126

(@)

(d)

Fig. 4.7 Using the Hough technique for circular shapes. (a) Radiograph. (b) Window. (c)
Accumulator array for = 3. (d) Results of maxima detection.

circular boundaries detected by the Hough technique are overlaid on the original
image.

4.3.3 Trading Off Work in Parameter Space for Work in Image Space

Consider the example of detecting ellipses that are known to be oriented so that a
principal axis is parallel to the x axis. These can be specified by four parameters.
Using the equation for the ellipse together with its derivative, and substituting for
the known gradient as before, one can solve for two parameters. In the equation
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T N (—yo)?

=1 (4.3)
a? b?
X is an edge point and xg, yg, @, and b are parameters. The equation for its deriva-
tive is
(x— xq) —yo)?
LN et Y (4.4)

a B? dx
where dy/dx = tan ¢ (x). The Hough algorithm becomes:

Algorithm 4.2: Hough technique applied to ellipses

For each discrete value of xand y, increment the point in parameter space given by
a, b, xq, yo, where

= xp+ 4 45
i (1 + b¥altan’p)” (4.5)
y=y £ (4.6)

= 1
’T (1 + a’tan’¢/p)"
that is,
Aa, b, xo, yo) == A(a, b, xp, yo) + 1

For a and beach having m values the computational cost is proportional to m?2.

Now suppose that we consider all pairwise combinations of edge elements.
This introduces two additional equations like (4.3) and (4.4), and now the four-
parameter point can be determined exactly. That is, the following equations can be
solved for a unique xg, y, a, b.

Gy —x0)? | (G — yo)?

a? b?
(x; — xo)° (yz— }’0)2
e S A (4.7b)
X1 —Xo Vi~ Yo dy _
e + i i 0 (4.7¢)
X2~ Xp Yo~ Yo dy
+ = = 4.7d
3 e e v (4.7d)
dy _ dy .
= = tang (-~ is known from the edge operator)
dx dx
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Their solution is left as an exercise. The amount of effort in the former case
was proportional to the product of the number of discrete values of a and b,
whereas this case involves effort proportional to the square of the number of edge
elements.

4.3.4 Generalizing the Hough Transform

Consider the case where the object being sought has no simple analytic form, but
has a particular silhouette. Since the Hough technique is so closely related to tem-
plate matching, and template matching can handle this case, it is not surprising that
the Hough technique can be generalized to handle this case also. Suppose for the
moment that the object appears in the image with known shape, orientation, and
scale. (If orientation and scale are unknown, they can be handled in the same way
that additional parameters were handled earlier.) Now pick a reference point in the
silhouette and draw a line to the boundary. At the boundary point compute the gra-
dient direction and store the reference point as a function of this direction. Thus it
is possible to precompute the location of the reference point from boundary points
given the gradient angle. The set of all such locations, indexed by gradient angle,
comprises a table termed the R-table [Ballard 1981]. Remember that the basic stra-
tegy of the Hough technique is to compute the possible loci of reference points in
parameter space from edge point data in image space and increment the parameter
points in an accumulator array. Figure 4.8 shows the relevant geometry and Table
4.1 shows the form of the R-table. For the moment, the reference point coordi-
nates (x,, y.) are the only parameters (assuming that rotation and scaling have
been fixed). Thus an edge point (x, y) with gradient orientation ¢ constrains the
possible reference points to be at {x + r; (¢) cos [a; (@)], y + r (@) sin [a; (@)]}
and so on.

Fig. 4.8 Geometry used to form the
R-Table.
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Table 4.1
INCREMENTATION IN THE GENERALIZED HOUGH CASE

Angle measured
from figure boundary Set of radii {r*} where
to reference point r=(0 a)
91 r, F%;---,l'nli
b2 0 et
¢'m 1'{", rlm» ---;rrT

m

The generalized Hough algorithm may be described as follows:

Algorithm 4.3: Generalized Hough

Step 0. Make a table (like Table 4.1) for the shape to be located.

Step 1. Form an accumulator array of possible reference points
A (X, min * Xemaxr Yemin : Yemax) initialized to zero.

Step 2. For each edge point do the following:
Step2.1. Compute ¢ (x)

Step 2.2a. Calculate the possible centers; that is, for each table entry for
¢, compute

x. =x+r ¢ cosla(s)]

Yo =y+r ¢ sinla(p)]

Step 2.2b. Increment the accumulator array
Al y) = A, y) + 1

Step 3. Possible locations for the shape are given by maxima in array 4.

