392

representation contains argument indices and predicate indices which can be ex-
tremely helpful in the inference process.

A very simple example illustrates the foregoing points. Suppose that S con-
sists of the set of clauses

SouthOf(river2,x), NorthOf (riverl,x) — Between(riverl, river2, x) (12.4)
— SouthOf (u, silo30) (12.5)
— NorthOf (riverl, silo30) (12.6)

Clause (12.5) might arise when it is determined that “‘silo30” is south of some
feature in the image whose identity is not known. Bottom up inference derives new
assertions from old ones. Thus in the example above the variable substitutions

u = river2 x = silo30

match assertion (12.5) with the general clause (12.4) and allow the inference

NorthOf(riverl, silo30)
— Between (riverl, river2, silo30) (12.7)

Consequently, use (12.6) and (12.7) to assert

— Between (riverl, river2, silo 30) (12.8)
Suppose that this was not the case: that is, that

Between (riverl, river2, silo30) — (12.9)

and that § = {(12.4), (12.9)}. One could then use top-down inference, which infers
new denials from old ones. In this case

NorthOf(riverl,silo30}, SouthOf(river2,silo30) — (12.10)

follows with the variable subsiitution x = silo30. This can be interpreted as fol-
lows: ““If xis really silo30, then it is neither north of riverl or south of river2.”’ Fig-
ure 12.2 shows two examples using the network notation.

Now suppose the goal is to prove that (12.8) logically follows from (12.4)
through (12.6) and the substitutions. The strategy would be to negate (12.8), add
it to the data base, and show that the empty clause can be derived. Negating an
assertion produces a denial, in this case (12.9), and now the set of axioms (includ-
ing the denial) consists of {(12.4), (12.5), (12.6), (12.9)). It is easy to repeat the
earlier steps to the point where the set of clauses includes (12.8) and (12.9), which
resolve to produce the empty clause. Hence the theorem is proved.

12.1.6 Predicate Calculus And Knowledge Representation

Pure predicate calculus has strengths and weaknesses as a knowledge representa-
tion system. Some of the seeming weaknesses can be overcome by technical
“tricks.”” Some are not inherent in the representation but are a property of the
common interpreters used on it (i.e., on state-of-the-art theorem provers). Some
problems are relatively basic, and the majority opinion seems to be that first order

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 403

Jsa

Slde// \Slde
North of e

/V River 1 River 2
Silo 30 ‘—/ w

Between
(12.6)

(12.4)

Isa

North of South of
Between
South of Side Side
“ Middle
(12.5) 4
River i
r Silo 30 Hises
(a)
W ————— Between
(12.8)
River 1 River 2
North of South of
Silo 30 I
v
River 1 Silo 30 River 2

"~

(b)

Fig. 12.2 Resolution using networks. (a) Bottom-up inference as a result of substitu-

tions u = river2, x = silo30. (b) Top-down inference as a result of substitutions w = », x
= silo30.

predicate logic must be extended in order to become a representation scheme that
is satisfactorily matched to the power of the deductive methods applied by human
beings. Opinion is divided on the technical aspects of such enhancements. Predi-
cate calculus has several strengths, some of which we list below.

1. Predicate logic is a well-polished gem, having been refined and studied for
several generations. It was designed to represent knowledge and inference.
One knows what it means. Its model theory and proof theory are explicit and
lucid [Hayes 1977; 1980].

Sec. 12.1 First Order Predicate Calculus 393

IPR2021-00921
Apple EX1015 Page 404

394

Predicate logic can be considered a language with a machine-independent se-
mantics; the meaning of the language is determined by the laws of logic, not
the actual programming system upon which the logic is ‘‘executed.”

Predicate calculus clauses with only one conclusion atom (Horn clauses) may
be considered as ‘‘procedures,’” with the single conclusion being the name of
the procedure and the conditions being the procedure body, which itself is
made up of procedure calls. This view of logic leads to the development of
predicate logic-based programming languages (such as PROLOG [Warren et
al. 1977; McDermott 1980]). These programs exhibit nondeterminism in
several interesting ways; the order of computations is not specified by the
proof procedure (and is not restricted by it, either). Several resolutions are in
general possible for any clause; the combinations determine many computa-
tions and several distinguishable forms of nondeterminism [Kowalski 1974].

Predicate logic may be interpreted as a problem-reduction system. Then a
(Horn) clause of the form

— B
represents a solved problem. One of the form
A T ey A,, =
with variables xi, . . . ,x; is a goal statement, or command, which is to find the
x’s that solve the problems 44, . . . ,4,. Finding the x's solves the goal. A
clause
A:[, sty A,, — B

is a solution method, which reduces the solution of B to a combination of solu-
tions of 4’s. This interpretation of Horn clauses maps cleanly into a standard
and-or goal tree formulation of problem solving.

Resolutions may be performed on the left or right of clauses, and the resulting
derivation trees correspond, in the problem-solving interpretation of predicate
calculus, to top-down and bottom-up versions of problem solving. This duality
is very important in conceptualizing aspects of problem solving.

There is a uniform proof procedure for logic which is guaranteed to prove in
finite time any true theorem (logic is semidecidable and complete). No false
theorems are provable (logic is correct). These and other good formal proper-
ties are important when establishing formally the properties of a knowledge
representation system.

Predicate calculus is not a favorite of everyone, however; some of the (per-

ceived) disadvantages are given below, together with ways they might be coun-
tered.

1. Sometimes the axioms necessary to implement relatively common con-

cepts are not immediately obvious. A standard example is “‘equality.” These
largely technical problems are annoying but not basic.

2. The ““first order’” in first order predicate calculus means that the system

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 405

does not allow clauses with variables ranging over an infinite number of predicates,
functions, assertions and sentences (e.g., ““All unary functions are boring’’ cannot
be stated directly). This problem may be ameliorated by a notational trick; the si-
tuations under which predicates are true are indicated with a Holds predicate. Thus
instead of writing On(blockl, surface, situationl), write Holds (On(blockl,sur-
face), situationl). This notation allows inferences about many situations with only
one added axiom. The “*situational calculus’ reappears in Section 12.3.1. Another
useful notational trick is a Diff relation, which holds between two terms if they are
syntactically different. There are infinitely many axioms asserting that terms are
different; the actual system can be made to incorporate them implicitly in a well-
defined way. The Diff relation is also used in Section 12.3.1.

3. The frame problem (so called for historical reasons and not related to the
frames described in Section 10.3.1) is a classic bugbear of problem-solving
methods including predicate logic. One aspect of this problem is that for technical
reasons, it must be explicitly stated in axioms that describe actions (in a general
sense a visual test is an action) that almost all assertions were true in a world state
remain true in the new world state after the action is performed. The addition of
these new axioms causes a huge increase in the ‘‘bureaucratic overhead’’ neces-
sary to maintain the state of the world. Currently, no really satisfactory way of han-
dling this problem has been devised. The most common way to attack this aspect of
the frame problem is to use explicit ““add lists”> and *“delete lists”> ([Fikes 19771,
Chapter 13) which attempt to specify exactly what changes when an action occurs.
New true assertions are added and those that are false after an action must be delet-
ed. This device is useful, but examples demonstrating its inadequacy are readily
constructed. More aspects of the frame problem are given in Chapter 13.

4. There are several sorts of reasoning performed by human beings that
predicate logic does not pretend to address. It does not include the ability to
describe its own formulae (a form of ‘“quotation’), the notion of defaults, or a
mechanism for plausible reasoning. Extensions to predicate logic, such as modal
logic, are classically motivated. More recently, work on extensions addressing the
topics above have begun to receive attention [McCarthy 1978; Reiter 1978; Hayes
1977]. There is still active debate as to whether such extensions can capture many
important aspects of human reasoning and knowledge within the model-theoretic
system. The contrary view is that in some reasoning, the very process of reasoning
itself is an important part of the semantics of the representation. Examples of such
extended inference systems appear in the remainder of this chapter, and the issues
are addressed in more detail in the next section.

12,2 COMPUTER REASONING

Artificial intelligence in general and computer vision in particular must be con-
cerned with efficiency and plausibility in inference [Winograd 1978]. Computer-
based knowledge representations and their accompanying inference processes
often sacrifice classical formal properties for gains in control of the inference proc-
ess and for flexibility in the sorts of ““truth’” which may be inferred.

Sec. 12.2 Computer Reasoning 395

IPR2021-00921
Apple EX1015 Page 406

does not allow clauses with variables ranging over an infinite number of predicates,
functions, assertions and sentences (e.g., ““All unary functions are boring’’ cannot
be stated directly). This problem may be ameliorated by a notational trick; the si-
tuations under which predicates are true are indicated with a Holds predicate. Thus
instead of writing On(blockl, surface, situationl), write Holds (On(blockl,sur-
face), situationl). This notation allows inferences about many situations with only
one added axiom. The “*situational calculus’ reappears in Section 12.3.1. Another
useful notational trick is a Diff relation, which holds between two terms if they are
syntactically different. There are infinitely many axioms asserting that terms are
different; the actual system can be made to incorporate them implicitly in a well-
defined way. The Diff relation is also used in Section 12.3.1.

3. The frame problem (so called for historical reasons and not related to the
frames described in Section 10.3.1) is a classic bugbear of problem-solving
methods including predicate logic. One aspect of this problem is that for technical
reasons, it must be explicitly stated in axioms that describe actions (in a general
sense a visual test is an action) that almost all assertions were true in a world state
remain true in the new world state after the action is performed. The addition of
these new axioms causes a huge increase in the ‘‘bureaucratic overhead’’ neces-
sary to maintain the state of the world. Currently, no really satisfactory way of han-
dling this problem has been devised. The most common way to attack this aspect of
the frame problem is to use explicit ““add lists”> and *“delete lists”> ([Fikes 19771,
Chapter 13) which attempt to specify exactly what changes when an action occurs.
New true assertions are added and those that are false after an action must be delet-
ed. This device is useful, but examples demonstrating its inadequacy are readily
constructed. More aspects of the frame problem are given in Chapter 13.

4. There are several sorts of reasoning performed by human beings that
predicate logic does not pretend to address. It does not include the ability to
describe its own formulae (a form of ‘“quotation’), the notion of defaults, or a
mechanism for plausible reasoning. Extensions to predicate logic, such as modal
logic, are classically motivated. More recently, work on extensions addressing the
topics above have begun to receive attention [McCarthy 1978; Reiter 1978; Hayes
1977]. There is still active debate as to whether such extensions can capture many
important aspects of human reasoning and knowledge within the model-theoretic
system. The contrary view is that in some reasoning, the very process of reasoning
itself is an important part of the semantics of the representation. Examples of such
extended inference systems appear in the remainder of this chapter, and the issues
are addressed in more detail in the next section.

12,2 COMPUTER REASONING

Artificial intelligence in general and computer vision in particular must be con-
cerned with efficiency and plausibility in inference [Winograd 1978]. Computer-
based knowledge representations and their accompanying inference processes
often sacrifice classical formal properties for gains in control of the inference proc-
ess and for flexibility in the sorts of ““truth’” which may be inferred.

Sec. 12.2 Computer Reasoning 395

IPR2021-00921
Apple EX1015 Page 407

Automated inference systems usually have inference methods that achieve
efficiency through implementational, computation-based, inference criteria. For
example, truth may be defined -as a successful lookup in a data base, falsity as the
failure to find a proof with a given allocation of computational resources, and the
establishment of truth may depend on the order in which deductions are made.

The semantics of computer knowledge representations is intimately related
to the inference process that acts on them. Therefore, it is possible to define
knowledge representations and interpreters in computers whose properties differ
fairly radically from those of classical representations and proof procedures, such
as the first-order predicate calculus. For instance, although the systems are deter-
ministic, they may not be formally consistent (loosely, they may contain contradic-
tory information). They may not be complete (they cannot derive all true
theorems from the givens); it may be possible to prove P from Q but "Pfrom Qand
R. The set of provable theorems may not be recursively enumerable [Reiter 1978].
Efforts are being made to account for the ‘‘extended inference’” needed by
artificial intelligence using more or less classical logic [McCarthy 1978; Reiter
1978; Hayes 1977; 1978a; 1978b; Kowalski 1974, 1979]. In each case, the classical
view of logic demands that the deductive process and the deducible truths be in-
dependent. On the other hand, it is reasonable to devote attention to developing a
nonclassical semantics of these inference processes; this topic is in the research
stage at this writing.

Several knowledge representations and inference methods using them are
““classical’” in the artificial intelligence world; that is, they provide paradigmatic
methods of dealing with the issues of computational inference. They include
STRIPS [Fikes and Nilsson 1971], the situational calculus [McCarthy and Hayes
1969], PLANNER and CONNIVER [Hewitt 1972; Sussman and McDermott
1972], and semantic net representations [Hendrix 1979; Brachman 1979].

To illustrate the issue of consistency, and to illustrate how various sorts of
propositions can be representied in semantic nets, we address the question of how
the order of inference can affect the set of provable theorems in a system.

Consider the semantic net of Fig. 12.3. The idea is that in the absence of
specific information to the contrary, one should assume that railroad bridges are
narrow. There are exceptions, however, such as Bridge02 (which has a highway
bridge above the rail bridge, say). The network is clearly inconsistent, but trouble
is avoided if inferences are made “‘from specific to general.”” Such ordering implies
that the system is incomplete, but in this case incompleteness is an advantage.

Simple ordering constraints are possible only with simple inferential powers
in the system [Winograd 1978]. Further, there is as yet little formal theory on the
effects of ordering rules on computational inference, although this has been an ac-
tive topic [Reiter 1978].

12.3 PRODUCTION SYSTEMS

The last section explored why the process of inference itself could be an important
part of the semantics of a knowledge representation system. This idea is an impor-

396 Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 408

Narrow

Width

RR Bridge
Wide

e
e
Width
RR Bridge 27 RR Bridge 02

Fig. 12.3 An inconsistent network.

tant part of production systems. Perceived limitations in logic inference mechan-
isms and the seductive power of arbitrary algorithmic processes for inference has
spawned the development of rule-based systems which differ from first-order logic
in the following respects:

« Arbitrary additions and deletions to the clausal data base are allowed.

« An interpreter that controls the inference process in special ways is usually an
integral part of the system.

Early examples of systems with the first addition are STRIPS [Fikes and Nilsson
1971] and PLANNER [Hewitt 1972). Later examples of systems with both addi-
tions are given in [Waterman and Hayes-Roth 1978]. The virtues of trying to con-
trol inferences may be appreciated after our brief introduction to clausal automatic
theorem proving, where there are no very good semantic heuristics to guide infer-
ences. However, the price paid for restricting the inference process is the loss of
formal properties of consistency and correctness of the system, which are not
guaranteed in rule-based systems. We shall look in some detail at a particular form
of rule-based inference system called production systems.

A production system supports a general sort of ‘‘inference.”” It has in common
with resolution that matching is needed to identify which inference to make. It is
different in that the action upon finding a matching data item is less constrained.
Actions of arbitrary complexity are allowed. A production system consists of an ex-
plicit set of situation—action nodes, which can be applied against a data base of sit-
uations. For example, in a very constrained visual domain the rule

(Green (Region X)) — (Grass (Region X)) (12.11)

could infer directly the interpretation of a given region. Segmentation rules can
also be developed; the following example merges two adjacent green regions into a
single region.

Sec. 12.3 Production Systems 397

IPR2021-00921
Apple EX1015 Page 409

398

(Green(Region X))A (Green(Region Y))A
(Adjacent(Region X), (Region ¥))

— (Green(Region Z))A ((Region Z) :=
(Union(Region X, Region 1)))

These examples highlight several points, The first is that basic idea of production
systems is simple. The rules are easy to “‘read’’ by both the programmer and his
program and new rules are easily added. Although it is imaginable that “‘situa-
tions’’ could extend down to the pixel level, and production systems could be used
(for instance) to find lines, the system overhead would render such an approach
impractical. In the visual domain, the production system usually operates on the
segmented image (Chapters 4 and 5) or with the high-level internal model. In the
rules above, X and Y are variables that must be bound to specific instances of re-
gions in a data base. This process of binding variables or matching can become very
complex, and is one of the two central issues of this kind of inference. The other is
how to choose rules from a set all of whose situations match the current situation
to some degree.

