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2. Verify to some confidence that indeed the region was the desired one.
3. Bound the region accurately.

The outline the plan generation, scoring, and execution used in the system
are described in the following paragraphs. The plans generated by the system are
typically enhanced versions of plans like the telephone finder. Plan scoring
proceeds as expected for such plans; allowances are made for the enhanced seman-
tics of plan nodes. A “‘cost/confidence’’ scoring function is used, and various prac-
tical simplifications are made that do not affect the planning paradigm itself.

An Example Plan and Its Execution

The system’s plans are enhanced plans, in the sense of Section 13.2.3. Ac-
tions can be AND, OR or SEQUENCE actions, and shared plan structure and loops
are permitted. Loops that contain only internal, planning actions would never ter-
minate. However, a loop with an OR node can terminate (has an exit) if one of the
subactions of the OR is executable. A plan for locating a chair in an office scene is
shown in Fig. 13.7. In Fig. 13.7, the acquire—validate—bound strategy is evident in
the two SEQUENCE subgoals of the Find Chair main goal, which is an AND goal.
The loop in the plan is evident, and makes sense here because often planning is
done for information gathering, not for real world actions.

As noted in Section 13.2.3, an enhanced plan may not be completely
specified. If it is to be executed one subgoal at a time (no parallelism is allowed),
sequences of subactions must be determined for its AND and OR actions. In
Garvey’s planner, these sequences are determined initially on the basis of apriori
information, but the partial results of actions are ‘‘fed back,”” so that dynamic
rescoring and hence dynamic reordering of goal sequences is possible. For exam-
ple, if one subgoal of an AND action fails, the AND action is abandoned. Thus this
planner is to some degree incremental.

In execution, Fig. 13.7 might result in the sequence of actions depicted in
Fig. 13.8. The acquisition phase of object location has the most alternatives, so
plan generation effort is mainly spent there. Acquisition proceeds either directly or
indirectly. Direct acquisition is the classification of input data gathered from a ran-
dom sampling of a window in the image; the input data are rich enough to allow
basic pattern recognition techniques to identify the source of individual pixels.

Indirect acquisition is the use of the location of other “‘objects” (really
identified regions) in the scene to locate the desired region. The desired region
might be found by ““scanning’’ vertically or horizontally from the already identified
region, for instance. The idea is a planning version of a common one (e.g., the
geometric location networks of Section 10.3.2): use something already located to
limit and direct search for something else.

Plan Generation

A plan such as Fig. 13.7 is “‘elaborated’’ from the basic Find Chair goal by re-
cursively expanding goals. Some goals (such as to find a chair) are not directly exe-
cutable; they need further elaboration. Elaboration continues until all the subgoals
are executable. Executable subgoals are those that analyze the image, run filters
and detectors over parts of it, and generate decisions about the presence or absence
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Acquire-
direct
seat

2

Find
back

e | o[

Acquire-
indirect
seat

Acquire Validate Bound ) Acguire Validate Bound
seat seat seat back back back

Acquire- Acquire-
direct indirect
back back

*

Distinguish Scan-down Distinguish Scan-up
seat seat back seat

b1 4

Fig. 13.7 An enhanced plan to locate a chair in an office scene. Untied multiple arcs
denote OR actions, arcs tied together denote AND actions, those with *’s denote SE-
QUENCE actions. The loop in the plan has executable exits.
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(a) (b)

e

(c) (d)

Fig. 13.8 The plan of Fig. 13.7 finds the most promising execution sequence for finding
the chair in the scene of Fig. 13.6: find the seat first, then scan upwards from the seat
looking for the back. Acquisition of the seat proceeds by sampling (a), followed by
classification (b). The Validation procedure eliminates non-chair points (c), and the
Bounding procedure produces the seat region (d). To find the back, scanning proceeds in
the manner indicated by (e) (actually fewer points are examined in each scan). The back
is acquired and bounded, leading to the final location of the chair regions (f).
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Fig. 13.8 (cont.)

of image phenomena. This straightforward elaboration is akin to macro expansion,
and is not a very sophisticated planning mechanism (the program cannot criticize
and manipulate the plan, only score it). A fully elaborated plan is presented for
scoring and execution.

The elaboration process, or planner, has at its disposal several sorts of
knowledge embodied as modules that can generate subgoals for a goal. Some are
general (to find something, find all its parts); some are less general (a chair has a
back and a seat); some are quite specific, being perhaps programs arising from an
earlier interactive method-generation phase. The elaborator is guided by informa-
tion stored about objects, for instance this about a tabletop:

OBJECT PROPERTIES RELATIONS

Table TOP  Hue:26-58 Supports Telephone 0.6
Sat.: 0.23-0.32  Supports Book 0.4
Bright.: 18-26  Occludes Wall 1
Height: 26-28
QOrient.: —7-7

Here the orientation information indicates a vertical surface normal. The
planner knows that it has a method of locating horizontal surfaces, and the plan
elaborator can thus create a goal of direct acquisition by first locating a horizontal
plane. The relational information allows for indirect acquisition plans. The elabora-
tor puts direct and indirect alternatives under an OR node in the plan. Information
not used for acquisition (height, color) may be used for validation.

Loops may occur in an elaborated plan because each newly generated goal is
checked against goals already existing. Should it or an equivalent goal already ex-
ist, the existing goal is substituted for the newly generated one. Goals may thus
have more than one ancestor, and may depend on one another.

Sec. 13.2  Planning with Costs 457
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At this stage, the planner does not use any planning parameters (cost, utili-
ties, etc.); it is strictly symbolic. As mentioned above, important information
about execution sequences in an enhanced plan is provided by scoring.

Plan Scoring and Execution

The scoring in the vision plan is a version of that explained in Sections 13.2.2
through 13.2.4. Each action in a plan is assumed either to succeed (S) in locating
an object or to fail. Each action may report either success (**S”’) or failure. An ac-
tion is assumed to report failure correctly, but possibly to be in error in reporting
success. Each action has three ““planning parameters’’ associated with it. They are
C, its “‘cost” (in machine cycles), P(*S’’) the probability of it reporting success,
and P (S|*“S”), the probability of success given a report of success.

As shown earlier, the product

P(S|“S")P("S™) (13.19)

is the probability that the action has correctly located an object and reported suc-
cess. This product is called the “‘confidence’ of the action. An action has structure
as shown in Fig. 13.9.

The score of an action is computed as

score = — 05t (13.20)
confidence
The planner thus must minimize the score.

The initial planning parameters of an executable action typically are deter-
mined by experimentation. The parameters of internal (AND, OR, SEQUENCE)
actions by scoring methods alluded to in Sections 13.2.2, 13.2.3, and the Exercises
(there are a few idiosyncratic ad hoc adjustments.).

It may bear repeating that planning, scoring, and execution are not separated
temporally in this sytem. Scoring is used after the enhanced plan is generated to
derive a simple plan (with ordered subgoals). Execution can affect the scores of
nodes, and so execution can alternate with ‘‘replanning” (really rescoring result-
ing in a reordering). Recall the example of failure of an AND or SEQUENCE
subgoal, which can immediately fail the entire goal. More generally, the entire goal
and ultimately the plan may be rescored. For instance, the parameters of a success-
ful action are modified by setting the cost of the executed action to 0 and its
confidence to its second parameter, P (S]S”’).

Given a scored plan, execution is then easy; the execution program starts at
the top goal of the plan, working its way down the best path as defined by the scores
of nodes it encounters. When an executable subgoal is found (e.g. “‘look for a
green region’’), it is passed to an evaluation function that ‘‘runs’’ the action asso-
ciated with the subgoal. )

The subgoal is either achieved or not; in either case, information about its
outcome is propagated back up the plan. Failure is easy; a failed subgoal of an
AND or SEQUENCE goal fails the goal, and this failure is propagated. A failed
subgoal of an OR goal is removed from the plan. The use of success information is
more complex, involving the adjustment of confidences and planning parameters
illustrated above.
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Exercises

P (object |““success”)

P ("success”’)

Detector reports
""success”

Decide
object
present

Detector for
object

1-P (*“success™)

Detector reports
“failure’

Obiject present

QObject not

present

present

Correctly
decide object

Incorrectly
decide object

present

Decide object
not
present

1-P (object|"'success”)

Fig. 13.9 This is the microstructure of a node (*‘action™) of Garvey’s planning
system in terms of simple plans. Think of actions as being object detectors which
announce ‘‘Found” or “Not Found.” Garvey’s planning parameters are
P(*Found”) and P(Object is there|*‘Found’’). Confidence in the action is their
product; it is the probability of correcily detecting the object. All other outcomes
are lumped together and not used for planning.

After the outcome of a goal is used to adjust the parameters of other goals,

the plan is rescored and another cycle of execution performed. The execution can
use knowledge about the image picked up along the way by prior execution. This is
how results (such as acquired pixels) are passed to later processing stages (such as
the validation process). Such a mechanism can even be used to remember success-
ful subplans for later use.

EXERCISES

13.1 Complete the computation of outcome probabilities in the style of Section 13.2.2,

13.2

IPR2021-00921
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using the assumptions given there. Check your work by showing (symbolically)
that the probabilities of getting to the terminal actions (‘“‘goal states””) of the plan
sumto 1.
Assume in Section 13.2.2 that the results of the “‘table’” and “‘telephone shape”’
detectors are not independent. Formulate your assumptions and compute the new
outcome probabilities for Fig. 13 .4.
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13.3

134

13.3

13.6

13.7

13.8

13.9

13.10

Show that
AANCHP4]|C)
P(B|C)

B and C are independent if P(BA C) = P(B) P(C). Assuming that Band C are
independent, show that

P4|(BA cH=2BI

P(B|C) = P(B)
P((BAC)A) = P(B|A)P(C|A)
P(B|(ANC)) = P(B|4)

Starting from the fact that
P(AAB)=PAABAC)+PUNBAQC))

show how P,s was computed in Section 13.2.2.

A sequence D (N) of N detectors is used to detect an object; the detectors either
succeed or fail. Detector outputs are assumed independent of each other, being
conditioned only on the object. Using previous results, show that the probability of
an object being detected by applying a sequence of N detectors D (V) is recursively
rewritable in terms of the output of the first detector D1 and the remaining se-
quence D (N—1) as

Yo P(D1|0)P(O|D(N-1))
P(D1|D(N-1))

Consider scoring a plan containing an OR node (action). Presumably, each subgoal
of the OR has an expected utility. . The OR action is achieved as soon as one of the
subgoals is achieved. Is it possible;to order the subgoals for trial so as to maximize
the expected utility of the plan? (This amounts to a unique ‘‘best’’ rewriting of the
plan to make it a simple plan.)

Answer question 13.7 for an AND node; remember that the AND will fail as soon
as any of its subgoals fails.

What can you say about how the cost/confidence ratio of Garvey’s planner is re-
lated to the expected utility calculations of Section 13.2.2?

P(O|D(N)

You are at Dandy Dan’s used car lot. Consumer Reports says that the a priori proba-
bility that any car at Dandy Dan’s is a lemon is high. You know, though, that to test
a car you kick its tire. In fact, with probability:

P(“C”’| Q) : akick correctly announces “‘creampuff>’ when the
car actually is a creampuff

P(*“C”’|L) : akick incorrectly announces “‘creampuff”’ when
the car is actually a lemon

P(L) : the a priori probability that the car is a lemon

Your plan for dealing with Dandy Dan is shown below; give expressions for the
probabilities of arriving at the nodes labeled S), S,, Fy, F,, and F3;. Give numeric
answers using the following values

P(“C"C) =105, P(“C"|L) =05, P(L) =075

Ch. 13 Goal Achievement
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Kick reports Kick reports
“creampuff” “lemon’”
Buy
Ford
Fordisa Fordisa Kick reports Kick reports
creampuff lemon ‘“‘creampuff” “lemon’’

8;: Fqt F;: Goto
happiness unhappiness “Krazy Ken's"”
Kar lot
Chevy is a Chevy is a
creampuff lemon

8,
happiness

Ex. 13.10

Fy:
unhappiness

13.11 Two bunches of bananas are in a room with a monkey and a box. One of the
bunches is lying on the floor, the other is hanging from the ceiling. One of the
bunches is made of wax. The box may be made of flimsy cardboard. Given that:

P(WH) = 0.2:probability that the hanging bananas are wax

P(WL) = 0.8:probability that the lying bananas are wax
P(C) = (.5 : probability that the box is cardboard
Uleat) = 200: utility of eating a bunch of bananas
C(walk) = —10:cost of walking a unit distance

C(push) = —20:cost of pushing the box a unit distance
C(climb) = —20:cost of climbing up on box

(a) Analyze two different plans for the monkey, showing all paths and calcula-
tions. Give criteria (based upon extra information not given here) that
would allow the monkey to choose between these plans.

Exercises 461
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(b) Suppose the monkey knows that the probability that the box will collapse is
inversely proportional to the cost of pushing the box a unit distance (and
that he can sense this cost after pushing the box 1 unit distance). For

example,
P(C) = 1.0— [C(push) x 0.01]
P(C(push) = 10)=0.1
P(C(push) = 20) = 0.1
P(C(push) = 100) = 0.1
Repeat part(a) (in detail).
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Some
Mathematical Tools
Appendix 1

A1.1 COORDINATE SYSTEMS

A1.1.1 Cartesian

The familiar two- and three-dimensional rectangular (Cartesian) coordinate sys-
tems are the most generally useful ones in describing geometry for computer vi-
sion. Most common is a right-handed three-dimensional system (Fig. A1.1.). The
coordinates of a point are the perpendicular projections of its location onto the
coordinate axes. The two-dimensional coordinate system divides two-dimensional
space into quadrants, the three-dimensional system divides three-space into oc-
tants.

A1.1.2 Polar and Polar Space

Coordinate systems that measure locations partially in terms of angles are in many
cases more natural than Cartesian coordinates. For instance, locations with respect

X Fig. A1.1 Cartesian coordinate systems.

465
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to the pan-tilt head of a camera or a robot arm may most naturally be described us-
ing angles. Two- and three-dimensional polar coordinate systems are shown in Fig.

Al.2.
Cartesian Coordinates ~ Polar Coordinates
X p cos @
y p sin @
(x? + yz) ’ p
tan~! | £ 6
%

Cartesian Coordinates  Polar Space Coordinates
(x, y, 2) (p cos &, p cosm, p cos {)
(x2 + yz 3 22)% p

cos™! [= £
p

cos™!|L 7
p

cos™!| £ Z
p

In these coordinate systems, the Cartesian quadrants or octants in which points fall
are often of interest because many trigonometric functions determine only an an-
gle modulo 7/2 or 7 (one or two quadrants) and more information is necessery to
determine the quadrant. Familiar examples are the inverse angle functions (such
as arctangent), whose results are ambiguous between two angles.

A1.1.3 Spherical and Cylindrical

The spherical and cylindrical systems are shown in Fig. A1.3.

Fig. A1.2 Polar and polar space
X coordinate systems.
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Cartesian Coordinates

X
Y
Z
(xz + y2+22) %

tan~!| 2
X
cos™!| &
P

Cartesian Coordinates

x

y

Z

(x?+ pyh*
tan~! [£
x

A1.1.4 Homogeneous Coordinates

Fig. A1.3 Spherical and cylindrical
coordinate systems.