The results of using this transform to detect a shape are shown in Fig. 4.9.
Figure 4.9a shows an image of shapes. The R-table has been made for the middle
shape. Figure 4.9b shows the Hough transform for the shape, that is, A4 (x,, y.)
displayed as an image. Figure 4.9c shows the shape given by the maxima of
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(c)

Fig. 4.9 Applying the Generalized Hough technigue. (a) Synthetic image. (b) Hough
Transform A (x,, y,) for middle shape. (c) Detected shape. (d) Same shape in an aerial
image setting.

A (x,, y.) overlaid on top of the image. Finally, Fig. 4.9d shows the Hough
transform used to detect a pond of the same shape in an aerial image.

What about the parameters of scale and rotation, S and ? These are readily
accommodated by expanding the accumulator array and doing more work in the in-
crementation step. Thus in step 1 the accumulator array is changed to

(xfmin * Xemaxs Yemin * Yemaxs Srn'm : Smax: gmin zemax)

and step 2.2a is changed to
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for each table entry for ¢ do
foreach S and 6
x. = x+r(d)Scos [a(p) + 6]
Ve =y +r(¢)Ssinla(p) + 6]
Finally, step 2.2b is now
A, y.,850) =Alx,y,860) +1

4.4 EDGE FOLLOWING AS GRAPH SEARCHING

A graph is a general object that consists of a set of nodes {»;} and arcs between
nodes <p;, n;>. In this section we consider graphs whose arcs may have numeri-
cal weights or costs associated with them. The search for the boundary of an object
is cast as a search for the lowest-cost path between two nodes of a weighted graph.
Assume that a gradient operator is applied to the gray-level image, creating
the magnitude image s(x) and direction image ¢ (x). Now interpret the elements
of the direction image ¢ (x) as nodes in a graph, each with a weighting factor s (x).
Nodes x;, x; have arcs between them if the contour directions ¢ (x,), ¢ (x,) are ap-
propriately aligned with the arc directed in the same sense as the contour direction.
Figure 4.10 shows the interpretation. To generate Fig. 4.10b impose the following
restrictions. For an arc to connect from x; to x;, x; must be one of the three possi-
ble eight-neighbors in front of the contour direction ¢ (x;) and, furthermore, g (x;)

|
</

aRrdasrs
/

hY

NN

N ! 0

Fig. 4.10 Interpreting a gradient image as a graph (see text).
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> T. g(x,;) > T, where Tis a chosen constant, and|{ [¢ (x,) — ¢ (x;)] mod 27} | <
/2. (Any or all of these restrictions may be modified to suit the requirements of a

particular problem.)
To generate a path in a graph from x4 to xz one can apply the well-known

technique of heuristic search [Nilsson 1971, 1980]. The specific use of heuristic
search to follow edges in images was first proposed by [Martelli 1972]. Suppose:

1. That the path should follow contours that are directed from x4 to x5

2. That we have a method for generating the successor nodes of a given node
(such as the heuristic described above)

3. That we have an evaluation function /' (x;) which is an estimate of the optimal
cost path from x; to x5 constrained to go through x;

Nilsson expresses f(x;) as the sum of two components: g (x,), the estimated cost
of journeying from the start node x4 to x;, and h (x,), the estimated cost of the path

from x; to x, the goal node.

With the foregoing preliminaries, the heuristic search algorithm (called the A
algorithm by Nilsson) can be stated as:

Algorithm 4.4: Heuristic Search (the A Algorithm)

1. “Expand” the start node (put the successors on a list called OPEN with
pointers back to the start node).

2. Remove the node x; of minimum f from OPEN. If x; = xj, then stop. Trace
back through pointers to find optimal path. If OPEN is empty, fail.

3. Else expand node x;, putting successors on OPEN with pointers back to x;. Go
to step 2.

The component 4 (x;} plays an important role in the performance of the algorithm;
if 7 (x;) = 0 for all /, the algorithm is a minimum-cost search as opposed to a heuristic
search. If R(x;) > h*(x;)} (the actual optimal cost), the algorithm may run faster,
but may miss the minimum-cost path. If #(x;) < h*(x,), the search will always
produce a minimum-cost path, provided that / also satisfies the following con-
sistency condition:

If for any two nodes X; and X;, k (x;, X;) is the minimum cost of getting from
X; to X; (if possible), then

k(xi, XJ) =z h*(x,-) e h*(x})

With our edge elements, there is no guarantee that a path can be found since
there may be insurmountable gaps between x, and xp. If finding the edge is cru-
cial, steps should be taken to interpolate edge elements prior to the search, or gaps
may be crossed by using the edge element definition of [Martelli 1972]. He defines
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edges on the image grid structure so that an edge can have a direction even though
there is no local gray-level change. This definition is depicted in Fig. 4.11a.