12.3.1 Production System Details

In its simplest form a production system has three basic components:

1. A data base
2. Asetofrules
3. Aninterpreter for the rules

The vision data base is usually a set of facts that are known about the visual en-
vironment. Often the rules are considered to be themselves a manipulable part of
the data base. Examples of some visual facts may be

(ABOVE (Region 5) (Region 10))
(SIZE (Region 5) 300)
(SKY (Region 5)) (12.12)
(TOP (Region 5) 255)

The data base is the sole storage medium for all state variables of the system. In
particular, unlike procedurally oriented languages, there is no provision for
separate storage of control state information—no separate program counter, push-
down stack, and so on [Davis and King 1975].

A rule is an ordered pair of patterns with a left-hand side and a right-hand
side. A pattern may involve only data base primitives but usually will have vari-
ables and special forms as subpatterns which are matched against the data base by
the interpreter. For example, applying the following rule to a data base which in-
cludes (12.12),

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 410

(TOP (Region X) (GreaterThan 200))
= (12.13)
(SKY (Region X))

region 5 can be inferred to be sky. The left-hand side matches a set of data-base
facts and this causes (SKY (Region 5)) to be added to the data base. This example
shows the kinds of matching that the interpreter must do: (1) the primitive TOP in
the data base fact matches the same symbol in the rule, (2) (Region X) matched
(Region 5) and Xis bound to 5 as a side effect, and (3) (GreaterThan 200) matches
255. Naturally, the user must design his own interpreter to recognize the meaning
of such operational subpatterns.

However, even the form of the rules outlined so far is relatively restrictive.
There is no reason why the right-hand side cannot do almost arbitrary things. For
instance, the application of a rule may result in various productions being deleted
or added from the set of productions; the data base of productions and assertions
thus can be adaptive [Waterman and Hayes-Roth 1978]. Also, the right-hand side
may specify programs to be run which can result in facts being asserted into the
data base or actions performed.

Control in a basic production system is relatively simple: Rules are applied
until some condition in the data base is reached. Rules may be applied in two dis-
tinct ways: (1) a match on the left-hand side of a rule may result in the addition of
the consequences on the right-hand side to the data base, or (2) a match on the
right-hand side may result in the addition of the antecedents in the left-hand side
to the data base. The order of application of rules in the first case is termed forward
chaining reasoning, where the objective is to see if a set of consequences can be
derived from a given set of initial facts. The second case is known as backward
chaining, the objective is to determine a set of facts that could have produced a par-
ticular consequence.

12.3.2 Pattern Matching

In the process of matching rules against the data base, several problems occur:

« Many rule situations may match data base facts

« Rules designed for a specific context may not be appropriate for larger context
« The pattern matching process may become very expensive

« The data base or set of rules may become unmanageably large.

The problem of multiple matches is important. Early systems simply resolved it by
scanning the data base in a linear fashion and choosing the first match, but this is
an ineffective strategy for large data bases, and has conceptual problems as well.
Accordingly, strategies have evolved for dealing with these conflicts. Like most
inference-controlling heuristics, their effectiveness can be domain-dependent,
they can introduce incompleteness into the system, and so on.

On the principle of least commitment, when there are many chances of errors,
one strategy is to apply the most general rule, defined by some metric on the com-

Sec. 12.3 Production Systems 399

IPR2021-00921
Apple EX1015 Page 411

400

ponents of the pattern. One simple such metric is the number of elements in a pat-
tern. Antithetical to this strategy is the heuristic of applying the most specific pat-
tern. This may be appropriate where the likelihood of making a false inference is
small, and where specific actions may be indicated (match (MAD DOG) with
(MAD DOG), not with (DOG)). Another popular but inelegant technique is to
exercise control over the order of production application by using state markers
which are inserted into the data base by right-hand sides and looked for by left-
hand sides.

1. A— BA <markerl1>.
2. A— BA <marker2>.
3. BA <markerl1>—C.
4. BA <marker2> — D.

Here if rule 1 is executed, ‘‘control goes to rule 3, i.e., rule 3 is now execut-
able, whereas if rule 2 is applied, ‘‘control goes to rule 4.”” Similarly, such control
paradigms as subroutining, iteration and co-routining may be implemented with
production sytems [Rychner 1978].

The use of connectives and special symbols can make matching become arbi-
trarily complex. Rules might be interpreted as allowing all partial matches in their
antecedent clauses [Bajcsy and Joshi 1978]. Thus

(4 BC)— (D)

is interpreted as
4BC)V (BC)V (UB)V (4C)V () (BYV (C) — (D)

where the leftmost actual match is used to compare the rule to others in the case of
conflicts.

The problem of large data bases is usually overcome by structuring them in
some way so that the interpreter applies the rules only to a subset of the data base
or uses a subset of the rules. This structuring undermines a basic principle of pure
rule-based systems: Control should be dependent on the contents of the data base
alone. Nevertheless, many systems divide the data base into two parts: an active
smaller part which functions like the original data base but is restricted in size, and
a larger data base which is inaccessible to the rule set in the active smaller part.
“Meta-rules’ have actions that move situation-action rules and facts from the
smaller data base to the larger one and vice versa. The incoming set of rules and
facts is presumably that which is applicable in the context indicated by the situation
triggering the meta-rule. This two-level organization of rules is used in “‘black-
board’’ systems, such as Hearsay for speech-understanding [Erman and Lesser
1975]. The meta-rules seem to capture our idea of ““mental set,” or ‘‘context,” or
“frame” (Section 10.3.1, [Minsky 1975]). The two data bases are sometimes re-
ferred to as short-term memory and long term memory, in analogy with certain
models of human memory.

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 412

12.3.3 An Example

We shall follow the actions of a production system for vision [Sloan 1977; Sloan
and Bajcsy 1979]. The intent here is to avoid a description of all the details (which
may be found in the References) and concentrate on the performance of the sys-
tem as reflected by a sample of its output. The program uses a production system
architecture in the domain of outdoor scenes. The goal is to determine basic
features of the scene, particularly the separation between sky and ground. The in-
terpreter is termed the ‘“‘observer’’ and the memory has a two-tiered structure: (1)
short term memory (STM) and (2) long term memory (LTM), a data base of all
facts ever known or established, structured to prefer access to the most recently
used facts. The image to be analyzed is shown in Fig. 12.4, and the action may be
followed in Fig. 12.5. The analysis starts with the initialization command

*(look 100000 100 nil)

This command directs the Observer to investigate all regions that fall in the size
range 100 to 100000, in decreasing order of size. The LTM is initialized to NIL.

our first look at (region 11)

x y rg yb wb size top bottom left right
35 2 24 29 6 2132 35 97 2 127

This report is produced by an image-processing procedure that produces
assertions about (region 11). This region is shown highlighted in Fig. 12.5c.

Progress Report

regions on this branch:
a1

context stack:

Fig. 12.4 Outdoor scene to be analyzed with production system.

Sec. 12.3 Production Systems 401

IPR2021-00921
Apple EX1015 Page 413

402

Fig. 12.5 Images corresponding to steps in production system analysis. (a) Tex-
ture in the scene. (b) Region 11 outlined. (¢) Sky-Ground separation. (d) Skyline.

nil

contents of short term memory:

((far-left (region 11)) (far-right (region 11))
(right (region 11) 127) (left (region 11) 2)
(bottom (region 11) 97) (top (region 11) 35)
(w-b (region 11) minus) (y-b (region 11) zero)
(r-g (region 11) zero) (size (region 11) 2132))

end of progress report

Note that gray-level information is represented as a vector in opponent color space
(Chapter 2), where the components axes are WHITE-BLACK (w-4), RED-
GREEN (r-g), and YELLOW-BLUE (y-b). Three values (plus, zero, minus) are
used for each component. The display above is generated once after every itera-
tion of the Observer. The report shows that (REGION 11) is being investigated;
there is no known context for this investigation; the information about (REGION
11) created by the image-processing apparatus has been placed in STM. The con-
text stack is for information only, and shows a trace of activated sets of rules.

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 414

i think that (far-left (region 11))

i think that (far-right (region 11))

i think that (right (region 11) 127)
i think that (left (region 11) 2)

i think that (bottom (region 11) 97)
i think that (top (region 11) 35)

i think that (size (region 11) 2132)

This portion of the trace shows assertions moving from STM to LTM. They
are reported because this is the first time they have been REMEMBERed (a special
procedure in the Observer).

Progress Report

regions on this branch:

(11)

context stack:

nil

contents of short term memory:
((color (region 11) black))

end of progress report

The assertions created from the region data structure have been digested,
and lead only to the conclusion that (REGION 11) is BLACK, based on a produc-
tion that looks like:

(w-b (region x) minus) A (~w (region x) zero)
A (b-w (region x) zero) — (color (region x) black)

Progress Report

regions on this branch:

(11

context stack:

nil

contents of short term memory:

((ground (region 11)) (shadow (region 11)))

end of progress report

The observer knows that things that are black are GROUND and SHADOW.
The facts it deduces about region 11 are again stored in the LTM.

Having discovered a piece of ground, the Observer has activated the
GROUND-RULES, and changed context. It now investigates the neighbors of
(REGION 11).

our first look at (region 16)

X y g y-b w-b size top bottom left right
58 2 23 30 3 1833 57 119 2 127

Sec. 12.3 Production Systems 403

IPR2021-00921
Apple EX1015 Page 415

404

(REGION 16) is a neighbor of (REGION 11), and the observer is trying to deter-
mine whether or not they are sufficiently similar, in both color and texture, to jus-
tify merging them.

Progress Report

regions on this branch:

(16 11)

context stack:

(ground)

contents of short term memory:
((texture-difference (region 16) (region 11)))
(color-similar (region 16) (region 11))

(distance (region 16) near) (ground (region 16))
(color (region 16 black))

end of progress report

The Observer decides that (REGION 16) is ground because it is at the bot-
tom of the picture.

The ground-growing process continues, until finally one of the neighbors of a
ground region is a piece of sky. The Observer will not immediately recognize this
region as sky, but will see that a depth discontinuity exists and that the border
between these two regions represents a section of three dimensional skyline.

our first look at (region 8)
x y rg yb wb size top bottom left right

27 2 13 13 33 394 15 38 2 57
Progress Report

regions on this branch:

(8131611)

context stack:

(ground ground ground)

contents of short term memory:

((new-neighbor (region 800) (far-left (region 8))

(right (region 8) 57) (left (region 8) 2) (bottom (region 8) 38)
(top (region 8) 15) (w-b (region 8) zero) (y-b (region 8) minus)
(r-g (region 8) minus) (size (region 8) 394))

end of progress report
texture descriptors for (region 8) are (54 50)

texture descriptors for (region 13) are (44 51)

Texture measurement is appropriate in the context of ground areas.

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 416

Progress Report
regions on this branch:
(8131611)
context stack:
(ground ground ground)
contents of short term memory:
((texture-similar (region 8) (region 13)) (color-difference
(region 8) (region 13)) (color (region 8) blue-green))

end of progress report

(REGION 8) passes the texture similarity test, but fails the color match.
Progress Report

regions on this branch:

(8131611)

context stack:

(ground ground ground)

contents of short term memory:

((darker (region 13) (region 8)) (brighter (region 8) (region
13))

(yellower (region 13) (region 8)) (bluer (region 8) (region 13))
(redder (region 13) 13)

(below (region 13) (region 8)) (above (region 8) (region 13)))

end of progress report
checking the border between (region 13) and (region 8)

Progress Report

regions on this branch:

(8131611)

context stack:

(skyline ground ground ground)

contents of short term memory:

((segments built) (skyline-segment ((117 42)) (region 13)
(region 8)) (skyline-segment ((14 40) (13 40)) (region 13)
(region 8)))

end of progress report

Progress Report

regions on this branch:
(8131611

context stack:

(skyline ground ground ground)

Sec. 12.3 Production Systems 405

IPR2021-00921
Apple EX1015 Page 417

406

contents of short term memory:
((peak (14 40)) (peak (17 42)))

end of progress report

Two local maxima have been discovered in the skyline. On the basis of a
depth judgment, these peaks are correctly identified as treetops.

The analysis continues until all the major regions have been analyzed. The
sky-ground separation is shown in Fig. 12.5a and skyline in Fig. 12.5e.

In most cases, complete analysis of the image follows from the context esta-
blished by the first (largest) region. This implies that initial scanning of such
scenes can be quite coarse, and very simple ideas about gross context are enough
to get started. Once started, inferences about local surroundings lead the
Observer’s attention over the entire scene, often returning many times to the same
part of the image, each time with a bit more knowledge.

12.3.4 Production System Pros and Cons

In their pure form, the productions of production systems are completely ‘‘modu-
lar,”” and are themselves independent of the control process. The data base of
facts, or situations, is unordered set accessed in undetermined order to find one
matching some rule. The rule is applied, and the system reports the search for a
matching situation and situation-action pair (rule). This completely unstructured
organization of knowledge could be a model for the human learning of “‘facts™
which become available for use by some associative mechanism that finds relevant
facts in our memories. The hope for pure production systems is that performance
will degrade noncatastrophically from the deletion of rules or facts, and that the
rules can interact in synergistic and surprising ways. A learning curve may be simu-
lated by the addition of productions. Thus one is encouraged to experiment with
how knowledge may best be broken up into disjoint fragments that interact to pro-
duce intelligent behavior.

Together with the modularity of productions in a simple system, there is a
corresponding simplicity in the overall control program. The pure controller sim-
ply looks at the data base and somehow finds a matching situation (left-hand side)
among the productions, applies the rule, and cycles. This simple structure remains
constant no matter how the rules change, so any nondeterminism in the perfor-
mance arises from the matcher, which may find different left hand side matches for
sets of assertions in the data base.

The productions usually have a syntax that is machine-readable. Their se-
mantics is similarly constrained, and so it begins to seem hopeful that a program
(perhaps fired up by a production) could reason about the rules themselves, add
them, modify them, or delete them. This is in contrast to the situation with pro-
cedurally embedded knowledge (Section 10.1.3), because it is difficult or impossible
for programs to answer general questions about other programs. Thus the claim is
that a production system can more easily reason about itself than can many other
knowledge representation systems.

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 418

Productions often interact in ways that are not foreseen. This can be an ad-
vantage or a drawback, depending on the behavior desired. The pattern-matching
control structure allows knowledge to be used whenever it is relevant, not only
when the original designer thought that it might be. Symbiotic interaction of
knowledge may also produce unforeseen insights. Production systems are a pri-
mary tool of knowledge engineering, an enterprise that attempts to encode and use
expert knowledge at such tasks as medical diagnosis and interpretation of mass
spectrograms [Lindsay et al. 1980; Buchanan and Mitchell 1978; Buchanan and
Feigenbaum 1978; Shortliffe 1976; Aikins 1980].

There are many who are not convinced that production systems really offer
the advantages they initially seem to. They use the following sorts of arguments.

The pure form of production system is almost never seen doing anything use-
ful. In particular, the production system is most naturally a forward-chaining infer-
ence system, and one must exercise restraints and guidelines on it to keep it from
running away and deducing lots of irrelevant facts instead of doing useful work. Of
course, production systems may be written to do backward chaining by hypothesiz-
ing a RHS and seeing which LHS must be true for the desired RHS to occur (the
process may be iterated to any depth). In practical systems based on production
systems, there is implicit or explicit ordering of production rules so the matcher
tries them in some order. Often the ordering is determined in a rather complex and
dynamic manner, with groups of related rules being more likely to be applied to-
gether, the most recently used rule not allowed to be reapplied immediately, and
so on. In fact, many production systems’s controllers have all the control structure
tricks mentioned above (and more) built into them; the simple and elegant *‘bag of
rules’’ ideal is inadequate for realistic examples. When the rules are explicitly writ-
ten with an idiosyncratic control structure in mind, the system can become unprin-
cipled and inexplicable.

On the same lines, notice how difficult it is to specify a time-ordered se-
quence of actions by a completely modular set of rewriting rules. It is unnatural to
force knowledge about processes that may contain iteration, tests, and recursion
into the form of independent situation—action rules. A view that is more easily de-
fensible is that knowledge about procedures for perception should be encoded as
(embedded in) computer procedures, not assertions or rules. The causal chain that
dictates that some actions are best performed before others is implicit in the
sequential execution of procedures, and the language constraints, such as iterate
and test, test and branch, or subroutine invocation, are all fairly natural ways to
think about solving certain problems. Production systems can in fact be made to
perform all these procedural-like functions, but only through an abrogation of the
ideal of modular, unordered, matching-oriented rule invocation which is the pro-
duction system ideal. The question turns into one of aesthetics; how to use produc-
tions in a good style, and to work with their philosophy instead of against it.