Spherical Coordinates

p sin ¢ cos 6 .
psing sin® = x tan 6
p cos @

P

6

®

Cylindrical Coordinates
r cos

rsin @

Z

=

=3

Homogeneous coordinates are a very useful tool in computer vision (and com-
puter graphics) because they allow many important geometric transformations to
be represented uniformly and elegantly (see Section A1.7). Homogeneous coordi-
nates are redundant: a point in Cartesian n-space is represented by a line in homo-
geneous (n + 1)-space. Thus each (unique) Cartesian coordinate point
corresponds to infinitely many homogeneous coordinates.

Cartesian Coordinates Homogeneous Coordinates

(x, y, z) (wx, wy, wz, w)
X Lz (x, y, z, w)
w o ow ow

Sec. A1.1 Coordinate Systems 467
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Here x, y, z, and w are real numbers, wx, wy, and wz are the products of the two
reals, and x/wand so on are the indicated quotients.

A1.2. TRIGONOMETRY

A1.2.1 Plane Trigonometry

Referring to Fig. Al.4, define

sine: sin (4) (sometimes sin 4) = %
cosine: cos (4) (orcos 4) = %
tangent:  tan (4) (ortan 4) = %

The inverse functions arcsin, arccos, and arctan (also written sin™!, cos™!, tan™!)

map a value into an angle. There are many useful trigonometric identities; some of
the most common are the following.

tan (x) = sin () _ —tan(—x)
cos (x)

sin {x + y) = sin (x) cos (y) + cos (x) sin (»)
cos (x + y) = cos (x) cos (y) — sin (x) sin (y)

tan (x) ¥ tan (y)
1 F tan {x) tan(y)

tan (x = y) =

In any triangle with angles 4, B, C opposite sides a, b, ¢, the Law of Sines holds:

a b [4

sind sinB sinC

as does the Law of Cosines:

a’= b%+ ¢* —2bc cos 4

a=bcosC+ccosB

b C  Fig. Al.4 Plane right triangle.
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A1.2.2. Spherical Trigonometry

The sides of a spherical triangle (Fig. A1.5) are measured by the angle they sub-
tend at the sphere center; its angles by the angle they subtend on the face of the
sphere.
Some useful spherical trigonometric identities are the following.
sind4 _ sin B _ sin C
sin a sin b sin ¢

cosb cos(c + )
cosf

cosa = cosbh cosc + sinb sinc cos4 =

Where tan § = tan b cos 4,

cosA = —cosB cosC +sinB sinC cosa
A1.3. VECTORS

Vectors are both a notational convenience and a representation of a geometric con-
cept. The familiar interpretation of a vector v as a directed line segment allows for a
geometrical interpretation of many useful vector operations and properties. A
more general notion of an n-dimensional vector v = (v;, vy, ..., v,) is that of an
n-tuple abiding by mathematical laws of composition and transformation. A vector
may be written horizontally (a row vector) or vertically (a column vector).

A point in n-space is characterized by its » coordinates, which are often writ-
ten as a vector. A point at X, Y, Z coordinates x, y, and z is written as a vector x
whose three components are (x, y, z). Such a vector may be visualized as a
directed line segment, or arrow, with its tail at the origin of coordinates and its
head at the point at (x, y, z). The same vector may represent instead the direction
in which it points—toward the point (x, y, z) starting from the origin. An impor-
tant type of direction vector is the normal vector, which is a vector in a direction
perpendicular to a surface, plane, or line.

Vectors of equal dimension are equal if they are equal componentwise. Vec-
tors may be multiplied by scalars. This corresponds to stretching or shrinking the
vector arrow along its original direction.

Ax= (Axy, Axy, ..., Ax,)

A 4 c Fig. Al1.5 Spherical triangle.

Sec. A1.3  Vectors 469
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Vector addition and subtraction is defined componentwise, only between vectors
of equal dimension. Geometrically, to add two vectors x and y, put y’s tail at x’s
head and the sum is the vector from x’s tail to y’s head. To subtract y from x, put
¥’s head at x’s head; the difference is the vector from x’s tail to y’s tail.

x*ty=0q*p,x2% ¥y ..., % £y,

The length (or magnitude) of a vector is computed by an n-dimensional version of
Euclidean distance.

|x|= (xf +x7 + -+ +xD*

A vector of unit length is a unit vector. The unit vectors in the three usual Carte-
sian coordinate directions have special names.

i=(1,0,0)
i=0,1,0
k=1(0,0,1)

The inner (or scalar, or dot) product of two vectors is defined as follows.
x - y=|x|lylcos® = xiy; + xay2 + -+ + X,

Here 6 is the angle between the two vectors. The dot product of two nonzero
numbers is 0 if and only if they are orthogonal (perpendicular). The projection of x
onto y (the component of vector x in the direction y) is

|x|cos8 = .5 5
Iyl

Other identities of interest:
X' 'y=y:'Xx
x-y+o)=x-y+x-z
Ax-y)=Q0x)-y=x-Qy)
x-x=|x|?
The cross (or vector) product of two three-dimensional vectors is defined as
follows.

X X y= (p; — xayy, X3p1 — X193, X1¥2 = X21)

Generally, the cross product of x and y is a vector perpendicular to both x and y.
The magnitude of the cross product depends on the angle § between the two vec-
tors.

[x x y|=|x|ly|sin®

Thus the magnitude of the product is zero for two nonzero vectors if and only if
they are parallel.
Vectors and matrices allow for the short formal expression of many symbolic
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expressions. One such example is the formal determinant (Section Al.4) which
expresses the definition of the cross product given above in a more easily remem-

bered form.
i j k
X X y = det X] X3 X3
Vi 5 Vi
Also,

XXy=-yXx
xX(yxz)=xXy*+xxz

AMx xy)=AxXy=xX\y

ixj=k
ixk=i
kxi=j

The triple scalar product is x - (y X z), and is equivalent to the value of the
determinant

X1 X2 X3
det [yi y2 »3
Zy Iy Z3

The triple vector product is

xx(yxz)=(kx -2y— (x-yz

A1.4. MATRICES

A matrix A is a two-dimensional array of elements; if it has m rows and » columns
it is of dimension m X n, and the element in the ith row and jth column may be
named a;. If mor n = 1, a row matrix or column matrix results, which is often
called a vector. There is considerable punning among scalar, vector and matrix
representations and operations when the same dimensionality is involved (the 1 x
1 matrix may sometimes be treated as a scalar, for instance). Usually, this practice
is harmless, but occasionally the difference is important.

A matrix is sometimes most naturally treated as a collection of vectors, and
sometimes an m X nmatrix Mis written as

M= [al a --- a,,]

Sec. A1.4 Matrices 471
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or

where the a’s are column vectors and the b’s are row vectors.

Two matrices 4 and B are equal if their dimensionality is the same and they
are equal elementwise. Like a vector, a matrix may be multiplied (elementwise) by
a scalar. Matrix addition and subtraction proceeds elementwise between matrices
of like dimensionality. For a scalar k and matrices 4, B, and C of like dimensional-
ity the following is true.

A=B+C ifg;=b;+¢c; 1<i<m 1<,j<n

Two matrices 4 and B are conformable for multiplication if the number of
columns of 4 equals the number of rows of B. The product is defined as

C = AB whereanelement ¢, isdefined by ¢; = X, ayby
k

Thus each element of C is computed as an inner product of a row of 4 with a
column of B. Matrix multiplication is associative but not commutative in general.
The multiplicative identity in matrix algebra is called the identity matrix 1. Iis all
zeros except that all elements in its main diagonal have value 1 (a,—j =1ifi=j, else
a; = 0). Sometimes the n X nidentity matrix is written /,.

The transpose of an m X n matrix A is the n X m matrix 47 such that the

i,jth element of A is the j,ith element of A7. If AT = A, A is symmuetric.
The inverse matrix of an n x nmatrix A is written 4~ ', If it exists, then

AA ' =474 =1
Ifits inverse does not exist, an n x nmatrix is called singular.
With k and p scalars, and 4, B, and C m x n matrices, the following are
some laws of matrix algebra (operations are matrix operations):
A+B=B+4
Ad+B)+C=4+B+C)
k(4 + B) = kA + kB
(k +p)d = k4 + pd
AB # BA in general
(4B)C = A(BC)
A(B + C) = AB + AC
(4 + B)C = AC + BC
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A(kB) = k(4B) = (kA)B

I,A=Al,= A
(4 + B =a"+ BT
(4B)T= BT4T

(4B)'= B 147!

The determinant of an » X » matrix is an important quantity; among other
things, a matrix with zero determinant is singular. Let 4;; be the (n —1) x (n—1)
matrix resulting from deleting the ith row and jth column from an #n X nmatrix 4.
The determinant of a 1 X 1 matrix is the value of its single element. For n > 1,

N
det A =3 a; (=" det 4;
i=1
for any j between 1 and ». Given the definition of determinant, the inverse of a
matrix may be defined as
(), = D et 4y
T T et 4

In practice, matrix inversion may be a difficult computational problem, but
this important algorithm has received much attention, and robust and efficient
methods exist in the literature, many of which may also be used to compute the
determinant. Many of the matrices arising in computer vision have to do with
geometric transformations, and have well-behaved inverses corresponding to the
inverse transformations. Matrices of small dimensionality are usually quite compu-
tationally tractable.

Matrices are often used to denote linear transformations; if a row (column)
matrix X of dimension # is post (pre) multiplied by an #n x n matrix 4, the result X’
= X4 (X' = AX) is another row (column) matrix, each of whose elements is a
linear combination of the elements of X, the weights being supplied by the values
of A. By employing the common pun between row matrices and vectors, x' = x4
(x’ = Ax) is often written for a linear transformation of a vector x.

An eigenvector of an # X p matrix 4 is a vector v such that for some scalar A
(called an eigenvalue),

vA = AV

That is, the linear transformation 4 operates on v just as a scaling operation. A ma-
trix has n eigenvalues, but in general they may be complex and of repeated values.
The computation of eigenvalues and eigenvectors of matrices is another computa-
tional problem of major importance, with good algorithms for general matrices be-
ing complicated. The n eigenvalues are roots of the so-called characteristic polyno-
mial resulting from setting a formal determinant to zero:

det (4 — A1) = 0.
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Eigenvalues of matrices up to 4 X 4 may be found in closed form by solving the
characteristic equation exactly. Often, the matrices whose eigenvalues are of in-
terest are symmetric, and luckily in this case the eigenvalues are all real. Many al-
gorithms exist in the literature which compute eigenvalues and eigenvectors both
for symmetric and general matrices.

A1.5. LINES

474

An infinite line may be represented by several methods, each with its own advan-
tages and limitations. An example of a representation which is not often very use-
ful is two planes that intersect to form the line. The representations below have
proven generally useful.

A1.5.1 Two Points

A two-dimensional or three-dimensional line (throughout Appendix 1 this short-
hand is used for “‘line in two-space’’ and “‘line in three-space’’; similarly for ‘‘two
(three) dimensional point”) is determined by two points on it, x1 and x2. This
representation can serve as well for a half-line or a line segment. The two points
can be kept as the rows of a (2 x n) matrix.

A1.5.2 Point and Direction

A two-dimensional or three-dimensional line (or half-line) is determined by a
point x on it (its endpoint) and a direction vector v along it. This representation is
essentially the same as that of Section A1.5.1, but the interpretation of the vectors
is different.

A1.5.3 Slope and Intercept

A two-dimensional line can often be represented by the Y value b where the line
intersects the Yaxis, and the slope m of the line (the tangent of its inclination with
the x axis). This representation fails for vertical lines (those with infinite slope).
The representation is in the form of an equation making explicit the dependence of
yonx

y=mx+5b

A similar representation may of course be based on the X intercept.
A1.5.4 Ratios

A two-dimensional or three-dimensional line may be represented as an equation of
ratios arising from two points x1 = (x,, y;, z;) and x2 = (x,, ¥, z;)on the line.
X=X _y—y _z—1n

X2 — X Yo =N Z— Zy
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A1.5.5 Normal and Distance from Origin (Line Equation)

This representation for two-dimensional lines is elegant in that its parts have useful
geometric significance which extends to planes (not to three-dimensional lines).
The coefficients of the general two-dimensional linear equation represent a two-
dimensional line and incidentally give its normal (perpendicular) vector and its
(perpendicular) distance from the origin (Fig. A1.6).

From the ratio representation above, it is easy to derive (in two dimensions)
that

(x—x)sine —(—yp)cosd=0
so for
d = —(x; sin ® —y, cos 8),
xsinf—ypycosf+d=0

This equation has the form of a dot product with a formal homogeneous vector
(x, y, D:

(x, v, 1) - (sin@, —cos®, d) =0

Here the two-dimensional vector (sin #, —cos #) is perpendicular to the line (itisa
unit normal vector, in fact), and dis the signed distance in the direction of the nor-
mal vector from the line to the origin. Multiplying both sides of the equation by a
constant leaves the line invariant, but destroys the interpretation of 4 as the dis-
tance to the origin.

This form of line representation has several advantages besides the interpre-
tations of its parameters. The parameters never go to infinity (this is useful in the
Hough algorithm described in Chapter 4). The representation extends naturally to
representing r-dimensional planes. Least squared error line fitting (Section A1.9)
with this form of line equation (as opposed to slope-intercept) minimizes errors
perpendicular to the line (as opposed to those perpendicular to one of the coordi-

nate axes).
Fig. Al.6 Two-dimensional line with
normal vector and distance to origin.
Sec. A1.5 Lines 475
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A1.5.6 Parametric

It is sometimes useful to be able mathematically to ‘‘walk along” a line by varying
some parameter t. The basic parametric representation here follows from the two-
point representation. If x1 and x2 are two particular points on the line, a general
point on the line may be written as

x = x1 + (x2—x1)

In matrix terms this is
x=1[r 1L

where L is the 2 X n matrix whose first row is (x2 — x1) and whose second is x1.
Parametric representations based on points on the lines may be transformed by the
geometric point transformations (Section A1.7).

A1.6. PLANES

476

The most common representation of planes is to use the coordinates of the plane
equation. This representation is an extension of the line-equation representation
of Section A1.5.5. The plane equation may be written

ax + by +cz+d=0

which is in the form of a dot product x - p= 0. Four numbers given by
p = (a, b, ¢, d) characterize a plane, and any homogeneous point x = (x, y, z, w)
satisfying the foregoing equation lies in the plane. In p, the first three numbers
(a, b, ¢) form a normal vector to the plane. If this normal vector is made to be a
unit vector by scaling p, then 4 is the signed distance to the origin from the plane.
Thus the dot product of the plane coefficient vector and any point (in homogene-
ous coordinates) gives the distance of the point to the plane (Fig. A1.7).

</ Fig. A1.7 Distance from a point to a plane.
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Three noncollinear points x1, x2, x3 determine a plane p. To find it, write

x1

x2 8
x3 P=1o
0001 1

If the matrix containing the point vectors can be inverted, the desired vector p is
thus proportional to the fourth column of the inverse.
Three planes pl, p2, p3 may intersect in a point x. To find it, write

pl p2 p3 0

0
X 0=[{)001]
1

If the matrix containing the plane vectors can be inverted, the desired point p is
given by the fourth row of the inverse. If the planes do not intersect in a point, the
inverse does not exist.

A1.7 GEOMETRIC TRANSFORMATIONS

This section contains some results that are well known through their central place
in the computer graphics literature, and illustrated in greater detail there. The idea
is to use homogeneous coordinates to allow the writing of important transforma-
tions (including affine and projective) as linear transformations. The transforma-
tions of interest here map points or point sets onto other points or point sets. They
include rotation, scaling, skewing, translation, and perspective distortion (point
projection) (Fig. A1.8).

A point x in three-space is written as the homogeneous row four-vector
(x, y, z, w), and postmultiplication by the following transformation matrices ac-
complishes point transformation. A set of m points may be represented as an
m x 4 matrix of row point vectors, and the matrix multiplication transforms all
points at once.