4.4.1 Good Evaluation Functions

A good evaluation function has components specific to the particular task as well as
components that are relatively task-independent. The latter components are dis-
cussed here.

1. Edge strength. If edge strength is a factor, the cost of adding a particular edge
element at x can be included as

M — s(x) where M = max s(x)
X

2. Curvature. If low-curvature boundaries are desirable, curvature can be meas-
ured as some monotonically increasing function of
dlff[¢' (x;) b ¢ (x_j)]
where diff measures the angle between the edge elements at x; and x;.
3. Proximity to an approximation. If an approximate boundary is known, boun-
daries near this approximation can be favored by adding:
d = dist (XJ,B)
to the cost measure. The dist operator measures the minimum distance of the
new point x; to the approximate boundary B.

4. Estimates of the distance to the goal, If the curve is reasonably linear, points near
the goal may be favored by estimating 4 as d(x;, X,,,), Where d is a distance
measure.

Specific implementations of these measures appear in [Ashkar and Modestino
1978; Lester et al. 1978].

4.4.2 Finding All the Boundaries

What if the objective is to find all boundaries in the image using heuristic search?
In one system [Ramer 1975] Hueckel’s operator (Chapter 3) is used to obtain

. .

(a) (b) ]

Fig. 4.11 Successor conventions in heuristic search (see text).
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strokes, another name for the magnitude and direction of the local gray-level
changes. Then these strokes are combined by heuristic search to form sequences
of edge elements called streaks. Streaks are an intermediate organization which are
used to assure a slightly broader coherence than is provided by the individual
Hueckel edges. A bidirectional search is used with four eight-neighbors defined in
front of the edge and four eight-neighbors behind the edge, as shown in Fig. 4.11b.
The search algorithm is as follows:

1. Scan the stroke (edge) array for the most prominent edge.

2. Search in front of the edge until no more successors exist (i.e., a gap is encoun-
tered).

3. Search behind the edge until no more predecessors exist.

If the bidirectional search generates a path of 3 or more strokes, the path is a
streak. Store it in a streak list and go to step 1.

Strokes that are part of a streak cannot be reused; they are marked when used
and subsequently skipped.

There are other heuristic procedures for pruning the streaks to retain only
prime streaks. These are shown in Fig. 4.12. They are essentially similar to the re-

/A"-“— /4——1—
’ /
s
“~ e
¥ Y
f }
“
5
P
);/ _—
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Fig. 4.12 Operations in the creation of prime streaks.
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(c) (d)

(e) (f)
Fig. 4.13 Ramer’s results.

laxation operations described in Section 3.3.5. The resultant streaks must still be
analyzed to determine the objects they represent. Nevertheless, this method
represents a cogent attempt to organize bottom-up edge following in an image. Fig.
4.13 shows an example of Ramer’s technique.
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4.4.3 Alternatives to the A Algorithm

The primary disadvantage with the heuristic search method is that the algorithm
must keep track of a set of current best paths (nodes), and this set may become
very large. These nodes represent tip nodes for the portion of the tree of possible
paths that has been already examined. Also, since all the costs are nonnegative, a
good path may eventually look expensive compared to tip nodes near the start
node. Thus, paths from these newer nodes will be extended by the algorithm even
though, from a practical standpoint, they are unlikely. Because of these disadvan-
tages, other less rigorous search procedures have proven to be more practical, five
of which are described below.

Pruning the Tree of Alternatives

At various points in the algorithm the tip nodes on the OPEN list can be
pruned in some way. For example, paths that are short or have a high cost per unit
length can be discriminated against. This pruning operation can be carried out
whenever the number of alternative tip nodes exceeds some bound.

Modified Depth-First Search

Depth-first search is a meaningful concept if the search space is structured as
a tree. Depth-first search means always evaluating the most recent expanded son.
This type of search is performed if the OPEN list is structured as a stack in the A
algorithm and the top node is always evaluated next. Modifications to this method
use an evaluation function f to rate the successor nodes and expand the best of
these. Practical examples can be seen in [Ballard and Sklansky 1976; Wechsler and
Sklansky 1977; Persoon 1976].

