treatments of these issues are readily available [Brachman 1979; Hayes* 1977,
Nilsson 1980].

It is particularly helpful to have a denotion link to keep perceptual structures
separate from model structures. Then if mistakes are made by the vision automa-
ton, a correction mechanism can either sever the denotation link completely or
create a new denotation link between the correct model and image structures.

When dealing with many spatial relations, it is economical to recognize that
many relations are ‘‘inverses’ of each other. That is, LEFT-OF(x,)) is the “‘in-
verse”” of RIGHT-OF (x,));

LEFT—OQF(x,y) <=> RIGHT-OF(y,x)
and also
ADJACENT (x,y) <=> ADJACENT (y,x)

Rather than double the number of these kinds of links, one can normalize
them. That is, only one half of the inverse pair is used, and the interpreter infers
the inverse relation when necessary.

Properties have a different semantics depending on the type of object that has
the property. An ‘‘abstract’ node can have a property that gives one aspect or
refinement of the represented concept. A property of a “‘concrete’’ node presum-
ably means an established and quantified property of the individual.

Fartitions

Partitions are a powerful notion in networks. ‘‘Partition’’ is not used in the
sense of a mathematical partition, but in the sense of a barrier. Since the network is
a graph, it contains no intrinsic method of delimiting subgraphs of nodes and arcs.
Such subgraphs are useful for two reasons:

1. Syntactic. 1t is useful to delimit that part of the network which represents the
results of specific inferences.

2. Semantic. It is useful to delimit that part of the network which represents
knowledge about specific objects. Partitions may then be used to impose a
hierarchy upon an otherwise *‘flat’” structure of nodes.

The simple way of representing partitions in a net is to create an additional node to
represent the partition and introduce additional arcs from that node to every node
or arc in the partition. Partitions allow the nodes and relations in them to be mani-
pulated as a unit.

Notationally, it is cleaner to draw a labeled boundary enclosing the relevant
nodes (or arcs). An example is shown by Fig. 10.12 where we consider two objects
each made up of several parts with one object entirely left of the other. Rather than
use a separate LEFT-OF relation for each of the parts, a single relation can be used
between the two partitions. Any pair of parts (one from each object) should inherit
the LEFT-OF relation. Partitions may be used to implement quantification in se-
mantic net representations of predicate calculus [Hendrix 1975, 1979]. They may
be used to implement frames (Section 10.3.1).

Sec. 10.2 Semantic Nets 331

IPR2021-00921
Apple EX1015 Page 342

Left of

*

/-)

A5 by P
T lesD ;ﬁ’

Partition 1

Fig. 10.12 The use of partitions. (a) Construction of a partition. (b) Two objects described
by partitions.

Conversions

It is important to be able to transform from geometric (and logical) represen-
tations to propositional abstract representations and vice versa. For example, in
Fig. 10.13 the problem is to find the exact location of a telephone on a previously
located desk. In this case, propositional knowledge that telephones are usually on
desktops, together with the desk top location and knowledge about the size of tele-
phones, define a search area in the image.

Converting image data about a particular group of objects into relational form
involves the inverse problem. The problem is to perform a level of abstraction to
remove the specificity of the geometric knowledge and derive a relation that is ap-
propriate in a larger context. For example, the following program fragment creates
the relations ABOVE(A, B), where 4 and Bare world objects.

Comment: assume a world coordinate system where Z is the positive vertical.

Find ZA ;, for Zin Aand ZB,,, for Zin B.
If ZA in > ZBmax, then make ABOVE (4, B) true.

Many other definitions of ABOVE, one of which compares centers of gravity, are
possible. In most cases, the conversion from continuous geometric relations to
discrete propositional relations involves more or less arbitrary conventions. To ap-
preciate this further, consult Fig. 10.14 and try to determine in which of the cases

332 Ch. 10 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 343

Fig. 10.13 Search area defined by relational bindings.

block A is LEFT-OF block B. Figure 10.14d shows a case where different answers
are obtained depending on whether a two-dimensional or three-dimensional in-
terpretation is used. Also, when relations are used to encode what is usually true of
the world, it is often easy to construct a counterexample. Winston [Winston 1975]

used
SUPPORTS (B,A) ABOVE (A,B)
{a) (d)
1]
—_— 1

(b) (c)

Fig. 10.14 Examples to demonstrate difficulties in encoding spatial relation

LEFT-OF (see text).

Sec. 10.2 Semantic Nets 333

IPR2021-00921
Apple EX1015 Page 344

which is contradicted by Fig. 10.15, given the previous definition of ABOVE.
One common way around these problems is to associate quantitative, ““con-
tinuous’” information with relations (section 10.3.2 and later examples).

10.3 SEMANTIC NET EXAMPLES

334

Examples of semantic nets abound throughout Part IV. Two more examples illus-
trate the power of the notions. The first example is described very generally, the
second in detail.

10.3.1 Frame Implementations

Frame system theory [Minsky 1975] is a way of explaining our quick access to im-
portant aspects of a (perhaps perceptual) situation. It is a provocative and con-
troversial idea, and the reader should consult the References for a full treatment.
Implementationally, a frame may be realized by a partition; a frame is a ““chunk”
of related structure.

Associating related ‘‘chunks” of knowledge into manipulable units is a
powerful and widespread idea in artificial intelligence [Hayes 1980; Hendrix 1979]
as well as psychology. These chunks go by several names: units, frames, parti-
tions, schemata, depictions, scripts, and so forth [Schank and Abelson 1977,
Moore and Newell 1973; Roberts and Goldstein 1977; Hayes* 1977; Bobrow and
Winograd 1977, 1979; Stefik 1979; Lehnert and Wilks 1979; Rumelhart et al.
1972].

Frames systems incorporate a theory of associative recall in which one selects
frames from memory that are relevant to the situation in which one finds oneself.
These frames include several kinds of information. Most important, frames have
slots which contain details of the viewing situation. Frame theory dictates a strictly
specific and prototypical structure for frames. That is, the number and type of slots
for a particular type of frame are immutable and specified in advance. Further,
frames represent specific prototype situations; many slots have default values; this
is where expectations and prior knowledge come from. These default values may
be disconfirmed by perceptual evidence; if they are, the frame can contain infor-
mation about what actions to take to fill the slot. Some slots are to be filled in by in-
vestigation. Thus a frame is a set of expectations to be confirmed or disconfirmed

&‘ : |
Fig. 10.15 A counterexample to

L SUPPORTS(B, A) => ABOVE(4, B).

Ch. 10 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 345

and actions to pursue in various contingencies. One common action is to ““bring in
another frame.”

The theory is that based on a partial match of a frame’s defining slots, a frame
can be ‘‘brought to mind.”” The retrieval is much like jumping to a conclusion
based on partial evidence. Once the frame is proposed, its slots must be matched
up with reality; thus we have the initial major hypothesis that the frame represents,
which itself consists of a number of minor subhypotheses to be verified. A frame
may have other frames in its slots, and so frames may be linked into ‘‘frame sys-
tems” that are themselves associatively related. (Consider, for example, the
linked perceptual frames for being just outside a theater and for being just inside.)
Transformations between frames correspond to the effects of relevant actions.
Thus the hypotheses can suggest one another. ‘‘Thinking always begins with sug-
gestive but imperfect plans and images; these are progressively replaced by
better —but usually still imperfect—ideas’ [Minsky 1975].

Frame theory is controversial and has its share of technical problems [Hinton
1977]. The most important of these are the following.

1. Multiple instances of concepts seem to call for copying frames (since the in-
stances may have different slotfillers). Hence, one loses the economy of a
preexisting structure.

2. Often, objects have variable numbers of components (wheels on a truck, run-
ways in an airport). The natural representation seems to be a rule for con-
structing examples, not some specific example.

3. Default values seem inadequate to express legal ranges of slot-filling values or
dependencies between their properties.

4. Property inheritance is an important capability that semantic nets can imple-
ment with “‘is a’* or “‘element-of’’ hierarchies. However, such hierarchies
raise the question of which frame to copy when a particular individual is being
perceived. Should one copy the generic Mammal frame or the more specific
Camel frame, for instance. Surely, it is redundant for the Camel frame to du-
plicate all the slots in the Mammal frame. Yet our perceptual task may call for
a particular slot to be filled, and it is painful not to be able to tell where any par-
ticular slot resides.

Nevertheless, where these disadvantages can be circumvented or are ir-
relevant, frames are seeing increasing use. They are a natural organizing tool for
complex data.

10.3.2 Location Networks

This section describes a system for associating geometric analogical data with a se-
mantic net structure which is sometimes like a frame with special ‘‘evaluation™
rules. The system is a geometrical inference mechanism that computes (or infers)
two-dimensional search areas in an image [Russell 1979]. Such networks have
found use in both aerial image applications [Brooks and Binford 1980; Nevatia and
Price 1978] and medical image applications [Ballard et al. 1979].

Sec. 10.3 Semantic Net Examples 335

IPR2021-00921
Apple EX1015 Page 346

336

The Network

A location network is a network representation of geometric point sets related
by set-theoretic and geometric operations such as set intersection and union, dis-
tance calculation, and so forth. The operations correspond to restrictions on the lo-
cation of objects in the world. These restrictions, or rules, are dictated by cultural
or physical facts.

Each internal node of the location network contains a geometric operation, a
list of arguments for the operation, and a result of the operation. For instance, a
node might represent the set-theoretic union of two argument point sets, and the
result would be a point set. Inference is performed by evaluating the net; evaluating
all its operations to derive a point set for the top (root) operation.

The network thus has a hierarchy of ancestors and descendents imposed on it
through the argument links. At the bottom of this hierarchy are data nodes which
contain no operation or arguments, only geometric data. Each node is in one of
three states: A node is up-to-date if the data attached to it are currently considered
to be accurate. It is out-gf-date if the data in it are known to be incomplete, inaccu-
rate, or missing. It is Aypothesized if its contents have been created by net evalua-
tion but not verified in the image.

In a common application, the expected relative locations of features in a
scene are encoded in a network, which thus models the expected structure of the
image. The primitive set of geometric relations between objects is made up of four
different types of operations.

1. Directional operations (left, reflect, north, up, down, and so on) specify a point
set with the obvious locations and orientations to another.

2. Area operations (close-to, in-quadrilateral, in-circle and so on) create a point
set with a non-directional relation to another.

3. Set operations (union, difference and intersection) perform the obvious set
operations.

4. Predicates on areas allow point sets to be filtered out of consideration by
measuring some characteristic of the data. For example, a predicate testing
width, length, or area against some value restricts the size of sets to be those
within a permissible range.

The location of the aeration tank in a sewage treatment plant provides a
specific example. The aeration tank is often a rectangular tank surrounded on ei-
ther end by circular sludge and sedimentation tanks (Fig. 10.16). As a general rule,
sewage flows from the sedimentation tanks to aeration tanks and finally through to
the sludge tanks. This design permits the use of the following types of restrictions
on the location of the aeration tanks.

Rule I: ““ Aeration tanks are located somewhere close to both the sludge tanks
and the sedimentation tanks.”

Ch. 10 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 347

SED IMENTATION TFINk‘SS

ﬁsﬁerrau Tanks

R Pt
_ALUDGE [ANKS

Fig. 10.16 Aerial image of a sewage plant.
The various tanks cannot occupy the same space, so:

Rule 2: ““Aeration tanks must not be too close to either the sludge or sedimen-
tation tanks."

Rule 1 is translated to the following network relations.
CLOSE-TO (Union (LocSludgeTanks, LocSedTanks), Distance X)

Rule 2 is translated to

NOT-IN (Union (LocSludgeTanks,LocSedTanks), Distance Y)

The network describing the probable location of the aeration tanks embodies
both of these rules. Rule 1 determines an area that is close to both groupings of
tanks and Rule 2 eliminates a portion of that area. Thinking of the image as a point
set, a set difference operation can remove the area given by Rule 2 from that
specified by Rule 1. Figure 10.17 shows the final network that incorporates both

rules.

Of course, there could be places where the aeration tanks might be located
very far away or perhaps violate some other rule. It is important to note that, like
the frames of Section 10.3.1, location networks give prototypical, likely locations
for an object. They can work very well for stereotyped scenes, and might fail to per-
form in novel situations.

The Evaluation Mechanism

The network is interpreted (evaluated) by a program that works top-down in
a recursive fashion, storing the partial results of each rule at the topmost node as-

Sec. 10.3 Semantic Net Examples 337

IPR2021-00921
Apple EX1015 Page 348

338

Aeration
tank
D1
difference
c2
close-to
ci1 Distance
¥
close-to
U1
Distance
; X
union

A/&_

Sludge Sediment
tanks tanks

Fig. 10.17 Constraint network for aeration tank.

sociated with that rule (with a few exceptions). Evaluation starts with the root
node. In most networks, this node is an operation node. An operation node is
evaluated by first evaluating all its arguments, and then applying its operation to
those results. Its own result is then available to the node of the network that called
for its evaluation.

Data nodes may already contain results which might come from a map or
from the previous application of vision operators. At some point in the course of
the evaluation, the evaluator may reach a node that has already been evaluated and
is marked up-to-date or hypothesized (such a node contains the results of evalua-
tion below that point). The results of this node are returned and used exactly as if it
were a data node. Out-of-date nodes cause the evaluation mechanism to execute a
low-level procedure to establish the location of the feature. If the procedure is un-
able to establish the status of the object firmly within its resource limits, the status
will remain out-of-date. At any time, out-of-date nodes may be processed without
having to recompute any up-to-date nodes. A node marked hypothesized has a
value, usually supplied by an inference process, and not verified by low-level im-
age analysis. Hypothesized data may be used in inferences: the results of all infer-
ences based on hypothesized data are marked hypothesized as well.

Ch. 710 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 349

If a data node ever has its value changed (say, by an independent process that
adds new information), all its ancestors are marked out-of-date. Thus the root
node will indicate an out-of-date status, but only those nodes on the out-of-date
path must be reevaluated to bring the network up to date. Figure 10.18 shows the
operation of the aeration tank network of Fig. 10.17 on the input of Fig. 10.16. In
this case the initial feature data were a single sludge tank and a single sedimenta-
tion tank. Suppose additional work is done to find the location of the remaining
sludge and sediment tanks in the image. This causes a reevaluation of the network,
and the new result more accurately reflects the actual location of the aeration
tanks.

Properties of Location Networks

The location network provides a very general example of use of semantic nets
in computer vision.

1. It serves as a data base of point sets and geometric information. The truth
status of items in the network is explicitly maintained and depends on incom-
ing information and operations performed on the net.

2. Itis an expansion of a geometric expression into a tree, which makes the order
of evaluation explicit and in which the partial results are kept for each
geometric calculation. Thus it provides efficient updating when some but not
all the partial results change in a reevaluation.

3. It provides a way to make geometrical inferences without losing track of the
hypothetical nature of assumptions. The tree structure records dependencies
among hypotheses and geometrical results, and so upon invalidation of a
geometric hypothesis the consequences (here, what other nodes have their
values affected) are explicit. The record of dependencies solves a major prob-
lem in automated inference systems.

4. It reflects implicit universal quantification. The network claims to represent
true relations whose explicit arguments must be filled in as the network is *““in-
stantiated’’ with real data.

