2A, 904
B2B, 904
B2C, 904
Background system, 681, 904
Bad case, 905
Bad-day scenario, 905
Barcode, 34
Base station, 740
Base station controller, 740
Base station subsystem, 740
Base transceiver station, 740
Basic Card, 323
Basic Encoding Rules, 158, 903, 905
Basic interpreter, 295
Basic multilingual plane, 163
Basic test, 590
Baud, 905
Bearer, 905
Bearer services, 733
Behavior test, 591
Behavioral features, 506
Bellcore attack, 550, 905

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1103 of 1123

Index 1069

BER, 158, 905
Bernoulli’s theorem, 213
Best-fit algorithm, 277
BGT, 415
Big-endian, 905
Binary phase shift keying, 906
Binding force, 178
Biometric features

dynamic signature, 508
face, 504
fingerprint, 505
hand geometry, 505
iris, 505
retina, 505
typing rhythm, 507
voice, 507

Biometric methods, 498
Birthday paradox, 209
Blackbox test, 585, 906
Blacklist, 560, 906
Block chaining, 416
Block guard time, 415
Block oriented, 178
Block waiting time, 414
Bluetooth, 788, 906
BMP, 163
Body, 254, 929
Bond-out chip, 603, 906
Bonding, 611
Bonding machine, 44
Boot loader, 78, 906
Börsenevidenzzentrale, 717
Bottom-up design, 887
BPSK, 906
Browser, 906
Brute-force attack, 181, 907
BSC, 740
BSI, 907
BST, 740
Buffering, 907
Bug fix, 907
Bug fixing, 294
Bumps, 45
Bundesamt for Sicherheit in der

Informationstechnik, 907
Burst, 907
Bus scrambling, 533
Business to administration, 904
Business to business, 904
Business to customer, 904

BWT, 414
conversion table, 1045

Byte, xv
Byte repetition, 403
Bytecode, 305, 907

C-450, 724
C interpreter, 295
C-Netz, 724
CA, 229, 911
CAD, 655, 908
CALCULATE EDC, 478
CAMEL, 788, 908
CAP file, 314, 908
Capability Maturity Model, 882, 914
Capability test, 591
Capacitive coupling, 94
Card, 908
Card acceptance device, 908
Card accepter, 908
Card Application Toolkit, 776
CARD BLOCK, 474
Card body, 38, 908

injection molding, 614
monolayer construction, 614
multilayer construction, 613
symmetrical construction, 618
with coil, 621

Card components, 31, 908
arrangement, 92
classification, 39

Card ejection, 662
Card format, 28

definition, 28
ID-00, 30
ID-000, 29
ID-1, 28
relative sizes, 31

Card issuer, 909
Card management systems, 650
Card manager, 291
Card manufacturer, 909
Card materials, 40
Card Modeling Language, 909
Card operating system, 234
Card owner, 909
Card reader, 909
Card registry, 291
Card user, 909
Card withdrawal, 663

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1104 of 1123

1070 Index

Cardholder, 909
Cardholder verification, 493, 748
Cardholder verification method, 909
Cardlet, 305, 902, 910
CardOS, 234
Cards

embossed, 15
magnetic-stripe, 16
optical memory, 23
types, 15

CASCADE project, 68
CASE, 583
Cases, 424
CAT, 776
Cavity, 618, 619, 910
CBC mode, 187

inner, 188
outer, 188

CC, 576, 915
CCITT, 910
CCR, 655
CCS, 170, 201, 910
CDMA, 726, 729, 910
CDMA 2000, 725, 910
Cell, 910

types, 732
Cellular technology, 730, 911
CEN, 11, 911
Central processing unit, 917
CEPS, 702, 911
CEPT, 735, 911
Certificate, 229, 911

structure, 230
Certificate revocation list, 912
Certification authority, 229, 807, 823, 911, 955,

978
Chaining, 416
Challenge–response procedure, 217, 912
CHANGE CHV, 455
CHANGE REFERENCE DATA, 455
Character waiting time, 413
Charging an EEPROM cell, 76
Check character, 388
Checkerboard pattern, 635
Chi-squared test, 215
Chinese remainder theorem, 191, 912
Chip-accepting device, 655
Chip card, 912
Chip-card reader, 655
Chip design, 525, 601

Chip hardware extensions, 89, 90
Chip module, 42, 912
Chip-on-flex module, 46
Chip-on-surface process, 50
Chip-on-tape, 912
Chip size, 912
Chips for memory cards, 1058
Chosen-ciphertext attack, 181
Chosen-plaintext attack, 181
CHV, 493, 748, 913
CICC, 913
Cipher block chaining, 187
Ciphertext, 178
Ciphertext-only attack, 180
Circuit-switched, 913
CISC, 66
Class, 913
Class byte

codes, 423
Class file, 308, 913
Classification chart

file structures, 263
smart card commands, 438, 439

Classification, numerical, 847
Cleanroom VM, 913
Clearing, 681, 913
Clearing system, 913
CLIP, 914
Clock rate conversion factor, 914
Clone, 914
Cloning, 914
CLOSE APPLICATION, 441
CLOSE CHANNEL, 774
Close-coupling cards, 101
Closed system architecture, 676
Cluster, 731
CML, 909
CMM, 882, 914
CMM process maturity levels, 883

defined level, 883
initial level, 882
managed level, 883
optimizing level, 883
repeatable level, 882

CMS, 650
Code division multiple access, 729, 910
Code inspection, 585
Code walkthrough, 585
Codec, 915
Coding alphanumeric data, 161

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1105 of 1123

Index 1071

Coil, 621
Cold reset, 61, 395, 915
Collision, 915
Combicard, 24, 915
Combined mode, 428, 430
Comité Européen de Normalisation, 911
Command APDU, 422, 915
Command case, 423
Command interpreter, 342
Command processing, 239
Command set, 435

determining, 544
Commands, 435, 915

application-specific, 490
authentication, 457
classification of, 438, 439
coding of, 1053
file management, 468
file manipulation, 452
file selection, 439
for completing the operating system, 474
for cryptographic algorithms, 462
for data transmission protocols, 481
for debit cards, 489
for electronic purses, 486
for hardware testing, 477
for managing applets, 474
identification, 453
private-use, 423
read, 442
search, 450
undocumented, 546
write, 442