Least Maximum Cost

In this elegant idea [Lester 1978], only the maximum-cost arc of each path is
kept as an estimate of g. This is like finding a mountain pass at minimum altitude.
The advantage is that g does not build up continuously with depth in the search
tree, so that good paths may be followed for a long time. This technique has been
applied to finding the boundaries of blood cells in optical microscope images. Some
results are shown in Fig. 4.14.

Branch and Bound

The crux of this method is to have some upper bound on the cost of the path
[Chien and Fu 1974]. This may be known beforehand or may be computed by actu-
ally generating a path between the desired end points. Also, the evaluation func-
tion must be monotonically increasing with the length of the path. With these con-
ditions we start generating paths, excluding partial paths when they exceed the
current bound.

Modified Heuristic Search

Sometimes an evaluation function that assigns negative costs leads to good
results. Thus good paths keep getting better with respect to the evaluation func-
tion, avoiding the problem of having to look at all paths near the starting point.

Ch. 4 Boundary Detection

IPR2021-00921
Apple EX1015 Page 152



(@) (b)
Fig. 4.14 Using least maximum cost in heuristic search to find cell boundaries in micro-

scope images. (a) A stage in the search process. (b) The completed boundary.

However, the price paid is the sacrifice of the mathematical guarantee of finding
the least-cost path. This could be reflected in unsatisfactory boundaries. This
method has been used in cineangiograms with satisfactory results [Ashkar and
Modestino 1978].

4.5 EDGE FOLLOWING AS DYNAMIC PROGRAMMING

4.5.1 Dynamic Programming

Dynamic programming [Bellman and Dreyfus 1962] is a technique for solving op-
timization problems when not all variables in the evaluation function are interre-
lated simultaneously. Consider the problem

max h (xq, X3, X3, X4) (4.8)

%

If nothing is known about A, the only technique that guarantees a global maximum
is exhaustive enumeration of all combinations of discrete values of xy, ..., x4.
Suppose that

I'?() = h] (xl, Xz) =+ h2 (X;, X3) | h3 (x;, X4) (49)

X only depends on x; in ;. Maximize over x; in 4] and tabulate the best value of
hy (x) x) for each x;:

f1(xy) = max h; (x;, x3) (4.10)
X

Since the values of #; and /3 do not depend on x,, they need not be considered at
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this point. Continue in this manner and eliminate x, by computing /> (x3) as

f2(x3) = max[fy Gxo) + Ay (xy, x3)] (4.11)
and
f3 (X4) = max [fz (X]) + hj(.X], X4)] (412)
X3
so that finally
max h = max f3 (x,) (4.13)
Xi X4
Generalizing the example to N variables, where fj (x;) = 0,
fu-l (xn) = max [fn72 (xn-l) g hn—l(xn*h xn)] (414)
xu—]
max 4 (x;, ..., xy) = max fy_; (xy)
I,- )CN

If each x; took on 20 discrete values, then to compute fy {xy.1) one must evaluate
the maximand for 20 different combinations of xy and xy., so that the resultant
computational effort involves (¥ — 1)20% + 20 such evaluations. This is a striking
improvement over exhaustive evaluation, which would involve 20" evaluations of
h!

Consider the artificial example summarized in Table 4.2. In this example,
each x can take on one of three discrete values. The A, are completely described by
their respective tables. For example, the value of #,(0, 1) = 5. The solution steps
are summarized in Table 4.3. In step 1, for each x, the value of x, that maximizes
h1(x;, x,) is computed. This is the largest entry in each of the columns of 4. Store
the function value as £, (x,) and the optimizing value of x; also as a function of x,.
In step 2, add f,(x,) to #,(x,, x;). This is done by adding f, to each row of 4,
thus computing the quantity inside the braces of (4.11). Now to complete step 2,
for each x;, compute the x; that maximizes 4, + f by selecting the largest entry
in each row of the appropriate table. The rest of the steps are straightforward once
these are understood. The solution is found by tracing back through the tables. For
example, for x4 = 2 we see that the best x; is —1, and therefore the best x, is 3 and
x1is 1. This step is denoted by arrows.