5. Ithasa ““flat’’ semantics. There are no element-of hierarchies or partitions.

The concept of “‘individual” is flexible. A point set can contain multiple
disconnected components corresponding to different world objects. In set
operations, such an assemblage acts like an explicit set union of the com-
ponents. An “‘individual’’ in the network may thus correspond to multiple in-
dividual point (sub)sets in the world.

7. The network allows use of partial knowledge. A set-theoretic semantics of ex-
istence and location allows modeling of an unknown location by the set-
theoretic universe (the possible location is totally unconstrained). If some-
thing is known not to exist in a particular image, its ‘‘location’” is the null set.
Generally, a location is a point set.

8. The set-theoretic semantics allows useful punning on set union and the OR
operation, and set intersection and the AND operation. If a dock is on the

Sec. 10.3 Semantic Net Examples 339

IPR2021-00921
Apple EX1015 Page 350

shoreline AND near a town, the search for docks need only be carried out in
the intersection of the locations.

10.4 CONTROL ISSUES IN COMPLEX VISION SYSTEMS

Computer vision involves the control of large, complex information-processing
tasks. Intelligent biological systems solve this control problem. They seem to have
complicated control strategies, allowing dynamic allocation of computational
resources, parallelism, interrupt-driven shifts of attention, and incremental
behavior modification. This section explores different strategies for controlling the
complex information processing involved in vision. Appendix 2 contains specific

() (b)

Fig. 10.18 (a) Initial data to be refined
by location network inference. (b)
Results of evaluating network of (a). (c)
Results of evaluating network after
additional information is added.

340 Ch. 10 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 351

techniques and programming language constructs that have proven to be useful
tools in implementing control strategies for artificial intelligence and computer vi-
sion.

10.4.1 Parallel and Serial Computation

In parallel computation, several computations are done at the same time. For exam-
ple, different parts of an image may be processed simultaneously. One issue in
parallel processing is synchronization: Is the computation such that the different
parts can be done at different rates, or must they be kept in step with each other?
Usually, the answer is that synchronization is important. Another issue in parallel
processing is its implementation. Animal vision systems have the architecture to
do parallel processing, whereas most computer systems are serial (although
developing computer technologies may allow the practical realization of some
parallel processing). On a serial computer parallelism must be simulated—this is
not always straightforward.

In serial computation, operations are performed sequentially in time whether
or not they depend on one another. The implied sequential control mechanism is
more closely matched to a (traditional) serial computer than is a parallel mechan-
ism. Sequential algorithms must be stingy with their resources. This fact has had
many effects in computer vision. It has led to mechanisms for efficient data access,
such as multiple-resolution representations. It has also led some to emphasize cog-
nitive alternatives for low-level visual processing, in the hope that the massive
parallel computations performed in biological vision systems could be circum-
vented. However, this trend is reversing; cheaper computation and more pervasive
parallel hardware should increase the commitment of resources to low-level com-
putations. Parallel and serial control mechanisms have both appeared in algo-
rithms in earlier chapters. It seems clear that many low-level operations (correla-
tion, intrinsic image computations) can be implemented with parallel algorithms.
High-level operations, such as ‘‘planning’ (Chapter 13) have inherently serial
components. In general, in the low levels of visual processing control is predom-
inately parallel, whereas at the more abstract levels some useful computations are
necessarily serial in nature.

10.4.2 Hierarchical and Heterarchical Control

Visual control strategies dictate the flow of information and activity through the
representational layers. What triggers processing: a low level input like a color
patch on the retina, or a high level expectation (say, expecting to see a red car)?
Different emphasis on these extremes is a basic control issue. The two extremes
may be characterized as follows.

1. Image data driven. Here the control proceeds from the construction of the

generalized image to segmented structures and finally to descriptions. This is
also called bottom-up control.

Sec. 10.4 Control Issues in Complex Vision Systems 341

IPR2021-00921
Apple EX1015 Page 352

342

2. Internal model driven. Here high-level models in the knowledge base generate
expectations or predictions of geometric, segment, or generalized image struc-
ture in the input. Image understanding is the verification of these predictions.
This is also called top-down control.

Top-down and bottom-up control are distinguished not by what they do but
rather by the order in which they do it and how much of it they do. Both ap-
proaches can utilize all the basic representations—intrinsic images, features,
geometric structures, and propositional representations—but the processing
within these representations is done in different orders.

The division of control strategies into top-down and bottom-up is a rather
simplistic one. There is evidence that attentional mechanisms may be some of the
most complicated brain functions that human beings have [Geschwind 1980]. The
different representational subsystems in a complex vision system influence each
other in sophisticated and intricate ways; whether control flows ‘“‘up’” or “down”’ is
only a broad characterization of local influence in the (loosely ordered) layers of
the system.

The term ‘“‘bottom-up’’ was originally applied to parsing algorithms for for-
mal languages that worked their way up the parse tree, assembling the input into
structures as they did so. ““Top-down’’ parsers, on the other hand, notionally
started at the top of the parse tree and worked downward, effectively generating
expectations or predictions about the input based on the possibilities allowed by
the grammar; the verification of these predictions confirmed a particular parsing.

These two paradigms are still basic in artificial intelligence, and provide
powerful analogies and methods for reasoning about and performing many
information-processing tasks. The bottom-up paradigm is comparable in spirit
with “‘forward chaining,” which derives further consequences from established
results. The top-down paradigm is reflected in ‘‘backward chaining,’” which breaks
problems up into subproblems to be solved.

These control organizations can be used not only ““‘tactically”” to accomplish
specific tasks, but they can dictate the whole ‘‘strategy’’ of the vision campaign.
We shall discover that in their pure forms the extreme strategies (top-down and
bottom-up) appear inadequate to explain or implement vision. More flexible or-
ganizations which incorporate both top-down and bottom-up components seem
more suited to a broad spectrum of ambitious vision tasks.

Bottom-Up Control
The general outline for bottom-up vision processing is:
1. PREPROCESS. Convert raw data into more usable intrinsic forms, to be inter-
preted by next level. This processing is automatic and domain-independent.

2. SEGMENT. Find visually meaningful image objects perhaps corresponding to
world objects or their parts. This process is often but not always broken up into
(a) the extraction of meaningful visual primitives, such as lines or regions of
homogeneous composition (based on their local characteristics); and (b) the
agglomeration of local image features into larger segments.

Ch. 10 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 353

3. UNDERSTAND. Relate the image objects to the domain from which the image
arose. For instance, identify or classify the objects. As a step in this process, or
indeed as the final step in the computer vision program, the image objects and
the relations between them may be described.

In pure bottom-up organization each stage yields data for the next. The pro-
gression from raw data to interpreted scene may actually proceed in many steps;
the different representations at each step allow us to separate the process into the
main steps mentioned above.

Bottom-up control is practical if potentially useful ‘‘domain-independent’’
processing is cheap. It is also practical if the input data are accurate and yield reli-
able and unambiguous information for the higher-level visual processes. For ex-
ample, the binary images that result from careful illumination engineering and in-
put thresholding can often be processed quite reliably and quickly in a bottom-up
mode. If the data are less reliable, bottom-up styles may still work if they make
only tolerably few errors on each pass.

Top-Down Control

A bottom-up, hierarchical model of perception is at first glance appealing on
neurological and computational grounds, and has influenced much classical philo-
sophical thought and psychological theory. The ‘‘classical’” explanation of percep-
tion has relatively recently been augmented by a more cognition-based one involv-
ing (for instance) interaction of knowledge and expectations with the perceptual
process in a more top-down manner [Neisser 1967; Bartlett 1932]. A similar evolu-
tion of the control of computer vision processing has accounted for the augmenta-
tion of the pure “‘pattern recognition™ paradigm with more ‘‘cognitive’ para-
digms. The evidence seems overwhelming that there are vision processes which do
not ‘‘run bottom-up,’’ and it is one of the major themes of this book that internal
models, goals, and cognitive processes must play major roles in computer vision
[Gregory 1970; Buckhout 1974; Gombrich 1972]. Of course, there must be a sub-
stantial component of biological vision systems which can perform in a noncogni-
tive mode.

There are probably no versions of top-down organization for computer vision
that are as pure as the bottom-up ones. The model to keep in mind in top-down
perception is that of goal-directed processing. A high-level goal spawns subgoals
which are attacked, again perhaps yielding sub-subgoals, and so on, until the goals
are simple enough to solve directly. A common top-down technique is
“hypothesize-and-verify’’; here an internal modeling process makes predictions
about the way objects will act and appear. Perception becomes the verifying of
predictions or hypotheses that flow from the model, and the updating of the model
based on such probes into the perceptual environment [Bolles 1977]. Of course,
our goal-driven processes may be interrupted and resources diverted to respond to
the interrupt (as when movement in the visual periphery causes us to look toward
the moving object). Normally, however, the hypothesis verification paradigm re-
quires relatively little information from the lower levels and in principle it can con-
trol the low-level computations.

Sec. 10.4 Control issues in Complex Vision Systems 343

IPR2021-00921
Apple EX1015 Page 354

344

The desire to circumvent unnecessary low-level processing in computer vi-
sion is understandable. Our low-level vision system performs prodigious amounts
of information processing in several cascaded parallel layers. With serial computa-
tion technology, it is very expensive to duplicate the power of our low-level visual
system. Current technological developments are pointing toward making parallel,
low-level processing feasible and thus lowering this price. In the past, however, the
price has been so heavy that much research has been devoted to avoiding it, often
by using domain knowledge to drive a more or less top-down perception paradigm.
Thus there are two reasons to use a top-down control mechanism. First, it seems to
be something that human beings do and to be of interest in its own right. Second, it
seems to offer a chance to accomplish visual tasks without impractical expenditure
of resources.

Mixed Top-Down and Bottom-Up Control

In actual computer vision practice, a judicious mixture of data-driven analysis
and model-driven prediction often seems to perform better than either style in iso-
lation. This meld of control styles can sometimes be implemented in a complex
hierarchy with a simple pass-oriented control structure. An example of mixed or-
ganization is provided by a tumor-detection program which locates small nodular
tumors in chest radiographs [Ballard 1976]. The data-driven component is needed
because it is not known precisely where nodular tumors may be expected in the in-
put radiograph; there is no effective model-driven location-hypothesizing scheme.
On the other hand, a distinctly top-down flavor arises from the exploitation of what
little is known about lung tumor location (they are found in lungs) and tumor size.
The variable-resolution method using pyramids, in which data are examined in in-
creasingly fine detail, also seems top-down. In the example, work done at 1/16
resolution in a consolidated array guides further processing at 1/4 resolution. Only
when small windows of the input array are isolated for attention are they con-
sidered at full resolution.

The process proceeds in three passes which move from less to greater detail
(Fig. 10.19), zooming in on interesting areas of image, and ultimately finding ob-
jects of interest (nodules). Two later passes (not shown) ‘‘understand” the no-
dules by classifying them as ‘‘ghosts,’” tumors or nontumors. Within pass II, there
is a distinct data-driven (bottom-up) organization, but passes I and IIl have a
model-directed (top-down) philosophy.

This example shows that a relatively simple, pass-oriented control structure
may implement a mixture of top-down and bottom-up components which focus at-
tention efficiently and make the computation practical. It also shows a few places
where the ordering of steps is not inherently sequential, but could logically proceed
in parallel. Two examples are the overlapping of high-pass filtering of pass II with
pass I, and parallel exploration of candidate nodule sites in pass I11.

Heterarchical Control

The word ‘“‘heterarchy’ seems to be due to McCulloch, who used it to
describe the nonhierarchical (i.e., not partially ordered in rank) nature of neural
responses implied by their connectivity in the brain. It was used in the early 1970s
to characterize a particular style of nonhierarchical, non-pass-structured control

Ch. 10 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 355

PREPROCESS SEGMENT CONTROL
Pass 0
(Digitize The digitizer has a
radiograph) hardware attechment
which produces the
optical density.
Pass I
(Find lung In 64 X 56 In 64 X 56 array,
boundaries) consolidated find rough lung
array, apply outline; in TOP—-DOWN
gradient at proper 256 X 224 array,
resolution refine lung
outline
Pass II
{Find In 256 X 224 array, In 256 X 224 array
candidate apply high-pass use gradient-
nodule sites filter to enhance directed, circular BOTTOM—-UP
and edges, then inside Hough method
large lung boundaries; to find candidate
tumors) apply gradient at sites; also detect
proper resolution large tumors
Pass III
(Find nodule From 1024 X 896 In 64 X 64 full-
boundaries) array, extract 64 X 64 resolution, pre-
window about each processed window,
candidate nodule site, apply dynamic
then in window apply programming TOP—DOWN

high-pass filter for

edge enhancement;
then apply gradient
at proper resolution

technique
to find accurate
nodule boundaries

Fig. 10.19 A hierarchical tumor-detection algorithm. Technical details of the
methods are found elsewhere in this volume. The processing proceeds in passes
from top to bottom, and within each pass from left to right. The processing exhi-
bits both top-down and bottom-up characteristics.

organization. Rather than a hierarchical structure (such as the military), one
should imagine a community of cooperating and competing experts. They may be
organized in their effort by a single executive, by a universal set of rules governing
their behavior, or by an a priori system of ranking. If one can think of a task as con-
sisting of many smaller subtasks, each requiring some expertise, and not neces-
sarily performed globally in a fixed order, then the task could be suitable for
heterarchical-like control structure.

The idea is to use, at any given time, the expert who can help most toward
final task solution. The expert may be the most efficient, or reliable, or may give
the most information,; it is selected because according to some criterion its subtask
is the best thing to do at that time. The criteria for selection are wide and varied,
and several ideas have been tried. the experts may compute their own relevance,
and the decision made on the basis of those individual local evaluations (as in
PANDEMONIUM [Selfridge 1959]1). They may be assigned a priori immutable

Sec. 10.4 Control Issues in Complex Vision Systems 345

IPR2021-00921
Apple EX1015 Page 356

346

rank, so that the highest-ranking expert that is applicable is always run (as in
[Shirai 1975; Ambler et al. 1975]). A combination of empirically predetermined
and dynamically situation-driven information can be combined to decide which ex-
pert applies.

The actual control structure of heterarchical programming can be quite sim-
ple; it can be a single iterative loop in which the best action to take is chosen, ap-
plied, and interpreted (Fig. 10.20).

10.4.3 Belief Maintenance and Goal Achievement

Belief maintenance and goal achievement are high-level processes that imply
differing control styles. The former is concerned with maintaining a current state,
the latter with a set of future states. Belief maintenance is an ongoing activity
which can ensure that perceptions fit together in a coherent way. Goal achieve-
ment is the integration of vision into goal-directed activities such as searching for
objects and navigation. There may be ‘“‘unconscious™ use of goal-seeking tech-
niques (e.g., eye-movement control).

Belief Maintenance

An organism is presented with a rich visual input to interpret. Typically, it all
makes sense: chairs and tables are supported by floors, objects have expected
shapes and colors, objects appear to flow past as the organism moves, nearer ob-
jects obscure farther ones, and so on. However, every now and then something

Choose the best action

(based on what is known

so far

Perform it

Inperpret its results
to increase knowledge

(o< Done >(Yes)

Fig. 10.20 A main executive control
loop for heterarchical vision.