A1.7.1 Rotation

Rotation is measured clockwise about the named axis while looking along the axis

toward the origin.
Rotation by 8 about the X axis:

1 0 0 0
0 cos® —sing 0
|0 sin® cos® O
0 0 0 1
Sec. A1.7 Geometric Transformations 477
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(a) (b) (c)

£

(d) (e) (f)

Fig. A1.8 Transformations: (a) original, (b) rotation, (c) scaling, (d) skewing,
(e) translation, and (f) perspective.

Rotation by # about the Yaxis:

cos® 0 sinf O
0 1 0 0
—sin® 0 cosd O
0 0 0 1

Rotation by # about the Z axis:

cos# —sing 0 O
sin® cosf® 0 O
0 0 1 0
0 0 0 1

A1.7.2 Scaling

Scaling is stretching points out along the coordinate directions. Scaling can
transform a cube to an arbitrary rectangular parallelepiped.
Scale by S, S, and §; in the X, ¥, and Z directions:

S 0 0 0
0 S 0 0
0 0 S 0
0 0 o 1
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A1.7.3 Skewing

Skewing is a linear change in the coordinates of a point based on certain of its other
coordinates. Skewing can transform a square into a parallelogram in a simple case:

1 000
d 1 00
0 010
0 0 01
In general, skewing is quite powerful:
1 & n 0
d 1 p o0
e m 1 0
0 0 01

Rotation is a composition of scaling and skewing (Section A1.7.7).
A1.7.4 Translation

Translate a point by (¢, u, v):

1 0 0 0
0100
0010
tu v 1

With a three-dimensional Cartesian point representation, this transformation is ac-
complished through vector addition, not matrix multiplication.

A1.7.5 Perspective

The properties of point projection, which model perspective distortion, were
derived in Chapter 2. In this formulation the viewpoint is on the positive Z axis at
(0,0, £, 1) looking toward the origin: facts like a “‘focal length’’. The visible world
is projected through the viewpoint onto the Z = 0 image plane (Fig. A1.9).

14
|
\u
4 ey
T
e |
z 4 = el i
\ v
lr—— f ‘
\ |
1
X Fig. A1.9 Geometry of image formation.
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Similar triangles arguments show that the image plane point for any world
point (x, y, 2) is given by

fx
f=z' [~z
Using homogeneous coordinates, a ‘‘perspective distortion” transformation can
be written which distorts three-dimensional space so that after orthographic projec-
tion onto the image plane, the result looks like that required above for perspective
distortion. Roughly, the transformation shrinks the size of things as they get more
distant in Z. Although the transformation is of course linear in homogeneous coor-
dinates, the final step of changing to Cartesian coordinates by dividing through by
the fourth vector element accomplishes the nonlinear shrinking necessary.
Perspective distortion (situation of Fig. A1.9):

W, V)=

000

1 00
—1

01 —
S

0 0 1

S O O

Perspective from a general viewpoint has nonzero elements in the entire fourth
column, but this is just equivalent to a rotated coordinate system and the perspec-
tive distortion above (Section A1.7).

A1.7.6 Transforming Lines and Planes

Line and plane equations may be operated on by linear transformations, just as
points can. Point-based parametric representations of lines and planes transform as
do points, but the line and plane equation representations act differently, They
have an elegant relation to the point transformation. If 7'is a transformation matrix
(3 x 3 for two dimensions, 4 x 4 for three dimensions) as defined in Sections
Al.7.1to A1.7.5, then a point represented as a row vector is transformed as

x'=xT

and the linear equation (line or plane) when represented as a column vector v is
transformed by

A1.7.7 Summary

The 4 x 4 matrix formulation is a way to unify the representation and calculation of
useful geometric transformations, rigid (rotation and translation), and nonrigid
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(scaling and skewing), including the projective. The semantics of the matrix are
summarized in Fig. A1.10.

Since the results of applying a transformation to a row vector is another row
vector, transformations may be concatenated by repeated matrix multiplication.
Such composition of transformations follows the rules of matrix algebra (it is asso-
ciative but not commutative, for instance). The semantics of

x' = xABC

is that x' is the vector resulting from applying transformation A4 to x, then B to the
transformed x, then C to the twice-transformed x. The single 4 X 4 matrix D =
ABC would do the same job. The inverses of geometric transformation matrices
are just the matrices expressing the inverse transformations, and are easy to
derive.

A1.8. CAMERA CALIBRATION AND INVERSE PERSPECTIVE

The aim of this section is to explore the correspondence between world and image
points. A (half) line of sight in the world corresponds to each image point. Camera
calibration permits prediction of where in the image a world point will appear. In-
verse perspective transformation determines the line of sight corresponding to an
image point. Given an inverse perspective transform and the knowledge that a visi-
ble point lies on a particular world plane (say the floor, or in a planar beam of
light), then its precise three-dimensional coordinates may be found, since the line
of sight generally intersects the world plane in just one point.

Scale in Skew
X
Scale in Perspective
Y
Skew Scale in
Zz
Translate Zoom
Fig. A1.10 The 4 X 4 homogeneous
transformation matrix.
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A1.8.1 Camera Calibration

This section is concerned with the ‘‘camera model’’; the model takes the form of a
4 X 3 matrix mapping three-dimensional world points to two-dimensional image
points. There are many ways to derive a camera model. The one given here is easy
to state mathematically; in practice, a more general optimization technique such as
hill climbing can be most effective in finding the camera parameters, since it can
take advantage of any that are already known and can reflect dependencies between
them.

Let the image plane coordinates be U and V; in homogeneous coordinates an
image plane point is (u,v,t). Thus

U

I

~le ~|=

14

I

Call the desired camera model matrix C, with elements C; and column four-
vectors C;. Then for any world point (x, y, z) a Cis needed such that

G yz1DC= (v 1)
So
u= 0,y 2z 1)C
v=(x 2z 1)C;
t=1(x 2 1)C;

Expanding the inner products and rewriting 4« — Ur=0and v— V¢t =0,
XC11 I yC21 & ZC][ ;o C4| — UxCy3 — UyC23 - UZC;} ~ UC43 =0

XC]Z +yC22 + ZC32 + C42 = VXC;_‘; = VyC23 = VZC33 == VC43 =0

The overall scaling of Cis irrelevant, thanks to the homogeneous formulation, so
C43 may be arbitrarily set to 1. Then equations such as those above can be written
in matrix form:

- U'z!

yrbozZ21 0 0 0 o -UX' -=UY!
0 0 0 x o2 1 —px ¥y -S| U
y2 72 1 . . . . Cy yl
. UPI
0 O O x" n ZH 1 — V”’xi] FoLS Vﬁ.yﬂ il VHZH C34 V”
y -
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Eleven such equations allow a solution for C. Two equations result for every
association of an (x, y, z) point with a (U, ) point. Such an association must be
established using visible objects of known location (often placed for the purpose).
If more than 5% such observations are used, a least-squared-error solution to the
overdetermined system may be obtained by using a pseudo-inverse to solve the
resulting matrix equation (Section A1.9).

A1.8.2 Inverse Perspective

Finding the world line corresponding to an image point relies on the fact that the
perspective transformation matrix also affects the z component of a world point.
This information is lost when the z component is projected away orthographically,
but it encodes the relation between the focal point and the z position of the point.
Varying this third component references points whose world positions vary in z but
which project onto the same position in the image. The line can be parameterized
by a variable p that formally occupies the position of that z coordinate in three-
space that has no physical meaning in imaging.
Write the inverse perspective transform P! as

&y, p DP ' = yip 1+ %)

Rewriting this in the usual way gives these relations between the (x, y, z) points on
the line.

V2SN S S | M
frp f+p f+p

Eliminating the parameter p between the expressions for z and x and those for z
and y leaves

(x,pz1)=

Thus x, y, and z are linearly related; as expected, all points on the inverse perspec-
tive transform of an image point lie in a line, and unsurprisingly both the viewpoint
(0, 0, f) and the image point (x’, y’, 0) lie on it.

A camera matrix C determines the three-dimensional line that is the inverse
perspective transform of any image point. Scale C so that C43 = 1, and let world
points be written x = (x, y, z, 1) and image points u = (y, v, t). The actual image
points are then
v

U=—1;,V+ T sou=U, v+ WVt
Since
u=xC,
u= Ut =xC
v= Vt=xC,
L e XC3
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Substituting the expression for finto that for #and vgives
UxC; = xC,
VxCy = xC,
which may be written
x(C;— UCy) =0
x(C;— VC3) =0

These two equations are in the form of plane equations. For any U, Fin the image
and camera model C, there are determined two planes whose intersection gives the
desired line. Writing the plane equations as

ax +by+cz+d =0
axx + by +cyz+dy=0
then
a1=Cnp— Cpl a;=Cn—CuV

and so on. The direction (A, u, ») of the intersection of two planes is given by the
cross product of their normal vectors, which may now be written as

(O, M, v) = {(11, by, L‘]) X (az, by, (.‘2)
= (bica— bacy, cray— caa1, ajhy— azby)
Then if v # 0, for any particular z,

by (cazp + dy) — by (cy29 — dy)
albg = blaz

X0 =

ay(eyzo + dy) — a; (crzg — da)
aby; — ba,

Yo =

and the line may be written

X—Xo Y —JYo_ ZTZo

A M v

A1.9. LEAST-SQUARED-ERROR FITTING

The problem of fitting a simple functional model to a set of data points is a com-
mon one, and is the concern of this section. The subproblem of fitting a straight
line to a set of (x, ) points (“‘linear regression’’) is the first topic. In computer vi-
sion, this line-fitting problem is encountered relatively often. Model-fitting
methods try to find the ‘‘best’ fit; that is, they minimize some error. Methods
which yield closed-form, analytical solutions for such best fits are at issue here.
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The relevant ““error’” to minimize is determined partly by assumptions of depen-
dence between variables. If x is independent, the line may be represented as y =
mx + band the error defined as the vertical displacement of a point from the line.
Symmetrically, if x is dependent, horizontal error should be minimized. If neither
variable is dependent, a reasonable error to minimize is the perpendicular distance
from points to the line. In this case the line equation ax + sy + 1 = 0 can be used
with the method shown here, or the eigenvector approach of Section A1.9.2 may
be used.

A1.9.1 Pseudo-Inverse Method

Infitting an n x 1 observations matrix y by some linear model of p parameters, the
prediction is that the linear model will approximate the actual data. Then

Y=XB+E

where X is an n X p formal independent variable matrix, Bis a p x 1 parameter
matrix whose values are to be determined, and E represents the difference
between the prediction and the actuality: itisan n x 1 error matrix.

For example, to fit a straight line y = mx + b to some data (x;, y;) points,
form Y as a column matrix of the y;.

1 X

1 X7

= 1 .X3
_[»
B m

Now the task is to find the parameter B (above, the b and m that determine
the straight line) that minimizes the error. The error is the sum of squared
difference from the prediction, or the sum of the elements of £ squared, or E7E (if
we do not mind conflating the one-element matrix with a scalar). The mathemati-
cally attractive properties of the squared-error definition are almost universally
taken to compensate for whatever disadvantages it has over what is really meant by
error (the absolute value is much harder to calculate with, for example).

To minimize the error, simply differentiate it with respect to the elements of
B and set the derivative to 0. The second derivative is positive: this is indeed a
minimum. These elementwise derivatives are written tersely in matrix form. First
rewrite the error terms:

ETE = (Y - XB)T(Y — XB)
= YTy — B'XTy — Y"XB + B'X"XB
= YTy — 2B7XTY + BTXTXB
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(here, the combined terms were 1 x 1 matrices.) Now differentiate: setting the
derivative to 0 yields

0= X"XB — X7y
and thus
B=QXTX)'X"r=x'Y
where X7 is called the pseudo-inverse of X.
The pseudo-inverse method generalizes to fitting any parametrized model to
data (Section A1.9.3). The model should be chosen with some care. For example,
Fig. A1.11 shows a disturbing case in which the model above (minimize vertical

errors) is used to fit a relatively vertical swarm of points. The ““best fit"’ line in this
case is not the intuitive one.

A1.9.2 Principal Axis Method

The principal axes and moments of a swarm of points determine the direction and
amount of its dispersion in space. These concepts are familiar in physics as the
principal axes and moments of inertia. If a swarm of (possibly weighted) points is
translated so that its center of mass (average location) is at the origin, a symmetric
matrix M may be easily calculated whose eigenvectors determine the best-fit line
or plane in a least-squared-perpendicular-error sense, and whose eigenvalues tell
how good the resulting fit is.

Given a set {x/} row of vectors with weights w', define their ‘‘scatter matrix™
to be the symmetric matrix M, where x’ = (x}, x5, x3):

M=Y xi'xi
My,=Y xixi 1<kp<3

Define the dispersion of the x' in a direction v (i.e., ‘‘dispersion around the
plane whose normal is v’’) to be the sum of weighted squared lengths of the x'in
the direction v. This squared error E2is

E? = 2 wix-v)i=vy (2 wixTx v = yMvT
;

i

. Fig. ALLI1 A set of points and the
. X “pest fit” line minimizing error in Y.
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To find the direction of minimum dispersion (the normal to the best-fit line or
plane), note that the minimum of vMv” over all unit vectors v is the minimum
eigenvalue A; of M. If v, is the corresponding eigenvector, the minimum disper-
sion is attained at v = v;. The best fit line or plane of the points goes through the
center of mass, which is at the origin; inverting the translation that brought the
centroid to the origin yields the best fit line or plane for the original point swarm.

The eigenvectors correspond to dispersions in orthogonal directions, and the
eigenvalues tell how much dispersion there is. Thus with a three-dimensional
point swarm, two large eigenvalues and one small one indicate a planar swarm
whose normal is the smallest eigenvector. Two small eigenvalues and one large
one indicate a line in the direction of the normal to the ““worst fit plane”’, or eigen-
vector of largest eigenvalue. (It can be proved that in fact this is the best-fit line in a
least squared perpendicular error sense). Three equal eigenvalues indicate a
“‘spherical” swarm.

A1.9.3 Fitting Curves by the Pseudo-Inverse Method

Given a function f (x) whose value is known on npoints xy, ..., X, it may be use-
ful is to fit it with a function g (x) of m parameters (b, ..., b,,). If the squared er-
ror at a point x; is defined as

(e’_)z = [f(x,-) - g(x,')]z

a sequence of steps similar to that of Section A1.9.1 leads to setting a derivative to
zero and obtaining

0=G'Gb— G'f
where b is the vector of parameters, f the vector of n values of £ (x), and

0g(x)  9g(xy)
9b; 09b;

ag(x,)

b,
As before, this yields
b= (GTG) ! G'f

Explicit least-squares solutions for curves can have nonintuitive behavior. In
particular, say that a general circle is represented

Alx, ») =x*+y* +2Dx + 2By + F

this yields values of D, E, and Fwhich minimize

n
e? = (x;, y)?
29
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for n input points. The error term being minimized does not turn out to accord
with our intuitive one. It gives the intuitive distance of a point to the curve, but
weighted by a factor roughly proportional to the radius of the curve (probably not
desirable). The best fit criterion thus favors curves with high average curvature,
resulting in smaller circles than expected. In fitting ellipses, this error criterion
favors more eccentric ones.

The most successful conic fitters abandon the luxury of a closed-form solu-
tion and go to iterative minimization techniques, in which the error measure is ad-
justed to compensate for the unwanted weighting, as follows.