Common Criteria, 576, 915, 927, 996
Common Electronic Purse Specifications,

702
Company-specific commands, 422
COMPARE EEPROM, 480
COMPARE KEY, 475
Compiler, 916
Completion, 245, 635, 916

commands for, 474
sample procedure, 478

COMPLETION END, 476
Compliance with standards, 850
COMPUTE CRYPTOGRAPHIC

CHECKSUM, 463
COMPUTE DIGITAL SIGNATURE, 465
Computer viruses, 561
Conferences, 1033

Confusion, 182
Contact unit, 661
Contact-type cards, 91
Contacting, 660
Contactless card, 8, 93, 916

Answer to Reset, 106
capacitive coupling, 98
capacitive data transfer, 105
collision avoidance, 99
construction, 95
coupling components, 102
data transfer, 97
energy transfer, 96, 103
inductive coupling, 94
inductive data transfer, 103
state of standardization, 100
test methods, 153

Contactless smart cards, 21
Contacts, 916

AFNOR location, 660
designations, 55
dimensions, 92
functions, 55
ISO location, 660
positions, 91

Convention, 374
Conventions, 1033
Coprocessors, 88

for symmetric cryptographic algorithms,
88

Core foil, 613, 916
Core voltage, 916
COS, 234, 916
COT, 912
Coupon collector test, 215
Cover foil, 613, 618
CP8, 917
CPU, 899, 917
CRC, 172, 917

checksum, 172
generator polynomials, 172

CREATE FILE, 468
Credit card, 674, 917

with chips, 709
CRL, 912
Cross-application access, 278
Crpytanalysis, 177
Cryptoalgorithm, 917
Cryptocard, 917, 945
Cryptocontroller card, 945

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1106 of 1123

1072 Index

Cryptographic algorithm, 917
commands for, 462
noise-free, 549
summary of, 190

Cryptographic checksum, 170, 201, 910
Cryptographic functions, xvi
Cryptographic library, 240
Cryptographic token, 833
Cryptography, 177
Cryptoprocessor, 917
CSD, 734
CT-API, 672, 918
CT-BCS, 672
CT-ICC, 672
CVM, 909
CWT, 413
CWT reception criterion, 413
Cyberflex, 234
Cyclic, 266
Cyclic redundancy check, 172

calculation unit, 86

D-AMPS, 726, 918
D-Netz, 735
DAM, 747
Danmønt, 5
DAP, 292
Data authentication pattern, 292
Data compression, 176
Data elements of EN 1546, 690
Data Encryption Algorithm, 182
Data Encryption Standard, 182, 919
Data exchange, 848
Data integrity, 278
Data objects for chip manufacturers, 1032
Data transmission, 60, 371

hardware-based, 81
secure, 425
tapping, 546

Data transmission error
with T = 0, 404

Data transmission protocols, 396
comparison, 421

Data transmission rate
determining, 1046

Database commands, 482
Database file, 267, 483
DBF, 483
DC/SC, 833
DCS, 736

DEA, 182, 918
DEACTIVATE FILE, 470
Deactivation sequence, 61, 918
Deadlocks, 166
Debit card, 675, 918
Debugging, 581, 918
DECIPHER, 464
Decision coverage, 587
DECREASE, 452
DECRYPT, 462
DECT, 747, 919
DECT authentication module, 747
Dedicated file, 256
Defined level, 883
Defragmentation, 278, 919
Delamination, 568, 919
Delegated management, 292
DELETE EEPROM, 480
DELETE file, 473
Depersonalization, 647, 919
DER, 158, 903, 919
Derived keys, 202
DES, 182, 919

computation times, 184
DES-3, 188
Design, 583, 849, 920
Design specification, 872
Design templates, 843
Deterministic, 920
Dethloff, Jürgen, 3
Devaluation cycle, 684
DF, 256, 920
DF name, 260, 920
DF separation, 276
DFA, 550, 920
Dice, 608, 920
Die, 608, 920
Die bonding, 44, 622
Differential cryptanalysis, 920
Differential fault analysis, 550, 920
Differential power analysis, 537, 922
Diffusion, 182
Digital, 921
Digital Cellular System, 736
Digital fingerprint, 921
Digital signature, 201, 225, 822, 921

system architecture, 827
with appendix, 226
with message recovery, 226

Digital Signature Act, 824, 967

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1107 of 1123

Index 1073

Digital Signature Algorithm, 195
Digital Signature Standard, 195
Digital watermark, 921
Direct convention, 373, 374
Direct memory access, 84
Directory service, 921
DISABLE CHV, 456
DISABLE VERIFICATION REQUIREMENT,

456
Discharging an EEPROM cell, 76
Discoloration, 567
Discrete logarithm problem, 196
Diskette terminal, 658
DISPLAY TEXT, 774
Distinguished Encoding Rules, 158
Distributed knowledge, 519
Diversity, 429
Divider, 921
DMA, 84
DOV modem, 808
Downlink, 921
Download, 922
Downloadable program code, 293
DPA, 537, 922
DRAM, 80, 922
DSA, 195

computation times, 198
DSS algorithm, 195
Dual IMSI, 782
Dual-band mobile telephone, 922
Dual-interface card, 24, 922
Dual-mode mobile telephone, 922
Dual-slot mobile telephone, 922
Dual-slot solution, 923
Dummy cash dispenser, 497
Dummy smart cards, 543
Dummy structures, 526
Dump commands, 519
Duplicating, 923
Dynamic asymmetric authentication, 223
Dynamic authentication, 217
Dynamic keys, 203
Dynamic test procedures, 585
Dynamic testing, 589