Ch. 10 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 357

enters the visual field that does not meet expectations. An unfamiliar object in a
familiar environment or a sudden movement in the visual periphery can be
““surprises’’ that do not fit in with our existing beliefs and thus have to be reckoned
with.

It is sometimes impossible to ignore movements in our visual periphery, but
if we are preoccupied it is easily possible to stay unconscious of small changes in
our environment. How is it possible to notice some things and not others? The be-
lief maintenance mechanism seems to be resource-limited. A certain amount of
““‘computing resource’’ is allocated for the job. With this resource, only a limited
amount of checking can be done. Checks to be made are ranked (somehow—
responses to events in the periphery are like reflexes, or high-priority hard-wired
interrupts) and those that cannot be done within the resource limit are omitted.
Changes in our beliefs are often initiated in a bottom-up way, through unexpected
inputs.

A second characteristic of belief maintenance is the almost total absence of
sequential, simulation-based or ‘‘symbolic”’ planning or problem-solving activity.
Qur beliefs are “‘in the present’’; manipulation of hypothetical worlds is not belief
maintenance. ‘“Truth maintenance’’ schemes have been discussed in various con-
texts [Doyle 1979; Stallman and Sussman 19771.

We conjecture that constraint-satisfaction (relaxation) mechanisms
(Chapters 3, 7, and 12) are computationally suited to maintaining belief structures.
They can operate in parallel, they seek to minimize inconsistency, they can tolerate
“noise’’ in either input or axioms. Relaxation techniques are usually applied to
low-level visual input where locally noisy parameters are combined into globally
consistent intrinsic images. Chapter 12 is concerned with inference, in which con-
straint relaxation is applied to higher-level entities.

Characteristics of Goal Achievement

Goal achievement involves two related activities: planning and acting. Plan-
ning is a simulation of the world designed to generate a plan. A plan is a sequence
of actions that, if carried out, should achieve a goal. Actions are the primitives that
can modify the world. The motivation for planning is survival. By being able to
simulate the effects of various actions, a human being is able to avoid dangerous si-
tuations. In an analogous fashion, planning can help machines with vision. For ex-
ample, a Mars rover can plan its route so as to avoid steep inclines where it might
topple over. The incline measurement is made by processing visual input. Since
planning involves a sequence of actions, each of which if carried out could poten-
tially change the world, and since planning does not involve actually making those
changes, the difficult task of the planner is to keep track of all the different world
states that could result from different action sequences.

Vision can clearly serve as an important information-gathering step in plan-
ning actions. Can planning techniques be of use directly to the vision process?
Clearly so in “‘skilled vision,’’ such as photointerpretation. Also, planning is a use-
ful computational mechanism that need not be accompanied by conscious, cogni-
tive behavior.

Sec. 10.4 Control Issues in Complex Vision Systems 347

IPR2021-00921
Apple EX1015 Page 358

348

These inductive conclusions leading to the formation of our sense perceptions
certainly do lack the purifying and scrutinizing work of conscious thinking.
Nevertheless, in my opinion, by their particular nature they may be classed as
conclusions, inductive conclusions unconsciously formed. [Helmholtz 1925]

The character of computations in goal achievement is related to the inference
mechanisms studied in Chapter 11, only planning is distinguished by being
dynamic through time. Inference (Chapter 12) is concerned with the knowledge
base and deducing relations that logically follow from it. The primitives are prop-
ositions. In planning (Chapter 13) the primitives are actions, which are inherently
more complex than propositions. Also, planning need not be a purely deductive
mechanism; instead it can be integrated with visual ‘‘acting”’, or the interpretation
of visual input. Often, a long deductive sequence may be obviated by using direct
visual inspection. This raises a crucial point: Given the existence of plans, how
does one choose between them? The solution is to have a method of scoring plans
based on some measure of their effectiveness.

EXERCISES

10.1 (a) Diagram some networks for a simple dial telephone, at various levels of detail
and with various complexities of relations.
(b) Now include in your network dial and pushbutton types.
(c) Embed the telephone frame into an office frame, describing where the tele-
phone should be found.
10.2 Is a LISP vision program an analogical or propositional representation of
knowledge?
10.3 Write a semantic net for the concept “‘leg,”” and use it to model human beings,
tables, and spiders. Represent the fact ““all tables have four legs.”” Can your “‘leg”
model be shared between tables and spiders? Shared within spiders?

REFERENCES

AMBLER, A. P., H. G. BARROW, C. M. BRowN, R, M. BURSTALL, and R. J. POPPLESTONE. ‘‘A versatile
system for computer controlled assembly.”” Artificial Intelligence 6, 2, 1975, 129-156.

ANDERSON, J. R. and G. H. BoweR. Human Associative Memory. New York: V. H. Winston & Sons,
1973,

BALLARD, D. H. Hierarchic Recognition of Tumors in Chest Radiographs. Basel: Birkhauser-Verlag (ISR-
16), 1976.

BALLARD, D. H. “Model-directed detection of ribs in chest radiographs.”” TR11, Computer Science
Dept., Univ. Rochester, March 1978.

BaLLARD, D. H., U. SHANI, and R. B. ScHUDY. “‘Anatomical models for medical images.” Pmc 3rd
COMPSAC November 1979, 565-570.

Barrow, H. G. and J. M. TENENBAUM. ““Computational vision.”” Proc. JEEE 69, 5, May 1981, 572-595.

BARTLETT, F. C. Remembering: A Study in Experimental and Social Psychology. Cambridge: Cambridge
University Press, 1932.

Ch. 10 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 359

Bosrow, D. G. and T. WINOGRAD. *‘An overview of KRL-0, a knowledge representation language.”
Cogunitive Science 1,1, 1977, 3—46.

Boerow, D. G. and T. WINOGRAD. “‘KRL: another perspective.” Cognitive Science 3, 1, 1979, 29-42,

BoLLes, R. C. “Verification vision for programmable assembly.”” Proc., 5th IICAI, August 1977,
569-575.

BracHMAN, R. J. “What’s in a concept? Structural foundations for semantic networks.”” Report 3433,
Bolt, Beranek and Newman, October 1976.

BracHMAN, R. J. ““On the epistemological status of semantic networks.” In Associative Networks:
Representation and Use of Knowledge by Computers, N.V. Findler (Ed.). New York: Academic
Press, 1979, 3-50.

Brooks, R. A. and T. O. BiNFoRD. “‘Representing and reasoning about specified scenes.” Proc.,
DARPA IU Workshop, April 1980, 95-103.

Bucknour, R. “Eyewitness testimony.”’ Scientific American, December 1974, 23-31.
DovLE, I. “*A truth maintenance system.”’ Artificial Intelligence 12, 3, 1979.

FAHLMAN, S. E. ““A planning system for robot construction tasks.”” Artificial Intelligence 5, 1, 1974,
1-49.

FINDLER, N. V. (Ed.). Associative Networks: Representation and Use of Knowledge by Computers. New
York: Academic Press, 1979.

FoDoRr, J. D., J. A. FoDor, and M. F. GARRETT. ““The psychological unreality of semantic representa-
tions.” Linguistic Inquiry 4, 1975, 515-531.

FRrReUDER, E. C. ““A computer system for visual recognition using active knowledge.”” Ph.D. disserta-
tion, MIT, 1975.

Funt, B. V. “WHISPER: a problem-solving system utilizing diagrams.”” Proc., 5th IJCAI, August
1977, 459-464.

GARVEY, J. D. ““Perceptual strategies for purposive vision.”” Technical Note 117, AI Center, SRI Inter-
national, 1976.

GELERNTER, H. ‘‘Realization of a geometry-theorem proving machine.”” In Computers and Thought, E.
Feigenbaum and J. Feldman (Eds.}. New York: McGraw-Hill, 1963.

GESCHWIND, N. “Neurological knowledge and complex behaviors.” Cognitive Science 4, 2, April 1980,
185-193.

GoMBRICH, E. H. Art and Illusion. Princeton, NJ: Princeton University Press, 1972.
GREGORY, R. L. The Intelligent Eye. New York: McGraw-Hill, 1970.
HaYEs, Patrick J. ““The logic of frames.”” In The Frame Reader. Berlin: DeGruyter, 1980.

Havyes*, Philip I. “nge association-based techniques for lexical disambiguation by machine.”” Ph.D.
dissertation, Ecole polytechnique fédérale de Lausanne, 1977; also TR25, Computer Science
Dept., Univ. Rochester, June 1977,

HELMHOLTZ, H. von. Treatise on Physiological Optics (translated by J. P. T. Sauthall). New York: Dover
Publications, 1925.

HenDrIX, G. G. “Expanding the utility of semantic networks through partitions.”” Proc., 4th IICAI,
September 1975, 115-121.

Henprix, G. G. “Encoding knowledge in partitioned networks.” In Associative Networks: Representa-
tion and Use of Knowledge by Computers, N.V. Findler (Ed.). New York: Academic Press, 1979,
51-92.

HewiTT, C. ‘“Description and theoretical analysis (using schemata) of PLANNER” (Ph.D. disserta-
tion). AI-TR-258, Al Lab, MIT, 1972.

HintoN, G. E. “Relaxation and its role in vision.”” Ph.D. dissertation, Univ. Edinburgh, December
1977.

References 349

IPR2021-00921
Apple EX1015 Page 360

350

Jounson-LAIRD, P. N. ““Mental models in cognitive science.”” Cognitive Science 4, 1, January-March
1980, 71-115.

KossLyn, S. M. and J. R. POMERANTZ. *‘Imagery, propositions and the form of internal representa-
tions.”” Cognitive Psychology 9, 1977, 52-76.

KossLyn, S. M. and S. P. SCHWARTZ. *‘A simulation of visual imagery.”” Cognitive Science 1, 3, July
1977, 265-295.

KossLyn, S. M. and S. P. ScHWARTZ. *“Visual images as spatial representations in active memory.” In
CVS, 1978.

LeHNERT, W.and Y. WILKS. ““A critical perspective on KRL." Cognitive Science 3, 1, 1979, 1-28.

LozZANO-PEREZ, T. and M. A. WESLEY. ‘‘An algorithm for planning collision-free paths among po-
Iyhedral obstacles.” Comm. ACM 22, 10, October 1979, 560-570.

MCcDERMOTT, D. ““Artificial intelligence meets natural stupidity.” SIGART Newsletter 57, April 1976,
4-9.

MInsKY, M. L. “*A framework for representing knowledge.”” In PCV, 1975.

MooRE J. and A. NEWELL. ““How can MERLIN understand?” In Knowledge and Cognition, L. Gregg
(Ed.). Hillsdale, NJ: Lawrence Erlbaum Assoc., 1973.

Moorg, R. C. “Reasoning about knowledge and action.”” Techical Note 191, AI Center, SRI Interna-
tional, 1979,

NEISSER, U. Cognitive Psychology. New York: Appleton-Century-Crofts, 1967.

NEVATIA, R. and K.E. PRICE. “‘Locating structures in aerial images.”” USCIPI Report 800, Image Proc-
essing Institute, Univ. Southern California, March 1978, 41-58.

NiLssoN, N. J. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971,
NILSSON, N. J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.

PALMER, S. E. “Visual perception and world knowledge: notes on a model of sensory-cognitive interac-
tion.”” In Explorations in Cognition, D.A. Norman, D.E. Rumelhart, and the LNR Research
Group (Eds.). San Francisco: W.H. Freeman, 1975.

PYLYSHYN, Z. W, ““What the mind’s eye tells the mind’s brain; a critique of mental imagery.’” Psycho-
logical Bulletin 80, 1973, 1-24.

QUILLIAN, M. R. “*Semantic memory.” In Semantic Information Processing, M. Minsky (Ed.). Cam-
bridge, MA: MIT Press, 1968.

RogerTs, R. B. and 1. P. GoLDSTEIN. ““The FRL primer.”” Al Memo 408, Al Lab, MIT, 1977.

RUMELHART, D. E., P. H. LINDSAY, and D. A. NorMAN. ‘A process model for long-term memory.” In
Organization of Memory, E. Tulving and J. Donaldson (Eds.). New York: Academic Press, 1972.

RussiLL, D. M. “Where do I look now?’* Proc., PRIP, August 1979, 175-183.
ScHANK, R. C. Conceptual Information Processing. Amsterdam: North-Holland, 1975,

ScHANK, R. C. and R. P. ABELSON. Scripts, Plans, Goals and Understanding. Hillsdale, NJ: Lawrence Erl-
baum Assoc., 1977.

ScHUBERT, L. K. “Extending the expressive power of semantic networks.” Artificial Intelligence 7, 2,
1976, 163-198.

SELFRIDGE, O. “‘Pandemonium, a paradigm for learning.”” In Proc., Symp. on the Mechanisation of
Thought Processes, National Physical Laboratory, Teddington, England, 1959.

SHEPARD, R. N. ““The mental image.”” American Psychologist 33, 1978, 125-137.
SHIRAL Y. “*Analyzing intensity arrays using knowledge about scenes.”” In PCV, 1975.

SLOMAN, A. “‘Interactions between philosophy and artificial intelligence: the role of intuition and non-
logical reasoning in intelligence.” Arificial Intelligence 2, 3/4, 1971, 209-225.

STaLLMAN, R. M. and G. J. SussmaN. “*Forward reasoning and dependency-directed backtracking in a
system for computer-aided circuit analysis.” Artificial Intelligence 9, 2, 1977, 135-196.

Ch. 710 Knowledge Representation and Use

IPR2021-00921
Apple EX1015 Page 361

STEFIK, M. ““An examination of a frame-structured representation system.” Proc., 6th IJICAI, August
1979, 845-852.

SussMaN, G. J. and D. McDERMOTT. ““Why conniving is better than planning.”” Al Memo 255A, Al
Lab, MIT, 1972.

WaLtz, D. and L. BoGGEss. “*Visual analog representations for natural language understanding.”
Proc., 6th IICAIL, August 1979, 226-234.

WinoGRrAD, T. “‘Extended inference modes in reasoning by computer systems.’’ Proc., Conf. on Induc-
tive Logic, Oxford Univ., August 1978.

WINOGRAD, T. “‘Frame representations and the declarative/procedural controversy.’” In Representation
and Understanding, D. G. Bobrow and A. M. Collins (Eds.). New York: Academic Press, 1975,
185-210.

WinsToN, P. H. “*Learning structural descriptions from examples.”” In PCV, 1975,
WinsTON, P. H. Ariificial Intelligence. Reading, MA: Addison-Wesley, 1977.

Woobs, W. A. ““What’s in a link? Foundations for semantic networks.’” In Representation and Under-
standing, D. G. Bobrow and A. M. Collins (Eds.). New York: Academic Press, 1975.

References 351

IPR2021-00921
Apple EX1015 Page 362

Matching 11

11.1 ASPECTS OF MATCHING

352

11.1.1 Interpretation: Construction, Matching, and Labeling

Figure 10.1 shows a vision system organization in which there are several
representations for visual entities. A complex vision system will at any time have
several coexisting representations for visual inputs and other knowledge. Percep-
tion is the process of integrating the visual input with the preexisting representa-
tions, for whatever purpose. Recognition, belief maintenance, goalseeking, or
building complex descriptions—all involve forming or finding relations between
internal representations. These correspondences match (“model,” “‘re-
represent,’” “‘abstract,”” ‘“‘label’’) entities at one level with those at another level.