To summarize the previous two objections: Production-based knowledge sys-
tems may in practice be no more robust, easily modified, modular, extensible,
understandable, or self-understanding than any other (say, procedural) system un-
less great care is taken. After a certain level of complexity is reached, they are

Sec. 12.3 Production Systems 407

IPR2021-00921
Apple EX1015 Page 419

likely to be as opaque as any other scheme because of the control-structuring
methods that must be imposed on the pure production system form.

12.4 SCENELABELING AND CONSTRAINT RELAXATION

408

The general computational problem of assigning labels consistently to objects is
sometimes called the ‘“‘labeling problem,” and arises in many contexts, such as
graph and automata homomorphism, graph coloring, Latin square generation, and
of course, image understanding [Davis and Rosenfeld 1976; Zucker 1976; Haralick
and Shapiro 1979]. “‘Relaxation labeling,” ‘‘constraint satisfaction,” and
“‘cooperative algorithms’’ are natural implementations for labeling, and their po-
tential parallelism has been a very influential development in computer vision. As
should any important development, the relaxation paradigm has had an impact on
the conceptualization as well as on the implementation of processes.

Cooperating algorithms to solve the labeling problem are useful in low level
vision (e.g., line finding, stereopsis) and in intermediate-level vision (e.g., line-
labeling, semantics-based region growing). They may also be useful for the
highest-level vision programs, those that maintain a consistent set of beliefs about
the world to guide the vision process.

Section 12.4.1 presents the main concepts in the labeling problem. Section
12.4.2 outlines some basic forms that ““discrete labeling”” algorithms can take. Sec-
tion 12.4.3 introduces a continuing example, that of labeling lines in a line draw-
ing, and gives a mathematically well-behaved probabilistic ‘‘linear operator’’ label-
ing method. Section 12.4.4 modifies the linear operator to be more in accord with
our intuitions, and Section 12.4.5 describes relaxation as linear programming and
optimization, thereby gaining additional mathematical rigor.

12.4.1 Consistent and Optimal Labelings

All labeling problems have the following notions.

1. A set of objects. In vision, the objects usually correspond to entities to be la-
beled, or assigned a ‘“‘meaning.”

2. A finite set of relations between objects. These are the sorts of relations we saw

in Chapter 10; in vision, they are often geometric or topological relations
between segments in a segmented image. Properties of objects are simply
unary relations. An input scene is thus a relational structure.

3. A finite set of labels, or symbols associated with the ‘““meanings’ mentioned
above. In the simplest case, each object is to be assigned a single label. A label-
ing assigns one or more labels to (a subset of) the objects in a relational struc-
ture. Labels may be weighted with ‘‘probabilities’’; a (label, weight) pair can
indicate something like the “‘probability of an object having that label.”

4. Constraints, which determine what labels may be assigned to an object and
what sets of labels may be assigned to objects in a relational structure.

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 420

A basic labeling problem is then: Given a finite input scene (relational struc-
ture of objects), a set of labels, and a set of constraints, find a ““consistent label-
ing.”” That is, assign labels to objects without violating the constraints. We saw this
problem in Chapter 11, where it appeared as a matching problem. Here we shall
start with the discrete labeling of Chapter 11 and proceed to more general labeling
schemes.

As a simple example, consider the indoor scene of Fig. 12.6. The segmented
office scene is to have its regions labeled as Door, Wall, Ceiling, Floor, and Bin,
with the obvious interpretation of the labels. Here are some possible constraints,
informally stated. Note that these particular constraints are in terms of the input
relational structure, not the world from which the structure arose. A more com-
plex (but reasonable) situation arises if scene constraints must be derived from
rules about the three dimensional domain of the scene and the imaging process.
Unary constraints use object properties to constrain labels; n-ary constraints force
sets of label assignments to be compatible.

Unary constraints

1. The Ceiling is the single highest region in the image.
2. The Floor must be checkered.

DBFWC
DBFWC
DBFWC
DB
.'::W DB
Fw
c
DBFWC
(a)
c
¥ w
D
B
F

(c)

Fig. 12.6 A stylized “‘segmented office scene.” The regions are the objects to be
assigned labels D, B, F, W, C (Door, Bin, Floor, Wall, Ceiling). In (a), each ob-
ject is assigned all labels. In (b) unary constraints have been applied (see text). In
(¢), relational constraints have been applied, and a unique label for each region
results.

Sec. 12.4 Scene Labeling and Constraint Relaxation 409

IPR2021-00921
Apple EX1015 Page 421

410

N-ary constraints

3. A Wallis adjacent to the Floor and Ceiling.
4, A Door is adjacent to the Floor and a Wall.
5. A Binis adjacent to a Floor.

6. A Bin is smaller than a Door.

Obviously, there are many constraints on the appearance of segments in such
a scene; which ones to use depends on the available sensors, the ease of computa-
tion of the relations and their power in constraining the labeling. Here the applica-
tion of the constraints (Fig. 12.6) results in a unique labeling. Although the con-
straints of this example are purely for illustration, a system that actually performs
such labeling on real office scenes is described in [Barrow and Tenenbaum 1976].

Labelings may be characterized as inconsistent or consistent. A weaker notion
is that of an optimal labeling. Each of these adjectives reflects a formalizable pro-
perty of the labeling of a relational structure and the set of constraints. If the con-
straints admit of only completely compatible or absolutely incompatible labels,
then a labeling is consistent if and only if all its labels are mutually compatible, and
inconsistent otherwise. One example is the line labels of Section 9.5; line drawings
that could not be consistently labeled were declared “‘impossible.”” Such a black-
and-white view of the scene interpretation problem is convenient and neat, but it is
sometimes unrealistic. Recall that one of the problems with the line-labeling ap-
proach of Chapter 9 is that it does not cope gracefully with missing lines; strictly,
missing lines often mean ‘‘impossible’” line drawings. Such an uncompromising
stance can be modified by introducing constraints that allow more degrees of com-
patibility than two (wholly compatible or strictly incompatible). Once this is done,
both consistent and inconsistent labelings may be ranked on compatibility and
likelihood. It is possible that a formally inconsistent labeling may rank better than a
consistent but unlikely labeling.

Some examples are shown in Fig. 12.7. In 12.7b, the “‘inconsistent’’ labels
are not nonsensical, but can only arise from (a very unlikely) accidental alignment
of convex edges with three of the six vertices of a hexagonal hole in an occluding
surface. The vertices that arise are not all included in the traditional catalog of legal
vertices, hence the “‘inconsistent’ labeling. The ““floating cube’’ interpretation is
consistent, but the “‘sitting cube’ interpretation may be more likely if support and
gravity are important concepts in the system. In Fig.12.7¢c, the scene with a missing
line cannot be consistent according to the traditional vertex catalog, but the “‘in-
consistent’’ labels shown are still the most likely ones. Labelings are only *‘con-
sistent,’” “‘inconsistent,’” or “‘optimal’® with respect to a given relational structure
of objects (an input scene) and a set of constraints. These examples are meant to
be illustrative only.

12.4.2 Discrete Labeling Algorithms
Let us consider the problem of finding a consistent set of labels, taken from a

discrete finite set. This problem may be placed in an abstract algebraic context
[Haralick and Kartus 1978; Haralick 1978; Haralick et al. 1978]. Perhaps the sim-

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 422

LIy

Inconsistent Consistent Optimal

Scene labels labels labeling
Car Trees Trees

Road
Grass

Trees

Shadow

(a)

3 @
D) | — | [

Fig. 12.7 Three scenes (A, B, C) and their labelings. Labelings are only “‘consistent,”
“inconsistent,”” or “‘optimal’ with respect to a given relational structure of objects (an
input scene) and a set of constraints. These examples are meant to be illustrative only.

IPR2021-00921
Apple EX1015 Page 423

(c)

plest way to find a consistent labeling of a relational structure (we shall often say
““labeling of a scene™) is to apply a depth-first tree search of the labeling possibili-
ties, as in the backtracking algorithm (11.1).

Label an object in accordance with unary constraints.

Iterate until a globally consistent labeling is found:

Given the current labeling, label another object
consistently—in accordance with all constraints.

If the object cannot be labeled consistently, backtrack
and pick a new label for a previously labeled object.

This labeling algorithm can be computationally inefficient. First, it does not
prune the search tree very effectively. Second, if it is used to generate all con-
sistent labelings, it does not recognize important independences in the labels. That
is, it does not notice that conclusions reached (labels assigned) in part of the tree
search are usable in other parts without recomputation.

In a serial relaxation, the labels are changed one object at a time. After each
such change, the new labeling is used to determine which object to process next.

This technique has proved useful in some applications [Feldman and Yakimovsky
1974]. :

Assign all possible labels to each object in accordance with
unary constraints.
Iterate until a globally consistent labeling is found:

Somehow pick an object to be processed.

Modify its labels to be consistent with the current
labeling.

A parallel iterative algorithm adjusts all object labels at once; we have seen
this approach in several places, notably in the “Waltz filtering algorithm™ of Sec-
tion 9.5.

Assign all possible labels to each object in accordance with
unary constraints.

Iterate until a globally consistent labeling is found:

In parallel, eliminate from each object’s label set
those labels that are inconsistent with the current
labels of the rest of the relational structure.

A less structured version of relaxation occurs when the iteration is replaced
with an asynchronous interaction of labeled objects. Such interaction may be imple-
mented with multiple cooperating processes or in a data base with ““demons’ (Ap-

412 Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 424

pendix 2). This method of relaxation was used in MSYS [Barrow and Tenenbaum
1976]. Here imagine that each object is an active process that knows its own label
set and also knows about the constraints, so that it knows about its relations with
other objects. The program of each object might look like this.

IfT have just been activated, and my label set is not
consistent with the labels of other objects in the
relational structure, then I change my label set to be
consistent, else I suspend myself.

Whenever I change my label set, I activate other objects
whose label set may be affected, then I suspend myself.

To use such a set of active objects, one can give each one all possible labels
consistent with the unary constraints, establish the constraints so that the objects
know where and when to pass on activity, and activate all objects.

Constraints involving arbitrarily many objects (i.e., constraints of arbitrarily
high order) can efficiently be relaxed by recording acceptable labelings in a graph
structure [Freuder 1978]. Each object to be labeled initially corresponds to a node
in the graph, which contains all legal labels according to unary constraints. Higher
order constraints involving more and more nodes are incorporated successively as
new nodes in the graph. At each step the new node constraint is propagated, that is,
the graph is checked to see if it is consistent with the new constraint. With the in-
troduction of more constraints, node pairings that were previously consistent may
be found to be inconsistent. As an example consider the following graph coloring
problem: color the graph in Fig. 12.8 so that neighboring nodes have different
colors. It is solved by building constraints of increasingly higher order and pro-
pagating them. The node constraints are given explicitly as shown in Fig. 12.8a,
but the higher-order constraints are given in functional implicit form; prospective
colorings must be tested to see if they satisfy the constraints. After the node con-
straints are given, order two constraints are synthesized as follows: (1) make a
node for each node pairing; (2) add all labelings that satisfy the constraint. The
result is shown in Fig. 12.8b. The single constraint of order three is synthesized in
the same way, but now the graph is inconsistent: the match *“ ¥, Z: Red,Green”’ is
ruled out by the third order legal label set (RGY,GRY). To restore consistency the
constraint is propagated through node (¥,Z) by deleting the inconsistent labelings.
This means that the node constraint for node Z is now inconsistent. To remedy
this, the constraint is propagated again by deleting the inconsistency, in this case
the labeling (Z:G). The change is propagated to node (X,Z) by deleting (X,Z:
Red,Green) and finally the network is consistent.

In this example constraint propagation did not occur until constraints of
order three were considered. Normally, some constraint propagation occurs after
every order greater than one. Of course it may be impossible to find a consistent
graph. This is the case when the labels for node Z in our example are changed from
(G, V) to (G,R). Inconsistency is then discovered at order three.

It is quite possible that a discrete labeling algorithm will not yield a unique la-
bel for each object. In this case, a consistent labeling exists using each label for the

Sec. 12.4 Scene Labeling and Constraint Relaxation 413

IPR2021-00921
Apple EX1015 Page 425

414

(c)

Fig. 12.8 Coloring a graph by building constraints of increasingly higher order.

object. However, which of an object’s multiple labels goes with which of another
object’s multiple labels is not determined. The final enumeration of consistent la-
belings usually proceeds by tree search over the reduced set of possibilities remain-
ing after the relaxation.

Convergence properties of relaxation algorithms are important; convergence
means that in some finite time the labeling will ““settle down” to a final value. In
discrete labeling, constraints may often be written so that the label adjustment
phase always reduces the number of labels for an object (inconsistent ones are el-
iminated). In this case the algorithm clearly must converge in finite time to a con-
sistent labeling, since for each object the label set must either shrink or stay stable.
In schemes where labels are added, or where labels have complex structure (such
as real number ‘‘weights” or ‘‘probabilities’’), convergence is often not
guaranteed mathematically, though such schemes may still be guite useful. Some
probabilistic labeling schemes (Section 12.4.3) have provably good convergence
properties.

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 426

It is possible to use relaxation schemes without really considering their
mathematical convergence properties, their semantics (What is the semantics of
weights attached to labels—are they probabilities?), or a clear definition of what
exactly the relaxation is to achieve (What is a good set of labels?). The fact that
some schemes can be shown to have unpleasant properties (such as assigning
nonzero weights to each of two inconsistent hypotheses, or not always converging
to a solution), does not mean that they cannot be used. It only means that their
behavior is not formally characterizable or possibly even predictable. As relaxation
computations become more common, the less formalizable, less predictable, and
less conceptually elegant forms of relaxation computations will be replaced by
better behaved, more thoroughly understood schemes.

12.4.3 A Linear Relaxation Operator and a Line Labeling Example

The Formulation

We now move away from discrete labeling and into the realm of continuous
weights or supposition values on labels. In Sections 12.4.3 and 12.4.4 we follow
closely the development of [Rosenfeld et al. 1976]. Let us require that the sum of
label weights for each object be constrained to sum to unity. Then the weights are
reminiscent of probabilities, reflecting the “‘probability that the label is correct.”
When the labeling algorithm converges, a label emerges with a high weight if it oc-
curs in a probable labeling of the scene. Weights, or supposition values, are in fact
hard to interpret consistently as probabilities, but they are suggestive of likelihoods
and often can be manipulated like them.

In what follows p refers to probability-like weights (supposition values)
rather than to the value of a probability density function. Let a relational structure
with n objects be given by q,, i=1, ..., n, each with m discrete labels Ay, ..., A .
The shorthand p; (\) denotes the weight, or (with the above caveats) the ‘‘proba-
bility™” that the label A (actually \ , for some k) is correct for the object a;. Then the
probability axioms lead to the following constraints,

0<p Q) g1 (12.14)
%p,-) =1 (12.15)

The labeling process starts with an initial assignment of weights to all labels
for all objects [consistent with Egs. (12.14) and (12.15)]. The algorithm is parallel
iterative: It transforms all weights at once into a new set conforming to Egs.
(12.14) and (12.15), and repeats this transformation until the weights converge to
stable values.

Consider the transformation as the application of an operator to a vector of la-
bel weights. This operator is based on the comparibilities of labels, which serve as
constraints in this labeling algorithm. A compatibility p; looks like a conditional
probability.

:': Py AWA) =1 forall i, j, A' (12.16)

Sec. 12.4 Scene Labeling and Constraint Relaxation 415

IPR2021-00921
Apple EX1015 Page 427

416

pi WA =1 iff A\ =X\, elseO. 12.17)

The p;; (\|]\") may be interpreted as the conditional probability that object a; has la-
bel A given that another object a; has label A'. These compatibilities may be gath-
ered from statistics over a domain, or may reflect a priori belief or information.

The operator iteratively adjusts label weights in accordance with other
weights and the compatibilities. A new weight p;(\) is computed from old weights
and compatibilities as follows.

W) =% ¢; {Z p; WADp;, (M)} (12.18)
) A

The ¢;; are coefficients such that
T ey=1 (12.19)
I

In Eq. (12.18), the inner sum is the expectation that object a; has label A, given the
evidence provided by object a;. p; (A) is thus a weighted sum of these expecta-
tions, and the ¢;; are the weights for the sum.

To run the algorithm, simply pick the p; and ¢; , and apply Eq. (12.18) re-
peatedly to the p; until they stop changing. Equation (12.18) is in the form of a ma-
trix multiplication on the vector of weights, as shown below; the matrix elements
are weighted compatibilities, the c;p;;. The relaxation operator is thus a matrix; if it
is partitioned into several component matrices, one for each set of non-interacting
weights, linear algebra yields proofs of convergence properties [Rosenfeld et al.
1976]. The iteration for the reduced matrix for each component does converge,
and converges to the weight vector that is the eigenvector of the matrix with eigen-
value unity. This final weight vector is independent of the initial assignments of la-
bel weights; we shall say more about this later.