E-commerce, 923
E-Netz, 735
E-purse, 924
EC, 198
ECB mode, 186

ECBS, 923
ECC, 170, 198, 923

computation times, 199
key length, 198

EDC, 169, 924
EDGE, 725, 737, 924
EEPROM, 73, 924

charging an EEPROM cell, 76
discharging an EEPROM cell, 76
dynamic programming, 635
error correction, 89
error detection, 89
failure characteristics, 844
reduced writing time, 635
secure state, 77

EF, 256, 924
EIR, 741, 743
Electrical connections, 53
Electrical properties, 52
Electron-beam writer, 604
Electronic check, 924
Electronic code book, 186
Electronic money, 679

properties of, 679
Electronic payments, 674
Electronic purse, 675, 685, 924

commands, 486
for arcade games, 888

Electronic signatures, 225
Electronic toll systems, 819

in-vehicle unit, 819
multi-lane traffic, 819
onboard unit, 819
single-lane traffic, 819

Elementary file, 256
Elementary time unit, 374
Elliptic curve cryptosystem, 198, 923
Elliptic curves, 198
Embedded coil, 625
Embossed cards, 15
Embossed hologram, 34
Embossing, 35, 925
Emulator, 925
EMV, 925
EMV application, 708
EMV specification, 708, 925
EN 1546, 685

data elements, 689, 690
files, 691

ENABLE CHV, 456

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1108 of 1123

1074 Index

ENABLE VERIFICATION REQUIREMENT,
456

Encapsulation of applications, 555
ENCIPHER, 463
ENCRYPT, 462
Encryption, 177
Encryption algorithms

operating modes, 186
End-to-end communications, 738, 776
End-to-end connection, 925
Endianness, 925
Energy recycling, 653
Enhanced Data Rates for GSM and TDMA

Evolution, 725
Enrollment, 926
ENVELOPE, 481, 773
Envelope stuffing, 926

machines, 648
EP SCP, 736, 926
Epilogue field

for T = 1, 412
EPROM, 73, 926
Equipment identity register, 741
Equivalence classes, 588
Error correction code, 169, 923
Error counter, 926
Error detection code, 169, 924
Error handling

for T = 1, 418
Error recovery, 289, 559

functions, 559
procedure, 289

Errors
cost of correcting, 584
cost of correcting vs life cycle stage, 871
cost of searching for, 590

ESD damage, 102
ESD resistance, 571
Etched coil, 623
ETS, 926
ETSI, 736, 926
ETSI Project Smart Card Platform, 736
etu, 374, 927
Eurocheque system in Germany, 715
European Committee for Banking Standards, 923
Eurosmart, 927
Evaluating software, 574
Evaluation, 927

levels, 579
ZKA criteria, 579

Evaluation body, 581
Even parity, 170
Event independence, 213
Evolutionary model, 879
Exception, 304
Exception handler, 304
Executable native code, 296
Executable specifications, 583
EXECUTE, 266, 297, 452
Execution paths, 588
Explicit EF selection, 262
EXTERNAL AUTHENTICATE,

459
External clock, 60
Extra guard time, 384

f1, f2, f3, f4, f5, 792, 927
Fab, 927
Face, 927
False acceptance rate, 502
False rejection rate, 502
FAR, 502
FAT, 324, 928
Fault tree analysis, 928
FCOS, 51
FD/CDMA, 730, 928
FDMA, 727, 928
FDN, 743
FETCH, 773
FIB, 928
FID, 258, 928

uniqueness, 260
File access conditions, 267
File, 252

attributes, 270
body, 254, 928
header, 253, 929
identifier, 258
names, 257
selection, 261
types, 254, 929

File management, 271
commands, 468
system, 650

File manager, 343
File manipulation commands, 452
File selection, 261

commands, 439
File structure, 263, 929

cyclic, 266

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1109 of 1123

Index 1075

data objects, 267
database, 267
execute, 266
linear fixed, 264
linear variable, 265
process control, 267
transparent, 263

FINEID, 833, 840
FIPS, 929
Firewall, 84, 318, 929
Fixed terminal, 655
Flash, 929
Flash EEPROM, 78, 929
Flip-chip, 51, 622
Float, 675
Floating gate, 75
Floor limit, 930
FMS, 650
Focused ion beam, 536, 542, 928
Footprint, 930
Format character, 381
Foundry, 930
Four eyes principle, 519
Fowler–Nordheim effect, 75
FPLMTS, 725, 930
FRAM, 79, 930
Frame, 930
Free memory management, 276
Free-running oscillator, 83
Freedom from noise, 180
Frequency-division / code-division multiple

access, 928
Frequency-division multiple access, 727
Frequency hopping, 728
Frequency monitoring, 532
Frequency reuse, 731
Frequency-shift keying, 97
Frequency spectrum, 727
FRR, 502
FSK, 97
Full duplex, 931
Fuse, 534
Future Public Land Mobile Telecommunication

Service, 725

Gap test, 215
Garbage collection, 278, 931
Gateway server, 801
Geldkarte, 716, 718, 931
General Packet Radio System, 725, 786

GENERATE APPLICATION CRYPTOGRAM,
489

Generator polynomials for CRC, 172
GET CHALLENGE, 458
GET CHANNEL STATUS, 774
GET CHIP NUMBER, 458
GET INKEY, 774
GET INPUT, 774
GET PROCESSING OPTIONS, 489
GET READER STATUS, 774
GET RESPONSE, 481
Glitch, 551, 931
Global Platform, xxiv, 290, 931, 950
Global Positioning System, 821
Good case, 931
GPRS, 725, 735, 737, 786, 931, 932
GPS, 821
Granularity, 932
Graph theory, 166
Graybox test, 589, 932
Graylist, 932
Grötrupp, Helmut, 3
GSM, 932

components, 740
system, 735
system architecture, 740

GSM 1800, 736
GSM 1900, 736
GSM 900, 737
GSM Association, 736, 932, 946
GSM Permanent Nucleus, 735
Guilloche patterns, 33, 933