) _ S Gy
> [IVf(x,, ]

A1.10 CONICS

488

The conic sections are useful because they provide closed two-dimensional curves,
they occur in many images, and they are well-behaved and familiar polynomials of
low degree. This section gives their equations in standard form, illustrates how the
general conic equation may be put into standard form, and presents some sample
specific results for characterizing ellipses.

All the standard form conics may be subjected to rotation, translation, and
scaling to move them around on the plane. These operations on points affect the
conic equation in a predictable way.

Circle: r = radius ~ x2 + y? = r?

x|y
Ellipse: a, b = major, minor axes =t ) =1
a

Parabola: {p, 0) = focus, p = directrix ~ y? = dpx

2 2
5 2‘7__3_’_=1

Hyperbola: vertices (+a, 0), asymptotes y = = | — %
a

The general conic equation is
Ax*+ 2Bxy + Cy* +2Dx + 2Ey + F=0

This equation may be written formally as

A B Dl [x
x y 1) |B C E| |yl=xmMx"=0
D E F 1

Putting the general conic equation into one of the standard forms is a common ana-
Iytic geometry exercise. The symmetric 3 X 3 matrix M may be diagonalized, thus
eliminating the coefficients B, D, and E from the equation and reducing it to be
close to standard form. The diagonalization amounts to a rigid motion that puts the
conic in a symmetric position at the origin. The transformation is in fact the 3 x 3
matrix E whose rows are eigenvectors of M. Recall that if v is an eigenvector of M,

vM = Av
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Then if Dis a diagonal matrix of the three eigenvalues, A, A3, A3,
EM = DE
but then
EME '= DEE'=D

and M has been transformed by a similarity transformation into a diagonal matrix
such that

xDx"=0

This general idea is of course related to the principal axis calculation given in Sec-
tion A1.9.2, and extends to three-dimensional quadric surfaces such as the ellip-
soid, cone, hyperbolic paraboloid, and so forth. The general result given above has
particular consequences illustrated by the following facts about the ellipse. Given a
general conic equation representing an ellipse, its center (x,, y,) is given by

. BE—-2CD
‘' B’-44C
i 2EA — BD
¢ B’-44C
The orientation is
6 = Ytan™! A_JECI
The major and minor axes are
—-2G

4 +C) = [B+U4-C)*

where
G=F— (4dx} + B, .+ &7%)]

A1.11 INTERPOLATION
Interpolation fits data by giving values between known data points. Usually, the in-

terpolating function passes through each given data point. Many interpolation
methods are known; one of the simplest is Lagrangean interpolation.

A1.11.1 One-Dimensional

Given n + 1 points (x;, y;), xo < x; < -+ < Xx,, the idea is to produce an nth-
degree polynomial involving » + 1 so-called Lagrangean coefficients. It is

Flx) = i L;(x)y;
=0
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I .thz,V” .(X‘|1y|)

h T O (xy + gk, y, +ph)

l ph
J— ® (xo, ¥o! ®(xy, ¥,)

}—qk—;—

Fig. A1.12 Four point lagrangean

I_____ k interpolation on rectangular grid.
where L;(x) is the jth coefficient;
Co—=g) e =) = lr—ag g} Go—mgiy) =+ (xi—axy)
Lj(x) =
(xj_xo) (xj—x,-) e (Xj—Xj_]) (x_j_xj'" 1) S (Xj_x”)

Other interpolative schemes include divided differences, Hermite interpola-
tion for use when function derivatives are also known, and splines. The use of a po-
lynomial interpolation rule can always produce surprising results if the function be-
ing interpolated does not behave locally like a polynomial.

A1.11.2 Two-Dimensional

The four-point Lagrangean method is for the situation shown in Fig. A1.12. Let f;,
= f(X,', _}’j). Then

Fixo+ gk, yo+ ph) = U—=p) A —q) foo+ q(L=p) fro+ p(—4q) for + pafn

A1.12 THE FAST FOURIER TRANSFORM

490

The following routine computes the discrete Fourier transform of a one-
dimensional complex array XIn of length N = 28N and produces the one-
dimensional complex array XOut. It uses an array W of the N complex Nth roots of
unity, computed as shown, and an array Bits containing a bit-reversal table of
length N. N, LogN, W, and Bits are all global to the subroutine as written. If the
logical variable Forward is TRUE, the FFT is performed; if Forward is FALSE, the
inverse FFT is performed.

SUBROUTINE FFT (XIn, KOut, Forward)
GLOBAL W, Bits, N, LogN

LOGICAL Forward

COMPLEX XlIn, Xout, W, A, B
INTEGER Bits '

ARRAY (0:N) W, Bits, XIn, XOut
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DO (I =0,N—1) XOut(I) = XIn(Bits(I))
JOff = N/2
JPnt = N/2
JBk =2
IOFF =1
DO (I=1, LogN)
DO (IStart = 0, N— 1, JBk)
JWPnt =0
DO (K = IStart, IStart + IOff — 1)
WHEN (Forward)
A = XOut(K + IOff) x W(JWPnt) + XOut(K)
B = XOut(K + IOff) * W(IWPnt + JOff) + XOut(K)
FIN
ELSE
A = XOut (K + IOff) * CONJG (W (JWPnt)) + XOut(K)
B = XOut(K + [OfI) * CONJG (W (JWPnt + JOfl)) + XOu
... FIN
XOut(K) = A
XOut(K + I0ff) =B
JWPnt = JWPnt + JPnt
- FIN
FIN
JPnt = JPnt/2
I0ff = IBk
JBk = JBk =2
... FIN
UNLESS (Forward)
DO (I=0,N-1) XOut() = XOut(D)/N
FIN
END

TO INIT-W
Pi = 3.14159265
DO K=0,N-1)
Theta = 2 = Pi/N
W (K) = CMPLX(COS(Theta K), SIN(Theta = K))
FIN
FIN

Sec. A1.72 The Fast Fourier Transform

TO BIT-REV
Bits(0) =0
M=1
DO (I =0,LogN—1)
DO J=0,M-1)
Bits(J) = Bits(J) =2
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Bits(J + M) = Bits(J) + 1
... FIN
M=M=2
FIN
FIN

A1.13 THEICOSAHEDRON

Geodesic dome constructions provide a useful way to partition the sphere (hence
the three-dimensional directions) into relatively uniform patches. The resulting
polyhedra look like those of Fig. A1.13.

The icosahedron has 12 vertices, 20 faces, and 30 edges. Let its center be at
the origin of Cartesian coordinates and let each vertex be a unit distance from the
center. Define

t, the golden ratio = #
_ Y
a_S'/‘
T
r 5%
s Sy
c=a+2b b
e
d=a+b=F

A = angle subtended by edge at origin = arccos({i)

= j‘*{ NN = T;§
7NN SN
/ﬁ;&‘kj@- RN
A AN AV AN SRS WA
R AT TS

£ ]
[T R N SR
T RIS NG

RO TR ]
N R AT VNA\IA-,"\’!“ _‘-,L (i
h‘%&’ﬁp‘.‘t‘i%!%?—“v,.w’w‘ byt
SR R AR
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NV AVSAVAY LA,

s

%
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o
e L
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Fig. A1.13 Multifaceted polyhedra from the icosahedron.
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Then

angle between radius and an edge = b = arccos (b)
edge length = 24
distance from origin to center of edge = a

distance from origin to center of face = %

The 12 vertices may be placed at
(0, +a, +b)
(b5, 0, £a)

(+a, +b 0)

Then midpoints of the 20 faces are given by
f(xd, +d, +d)
h( 0, +a, +c)
s(+e, 0, +a)
fi(xa, +c, 0O

To subdivide icosahedral faces further, several methods suggest themselves,
the simplest being to divide each edge into n equal lengths and then construct »?
congruent equilateral triangles on each face, pushing them out to the radius of the
sphere for their final position. (There are better methods than this if more uniform
face sizes are desired.)

A1.14 ROOT FINDING

Since polynomials of fifth and higher degree are not soluble in closed form, numer-
ical (approximate) solutions are useful for them as well as for nonpolynomial func-
tions. The Newton-Raphson method produces successive approximations to a real
root of a differentiable function of one variable.

0 N fx)

)
Here x'is the ith approximation to the root, and f(x") and f’(x) are the function
and its derivative evaluated at x. The new approximation to the root is x'*!. The
successive generation of approximations can stop when they converge to a single
value. The convergence to a root is governed by the choice of initial approximation
to the root and by the behavior of the function in the vicinity of the root. For in-
stance, several roots close together can cause problems.

The one-dimensional form of this method extends in a natural way to solving
systems of simultaneous nonlinear equations. Given » functions F;, each of n
parameters, the problem is to find the set of parameters that drives all the func-
tions to zero. Write the parameter vector x.

X
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X1
X2

Xn

Form the function column vector F such that

Fl (X)
Fz (X)
Fix)=| °
F,(x)
The Jacobean matrix Jis defined as
oF, dF; aF
dx; Oxp dx,
J=
oF, can oF,
0x ax, ]

Then the extension of the Newton—-Raphson formula is

xi-‘rl P xf -t J—l(xi)F(xi)

which requires one matrix inversion per iteration.

Al.2

Al3
Al.4
Al.5

EXERCISES

x and y are two two-dimensional vectors placed tail to tail. Prove that the area of the
triangle they define is|x x y|/2.

Show that points q in a plane defined by the three points x, ¥, and z are given by
q- [(y—x) X (z—x)] =x-(yxa)
Verify that the vector triple product may be written as claimed in its definition.

Given an arctangent routine, write an arcsine routine.
Show that the closed form for the inverse of a 2 X 2 A matrix is

1 ap —dady
det A |74 aj

Prove by trigonometry that the matrix transformations for rotation are correct.
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Al.8
Al.9
Al.10

Al.11
Al.12

Al.13

Al.14

Al,15

Al.16
Al1.17

Al.18

Al.19

Al1.20

Al.21
Al1.22

What geometric transformation is accomplished when a44 of a geometric transfor-
mation matrix A4 varies from unity?

Establish conversions between the given line representations.
Write a geometric transform to mirror points about a given plane.

What is the line-equation representation of a line L 1 through a point x and per-
pendicular to a line L2 (similarly represented) ? Parallel to L 27

Derive the ellipse results given in Section A1.10.
Explicitly derive the values of D, E, and Fminimizing the error term

T Gl
i=1

in the general equation for a circle
X2+ +2Dx +2Ey + F=0

Show that if points and lines are transformed as shown in Section Al.7.6, the
transformed points indeed lie on the transformed lines.

Explicitly derive the least-squared-error solution for lines represented as ax + by
+1=0.
If three planes intersect in a point, is the inverse of

pl p2 p3 0
0
0
1

guaranteed to exist?
What is the angle between two three-space lines?

In two dimensions, show that two lines u and v intersect at a point x given by x =
uxv.

How can you tell if two line segments (defined by their end points) intersect in the
plane?

Find a 4 X 4 matrix that transforms an arbitrary direction (or point) to lie on the Z
axis.

Derive a parametric representation for planes based on three points lying in the
plane.

Devise a scheme for interpolation on a triangular grid.
What does the homogeneous point (x, y, z, 0) represent?
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Advanced
Control Mechanisms
Appendix 2

This appendix is concerned with specific control mechanisms that are provided by
programming languages or that may be implemented on top of existing languages
as aids to doing computer vision. The treatment here is brief;, our aim is to expose
the reader to several ideas for control of computer programs that have been
developed in the artificial intelligence context, and to indicate how they relate to
the main computational goals of computer vision.

A2.1 STANDARD CONTROL STRUCTURES

For completeness, we mention the control mechanisms that are provided as a
matter of course by conventional research programming languages, such as Pascal,
Algol, POP-2, SAIL, and PL/1. The influential language LISP, which provides a
base language for many of the most advanced control mechanisms in computer vi-
sion, ironically is itself missing (in its pure form) a substantial number of these
more standard constructs. Another common language missing some standard con-
trol mechanisms is SNOBOL. These standard constructions are so basic to the
current conception of a serial von Neumann computer that they are often realized
in the instruction set of the machine. In this sense we are almost talking here of
computer hardware.
The standard mechanisms are the following:

1. Sequence. Advance the program counter to the next intruction.
2. Branch instruction. Go to a specific address.

3. Conditional branch. Go to a specific address if a condition is true, otherwise, go
to the next instruction.

4. Ireration. Repeat a sequence of instructions until a condition is met.
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5. Subroutines. Go to a certain location; execute a set of instructions using a set of
supplied parameters; then return to the next instruction after the subroutine
call.

All the standard control structures should be in the toolkit of a programmer.
They will be used, together with the data structures and data types supplied in the
working language, to implement other control mechanisms. The remainder of this
appendix deals with ‘‘nonstandard’’ control mechanisms; those not typically pro-
vided in commercial programming languages and which have no close correlates in
primitive machine instructions. Nonstandard control mechanisms, although not at
all domain-specific, have developed to meet needs that are not the “lowest com-
mon denominator’’ of computer programming. They impose their own view of
problem decomposition just as do the standard structures.

Less standard mechanisms are recursion and co-routining. Co-routining can
be thought of as a form of recursion.

A2.1.1 Recursion

Recursion obeys all the constraints of subroutining, except that a routine may call
upon ‘‘itself.”” The user sees no difference between recursive and nonrecursive
subroutines, but internally recursion requires slightly more bookkeeping to be per-
formed in the language software, since typically the hardware of a computer does
not extend to managing recursion (although some machines have instructions that
are quite useful here).

A typical use of a recursive control paradigm in computer vision might be:

To Understand-Scene (X);
(
If Immediately-Apparent(X)
then Report-Understanding-Of(X);
else
( SimplerParts — Decompose (X);
ForEach Part in SimplerParts
Understand-Scene (Part);
)
[)

Recursion is an elegant way to specify many important algorithms (such as tree
traversals), but in a way it has no conceptual differences from subroutining. A rou-
tine is broken up into subroutines (some of which may involve smaller versions of
the original task); these are attacked sequentially, and they must finish before they
return control to the routine that invokes them.

A2.1.2 Co-Routining
Co-routines are simply programs that can call (invoke) each other. Most high-level
languages do not directly provide co-routines, and thus they are a nonstandard

control structure. However, co-routining is a fundamental concept [Knuth 1973]
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and serves here as a bridge between standard and nonstandard control mechan-
isms.

Subroutines and their calling programs have a ‘‘slave-master’’ aspect: con-
trol is always returned to the master calling program after the subroutine has car-
ried out its job. This mechanism not only leads to efficiencies by reducing the
amount of executable code, but is considered to be so useful that it is built into the
instruction set of most computers. The pervasiveness of subroutining has subtle
effects on the approach to problem decomposition, encouraging a hierarchical sub-
problem structure. The co-routine relationship is more egalitarian than the
subroutine relationship. If co-routine 4 needs the services of co-routine B, it can
call B, and (here is the difference) conversely, Bcan call 4 if Bneeds A4’s services.

Here is a simple (sounding) problem [Floyd 1979]: ““Read lines of text, until
a completely blank line is found. Eliminate redundant blanks between the words.
Print the text, 30 characters to a line, without breaking words between lines.”” This
problem is hard to program elegantly in most languages because the iterations in-
volved do not nest well (try it!). However, an elegant solution exists if the job is
decomposed into three co-routines, calling each other to perform input, format-
ting, and output of a character stream.

A useful paradigm for problem solving, besides the strictly hierarchical, is
that of a “‘heterarchical’’ community of experts, each performing a job and when
necessary calling on other experts. A heterarchy can be implemented by co-
routines. Many of the nonstandard mechanisms discussed below are in the spirit of
co-routines.