An Example

Let us consider the input line drawing scene of Fig. 12.9a used in [Rosenfeld
et.al. 1976]. The line labels given in Section 9.5 allow several consistent labels as
shown in Fig. 12.9b-e, each with a different physical interpretation.

In the discrete labelling ‘‘filtering’’ algorithm presented in Section 9.5 and
outlined in the preceding section, the relational structure is imposed by the neigh-
bor relation between vertices induced by their sharing a line. Unary constraints are
imposed through a catalog of legal combinations of line labels at vertices, and the
binary constraint is that a line must not change its label between vertices. The algo-
rithm eliminates inconsistent labels.

Let us try to label the sides of the triangle a;, a3, and a3 in Fig. 12.9 with the
solid object edge labels {>, <, +,—}. To do this requires some “‘conditional prob-
abilities” for compatibilities p; (A [\"), so let us use those that arise if all eight in-
terpretations of Fig. 12.9 are equally likely. Remembering that

S(X|Y) = Lp(% (12.20)

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 428

a3

(a) (b)

A DA
A

(d)

+ + Fig. 12.9 A triangle and its possible
labels. (a) Edge names. (b) Floating.
g +
(e)

(c) Flap folded up. (d) Triangular hole.
(e) Flap folded down.

and taking p (X, ¥) to mean the probability that labels X and ¥ occur consecutively
in clockwise order around the triangle, one can derive Table 12.2, Of course, we
could choose other compatibilities based on any considerations whatever as long as
Egs. (12.16) and (12.17) are preserved.

Table 12.2 shows that there are two noninteracting components, {—,>} and
{+,<]. Consider the first component that consists of the weight vector

[p1(>), pi(=), pa(3), pa(=), p3(>), p3(=)] (12.21)

The second is treated similarly. This vector describes weights for the subpopula-
tion of labelings given by Fig. 12.9b and c. The matrix M of compatibilities has
columns of weighted p;;.

cupn(>1>) cnpn(>1[>)
cupn(> 1) capu(>1-)
copn(>>) cppn(>|>) -
M= 12 capn>1-) - s
cispia(>1>) cnpp(>1]>)

cinpun(> =) capn(>1-)

Sec. 12.4 Scene Labeling and Constraint Relaxation 417

IPR2021-00921
Apple EX1015 Page 429

418

Table 12.2

Mooh pOa A pOGAY)

> > e 7

> - }% i

— > y

= 2 d d

> < 0 0

> o+ 0 0

- < 0 0

-+ 0 0

< > 0 0

+ > 0 0

< - 0 0

+ - 0 0

< < Ya z

< + Y I

+ A y

+ 4+ 0 i}

If we let ¢;; = /s forall/, j, then

1 LB %K
0 1 0 1 0

0
‘ 1
1 1 0 %%
M= —
2110 01110
B % ho1oo
1 01 0 0 1

An analytic eigenvector calculation (Appendix 1) shows that the M of Eq.
(12.23) yields (for any initial weight vector) the final weight vector of

[4, ', %, Y, %, '] (12.24)

Thus each line of the population in the component we chose (Fig. 12.9b and ¢) has
label > with “‘probability’’ %, —with ‘‘probability’’ . In other words, from an ini-
tial assumption that all labelings in Fig. 12.9b and ¢ were equally likely, the system
of constraints has ‘‘relaxed”’ to the state where the ‘‘most likely’’ labeling is that of
Fig. 12.9b, the floating triangle.

This relaxation method is a crisp mathematical technique, but it has some
drawbacks. It has good convergence properties, but it conwverges to a solution en-
tirely determined by the compatibilities, leaving no room for preferences or local
scene evidence to be incorporated and affect the final weights. Further, the algo-
rithm perhaps does not exactly mirror the following intuitions about how relaxa-
tion should work.

(12.23)

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 430

1. Increase p;(\) if high probability labels for other objects are compatible with
assignment of A to a;.

2. Decrease p;{\) if high probability labels are incompatible with the assignment
of A to a;.

3. Labels with low probability, compatible or incompatible, should have little
influence on p,(\).

However, the operator of this section decreases p;(\) the most when other labels
have both low compatibility and low probability. Thus it accords with (1) above,
but not with (2) or (3). Some of these difficulties are addressed in the next section.

12.4.4 A Nonlinear Operator

The Formulation

If compatibilities are allowed to take on both positive and negative values,
then we can express strong incompatibility better and obtain behavior more like
(1), (2), and (3) just above. Denote the compatibility of the event *‘label A on a;”
with the event “‘label X on a,” by r;;(\, A"). If the two events occur together often,
ry should be positive. If they occur together rarely, r; should be negative. If they
are independent, r; should be 0. The correlation coefficient behaves like this, and
the compatibilities of this section are based on correlations (hence the the notation
ry for compatibilities). The correlation is defined using the covariance.

cov(X, N =pWQX YY) —pX)p(Y)

Now define a quantity ¢ which is like the standard deviation

ao(X) =[x — &) (12.25)
then the correlation is the normalized covariance
Y _ cov(X, V) '
cor(X, Y) Mo (1) (12.26)

This allows the formulation of an expression precisely analogous to Eq.
(12.18), only that r; instead of p;; is used to obtain a means of calculating the posi-
tive or negative change in weights.

g W) =T, [T ry0, ApR)] (12.27)
J A
In Egs. (12.27)-(12.29) the superscripts indicate iteration numbers. The weight
change (Eq. 12.27) could be applied as follows,
pEO) = pRR) + @MW) (12.28)

but then the resultant label weights might not remain nonnegative. Fixing this in a
straightforward way yields the iteration equation

20N + g%)]
Zp;(k)()\)[l = q,-(k)(?\)]
A

ARl DY (12.29)

Sec. 12.4 Scene Labeling and Constraint Relaxation 419

IPR2021-00921
Apple EX1015 Page 431

420

The convergence properties of this operator seem to be unknown, and like
the linear operator it can assign nonzero weights to maximally incompatible label-
ings. However, its behavior can accord with intuition, as the following example
shows.

An Example

Computing the covariances and correlations for the set of labels of Fig.
12.9b-¢ yields Table 12.3.

Figure 12.10 shows the nonlinear operator of Eq.(12.29) operating on the ex-
ample of Fig. 12.9. Figure 12.10 shows several cases.
1. Equal initial weights: convergence to apriori probabilities (¥, s, Vs,).

2. Equal weights in the component {>,—): convergence to ‘‘most probable”
floating triangle labeling.

3. Slight bias toward a flap labeling is not enough to overcome convergence to the
““most probable”” labeling, as in (2).

Like (3), but greater bias elicits the ““improbable’’ labeling.

5. Contradicatory biases toward ‘‘improbable’ labelings: convergence to “‘most
probable’’ labeling instead.

6. Like (5), but stronger bias toward one *‘improbable”’ labeling elicits it.

7. Bias toward one of the components {>,—}, {<,+} converges to most prob-
able labeling in that component.

8. Like (7), only biased to less probable labelling in a component.

12.4.5 Relaxation as Linear Programming

The Idea

Linear programming (LP) provides some useful metaphors for thinking
about relaxation computations, as well as actual algorithms and a rigorous basis
[Hummel and Zucker 1980]. In this section we follow the development of [Hinton
1979].

Table 12.3

Ay As COVO\;,)\2) COI’()\],)\2)

s g Toa hs

> - Yoa 5//105
- > Yoa 5/~/1035
= = —Yea —
> < — 764 —75

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 432

Ly

3y a3
LE]
(a)
After 2to 3 After 20 to 30
Case Initial weights iterations iterations Limit
025 0.25 0.25 0.25 03 03 02 02 0.33 0.33 0.17 0.17 0.37 0.37 0.13 0.13
{1 025 0.25 025 0.25 03 03 02 02 0.33 0.33 0.17 0.17 0.37 0.37 0.13 0.13
025 0.25 0.25 0.26 03 03 02 02 0.33 0.33 0.17 0.17 0.37 0.37 0.13 0.13
0.5 0 05 0 0.8 0 02 0 098 0 0.2 0 1 0 0 0
(2) 0.5 0 05 0 0.8 0 02 0 098 0 0.2 0 1 0 0 0
0.5 0 05 0 0.8 0 02 0 098 0 0.2 0 ¥ 0 0 0
0.5 0 05 0 062 0 037 0 1 0 1] 0 1 0 0 0
(3) 0.4 0 06 0 049 0 051 O 097 0 003 0 1 0 0 0
0.5 0 05 0 062 0 037 0 1 0 0 0 1 0 0 o
0.5 0 05 0 064 0 036 O 1 0 0 0 1 0 0 0
(4) 0.3 0 07 0 03 0 064 O 007 0 093 0 0 0 1 0 =
0.5 0 05 1] 064 0 036 O 1 0 0 0 1 0 0 1]
0.3 0 07 0 0.5 0 05 0 095 0 005 O 1 0 0 0
{5) 0.3 0o 07 0 0.5 0 05 0 095 0 005 0 1 0 0 0
0.5 0 05 (1] 08 0 016 0O 1 0 0 0 1 0 0 1]
0.2 0 08 0 0.3 0 07 0 006 0 094 0 0 o 1]
(6) 0.3 0 07 0 051 0 049 O 1 0 0 0 1 0 0 o] 3
0.5 0 05 0 08 0 017 0 1 0 0 0 1 0 0 0
03 02 03 02 0.41 0.13 0.32 0.14 09 0 002 0 1 4] 1] 0
(7) 03 02 03 0.2 0.41 0.13 0.32 0.14 098 0 002 O 1 0 o 0
03 02 03 02 0.41 013 0.32 0.14 098 0 002 O 1 1] 0 0
03 02 03 0.2 0.38 0.17 0.29 0.16 1 0 0 0 1 1] 0 0
18) 0.25 0.25 0.25 0.25 0.35 0.20 0.25 0.20 1 0 0 0 1 0 0 0
02 02 04 02 0.23 0.16 045 0.16 0.2 0o 08 0 0 0 1 0
(c)
Fig. 12.10 The nonlinear operator produces labelings for the triangle in (a). (b) shows

how the label weights are displayed, and (c) shows a number of cases (see text).

IPR2021-00921
Apple EX1015 Page 433

422

To put relaxation in terms of linear programming, we use the following trans-

lations.

LABEL WEIGHT VECTORS =>PQOINTS IN EUCLIDEAN N-SPACE. Each
possible assignment of a label to an object is a Aypothesis, to which a weight
(supposition value) is to be attached. With N hypotheses, an N-vector of
weights describes a labeling. We shall call this vector a (hypothesis or label)
weight vector. For mlabels and n objects, we need at most Euclidean nm-space.

CONSTRAINTS == INEQUALITIES. Constraints are mapped into linear ine-
gualities in hypothesis weights, by way of various identities like those of “‘fuzzy
logic’” [Zadeh 1965]. Each inequality determines an infinite half-space. The
weight vectors within this half-space satisfy the constraint. Those outside do
not. The convex solid that is the set intersection of all the half-spaces includes
those weight vectors that satisfy all the constraints: each represents a ‘‘con-
sistent’’ labeling. In linear programming terms, each such weight vector is a
feasible solution. We thus have the usual geometric interpretation of the linear
programming problem, which is to find the best (optimal) consistent (feasible)
labeling (solution, or weight vector). Solutions should have integer-valued (1-
or 0-valued) weights indicating convergence to actual labelings, not probabilis-
tic ones such as those of Section 12.4.3, or the one shown in Fig. 12.10c, case 1.

HYPOTHESIS PREFERENCES ==> PREFERENCE VECTOR. Often some
hypotheses (label assignments) are preferred to others, on the basis of a priori
knowledge, image evidence, and so on. To express this preference, make an
N-dimensional preference vector, which expresses the relative importance
(preference) of the hypotheses. Then
« The preference of a labeling is the dot product of the preference vector
and the weight vector (it is the sum for all hypotheses of the weight of
each hypothesis times its preference).

« The preference vector defines a preference direction in N-space. The op-
timal feasible solution is that one ‘‘farthest” in the preference direc-
tion. Let x and y be feasible solutions; they are N-dimensional weight
vectors satisfying all constraints. If z = x — y has a component in the
positive preference direction, then x is a better solution than y, by the
definition of the preference of a labeling.

It is helpful for our intuition to let the preference direction define a ‘‘down-
ward’’ direction in N-space as gravity does in our three-space. Then we wish to
pick the lowest (most preferred) feasible solution vector.

LABELING = OPTIMAL SOLUTION. The relaxation algorithm must solve
the linear programming problem—find the best consistent labeling. Under the
conditions we have outlined, the best solution vector occurs generally at a ver-
tex of the N-space solid. This is so because usually a vertex will be the ““lowest”’
part of the convex solid in the preference direction. It is a rare coincidence that
the solid “‘rests on a face or edge,”” but when it does a whole edge or face of the
solid contains equally preferred solutions (the preference direction is normal to

Ch. 72 Inference

IPR2021-00921
Apple EX1015 Page 434

the edge or face). For integer solutions, the solid should be the cenvex hull of
integer solutions and not have any vertices at noninteger supposition values.

The “‘simplex algorithm’’ is the best known solution method in linear pro-
gramming. It proceeds from vertex to vertex, seeking the one that gives the op-
timal solution. The simplex algorithm is not suited to parallel computation, how-
ever, so here we describe another approach with the flavor of hill-climbing optimi-
zation. Basically, any such algorithm moves the weight vector around in N-space,
iteratively adjusting weights. If they are adjusted one at a time, serial relaxation is
taking place; if they are all adjusted at once, the relaxation is parallel iterative. The
feasible solution solid and the preference vector define a ‘‘cost function” over all
N-space, which acts like a potential function in physics. The algorithm tries to
reach an optimum (minimum) value for this cost function. As with many optimi-
zation algorithms, we can think of the algorithm as trying to simulate (in N-space)
a ball bearing (the weight vector) rolling along some path down to a point of
minimum gravitational (cost) potential. Physics helps the ball bearing find the
minimum; computer optimization techniques are sometimes less reliable.

Translating Constraints to Inequalities

The supposition values, or hypothesis weights, may be encoded into the in-
terval [0, 1], with 0 meaning “‘false,”” 1 meaning ‘‘true.”” The extension of weights
to the whole interval is reminiscent of “‘fuzzy logic,”” in which truth values may be
continuous over some range [Zadeh 1965]. Asin Section 12.4.3, we denote suppo-
sition values by p (-); H, 4, B, and C are label assignment events, which may be
considered as hypotheses that the labels are correctly assigned. =, \/, A, = and
<= are the usual logical connectives relating hypotheses. The connectives allow
the expression of complex constraints. For instance, a constraint might be ““Label
x as ‘y" if and only if z is labeled ‘w’ or ¢ is labelled ‘.’ This constraint relates
three hypotheses: A;: (xis “)°), hy: (zis “w), hs: (gis ““v"). The constraint is
then 1, <> (h,\/ h3).

Inequalities may be derived from constraints this way.

Negation. p (H) = 1 — p("(H)).
2. Disjunction. The sums of weights of the disjunct are greater than or equal to

one. p(4\ BV ...V O) gives the inequality p (4) + p(B) + ... + p(C) =
1.

3. Conjunction. These are simply separate inequalities, one per conjunct. In par-
ticular, a conjunction of disjunctions may be dealt with conjunct by conjunct,
producing one disjunctive inequality per conjunct.

4. Arbitrary expressions. These must be put into conjunctive normal form
(Chapter 10) by rewriting all connectives as /\’s and \/’s. Then (3) applies.

As an example, consider the simple case of two hypotheses 4 and B, with the
single constraint that 4 ==> B. Applying rules 1 through 4 results in the following
five inequalities in p (4) and p (B); the first four assure weights in [0, 1]. The fifth
arises from the logical constraint, since 4 => Bis the same as B\/ “(4).

Sec. 12.4 Scene Labeling and Constraint Relaxation 423

IPR2021-00921
Apple EX1015 Page 435

424

0< pl4)
p(d) €1
0< p(B)
p(B) <1
pB)+ U —-pd) =21 or p(B)=pl4)

These inequalities are shown in Fig. 12.11. As expected from the = con-
straint, optimal feasible solutions exist at: (1,1) or (4,8); (0,1) or ("{(4),B); (0,0)
or ("(4), “(B)). Which of these is preferred depends on the preference vector. If
both its components are positive, (4,B) is preferred. If both are negative, ("(4),
"(B)) is preferred, and so on.