HAL, 933
Half-byte, 933, 948
Half duplex, 933
Handover, 740
Happy-day scenario, 933
Hard mask, 248, 933
Hardware abstraction layer, 933, 963
Hardware initialization, 339
Hardware security module, 935
Hardware testing

commands for, 477
Hardware-based memory management,

84
HASH, 464
Hash function, 208, 934
HBCI, 934
Header, 253, 929

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1110 of 1123

1076 Index

Health insurance card, 814
system architecture, 816

Henry, Edward Richard, 506
High update activity, 768
High-order differential power analysis,

538
Historical characters, 386
HLR, 741, 743
HO-DPA, 538
Hologram, 34, 934
Home location register, 741
Home net, 934
Home zone, 782, 934
Horizontal prototype, 934, 958
Host security module, 935
Hot stamping, 34, 616, 620
Hot-electron injection, 78, 924, 929
Hotlist, 934
HSCSD, 734, 737, 932, 935
HSM, 935
HTML, 935
Huffman algorithm, 176
Hybrid card, 935
Hypertext, 935

I2C bus, 400
I/O manager, 341
ICC, 935
ICCID, 744
ID-00 format, 30
ID-000 format, 29
ID-l card, 936
ID-l format, 28
IDEA, 184

algorithm, 184
computation times, 185

Identification, 936
commands, 453
numerical, 847

IEC, 936
IFD, 655, 936
IFSC, 412
IFSD, 411
IMEI, 744
Implanter, 630, 936
Implanting, 628
Implementation, 936
Implementation and test, 583
Implicit EF selection, 262
IMSI, 744, 751

IMSI catcher, 764, 936
IMT-2000, 725, 937
In-mold labeling, 614
In-vehicle unit, 819
INCREASE, 452
Incremental model, 879
Individualization, 640, 937

cryptographic protection, 644–646
Induction telegraphy, 723
Inductive coupling, 94
Information field for T = 1, 411
Information field size for the card, 412
Information field size for the interface device,

411
Initial character, 379
Initial level, 882
Initial waiting time, 378
Initialization, 636, 937
Initialization vector, 187
Initializer, 937
Injection molding, 614
Inmarsat, 747
Input commands, 779
Instruction bytes

summary of, 1051
Instrumenting, 587, 937
Integrated chip card, 935
Intel 4004, 66
Interface characters, 381
Interface device, 655
INTERNAL AUTHENTICATE, 458
Internal clock multiplication, 82
Internal EF, 254
Internal elementary file, 256
Internal foil, 937
International mobile subscriber identity,

765
International Mobile Telecommunication

at 2000 MHz, 725
International Telecommunications Union,

725
Interoperable, 938
Interpreter, 295, 938
INVALIDATE, 470
Inverse convention, 373, 374
IPES, 185
IrDA, 788
Iridium, 747
IS-54, 726
IS-95, 726

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1111 of 1123

Index 1077

ISDN, 682, 938
ISO, 10, 938
ISO location, 660
Iterative process models, 880
ITSEC, 577, 938

fundamental threats, 577
generic categories, 578
mechanism strength, 579
security-related functions, 578

ITU, 725, 938
IuKDG, 824
IV, 187
IVU, 819

Java, 303, 939
characteristics, 305
class file, 308
future prospects, 320
programming language, 304
software development, 314

Java accelerator, 87
Java API, 307
Java card, 939
Java Card, 303, 939

application selection, 318
application separation, 318
atomic operations, 318
cryptographic algorithms, 319
cryptography, 320
deleting applets, 319
deleting objects, 319
execution speed, 317
export, 320
file systems, 319
firewall, 318
minimizing memory usage, 320
persistent objects, 319
runtime environment, 939
transaction integrity, 318
transient objects, 319
virtual machine, xxvi, 939

Java Card Forum, 303, 939
Java development kit, xxvi, 939
Java virtual machine, 305, 307
Java VM, 305

bytecode verifier, 310
evaluation, 309
heap, 310
interpreter, 310, 311
loader, 310

security manager, 310
stack, 310

JCF, 303
JCRE, 939
JCVM, 939
JDK, 939
JIT compiler, 305
Just-in-time compiler, 305
Just-in-time personalization, 647
JVM, 305, 307

Kc, 744
Kerckhoff, Auguste, 178
Kerckhoff’s principle, 178, 516
Kernel, 940
Key, 940
Key diversification, 203
Key fault presentation counter, 940, 202
Key management, 846, 940
Key parameters, 204
Key space magnitude, 180
Key versions, 203
Ki, 744
kilo, xv
Kinegram, 34, 940
Known-plaintext attack, 181
Krankenversichertenkarte, 814
KVK, 814

Lamination, 613, 940
LANGUAGE NOTIFICATION, 774
Large cell, 733
Laser cutter, 940
Laser engraving, 35, 941
Lasing, 35
LAUNCH BROWSER, 775
Layer-7 chaining, 465
Layered operating system, 233
Lc field, 423
Le field, 423
Lead-frame module, 49, 941
Lead time, 941
Least significant bit, xv
LEN field, 411
Lettershop, 648
LFSR, 210
Life cycle, 941

management, 651
models, 870, 874, 941

Life keys, 589

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1112 of 1123

1078 Index

LIFO memory management, 277
Light attack, 552
Linear feedback shift register, 210
Linear fixed, 264
Linear variable, 265
Linker, 942
Linux, 324, 672
Little-endian, 942
Load agent, 688, 942
Load modulation, 97
Loader, 942
Loading a new application, 471
Loading center, 717
Lobby machines, 716
Location-based services, 942
LOCK, 473
Logical channel, 434, 942
Logical functions, xv
Longitudinal redundancy check, 171
LRC, 171
Lufthansa card, 811

µP card, 897
M/Chip, 943
M-commerce, 942
MAC, 170, 201, 943
Macrocell, 733
Magnetic card, 943
Magnetic stripe

storage capacity, 16
Magnetic-stripe card, 16, 943
Magnitude of the key space, 180
MANAGE ATTRIBUTES, 469
MANAGE CHANNEL, 482
MANAGE SECURITY ENVIRONMENT,