Ultimately, matching ‘‘establishes an interpretation® of input data, where an
interpretation is the correspondence between models represented in a computer
and the external world of phenomena and objects. To do this, matching associates
different representations, hence establishing a connection between their interpre-
tations in the world. Figure 11.1 illustrates this point. Matching associates TOK-
NODE, a token for a linear geometric structure derived from image segmentation
efforts with a model token NODE101 for a particular road. The token TOKNODE
has the interpretation of an image entity; NODE101 has the interpretation of a par-
ticular road.

One way to relate representations is to construct one from the other. An ex-
ample is the construction of an intrinsic image from raw visual input. Bottom-up
construction in a complex visual system is for reliably useful, domain-
independent, goal-independent processing steps. Such steps rely only on
“compiled-in” (“‘hard-wired,” ‘“‘innate’’) knowledge supplied by the designer of
the system. Matching becomes more important as the needed processing becomes
more diverse and idiosyncratic to an individual’s experience, goals, and

IPR2021-00921
Apple EX1015 Page 363

A road or class of roads

Sec. 11.1

Represents

ﬂ Represents — i

An image of LY / 3 e :
aroad N b \‘l\io sled properties "//

Ve
B Input i Ny Reference -
% o
~ — ~— -

Fig. 11.1 Matching and interpretation.

knowledge. Thus as processing moves from “‘early” to “‘late,’” control shifts from
bottom-up toward top-down, and existing knowledge begins to dominate percep-
tion.

This chapter deals with some aspects of matching, in which two already exist-
ing representations are put into correspondence. When the two representations are
similar (both are images or relational structures, say), ‘““matching’ can be used in
its familiar sense. When the representations are different (one image and one
geometric structure, say), we use ““matching” in an extended sense; perhaps
“fitting”” would be better. This second sort of matching usually has a top-down or
expectation-driven flavor; a representation is being related to a preexisting one.

As a final extension to the meaning of matching, matching might include the
process of checking a structure with a set of rules describing structural legality,
consistency, or likelihood. In this sense a scene can be matched against rules to see
if it is nonsense or to assign an interpretation. One such interpretation process
(called labeling) assigns consistent or optimally likely interpretations (labels) at
one level to entities of another level. Labeling is like matching a given structure
with a possibly infinite set of acceptable structures to find the best fit. However, we
(fairly arbitrarily) treat labeling in Chapter 12 as extended inference rather than
here as extended matching.

11.1.2 Matching Iconic, Geometric, and Relational Structures

Chapter 3 presented various correlation techniques for matching iconic (image-
like) structures with each other. The bulk of this chapter, starting in Section 11.2,
deals with matching relational (semantic net) structures. Another important sort of
matching between two dissimilar representations fits data to parameterized models
(usually geometric). This kind of matching is an important part of computer vi-

Aspects of Matching 353

IPR2021-00921
Apple EX1015 Page 364

354

sion. A typical example is shown in Fig. 11.2. A preexisting representation (here a
straight line) is to be used to interpret a set of input data. The line that best ‘“‘ex-
plains™ the data is (by definition) the line of ‘“best fit.”> Notice that the decision to
use a line (rather than a cubic, or a piecewise linear template) is made at a higher
level. Given the model, the fitting or matching means determining the parameters
of the model that tailor it into a useful abstraction of the data.

Sometimes there is no parameterized mathematical model to fit, but rather a
given geometric structure, such as a piecewise linear curve representing a shore-
line in a map which is to be matched to a piece of shoreline in an image, or to
another piecewise linear structure derived from such a shoreline. These geometric
matching problems are not traditional mathematical applications, but they are
similar in that the best match is defined as the one minimizing a measure of
disagreement.

Often, the computational solutions to such geometric matching problems ex-
hibit considerable ingenuity. For example, the shore-matching example above
may proceed by finding that position for the segment of shore to be matched that
minimizes some function (perhaps the square) of a distance metric (perhaps Eu-
clidean) between input points on the iconic image shoreline and the nearest point
on the reference geometric map shoreline. To compute the smallest distance
between an arbitrary point and a piecewise linear point set is not a trivial task, and
this calculation may have to be performed often to find the best match. The com-
putation may be reduced to a simple table lookup by precomputing the metric in a
“‘chamfer array,’’ that contains the metric of disagreement for any point around
the geometric reference shoreline [Barrow et al. 1978]. The array may be com-
puted efficiently by symmetric axis transform techniques (Chapter 8) that “‘grow”’
the linear structure outward in contours of equal disagreement (dlstance) until a
value has been computed for each point of the chamfer array.

Parameter optimization techniques can relate geometrical structures to lower-
level representations and to each other through the use of a merit function measur-
ing how well the relations match. The models are described by a vector of parame-
ters a = (ay,...,a,). The merit function M must rate each set of those parameters
in terms of a real number. For example, M could be a function of both g, the
parameters, and £ (x), the image. The problem is to find a such that

Mla, f(x))

Reference Input

Ax + By +€C=0

Fig. 11.2 Matching or fitting a straight
line model to data.

Ch. 71 Matching

IPR2021-00921
Apple EX1015 Page 365

is maximized. Note that if a were some form of template function rather than a
vector of parameters, the problem statement would encompass the iconic correla-
tion techniques just covered. There is a vast literature on optimization techniques
and we cannot do more than provide a cursory discussion of a few cases with exam-
ples. :
Formally, the different techniques have to do with the form of the merit
function M. A fundamental result from calculus is that if M is sufficiently well
behaved (i.e., has continuous derivatives), then a condition for a local maximum
{or minimum) is that

w, =M _

= 9, 0 for j=1,...,n (11.1)

This condition can be exploited in many different ways.

« Sometimes Egs. (11.1) are sufficiently simple so that the @ can be determined
analytically, as in the least squares fitting, described in Appendix 1.

« An approximate solution a° can be iteratively adjusted by mbving in the gra-
dient direction or direction of maximum improvement:
af=af "'+ cM, (11.2)
where ¢ is a constant. This is the most elementary of several kinds of gradient
(hill-climbing) technigues. Here the gradient is defined with respect to M and
does not mean edge strength.

« If the partial derivatives are expensive to calculate, the coefficients can be per-
turbed (either randomly or in a structured way) and the perturbations kept if
they improve M:

()a":=a+Aa
(2) a=aif M(a) > M(a)

A program to fit three-dimensional image data with shapes described by
spherical harmonics used these techniques [Schudy and Ballard 1978]. The details
of the spherical harmonics shape representation appear in Chapter 9. The fitting
proceeded by the third method above. A nominal expected shape was matched to
boundaries in image data. If a subsequent perturbation in one of its parameters
results in an improvement in fit it was kept; otherwise, a different perturbation was
made. Figure 11.3 shows this fitting process for a cross section of the shape.

Though parameter optimization is an important aspect of matching, we shall
not pursue it further here in view of the extensive literature on the subject.

11.2 GRAPH-THEORETIC ALGORITHMS
The remainder of this chapter deals with methods of matching relational struc-

tures. Chapter 10 showed how to represent a relational structure containing n-ary
relations as a graph with labeled arcs. Recall that the labels can have values from a

Sec. 11.2 Graph-Theoretic Algorithms 355

IPR2021-00921
Apple EX1015 Page 366

(b)

)
el
zastl

il
ICLEE S

L
3.
e

Fig. 11.3 Anexample of matching as
parameter optimization. (a) Initial
parameter set (displayed at left as three-
dimensional surface (see Fig. 9.8) (b)
Fitting process: iteratively adjust a based
on M (see text). (c) Final parameter set
yields this three-dimensional surface.
(See color inserts.)

356 Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 367

continuum, and that labeled arcs could be replaced by nodes to yield a directed
graph with labeled nodes.

Depending on the attributes of the relational structure and of the correspon-
dence desired, the definition of a match may be more or less elegant. It is always
possible to translate powerful representations such as labeled graphs or n-ary rela-
tions into computational representations which are amenable to formal treatment
(such as undirected graphs). However, when graph algorithms are to be imple-
mented with computer data structures, the freedom and power of programming
languages often tempts the implementer away from pure graph theory. He can re-
place elegant (but occasionally restrictive and impractical) graph-theoretic con-
cepts and operations with arbitrarily complex data structures and algorithms.

One example is the ‘“‘graph isomorphism’’ problem, a very pure version of
relational structure matching. In it, all graph nodes and arcs are unlabeled, and
graphs match if there is a 1:1 and onto correspondence between the arcs and nodes
of the two graphs. The lack of expressive power in these graphs and the require-
ment that a match be “perfect’ limits the usefulness of this pure model of match-
ing in the context of noisy input and imprecise reference structures. In practice,
graph nodes may have properties with continuous ranges of values, and an arbi-
trarily complex algorithm determines whether nodes or arcs match. The algorithm
may even access information outside the graphs themselves, as long as it returns
the answer “‘match’ or ‘“‘no match.”” Generalizing the graph-theoretic notions in
this way can obscure issues of their efficiency, power, and properties; one must
steer a course between the ‘‘elegant and unusable® and the ‘‘general and uncon-
trollable.”” This section introduces some ‘‘pure” graph-theoretic algorithms that
form the basis for techniques in Sections 11.3 and 11.4,

11.2.1 The Algorithms

The following are several definitions of matching between graphs [Harary 1969;
Berge 1976].

e Graph isomorphism. Given two graphs (V, E;) and (V,, E,), find a 1:1 and
onto mapping (an isomorphism) f between ¥, and ¥, such that for
v, v2 € Vi, Vo, f(¥;)) = v, and for each edge of E; connecting any pair of
nodes v, and v'; € V|, there is an edge of E; connecting £ (v;) and £ (v{").

s Subgraph isomorphism. Find isomorphisms between a graph (¥, E}) and sub-
graphs of another graph (¥, E,). This is computationally harder than isomor-
phism because one does not know in advance which subsets of V, are involved
in isomorphisms.

o “Double” subgraph isomorphisms. Find all isomorphisms between subgraphs of
a graph (V1 E)) and subgraphs of another graph (¥, E;). This sounds harder
than the subgraph isomorphism problem, but is equivalent.

« A match may not conform to strict rules of correspondence between arcs and
nodes (some nodes and arcs may be “‘unimportant™). Such a matching cri-
terion may well be implemented as a ‘‘computational”” (impure) version of one
of the pure graph isomorphisms.

Sec. 11.2 Graph-Theoretic Algorithms 357

IPR2021-00921
Apple EX1015 Page 368

358

Figure 11.4 shows examples of these kinds of matches.

One algorithm for finding graph isomorphism [Corneil and Gotlieb 1970] is
based on the idea of separately putting each graph into a canonical form, from
which isomorphism may easily be determined. For directed graphs (i.e., nonsym-
metric relations) a backtrack search algorithm [Berztiss 1973] works on both
graphs at once.

Two solutions to the subgraph isomorphism problem appear in [Ullman
1976]: The first is a simple enumerative search of the tree of possible matches
between nodes. The second is more interesting; in it a process of ‘‘parallel-
iterative” refinement is applied at each stage of the search. This process is a way of
rejecting node pairs from the isomorphism and of propagating the effects of such
rejections; one rejected match can lead to more matches being rejected. When the
iteration converges (i.e., when no more matches can be rejected at the current
stage), another step in the tree search is performed (one more matching pair is hy-
pothesized). This mixing of parallel-iterative processes with tree search is useful in
a variety of applications (Section 11.4.4, Chapter 12).

“Double’’ subgraph isomorphism is easily reduced to subgraph isomorphism
via another well-known graph problem, the “‘clique problem.”” A cligue of size Nis
a totally connected subgraph of size N (each node is connected to every other node
in the clique by an arc). Finding isomorphisms between subgraphs of a graph A
and subgraphs of a graph B is accomplished by forming an association graph G from
the graphs A and B and finding cliques in G (for details, see Section 11.3.3). Clique

ERZA
i I

Fig. 11.4 Isomorphisms and matches. The graph (a) has an isomorphism with
(b), various subgraph isomorphisms with (c}, and several “‘double’” subgraph iso-
morphisms with (d). Several partial matches with (e) (and also (b), {(c), and (d)),
depending on which missing or extra nodes are ignored.

Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 369

finding may be done with a subgraph isomorphism algorithm; hence the reduction.
Several other clique-finding algorithms exist [Ambler et al. 1975; Knodel 1968;
Bron and Kerbosch 1973; Osteen and Tou 1973].

11.2.2 Complexity

It is of some practical importance to be aware of the computational complexity of
the matching algorithms proposed here; they may take surprising amounts of com-
puter time. There are many accessible treatments of computational complexity of
graph-theoretic algorithms [Reingold et al. 1977; Aho, Hopcroft and Ullman
1974]. Theoretical results usually describe worst-case or average time complexity.
The state of knowledge in graph algorithms is still improving; some interesting
worst-case bounds have not been established.

A ““hard” combinatorial problem is one that takes time (in a usual model of
computation based on a serial computer) proportional to an exponential function
of the length of the input. ‘‘Polynomial-time’” solutions are desirable because they
do not grow as fast with the size of the problem. The time to find all the cliques of a
graph is in the worst case inherently exponential in the size of the input graphs, be-
cause the output is an exponential number of graphs. Both the single subgraph iso-
morphism problem and the ‘“clique problem’’ (does there exist a clique of size k?)
are NP-complete; all known deterministic algorithms run (in the worst case) in time
exponential in the length of the description of the graphs involved (which must
specify the nodes and arcs). Not only this, but if either of these problems (or a host
of other NP complete problems) could be solved deterministically in time polyno-
mially related to the length of the input, it could be used to solve all the other NP
problems in polynomial time.

Graph isomorphism, both directed and undirected, is at this writing in a
netherworld (along with many other combinatorial problems). No polynomial-
time deterministic algorithms are known to exist, but the relation of these prob-
lems to each other is not as clear-cut as it is between the NP-complete problem. In
particular, finding a polynomial-time deterministic solution to one of them would
not necessarily indicate anything about how to solve the other problems determin-
istically in polynomial time. These problems are not mutually reducible. Certain
restrictions on the graphs, for instance that they are planar (can be arranged with
their nodes in a plane and with no arcs crossing), can make graph isomorphism an
“gasy”’ (polynomial-time) problem.

The average-case complexity is often of more practical interest than the worst
case. Typically, such a measure is impossible to determine analytically and must be
approximated through simulation. For instance, one algorithm to find isomor-
phisms of randomly generated graphs yields an average time that seems not ex-
ponential, but proportional to N , with N the number of nodes in the graph [Ull-
man 1976]. Another algorithm seems to run in average time proportional to N?
[Corneil and Gotlieb 1970].