Table 4.2
DEFINITION OF h

X5 X3 X4
x, 1 2 3 P =1 0 1 %3 1 2 3
0 5 7 3 1 1 7 1 -1 7 9 8
1 2 1 8 2 1 i 3 0 2 3 6
2 6 3 3 3 5 [ 2 1 5 4 1
hy hy hy
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Table 4.3

METHOD OF SOLUTION USING DYNAMIC PROGRAMMING

X3 fi X4
1 6 2
Step 1
2 7 0
)|+ |®
7
f
\
. P
g
g
~
L
X5 \\
x5 7 0 1 X3 T X2 \
1
£
17 1s ] 7 ,@ 13 @/
Step 2 f/
2 8 8 | 0 14 3
\
RO, N e
N
AN
N
5
Ny
~
~
b S
~
N
~
N
x4 %
P 1 2 3 X fa X3 N
\
\
L@@ 1IDED
Step 3 o
IRRE oe)e
1 16 14 1 3 21 -1
Step 4:  Optimal ;s are found by examing tables
(dashed line shows the order in which they
are recovered).
Solution: A* =22

Wome * ®oq k=
xt=1x3=8xF=-1,x5=2

4.5.2 Dynamic Programming for Images

To formulate the boundary-following procedure as dynamic programming, one
must define an evaluation function that embodies a notion of the *‘best boundary’’
[Montanari 1971; Ballard 1976]. Suppose that a local edge detection operator is ap-
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plied to a gray-level picture to produce edge magnitude and direction information.
Then one possible criterion for a ‘‘good boundary” is a weighted sum of high cu-
mulative edge strength and low cumulative curvature; that is, for an r-segment
curve,

il n—1
W, .o, x,) = 2os(x) +aY g0, xeq0) (4.16)
k=1 k=1
where the implicit constraint is that consecutive x;’s must be grid neighbors:
Ixe — %41 1<32 (4.17)
q(xk, Xk+1) s dlff [d)(xk), ¢'(Xk+1)] (418)

where «a is negative. The function g we take to be edge strength, i.e., g(x) = s (x).
Notice that this evaluation function is in the form of (4.9) and can be optimized in
stages:

So&x)=0 (4.19)

f] (Xz) = max [s (X]) + aq(xl, Xz) = fo(X1)] (420)
=

fk(ka) = max [S(Xk) 2kt aq(xk, Xk+1) + fk_l(xk)] (421}
Xk

These equations can be put into the following steps:

Algorithm 4.5: Dynamic Programming for Edge Finding

1. Setk =1

Consider only x such that s (x) 2 T. For each of these x, define low-curvature
pixels ‘““in front of * the contour direction.

3. [Each of these pixels may have a curve emanating from it. For k=1, the curve
is one pixel in length. Join the curve to x that optimizes the left-hand side of
the recursion equation.

4. If k= N, pick the best f_; and stop. Otherwise, set k = k + 1 and go to step
2

This algorithm can be generalized to the case of picking a curve emanating from x
(that we have already generated): Find the end of that curve, and join the best of
three curves emanating from the end of that curve. Figure 4.15 shows this process.
The equations for the general case are
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Fig. 4.15 DP optimization for boundary tracing.
So (X;} =0

N (xk-H) = maxl[s (Xk) + aq(xk, t(xk+l))
Xk

+ fi-1 (x,)) (4.22)

where the curve length n is related to « by a building sequence # (/) such that » (1)
=1,n(L) = N,and n(/) — n(i—1) is a member of (n(k) |k =1, ..., I — 1}.
Also, t(x,) is a function that extracts the tail pixel of the curve headed by x,.
Further details may be found in [Ballard 1976].

Results from the area of tumor detection in radiographs give a sense of this
method’s performance. Here it is known that the boundary inscribes an approxi-
mately circular tumor, so that circular cues can be used to assist the search. In Fig.
4.16, (a) shows the image containing the tumor, (b) shows the cues, and (c) shows
the boundary found by dynamic programming overlaid on the image.

Another application of dynamic programming may be found in the pseudo-
parallel road finder of Barrow [Barrow 1976].

4.5.3 Lower Resolution Evaluation Functions

In the dynamic programming formulation just developed, the components g (x;)
and ¢ (x;, X,.1) in the evaluation function are very localized; the variables x for
successive sand g are in fact constrained to be grid neighbors. This need not be the
case: The x can be very distant from each other without altering the basic tech-
nique. Furthermore, the functions g and g need not be local gradient and absolute
curvature, respectively, but can be any functions defined on permissible x. This
general formulation of the problem for images was first described by [Fischler and
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Fig. 4.16 Results of DP in boundary
tracing. (a) Image containing tumor. (b)
Contour cues. (¢) Resultant boundary.