462
Managed level, 883
Manufacturing data

typical, 600
Maosco, 943
Mask, 604, 943
Master file, 255
Master key, 202
Master–slave relationship, 371, 773
Matching on chip, 503
MCOS, 234
MD4, 209
MD5, 209
Measures catalog, 824
Meet-in-the-middle attack, 188

mega, xv
MEL, 295, 704
Memorandum of Understanding, 736
Memory

design, 527
footprint, 930, 943
organization, 249
pages, 275
scrambling, 529
types, 70

Memory card, 6, 19, 943
chips for, 1055
intelligent, 937

Memory content
checksum, 554

Memory management unit, 84,
296, 555

Merchant card, 718, 944
Message authentication code, 170, 201
Message structures, 421
Metalization layers, 527, 528
Method, 944
MExE, 788, 944
MF, 255, 944
MFC, 715
Micardo, 234
Microbrowser, 794, 944
Microcell, 733
Microcontrollers, 944

availability, 65
chip area, 65
for smart cards, 62, 1060
functionality, 64
manufacturing costs, 64
security, 64
self-destruction, 521
service life, 844

Microprobe needle, 536
Microprocessor, 944
Microprocessor card, 20, 945
Microtext, 33
MILENAGE algorithm, 793, 945
Miller–Rabin test, 194
Mini card, 28
Minutiae, 506
Mixed numbering schemes, 847
MKT, 672, 945

specification, 667, 672
MLI, 34
MM technique, 36

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1113 of 1123

Index 1079

MMU, 84, 296, 555
Mobile equipment, 740
Mobile station, 740
Mobile switching center, 733, 740
Mobile telecommunication systems, 727
MOC, 503
Modular exponentiation, 191
Module, 945

manufacturer, 945
types, 42
with integrated coil, 621

Module–interface concept, 242
Module implantation

floating, 619
Mold body, 49, 941
Mondex, 945

system, 704
Mono-application smart card, 945
Monofoil, 614
Monofunctional smart card, 945
Monolayer card, 946
MORE TIME, 775
Moreno, Roland, 3
Morse code, 723
MOSAIC technology, 50
MOSFET, 74
MoU, 736, 946
MPCOS, 234
MSC, 740
MSISDN, 745
Multiapplication smart card, 931, 946, 983
Multiflex, 234
Multifunctional chipcard, 714
Multifunctional smart card, 946
Multifunktionales Kartenterminal, 945
Multilayer card, 946
Multiple-access, 946

methods, 727
Multiple-copy sheet, 614, 946
Multiple encryption, 188
Multiple laser image, 34
Multiple sourcing, 311
Multitasking, 947
Multithreading, 947
Multiuser systems, 483
Multos, 234, 322, 705, 947
MUSCLE, 672
MUTUAL AUTHENTICATE, 459
Mutual authentication, 219

time required for, 221

NAD, 410
Name space, 947
Native code, 947
Native program code, 293
NBS, 947
NCSC, 947
Negative file, 948
Negative result, 948
Negotiable mode, 393
Nibble, 948
NIST, 948
Node address, 410
Noise-free algorithm, 180
Noiseless, 948
Non-repudiation, 178, 948
Non-volatile memory, 948
Notation, xv
NPU, 948
NRZ coding, 104
NSA, 949
Null PIN, 949
Null-PIN method, 454, 493
Numbering, 949
Numerical classification, 847
Numerical identification, 847

Object, 949
Object-oriented programming, 949
OBU, 819
OCF, 671, 949
Octet, xv
Odd parity, 170
Offcard application, 949
Offline content, 801
Offset printing, 615
OMC, 741
Onboard unit, 819
Oncard application, 950
Oncard matching, 503, 950
Oncard VM, 314
One-way function, 950
Online behavior, 559
Online content, 802
OP, 290, 950
OP API, 291
Open application, 950
Open Card Framework, 671, 949
Open Card Initiative, 671
OPEN CHANNEL, 774
Open platform, 302, 950

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1114 of 1123

1080 Index

Open Platform, 290, 291, 950
Open purse, 950
Open smart card operating system, 950
Open system architecture, 676
Open terminal architecture, 303
Operating modes

block-oriented encryption algorithms, 186
Operating system, 233, 951

completion, 245
concealment of activities, 555
initialization, 339
kernel, 341
layer separation, 554
main loop, 339
undocumented commands, 546

Operating system producer, 951
Operation and maintenance center, 741
Optical fault induction attack, 552
Optical memory card, 23, 951
Optimizing level, 883
Orange Book, 576
OSI communications model, 373
OSI layers 1, 2 & 7, 372
OTA, 303, 739, 776, 951
Output commands, 779
Over the air, 739, 951
Overlay foil, 613, 618

PA, 537
Package, 951
Packet-switched, 951
Padding, 199, 952
Pads, 45
Page-oriented, 952
Parallel data transmission, 952
Parity bit, 952
Passivation, 952
Passivation layer monitoring, 530
Patch, 952
Patent, 953
Pay before, 674, 953
Pay later, 674, 953
Pay now, 674, 953
Payflex, 234
Payment flows, 687
Payment systems

system architecture, 681
PC, 40
PC card, 657
PC-card terminal, 658

PC/SC, 668, 953
crypto service provider, 670
ICC, 671
ICC-aware application, 670
ICC resource manager, 670
ICC service provider, 670
IFD, 671
IFD handler, 671
service provider, 670
specification, 668

PCB field, 410
PCD, 954
PCK, 393
PCMCIA, 658
PCMCIA terminal, 658
PCOS, 234
PDA, 788
PEM, 231
Pentium

floating point error, 293
PERFORM CARD APDU, 774
PERFORM SCQL OPERATION, 485
PERFORM SECURITY OPERATION, 462
PERFORM TRANSACTION OPERATION,