A2.2 INHERENTLY SEQUENTIAL MECHANISMS

A2.2.1 Automatic Backtracking

The PLANNER language [Hewitt 1972] implicitly implemented the feature of
“‘automatic backtracking.”” The advisability of uniformly using this technique,
which is equivalent to depth-first search, was questioned by those who wished to
give the programmer greater freedom to choose which task to activate next [Suss-
man and McDermott 1972].

A basic backtracking discipline may be provided by recursive calls, in which a
return to a higher level is a ““backtrack.”” The features of automatic backtracking
are predicated on an ability to save and reinstate the computational state of a proc-
ess automatically, without explicit specification by the programmer.

Automatic backtracking has its problems. One basic problem occurs in sys-
tems that perform inferences while following a particular line of reasoning which
may ultimately be unsuccessful. The problem is that along the way, perhaps many
perfectly valid and useful computations were performed and many facts were add-
ed to the internal model. Mixed in with these, of course, are wrong deductions
which ultimately cause the line of reasoning to fail. The problem: After having re-
stored control to a higher decision point after a failure is noticed, how is the system
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to know which deductions were valid and which invalid? One expensive way sug-
gested by automatic backtracking is to keep track of all hypotheses that contributed
to deriving each fact. Then one can remove all results of failed deduction paths.
This is generally the wrong thing to do; modern trends have abandoned the au-
tomatic backtracking idea and allow the programmer some control over what is re-
stored upon failure-driven backtracking. Typically, a compromise is implemented
in which the programmer may mark certain hypotheses for deletion upon back-
tracking.

A2.2.2 Context Switching

Context switching is a general term that is used to mean switching of general proc-
ess state (a control primitive) or switching a data base context (a data access primi-
tive). The two ideas are not independent, because it could be confusing for a proc-
ess to put itself to sleep and be reawakened in a totally different data context.

Backtracking is one use of general control context switching. The most gen-
eral capability is a “‘general GO TO.”” A regular GO TO allows one to go only to a
particular location defined in a static program. After the GO TQO, all bindings and
returnpoints are still determined by the current state of processing. In contrast, a
general GO TO allows a transfer not only across program ‘‘space,’’ but through
program ‘‘time’’ as well. Just as a regular GO TO can go to a predefined program
label, a general GO TO can go to a “‘tag’’ which is created to save the entire state of
a process. To GO TO such a tag is to go back in time and recreate the local binding,
access, control, and process state of the process that made the tag.

A good example of the use of such power is given in a problem-solving pro-
gram that constructs complex structures of blocks [Fahlman 1974].

A2.3 SEQUENTIAL OR PARALLEL MECHANISMS

500

Some language constructs explicity designate parallel computing. They may actual-
ly reflect a parallel computing environment, but more often they control a simulat-
ed version in which several control paths are maintained and multi-processed
under system control. Examples here are module and message primitives given
below and statements such as the CO-BEGIN, CO-END pairs which can bracket
notionally parallel blocks of code in some Algol-like language extensions.

A2.3.1 Modules and Messages

Modules and messages form a useful, versatile control paradigm that is relatively
noncommittal. That is, it forces no particular problem decomposition or methodo-
logical style on its user, as does a pure subroutine paradigm, for example. Message
passing is a general and elegant model of control which can be used to subsume
others, such as subroutining, recursion, co-routining, and parallelism [Feldman
1979].

There are many antecedents to the mechanism of modules communicating
by messages described here. They include [Feldman and Sproull 1971; Hewitt and
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Smith 1975; Goldberg and Kay 1976; Birtwhistle et al. 1973]. In the formulation
presented by Hewitt, the message-passing paradigm can be extended down into the
lowest level of machine architecture. The construction outlined here [Feldman
1979] is more moderate, since in it the base programming language may be used
with its full power, and itself is not module and message based.

A program is made up of modules. A module is a piece of code with associated
local data. The crucial point is that the internal state of a module (e.g. its data) is
not accessible to other modules. Within a module, the base programming
language, such as Algol, may be used to its full power (subroutine calls, recursion,
iteration, and so forth are allowed). However, modules may not in any sense ‘‘call
upon’’ each other. Modules communicate only by means of messages. A module
may send a message to another module; the message may be a request for service,
an informational message, a signal, or whatever. The module to whom the mes-
sage is sent may, when it is ready, receive the message and process it, and may
then itself send messages either to the original module, or indeed to any combina-
tion of other modules.

The module-message paradigm has several advantages over subroutine (or
co-routine) calls.

1. Ifsubroutines are in different languages, the subroutine call mechanisms must
be made compatible.

2. Any sophisticated lockout mechanism for resource access requires the internal
coding of queues equivalent to that which a message switcher provides.

3. A subroutine that tries to execute a locked subroutine is unable to proceed
with other computation.

4. Having a resource always allocated by a single controlling module greatly
simplifies all the common exclusion problems.

5. For inherently distributed resources, message communication is natural.
Module-valued slots provide a very flexible but safe discipline for control
transfers.

Another view of messages is as a generalization of parameter lists in subrou-
tine or coroutine calls. The idea of explicitly naming parameters is common in as-
sembly languages, where the total number of parameters to a routine may be very
large. More important, the message discipline presents to a module a collection of
suggested parameters rather than automatically filling in the values of parameters.
This leads naturally to the use of semantic checks on the consistency of parameters
and to the use of default values for unspecified ones, which can be a substantial im-
provement on type checking. The use of return messages allows multiple-valued
functions; an answer message may have several slots. Messages solve the so-called
“uniform reference problem’ —one need not be concerned with whether an
answer (say an array element) is computed by a procedure or a table.

There is yet another useful view of messages. One can view a message as a
partially specified relation (or pattern), with some slot values filled in and some
unbound. This is common in relational data bases [Astrahan et al. 1976] and
artificial intelligence languages [Bobrow and Raphael 1974]. In this view, a mes-
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sage is a task specification with some recipient and some complaint departments to
talk to about it. Various modules can attempt to satisfy or contract out parts of the
task of filling in the remaining slots. A module may handle messages containing
slots unknown to it. This allows several modules to work together on a task while
maintaining locality. For example, an executive module could route messages (on
the basis of a few slots that it understands) to modules that deal with special aspects
of a problem using different slots in the message.

There is no apparent conflict between these varying views of messages. It is
too early in their development to be sure, but the combined power of these para-
digms seems to provide a qualitative improvement in our ability to develop vision
programs.

A2.3.2 Priority Job Queue

In any system of independent processes on a serial computer, there must be a
mechanism for scheduling activation. One general mechanism for accomplishing
scheduling is the priority job queue. Priority queues are a well-known abstraction
[Aho et al. 1974]. Informally, a priority job queue is just an ordered list of
processes to be “activated. A monitor program is responsible for dequeueing
processes and executing them; processes do not give control directly to other
processes, but only to the monitor. The only way for a process to initiate another is
to enqueue it in the job queue. It is easiest to implement a priority job queue if
processes are definable entities in the programming language being used; in other
words, programs should be manipulable datatypes. This is possible in LISP and
POP-2, for example.

If a process needs another job performed by another process, it enqueues the
sub job on the job queue and suspends itself (it is deactivated, or put to sleep). The
sub job, when it is dequeued and executed by the monitor, must explicitly enqueue
the ““calling’” process if a subroutining effect is desired. Thus along with usual ar-
guments telling a job what data to work on, a job queue discipline implies passing
of control information.

Job queues are a general implementational technique useful for simulating
other types of control mechanisms, such as active knowledge (Chapter 12). Also, a
job queue can be used to switch between jobs which are notionally executing in
parallel, as is common in multiprocessing systems. In this case sufficient informa-
tion must be maintained to start the job at arbitrary points in its execution.

An example of a priority job queue is a program [Ballard 1978] that locates
ribs in chest radiographs. The program maintains a relational model of the ribcage
including geometric and procedural knowledge. Uninstantiated model nodes
corresponding to ribs might be called hypotheses that those ribs exist. Associated
with each hypothesis is a set of procedures that may, under various conditions, be
used to verify it (i.e., to find a rib). Procedures carry information about precondi-
tions that must be true in order that they may be executed, and about how to com-
pute estimates of their utility once executed. These descriptive components allow
an executive program to rank the procedures by expected usefulness at a given
time.
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Fig. A2.1 The rib-finding process in action (see lext).
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There is an initial action that is likely to succeed (locating a particular rib that
is usually obvious in the x-ray). In heterarchical fashion, further actions use the
results of previous actions. Once the initial rib has been found, its neighbors (both
above and below and directly across the body midline) become eligible for con-
sideration.

Eligible rib-finding procedures correspond to short-term plans; they are all
put on a job queue to be considered by an executive program that must compute the
expected utility of expending computational energy on verifying one of the hy-
potheses by running one of the jobs. The executive computes a priority on the jobs
based on how likely they are to succeed, using the utility functions and parameters
associated with the individual nodes in the rib model (the individual hypotheses)
and the current state of knowledge. The executive not only picks a hypothesis but
also the procedure that should be able to verify it with least effort.

The hypothesis is either ‘‘verified,”” ‘‘not-verified,”” or ‘“‘some evidence is
found.” Verifying a hypothesis results in related hypotheses (about the neighbor-
ing ribs) becoming eligible for consideration. The information found during the
verification process is used in several ways that can affect the utility of other pro-
cedures.

The position of the rib with respect to instantiated neighbors is used to adjust
horizontal and vertical scale factors governing the predicted size of the ribcage.
The position of the rib affects the predicted range of locations for other unfound
ribs. The shape of the rib also affects the search region for uninstantiated rib neigh-
bors.

If some evidence is found for the rib, but not enough to warrant an instantia-
tion, the rib hypothesis is left on the active list and the rib model node is not in-
stantiated. Rib hypotheses left on the active list will be reconsidered by the execu-
tive, which may try them again on the basis of new evidence.

The sequence of figures (Fig. A2.1, p. 503) shows a few steps in the finding of
ribs using this program. Figure A2.la shows the input data. A2.1b shows rectan-
gles enclosing the lung field and the initial area to be searched for a particular rib
which is usually findable. Only one rib-finding procedure is applicable for ribs with
no neighbors found, so it is invoked and the rib shown by dark boxes in Fig. A2.1b
is found. Predicted locations for neighboring ribs are generated and are used in
order by the executive which invokes the rib-finding procedures in order of ex-
pected utility (A2.1c-e). Predicted locations are shown by dots, actual locations by
crosses; in Fig. A2.1f, all modelled ribs are found. The type of procedure that
found the rib is denoted by the symbol used to draw in the rib. Figure A2.1f shows
the final rib borders superimposed on the data.

A2.3.3 Pattern Directed Invocation
Considerable attention has been focused recently on pattern directed systems (see,
e.g., [Waterman and Hayes-Roth 1978]). Another common example of a pattern

directed system is the production system, discussed in Section 12.3. The idea
behind a pattern directed system is that a procedure will be activated not when its
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name is invoked, but when a key situation occurs. These systems have in common
that their activity is guided by the appearance of “‘patterns’” of data in either input
or memory. Broadly construed, all data forms patterns, and hence patterns guide
any computation. This section is concerned with a definition of patterns as some-
thing very much smaller than the entire data set, together with the specification of
control mechanisms that make use of them.

Pattern directed systems have three components.

1. A data structure or data base containing modifiable items whose structure may
be defined in terms of patterns

Pattern-directed modules that match patterns in the data structure

A controlling executive that selects modules that match patterns and activates
them

A popular name for a pattern-directed procedure is a demon. Demons were
named originally by Selfridge [Selfridge 1959]. They are used successfully in many
Al programs, notably in a natural language understanding system [Charniak 1972].
Generally, a demon is a program which is associated with a partern that describes
part of the knowledge base (usually the pattern is closely related to the form of
“items’’ in a data base). When a part of the knowledge base matching the pattern is
added, modified, or deleted, the demon runs “automatically.”” It is as if the demon
were constantly watching the data base waiting for information associated with cer-
tain patterns to change. Of course, in most implementations on conventional com-
puters, demons are not always actively watching. Equivalent behavior is simulated
by having the demons register their interests with the system routines that access
the data base. Then upon access, the system can check for demon activation condi-
tions and arrange for the interested demons to be run when the data base changes.

Advanced languages that support a sophisticated data base often provide
demon facilities, which are variously known as if-added and if-removed pro-
cedures, antecedent theorems, traps, or triggers.

A2.3.4 Blackboard Systems

In artificial intelligence literature, a ‘‘blackboard” is a special kind of globally ac-
cessible data base. The term first became prominent in the context of a large pat-
tern directed system to understand human speech [Erman and Lesser 1975; Erman
et al. 1980]. More recently, blackboards have been used as a vision control system
[Hanson and Riseman 1978]. Blackboards often have mechanisms associated with
them for invoking demons and synchronizing their activities. One can appreciate
that programming with demons can be difficult. Since general patterns are being
used, one can never be sure exactly when a pattern directed procedure will be ac-
tivated; often they can be activated in incorrect or bizarre sequences not antici-
pated by their designer. Blackboards attempt to alleviate this uncertainly by con-
trolling the matching process in two ways:

1. Blackboards represent the current part of the model that is being associated
with image data;
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2. Blackboards incorporate rules that determine which specialized subsystems of
demons are likely to be needed for the current job. This structuring of the data
base of procedures increases efficiency and loosely corresponds to a “‘mental
set.”’

These two ideas are illustrated by Figs. A2.2 and A2.3 [Hanson and Riseman
1978). Figure A2.2 shows the concept of a blackboard as a repository for only
model-image bindings. Figure A2.3 shows transformations between model entities
that are used to select appropriate groups of demons.

Short Term Memory Long Term Memory
image specific model a priori general knowledge

Schemas

Coe-1>

@G> G

Objects OB-classes

Rectangular
Volumes VL-classes
4&5

solid
(Re-35)

Regions

4ﬂts Z

y
: ~
cute angle e r
angle Lo

Vertices VT-classes

Fig. A2.2 An implementation of the blackboard concept. Here the blackboard
is called Short Term Memory; it holds a partial interpretation of a specific image.

App. 2 Advanced Control Mechanisms

IPR2021-00921
Apple EX1015 Page 517



BOTTOM-UP

CONSISTENCY
l | TOP-DOWN

SCHEMAS
OBJECTS -J

VOLUMES 'J

SURFAGES -O

REGIONS O

>

|

*2 ATTRIBUTE MATCHING OF SPECTRAL FEATURES

ha
i

A
T

3TEXTURE CRADTENTS

! BVERTEX ANALYSIS

i

-TSHADOMS AND HIGHLIGHTS

LARATIVE INFORMATION IN LTM
®]15TORED DECLARATIVE INFORMATION IN LTM

SEGMENTS:

VERTICES

References

GCONSISTENCY OF STM WITH STORED LTHM RELATIONSHIPS

®123PATIAL PROCESSING OF 3D SHAPE DESCRIPTIONS
~

CONSTRUCTED 3D SFACE

CONSISTENCY OF

i | 62D SHAPE CLASSIFICATION

*§3D PERSPECTIVE CUES

f[\

*5OCCLUSION GUES AND COLUR SHIFTS

10

°] STORED DEC

Fig. A2.3 Paths for hypothesis flow, showing transformations between model entities

and the sorts of knowledge needed for the transformations.

REFERENCES

AHo, A. V., J. E. HopcrOFT and J. D. ULLMAN. The Design and Analysis of Computer Algorithms. Read-
ing, MA: Addison-Wesley, 1974.

ASTRAHAN, M. M. et al. “*System R: A relational approach to data base management.”” IBM Research
Lab, February 1976.