A Solution Method

Here we describe (in prose) a search algorithm that can find the optimal feasi-
ble solution to the linear programming problem as described above. The descrip-
tion makes use of the mechanical analogy of an N-dimensional solid of feasible
solutions, oriented in N-space so that the preference vector induces a ‘‘downward’’
direction in space. The algorithm attempts to move the vector of hypothesis
weights to the point in space representing the feasible solution of maximum prefer-
ence. It should be clear that this is a point on the surface of the solid, and unless the
preference vector is normal to a face or edge of the solid, the point is a unique
“lowest’’ vertex.

To establish a potential that leads to feasible solutions, one needs a measure
of the infeasibility of a weight vector for each constraint. Define the amount a vec-
tor violates a constraint to be zero if it is on the feasible side of the constraint hy-
perplane. Otherwise the violation is the normal distance of the vector to the hyper-
plane. If h; is the coefficient vector of the i hyperplane (Appendix 1) and w the
weight vector, this distance is

d=w-h, (12.30)

p (@) =p (P}
(1,0) (LUE /\\Q

T e ————

Fig. 12.11 The feasible region for two
hypotheses A and B and the constraint A
2(Q)>0 B. Optima} solutions may occur at the .
three vertices. The preferred vertex will
be that one farthest in the direction of
: the preference vector, or lowest if the
=1 preference vector defines ““down.”

PP =0 p (P

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 436

If we then define the infeasibility as

2
I= Zi (12.31)
i 2
then 61/0d; = d; is the rate the infeasibility changes for changes in the violation.
The force exerted by each constraint is proportional to the normal distance from
the weight vector to the feasible region defined by that constraint, and tends to pull
the weight vector onto the surface of the solid.

Now add a weak “‘gravity-like’” force in the preference direction to make the
weight vector drift to the optimal vertex. At this point an optimization program
might perform as shown in Fig. 12.12.

Figure 12.12 illustrates a problem: The forces of preference and constraints
will usually dictate a minimum potential outside the solid (in the preference direc-
tion). Fixes must be applied to force the weight vector back to the closest (presum-
ably the optimum) vertex. One might round high weights to 1 and low ones to 0, or
add another local force to draw vectors toward vertices.

Examples

An algorithm based on the principles outlined in the preceeding section was
successfully used to label scenes of ‘‘puppets’” such as Fig. 12.13 with body parts
[Hinton 1979].

The discrete, consistency-oriented version of line labeling may be extended
to incorporate the notion of optimal labelings. Such a system can cope with the ex-
plosive increase in consistent labelings that occurs if vertex labels are included for
cases of missing lines, accidental alignment, or ‘“‘two-dimensional’” objects such as
folded paper. It allows modeling of the fact that human beings do not ‘‘see™ all
possible interpretations of scenes with accidental alignments. If labelings are given

T

Best vertex

Best vertex

Feasible
region

Feasible
region

T

Preference
vector

T

Preference
S vector

{/ s
(a) (b)

Fig. 12.12 In (a), the weight vector moves from S to rest at T, under the com-
bined influence of the preferences and the violated constraints. In (b), conver-
gence is speeded by making stronger preferences, but the equilibrium is farther
away from the optimal vertex.

Sec. 12.4 Scene labeling and Constraint Relaxation 425

IPR2021-00921
Apple EX1015 Page 437

!.bestset;

Al BOT TRUNK NECK Bl UPPERARM D2 F2 THIGH 13 K2
NECK HEAD C1 TRUNK Al

€1 BOT HEAD NECK Bl

D2 TOP UPPERARM TRUNK Al LOWERARM E4
E4 TOP LOWERARM UPPERARM D2 HAND -
F2 TOP UPPERARM TRUNK Al LOWERARM G2
G2 TOP LOWERARM UPPERARM F2 HAND H2
HZ TOP HAND LOWERARM G2

I3 TOP THIGH TRUNK Al CALF J4

J4 BOT CALF THIGH I3 FOOT -

K2 BOT THIGH TRUNK Al CALF L4

L4 BOT CALF THIGH K2 FOOT -

=)
=

'trytointerpret [trunk as upright importance=1];
Itrytointerpret [thigh as upright importance=1];

I.bestset;
A2 TOP TRUNK NECK - UPPERARM 12 K1 THIGH D3 F3
81 BOT NECK HEAD C1 TRUNK -

Cl BOT HEAD NECK Bl

D3 TOP THIGH TRUNK A2 CALF E3

E3 TOP CALF THIGH D3 FOOT -

F3 TOP THIGH TRUNK A2 CALF E3

G3 TOP CALF THIGH F3 FOOT H1

H1 TOP FOOT CALF 63

12 TOP UPPERARM TRUNK A2 LOWERARM J3
J3 BOT LOWERARM UPPERARM 12 HAND -
K1 BOT UPPERARM TRUNK A2 LOWERARM L3
L3 BOT LOWERARM UPPERARM K1 HAND -

(b)

!.bestset;

Al TOP HEAD NECK Bl

Bl TOP NECK HEAD Al TRUNK C2

C2 TOP TRUNK NECK Bl UPPERARM Hl1 J1 THIGH D3 F3
D3 TOP THIGH TRUNK C2 CALF E3

E3 TOP CALF- THIGH D3 FQOT -

F3 TOP THIGH TRUNK C2 CALF 63

G3 TOP CALF THIGH F3 FOOT-

H1 TOP UPPERARM TRUNK C2 LOWERARM I1
I1 TOP LOWERARM UPPERARM H1 HAND -
Jl TOP LOWERARM TRUNK C2 LOWERARM K4
K4 BOT LOWERARM UPPERARM J1 HAND L6
L6 BOT HAMND LOWERARM K4

(e)

Fig. 12.13 Puppet scenes interpreted by linear programming relaxation. (a)
shows an upside down puppet. (b) is the same input along with preferences to in-
terpret the trunk and thighs as upright; these result in an interpretation with trunk

and neck not connected. In (c), the program finds only the ““best’” puppet, since it
was only expecting one.

426 Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 438

costs, then one can include labels for missing lines and accidental alignment as
high-cost labels, rendering them usable but undesirable. Also, in a scene-analysis
system using real data, local evidence for edge appearance can enhance the a priori
likelihood that a line should bear a particular label. If such preferences can be ex-
tracted along with the lines in a scene, the evidence can be used by the line
labeling algorithm.

The inconsistency constraints for line labels may be formalized as follows.
Each line and vertex has one label in a consistent labeling; thus for each line L and
vertex J,

p(L haslabel LLABEL) = 1 (12.32)

all line labels

p(J haslabel VLABEL) = 1 (12.33)

all vertex labels

Of course, the VLABELS and LLABELS in the above constraints must be
forced to be compatible (if L has LLABEL, JLABEL must agree with it). For a line
I and a vertex Jat its end,

p(L hasLLABEL) = X p(J haslabel VLABEL) (12.34)

all VLABELS
giving LLABEL tof

This constraint also enforces the coherence rule (a line may not change its label
betwen vertices).

Using these constraints, linear programming relaxation labeled the triangle
example of Fig. 12.7 as shown in Fig. 12.14, which shows three cases.

1. Preference 0.5 for each of the three junction label assignments (hypotheses)
corresponding to the floating triangle, 0 preference for all other junction and
line label hypotheses: converges to floating triangle.

2. Like (1), but with equal preferences given to the junction labels for the tri-
angular hole interpretation, 0 to all other preferences.

3. Preference 3 to the convex edge label for a 2 overrides the three preferences of
1/2 for the floating triangle of case (1). All preferences but these four were 0.

Some Extensions

The translation of constraints to inequalities described above does not
guarantee that they produce a set of half-spaces whose intersection is the convex
hull of the feasible integer solutions. They can produce ‘‘noninteger optima,” for
which supposition values are not forced to 1 or 0. This is reminiscent of the
behavior of the linear relaxation operator of Section 12.4.3, and may not be objec-
tionable. If it is, some effort must be expended to cope with it. Here is an example

Sec. 12.4 Scene Labeling and Constraint Relaxation 427

IPR2021-00921
Apple EX1015 Page 439

B g B.E

pla,=>) . - -
61 52 .
oeplay =)
o
(a) {b}
After 10 After 20 After 30 to 40
Case iterations iterations iterations
(1) 065 022 001 014 090 0.07 0 004 099 0 0 0
065 022 0.01 0.4 090 007 0 0.04 099 0 0 0
065 022 0.01 0.4 080 007 0 0.04 099 0 0 o
(2) 039 08 0 0 0.14 095 O 0 0 098 0 O
039 08 0 0 0.14 095 O 0 0 099 0 o0
039 08 0 0 0.14 095 0 0 0 098 0 0O
(3) 056 048 O 0.05 081 023 0 0 099 0 0 0 i
0 034 0 0.99 0 015 0 0.99 0 0 0 0.99
05 043 0 0.05 081 023 0 0 099 O 0 o

]

Fig. 12.14 As in Fig. 12.10, the triangle of (a) is to be assigned labels, and the changing
label weights are shown for three cases in (c) using the format of (b). Supposition values
for junction labels were used as well, but are not shown. All initial supposition values
were 0.

of the problem. Assume three logical constraints, “(4 A B), "(BA ©), and "(CA
A). Suppose A, B, and C have equal preferences of unity (the preference vector is
(1,1, 1)). Translating the constraints yields

p4) +p(B) £ 1
p(B)+p(C) £1 (12.35)
p(C) +p(4) <1
The best feasible solution has a total preference of 14, and is
pA)=p(B)=p(C)="% (12.36)

Here the ““best’ solution is outside the convex hull of the integer solutions (Fig.
12.15).

The basic way to ensure integer solutions is to use stronger constraints than
those arising from the simple rules given above. These may be introduced at first,
or when some noninteger optimum has been reached. These stronger constraints
are called cutting planes, since they cut off the noninteger optima vertices. In the
example above, the obvious stronger constraint is

p4) +pB)+p(C) L1 (12.37)

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 440

p(B) =0

A
Pl pla)
plA) + p(B) <1
A) +plB) <1
aesiig plC) plA) +p(B) +p(C) <1
plC)
plA)=0
(72
p(B) +plC) <1
p(B) p(B)
(a) {b)

Fig. 12.15 (a) shows part of the surface of the feasible solid with constraints - (4 & B),
- (B & (), ~(C & A), and the non-integer vertex where the three halfspaces intersect.
(b) shows a cutting plane corresponding to the constraint “‘at most one of 4, 8, or C’ that
removes the non-integer vertex.

which says that at most one of 4, B, and Cis true (this is a logical consequence of
the logical constraints). Such cutting planes can be derived as needed, and can be
guaranteed to eliminate all noninteger optimal vertices in a finite number of cuts
[Gomory 1968; Garfinkel and Nemhauser 1972]. Equality constraints may be
introduced as two inequality constraints in the obvious way: This will constrain the
feasible region to a plane.

Suppose that one desires ‘‘weak rules,’’ which are usually true but which can
be broken if evidence demands it? For each constraint arising from such a rule,
add a hypothesis to represent the situation where the rule is broken. This
hypothesis is given a negative preference depending on the strength of the rule,
and the constraint enhanced to include the possibility of the broken rule. For
example, if a weak rule gives the constraint P \/ Q, create a hypothesis H
equivalent to " (P\/ Q) = ("(P) A ~(Q)), and replace the constraint with P\/ Q\/
H. Then by ‘“‘paying the cost” of the negative preference for H, we can have nei-
ther Pnor Qtrue.

Hypotheses can be created as the algorithm proceeds by having demon-like
“‘generator hypotheses.”” The demon watches the supposition value of the genera-
tor, and when it becomes high enough, runs a program that generates explicit
hypotheses. This is clearly useful; it means that all possible hypotheses do not need
to be generated in advance of any scene investigation. The generator can be given a
preference equal to that of the best hypotheses that it can generate.

Relaxation sometimes should determine a real number (such as the slope of
a line) instead of a truth value. A generator-like technique can allow the method to
refine the value of real-valued hypotheses. Basically, the idea is to assign a
(Boolean-valued) generator hypothesis to a range of values for the real value to be

Sec. 2.4 Scene Labeling and Constraint Relaxation 429

IPR2021-00921
Apple EX1015 Page 441

determined. When this generator triggers, more hypotheses are generated to get a
finer partition of the range, and so on.

The enhancements to the linear programming paradigm of relaxation give
some idea of the flexibility of the basic idea, but also reveal that the method is not
at all cut-and-dried, and is still open to basic investigation. One of the questions
about the method is exactly how to take advantage of parallel computation capabili-
ties. Each constraint and hypothesis can be given its own processor, but how
should they communicate? Also, there seems little reason to suppose that the
optimization problems for this form of relaxation are any easier than they are for
any other multidimensional search, so the method will encounter the usual prob-
lems inherent in such optimization. However, despite all these technical details
and problems of implementation, the linear programming paradigm for the relaxa-
tion computation is a coherent formalization of the process. It provides a relatively
“classical’” context of results and taxonomy of problems [Hummel and Zucker
1980].

12.5 ACTIVEKNOWLEDGE

430

Active knowledge systems [Freuder 1975] are characterized by the use of pro-
cedures as the elementary units of knowledge (as opposed to propositions or data
base items, for instance). We describe how active knowledge might work, because
it is a logical extreme of the procedural implementation of propositions. In fact,
this style of control has not proven influential; some reasons are given below.

Active knowledge is notionally parallel and heterarchical. Many different
procedures can be active at the same time depending on the input. For this reason
active knowledge is more easily applied to belief maintenance than to planning; it
is very difficult to organize sequential activity within this discipline. Basically, each
procedure is responsible for a “‘chunk” of knowledge, and knows how to manage it
with respect to different visual inputs. Control in an active knowledge system is
completely distributed. Active knowledge can also be viewed as an extension of
the constraint relaxation problem; powerful procedures can make arbitrary de-
tailed tests of the consistency between constraints.

Each piece of active knowledge (program module) knows which other
modules it depends on, which depend on it, which it can complain to, and so forth.
Thus the choice of ““what to do next’’ is contained in the modules and is not made
by an exterior executive.

We describe HYPER, a particular active knowledge system design which il-
lustrates typical properties of active knowledge [Brown 1975]. HYPER provides a
less structured mechanism for construction and exploration of hypotheses than
does LP-relaxation. Using primitive control functions of the system, the user may
write programs for establishing hypotheses and for using the conclusions so
reached. The programs are ‘‘procedurally embedded’’ knowledge about a problem
domain (e.g. how events relate one to another, what may be conjectured or in-
ferred from a clue, or how one might verify a hypothesis).

When HYPER is in use on a particular task in a domain, hypotheses are
created, or instantiated, on the basis of low-level input, high-level beliefs, or any

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 442

reason in between. The process of establishing the initial hypotheses leads to a
propagation of activity (creation, verification, and disconfirmation of hypotheses).
Activation patterns will generally vary with the particular task, in heterarchical
fashion. A priority mechanism can rank hypotheses in importance depending on
the data that contribute to them. Generally, the actions that occur are conditioned
by previous assumptions, the data, the success of methods, and other factors.
HYPER can be used for planning applications and for multistep vision processing
as well as inference (procedures then should generate parallel activity only under
tight control). We shall thus allow HYPER to make use of a context-oriented data
base (Section 13.1.1). It will use the context mechanism to implement ‘‘alternative
worlds’’ in which to reason.

12.5.1 Hypotheses

A HYPER hypothesis is the attribution of a predicate to some arguments; its name
is always of the form (PREDICATE ARGUMENTS). Sample hypothesis names
could be (HEAD-SHAPED REGION1), (ABOVE A B), (TRIANGLE (X1,Y1)
(X2,Y2) (X3,Y3)). A hypothesis is represented as a data structure with four com-
ponents; the status, contents, context, and links of the hypothesis.

The status represents the state of the HYPER’s knowledge of the truth of the
hypothesis; it may be T (rue), F(alse), (in either case the hypothesis has been esta-
blished) or P(ending). The contents are arbitrary; hypotheses are not just truth-
valued assertions. The hypothesis was asserted in the data-base context given in
context. The links of a hypothesis H are pointers to other hypotheses that have
asked that H be established because they need H’s contents to complete their own
computations.

12.5.2 HOW-TO and SO-WHAT Processes

Two processes are associated with every predicate P which appears as the predicate
of a hypothesis. Their names are (HOW-TO P) and (SO-WHAT P). In them is em-
bedded the procedural knowledge of the system which remains compiled in from
one particular task to another in a problem domain. (HOW-TO P) expresses how
to establish the hypothesis (P arguments). It knows what other hypotheses must
be established first, the computations needed to establish (P arguments), and so
forth. It has a backward-chaining flavor. Similarly, (SO-WHAT P) expresses the
consequences of knowing P: what hypotheses could possibly now be established
using the contents of (P arguments), what alternative hypotheses should be ex-
plored if the status of (P arguments) is F, and so on. The feeling here is of forward
chaining.