485
PERFORM USER OPERATION, 485
Persistence, 319
Persistent, 954
Personal Communication System, 736
Personal identification number, 493
Personal unblocking key, 493
Personalization, 640, 954

cryptographic protection, 644–646
tests, 644
throughput diagram, 647

Personalizer, 954
PES, 185
PET, 41
PETP, 41
Phase 1, 736
Phase 1, Phase 2, Phase 2+, 954
Phase-shift keying, 97
Phone card

contact assignments, 809
Photoresist, 604
Physical properties of cards, 27
Physical transmission layer, 373
Physiological features, 504
PICC, 954
Pick-and-place robot, 47

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1115 of 1123

Index 1081

Picocell, 733
PIN, 493, 954

modifiable, 493
static, 493

PIN comparison
current analysis, 548
timing analysis, 549

PIN letter, 648
PIN pad, 493, 955
PIX, 261
PKCS #1–15, 955
PKCS #15, 833
PKI, 955
Plaintext, 178
Platform independence, 307
Platform-independent implementation,

242, 326
PLAY TONE, 774
PLL circuit, 82
PLMN, 724, 955
Plug-in card, 28, 955
Poker test, 215
POLL INTERVAL, 775
Polling, 773, 955
POLLING OFF, 775
Polycarbonate, 40
Polyethylene terephthalate, 41
Polyvinyl chloride, 40
Portable terminal, 655
POS, 955
Postal addresses, 1034
Postal optimization, 649
Postpaid, 820, 956
Power analysis, 537
Power interruption, 547
POWER OFF CARD, 774
POWER ON CARD, 774
Power-on reset, 956
POZ, 714
PP, 958
PPC system, 630
PPS, 392

procedure, 395
request, 392

PPS0, 393, 394
PPS1, 394
PPSS, 393
Prepaid, 820, 956
Prepaid memory cards, 684
Prepaid SIM, 784, 956

Pre-personalization, 956
Primary flat, 604
Prime number tests

probabilistic, 194
Printed coil, 627
Printing processes, 615
Private-use commands, 422
PRNG, 210
Proactivity, 956
Probabilistic, 957
Procedural programming, 957
Process maturity, 882

CMM levels, 883
Process model, 957
Process quality, 884
Processing times

command processing, 851
data transfer, 853
estimating, 850
EEPROM operations, 852

Processor, 957
Processor card, 957
Processor types, 66
Program code, 957

binary-compatible, 905
conventions, xvii

Prologue field for T = 1, 410
PROM, 72
Proprietary, 957
Proprietary application identifier extension,

261
Protection profile, xxviii, 958
Protective layers, 527
Protocol control byte, 410
Protocol parameter selection, 392
Protocol type selection, 392
Proton, 703, 958
Prototype, 958
Prototyping model, 877, 878
PROVIDE LOCAL INFORMATION, 775
Proximity cards, 107
Proximity coupling device, 954
Proximity integrated circuit(s) card, 108, 954
Pseudo-random number, 211
Pseudo-random number generator, 212

initial value, 211, 556
seed number, 556

Pseudonymization, 958
PSK, 97
PSTN, 724, 958

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1116 of 1123

1082 Index

PTS, 392
Public card phones in Germany, 804
Public land mobile network, 724
Public switched telephone network, 724
Public-key algorithm, 958
PUK, 455, 493, 958
Pull technology, 959
Pull-up resistor, 60
Purse

closed, 914
open, 950

Purse holder, 959
Purse provider, 687, 959
Purse-to-purse transaction 680, 959
Push technology, 959
PVC, 40, 41

Quality assurance, 565
Quick, 686, 959

R-UIM, 747, 963
RA, 960
Radicchio, 959
RAM, 80, 960
Random number generator, 86, 212, 556
Random number testing

coupon collector test, 216
gap test, 216
long run test, 216
monobit test, 216
pattern test, 216
poker test, 216
runs test, 216
serial test, 216

Random numbers, 210
generation, 211
quality of, 213

RATS, 143
RC oscillator, 82
REACTIVATE FILE, 471
READ BINARY, 442
Read commands, 442
Real merchant card, 719
Real-time clock, 664
RECEIVE DATA, 774
Receive sequence counter for T = 1, 413
Record, 960
Recovery tests, 586
Recycling, 652
Redlist, 560, 960

Reed–Solomon codes, 174, 278
Reed–Solomon error correction, 175
Refactoring, 873
References, xvi
REFRESH, 775
REGISTER, 468
Registered identifier, 260
Registration authorities for RIDs, 1032
Registration authority, 960
REHABILITATE, 471
Remote applet management, 739, 780, 960
Remote-coupling cards, 107
Remote file management, 651, 739, 778, 960
Removable user identity module, 963
Repeatable level, 882
Replaying, 219
Representation of characters and numbers, xv
Requirements specification, 872
Reset, 960
Resources and access rules, 282, 283
Resources and security attributes, 282
Response, 961
Response APDU, 422, 424, 961
Response data, 639
Reticule, 961
Retry counter, 961
Return code manager, 240, 341
Return codes

classification, 425
table of, 1056

Review, 585
RFID systems, 93
RFM, 651, 739, 778
RID, 260

registration authorities, 1032
selected examples, 1032

RISC, 67
RNG, 86
Road-pricing systems, 819
Roaming, 961
Robustness, 39
Roll back, 559, 961
Roll forward, 961
Roll-on process, 34, 620
ROM, 72, 962
ROM mask, 962
ROMable applet, 316
ROMed application, 962
Root CA, 911
Round-trip engineering, 962

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1117 of 1123

Index 1083

RSA, 962
computation times, 193
key generation, 194, 196
private key, 191
public key, 191

Rule-based programming, 963
RUN AT COMMAND, 774
RUN GSM ALGORITHM, 490
Run-length encoding, 176

Salt, 963
Salting, 562
SAM, 688, 963
Sampling points, 1046
Sandbox, 305, 963, 981
SAT, 772, 968
SCQL, 482

commands for, 482
object description table, 484
privilege description table, 484
user description table, 484