BALLARD, D. H. “*Model-directed detection of ribs in chest radiographs.’” Proceedings, Fourth [JCPR,
Kyoto, Japan, 1978,

BIRTWHISTLE, G. et al. Simula Begin. Philadelphia: Auerbach, 1973.

BoBrow, D. G. and B. RAPHAEL. ““New programming languages for artificial intelligence.”” Computing
Surveys 6, 3, September 1974, 155-174.

CHARNIAK, E. “Towards a model of children’s story comprehension.”” AI-TR-266, Al Lab, MIT, 1972.

ErMAN, L. D. and V. R. LESSER. ‘A multi-level organization for problem solving using many diverse
cooperating sources of knowledge.”” Proc., 4th IJCAI, September 1975, 483-490.

Erman, L. D., F. Haves-RotH, V. R. Lesser, and D. R. Reppy. ““The HEARSAY-II speech-
understanding system: Integrating knowledge to resolve uncertainty.”” Computing Surveys 12, 2,
June 1980, 213-253.

FAHLMAN, S. E. ““A planning system for robot construction tasks.” Artificial Intelligence 5, 1, Spring
1974, 1-49.

FELDMAN, J. A. “‘High-level programming for distributed computing.” Comm. ACM 22, 6, July 1979,
363-368.

FELDMAN, J. A. and R. F. SPROULL. *‘System support for the Stanford hand-eye system.”” Proc., 2nd
IJCALI, September 1971, 183-189.

FLoyp, R. W. ““The paradigms of programming.”” Comm. ACM 22, 8, August 1979, 455-460.

507

IPR2021-00921
Apple EX1015 Page 518



508

GOLDBERG, A. and A. Kay (Eds). ““SMALLTALK-72 Instruction Manual.”’ SSL 76-6, Xerox PARC,
Palo Alto, CA, 1976.

HaNsoN, A. R. and E. M. RISEMAN. ‘“Visions: A computer system for interpreting scenes.”” In C¥S,
1978.

HewiTT, C. “‘Description and theoretical analysis (using schemata) of PLANNER” (Ph.D. disserta-
tion). AI-TR-258, Al Lab, MIT, 1972.

HEwITT, C. and B. SMITH. “Towards a programming apprentice.”” JEEE Trans. Software Engineering. 1,
1, March 1975, 26-45.

KNUTH, D. E. The Art of Computer Programming, Vol. 1. Reading, MA: Addison-Wesley, 1973.

SELFRIDGE, O. “‘Pandemonium, a paradigm for learning.” In Proc., Symp. on the Mechanisation of
Thought Processes, National Physical Laboratory, Teddington, England, 1959.

SussMan, G. J. and D. McDERMOTT. “Why conniving is better than planning.”” Al Memo 255A, Al
Lab, MIT, 1972.

WATERMAN, D. A. and F. Haves-RotH (Eds.). Pattern-Directed Inference Systems. New York: Academic
Press, 1978.

App. 2 Advanced Control Mechanisms

IPR2021-00921
Apple EX1015 Page 519



AuthorIndex

Abdou, I. E., 76, 77, 84
Abelson, R. P., 322, 334
Abramowitz, M., 496

Adams, J. A, 496

Aggarwal, J. K., 208, 216, 220
Agin, G. J., 52, 54, 277, 278
Aho, A. V., 359, 502

Aikens, J. S., 407

Akatsuka, T., 79

Ambler, A. P., 237, 346, 359, 366, 370, 375, 439
Anderson, J. R., 320
Andrews, H. C., 40, 65, 496
Apostol, T. M., 496

Ashkar, G. P., 133, 137
Astrahan, M. M., 501
Attneave, F., 75

Badler, N. L., 216, 217, 219, 220, 280

Bajesy, R., 184, 188, 400, 401, 274, 280

Ballard, D. H., 125, 128, 136, 139, 141, 244,270, 271,272,
273, 321, 335, 344, 355, 439, 446, 502

Barnard, S. T., 208

Barnhill, R. E., 239, 242, 265

Barrow, H. G., 63, 141, 161, 238, 318, 354, 362, 376, 410,
413

Bartlett, F. C., 343

Baumgart, B. G., 266

Bellman, R., 137

Bentley, J. L., 281

Berge, C., 357

Berztiss, A. T., 358

Binford, T. O., 89, 274, 335

Birney, 34

Birtwhistle, G., 501

Bittner, J. R., 364

Blinn, J., 95

Blum, H., 252

Bobrow, D. G., 334, 501

Boggess, L., 320

Bolles, R., 121, 319, 343, 446
Bower, G. H., 320

Boyse, J. W, 282, 285, 289
Brachman, R. I., 323, 326, 331, 396
Braunstein, M. L., 206

Bribiesca, E., 259

Brice, C., 157, 158, 236

Brodatz, P., 166, 186

Bron, C., 339

Brooks, R. A., 335

Brown, C., 255, 271, 285, 430, 496
Buchanan, B. G., 407

Buckhout, R., 343

Chakravarty, 1., 301
Charniak, E., 505
Chasen, S. H., 495
Chen, C. C,, 80

Chien, Y. P., 136, 142
Chow, C. K., 152
Clinton, J. D., 271, 496
Clocksin, W. F., 196, 202, 206
Clowes, M. B., 296
Collins, A., 384
Connors, R., 170
Conte, S. D., 496
Coons, S. A, 269

IPR2021-00921
Apple EX1015 Page 520

509



Corneil, D. G., 358, 359
Cover, T. M., 182
Crowther, R. A,, 59

Davis, L. S., 378, 408

Davis, R., 398

deBoor, C., 239, 242, 496

DeGroot, M. H., 445

DeRosier, D. J., 57, 59

Deliyanni, A., 390

Doyle, J., 347

Dreyfus, S., 137

Duda, R. O, 30, 123, 144, 208, 220, 234, 496

Eisenbeis, S. A., 155

Ejiri, J., 292

Elliott, G. L., 365
Elschlager, R. A., 142, 360
Erman, L. D., 400, 505

Fahlman, S. E., 322, 439, 500

Falk, G., 292

Faux, 1. D., 496

Feigenbaum, E. A., 407

Feldman, J. A., 157,161, 163,412,439, 445, 446, 500, 501
Fennema, C. L., 157, 158, 236

Fikes, R. E., 395, 396, 397, 439

Findler, N. V., 323

Fischler, M. A., 141, 360

Floyd, R. W, 499

Fodor, J. D, 320

Forvest, A. R., 265

Freeman, H., 211, 235, 236

Frei, W., 80

Freuder, E. C., 322, 413, 430

Fu, K. 8., 136, 142, 172, 173, 176, 181, 238
Fukunaga, K., 181

Funt, B. V., 322

Gallus, G., 236

Garfinkel, R. S., 429
Garvey, T. D., 54, 319, 439, 446, 449, 452, 453
Gelernter, H., 322
Geschwind, N., 342
Gibson, J. J., 168, 189, 196
Gips, J., 173

Goldberg, A., 501
Goldstein, 1. P., 334
Gombrich, E. H., 343
Gomory, R. E., 429
Gonzalez, R. C., 25, 65, 181
Gordon, R., 56

Gordon, W. J., 243
Gotlieb, C. C., 358, 359

510

Graliam, M., 206
Gramiak, R., 54
Granrath, D. J,, 31
Greenberg, D., 33
Gregory, R. L., 343
Griffith, A. K., 81
Guzman, A., 259, 294

Hall, E. L., 186

Hannah, M. J., 68, 89

Hanson, A. R,, 111, 150, 153, 161, 505, 506
Haralick, R. M., 184, 186, 360, 365, 408, 410
Harary, F., 357

Harlow, C. A., 155

Hart, P. E., 30, 123, 144, 208, 234, 496
Hayes, P. J., 334, 384, 393, 396, 440

Hayes, Philip J., 331, 334

Hayes-Roth, F., 397, 399, 504

Helmholtz, H. von, 196, 319, 348

Hendrix, G. G., 323, 331, 334, 396
Henschen, L., 434

Herbrand, J., 389

Herman, G. T., 56, 146

Hewitt, C., 322, 396, 397, 499, 500

Hinton, G. E., 335, 420, 425

Hodgeman, C. D., 496

Hopcroft, J. E., 172, 359

Horn, B. K. P, 22, 23, 74, 93, 95, 104, 196, 496
Horowitz, S. L., 157, 233

Hough, P. V. C,, 124

Hubel, D. H., 80

Hueckel, M. H., 76

Huffman, D. A., 296

Hummel, R. A., 82, 420, 430

Hunt, B. R., 65, 40

Hurvich, L. M., 34

Ikeuchi, K., 93, 99, 100

Jackins, C. L., 281

Jain, A. K., 18

Jain, R., 222

Jameson, D., 34

Jayaramamurthy, S. N., 179
Joblove, G. H., 33

Johansson, G., 210, 215
Johnson-Laird, P. N,, 319, 320, 321
Joshi, A. K., 400

Julesz, B., 169

Kak, A. C., 17, 25, 39, 76, 144, 153, 252, 496
Kanade, T., 300, 306

Kane, J., 496

Kaneko, T., 152

Author Index

IPR2021-00921
Apple EX1015 Page 521



Kartus, J. S., 410 Moravec, H. P., 69, 89, 107, 208
Kay, A., 501 Munsell, A. H., 33

Kelly, M. D., 121

Kender, J. R, 33, 169, 191
Kerbosch, J., 359

Kibler, D. P., 233

Kimme, C., 124, 125

King, J., 398

Kirsch, R. A., 79

Klug, A., 59

Knodel, W., 359

Knuth, D. E., 108, 498

Kosslyn, S. M., 320

Kowalski, R. A., 388, 390, 394, 396
Kruger, R. P., 186, 258

Nagel, H.-H., 222

Nabhin, P. J., 256

Nakayama, K., 196

Neisser, U., 343

Nemhauser, G. L., 429

Neurath, P. W., 236

Nevatia, R., 76, 335, 370, 372

Newell, A., 334, 390

Newman, W. M., 495

Nicodemus, F. E., 23

Nilsson, N. J., 132, 157, 320, 323, 331, 365, 387, 388, 390,
396, 397, 440, 446

Nishihara, H. K., 264, 282

Lakatos, 1., 267 Nitzan, D., 54

Land, E. H., 34

Lantz, K. A., 125

Laws, K. 1., 166, 185, 186

Lawton, D. T., 196, 199, 213, 214

Lee, D. N, 196, 206

Lee, Y. T., 287

Lehnert, W., 334

Lesser, V. R., 400, 505

0O*Connell, D. N,, 210
Ohlander, R., 153

O’Neill, B,, 276

O’Rourke, J., 216, 217, 280
Osteen, R. E., 359

Lester, J. M., 133, 136 Palmer, S. E., 320

Levine, M. D, 111 Papert, S., 144

Lieberman, L., 184, 188 Paton, K. A, 239

Lindsay, R. K., 407 Pavlidis, T., 109, 157, 233, 253, 254, 496

Lishman, J. R., 196, 206 Pennington, K, 8., 52

Liu, H. K., 82, 146 Persoon, E., 136, 238

Loomis, J. M., 196 Phong, B. T., 95

Loveland, D., 388, 390 Pingle, K. K., 81

Lozano-Perez, T., 319 Poggio, T., 90, 91, 93

Lu, 8. Y, 173, 176 Pomerantz, J. R., 320
Popplestone, R. ., 52, 238, 362, 376
Potter, J. L., 220

Mackworth, A. K., 291, 295, 301, 303, 439 : i

Maleson, 1. T.. 188 Prager, J. M., 85, 196, 198, 199

Pratt, M. J., 496

1\“}’["“"“’53“5;6(}9-1 ’;3' 12?3 ;3 - Pratt, W. K., 17, 25, 65, 84, 181, 496
AT W 238 ey Lacts SR8 Prazdny, K., 196, 206

Martf‘,]li, A., 132, 143, 145 Prewitt, J. M. S., 77
Martin, W, N.; 220 Price, K. E., 221, 335
McCarthy, J., 384, 395, 396, 440 Pylys!hyn Z’ W ’320
McCulloch, W. S., 344 R G
McDermott, D., 322, 325, 394, 396, 499

Mendelson, E., 383 Quam, L., 68, 89
Mero, L., 76 Quillian, M. R, 323
Merrill, R. E., 248

Milgram, D. L., 178

Minsky, M. L., 334, 335, 400 Raiffa, H., 445, 446

Mitchell, T. M., 407 Ralston, A., 496

Modestino, J. W, 133, 137 Ramer, U., 133

Montanari, U, 139 Raphael, B., 501

Moore, J., 334 Rashid, R. F., 216, 217

Moore, R. C., 330 Reddy, R., 221

Author Index 511

IPR2021-00921
Apple EX1015 Page 522



Reingold, E. M., 359, 364
Reiter, R., 395, 396

Requicha, A. A. G., 231, 254, 265, 282, 287, 289, 291

Riesenfeld, R. F., 239, 242, 265

Riseman, E. M., 111, 150, 153, 161, 505, 506

Roache, J. W, 216

Roberts, L. G., 76, 77, 234, 235, 292
Roberts, R. B., 334

Robertson, T. V., 153

Robinson, J. A., 383, 389

Rogers, B., 206

Rogers, D. F., 496

Rosenfeld, A., 17, 25, 39, 64, 76, 144, 153, 178, 252, 408,

415, 416, 496
Rumelhart, D. E., 334
Russell, D. L., 100
Russell, D. M., 335
Rychner, M., 400

Sacerdoti, E. D., 439

Samet, H., 249, 251

Schank, R. C., 320, 322, 334
Schiff, W., 196

Schneier, M., 251

Schubert, L. K., 323

Schudy, R. B., 270, 271, 272, 273, 355
Schunck, B. G., 104, 196
Schwartz, S. P., 320

Selfridge, P. G., 122

Selfridge, O., 345, 505

Shani, U., 274, 277, 279
Shapira, R., 89, 211, 292
Shapiro, L. G., 360, 408
Shepard, R. N, 320

Shirai, Y., 81, 233, 292, 346, 439
Shortliffe, E. H., 407, 453
Sjoberg, R. W, 22, 23, 94
Sklansky, J., 79, 125, 136, 233, 258
Sloan, K. R., 401

Sloman, A., 320

Smith, A. R., 33

Smith, B., 501

Smoliar, S. W., 219

Snyder, W. E., 195

Sobel, 1., 496

Soroka, B. 1, 274

Sproull, R. F., 439, 445, 446, 495, 500
Stallman, R. M., 347

Stefik, M., 334

Stegun, 1. A., 496

Steiglitz, K., 107

Stevens, K. A., 168, 191

Stiny, G., 173

Stockham, T. 1., Jr., 74

512

Sugihara, K., 52, 301
Sussman, G. J., 322, 347, 396, 439, 442, 499

Tamura, H., 188

Tanimoto, S. L., 109, 281

Tate, A., 439

Teevan, 34

Tenenbaum, J. M., 33, 63, 81, 161, 318, 410, 413
Thompson, W. B., 207, 208

Tilove, R. B., 284

Tomek, 1., 233

Tou, J. T., 181, 359

Tretiak, O. J., 76

Tsotsos, J. K., 207

Turner, K. J., 89, 234, 239, 292, 299, 301, 433

Ullman, J. D., 172, 359
Ullman, J. R., 358, 359, 360
Ullman, 8., 210, 212

Vassy, Z., 76
Voelcker, H. B., 254, 282, 285, 289, 291

Waag, R. B., 54

Wallach, H., 210

Waltz, D. A., 299, 320
Warnock, J. G., 287

Warren, D. H. D., 394, 439
Waterman, D. A., 397, 399, 504
Wechsler, H., 79, 125, 136
Wesley, M. A, 211, 289, 292, 319
Weszka, J. S., 181