12.5.3 Control Primitives

HYPER hypotheses interact through primitive control statements, which affect the
investigation of hypotheses and the ramification of their consequences. The primi-

Sec. 12.5 Active Knowledge 431

IPR2021-00921
Apple EX1015 Page 443

432

tives are used in HOW-TO and SO-WHAT programs together with other general
computations. Most primitives have an argument called priority, which expresses
the reliability, urgency, or importance of the action they produce, and is used to
schedule processes in a nonparallel computing environment (implemented as a
priority job queue [Appendix 21). The primitives are GET, AFFIRM, DENY, RE-
TRACT, FAIL, WONDERIF, and NUDGE.

GET is to ascertain or establish the status and contents of a hypothesis. It
takes a hypothesis H and priority PRI as arguments and returns the status and con-
tents of the hypothesis. If H’s status is T or F at the time of execution of the state-
ment, the status and contents are returned immediately. If the status is P (pend-
ing), or if H has not been created yet, the current HOW-TO or SO-WHAT program
calling GET (call it CURPROG) is exited, the proper HOW-TO job (i.e., the one
that deals with H’s predicate) is run at priority PRI with argument H, and a link is
planted in H back to CURPROG. When H is established, CURPROG will be reac-
tivated through the link mechanism.

AFFIRM is to assert a hypothesis as true with some contents.
AFFIRM (H,CONT,PRI) sets H’s status to T, its contents to CONT, activates its
linked programs and then executes the proper SO-WHAT program on it. The
newly activated SO-WHAT programs are performed with priority PRI.

DENY is to assert that a hypothesis with some contents is false.
DENY (H,CONT,PRI) is like AFFIRM except that no activation though links oc-
curs, and the status of H is of course set to F.

ASSUME is to assert a hypothesis as true hypothetically.
ASSUME (H,CONT,PRI) uses the data base context mechanism to create a new
context in which H is AFFIRMED; the original context in which the ASSUME
command is given is preserved in the context field of H. H itself is stored into a
context-dependent item named LASTASSUMED; this corresponds to remember-
ing a decision point in PLANNER. By using the information in LASTASSUMED
and the primitive FAIL (see below), simple backtracking can take place in a tree of
contexts.

RETRACT(H) establishes as false a hypothesis that was previously AS-
SUMEd. RETRACT is always carried out at highest priority, on the principle that it
is good to leave the context of a mistaken assumption as quickly as possible. Infor-
mation (including the name of the context being exited) is transmitted back to the
original context in which H was ASSUMEGd by passing it back in the fields of H.

FAIL just RETRACTS the hypothesis that is the value of the item LASTAS-
SUMED in the present context.

WONDERIF is to pass suggested contents to HOW-TO processes for
verification. It can be useful if verifying a value is easier than computing it from
scratch, and is the primitive that passes substantive suggestions. WONDERIF(H1,
CONT, H2, PRI) approximates the notion ‘“‘H2 wonders if H1 has contents
CONT.”

NUDGE is to wake up HOW-TO programs. NUDGE(H,PRI) runs the
HOW-TO program on H with priority PRI. It is used to awaken hypotheses that
might be able to use information just computed. Typically it is a SO-WHAT pro-

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 444

gram that NUDGEs others, since the SO-WHAT program is responsible for using
the fact that a hypothesis is known.

12.5.4 Aspects of Active Knowledge

The active knowledge style of computation raises a number of questions or prob-
lems for its users.

A hypothesis whose contents may attain a large range can be established for
some contents and thus express a perfectly good fact (e.g., that a given location of
an x-ray does not contain evidence for a tumor) but such a fact is usually of little
help when we want to reason about the predicate (about the location of tumors).
The SO-WHAT program for a predicate should be written so as to draw conclu-
sions from such negative facts if possible, and from the conclusions endeavor to
establish the hypothesis as true for some contents. Usually, therefore, it would set
the status of the hypothesis back to P and initiate a new line of attack, or at its dis-
cretion abandon the effort and start an entirely new line of reasoning.

Priorities

A major worry with the scheme as described is that priorities are used to
schedule running of HOW-TO and SO-WHAT processes, not to express the im-
portance {or supposition value) of the hypotheses. The hypothesis being investi-
gated has no way to communicate how important it is to the program that operates
on it, so it is impossible to accumulate importance through time. A very significant
fact may lie ignored because it was given to a self-effacing process that had no way
of knowing it had been handed something out of the ordinary.

The obvious answer is to make a supposition value a field of the hypothesis,
like its status or contents—a hypothesis should be given a measure of its impor-
tance. This value may be used to compute execution priorities for jobs involving it.
This solution is used in some successful systems [Turner 1974].

Structuring Knowledge

One has a wide choice in how to structure the ‘‘theory’’ of a complex prob-
lem in terms of HYPER primitives, predicates, arguments, and HOW-TQ and SO-
WHAT processes. The set of HOW-TO and SO-WHAT processes specify the com-
plete theory of the tasks to be performed; HYPER encourages one to consider the
interrelations between widely separated and distinct-sounding facts and conjec-
tures about a problem, and the structure it imposes on a problem is minimal.

Since HOW-TO and SO-WHAT processes make explicit references to one
another via the primitives, they are not ““modular’’ in the sense that they can easily
be plugged in and unplugged. If HOW-TO and SO-WHAT processes are invoked
by patterns, instead of by names, some of the edge is taken off this criticism. Re-
moving a primitive from a program could modify drastically the avenues of activa-
tion, and the consequences of such a modification are sometimes hard to foresee in
a program that logically could be running in parallel.

Writing a large and effective program for one domain may not help to write a
program for another domain. New problems of segmenting the theory into predi-
cates, and quantifying their interactions via the primitives, setting up a priority

Sec. 12.5 Active Knowledge 433

IPR2021-00921
Apple EX1015 Page 445

434

structure, and so forth will occur in the new domain, and it seems quite likely that
little more than basic utility programs will carry over between domains.

12.1

12.2

12.3

12.4
12.5
12.6

12.7
12.8

12.9
12.10

12.11

12.12

12.13

12.14

EXERCISES

In the production system example, write a production that specifies that blue re-
gions are sky using the opponents color notation. How would you now deal with
blue regions that are lakes (a) in the existing color-only system; (b) in a system
which has surface orientation information?

This theorem was posed as a challenge for a clausal automatic theorem prover
[Henschen et al. 1980]. It is obviously true: what problems does it present?

{3)) (Plx) <= P
<= [[Bx0K)} = (W@ <=
{{Ex) (¥ Q) = 0]
<= [[Bx)P)] = [dy) (@GN

Prove that the operator of Eq.(12.18) takes probability vectors into probability vec-
tors, thus deriving the reason for Eq.(12.19).

Verify (12.23).
How do the ¢; of (12.18) affect the labeling? What is their semantics?

If events X and Y always co-occur, then p (X, ¥Y) = p(X) = p(Y). What is the
correlation in this case? If Xand Y never co-occur, what values of p (X) and p(Y)
produce a minimum correlation? If X and Y are independent, how is p (X, Y) re-
lated to p (X) and p(¥)? What is the value of the correlation of independent X and
r?

Complete Table 12.3.

Use only the labels of Fig. 12.9b and c to compute covariances in the manner of
Table 12.3. What do you conclude?

Show that Eq.(12.29) preserves the important properties of the weight vectors.

Think of some rival normalization schemes to Eq.(12.29) and describe their pro-
perties.

Implement the linear and nonlinear operators of Section 12.4.3 and 12.4.4 and in-
vestigate their properties. Include your ideas from Exercise 12.10.

Show a case that the nonlinear operator of Eq.(12.29) assigns nonzero weights to
maximally incompatible labels (those with r; = —1).

How can a linear programming relaxation such as the one outlined in sec. 12.4.5
cope with faces or edges of the feasible solution solid that are normal to the prefer-
ence direction, yielding several solutions of equal preference?

In Fig. 12.11, what (P, Q) solution is optimal if the preference vector is (1,4)?
@, 1D?2(1,D2Q0,-1)?

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 446

References

REFERENCES

AIKINS, J. S. “Prototypes and production rules: a knowledge representation for compulter consulta-
tions.” Ph.D. dissertation, Computer Science Dept., Stanford Univ., 1980.

Bajcsy, R. and A. K. JosHi. ““A partially ordered world model and natural outdoor scenes.”” In CFS,
1978.

BArRrROW, H. G.and J. M. TENENBAUM. ““MSYS: a system for reasoning about scenes.” Technical Note
121, Al Center, SRI International, March 1976.

BracHMAN, R. J. “*On the epistemological status of semantic networks.” In Associative Networks:
Representation and Use of Knowledge by Computers, N. V. Findler (Ed.). New York: Academic
Press, 1979, 3-50.

BrowN, C. M. ““The HYPER system.”” DAI Working Paper 9, Dept. of Artificial Intelligence, Univ.
Edinburgh, July 1975.

BucHANAN, B. G. and E. A. FEIGENBAUM. “DENDRAL and meta-DENDRAL: their applications di-
mensions.” Artificial Intelligence 11,2, 1978, 5-24.

BucHANAN, B. G. and T. M. MitcHELL. ‘“‘Model-directed learning of production rules.” In Pattern
Directed Inference Systems, D. A. Waterman and F. Hayes-Roth (Eds.). New York: Academic
Press, 1978.

CoLLINS, A. “‘Fragments of a theory of human plausible reasoning.”” Theoretical Issues in Natural
Language Processing-2, Univ. lllinois at Urbana-Champaign, July 1978, 194-201.

Davis, R. and J. KING. ““An overview of production systems.”” AIM-271, Stanford Al Lab, October
1975.

Davis, L. S. and A. ROSENFELD. “*Applications of relaxation labelling 2. Spring-loaded template match-
ing.”” Technical Report 440, Computer Science Center, Univ. Maryland, 1976,

DELIYaNNI, A. and R. A. KowaLskl. “‘Logic and semanatic networks.” Comm. ACM 22, 3, March
1979, 184-192.

Erman, L. D. and V. R. LESSER. ‘A multi-level organization for problem solving using many, diverse,
cooperating sources of knowledge.”” Proc., 4th [JCAI, September 1975, 483-490.

FeLDMaAN, J. A.and Y. YakiMovsky. “‘Decision theory and artificial intelligence: . A semantics-based
region analyser.”” Artificial Intelligence 5, 4, 1974, 349-371.

Fikes, R. E. ““*Knowledge representation in automatic planning systems.”’ In Perspectives on Computer
Seience, A. Jones (Ed). New York: Academic Press, 1977.

Fikes, R. E. and N. J. NiLsson. ““STRIPS: a new approach to the application of theorem proving to
problem solving.’” Artificial Intelligence 2, 3/4, 1971, 189-208.

FREUDER, E. C. *“A computer system for visual recognition using active knowledge.”” Ph.D. disserta-
tion, MIT, 1975.

Freuper, E. C. *“‘Synthesizing constraint expressions.” Comm. ACM 21, 11, November 1978,
958-965.

GARFINKEL, R. S. and G. L. NEMHAUSER. Integer Programming. New York: Wiley, 1972,

GoMory, R. E. **An algorithm for integer solutions to linear programs.” Bull. American Mathemarical
Society 64, 1968, 275-278.

HARALICK, R. M. “*The characterization of binary relation homomorphisms.” International J. General
Systems 4, 1978, 113-121.

HaRrALICK, R. M. and J. S. KARTUS. *‘ Arrangements, homomorphisms, and discrete relaxation.”” JEEE
Trans, SMC 8, 8, August 1978, 600-612.

HaraLIick, R. M. and L. G. SHAPIRO. ““The consistent labeling problem: Part 1. [EEE Trans. PAMI 1,
2, April 1979, 173-184.

435

IPR2021-00921
Apple EX1015 Page 447

436

HARALICK, R. M., L. S. Davis, and A. ROSENFELD. “‘Reduction operations for constraint satisfaction.”
Information Sciences 14,1978, 199-219.

Haves, P. J. ““In defense of logic.”” Proc., 5th IJCAI, August 1977, 559-565.

HAYEs, P. J. “Naive physics: ontology for liquids.”” Working paper, Institute for Semantic and Cogni-
tive Studies, Geneva, 1978a.

HAYEs, P. J. ““The naive physics manifesto.”” Working paper, Institute for Semantic and Cognitive Stu-
dies, Geneva, 1978b.

HAYES, P. J. ““The logic of frames.”” The Frame Reader. Berlin: DeGruyter, in press, 1981.
HenDRIX, G. G. ““Encoding knowledge in partitioned networks.”” In Associative Networks: Representa-

tion and Use of Knowledge by Computers, N. V. Findler (Ed.). New York: Academic Press, 1979,
51-92.

HENsSCHEN, L., E. Lusk, R. OVERBEEK, B. SMiTH, R. VEROFF, S. WINKER, and L. Wos. “‘Challenge
Problem 1. SIGART Newsletter 72, July 1980, 30-31.

HERBRAND, J. **Recherches sur la théorie de la démonstration.” Travaux de la Societe des Sciences et des
Lettres de Varsovie, Classe 111, Sciences Mathematiques et Physiques, 33, 1930.

HewitT, C. “‘Description and theoretical analysis (using schemata) of PLANNER” (Ph.D. disserta-
tion). AI-TR-258, Al Lab, MIT, 1972.

HintoN, G. E. *“‘Relaxation and its role in vision.”” Ph.D. dissertation, Univ. Edinburgh, December
1979.

HumMEL, R. A. and S. W. ZUCKER. **On the foundations of relaxation labelling processes.”” TR-80-7,
Computer Vision and Graphics Lab, Dept. of Electrical Engineering, McGill Univ., July 1980.

KowaLskl, R. A. “Predicate logic as a programming language.”” Information Processing 74. Amsterdam:
North-Holland, 1974, 569-574.

KowaLski, R. A. Logic for Problem Solving. New York: ElsevierNorth-Holland (Al Series), 1979.

Linpsay, R. K., B. G. BucHaNAN, E. A. FEIGENBAUM, and J. LEDERBERG. Applications of Artificial Intelli-
gence 10 Chemistry: The DENDRAL Project. New York: McGraw-Hill, 1980.

LOVELAND, D. “‘A linear format for resolution.’” Proc., IRIA 1968 Symp. on Automatic Demonstra-
tion, Versailles, France. New York: Springer-Verlag, 1970.

LOVELAND, D. Automated Theorem Proving: A Logical Basis. Amsterdam: North-Holland, 1978.

McCarTHY, J. “‘Circumscription induction—a way of jumping to conclusions.” Unpublished report,
Stanford Al Lab, 1978.

McCaRTHY, J. and P. J. HAYES. “‘Some philosophical problems from the standpoint of artificial intelli-
gence.” In Mi4, 1969.

McDEeRMOTT, D. *“The PROLOG phenomenon.”” SIGART Newsletter 72, July 1980, 16-20.
MENDELSON, E. Introduction to Mathematical Logic. Princeton, NJ: D. Van Nostrand, 1964.
Minsky, M. L. ““A framework for representing knowledge.” In PCV, 1975.

NEWELL, A., J. SHAW, and H. SiMON. “‘Empirical explorations of the logic theory machine.”” In Comput-
ers and Thought, E. Feigenbaum and J. Feldman (Eds.). New York: McGraw-Hill, 1963.

NILsSON, N. J. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971.
NILssON, N. J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.

REITER, R. **On reasoning by default.” Theoretical [ssues in Natural Language Processing-2, Univ. 1lli-
nois at Urbana-Champaign, July 1978, 210-218.

RoOBINSON, J. A. *‘A machine-oriented logic based on the resolution principle.” J. ACM 12, 1, January
1965, 23-41.

ROSENFELD, A., R. A, HUMMEL and S. W. ZuckeR. “Scene labelling by relaxation operations.”” JEEE
Trans. SMC 6, 1976, 420.

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 448

References

RYCHNER, M. ““An instructable production system: basic design issues.”” In Pattern Directed Inference
Systems, D. A. Waterman and F. Hayes-Roth (Eds.). New York: Academic Press, 1978.

SHORTLIFFE, E. H. Computer-Based Medical Consultations: MYCIN. New York: American Elsevier,
1976.