All the graph problems of this section are in NP. That is, a nordeterministic
algorithm can solve them in polynomial time. There are various ways of visualizing

Sec. 11.2 GraphAThﬁtﬂc Algorithms 359

IPR2021-00921
Apple EX1015 Page 370

nondeterministic algorithms; one is that the algorithm makes certain significant
“‘good guesses’’ from a range of possibilities (such as correctly guessing which sub-
set of nodes from graph B are isomorphic with graph 4 and then only having to
worry about the arcs). Another way is to imagine parallel computation; in the
clique problem, for example, imagine multiple machines running in parallel, each
with a different subset of nodes from the input graph. If any machine discovers a
totally connected subset, it has, of course, discovered a clique. Checking whether
N nodes are all pairwise connected is at most a polynomial-time problem, so all the
machines will terminate in polynomial time, either with success or not. Several in-
teresting processes can be implemented with parallel computations. Ullman’s algo-
rithm uses a refinement procedure which may run in parallel between stages of his
tree search, and which he explains how to implement in parallel hardware [Ullman
1976].

11.3 IMPLEMENTING GRAPH-THEORETIC ALGORITHMS

360

11.3.1 Matching Metrics

Matching involves quantifiable similarities. A match is not merely a correspon-
dence, but a correspondence that has been quantified according to its “‘goodness.””
This measure of goodness is the matching metric. Similarity measures for correla-
tion matching are lumped together as one number. In relational matching they
must take into account a relational, structured form of data [Shapiro and Haralick
1979].

Most of the structural matching metrics may be explained with the physical
analogy of ““‘templates and springs” [Fischler and Elschlager 1973]. Imagine that
the reference data comprise a structure on a transparent rubber sheet. The match-
ing process moves this sheet over the input data structure, distorting the sheet so
as to get the best match. The final goodness of fit depends on the individual
matches between elements of the input and reference data, and on the amount of
work it takes to distort the sheet. The continuous deformation process is a pretty
abstraction which most matching algorithms do not implement. A computationally
more tractable form of the idea is to consider the model as a set of rigid “‘tem-
plates” connected by ‘‘springs” (see Fig. 11.5). The templates are connected by
“‘springs” whose ‘‘tension”’ is also a function of the relations between elements. A
spring function can be arbitrarily complex and nonlinear; for example the ‘“‘ten-
sion” in the spring can attain very high or infinite values for configurations of tem-
plates which cannot be allowed. Nonlinearity is good for such constraints as: in a
picture of a face the two eyes must be essentially in a horizontal line and must be
within fixed limits of distance. The quality of the match is a function of the good-
ness of fit of the templates locally and the amount of “energy’’ needed to stretch
the springs to force the input onto the reference data. Costs may be imposed for
missing or extra elements.

The template match functions and spring functions are general procedures,
thus the templates may be more general than pure iconic templates. Further,

Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 371

Hair

Left

Right
edge ?

edge

Mouth

Fig. 11.5 A templates and springs model of a face.

matches may be defined not only between nodes and other nodes, but between
nodes and image data directly. Thus the template and springs formalism is work-
able for ‘‘cross-representational’® matching. The mechanism of minimizing the to-
tal cost of the match can take several forms; more detailed examples follow in Sec-
tion11.4.

Equation 11.3 a general form of the template-and-springs metric. Tem-
plateCost measures dissimilarity between the input and the templates, and
SpringCost measures the dissimilarity between the matched input elements’ rela-
tions and the reference relations between the templates. MissingCost measures the
penalties for missing elements. F(-) is the mapping from templates of the reference
to elements of the input data. F partitions the reference templates into two classes,
those found {FoundinRefer} and those not found {MissinginRefer} in the input
data. If the input data are symbolic they may be similarly partitioned. The general
metric is

Cost = z TemplateCost(d, F(d))
d € |FoundinRefer)

_ _ SpringCost(F(d), F(e)) (11.3)
(d, e) € |FoundinRefer x FoundinInput}

+ b MissingCost (¢)
¢ € |MissinginRefer] | [MissinginInput]

Equation 11.3 may be written as one sum of generalized SpringCosts in which
the template properties are included (as 1-ary relations), as are ‘‘springs’” involv-

ing missing elements.

Sec. 11.3 Implementing Graph-Theoretic Algorithms 361

IPR2021-00921
Apple EX1015 Page 372

362

As with correlation metrics, there are normalization issues involved with
structural matching metrics. The number of elements matched may affect the ulti-
mate magnitude of the metric. For instance, if springs always have a finite cost,
then the more elements that are matched, the higher the total spring energy must
be; this should probably not be taken to imply that a match of many elements is
worse than a match of a few. Conversely, suppose that relations which agree are
given positive “‘goodness’’ measures, and a match is chosen on the basis of the to-
tal “‘goodness.”” Then unless one is careful, the sheer number of possibly mediocre
relational matches induced by matching many elements may outweigh the ‘‘good-
ness” of an elegant match involving only a few elements. On the other hand, a
small, elegant match of a part of the input structure with one particular reference
object may leave much of the search structure unexplained. This good ‘‘sub-
match’ may be less helpful than a match that explains more of the input. To some
extent the general metric (Eq.11.3) copes with this by acknowledging the ‘‘miss-
ing”’ category of elements.

If the reference templates actually contain iconic representations of what the
input elements should look like in the image, a TemplateCost can be associated
with a template and a location in the image by

TemplateCost(Template, Location)

= (1 — normalized correlation metric between
template shape and input image at the location).

If the match is, for instance, to match reference descriptions of a chair with
an input data structure, a typical “‘spring’’ might be that the chair seat must be sup-
ported by its legs. Thus if Fis the association function mapping reference elements
such as LEG or TABLETOP to input elements,

SpringCost, (F (LEG),F(TABLETOP)

0 if F(LEG) appears to support F(TABLETOP),
1 if F(LEG) does not appear to support # (TABLETOP).

For quantified relations, one might have

SpringCost, = number of standard deviations from the
canonical mean value for this relation.

Another version of SpringCost, is the following [Barrow and Popplestone
1971].
ot aE T - SpringCosts of properties (unary) fmd bmar‘y relations 11.4)

total number of unary and binary springs
+ Empirical Constant
Total number of reference elements matched

The first term measures the average badness of matches between properties
(unary relations) and relations between regions. The second term is inversely pro-
portional to the number of regions that are matched, effectively increasing the cost
of matches that explain less of the input.

Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 373

11.3.2 Backtrack Search

Backtrack search is a generic name for a type of potentially exhaustive search or-
ganized in stages; each processing stage attempts to extend a partial solution
derived in the previous stage. Should the attempt fail, the search ““backtracks’ to
the most recent partial solution, from which a new extension is attempted. The
technique is basic, amounting to a depth-first search through a tree of partial solu-
tions (Fig. 11.6). Backtracking is a pervasive control structure in artificial intelli-

Choices for A

Choices for 8
given A

Choices for C
given A and B

Fig. 11.6 The graph of {a) is to be matched in (b) with arcs all being unlabeled
but nodes having properties indicated by their shapes, (¢) is the tree of solutions
built by a backtrack algorithm.

Sec. 71.3 Implementing Graph-Theoretic Algorithms 363

IPR2021-00921
Apple EX1015 Page 374

364

gence, and through the years several general classes of techniques have evolved to
make the basic, brute-force backtrack search more efficient.

Example: Graph [somorphisms
Given two graphs,

X = (V/y, E){)
Y = (Vy, Ey),
without loss of generality, let ¥y = Vy = {1, 2, ..., n}, and let X be the reference

graph, Y the input graph. The isomorphism is given by: If i € Vy, the correspond-
ing node under the isomorphism is F (i) € Vy.

In the algorithm, Sis the set of nodes accounted for in ¥'by a partial solution.
k gives the current level of the search in the tree of partial solutions, the number of
nodes in the current partial solution, and the node of X whose match in Y is
currently being sought. v is a node of Y currently being considered to extend the
current partial solution. As written, the algorithm finds all isomorphisms. It is
easily modified to quit after finding the first.

Algorithm 11.1 Backtrack Search for Directed Graph Isomorphism

Recursive Procedure DirectedGraphlsomorphisms(S,k);
begin
if S=Vy then ReportAslsomorphism (F)
else
forallv € (Vy—S)
do
if Match(k,»
then
begin
Fk) =
DirectedGraphlsomorphisms (S € {V}, k+1);
end,
end,

ReportAsIsomorphism could print or save the current value of F, the global
structure recording the current solution. Match(k,v) is a procedure that tests
whether v € ¥y can correspond to k € Vy under the isomorphism so far defined by
F. Let X, be the subgraph of X with vertices {1, 2,. . .,k}. The procedure ‘“Match”’
must check for i < k, whether (i, k) is an edge of X, iff (F(i), v) is an edge of ¥
and whether (k, i) is an edge of X, iff (v, F(i)) is an edge of Y-

Improving Backtrack Search

Several techniques are useful in improving the efficiency of backtrack search
[Bittner and Reingold 1975]:

Ch. 17 Matching

IPR2021-00921
Apple EX1015 Page 375

Sec. 11.3

1. Branch pruning. All techniques of this variety examine the current partial solu-
tion and prune away descendents that are not viable continuations of the solu-
tion. Should none exist, backtracking can take place immediately.

2. Branch merging. Do not search branches of the solution tree isomorphic with
those already searched.

3. Tree rearrangement and reordering. Given pruning capabilities, more nodes are
likely to be eliminated by pruning if there are fewer choices to make early in
the search (partial solution nodes of low degree should be high in the search
tree). Similarly, search first those extensions to the current solution that have
the fewest alternatives.

4. Branch and bound. If a cost may be assigned to solutions, standard techniques
such as heuristic search and the A* search algorithm [Nilsson 1980] (Section
4.4) may be employed to allow the search to proceed on a ‘‘best-first’” rather
than a ““depth-first’’ basis.

For extensions of these techniques, see [Haralick and Elliott 1979].

11.3.3 Association Graph Techniques

Generalized Structure Matching

A general relational structure ‘‘best match’’ is less restricted than graph iso-
morphism, because nodes or arcs may be missing from one or the other graph.
Also, it is more general than subgraph isomorphism because one structure may not
be exactly isomorphic to a substructure of the other. A more general match con-
sists of a set of nodes from one structure and a set of nodes from the otheranda1:1
mapping between them which preserves the compatibilities of properties and rela-
tions. In other words, corresponding nodes (under the node mapping) have
sufficiently similar properties, and corresponding sets under the mapping have
compatible relations.

The two relational structures may have a complex makeup that falls outside
the normal purview of graph theory. For instance, they may have parameterized
properties attached to their nodes and edges. The definition of whether a node
matches another node and whether two such node matches are mutually compati-
ble can be determined by arbitrary procedures, unlike the much simpler criteria
used in pure graph isomorphism or subgraph isomorphism, for example. Recall
that the various graph and subgraph isomorphisms rely heavily on a 1:1 match, at
least locally, between arcs and nodes of the structures to be matched. However, the
idea of a ‘“‘best match’ may make sense even in the absence of such perfect
correspondences.

The association graph defined in this section is an auxiliary data structure pro-
duced from two relational structures to be matched. The beauty of the association
graph is that it is a simple, pure graph-theoretic structure which is amenable to
pure graph-theoretic algorithms such as clique finding. This is useful for several
reasons.

Implementing Graph-Theoretic Algorithms 365

IPR2021-00921
Apple EX1015 Page 376

366

« It takes relational structure matching from the ad hoc to the classical domain.

« It broadens the base of people who are producing useful algorithms for struc-
ture matching. If the rather specialized relational structure matching enterprise
is reducible to a classical graph-theoretical problem, then everyone working on
the classical problem is also working indirectly on structure matching.

« Knowledge about the computational complexity of classical graph algorithms il-
luminates the difficulty of structure matching.

Clique Finding for Generalized Matching

Let a relational structure be a set of elements V, a set of properties (or more
simply unary predicates) P defined over the elements, and a set of binary relations
(or binary predicates) R defined over pairs of the elements. An example of a graph
representation of such a structure is given in Fig. 11.7.

Given two structures defined by (¥, P, R) and (V,, P, R), say that ‘‘simi-
lar’” and “‘compatible” actually mean “‘the same.”” Then we construct an associa-
tion graph G as follows [Ambler et al. 1975]. For each v; in ¥, and v, in V>, con-
struct a node of G labeled (vy, v3) if v; and v, have the same properties [p (v;) iff
p(v3) for each pin Pl. Thus the nodes of G denote assignments, or pairs of nodes,
one each from V; and ¥,, which have similar properties. Now connect two nodes
(vq, v2) and (v}, v%) of Gif they represent compatible assignments according to R,
that is, if the pairs satisfy the same binary predicates [r (v, v'y) iff r(v,, v5) for
each rin R].

A match between (¥} P, R) and (V,, P, R), the two relational structures, is
just a set of assignments that are all mutually compatible. The “‘best match™ could
well be taken to be the largest set of assighments (node correspondences) that
were all mutually compatible under the relations. But this in the association graph
G is just the largest totally connected (completely mutually compatible) —set of
nodes. It is a cligue. A clique to which no new nodes may be added without destroy-
ing the clique properties is a maximalclique. In this formulation of matching, larger
cliques are taken to indicate better matches, since they account for more nodes.

Pl p2

Fig. 11.7 A graph representation of a
relational structure. Elements (nodes) v,
and 3 have property pl, vy and v4 have
property p2, and the arcs between nodes
indicate that the relation r1 holds
between v| and v, and between v; and
v3, and r2 holds between vz and vgand
between vqand v;.

Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 377

Sec. 711.3

Thus the best matches are determined by the largest maximal cliques in the associ-
ation graph. Figure 11.8 shows an example: Certain subfeatures of the objects have
been selected as “‘primitive elements’ of the objects, and appear as nodes (ele-
ments) in the relational structures. To these nodes are attached properties, and
between them can exist relations. The choice of primitives, properties, and rela-
tions is up to the designer of the representation. Here the primitives of the
representation correspond to edges and corners of the shape.

The association graph is shown in 11.8e. Its nodes correspond to pairs of
nodes, one each from A and B, whose properties are similar. [Notice that there is
no node in the association graph for (6,6")]. The arcs of the association graph indi-
cate that the endpoints of the arc represent compatible associations. Maximal
cliques in the association graph (shown as sets of nodes with the same shape) indi-
cate sets of consistent associations. The largest maximal clique provides the node
pairings of the “‘best match.’”

In the example construction, the association graph is formed by associating
nodes with exactly the same properties (actually unary predicates), and by allowing
as compatible associations only those with exactly the same relations (actually
binary predicates). These conditions are easy to state, but they may not be exactly
what is needed. In particular, if the properties and relations may take on ranges of
values greater than the binary “‘exists” and “‘does not exist,”’ then a measure of
similarity must be introduced to define when node properties are similar enough
for association, and when relations are similar enough for compatibility. Arbitrarily
complex functions can decide whether properties and relations are similar. As long
as the function answers ““yes’” or ‘‘no,”’ the complexity of its computations is ir-
relevant to the matching algorithm.

The following recursive clique-finding algorithm builds up cliques a node at a
time [Ambler et al. 1975]. The search tree it generates has states that are ordered
pairs (set of nodes chosen for a clique, set of nodes available for inclusion in the
clique). The root of the tree is the state (@, all graph nodes), and at each branch a
choice is made whether to include or not to include an eligible node in the clique.
(If a node is eligible for inclusion in clique X, then each clique including X must ei-
ther include the node or exclude it).