Wexler, C., 496

Weyl, S., 33

Whitted, T., 95

Wiesel, T. N., 80

Wilks, Y., 334

Wwill, P. M., 52

Winograd, T., 322, 334, 384, 395, 396
Winston, P. H., 333, 370
Wintz, P., 25, 65

Woodham, R. J., 93, 98
Woods, W. A., 323

Wu, 8., 243

Yakimovsky, Y., 157, 161, 163, 412, 446
Young, . T, 256

Zadeh, L., 422, 423
Zucker, S. W., 82, 85, 150, 172, 408, 420, 430

Author Index

IPR2021-00921
Apple EX1015 Page 523



Subject Index

A Algorithm, 132
A priori probabilities in plan scoring, 449
Abstraction in knowledge representation, 320, 505
Acting and planning cycle, 315, 347
Action:
frame problem, 444
plans, 441, 446
Active:
imaging, 14
knowledge, 384, 430-434
Algorithm:
A, 132
boundary evaluation for solids, 288-291
correlation by binary search, 108

directed graph isomorphism by backtrack search, 364

discrete labeling, 410-415

edge detection by dynamic programming, 140
edge detection, hierarchical, 109

edge relaxation, 85

ellipse detection with Hough algorithm, 127
fast Fourier transform, 490-492

generalized Hough algorithm, 129

heuristic search, 132

line detection with Hough algorithm, 123
mass properties of solids, 285-286

medial axis transformation, 252

multiframe optical flow calculation, 105
nondeterministic for graphs, 359

optical flow by relaxation, 104

piecewise linear curve segmentation, 234
quad tree generation, 250

region boundary melting, 159

region growing, semantic, 162

region growing by blob coloring, 151
region merging with adjacency graph, 160
region splitting, recursive, 153
region splitting and merging, 157
set membership classification, 284
shape from shading, 100
shape number calculation, 260
solid to surface representation conversion, 290
stereopsis, 91
strip tree curve-region intersection, 247
strip tree generation, 244
strip tree intersection, 245
tumor detection, 345
Aliasing, 41
Ambiguity in grammars, 172
Analog-digital conversion, 50
Analogical models (See Knowledge representation,
analogical and proportional)
And-or trees as plans, 453-459
Aperiodic correlation, 67
Applications of computer vision, 12
Arcs in semantic nets, 324
Area:
chain code, 235-236
cross section of generalized cone, 278
in location networks, 336
polygon, 235
quad trees, 251
region, 254
Array grammar, 178-181
Association graph, 358, 365-369
Associative recall, 334
Asynchronous relaxation, 412
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Atomic formula in logic, 384
Attention, control of, 340
Automated inference systems, 396

B-spline, 239-243
Background subtraction:
low-pass filtering, 72
spline surface, 72
Backtrack search, 363-365, 372-375
automatic, 499
variations and improvements, 364-365
Backward chaining, 342, 399
Bandlimited signal, 41
Basis for color space, 33-35
Bayes’ rule, 449 (See also Decision, theory and planning)
Bayesian decisions and region growing, 162
Belief maintenance, 319, 346
Bending energy of curve, 256
Binary search correlation, 108
Binary tree, 244
Binocular imaging, 20-22 (See also Stereo vision)
Binormal of space curve, 276
Blackboard, 505
Blob finding, 143146, 151
Block stacking, 322, 438-443
Blocks world:
vision, 291
structure matching, 370-372
Bottom-up (See Control; Inference)
Boundary, 75, 265
conditions for B-splines, 241
detection, 119-148
in binary images, 143
divide and conquer, 122
dynamic programming, 137-143
Hough algorithm, 123-131
evaluation, 288-291
as graph, 131
representations, 232-247, 265-274
Branch and bound search:
backtracking improvement, 364
for boundaries, 136
Breakpoints in linear segmentation, 232

Caleulus, predicate (See Predicate logic)
Camera model and calibration, 481-484
Cartesian coordinate system, 465
CAT imagery, I, 56-59
Cell decomposition volume representation, 281
Centroid of volume, 285
Chain code, 235-237, 256, 258

area calculation, 236

derivative, 236

merging, 236

514

normalized, 236
Chamfer matching, 354
Charge transfer devices, 49
Chessboard metric, 39
Chest radiograph understanding, 321, 344-346
Chromaticity diagram, 37
Chunks of knowledge, 334
Circular arcs, 237
City block metric, 38
Classification:

in pattern recognition, 181-184

set membership, 284

tree for regions, 163
Clause form of predicate logic, 384
Clique, and use in matching, 358, 366-369, 375
Closed curves, 246
Closure operator for sets, 282
Clustering:

motion detection, 217

parametric and non-parametric for pattern

recognition, 181-183

Co-routining, 498 (See also Control)
Coherence:

of knowledge representation, 320

rule for line-drawing interpretation, 297
Collision detection with optic flow, 201
Color, 31-35

bases, 33-34

-space histograms, 153-155
Comb, dirac, 19, 40
Combining operators for volumes, 282
Compactness of region, 256
Completeness of inference system, 389
Complexity of graph algorithms, 359
Component, r-connected, 369, 380
Computer as research tool, 9
Concave line label, 296
Concavity tree of region, 258
Cone, generalized (See Generalized, cone)
Confidence:

planning, 415 (Seealso Supposition valuein relaxation)

region growing, 164
Conic, 239, 488-489
Conjunctive normal form for logic, 388
Connect line label, 303
Connected:

component of graph, 369, 380

region, 150, 255
Connectives of logic, 385
Connectivity:

difference, 375

image, 36

matching, 372-375
CONNIVER, 322
Consolidation 102, (See also Pyramid)
Constraint (See also Relaxation)

Subject Index
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inconsistency, 427
as inequality in linear programming, 423
labeling, 408-410
n-ary, 410
propagation, 299, 413-415
relaxation, 408-430
satisfaction for belief maintenance, 347
semantic, on region-growing, 160-164
Constructive solid geometry volume
representation, 282
Context:
data base, 440
switching, 500
Continuity of knowledge representation, 320
Contour:
following, 143-146
occluding, 101
Contrast enhancement, 71
Control, 315, 340-350, 497-502
bottom-up or data-driven, 341, 344-346
hierarchical and heterarchical, 341-346
in knowledge representations, 317
message passing, 501
mixed top-down and bottom-up, 344-346
structures, standard and nonstandard, 497-500
top-down, 342, 343-346
Convergence of relaxation algorithms, 414, 418
Conversions, logic to semantic nets, 332
Convex:
decomposition of region, 253
line label, 296
region, 258
Convolution, 25, 68
theorem, 30
Cooperative algorithms, 408-430
Coordinate systems, definitions and conversions,
465-468
Correctness of inference system, 389
Correlation, 25, 30, 66-70
binary search, 108
coefficient, 419
metrics, 362
non-linear for edge linking, 121
normalized, 68-70
periodic and aperiodic, 67
texture, 187
Correspondence problem, 89
Cost:
of planning, 452
in plans, 445-459
Crack edges, 78
Curvature:
boundary, 256
in evaluation function, 133
space curve, 276
Curve 231:

Subject Index

detection, Hough algorithm, 126

fitting, 487

intersection, 247

segmentation techniques, 233-234
Cutting planes in linear programming, 428
Cylinder, generalized, 274-280
Cylindrical coordinate system, 466

Data:

base, 398, 431, 440

-driven control, 341-346

fitting, 239, 484-488

nodes in location networks, 336, 338

structure for boundaries, 158
Decision:

theory and planning, 446-453

trees for matching, 370-377
Decomposition:

region, 253

solid, 287

Default values in knowledge representations, 330,

334-335
Delete list, 440
Delta function, 18-19, 40
Demon, 412, 429, 505
DeMorgan’s laws, 387
Densitometer, 46
Density of image, 44, 74
Dependence, gray-level, 186-188
Depth:

-first search and variations, 136, 363-365, 372, 412

from optic flow, 201
Determinant, 473
Difference measurement in motion, 221
Digital images, 35-42
Digitizers, image, 45
Dirac Comb, 19, 40
Direction-magnitude sets, 270
Discrete:

images, 35-42

knowledge representation, 320

labeling algorithms, 410-415
Disparity, 21, 89, 208
Dispersion of knowledge representation, 320
Distance:

on discrete raster, 36

image (See Image, range)

Distortion, perspective (See Projection, perspective)

Divergence theorem for mass properties, 288
Divide and conquer:
algorithms for CSG, 285
method for boundary detection, 122
Domain-dependent and -independent motion
understanding, 196-199, 214-219
Drum scanner, 46
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Dual graph, 159 texture, 184-186
Dynamic programming and search, 137-143 vectors and space, 181
Field, television, 46
. Figure-ground distinction, 4
Early yrovkshi, 63-60 Filtering, 25, 6475
Eccentricity of region, 255 First order predicate logic (See Predicate logic)

Edge, 75 Fitting data (See Data, fitting)
detection Flat-bed scanner, 46
in binary images, 143-146 Flying spot scanner, 45
from optic flow, 202-206 Focal length, 19, 479
n p?rrzmrds, 109 Focus of expansion in optical flow, 199
following, 131f146 Formal inference system, 390
as blob finding, 143-146 Forward chaining, 342, 399
as dynamic programming, 137-143 Ehfiflen
as graph search, 131-143 deseriptors, 238
lfibe.ls. 296-297 filtering, 65.
linking, 119131 , transform, 24-30, 490-492
known approximate location, 121-122 Frame:
problems with, 119-120 problem, 395, 444

Hough algorithm, 123-131
operator, 64, 75-88
gradient, 76-80

system theory, 334-335
Frenet frame and formulae, 276

g Function:

’ i , 18-19
Laplacian, 76-79 }glgéil<g:6385
performance, 77, 83-84 Skok;m, 387

relaxation, 85-88
templates, 79

3-D performance, 81-83 Li-Houeh alzoritim, 125

Gamma, film, 45

profiles, 75, Gaussian sphere, 101, 270
representation for surfaces, 266 -
Generalized:

strength in evaluation function, 133 clipping, 284
thresholding, 80 cone, 274280

Eigenvalues and eigenvectors, 473, 486-487 matching to data, 278, 372-375

Element, texture, 166 i o]

Elongation of region, 255 cylinder (See Generalized, cone)
e image, 6, 14, 320

Enclosing surface, 265

Biieiiy fentiie, 187 Geodesic tesselation, 271, 493

Geometric:

Engineering: i
c;grawings 291 matching, 354
, operations in location networks, 336
knowledge, 407

relations and propositions, 332

representations, 8, 227-311

structures and matching, 354

Euler number of region, 255, 266 tnshoemations, 477-441 3

Bvaluation: Geometry theorem prover, 322
Gestalt psychology, 116

functloq for. heunsllc.search, 133 Goal achievement, 319, 346-347, 438-439
mechanism in semantic networks, 337
Goodness of fit, 273

Existential quantifiers, 385 Gradiant:
Extended inference, 315, 319, 322, 383, 395-396 edge operator, 76-80

Entropy, texture, 187
ERTS imagery, 46
Euclidean metric, 38

Extensional concepts in knowledge representation, 328 space, 95, 301
techniques, 355
Faces, 271 texture, 168, 189-193
for surface representation, 265, 271 use in Hough algorithm, 124
Feature Grammar:
classification and matching, 376-378 ambiguous, 172
516 Subject Index
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array, 178-181

on pyramid, 179

shape, 173-174

stochastic, 172

texture, 172-181

tree, 175-178
Graph 131:

adjacency for regions, 159

algorithms, complexity, 359

association, 358, 365-369

dual, 159

isomorphism, 357-359, 364

matching, 355

r-connected component, 369, 380
Gray level, 18, 23, 35

dependence matrices for texture, 186-188
Grazing incidence, 111

H&D curve, 44
Heart volume, 273
Heterarchical control, 341-346, 499
Heuristic search:
boundaries, 131-133
dynamicprogramming, 143
region growing, 157
Hierarchical (See also Pyramid)
abstractions, 505
control, 341-346
textures, 170
High-level:
models, 317
motion detection, 196-199
vision, 2-6
Hill-climbing and matching, 355
Histogram, 70
equalization and transformation, 70
splitting for thresholds, 152
colorspace, 153-155
Homogeneous:
coordinate system, 467
regions, 150
texture, 188
Hough algorithm, 123-131
generalized, 128-131
refinements, 124
vanishing points, 191
Human body for motion understanding,
214-219
Hungry monkey planning problem, 445
Hypotheses, 343, 384, 422
active knowledge, 431
Hypothetical worlds, 432, 440

Iconic structures and matching, 353
Icosahedron, 492
THS color basis, 33
Image (See also Imaging)
aerial, 1,335
CAT, 1,56-59
connectivity, 36

Subject Index

digital, 35-42
digitizers, 45
distance on raster, 36
edges, 75-88
ERTSor LANDSAT, 46
formation, 17
function, 18-19
generalized, 6, 14, 320
histogram, 70
intrinsic, 7, 14, 63
irradiance,23,73
orthicon, 47
plane, 19
processing, 2, 17,25
range, 52-56, 64, 88
sampling, 18,35
segmented, 7
sequence understanding, 207-222
ultrasound, 54
variance, 69
Imaging:
active, 14
devices, 42-59
geometry, 19-21
light stripe, 22
model, 17-42
monocularand binocular, 19-22
stereo, 20-22, 52-54, 88-93,98

Inconsistent labeling, 410 (See also Labeling)

Indexing property of semantic nets, 324

Inequalities in linear programming, 422, 427

Inference, 314, 319-321, 383
bottom-up andtop-down, 392
extended, 315,319,322, 383,395
rules of, 388
in semantic nets, 327
systems, formal and informal, 390
syllogistic, 321

Infinity, point at, 20

Informal inference system, 390

Inheritance of properties in knowledge

representation, 330, 335

Inhibitory local evidence in line drawings, 295

Intensional concepts in knowledge
representation, 328

Interaction graph for dynamic programming, 143

Interest operator, 69, 208
Interior operator, 282
Interpolation, 489-490
Interpretation:

matching, 352

region-growing, 160-164
Interpreter

production system, 398-399

semantic net, 326, 339
Intersection of strip trees, 244
Interval, sampling, 35
Intrinsic:

image, 7, 14,63

parameters, 63
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Inverse:
perspective (See Projection)
relations, 331
Irradiance, image, 23, 73
Isomorphism, graph and subgraph, 357-359,
364
[terative region merging with semantics, 163

Job queue, 502-504

Kd-tree, 281, 287
Knowledge:
base,317,318-323
chunking, 334
engineering, 407
Knowledge representation, analogical and
propositional, 9, 314, 319-322 (See also
Active knowledge, Predicate logic,
Procedural embedding, Production
systems, Representation, Semantic nets)

Labeling, 296-301, 408-420
compatibilities, 415
consistent, inconsistent, optimal, 408, 410
discrete, 410-415
interpretation, 315, 353, 383, 408
lines, 296-301
scene, 408-430
tree search, 412
Lambertian surfaces, 94
LANDSAT imagery, 46
Laplacian operator, 76-79
Laser rangefinders, 54 (See also Image, range)
Learning, 315
Least-squared error fitting, 484488
Legendre polynomial, 272
Light:
flux, 22
stripe imaging, 22
structured, 52~-54
Line:
detection, Hough algorithm, 123
drawing understanding, 265, 291-307
drawings for motion understanding, 220-222
equation, 475
fitting, 484-487
labeling, 296-301
labeling by relaxation, 416-421, 428
representations, 474-476
segment, 232
transformation, 480
Linear:
structure matching, 378~380
transformation, 473
Linear programming for relaxation, 420-430
Linking edges (See Edge, linking)