SLoan, K. R. “World model driven recognition of natural scenes.”” Ph.D. dissertation, Moore School
of Electrical Engineering, Univ. Pennsylvania, June 1977,

SLoaN, K. R. and R. Bajcsy. ““World model driven recognition of outdoor scenes.” TR40, Computer
Science Dept., Univ. Rochester, September 1979.

SussMaN, G. J. and D. MCDERMOTT. ““Why conniving is better than planning.”” Al Memo 255, Al Lab,
MIT, 1972.

TURNER, K. J. ““Computer perception of curved objects using a television camera.” Ph.D. dissertation,
School of Artificial Intelligence, Univ. Edinburgh, 1974,

WARREN, H. D., L. PEREIRA, and F. PEREIRA. ““PROLOG: The language and its implementation com-
pared with LISP.”” Proc., Symp. on Artificial Intelligence and Programming Languages,
SIGPLAN/SIGART, 1977, SIGPLAN Notices 12, 8, August 1977, 109-115.

WATERMAN, D. A. and F. HAYES-ROTH (Eds.). Pattern-Directed Inference Systems. New York: Academic
Press, 1978.

WiNnoGRAD, T. *‘Extended inference modes in reasoning by computer systems.”’ Proc., Conf. on Induc-
tive Logic, Oxford Univ., August 1978.

ZADEH, L. ““Fuzzy sets.”” Information and Control 8, 1965, 338-353.

ZUCKER, S. W. “‘Relaxation labelling and the reduction of local ambiguities.”” Technical Report 451,
Computer Science Dept., Univ. Maryland, 1976.

437

IPR2021-00921
Apple EX1015 Page 449

Goal Achievement 13

438

Goal Achievement and Vision

Goals and plans are important for visual processing.
Some skilled vision actually is like problem solving.

Vision for information gathering can be part of a planned sequence of actions.

Planning can be a useful and efficient way to guide many visual computations,
even those that are not meant to imply ‘‘conscious’’ cognitive activity.

The artificial intelligence activity often called planning traditionally has dealt

with “‘robots’’ (real or modeled) performing actions in the real world. Planning has
several aspects.

Avoid nasty ‘‘subgoal interactions’’ such as getting painted into a corner.

Find the plan with optimal properties (least risk, least cost, maximized ‘‘good-
ness’’ of some variety).)

Derive a sequence of steps that will achieve the goal from the starting situation.

Remember effective action sequences so that they may be applied in new situa-
tions.

Apply planning techniques to giving advice, presumably by simulating the
advisee’s actions and making the next step from the point they left off.

Recover from errors or changes in conditions that occur in the middle of a plan.

Traditional planning research has not concentrated on plans with information

gathering steps, such as vision. The main interest in planning research has been
the expensive and sometimes irrevocable nature of actions in the world. Our goal is
to give a flavor of the issues that are pursued in much more detail in the planning

IPR2021-00921
Apple EX1015 Page 450

literature [Nilsson 1980; Tate 1977; Fahlman 1974; Fikes and Nilsson 1971; Fikes
etal. 1972a; 1972b; Warren 1974; Sacerdoti 1974; 1977; Sussman 1975].

Planning concerns an active agent and its interaction with the world. This
conception does not fit with the idea of vision as a passive activity. However, one
claim of this book is that much of vision is a constructive, active, goal-oriented
process, replete with uncertainty. Then a model of vision as a sequence of deci-
sions punctuated by more or less costly information gathering steps becomes more
compelling. Vision often is a sequential (recursive, cyclical) process of alternating
information gathering and decision making. This paradigm is quite common in
computer vision [Shirai 1975; Ballard 1978; Mackworth 1978; Ambler et al. 1975].
However, the formalization of the process in terms of minimizing cost or maximiz-
ing utility is not so common [Feldman and Sproull 1977; Ballard 1978; Garvey
1976]. This section examines the paradigms of planning, evaluating plans with
costs and utilities, and how plans may be applied to vision processing.

13.1 SYMBOLIC PLANNING

Sec. 13.1

In artificial intelligence, planning is usually a form of problem-solving activity in-
volving a formal ‘‘simulation” of a physical world. (Planning, theorem proving,
and state-space problem solving are all closely related.) There is an agent (the
“robot>”) who can perform actions that transform the state of the simulated world.
The robot planner is confronted with an initial world state and a set of goals to be
achieved. Planning explores world states resulting from actions, and tries to find a
sequence of actions that achieves the goals. The states can be arranged in a tree
with initial state as the root, and branches resulting from applying different actions
in a state. Planning is a search through this tree, resulting in a path or sequence of
actions, from the root to a state in which the goals are achieved. Usually there is a
metric over action sequences; the simplest is that there be as few actions as possi-
ble. More generally (Section 13.2), actions may be assigned some cost which the
planner should minimize.

13.1.1 Representing the World

This section illustrates planning briefly with a classical example —block stacking. In
one simple form there are three blocks initially stacked as shown on the left in Fig.
13.1, to be stacked as shown.

This task may be ‘‘formalized’’ [Bundy 1978] using only the symbolic objects
Floor, 4, B, and C. (A formalization suitable for a real automated planner must be
much more careful about details than we shall be). Assume that only a single block
can be picked up at a time. Necessary predicates are CLEAR (X) which is true if a
block may be put directly on X and which must be true before X may be picked up,
and ON(X, Y), which is true if X is resting directly on Y. Let us stipulate that the
Floor is always CLEAR, but otherwise if ON(X, Y) is true, Yis not CLEAR. Then
the initial situation in Fig. 13.1 is characterized by the following assertions.

Symbolic Planning 439

IPR2021-00921
Apple EX1015 Page 451

440

a2, B

Floor Floor
Initial stacks Goal stack Fig. 13.1 A simple block stacking task.

INITIAL STATE: ON(C,A), ON(A, Floor), ON(B, Floor),
CLEAR(C), CLEAR(B), CLEAR (Floor)

The goal state is one in which the following two assertions are true.
GOAL ASSERTIONS: ON(A,B), ON(B,C)

With only these rules, the formalization of the block stacking world yields a very
““loose” semantics. (The task easily translates to sorting integers with some re-
strictions on operations, or to the “‘seriation’’ task of arranging blocks horizontally
in order of size, or a host of others.)

Actions transform the set of assertions describing the world. For problems of
realistic scale, the representation of the tree of world states is a practical problem.
The issue is one of maintaining several coexisting ‘‘hypothetical worlds’’ and rea-
soning about them. This is another version of the frame problem discussed in sec.
12.1.6. One way to solve this problem is to give each assertion an extra argument,
naming the hypothetical world (usually called a situation [Nilsson 1980; McCarthy
and Hayes 1969]) in which the assertion holds. Then actions map situations to situ-
ations as well as introducing and changing assertions.

An equivalent way to think about (and implement) multiple, dependent, hy-
pothetical worlds is with a tree-structured context-oriented data base. This idea is a
general one that is useful in many artificial intelligence applications, not just sym-
bolic planning. Such data bases are included in many artificial intelligence
languages and appear in other more traditional environments as well. A context-
oriented data base acts like a tree of data bases; at any node of the tree is a set of
assertions that makes up the data base. A new data base (context) may be spawned
from any context (data base) in the tree. All assertions that are true in the spawn-
ing (ancestor) context are initially true in the spawned (descendant) context.
However, new assertions added in any context or deleted from it do not affect its
ancestor. Thus by going back to the ancestor, all data base changes performed in
the descendent context disappear.

Implementing such a data base is an interesting exercise. Copying all asser-
tions to each new context is possible, but very wasteful if only a few changes are
made in each context. The following mechanism is much more efficient. The root
or initial context has some set of assertions in it, and each descendant context is
merely an add list of assertions to add to the data base and a delefe list of assertions
to delete. Then to see if an assertion is true in a context, do the following.

1. Ifthe context is the root context, look up “‘as usual.”

2. Otherwise, if the assertion is on the add list of this context, return true. If the
assertion is on the delete list of this context, return false.

Ch. 13 Goal Achievement

IPR2021-00921
Apple EX1015 Page 452

3. Otherwise, recursively apply this procedure to the ancestor of this context.

In a general programming environment, contexts have names, and there is
the facility of executing procedures ““in’’ particular contexts, moving around the
context tree, and so forth. However, in what follows, only the ability to look up
assertions in contexts is relevant.

13.1.2 Representing Actions

Represent an action as a triple.
ACTION ::= [PATTERN, PRECONDITIONS, POSTCONDITIONS].

Here the pattern gives the name of the action and names for the objects with which
it deals—its ‘‘formal parameters.”’ Preconditions and postconditions may use the
formal variables of the pattern. In a sense, the preconditions and postconditions
are the ““body” of the action, with subroutine-like ‘‘variable bindings’’ taking
place when the action is to be performed. The preconditions give the world states
in which the action may be applied. Here the preconditions are assumed simply to
be a list of assertions all of which must be true. The postconditions describe the
world state that results from performing the action. The context-oriented data
base of hypothetical worlds can be used to implement the postconditions.

POSTCONDITIONS ::= [ADD-LIST, DELETE-LISTI.

An action is then performed as follows.

1. Bind the pattern variables to entities in the world, thus binding the associated
variables in the preconditions and postconditions.

2. If the preconditions are met (the bound assertions exist in the data base), do
the next step, else exit reporting failure.

3. Delete the assertions in the delete list, add those in the add list, and exit re-
porting success.

Here is the Move action for our block-stacking example.

Move Object X from Y 1o Z
PATTERN PRECONDITIONS DELETE-LIST ADD-LIST

Move(X,Y,Z) CLEAR(X) ON(X,Y) ON(X,Z)
CLEAR(2) CLEAR(2Z) CLEAR(Y)
ON(X,Y)

Here X, Y, and Z are all variables bound to world entities. In the initial state
of Fig. 13.1, Move(C,4,Floor) binds X to C, Yto 4, Z to Floor, and the precondi-
tions are satisfied; the action may proceed.

However, notice two things.

Sec. 13.1 Symbolic Planning 441

IPR2021-00921
Apple EX1015 Page 453

442

1. The action given above deletes the CLEAR (Floor) assertion that always
should be true. One must fix this somehow; putting CLEAR (Floor) in the
add-list does the job, but is a little inelegant.

2. What about an action like Move(C,4,0)? It meets the preconditions, but
causes trouble when the add and delete lists are applied. One fix here is to keep
in the data base (“‘world model’’) a set of assertions such as Different (4,58),
Different(4,Floor), . . . , and to add assertions such as Different (X,Z) to the
preconditions of Move.

Such housekeeping chores and details of axiomatization are inherent in ap-
plying basically syntactic, formal solution methods to problem solving. For now,
let us assume that CLEAR (Floor) is never deleted, and that Move(X, ¥,Z) is ap-
plied only if Zis different from Xand Y.

13.1.3 Stacking Blocks

In the block-stacking example, the goal is two simultaneous assertions, ON (4, B)
and ON(B,C). One solution method proceeds by repeatedly picking a goal to work
on, finding an operator that moves closer to the goal, and applying it. In this case of
only one action the question is how to apply it—what to move where. This is
answered by looking at the postconditions of the action in the light of the goal. The
reasoning might go like this: ON(B,C) can be made true if Xis Band Zis C. That is
possible in this state if Yis A; all preconditions are satisfied, and the goal ON(B,C)
can be achieved with one action.

Part of the world state (or context) tree the planner must search is shown in
Fig. 13.2, where states are shown diagrammatically instead of through sets of asser-
tions. Notice the following things in Fig. 13.2.

Trying to achieve ON(B,C) first is a mistake (Branch 1).

2. Trying to achieve ON(4,B) first is also a mistake for less obvious reasons
(Branch 2).

3. Branches 1 and 2 show ‘‘subgoal interaction.”” The goals as stated are not in-
dependent. Branch 3 must be generated somehow, either through backtrack-
ing or some intelligent way of coping with interaction. It will never be found by
the single-minded approach of (1) and (2). However, if ON(C,Floor) were
one of the goal assertions, Branch 3 could be found.

Clearly, representing world and actions is not the whole story in planning. In-
telligent search of the context is also necessary. This search involves subgoal selec-
tion, action selection, and action argument selection. Bad choices anywhere can
mean inefficient or looping action sequences, or the generation of impossible
subgoals. “‘Intelligent’’ search implies a meta-level capability: the ability of a pro-
gram to reason about its own plans. “‘Plan critics’’ are often a part of sophisticated
planners; one of their main jobs is to isolate and rectify unwanted subgoal interac-
tion [Sussman 1975].

Ch. 13 Goal Achievement

IPR2021-00921
Apple EX1015 Page 454

c

Move (B, F, C) Move (C, A, F}

5|
<

c [«]
B)
]
Branch 1

4]
o

Branch 3

Move (@ Move (A, F,

Branch 2

Fig. 13.2 A state tree generated in planning how to stack three blocks.

Intelligent choice of actions is the crux of planning, and is a major research is-
sue. Several avenues have been and are being tried. Perhaps subgoals may be or-
dered by difficulty and achieved in that order. Perhaps planning should proceed at
various levels of detail (like multiresolution image understanding), where the stra-
tegic skeleton of a plan is derived without details, then the details are filled in by
applying the planner in more detail to the subgoals in the low-resolution plan.

Sec. 13.1 Symbolic Planning 443

IPR2021-00921
Apple EX1015 Page 455

13.1.4 The Frame Problem

All planning is plagued by aspects of the frame problem (introduced in Section
12.1.6).

1. It is impractical (and boring) to write down in an action all the things that stay
the same when an action is applied.

2. Similarly, it is impractical to reassert in the data base all the things that remain
true when an action is implied.

3. Often an action has effects that cannot be represented with simple add and
delete lists.

The add and delete list mechanism and the context-oriented data base
mechanism addressed the first two problems. The last problem is more trouble-
some.

Add and delete lists are simple ideas, whereas the world is a complex place. In
many interesting cases, the add and delete lists depend on the current state of the
world when the action is applied. Think of actions TURNBY (X) and MOVEBY (Z)
in a world where orientation and location are important. The orientation and loca-
tion after an action depend not just on the action but on the state of the world just
before the action.

Again, the action may have very complex effects if there are complex depen-
dencies between world objects. Consider the problem of the ““monkey and bana-
nas,”” where the monkey plans to push the box under the bananas and climb on it
to reach them (Fig. 13.3). Implementation of realistically powerful add and delete
lists may in fact require arbitrary amounts of deduction and computation.

R\ A

Fig. 13.3 Actions may have complex
effects.

444

Ch. 13 Goal Achievement

IPR2021-00921
Apple EX1015 Page 456

This quick précis of symbolic planning does not address many ‘‘classical”
topics, such as learning or remembering useful plans. Also not discussed are: plan-
ning at varying levels of abstraction, plans with uncertain information, or plans
with costs. The interested reader should consult the References for more informa-
tion. The next section addresses plans with costs since they are particularly
relevant to vision; some of the other issues appear in the Exercises.

13.2 PLANNING WITH COSTS

Decision making under uncertainty is an important topic in its own right, being of
interest to policymakers and managers [Raiffa 1968]. Analytic techniques that can
derive the strategy with the ‘‘optimal expected outcome” or ‘“maximal expected
utility”” can be based on Bayesian models of probability.

In [Feldman and Sproull 1977] these techniques are explored in the context
of action planning for real-world actions and vision. As an example of the tech-
niques, they are used to model an extended version of the ‘“monkey and bananas’’
problem of the last section, with multiple boxes but without the maddening pulley
arrangement. In the extended problem, there are boxes of different weights which
may or may not support the monkey, and he can apply tests (e.g., vision) at some
cost to determine whether they are usable. Pushing weighted boxes costs some
effort, and the gratification of eating the bananas is ‘“‘worth’> only some finite
amount of effort. This extended set of considerations is more like everyday deci-
sion making in the number of factors that need balancing, in the uncertainty in-
herent in the universe, and in the richness of applicable tests. In fact, one might
make the claim that human beings always ““maximize their expected utility,”” and
if one knew a person’s utility functions, his behavior would become predictable.
The more intuitive claim that humans beings plan only as far as ‘‘sufficient ex-
pected utility’’ can be cast as a maximization operation with nonzero ‘‘cost of plan-
ning.”

The sequential decision-making model of planning with the goal of maximiz-
ing the goodness of the expected outcome was used in a travel planner [Sproull
1977]. Knowledge of schedules and costs of various modes of transportation and
the attendant risks could be combined with personal prejudices and preferences to
produce an itinerary with the maximum expected utility. If unexpected situations
(canceled flights, say) arose en route, replanning could be initiated; this incremen-
tal plan ramification is a natural extension of sequential decision making.