Algorithm 11.2: Clique-Finding Algorithm
Comment Nodes is the set of nodes in the input graph.

Comment
Cligues (X,Y) takes as arguments a clique X, and Y, a set of nodes that includes
X. It returns all cliques that include X and are included in Y.
Cligues (&,Nodes) finds all cliques in the graph.
Cligues(X,Y) :=
if nonode in Y—Xis connected to all elements of X
then (X}
else
Cliques(X |J {»), 1) U Cliques (X, Y—{y})
where y is connected to all elements of X.

Implementing Graph-Theoretic Algorithms 367

IPR2021-00921
Apple EX1015 Page 378

Sk i)5

{7

14

(a)
6
4
(c)
/oy

32

23 \

34'

43’ 63’

54"
52'

le)

O Property *corner” E:I Property “short” e—p— Relation ‘‘next’”

Fig. 11.8 Clique-finding example. Entities to be matched are given in (a) (refer-
ence) and (b) (input). The relational structures corresponding to them are shown
in (c) and (d). The resulting association graph is shown in (e) with its largest
cliques indicated by node shapes.

368 Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 379

Extensions

Modifications to the clique-finding algorithm extend it to finding maximal
cliques and finding largest cliques. To find largest cliques, perform an additional
test to stop the recursion in Cligues if the size of X plus the number of nodes in
Y—X connected to all of X becomes less than k, which is initially set to the size of
the largest possible cligue. If no cligues of size k are found, decrement k and run
Cliques with the new k.

To find maximal cliques, at each stage of Cligues, compute the set

Y’ = [z € Nodes: z is connected to each node of Y}.

Since any maximal clique must include Y’ searching a branch may be terminated
should Y'not be contained in Y, since Ycan then contain no maximal cliques.

The association graph may be searched not for cliques, but for r-connected
components. An r-connected component is a set of nodes such that each node is
connected to at least r other nodes of the set. A clique of size # is an n—1-
connected component. Fig. 11.9 shows some examples.

The r-connected components generalize the notion of clique. An r-connected
component of N nodes in the association graph indicates a match of N pairs of
nodes from the input and reference structures, as does an N-clique. Each matching
pair has similar properties, and each pair is compatible with at least r other matches
in the component.

Whether or not the r-connected component definition of a match between
two structures is useful depends on the semantics of ‘‘compatibility.” For in-
stance, if all relations are either compulsory or prohibited, clearly a clique is called
for. If the relations merely give some degree of mutual support, perhaps an r-
connected component is the better definition of a match.

11.4 MATCHING IN PRACTICE

This section illustrates some principles of matching with examples from the com-
puter vision literature.

(a) (b) (c}

Fig. 11.9 rconnected components. (a) A S-clique (which is 4-connected). (b) A
3-connected set of 5 nodes. (c) A 1-connected set of 5 nodes.

Sec. 11.4 Matching in Practice 369

IPR2021-00921
Apple EX1015 Page 380

370

11.4.1 Decision Trees

Hierarchical decision-tree matching with ad hoc metrics is a popular way to identify
input data structures as instances of reference models and thus classify the input
instances [Nevatia 1974; Ambler et al. 1975; Winston 1975]. Decision trees are in-
dicated when it is predictable that certain features are more reliably extracted than
others and that certain relations are either easier to sense or more necessary to the
success of a match.

Winston and Nevatia both compare matches with a ‘“‘weighted sums of
difference’” metric that reflects cumulative differences between the parameters of
corresponding elements and relations in the reference and input data. In addition,
Nevatia does parameter fitting; his reference information includes geometrical in-
formation.

Matching Structural Descriptions

Winston is interested in matching such structures as appear in Fig. 11.10B.
The idea is to recognize instances of structural concepts such as ‘“‘arch’ or
“house,”” which are relational structures of primitive blocks (Fig.11.10A) [Wins-
ton 1975]. An important part of the program learns the concept in the first place—
only the matching aspect of the program is discussed here. His system has the
pleasant property of representational uniqueness: reference and input data struc-
tures that are identical up to the resolution of the descriptors used by the program
have identical representations. Matching is easy in this case. Reflections of block
structures can be recognized because the information available about relations
(such as LEFT-OF and IN-FRONT-OF) includes their OPPOSITE (i.e., RIGHT-
OF and BEHIND). The program thus can recognize various sorts of symmetry by
replacing all input data structure relations by their relevant opposite, then compar-
ing with the reference.

The next most complicated matching task after exact or symmetric matches
is to match structures in isolation. Here the method is sequentially to match the in-
put data against the whole reference data catalog of structures and determine which
match is best (which difference description is most inconsequential). Easily com-
puted scene characteristics can rule out some candidate models immediately.

The models contain arcs such as MUST-BE and MUST-NOT, expressing re-
lations mandatory or forbidden relations. A match is not allowed between a
description and a model if one of the strictures is violated. For instance, the pro-
gram may reject a ‘“‘house’” immediately as not being a ‘“‘pedestal,”” ‘‘tent,”’ or
““arch,” since the pedestal top must be a parallelepiped, both tent components
must be wedges, and the house is missing a component to support the top piece
that is needed in the arch. These outright rejections are in a sense easy cases; it can
also happen that more than one model matches some scene description. To deter-
mine the best match in this case, a weighted sum of differences is made to express
the amount of difference.

The next harder case is to match structures in a complex scene. The issue
here is what to do about evidence that is missing through obscuration. Two heuris-
tics help:

Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 381

Arch Near miss

g

Near miss Arch

MODIFICATION- OF

SUPPORTED-BY

MUST-BE-SATELLITE

ONE-PART-IS
GROUP-OF
HAS-PROPERT Y-OF

MUST-BE-
SUPPORTED-BY

MODIFICATION -OF

MUST-NOT-BE-

SATELLITE

ORIENTATION

(b)
Fig. 11.10 (a) Several arches and non-arches. (b) The computer-generated arch
description to be used for matching.

1. Objects that seem to have been stacked and could be the same type are of the
same type.

2. Essential model properties may be hidden in the scene, so the match should
not be aborted because of missing essential properties (though the presence of
forbidden properties is enough to abort a match).

This latter rule is equivalent to Nevatia’s rules about connectivity difference and
missing input instance parts (see below). In terms of the general structure metric
introduced earlier, neither Winston or Nevatia penalize the match for missing ele-
ments or relations in the reference data. One result of this is that the best match is
sometimes missed in favor of the first possible match. Winston suggests that com-

Sec. 11.4 Matching in Practice 371

IPR2021-00921
Apple EX1015 Page 382

372

plex scenes be analyzed by identifying subscenes and subtracting out the identified
parts, as was done by Roberts.

Winston’s program can learn shortcuts in matching strategy by itself; it builds
for itself a similarity network relating models whose differences are slight. If a
reference model does not quite fit an input structure, the program can make an in-
telligent choice of the next model to try. A good choice is a model that has only
minor differences with the first. This self-organization and cataloging of the models
according to their mutual differences is a powerful way to use matching work that is
already performed to guide further search for a good match.

Backtrack Search

Nevatia addresses a domain of complex articulated biological-like forms
(hands, horses, dolls, snakes) [Nevatia 1974]. His strategy is to segment the ob-
jects into parts with central axes and “‘cross section” (not unlike generalized
cylinders, except that they are largely treated in two dimensions). The derived
descriptions of objects contain the connectivity of subparts, and descriptions of the
shape and joint types of the parts. Matching is needed to compare descriptions and
find differences, which can then be explained or used to abort the match. Partial
matches are important (as in most real-world domains) because of occlusions,
noise, and so on. .

A priori ideas as to the relative importance of different aspects of structures
are used to impose a hierarchical order on the matching decision tree. Nevatia finds
this heuristic approach more appealing than a uniform, domain-independent one
such as clique finding. His system knows that certain parts of a structure are more
important than others, and uses them to index into the reference data catalog con-
taining known structures. Thus relevant models for matching may be retrieved
efficiently on the basis of easily-computed functions of the input data. The models
are generated by the machine by the same process that later extracts descriptions of
the image for recognition. Several different models are stored for the same view of
the same object, because his program has no idea of model equivalence, and can-
not always extract the same description.

The matching process is basically a depth-first tree search, with initial choices
being constrained by ‘‘distinguished pieces.’”” These are important pieces of image
which first dictate the models to be tried in the match, and then constrain the pos-
sible other matches of other parts.

There is a topological and a geometrical component to the match. The topo-
logical part is based on the connectivity of the ‘‘stick figure’’ that underlies the
representation. The geometrical part matches the more local characteristics of indi-
vidual pieces. Consider Nevatia’s example of matching a doll with stored reference
descriptions, including those of a doll and a horse.

By a process not concerning us here, the doll image is segmented into pieces
as shown in Fig. 11.11. From this, before any matching is done, a connection graph
of pieces is formed, as shown in Fig. 11.12.

This connection graph is topologically the same as the reference connection
graph for the doll, which looks as one would expect. In both reference and input,
““distinguished pieces’’ are identified by their large size. During reference forma-

Ch. 71 Matching

IPR2021-00921
Apple EX1015 Page 383

Fig. 11.11 A view of a doll, with derived structure.

tion time, the two largest pieces were the head and the trunk, and these are the
distinguished pieces in the reference. There are the same pieces picked
as distinguished in the instance to be matched consistent with the hierarchical
decision-tree style, distinguished pieces are matched first.

Because of noise, connections at joints may be missed; because of the nature
of the objects, extra joints are hardly ever produced. Thus there is a domain-
dependent rule that an input piece with two other pieces connected at a single joint
(a ““two-ended piece’’) cannot match a one-ended reference piece, although the
reverse is possible.

On the basis of the distinguished pieces in the input instance, the program
decides that the instance could be a doll or a horse. Both these possibilities are
evaluated carefully; Fig. 11.13 shows a schematic view of the process. Piece-match
evaluation must be performed at the nodes of the tree to determine which pieces at
a joint should be made to correspond.

The final best match between the doll input and the horse reference model is
diagrammed in Fig. 11.14. This match is not as good as the match between the doll
input and the doll reference.

A

_L

H
B
Fig. 11.12 Connection graph of the

A L doll.

Sec. 71.4 Matching in Practice 373

IPR2021-00921
Apple EX1015 Page 384

The final choice of matches is made with a version of the general relational
structure matching metric (Eq. 11.3). It takes into account the connectivity rela-
tions, which are the same in this case, and the quality of the individual piece
matches. In the doll-horse match, more reference parts are missing, but this can
happen if parts are hidden in a view, and do not count against the match. The
doll-doll match is preferred on the basis of piece matching, but both matches are
considered possible.

In summary, the selection of best match proceeds roughly as follows: unac-
ceptable differences are first sought (not unlike the Winston system). The number
of input pieces not matched by the reference is an important number (not vice
versa, because of the possibility of hidden input parts). Only elongated, large parts

021

1& <1 ®0:0 @O:A

TA=A

o % |

374

(extra input
piece matches
unmatched
reference arm)

2 § 3 s 2}' z
(leg matched
despite

shadows)

(both branches lead
to correct match)

| \
| \
. (same as \
’ A . v leftmost \
path} \
| \
\ \
\ \
" .

S -—
\\
2% 9 /(DW
o \%
.
& A * : (’nomatches
1

now for
instance leg)
(head (4): leg (4")
match very poor)

Fig. 11.13 A pictorial guide to the combinations tried by the matcher establishing the best
correspondence of the doll input with the doll reference. The graphic shapes are purely
pedagogical: the program deals with symbolic connectivity information and geometric meas-
urements. Inferences and discoveries made by the program while matching are given in the
diagram. A:B means that structure A is matched with structure B, with the numbered sub-
structures of A matching their primed counterparts in B.

Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 385

Input

ﬁ%[:j 3 A
L

Fig. 11.14 The best match of the doll input with the horse reference model. One
doll arm is unmatched, as is the horse head and two legs.

are considered for this determination, to eliminate small ‘‘noise’” patches. The
match with fewest unmatched input pieces is chosen.

If no deciding structural differences exist, the quality of piece matches deter-
mines the quality of the match. These correspond to the template cost term in Eq.
(11.3). If a ““significant’’ difference in match error exists, the better match is ex-
clusively selected; if the difference is not so great as that, the better match is
merely preferred.

Piece matching is a subprocess of joint matching. The difference in the
number of pieces attached at the ends of the piece to be matched is the connectivity
difference. If the object piece has more pieces connected to it than the model piece,
the match is a poor one; since pieces may not be visible in a view, the converse is
not true. If one match gives fewer excess input pieces, it is accepted at this point. If
not, the goodness of the match is computed as a weighted sum of width difference,
length-to-width ratio difference, and difference in acuteness of the generalized
cylinders (Chapter 9) forming the pieces. The weighted sum is thresholded to yield
a final “‘yes or no’” match result. Shadowing phenomena are accommodated by al-
lowing the input piece to be narrower than the reference model piece with no
penalty. The error function weights are derived empirically; one would not expect
the viewing angle to affect seriously the width of a piece, for example, but it could
affect its length. Piece axis shapes (what sort of space curve they are) are not used
for domain-dependent reasons, nor are cross section functions (aside from a meas-
ure of “‘acuteness’’ for cone-like generalized cylinders).

11.4.2 Decision Tree and Subgraph Isomorphism

A robotics program for versatile assembly [Ambler et al. 1975] uses matching to
identify individual objects on the basis of their boundaries, and to match several
individual blobs on a screen with a reference model containing the known location
of multiple objects in the field of view. In both cases the best subgraph isomor-
phism between input and reference data structures is found when necessary by the
clique-finding technique (Algorithm 11.2).

Sec. 11.4 Matching in Practice 375

IPR2021-00921
Apple EX1015 Page 386

376

The input data to the part recognizer consist of silhouettes of parts with out-
lines of piecewise linear and circular segments. A typical set of shapes to be recog-
nized might be stored in terms of boundary primitives as shown in Fig. 11.15a,
with matchable and unmatchable scenes shown in Fig. 11.15b.

Generally, the matching process works on hierarchical structures which cap-
ture increasing levels of detail about the objects of interest. The matching works its
way down the hierarchy, from high-level, easily computable properties such as size
down to difficult properties such as the arrangements of linear segments in a part
outline. After this decision tree pre-processing, all possible matches are computed
by the clique-finding approach to subgraph isomorphism. A scene can be assigned
a number of interpretations, including those of different views of the same part.
The hierarchical organization means that complicated properties of the scene are
not computed unless they are needed by the matcher. Once computed they are
never recomputed, since they are stored in accessible places for later retrieval if
needed. Each matching level produces multiple interpretations; ambiguity is
treated with backtracking. The system recognizes rotational and translational in-
variance, but must be taught different views of the same object in its different grav-
itationally stable states, It treats these different states basically as different objects.

11.4.3 Informal Feature Classification

The domain of this work is one of small, curved tabletop objects, such as a teacup
(Fig. 11.16) [Barrow and Popplestone 1971]. The primitives in models and image
descriptions are regions which are found by a process irrelevant here. The regions
have certain properties (such as shape or brightness), and they have certain
parameterized relations with other regions (such as distance, adjacency, ‘‘above-
ness’’). The input and reference data are both relational structures. The properties
and relations are the following:

(al

Fig. 11.15 A small catalog of part
boundaries (a) and some sample
silhouettes (b). The “‘heap’ will not
match any part very well, while the
square can match the square model in
four different ways, through rotations.
Gross properties such as area may be
used cheaply to reject matches such as
(b) the square with the axle.