518

Local evidence in line drawings, 294
Location networks, 335-340
Logarithmic filtering, 73
Logic (See Predicate logic)
Long-term memory, 400
Low-level:

motion detection, 196

vision, 3-6

Manhattan metric, 36

Mass properties, 285

Matched filtering and Hough algorithm, 124

Matching, 315, 352, 398
blocks world structures, 370-372
clique-finding, 366-369, 375
complexity, 359
examples, 369-380
expectation-driven, 353
generalized cylinders, 372-375
geometric structures, 354
graphs, 355
iconic structures, 353
knowledge representation, 319
line drawings to primitives, 293
linear structures, 378-380
metrics, 360-362, 375, 378
metrical in line drawing understanding, 294
nondeterministic algorithm, 359
optic flow, 208
optimization, 354

pattern (See Pattern, matching in production systems)

relational structures, 353, 355, 365-372
rules in production system, 399-400
templates and springs, 360-362
topological, for line drawings, 293
Matrix algebra, 471-474
Matte reflectivity, 23
Maximal clique, 366
Medial axis transform, 252-253
Membership array for region, 248
Memory, long-term and short-term, 400
Merging:
branches for backtracking improvement, 364
curve segmentation, 233
regions, 155-160
Message-passing (See Modules and messages)
Metric:
distance on raster, 36
matching, 360-362, 375, 378
Minimum:
cost search for boundaries, 132
spanning tree for clustering, 217
Model:
analogical and propositional, 319
-driven control, 342

Subject Index
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human body for motion, 217-219

in knowledge representation, 9, 317
Modules and messages, 500-502
Modus Ponens and Modus Tollens, 388
Moment of inertia, 255, 286, 473, 486
Monocular imaging (See Imaging)
Motion, 195 (See also Optic flow)

adjacency and collision detection, 201

body model, 214-219

common in sequence, 199, 208

consistent match, 199

continuity, 197

depth, 201

human body, 214-219

image sequences, 207-222

maximum velocity, 198

moving light displays, 214-217

observer, 206

rigid bodies, 197, 210-214

surface orientation and edge detection, 202
Multi-

dimensional histograms, 153-155

modal sensor, 453-459

resolution images, 100-110 (See also Pyramid)

Nearest-neighbor clustering, 183
Network:
interpreter, 326
representation, 391 (See also Semantic nets)
Newton-Raphson, 493
Node types in semantic nets, 324-329
Noise, 65
Nonclausal form, 385-387 (See also Predicate logic)
Nondeterministic algorithms, 359
Nonrigid:
body motion understanding, 214-217
solids, 264
Nonstandard: )
control structures, 499-507 (See also Control)
inference (See Extended inference)
Normalized correlation, 68-70
NP-completeness, 359
NTSC, 34

Object identification in line drawings, 294
Occluding:
contour, 101
line label, 296
Oct-tree, 281, 287
Office scene understanding, 453-459
Operator (See Edge, Interest operator, Interior operator,
Closure operator for sets, Planning Relaxation,
etc.)
Opponent processes, 33

Subject Index

Optic flow, 65, 102-105, 196, 199-206

Optical system analysis, 23

Optimal labeling, 410

Optimization:
linear programming, 424-425
matching, 354

Orientation of surface (See Surface, orientation

calculation)

Origami world, 300

Orthicon, image, 47

Orthographic projection (See Projection)

PANDEMONIUM, 345
Parallel:
computation, 64, 341, 360
-iterative refinement in graph matching, 358, 378
-iterative relaxation, 64, 412
Parameter:
cptimization as matching, 354
space, 123
Parametric:
clustering, 183
edge models, 80-81
line representation, 476
Parseval’s theorem, 256
Partial:
knowledge in location networks, 339
matches, 360-362
Partition:
feature space in pattern recognition, 181
Fourier space, 185
semantic néts, 331, 391
space, 150
Pattern:
-directed invocation, 321, 504
matching data base (See Data, base)
matching in production systems, 399-400
recognition, 2, 181-184
texture, 166
Performance, edge operators, 77, 83-84
Periodic:
correlation, 67
function, 237
Perspective (See Projection)
Photography, 44-45
Photometric stereo vision, 98
Picture element (pixel), 36
Piccewise polynomial, 240
Plane:
curves and regions, 231
cutting in linear programming, 428
representation, 476
transformation, 480
PLANNER, 322
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Planning, 314-319, 347, 438445
cost of, 452
costs, 445459
edge linking, 121-122
example, 453-459
extended and-or graphs, 451
problem reduction, 394
symbolic, 439-445
Point:
at infinity, 20
membership, 246
projection (See Projection, perspective)
spread function, 28
Polar and polar space coordinate systems, 465
Polygon:
area calculation, 235
images for motion, 220-222
regions, 294
Polyhedra, 291
Polylines, 232-235
Pre- and postconditions in plans, 441
Predicate logic, 383-395
clauses and semantic nets, 390-392
decidability, 388
extensions (See Extended inference)
inference, 315
knowledge representation, 392-395
proof, 388
strengths and weaknesses, 393-394
syntax and semantics, 384-387
truth table, 386
Predicates in location networks, 336
Primitive:
solids in volume representation, 280, 282
volumes for line drawing understanding, 293
Principal axes:
for fitting data, 473, 486
of inertia of region, 255
Procedural embedding of knowledge, 321, 322, 406,
430-434 (See also Active, knowledge)
Processing, image, 17
Product of inertia of solid, 286
Production systems, 315, 383, 396-408
example, 401-406
rule matching, 399
strengths and weaknesses, 406-408
Projection:
inverse perspective, 481484
orthographic, 20, 212
perspective, 19-20, 214, 479
Proof of logic, 388-390
Propagation of constraints (See Constraint)

Property inheritance (See Inheritance of properties in

knowledge representation)
Propositional model (See Representation)

520

Prototype situations, 334
Pruning for backtracking improvement, 364
Pseudo-inverse for fitting, 485, 487
Psi-s curve, 237, 238, 256
Pyramid, 15 (See also Quad tree; Strip trees)
edge detection, 109
grammars, 179
multi-resolution, 65, 106, 249, 281
thresholding, 155

Quad tree, 249-252
area, 251
generation, 250

Quantifier, logical, 385

Radiance and gray levels, 22-23

Radiograph understanding, 321, 344-346, 502-504

Range image (see Image)
Ray casting, 280
Reciprocity failure of film, 44
Reconstruction, two-dimensional image, 56-59
Recursive procedure, 244, 498
Reflectance, 93-95
calculation, 73-75
functions, common, 23, 94
map, 96-98
models, 22-24
Region, 149-150, 231
data structures for, 158
finding, by thresholding, 152-155
finding, local techniques, 151
growing and heuristic search, 157
growing and semantics, 160-164
homogeneous, 150
partition, 150
properties, 254-261, 376-377
representation, 232-254
by boundary, 232-247
decompositions, 253
medial axis transform, 252
non-boundary, 247-254
quad trees, 249
spatial occupancy array, 247
y-axis, 248
splitting and merging, 155-160
Regular:
sets and set operators, 231, 282-283
tesselation, 170
Relational:
functions and dynamic programming, 142
models, 9, 314, 317
semantic nets, 325, 330, 408
structures and matching, 353, 355, 365-372
Relaxation, 64 (See also Constraint)

Subject Index
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algorithms, convergence properties, 414
asynchronous, 412
convergence, 414
edge operators, 85-88
for optic flow, 208
labelling, 408-430
line labeling, 416-421, 428
linear and non-linear operator example, 415-420
as linear programming, 420430
optical flow, 103
serial and parallel iterative, 412
shape from shading, 99-102
stereo, 89
Representation:
actions in symbolic planning, 441
analogical and propositional, 9, 314, 319-322
conversion, 289
knowledge, 317-347 (See Knowledge)
matching, 352-355
predicate logic, 392-395
range of, 6-9
solids, 264
world in symbolic planning, 439
Resolution
gray levels, 35
pyramids, 15, 106-110
multiple in thresholding, 155
rule of inference, 389
spatial, 36-37
texture, 169
theorem proving, 388-390
Response, human spectral, 31
Rewriting rule (See Rule, Grammar, Production system)
Rib-finding, 321, 502-504
Rigidity assumption in motion understanding, 210
Root finding, 493
Rotation rigid transformation, 477
Rotational sweep, 274
Rule:
-based systems, 397 (See also Production systems)
inference, 388
production system, 398
rewriting, 172, 383, 398
for texture generation, 172-181

Sampling:
image, 18, 35
tesselation, 35
theorem, 39
Scaling matrix, 478
Scanner, digitizing, 45
Scene:
irradiance, 73
labeling, 408-430

Subject Index

Scope of quantifier, 385
Scoring plans, 445-459
Search:
backtrack, 363-365, 372-375
depth-first, 412
graph, and region growing, 157
heuristic and variations, 132-136
tree, for labeling, 412
Segmentation, 7, 116 (See also Edge; Line; Region)
Semantic nets, 315-317, 323-340, 390, 396
arcs, 324
conversion with other representations, 332
examples, 334
indexing property, 324
inference, 327
nodes, 324, 328
partitions, 331
predicate logic, 390-392
relations in, 325, 330
semantics and partitions, 331
Semantics:
of images and region growing, 160-164
of logic, 385
Semi-
decidability of logic, 388
regular tesselation, 171
Sentence of logic, 384
Serial:
computation, 341
relaxation, 412
Set
membership classification, 284
operations in location networks, 336
operations in three dimensions, 284
Shadow line label, 296
Shape, 228 (See also Three dimensional)
detection, Hough algorithm, 128-131
grammar, 173-174
properties of region, 254-261, 376-377
recognition, 228-229
from shading, 65, 93, 99-102
from texture, 189-193
Shift theorem, 30
Short-term memory, 400
Signature of region, 257
Silhouette detection, Hough algorithm, 128-131
Similarity:
analysis in motion, 221
tree for regions, 261
Simplex algorithm, 423
Simulation with knowledge representation, 320
Skeleton (See Medial axis transform)
Skew:
symmetry, 306
transformation, 479
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Skilled vision, 347
Skolem function, 387
Slope density function of boundary, 256
Slots in frames, 334
Smoothing image (See Consolidation)
Solid (See Three dimensional)
Spaces, color (See Color)
Spatial:
representations (See Three dimensional)
resolution, 36, 37
Spectral response, human eye, 31
Specular reflectivity, 23 (See also Reflectance, functions,
common)
Spherical:
coordinate system, 270, 466
function, 270
harmonic surfaces, 271-274, 355
trigonometry, 469
volume representation, 279
Splines (See B-spline)
Splitting:
curve segmentation, 233-234
regions, 155-160
Statistical:
pattern recognition, 2, 181-184
texture model, 168
Stereo vision, 20-22, 52-54, 88-93, 98
Stochastic grammars, 172 (See also Grammar)
Streaks and strokes, 134
Strip trees, 244-247
STRIPS, 396
Structural:
matching, 355, 365-372
models of texture, 170-181
Structured light, 52-34
Subgoals, 343, 438 (Seealso Goal achievement; Planning)
Subgraph isomorphism, 357-359, 375 (See also Graph)
Supposition value in relaxation, 415, 419
Surface:
direction-magnitude set, 270
functions on Gaussian sphere, 270
geometry and line-drawings, 301-307
orientation calculation, 64, 93-102, 189-193, 202-206
patches, 269
representations, 265-274
set of faces, 265
spherical harmonic, 271-274
from volume calculation, 288-291
Sweep representations of solids, 274-280 (See also Three
dimensional)
Syllogistic inference, 321
Symbolic planning, (See Planning)
Symmetry, skew, 306
Synchronization, 341

522

T vertices, 294
Tables, dynamic programming, 137-139
Tangent to space curve, 276
Television cameras, 46-52
Template:
matching, 65
and Springs for matching, 360-362
Term in logic, 384
Tesselation:
geodesic, 492
regular and semiregular for texture, 170-172
sampling, 35
Texture, 166-168, 404
correlation, 187
element (texel), 166, 169, 188
element placement tesselations, 170-172
energy, frequency and spatial domain, 184-185
features, 187-188
gradient and surface orientation, 168, 189-193
grammars, 172-181
homogeneity, 188
pattern recognition, 181-184
resolution issues, 169
shape and vanishing point from, 189-193
statistical and structural models, 168, 170-181
Theorem:
convolution, 25
divergence, 288
Parseval’s, 26, 256
sampling, 39
shift, 30
Theorem proving by resolution, 388-390 (See also
Predicate logic)
Thinning algorithms, 253 (See also Medial axis
transform)
Three dimensional:
contour following in, 146
decomposition, 287
edge operators, 81-83
image, 88-93
model, 320
objects, several representation, 264, 274-283
primitives for line drawing understanding, 293
shapes, 228
structure from image sequence, 210-214
volume algorithms, 284
Threshold:
determination from histogram, 152
multi-dimensional space, 153
multiple resolution, 155
for region finding, 152-155
Token-type distinction, 328
Top-down (See Control and Inference)
Topological connectivity and matching, 293, 372-375

Subject Index
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Torsion of space curve, 276
Transformation:

geometric, 477-481

lines and planes, 480
Translation rigid transformation, 479
Translational sweep, 274
Tree:

grammars, 175-178

quad, 249-252

rearrangement for backtracking improvement, 364

search for labeling, 412

strip, 244-247
Triangulation (See Stereo vision)
Trigonometry, plane and spherical, 468-469
Truth table, 386
Tumor detection, 344-346
Turtle algorithm for blob finding, 144
TV (See Television cameras)
Two-dimensional shape (See Shape)
Type-token distinction, 328

Ultrasound, 54, 273

Unambiguous representation, 231
Undecidability of logic, 388

Units, meaningful, 116 (See Segmentation)
Universal quantifiers, 385

Unsatisfiability in logic, 388-389

Utility theory and planning, 446, 453

Subject Index

Vanishing point from texture, 191
Variable nodes in semantic nets, 329
Variance, image, 69, 208
Vector algebra, 469-471
Velocity (See Motion, Optic flow)
Vergeance, 21
Vertex:

catalogues, 298, 300

types, 295
Vidicon, 48
Viewpoint, (see Projection)
Virtual nodes in semantic nets, 328
Vision:

high- and low-level, 2-6

as planning, 6-9

system organization, 352
Volume (See Three dimensional)

Waltz filtering, 299 (See also Constraint; Labeling)

Well-formed formulae of logic, 385
Winged edge for surface representation, 266-267
Wire frame objects, 291
from projections, 211
World states in planning, 439

Y-axis region representation, 248
Y1Q color basis, 34
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FIG. 2-7a

FIG. 2-8a

A painting by Louis Condax; courtesy of Eastman Kodak Company and the
Optical Society of America.

Courtesy of D. Greenberg and G. Joblove, Cornell Program of
Computer Graphics.

FIG. 2-8b

Courtesy of Tom Check.
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FIG. 5-4a

Courtesy of Sam Kapilivsky. S50

FIG. 5-4b

Courtesy of Sam Kapilivsky
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FIG. 9-10

Courtesy of Robert Schudy.
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FIG. 11-3a

Courtesy of Robert Schudy.

FIG. 11-3b

FIG. 11-3¢

Courtesy of Robert Schudy.
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