Elschlager 1973]. The Fischler and Elschlager formulation models an object as a
set of parts and relations between parts, represented as a graph. Template func-
tions, denoted by g (x), measure how well a part of the model matches a part of the
image at the point x. (These local functions may be defined in any manner whatso-
ever.) “‘Relational functions,”’ denoted by qi; (x, y), measure how well the posi-
tion of the match of the kth part at (x) agrees with the position of the match of the
Jthpartat (y).

The basic notions are shown by a technique simplified from [Chien and Fu
1974] to find the boundaries of lungs in chest films. The lung boundaries are
modeled with a polygonal approximation defined by the five key points. These
points are the top of the lung, the two clavicle-lung junctions, and the two lower
corners. To locate these points, local functions g (x,) are defined which should be
maximized when the corresponding point x, is correctly determined. Similarly,
q (xy, xj-) is a function relating points x; and x;. In their case, Chien and Fu used
the following functions:
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T(x) = template centered at x computed as
an aggregate of a set of chest radiographs

T(x — x.) £ (x)
gt =X xlﬂxlfflfx

and
6 (x,, x;) = expected angular orientation of x, from x;

g (x, x;) = |6 (x,, x;) —arctan L. |
xp = xj
With this formulation no further modifications are necessary and the solution may
be obtained by solving Egs. (4.19) through (4.21), as before. For purposes of com-
parison, this method was formalized using a lower-resolution objective function.
Figure 4.17 shows Chien and Fu’s results using this method with five template
functions.

4.5.4 Theoretical Questions about Dynamic Programming

The Interaction Graph

This graph describes the interdependence of variables in the objective func-
tion. In the examples the interaction graph was simple: Each variable depended on
only two others, resulting in the graph of Fig. 4.18a. A more complicated case is
the one in 4.18b, which describes an objective function of the following form:

h( ) = h] (XI, .X‘Q) # hz (Xz, X3, JC4) + h3 (X3’ X4, X35, xﬁ)
For these cases the dynamic programming technique still applies, but the computa-
tional effort increases exponentially with the number of interdependencies. For
example, to eliminate x, in A, all possible combinations of x; and x, must be con-
sidered. To eliminate x3 in k3, all possible combinations of x4, xs, and xg, and so
forth.
Dynamic Programming versus Heuristic Search

It has been shown [Martelli 1976] that for finding a path in a graph between
two points, which is an abstraction of the work we are doing here, heuristic search
methods can be more efficient than dynamic programming methods. However, the
point to remember about dynamic programming is that it efficiently builds paths
from multiple starting points. If this is required by a particular task, then dynamic
programming would be the method of choice, unless a very powerful heuristic
were available.

4.6 CONTOUR FOLLOWING
If nothing is known about the boundary shape, but regions have been found in the
image, the boundary is recovered by one of the simplest edge-following opera-

tions: “‘blob finding”’ in images. The ideas are easiest to present for binary images:
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T

Pixels

(a) (b)

Fig. 4.17 Results of using local templates and global relations. (a) Model. (b) Results.

Given a binary image, the goal is find the boundaries of all distinct regions in the
image.

This can be done simply by a procedure that functions like Papert’s turtle
[Papert 1973; Duda and Hart 1973]:

1. Scan the image until a region pixel is encountered.
2. [Ifitis aregion pixel, turn left and step; else, turn right and step.
3. Terminate upon return to the starting pixel.

Figure 4.19 shows the path traced out by the procedure. This procedure requires
the region to be four-connected for a consistent boundary. Parts of an eight-
connected region can be missed. Also, some bookkeeping is necessary to generate
an exact sequence of boundary pixels without duplications.

A slightly more elaborate algorithm due to [Rosenfeld 1968] generates the
boundary pixels exactly. It works by first finding a four-connected background
pixel from a known boundary pixel. The next boundary pixel is the first pixel en-
countered when the eight neighbors are examined in a counter clockwise order
from the background pixel. Many details have to be introduced into algorithms
that follow contours of irregular eight-connected figures. A good exposition of
these is given in [Rosenfeld and Kak 1976].