Ch. 711 Matching

IPR2021-00921
Apple EX1015 Page 387

Fig. 11.16 An object for recognition
by relational matching.

1. Region Properties

Shape 1-Shape 6: the first six root mean square amplitudes of the Fourier com-
ponents of the ¢ (s) curve [Chapter 8].

2. Relations between Regions A and B
Bigger: Area(A)/Area(B)
Adjacency: Fraction of A’s boundary which also is a boundary of B.

Distance: Distance between centroids divided by the geometric mean of aver-
age radii. The average radius is twice the area over the perimeter. Distance is
scale, rotation, translation, reflection invariant.

Compactness: 4+m+area/ perimeter?

Above, Beside: Vertical and horizontal distance between centroids, normal-
ized by average radius. Not rotation invariant.

The model that might be derived for the cup of Fig. 11.16 is shown in Fig. 11.17.

The program works on objects such as spectacles, pen, cup, or ball. During
training, views and their identifications are given to the program, and the program
forms a relational structure with information about the mean and variance of the
values of the relations and properties. After training, the program is presented
with a scene containing one of the learned objects. A relational structure is built
describing the scene; the problem is then to match this input description with a
reference description from the set of models.

One approximation to the goodness of a match is the number of successes
provided by a region correspondence. A one-region object description has 7 rela-
tions to check, a two-region object has 28, a three-region one has 63. Therefore,
the ‘““successes’ criterion could imply the choice of a terrible three-region in-
terpretation over a perfect one-region match. The solution adapted in the matching
evaluation is first to grade failures. A failure weight is assigned to a trial match ac-
cording to how many standard deviations o from the model mean the relevant

Sec. 11.4 Matching in Practice 377

IPR2021-00921
Apple EX1015 Page 388

378

Big 0.1
Adj 0
Adj 1

Dist 3.7

Comp 0.9

Fig. 11.17 Relational model for cups such as that of Fig. 11.16.

parameter is. From zero to three ¢ imply a success, or a failure weight of 0; from
three to six o, a failure weight of 1; from six to nine o, failure weight of 2, and so
on. Then the measure “‘trials-cumulative failure weight’’ is an improvement on
just “‘successes.”” On the other hand, simple objects are often found as subparts of
complex ones, and one does not want to reject a good interpretation as a complex
object in favor of a less explanatory one as a simple object. The final evaluation
function adapted is

1 — (tries-failure weight)
number of relations
, K
number of regions in view description

Cost of Match = (11.5)

As in Eq. (11.4), the first term measures the average badness of matches
between properties (unary relations) and relations between regions. The second
term is inversely proportional to the number of regions that are matched,
effectively increasing the cost of matches that explain less of the input.

11.4.4 A Complex Matcher

A program to match linear structures like those of Fig. 11.18 is described in [Davis
1976]. This matcher presents quite a diversity of matching techniques incorporated
into one domain-dependent program.

Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 389

The matching metric is very close to the general metric of Eg. (11.3). The
match is characterized by a structural match of reference and input elements and a
geometrical transformation (found by parameter fitting) which accounts for the
spatial relations between reference and input. Davis forms an association graph
between reference and input data. This graph is reduced by parallel-iterative relax-
ation (see Section 12.4) using the “‘spring functions’’ to determine which node as-
sociations are too costly. Eliminating one node-node match may render others

Cape Breton Baffin Island

Cuba

(Fig. 11.18 continues on p. 380.)

Sec. 11.4 Matching in Practice 379

IPR2021-00921
Apple EX1015 Page 390

380

Baffin Island Baffin Island

Cape 8reton Cape Breton

Fig. 11.18 (a) Reference and (b) input
data for a complex shape matching
Kuka Cuba program.

(b)

more unlikely, so the node-pruning process iterates until no more nodes are elim-
inated. What remains is something like an r-connected component of the graph,
which specifies an approximate match supported by some amount of consistent re-
lations between nodes.

After the process of constraint relaxation, there are still in general several lo-
cally consistent interpretations for each component of the input structure. Next,
therefore, a tree search is used to establish global consistency and therefore the
best match. The tree search is the familiar “‘best first’” heuristic search through the
partial match space, with pruning taking place between each stage of search again
by using the parallel-iterative relaxation technique.

EXERCISES

11.1 Relational structures A4 and B are to be matched by the association-graph, clique-
finding method.

Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 391

Exercises

11.2

11.3

11.4

11.8

11.9

Relational structure A4: entities u, v, w, x, y, z.
relations P (u), P(w), P(y), R(v), R(x), R(2),
Fu, v), F(v, w), F(w, x), F(x, »), F(y, 2), F(z, u)

Relational structure B: entities a, b, ¢, d, e, f.
relations P(a), P(b), P(d}, Q(e), Q(f), R(c)
F(b, c),Flc, d),F(d e), Fle f),F(f, a).

(a) Construct graph structures corresponding to the structures 4 and B. Label
the nodes and arcs.

(b) Construct the association graph of structures 4 and B.

(c) Visually find the largest maximal cliques in the association graph and thus
the best matches between 4 and B. (There are three.)

Suppose in a geometric match that two input points on the xy plane are identified
with two others taken to correspond with two reference points. It is known that the
input data comes about only through rotation and translation of the reference data.
Given the two input points (x, y)) and (x;, y,) and the two reference points
(x",, »1) and (x5, ¥"2), one way to find the transformation from reference to input is
to solve the equation

2
z [— Gaxi + by +)+ [y — (bxi + @y + d)? =0

The resulting values of @, b, ¢, and drepresent the desired transformation. Solve the
equation analytically to get expressions for a, b, ¢, and d in terms of the reference
and input coordinates. What happens if the reference and input data are not related
by simple rotation and translation?

What are the advantages and disadvantages of a uniform method (such as subgraph
isomorphism algorithm approach) to matching as compared to an ad hoc (such as a
decision-tree approach with various empirically derived metrics) one?

In the worst case, for graphs of n nodes, how many partial solutions total will Algo-
rithm 11.1 have to proceed through? Construct ““worst case’” graphs X and Y (label
their nodes 1, .. ., a, of course)}, assuming that nodes of Y are selected in ascending
order at any stage.

Find out something about the state of associative memories in computers. How do
they work? How are they used? Would anything like this technology be useful for
computer vision? Introspect about familiar phenomena of visual recall, recognition,
and memory. Do you have a theory about how human visual memory could possi-
bly work ?

What graph of N nodes has the maximum number of maximal cliques? How many
does it have?

Think about reasoning by analogy and find out something about programs that do
analogical reasoning. In what sense can analogical process be used for computer vi-
sion, and technically do the matching techniques necessary provide any insight?

Compare Nevatia’s structure matching with Hinton’s relaxation-based puppet
recognition (Chapter 12).

Verify the observation made in Section 11.4.3 about the number of relations that
must be checked between regions (one region, 7; two regions, 28; three regions, 63;
etc.).

381

IPR2021-00921
Apple EX1015 Page 392

REFERENCES

AHO, A. V., J. E. HopcroFT and J. D. ULLMAN. The Design and Analysis of Algorithms. Reading, MA:
Addison-Wesley, 1974.

AMBLER, A. P., H. G. BARROW, C. M. BRowN, R. M. BURSTALL, and R. J. POPPLESTONE. ‘*A versatile
computer-controlled assembly system.”” Artificial Intelligence 6, 2, 1975, 129-156.

Barrow, H. G. and R. J. POPPLESTONE. “‘Relational descriptions in picture processing.” In M6, 1971.

Barrow, H. G., J. M. TENENBAUM, R. C. BoLLES, and H. C. WoLF. ‘‘Parametric correspondence and
chamfer matching: two new techniques for image matching.” Proc., DARPA IU Workshop,
May 1978, 21-27.

BERGE, C. Graphs and Hypergraphs 2nd rev. ed.. New York: American Elsevier, 1976.

BERZTISS, A. T. ““A backtrack procedure for isomorphism of directed graphs.”” J. ACM 20, 3, July 1973,
365-377.

BITTNER, J. R. and E. M. REINGOLD. ‘‘Backirack programming techniques.” Comm. ACM 18, 11, No-
vember 1975, 651-656.

BroN, C. and J. KERBOSCH. “‘Algorithm 457: finding all cliques in an undirected graph (H).”” Comm.
ACM 16,9, September 1973, 575-577.

CORNEIL, D. G. and C. C. GoTLIEB. “‘An efficient algorithm for graph isomorphism.” J. ACM 17, 1,
January 1970, 51-64.

Davs, L. S. ““Shape matching using relaxation techniques.” JEEE-PAMI 1, 1, January 1979, 60-72.

FiscHLER, M. A. and R. A. ELSCHLAGER. “‘The representation and matching of pictorial structures.”
IEEE Trans. Computers 22, 1, January 1973, 67-92.

HaRrALICK, R. M. and G. L. ELLIOTT. “Increasing tree search efficiency for constraint satisfaction prob-
lems.” Proc., 6th DCAI, August 1979, 356-364.

HARARY, F. Graph Theory. Reading, MA: Addison-Wesley, 1969.

KNoDEL, W. “‘Bestimmung aller maximalen vollstandigen Teilgraphen eines Graphen G nach
Stoffers.”” Computing 3, 3, 1968, 239-240 (and correction in Computing 4, p. 75).

NEVATIA, R. “*Structured descriptions of complex curved objects for recognition and visual memory.”
AIM-250, Stanford Al Lab, October 1974.

NILLSON, N.J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.

OSTEEN, R. E. and J. T. Tou. *“A clique-directed algorithm based on neighbourhoods in graphs.” fater-
national J. Computer and Information Science 2, 4, December 1973, 257-268.

REINGOLD, E. M., J. NIEVERGELT, and N. DEo. Combinatorial Algorithm Theory and Practice. Englewood
Cliffs,N. J.: Prentice-Hall, 1977.

ScHupY, R. B. and D. H. BALLARD. “*Model-directed detection of cardiac chambers in ultrasound im-
ages.”” TR12, Computer Science Dept., Univ. Rochester, November 1978.

SHAPIRO, L. G. and R. M. HARALICK. *‘Structural descriptions and inexact matching.” Technical Re-
port CS79011-R, Computer Science Dept., Virginia Polytechnic Institute, November 1979.

ULLMAN, J. R. ““An algorithm for a subgraph isomorphism.” J. ACM 23, 1, January 1976, 31-42.
WinsTON, P. H. “‘Learning structural descriptions from examples.”” In PCV, 1975.

382 Ch. 11 Matching

IPR2021-00921
Apple EX1015 Page 393

Inference 12

Classical and Extended Inference

This chapter explores inference, the process of deducing facts from other
known facts. Inference is useful for belief maintenance and is a cornerstone of ra-
tional thought. We start with predicate logic, and then explore extended inference
systems—production systems, relaxation labeling, and active knowledge (pro-
cedures).

Predicate logic (Section 12.1) is a system for expressing propositions and for
deriving consequences of facts. It has evolved over centuries, and many clear ac-
counts describe predicate logic in its various forms [Mendelson 1964; Robinson
1965]. It has good formal properties, a nontrivial but automatable inference pro-
cedure, and a history of study in artificial intelligence. There are several ‘‘classical”’
extensions {modal logics, higher-order logics) which are studied in well-settled
academic disciplines of metamathematics and philosophy. Extended inference (Sec-
tion 12.2) is possible in automated systems, and is interesting technically and from
an implementational standpoint.

A production system (Section 12.3) is a general rewriting system consisting of
a set of rewriting rules (4 — BC could mean ‘‘rewrite 4 as BC*’) and an executive
program to apply rewrites. More generally, the rules can be considered
““situation—action”’ pairs (*‘in situation 4, do Band C’’). Thus production systems
can be used to control computational activities. Production systems, like semantic
nets, embody powerful notions that can be used for extended inference.

Labeling schemes (Section 12.4) are unlike most inference mechanisms in
that they often involve mathematical optimization in continuous spaces and can be
implemented with parallel computation. Labeling is like inference because it estab-
lishes consistent ‘‘probability-like’’ values for ‘*hypotheses’’ about the interpreta-
tion of entities.

383

IPR2021-00921
Apple EX1015 Page 394

Active knowledge (Section 12.5) is an implementation of inference in which
each chunk of knowledge is a program. This technique goes far in the direction of
““proceduralizing’ the implementation of propositions. The design issues for such
a system include the vocabulary of system primitives and their actions, mechan-
isms for implementing the flow of control, and overall control of the action of the
system.

12.1 FIRST ORDER PREDICATE CALCULUS

384

Predicate logic is in many ways an attractive knowledge representation and infer-
ence system. However, despite its historical stature, important technical results in
automated inference, and much research on inference techniques, logic has not
dominated all aspects of mechanized inference. Some reasons for this are present-
ed in Sections 12.1.6 and 12.2. The logical system that has received the most study
is first order predicate logic. General theorem provers in this calculus are cumber-
some for reasons which we shall explore. Furthermore, there is some controversy
as to whether this logical system is adequate to express the reasoning processes
used by human beings [Hayes 1977, Collins 1978; Winograd 1978; McCarthy and
Hayes 1969]. We briefly describe some aspects of this controversy in Section
12.1.6. Our main purpose is to give the flavor of predicate calculus-based methods
by describing briefly how automated inference can proceed with the formulae of
predicate calculus expressed in the convenient clause form. Clause form is appeal-
ing for two reasons. First, it can be represented usefully in relational n-tuple or se-
mantic network notation (Section 12.1.5). Second, the predicate calculus clause
and inference system may be easily compared to production systems (Section
12.3).

12.1.1 Clause-Form Syntax (Informal)

In this section we describe the syntax of clause-form predicate calculus sentences.
In the next, a more standard nonclausal syntax is described, together with a
method for assigning meaning to grammatical logical expressions. Next, we show
briefly how to convert from nonclausal to clausal syntax.

A sentence is a set of clauses. A clause is an ordered pair of sets of atomic for-
mulae, or atoms. Clauses are written as two (possibly null) sets separated by an ar-
row, pointing from the hypotheses or conditions of the clause to its conclusion. The
null clause, whose hypotheses and conclusion are both null, is written O. For exam-
ple, a clause could appear as

) Al,...,A,,_‘B],...,Bm
where the A’s and B’s are atoms. An atom is an expression
P(I],..., !j),

where Pis a predicate symbol which “‘expects jarguments,”” each of which must be
a variable, constant symbol, or a ferm. A term is an expression

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 395

Pl s s 10

where f'is a function symbol which “‘expects k arguments,’” each of which may be a
term. It is convenient to treat constant symbols alone as terms.

A careful (formal) treatment of the syntax of logic must deal with technical
issues such as keeping constant and term symbols straight, associating the number
of expected arguments with a predicate or function symbol, and assuring an
infinite supply of symbols.

For example, the following are sentences of logic.