Scrambling, 963
bus, 533
memory, 529

Scratch card, 964
Script, 964
SDL notation, 164
SDMA, 730, 964
Search commands, 450
SECCOS, 718, 964
Secret-key algorithm, 964
Secret number, 493
Secrets

generating, 638
Secure application module, 688
Secure Electronic Transaction Standard, 966
Secure messaging, 426, 964
Secure operating system, 238
Secure state, 77
Securing data transmission, 425
Security, 510

by concealment, 178
features, 31, 37, 558
functions, 793
techniques, 491
technology, 665

Security domains, 291
Security environment, 964
Security module, 665, 965
Security target, 576, 965

Seed, 965
Seed number, 211, 556
SEEK, 450
SEIS specification, 833
SELECT FILE, 439
SELECT ITEM, 774
Selection

by path name, 263
explicit, 262
implicit, 262

Selective cell, 733
Self-destruction, 521
Semi-formal description

example, 326
Semiconductor fabrication

masks, 604
processing time, 605

Semiconductor technology, 525, 898
SEND DATA, 774
SEND DTMF, 774
Send sequence counter, 432

for T = 1, 413
Send sequence number, 413
SEND SHORT MESSAGE, 774
SEND SS, 775
SEND USSD, 775
Sequence control, 279, 965
Serial data transmission, 965
Serial test, 215
Service provider, 687, 965
Session, 966
Session keys, 203
SET, 231, 966
SET UP CALL, 775
SET UP EVENT LIST, 775
SET UP IDLE MODE TEXT, 774
SET UP MENU, 774
SHA, 210
SHA-1, 210
Shadow account, 717
Shared batch, 606
Shared secrets, 519, 966
Shields, 527
Shipping, 648
Short FID, 260, 966
Short-circuit protection, 664
Short file identifier, 260
Short message service, 971
Short messages, 744
Shrink, 966

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1118 of 1123

1084 Index

Shrink process, 64
Shutter, 666, 967
Sieve of Eratosthenes, 194
SigG, 824
SIGN DATA, 462
Signal burst, 967
Signature, 201

pseudonym, 823
Signature Act, 824, 967
Signature application, 833
Signature card, 827, 829, 967

commands, 831
DIN specification, 826
implementation regulations, 825
key generation, 830, 831
legally compliant, 825
legally non-compliant, 825

Signature Ordinance, 824
Signature panels, 32

non-erasable, 33
Signaturgesetz , 823, 824
Signaturverordnung, 967
SigV, 824, 825, 967
Silk-screen printing, 615
SIM, 735, 740, 745, 968
SIM Alliance, 799, 968
SIM Application Toolkit, xxix, 771, 923, 968
SIM detection, 749
SIM Lock, 783, 968
SIM service table, 743
SIM toolkit, 969
SIMEG, 736, 969
Simple power analysis, 537
Simulator, 969
Simultaneous engineering, 583
Single-byte reception, 407
Single-card printing machine, 614
Single-Sign-On, 969
Single-user systems, 482
Skimming, 969
Sleep mode, 59
Small OS, 326
Smart card, 18, 970

analyzing an unknown card, 868
commands, 435
contactless, 21
history, 2
profiles, 240
security, 510
standards, 12

terminals, 655
typical application areas, 5, 7
weights of card components, 653

Smart card application, 970
estimating processing time, 850

Smart card commands
important commands, 1047
timing formulas for typical commands,

858
typical processing times, 860

Smart card microcontroller, 62, 970
Smart card operating system, 970

hardware recognition, 247
Smart card reader, 655
Smart card simulator, 864

ISO 10202-1 life cycle, 599
microcontrollers for, 1060
production volume, 597

Smart label, 970
Smart object, 970
Smartcard, 971
SMG9, 736, 971
SMIME, 231
SMS, 734, 744, 971
Soft mask, 248, 971
Software

evaluation, 574
quality metrics, 576
testing, 574

Software development
cost of correcting errors, 584
degree of completion, 885
life cycle, 582

Software specification, 872, 971
Soliac, 50
Solovay–Strassen test, 194
Sonotrode, 626
SPA, 537, 972
SPA/DPA-resistant, 972
Space-division multiple access, 730, 964
Space Manager, 720
Specific mode, 393
Specification, 972
Spectral distribution, 214
Spectral test, 215
Spiral model, 881
Spread-spectrum technology, 729
SQL, 482
SQUID, 541
SRAM, 80, 972

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1119 of 1123

Index 1085

SSL, 231
SSO, 969
Stack, 972
Standard cells, 525
Standardization, 9

of smart cards, 12
Standards, 972

compliance with, 850
definition, 9
directory of standards and specifications,

994
for smart cards, 12
generation, 11

STARCOS, 234, 973
State machine, 165, 973

for life-cycle implementation, 636
for T = 0, 406
theory, 166

Statement coverage, 587
Static authentication, 217
Static test procedures, 585
Steganography, 586, 973
Stepper, 604–606
Structural formulae of card materials, 41
Structured card query language, 482
Structured query language, 482
Structuring data, 156
Subscriber identity module, 735, 740
Sun, 303
Super PIN, 493
Super smart card, 973
Supplementary hardware, 80
Supply current, 58
Supply voltage, 55
Symbols, xv
Symmetric cryptographic algorithm, 179, 182,

973
Symmetrical card construction, 618
Synchronous data transmission, 397, 973
System architecture, 676

of payment systems, 681
options, 681

System integration, 584
System on card, 973

T =, 396
T = 0, 974
T = 1, 974

according to EMV, 418
according to ISO/IEC, 418

T = 14, 419
T = 2, 396
T3, 974
TA(i), 383
TA1, 382
TA2, 386
TAB, 44
Tachosmart, 840
Tag, 974
TAi, 385
TAN, 976
Tape, 609
Tape-automated bonding, 44
Tape out, 974
Target of evaluation, 958, 974
TB1, 383
TB2, 384
TBi, 385
TC, 828
TC display, 36
TC1, 384
TC2, 385
TCi, 386
TCOS, 234
TCSEC, 576, 974
TD/CDMA, 730, 975
TDES, 188, 975
TDMA, 728, 975
Telecommunications, 723
Telegraph, 723
Telephone bandwidth, 733
Temperature monitoring, 532
Temporary keys, 203
Temporary mobile subscriber identity, 743,