4.6.1 Extension to Gray-Level Images

The main idea behind contour following is to start with a point that is believed to
be on the boundary and to keep extending the boundary by adding points in the
contour directions. The details of these operations vary from task to task. The gen-
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Fig. 4.18 Interaction graphs for DP (see text).

eralization of the contour follower to gray-level images uses local gradients with a
magnitude s(x) and direction ¢ (x) associated with each point x. ¢ points in the
direction of maximum change. If x is on the boundary of an image object, neigh-
boring points on the boundary should be in the general direction of the contour
directions, ¢ (x) = m/2, as shown by Fig. 4.20. A representative procedure is
adapted from [Martelli 1976]:

1. Assume that an edge has been detected up to a point x;. Move to the point x;
adjacent to x; in the direction perpendicular to the gradient of x;. Apply the
gradient operator to x;; if its magnitude is greater than (some) threshold, this
point is added to the edge.

2. Otherwise, compute the average gray level of the 3 x 3 array centered on x;,
compare it with a suitably chosen threshold, and determine whether x; is in-
side or outside the object.

3. Make another attempt with a point x, adjacent to x, in the direction perpendic-
ular to the gradient at x; plus or minus (mw/4), according to the outcome of the
previous test.

Fig. 4.19 Finding the boundary in a
binary image.

Sec. 4.6 Contour Following 145

IPR2021-00921
Apple EX1015 Page 161



146

\

Local edge

N Search  Fig. 4.20 Angular orientations for
&\ space contour following.

4.6.2 Generalization to Higher-Dimensional Image Data

The generalization of contour following to higher-dimensional spaces is straight-
forward [Liu 1977, Herman and Liu 1978]. The search involved is, in fact, slightly
more complex than contour following and is more like the graph searching
methods described in Section 4.4. Higher-dimensional image spaces arise when the
image has more than two spatial dimensions, is time-varying, or both. In these im-
ages the notion of a gradient is the same (a vector describing the maximum gray-
level change and its corresponding direction), but the intuitive interpretation of
the corresponding edge element may be difficult. In three dimensions, edge ele-
ments are primitive surface elements, separating volumes of differing gray level.
The objective of contour following is to link together neighboring surface elements
with high gradient modulus values and similar orientations into larger boundaries.
In four dimensions, ‘‘edge elements’” are primitive volumes; contour following
links neighboring volumes with similar gradients.

The contour following approach works well when there is little noise present
and no ‘‘spurious’ boundaries. Unfortunately, if either of these conditions is
present, the contour-following algorithms are generally unsatisfactory; they are
easily thwarted by gaps in the data produced by noise, and readily follow spurious
boundaries. The methods described earlier in this chapter attempt to overcome
these difficulties through more elaborate models of the boundary structure.

EXERCISES

4.1 Specify a heuristic search algorithm that will work with ‘‘crack’” edges such as those in
Fig. 3.12.

4.2 Describe a modification of Algorithm 4.2 to detect parabolae in gray-level images.

4.3 Suppose that a relation s (x;, x¢) is added to the model described by Fig. 4.18a so
that now the interaction graph is cyclical. Show formally how this changes the optimi-
zation steps described by Egs. (4.11) through (4.13).

4.4 Show formally that the Hough technique without gradient direction information is
equivalent to template matching (Chapter 3).
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4.5 Extend the Hough technique for ellipses described by Eqgs. (4.7a) through (4.7d) to
ellipses oriented at an arbitrary angle 8 to the x axis.

4.6 Show how to use the generalized Hough technique to detect hexagons.
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Region
Growing | 5

5.1 REGIONS

Chapter 4 concentrated on the linear features (discontinuities of image gray level)
that often correspond to object boundaries, interesting surface detail, and so on.
The ““dual’ problem to finding edges around regions of differing gray level is to
find the regions themselves. The goal of region growing is to use image characteris-
tics to map individual pixels in an input image to sets of pixels called regions. An
image region might correspond to a world object or a meaningful part of one.

Of course, very simple procedures will derive a boundary from a connected
region of pixels, and conversely can fill a boundary to obtain a region. There are
several reasons why both region growing and line finding survive as basic segmen-
tation techniques despite their redundant-seeming nature. Although perfect re-
gions and boundaries are interconvertible, the processing to find them initially
differs in character and applicability; besides, perfect edges or regions are not al-
ways required for an application. Region-finding and line-finding techniques can
cooperate to produce a more reliable segmentation.