— Obscured (Backface (Block1))
Visible (Kidney) —
Road (x), Unpaved(x) — Narrow(x)

12.1.2 Nonclausal Syntax and Logic Semantics (Informal)

Nonclausal Syntax

Clause form is a simplified but logically equivalent form of logic expressions
which are perhaps more familiar. A brief review of non-clausal syntax follows.

The concepts of constant symbols, variables, terms, and atoms are still basic.
A set of logical connectives provides unary and binary operators to combine atoms
to form well-formed formulae (wifs). If A and B are atoms, then A is a wif, as is "4
(“not A”) A == B (“‘A implies B,” or ‘“if A then B*), A\ B(““Aor B’), A\ B
(**4and B’), A <= B (“Aisequivalentto B,” or ““A4 if and only if B’). Thus
an example of a wif is

Back (Face) \/ (Obscured(Face)) ==~ (Visible(Face))

The last concept is that of universai and existential quantifiers, the use of which
is illustrated as follows.

(W x) (wff using ““x’” as a variable).
(3 thing) (wff using ¢‘thing’’ as a variable).

A universal quantifier ¥/ is interpreted as a conjunction over all domain ele-
ments, and an existential quantifier 3 as a disjunction over all domain elements.
Hence their usual interpretation as “‘for each element . . .* and “‘there exists an
element....”

Since a quantified wif is also a wff, quantifiers may be iterated and nested. A
quantifier quantifies the ‘““dummy’” variable associated with it (x and thing in the
examples above). The wif within the scope of a quantifier is said to have this
quantified variable bound by the quantifier. Typically only wffs or clauses all of
whose variables are bound are allowed.

Semantics

How does one assign meaning to grammatical clauses and formulae? The se-
mantics of logic formulae (clauses and wifs alike) depends on an interpretation and

Sec. 12.1 First Order Predicate Calculus 385

IPR2021-00921
Apple EX1015 Page 396

386

on the meaning of connectives and quantifiers. An interpretation specifies the fol-
lowing.

1. A domainofindividuals
2. A particular domain element is associated with each constant symbol

3. A function over the domain (mapping k individuals to individuals) is associ-
ated with each function symbol.

4. A relation over the domain (a set of ordered k-tuples of individuals) is associ-
ated with each predicate symbol.

The interpretation establishes a connection between the symbols in the
representation and a domain of discourse (such as the entities one might see in an
office or chest x-ray). To establish the truth or falsity of a clause or wif, a value of
TRUE or FALSE must be assigned to each atom. This is done by checking in the
world of the domain to see if the terms in the atom satisfy the relation specified by
the predicate of the atom. If so, the atom is TRUE; if not, it is FALSE. (Of course,
the terms, after evaluating their associated functions, ultimately specify individu-
als). For example, the atom

GreaterThan(5,7)

is true under the obvious interpretation and false with domain assignments such
that

GreaterThan means ¢“Is the author of”’
5 means the book Gone With the Wind
« means Rin-Tin-Tin.

After determining the truth values of atoms, wffs with connectives are given
truth values by using the fruth tables of Table 12.1, which specify the semantics of
the logical connectives. The relation of this formal semantics of connectives with
the usual connectives used in language (especially ‘‘implies’’) is interesting, and
one must be careful when translating natural language statements into predicate
calculus.

The semantics of clause form expressions is now easy to explain. A sentence
is the conjunction of its clauses. A clause

Al,...,A”_'B],...,Bm

with variables x|, .. .,x; is to be understood

Table 12.1
A B A AANB AVB A=>B A< B
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F i i T

Ch. 72 Inference

IPR2021-00921
Apple EX1015 Page 397

Sec. 12.1

Vxl, 0 (AI/\ /\A") :’(BI\/.\/Bm)

The null clause is to be understood as a contradiction. A clause with no conditions
is an assertion that at least one of the conclusions is true. A clause with null conclu-
sion is a denial that the conditions (hypotheses) are true.

12.1.3 Converting Nonclausal Form to Clauses

The conversion of nonclausal to clausal form is done by applying straightforward
rewriting rules, based on logic identities (ultimately the truth tables). There is one
trick necessary, however, to remove existential quantifiers. Skolem functions are
used to replace existentially quantified variables, according to the following rea-
soning.

Consider the wif

(¢) (@3 p) (Behind (y, x)).

With the proper interpretation, this wff might correspond to saying ‘For any object
x we consider, there is another object y which is behind x.” Since the 3 is within
the scope of the %/, the particular y might depend on the choice of x. The Skolem
function trick is to remove the existential quantifier and use a function to make ex-
plicit the dependence on the bound universally quantified variable. The resulting
wif could be

(¢ x) (Behind(SomethingBehind(x), x))

which might be rendered in English: ‘“‘Any object x has another object behind it;
furthermore, some Skolem function we choose to call SomethingBehind deter-
mines which object is behind its argument.’” This is a notational trick only; the ex-
istence of the new function is guaranteed by the existential quantification; both no-
tations are equally vague as to the entity the function actually produces.

In general, one must replace each occurrence of an existentially quantified
variable in a wif by a (newly created Skolem) function of all the universally
quantified variables whose scope includes the existential quantifier being elim-
inated. If there is no universal quantifier, the result is a new function of no argu-
ments, or a new constant.

3 x(Red (%)),

which may be interpreted ‘‘Something is red,’” is rewritten as something like
Red(RedThing)

or
“Something is red, and furthermore let’s call it RedThing.”

The conversion from nonclausal to clausal form proceeds as follows (for
more details, see [Nilsson 1971]). Remove all implication signs with the identity
(4 =>B) < ((C AV B). Use DeMorgan’s laws (such as "(4\/ B) <> ((
A) A C B), and the extension to quantifiers, together with cancellation of double
negations, to force negations to refer only to single predicate letters. Rewrite vari-

first Order Predicate Calcufus 387

IPR2021-00921
Apple EX1015 Page 398

388

ables to give each quantifier its own unique dummy variable. Use Skolem func-
tions to remove existential quantifiers. Variables are all now universally quantified,
so eliminate the quantifier symbols (which remain implicitly), and rearrange the
expression into conjunctive normal form (a conjunction of disjunctions.) The A’s
now connect disjunctive clauses (at last!). Eliminate the /A’s, obtaining from the
original expression possibly several clauses.

At this point, the original expression has yielded multiple disjunctive clauses.
Clauses in this form may be used directly in automatic theorem provers [Nilsson
1971]. The disjunctive clauses are not quite in the clause form as defined earlier,
however; to get clauses into the final form, convert them into implications. Group
negated atoms, reexpanding the scope of negation to include them all and convert-
ing the \/ of “’sinto a ~ of A’s. Reintroduce one implication to go from

BV By..VB,V C(41 AN d;...\ 4,)
to
AI/\/\A,T_"Bl\/Bg\/Bm

To obtain the final form, replace the connectives (which remain implicitly) with
comimas.

12.1.4 Theorem Proving

Good accounts of the basic issues of automated theorem proving are given in
[Nilsson 1971; Kowalski 1979; Loveland 1978]. The basic ideas are as follows. A
sentence is inconsistent, or unsatisfiable, if it is false in every interpretation. Some
trivially inconsistent sentences are those containing the null clause, or simple con-
tradictions such as the same clause being both unconditionally asserted and
denied. A sentence that is true in all interpretations is valid. Validity of individual
clauses may be checked by applying the truth tables unless quantifiers are present,
in which case an infinite number of formulae are being specified, and the truth
status of such a clause is not algorithmically decidable. Thus it is said that first
order predicate calculus is undecidable. More accurately, it is semidecidable, because
any valid wif can be established as such in some (generally unpredictable) finite
time. The validation procedure will run forever on invalid formulae; the rub is that
one can never be sure whether it is running uselessly, or about to terminate in the
next instant.

The notion of a proofis bound up with the notion of logical entailment. A
clause C logically follows from a set of clauses S (we take S to prove C) if every in-
terpretation that makes S true also makes C true. A formal proof is a sequence of
inferences which establishes that C logically follows from S. In nonclausal predi-
cate logic, inferences are rewritings of axioms and previously established formulae
in accordance with rules of inference such as

Modus Ponens: From (4) and (4 ==> B) infer (B)

Modus Tollens: From ("B) and (4 ==> B) infer (4)

Substitution: e.g. From 4/ x) (Convex(x)) infer (Convex(Region31))

Syllogisms,

and so forth.

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 399

Sec. 121

Automatic clausal theorem provers usually try to establish that a clause C
logically follows from the set of clauses S. This is accomplished by showing the
unsatisfiability of Sand (C) taken together. This rather backward approach is a tech-
nical effect of the way that theorem provers usually work, which is to derive a
contradiction.

The fundamental and surprising result that all true theorems are provable in
finite time, and an algorithmic (but inefficient) way to find the proof, is due to Her-
brand [Herbrand 1930]. The crux of the result is that although the domain of indi-
viduals who might participate in an interpretation may be infinite, only a finite
number of interpretations need be investigated to establish unsatisfiability of a set
of clauses, and in each only a finite number of individuals must be considered. A
computationally efficient way to perform automatic inference was discovered by
Robinson [Robinson 1965]. In it, a single rule of inference called resolution is used.
This single rule preserves the completeness of the system (all true theorems are
provable) and its correctness (no false theorems are provable).

The rule of resolution is very simple. Resolution involves matching a condi-
tion of one clause 4 with a conclusion of another clause B. The derived clause,
called the resolvent, consists of the unmatched conditions and conclusions of 4 and
B instantiated by the matching substitution. Marching two atoms amounts to
finding a substitution of terms for variables which if applied to the atoms would
make them identical.

Theorem proving now means resolving clauses with the hope of producing
the empty clause, a contradiction.

As an example, a simple resolution proof goes as follows. Say it is desired to
prove that a particular wastebasket is invisible. We know that the wastebasket is
behind Brian’s desk and that anything behind something else is invisible (we have
a simpleminded view of the world in this little example). The givens are the
wastebasket location and our naive belief about visibility:

— Behind (WasteBasket, DeskOf(Brian)) (12.1)
Behind (object,obscurer) — Invisible (object) (12.2)

Here Behind and Invisible are predicates, DeskOf is a function, Brian and
WasteBasket are constants (denote particular specific objects), and object and ob-
scurer are (universally quantified) variables. The negation of the conclusion we
wish to prove is

Invisible (WasteBasket) — (12.3)

or, ‘‘Asserting the wastebasket is invisible is contradictory.”” Our task is to show
this set of clauses is inconsistent, so that the invisibility of the wastebasket is
proved. The resolution rule consists of matching clauses on opposite sides of the
arrow which can be unified by a substitution of terms for variables. A substitution
that works is:

Substitute WasteBasket for.object and DeskOf (Brian) for obscurer in (12.2).

Then a cancellation can occur between the right side of (12.1) and the left side of
(12.2). Another cancellation can then occur between the right side of (12.2) and

First Order Predicate Calculus 389

IPR2021-00921
Apple EX1015 Page 400

390

the left side of (12.3), deriving the empty clause (a contradiction), Quod Erat
Demonstrandum.

Anyone who has ever tried to do a nontrivial logic proof knows that there is
searching involved in finding which inference to apply to make the proof ter-
minate. Usually human beings have an idea of ‘‘what they are trying to prove,”
and can occasionally call upon some domain semantics to guide which inferences
make sense. Notice that at no time in a resolution proof or other formal proof of
logic is a specific interpretation singled out; the proof is about all possible interpre-
tations. If deductions are made by appealing to intuitive, domain-dependent,
semantic considerations (instead of purely syntactic rewritings), the deduction
system is informal. Almost all of mathematics is informal by this definition, since
normal proofs are not pure rewritings.

Many nonsemantic heuristics are also possible to guide search, such as trying
to reduce the differences between the current formulae and the goal formula to be
proved. People use such heuristics, as does the Logic Theorist, an early non-
clausal, nonresolution theorem prover [Newell et al. 1963].

A. basic resolution theorem prover is guaranteed to terminate with a proof if
one exists, but usually resource limitations such as time or memory place an upper
limit on the amount of effort one can afford to let the prover spend. As all the
resolvents are added to the set of clauses from which further conclusions may be
derived, the question of selecting which clauses to resolve becomes quite a vital
one. Much research in automatic theorem proving has been devoted to reducing
the search space of derivations for proofs [Nilsson 1980; Loveland 1970]. This has
usually been done through heuristics based on formal aspects of the deductions
(such as: make deductions that will not increase drastically the number of active
clauses). Guidance from domain-dependent knowledge is not only hard to imple-
ment, it is directly against the spirit of resolution theorem proving, which attempts
to do all the work with a uniform inference mechanism working on uninterpreted
symbol strings. A moderation of this view allows the “‘intent’” of a clause to guide
its application in the proof. This can result in substantial savings of effort; an exam-
ple is the treatment of “‘frame axioms” recommended by Kowalski (Section
13.1.4). Ad hoc, nonformalizable, domain-dependent methods are not usually
welcome in automatic theorem-proving circles; however, such heuristics only
guide the activity of a formal system; they do not render it informal.

12.1.5 Predicate Calculus and Semantic Networks

Predicate calculus theorem proving may be assisted by the addition of more rela-
tional structure to the set of clauses. The structure in a semantic net comes from
links which connect nodes;, nodes are accessed by following links, so the availability
of information in nodes is determined by the link structure. Links can thus help by
providing quick access to relevant information, given that one is “‘at™ a particular
node.

Although there are several ways of representing predicate calculus formulae
in networks, we adopt here that of [Kowalski 1979; Deliyanni and Kowalski 19791.
The steps are simple:

Ch. 12 Inference

IPR2021-00921
Apple EX1015 Page 401

Sec. 12.1

1. Use a partition to represent the clause.
2. Convert all atoms to binary predicate atoms.
3. Distinguish between conditions and conclusions.

Recall that in Chapter 10, a partition is defined as a set of nodes and arcs in a graph.
The internal structure of the partition cannot be determined from outside it. Parti-
tioning extends the structure of a semantic net enough to allow unambiguous
representations of all of first order predicate calculus.

The first step in developing the network representation for clauses is to con-
vert each relation to a binary one. We distinguish between conditions and conclu-
sions by using an additional bit of information for each arc. Diagrammatically, an
arc is drawn with a double line if it is a condition and a single line if it is a conclu-
sion. Thus the earlier example § = {(12.1), (12.2), (12.3)} can be transformed
into the network shown in Fig. 12.1.

This figure hints at the advantages of the network embedding for clauses: It is
an indexing scheme. This scheme does not indicate which clauses to resolve next
but can help reduce the possibilities enormously. If the most recent resolution in-
volved a given clause with a given set of terms, other clauses which also have those
terms will be represented by explicit arcs nearby in the network (this would not be
true if the clauses were represented as a set). Similarly, other clauses involving the
same predicate symbols are also nearby being indexed by those symbols. Again,
this would not be true in the set representation. Thus the embedded network

Behind

/é——Desk (Brian)

Wastebasket

Invisible

(12.1)
(12.3)

Behind

ﬁ;‘é@ Obscurer

Object
Invisible

(12.2)

Fig. 12.1 Converting clauses to networks.

First Order Predicate Calculus 391

IPR2021-00921
Apple EX1015 Page 402