765
Terminal, 975
TERMINAL RESPONSE, 773
Terminals, 655

connection to higher-level systems,
667

connection to system, 677
PC-card, 658
testing for authenticity, 894

TERMINATE CARD USAGE, 474
TERMINATE DF, 473
Test applications, 591
TEST EEPROM, 479
Test keys, 589
Test levels, 558
Test methodology, 591

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1120 of 1123

1086 Index

Test methods
for close-coupling cards, 154
for contactless smart cards, 153
for proximity-coupling cards, 154
for software, 581
for vicinity-coupling cards, 154

Test mode, 607
switchover, 534

Test pads, 534
Test procedures, 584
TEST RAM, 478
Test specification, 581
Test strategies, 584
Test zone, 377
Testing, 565, 581, 975

for file access, 283
random numbers, 213
the authenticity of a terminal, 497

Tests
card body, 566
microcontroller hardware, 573
production, 565
qualification, 565
software, 574

TETRA, 747, 975
TETRA SIM, 976
Thermal dye-sublimation printing, 617
Thermal-transfer printing, 616
Thermochrome display, 36
Third Generation Partnership Project, xix, 747,

789, 898
Thread, 976
Time-division / code-division multiple access, 975
Time-division multiple access, 728
Time stamp, 976
Timer, 82
Timer management, 775
Timing analysis, 549
Timing attack, 549
TLV

format, 976
length, 158
structure, 158
tag, 158
value, 158

TMSI, 745, 765
TOE, 974
Top-down design, 887
Top-level CA, 911

TPDU, 397, 422, 976
Traceability, 599
Trade fairs, 1033
Transaction, 976
Transaction number, 976
Transaction primitives, 670
Transfer card, 682, 976
Transience, 319
Transient, 954
Transition zone, 377
Transmission hologram, 34
Transmission protocol, 977

commands for, 481
summary, 396
T = 0, 403
T = 1, 409
T = 14, 419

Transmission protocol data unit, 397,
422

Transparent, 263
Transport PIN, 493
Transport protocol, 977
Trap door, 977
Trial and error, 360
Triple-band mobile telephone, 977
Triple DES, 188, 977
Tri-state, 401
Trivial PIN, 493, 977
TRNG, 210
Trojan horse, 519, 561, 978
Trust center, 229, 823, 827, 828, 978
Trusted third party, xxxi, 978
TTP, 978
Tunnel effect, 75
Tunnel-oxide layer, 75
Tunneling, 978
Two-chip system, 89

UART, 81, 978
UATK, 747, 776
UCS, 163, 741, 978
UCS-2, 741
UCS-4, 164
UCS Transition Format, 164
UICC, 740, 979
UIM, 979
UIM Application Toolkit, 776
Ultraviolet text, 33
Umbrella cell, 733

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1121 of 1123

Index 1087

UML, 979
UMTS, 789, 979
UMTS system, 789
UNBLOCK CHV, 455
Unicode, 163, 979
Unilateral authentication, 218
Universal Character Set, 163
Universal integrated circuit card, 740
Universal Mobile Telecommunication System,

789
Universal subscriber identity module, 789, 980
UPDATE BINARY, 442
Uplink, 980
Upload, 980
URL, 980
USAT, 776, 980
USAT Interpreter, 793, 800
USB, 420

protocol, 82
token, 504
transmission protocol, 420

User, 980
User data, 980
User identification, 491

transferability, 499
User interface, 849
User mode, 611

switchover, 534
User requirements specification, 872
USIM, 789, 980
USIM Application Toolkit, xxxi, 776, 980, 981
USSD, 734
UTF, 164
UTF-16, 164
UTF-32, 164
UTF-8, 164

V model, 876
Value-added service, 772, 981
Variable-length encoding, 176
VAS, 772, 981
VEE, 982
VERIFY, 453
VERIFY CERTIFICATE, 466
VERIFY CRYPTOGRAPHIC CHECKSUM, 463
VERIFY DIGITAL SIGNATURE,

465
VERIFY SIGNATURE, 462
Vertical prototype, 958, 981

Vertical system integration, 90
Vicinity cards, 107
Vicinity integrated circuits card, 153
Virgin card, 981
Virtual machine, 305, 981
Virtual merchant card, 718, 981
Virtual smart card, 981
Visa Cash, 686, 981
Visa Easy Entry, 982
Visa Open Platform, 290
Visitor location register, 740
VLR, 740, 743
VM, 305
Volatile memory, 982
Voltage monitoring, 530
VOP, 290, 982
VSI, 90

W3, 984
Wafer, 982
Waiting time extension, 416
Waiting times

for T = 1, 413
WAP, 802, 982
WAP Forum, 982
Warm reset, 61, 394, 983
Watchdog, 82
Waterfall model, 582, 875, 876
WCDMA, 730, 983
White-light reflection hologram, 34
White plastic, 983
Whitebox test, 587, 983
Whitelist, 560, 983
Wideband code division multiple access, 730, 983
WIM, 801, 983
Windows for Smart Cards, 323, 983
Wiping contacts, 661
Wire bonding, 44, 46, 622
Wireless identification module, 802
Wireless markup language, 984
WML, 984
Work-around, 984
Working EF, 254
Working elementary file, 256
World Wide Web addresses, 1034
WORM memory management, 277
Wound coil, 625
WRITE BINARY, 442
Write commands, 442

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1122 of 1123

1088 Index

WRITE DATA, 475
WSC, 323
WWW, 984

X.25, 682
X.509, 231, 823, 824, 984

XML, 156, 984
XOR checksum, 171

Zentraler Kreditausschuss, 984
ZKA, 714, 984
ZKA criteria, 579, 580

GOOG-1011
GOOGLE LLC v. RFCYBER CORP. / Page 1123 of 1123