This section is concerned with measuring the expected performance of plans
using a single number. Although one might expect one number to be inadequate,
the central theorem of decision theory [DeGroot 1970] shows essentially that one
number is enough. Using a numerical measure of goodness allows comparisons
between normally incomparable concepts to be made easily. Quite frequently nu-
merical scores are directly relevant to the issues at stake in planning, so they are
not obnoxiously reductionistic. Decision theory can also help in the process of ap-
plying a plan—the basic plan may be simple, but its application to the world may e
complex, in terms of when to declare a result established or an action unsuccessful.
The decision-theoretic approach has been used in several artificial intelligence and

Sec. 13.2 Planning with Costs 445

IPR2021-00921
Apple EX1015 Page 457

446

vision programs [Feldman and Yakimovsky 1974; Bolles 1977; Garvey 1976; Bal-
lard 1978; Sproull 1977].

13.2.1 Planning, Scoring, and Their Interaction

For didactic purposes, the processes of plan generation and plan scoring are con-
sidered separately. In fact, these processes may cooperate more or less intimately.
The planner produces “‘sequences’’ of actions for evaluation by the scorer. Each ac-
tion (computation, information gathering, performing a real-world action) has a
cost, expressing expenditure of resources, or associated unhappiness. An action
has a set of possible outcomes, of which only one will really occur when the action is
performed. A goal is a state of the world with an associated ‘‘happiness’ or utility.
For the purposes of uniformity and formal manipulation, goals are treated as (null)
actions with no outcomes, and negative utilities are used to express costs. Then the
plan has only actions in it; they may be arranged in a strict sequence, or be in loops,
be conditional on outcomes of other actions, and so forth.

The scoring process evalutes the expected utility of a plan. In an uncertain
world, a plan prior to execution has only an expected goodness—something might
go wrong. Such a scoring process typically is not of interest to those who would use
planners to solve puzzles or do proofs; what is interesting is the result, not the
effort. But plans that are “‘optimal’” in some sense are decidedly of interest in real-
world decision making. In a vision context, plans are usually useful only if they
can be evaluated for efficiency and efficacy.

Scoring can take place on “‘complete’ plans, but it can also be used to guide
plan generation. The usual artificial intelligence problem-solving techniques of
progressive deepening search and branch-and-bound pruning may be applied to
planning if scoring happens as the plan is generated [Nilsson 1980]. Scoring can be
used to assess the cost of planning and to monitor planning horizons (how far
ahead to look and how detailed to make the plan). Scoring will penalize plans that
loop without producing results. Plan improvements, such as replanning upon
failure, can be assessed with scores, and the contribution of additional steps (say
for extra information gathering) can be assessed dynamically by scoring. Scoring
can be arbitrarily complex utility functions, thus reflecting such concepts as “‘risk
aversion’’ and nonlinear value of resources [Raiffa 1968].

13.2.2 Scoring Simple Plans

Scoring and an Example

A simple plan is a tree of nodes (there are no loops). The nodes represent ac-
tions (and goals). Outcomes are represented by labeled arcs in the tree. A probabil-
ity of occurrence is associated with each possible outcome; since exactly one out-
come actually occurs per action, the probabilities for the possible outcomes of any
action sum to unity.

The score of a plan is its expected utility. The expected utility of any node is re-
cursively defined as its utility times the probability of reaching that node in the

Ch. 13 Goal Achievement

IPR2021-00921
Apple EX1015 Page 458

plan, plus the expected utilities of the actions at its (possible) outcomes. The pro-
bability of reaching any “‘goal state’ in the plan is the product of probabilities of
outcomes forming a path from the root of the plan to the goal state.

As an example, consider the plan shown in Fig. 13.4. If the plan of Fig. 13.4

Test for table
U: —100

Table not located

Table located

Threshold, find Decide
blobs, compute no telephone
shapes present

uU: —300 u: 0

P14
Find telephone . D5 ot Telephone No telephone
find telephone
shape shape there there

Correctly

Decide Decide Incorrectly

telephone no telephone believe no be']'e"e
present present telephone there no t:heeDhO“e
re

u:0 u:o U: —200

U: 800

Telephone No telephone Telephone No telephone
there there there there

Incorrectly Correctly
Co;_lrne((’:tly Enc?irr:;ctly m iss balisva
telephone false telephone finding no telephone
U: 1000 U: —300 telephone there
s : U: =200 U: 800

Fig. 13.4 This plan to find a telephone in an office scene involves finding a table first
and looking there in more detail. The actions and outcomes are shown. The probabilities
of outcomes are assigned symbols (P10, etc.). Utilities (denoted by U:) are given for the
individual actions. Note that negative utilities may be considered costs. In this example,
decision-making takes no effort, image processing costs vary, and there are various penal-
ties and rewards for correct and incorrect finding of the telephone.

Sec. 13.2 Planning with Costs 447

IPR2021-00921
Apple EX1015 Page 459

has probabilities assigned to its outcomes, we may compute its expected utility.
Figure 13.5 shows the calculation. The probability of correctly finding the tele-
phone is 0.34, and the expected utility of the plan is 433.

Although the generation of a plan may not be easy, scoring a plan is a trivial
exercise once the probabilities and utilities are known. In practice, the assignment
of probabilities is usually a source of difficulty. The following is an example using

E(U): 4325
U: —-100

Table located

Table not located

E (U): 460
U: -300

0.95
Find telephone 3 Do fiof Telephone No telephone
find telephone
shape shape there there

E(U): —200
U: -200

E (U): 870
u:o

E (U): 650
U0

E (U): 800
U: 800

Telephone No telephone Telephone No telephone
there there there there

E (U): 1000 E(U): - 300 E(U): — 200 E(U): 800
U: 1000 U: —300 U: =200 U: 800

Fig. 13.5 As for Fig. 13.4. U: gives the utility of each action. E(U): gives the expected
utillity of the action, which depends on the outcomes below it. Values for outcome proba-
bilities are given on the outcome arcs.

448 Ch. 13 Goal Achievement

IPR2021-00921
Apple EX1015 Page 460

the telephone-finding plan and some assumptions about the tests. Different as-
sumptions yield different scores.

Computing Outcome Probabilities: An Example
This example relies heavily on Bayes’ rule:
P(B|4)P(4) = P(4A\B) = P(4|B)P(B). (13.1)

Let us assume a specific a priori probability that the scene contains a tele-
phone.

P, = apriori probability of Telephone (13.2)

Also assume that something is known about the behavior of the various tests in the
presence of what they are looking for. This knowledge may accrue from experi-
ments to see how often the table test found tables when telephones (or tables)
were and were not present. Let us assume that the following are known probabili-

ties.
P; = P(table located|telephone in scene) (13.3)
Ps = P(table located|no telephone in scene) (13.4)
Either there is a telephone or there is not, and a table is located or it is not, so
P, = a priori probability of no telephone = 1— P, (13.5)
P, = P(no table located |telephone in scene) = 1 — P; (13.6)
P¢ = P(no table located |no telephone in scene) = 1 — Ps (13.7)

Similarly with the “‘shape test’’ for telephones: assume probabilities

P, = P(telephone shape located | telephone) (13.8)

Py = P(telephone shape located |no telephone) (13.9)
with

Py=1—P,, Pp=1-P (13.10)
as above.

There are a few points to make: First, it is not necessary to know exactly these
probabilities in order to score the plan; one could use related probabilities and
Bayes’ rule. Other useful probabilities are of the form

P(telephone |telephone shape located).

In some systems [Garvey 1976] these are assumed to be available directly. This
section shows how to derive them from known conditional probabilities that
describe the behavior of detectors given certain scene phenomena.

Second, notice the assumption that although both the outcome of the table
test and the shape test depend on the presence of telephones, they are taken to be
independent of each other. That is, having found a table tells us nothing about the
likelihood of finding a telephone shape. Independence assumptions such as this are

Sec. 13.2 Planning with Costs 449

IPR2021-00921
Apple EX1015 Page 461

450

useful to limit computations and data gathering, but can be somewhat unrealistic.
To account for the dependence, one would have to measure such quantities as

P (telephone shape found |table located).
Now to compute some outcome probabilities: Consider the probability
P,; = P(table located) (13.11)
Let us write

TL for Table Located
TNL for Table Not Located.

A table may be located whether or not a telephone is in the scene. In terms of
known probabilities, Bayes’ rule yields

Pyy=P; P+ Ps P, (13.12)
Then
P;;=P(TNL) =1-Py, (13.13)
Calculating P;; shows a neat trick using Bayes’ Rule:
Py; = P(telephone|TNL) (13.14)

That is, P,3 is the probability that there is a telephone in the scene given that
search for a table was unsuccessful. This probability is not known directly, but

P (telephone and TNL)

P(TNL)
_ P(TNL and telephone)
Py
_1p (TNLfteleph;ne)P(telephone)] 13.15)
12

Pig=

[P,P|]
Py
Then, of course
Piyy=1-Pp; (13.16)

Reasoning in this way using the conditional probabilities and assumptions
about their independence allows the completion of the calculation of outcome pro-
babilities (see the Exercises). One possibly confusing point occurs in calculation of
P;s, which is

Ps = P (telephone shape found |table located) (1317

By assumption, these events are only indirectly related. By the simplifying assump-
tions of independence, the shape operator and the table operator are independent
in their operation. (Such assumptions might be false if they used common image
processing subroutines, for example.) Of course, the probability of success of each

Ch. 13 Goal Achievement

IPR2021-00921
Apple EX1015 Page 462

depends on the presence of a telephone in the scene. Therefore their performance
is linked in the following way (see the Exercises). (Write TSL for Telephone Shape
Located.)

Ps= P(TSL|TL) P(TSL|telephone) P (telephone|TL) (13.18)
+P (TSL|no telephone) P (no telephone|TL)

13.2.3 Scoring Enhanced Plans

The plans of Section 13.2.2 were called ‘‘simple”” because of their tree structure,
complete ordering of actions, and the simple actions of their nodes. With a richer
output from the symbolic planner, the plans may have different structure. For ex-
ample, there may be OR nodes, any one of whose sons will achieve the action at
the node; AND nodes, all of which must be satisfied (in any order) for the action to
be satisfactorily completed; SEQUENCE nodes, which specify a set of actions and a
particular order in which to achieve them. The plan may have loops, shared
subgoal structure, or goals that depend on each other. How enhanced plans are in-
terpreted and executed depends on the scoring algorithms, the possibilities of
parallel execution, whether execution and scoring are interleaved, and so forth.
This treatment ignores parallelism and limits discussion to expanding enhanced
plans into simple ones.

It should be clear how to go about converting many of these enhanced plans
to simple plans. For instance, sequence nodes simply go to a unique path of ac-
tions. Alternatively, depending on assumptions about outcomes of such actions
(say whether they can fail), they may be coalesced into one action, as was the
“‘threshold, find blobs, and compute shapes’ action in the telephone-finding plan.

Rather more interesting are the OR and AND nodes, the order of whose
subgoals is unspecified. Each such node yields many simple plans, depending on
the order in which the subgoals are attacked. One way to score such a plan is to
generate all possible simple plans and score each one, but perhaps it is possible to
do better. For example, loops and mutual dependencies in plans can be dealt with
in various ways. A loop can be analyzed to make sure that it contains an exit (such
as a branch of an OR node that can be executed). One can make ad hoc assump-
tions that the cost of execution is always more than the cost of planning [Garvey
1976], and score the loop by its executable branch. Another idea is to plan incre-
mentally with a finite horizon, expanding the plan through some progressive
deepening, heuristic search, or pruning strategy. The accumulated cost of going
around a loop will soon remove it from further consideration.

Recall (Figs. 13.4 and 13.5) that the expected utility of a plan was defined as
the sum of the utility of each leaf node times the probability of reaching that node.
However, the utilities need not combine linearly in scoring. Different monotonic
functions of utility express such different conceptions as ‘‘aversion to risk’ or
‘“‘gambling addiction.”” These considerations are real ones, and nonlinear utilities
are the rule rather than the exception. For instance, the value of money is notori-
ously nonlinear. Many people would pay $5 for an even chance to win $15; not so
many people would pay $5,000 for an even chance to win $15,000.

Sec. 13.2 Planning with Costs 451

IPR2021-00921
Apple EX1015 Page 463

452

One common way to compute scores based on utilities is the ‘‘cost/benefit”’
ratio. This, in the form ““cost/confidence’ ratio, is used by Garvey in his planning
vision system. This measure is examined in Section 13.2.5; roughly, his “‘cost”
was the effort in machine cycles to achieve goals, and his ‘““‘confidence’’ approxi-
mated the probability of a goal achieving the correct outcome. The utility of correct
outcomes was not explicitly encoded in his planner.

Sequential plan elaboration or partial plan elaboration can be interleaved with
execution and scoring. Most practical planning is done in interaction with the
world, and the plan scoring approach lends itself well to assessing such interac-
tions. In Section 13.2.5 considers a planning vision system that uses enhanced
plans and a limited replanning capability.

A thorny problem for decision making is to assess the cost of planning itself.
The planning process is given its own utility (cost), and is carried only out as far as
is indicated. Of course, the problem is in general infinitely recursive, since there is
also the cost of assessing the cost of planning, etc. If, however, there is a known
upper bound on the utility of the best achievable plan, then it is known that infinite
planning could not improve it. This sort of reasoning is weaker than that needed to
give the expected benefits of planning; it measures only the cost and maximum
value of planning.

Another more advanced consideration is that the results of actions can be
continuous and multidimensional, and discrete probabilities can be extended to
probability distribution functions. Such techniques can reflect the precision of
measurements.

An obviously desirable extension to a planner is a “‘learner,” that can
abstract rules for action applicability and remember successful plans. One approach
would be to derive and remember ranges of planning parameters arising during ex-
ecution; a range could be associated with a rule specifying appropriate action. This
problem is difficult and the subject of current research.

13.2.4 Practical Simplifications

The expected utility calculations allow plans to be evaluated in a more or less
““realistic’’ manner. However, in order to complete the calculations certain proba-
bilities are necessary, and many of these reflect detailed knowledge about the in-
teraction of phenomena in the world. It is thus often impractical to go about a full-
blown treatment of scoring in the style of Section 13.2.2. This section presents
some possible simplifications.

Of course, in many planning problems, such as those whose costs are nil or ir-
relevant, or all of whose goals are equally valuable, there is no need to address util-
ity of plans at all. Such plans are typically not concerned with expenditure of real-
world or planning resources.

Independence of various probabilities is one of the most helpful and per-
vasive assumptions in the calculation of probabilities. An example appeared in Sec-
tion 13.2.2 with the table and telephone shape detectors.

Certain information can be ignored. Garvey [Garvey 1976] ignores failure in-
formation. His planning parameters include the ‘“‘cost” of an action (strictly nega-

Ch. 13 Goal Achievement

IPR2021-00921
Apple EX1015 Page 464

tive utilities reflecting effort), the probability of the action ‘‘succeeding,’” and the
conditional probability that the state of the world is correctly indicated, given suc-
cess. Related to ignoring some information is the assumption that certain out-
comes are more reliable than others. For instance, the decision not to plan past
“failure’’ reports means that they are assumed reliable.

Non-Bayesian rules of inference abound in planners [Shortliffe 1976]; the
idea of assigning a single numerical utility score to plans is by no means the only
way to make decisions.

13.2.5 A Vision System Based on Planning

Overview

This section outlines some features of a working vision system whose actions
are controlled by the planning paradigm [Garvey 1976]. As with all large vision
systems, more issues are addressed in this work than with the planning paradigm as
a control mechanism. For one thing, the system uses multisensory input, including
range and color information. An interactive facility aids in developing and testing
low-level operators and ‘‘strategies” for object location. The machine-usable
representation of knowledge about the objects in the scene domains and how they
could be located is of course a central component.

The domain is office scenes (Fig. 13.6). For the task of locating different ob-
jects in such scenes, a ‘““uniform strategy’’ is adopted. That is, the vision task is al-
ways broken down into a sequence of major goals to be performed in order. Such
uniform strategies, if they are imposed on a system at all, tend to vary with
different tasks, with different sensors or domain, or with different research goals.

Garvey’s uniform strategy consists of the following steps.

1. Acquire some pixels thought to be in the desired region (the area of scene mak-
ing up the image of the desired object).

Thal

L h

il

Fig. 13.6 The planning vision system
uses input scenes such as these, imaged
in different wavelengths and with a
rangefinder.

Sec. 13.2 Planning with Costs 453

IPR2021-00921
Apple EX1015 Page 465