The geometric characteristics of regions depend on the domain. Usually, they
are considered to be connected two-dimensional areas. Whether regions can be
disconnected, non-simply connected (have holes), should have smooth boun-
daries, and so forth depends on the region-growing technique and the goals of the
work. Ultimately, it is often the segmentation goal to partition the entire image
into quasi-disjoint regions. That is, regions have no two-dimensional overlaps, and
no pixel belongs to the interior of more than one region. However, there is no sin-
gle definition of region —they may be allowed to overlap, the whole image may not
be partitioned, and so forth.

Our discussion of region growers will begin with the most simple kinds and
progress to the more complex. The most primitive region growers use only aggre-
gates of properties of local groups of pixels to determine regions. More sophisti-
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cated techniques ‘“‘grow’” regions by merging more primitive regions. To do this in
a structured way requires sophisticated representations of the regions and boun-
daries. Also, the merging decisions can be complex, and can depend on descriptions
of the boundary structure separating regions in addition to the region semantics. A
good survey of early techniques is [Zucker 1976].

The techniques we consider are:

1. Local techniques. Pixels are placed in a region on the basis of their properties or
the properties of their close neighbors.

2. Global technigues. Pixels are grouped into regions on the basis of the properties
of large numbers of pixels distributed throughout the image.

3. Splitting and merging techniques. The foregoing techniques are related to indivi-
dual pixels or sets of pixels. State space techniques merge or split regions using
graph structures to represent the regions and boundaries. Both local and global
merging and splitting criteria can be used.

The effectiveness of region growing algorithms depends heavily on the appli-
cation area and input image. If the image is sufficiently simple, say a dark blob on a
light background, simple local techniques can be surprisingly effective. However,
on very difficult scenes, such as outdoor scenes, even the most sophisticated tech-
niques still may not produce a satisfactory segmentation. In this event, region
growing is sometimes used conservatively to preprocess the image for more
knowledgeable processes [Hanson and Riseman 1978].

In discussing the specific algorithms, the following definitions will be helpful.
Regions R, are considered to be sets of points with the following properties:

X; in aregion R is connectedto x; iff there
is a sequence {x,, . .., x;} such that x, and x4, (5.1)
are connected and all the points are in R.

Ris a connected region if the set of points x in R has the (5.2)
property that every pair of points is connected.

m
I, the entire image = |J R, (5.3)
k=1

RNAR=¢ i%j (5.4

A set of regions satisfying (5.2) through (5.4) is known as a partition. In seg-
mentation algorithms, each region often is a unique, homogeneous area. That is,
for some Boolean function H (R) that measures region homogeneity,

H(R,) = trueforall £ (5.5)
H(R;|J R)) = false for i (5.6)

Note that R, does not have to be connected. A weaker but still useful criterion is
that neighboring regions not be homogeneous.
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5.2 ALOCAL TECHNIQUE: BLOB COLORING

The counterpart to the edge tracker for binary images is the blob-coloring algo-
rithm. Given a binary image containing four-connected blobs of 1’s on a back-
ground of 0’s, the objective is to ‘‘color each blob”’; that is, assign each blob a
different label. To do this, scan the image from left to right and top to bottom with
a special L-shaped template shown in Fig. 5.1. The coloring algorithm is as follows.

Algorithm 5.1: Blob Coloring
Let the initial color, k£ = 1. Scan the image from left to right and top to bottom.
If f (xc) = 0 then continue

else
begin

if (f(xy) =1land f(x;) =0)
then color (x¢) := color (x)

if (f(x,) = land f(xy,) =0)
then color (x¢) := color (x)

if (f(x;) =1and f(xy) =1)

then begin
color (x¢) := color (x;)
color (x;) is equivalent to color (x;)
end

comment: two colors are equivalent.

if (f(x,) =0and f(xy,) =0)
then color (x;) :=k; k:= k +1

comment: new color

end

After one complete scan of the image the color equivalences can be used to assure
that each object has only one color. This binary image algorithm can be used as a
simple region-grower for gray-level images with the following modifications. If in a

X, x Fig. 5.1 L-shaped template for blob
coloring.
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gray-level image f (x.) is approximately equal to f(x), assign X to the same re-
gion (blob) as x . This is equivalent to the condition £ (xc) = f{xy) = 1in Al-
gorithm 5.1. The modifications to the steps in the algorithm are straightforward.

5.3 GLOBAL TECHNIQUES: REGION GROWING VIA THRESHOLDING

Number
of
pixels

152

This approach assumes an object-background image and picks a threshold that
divides the image pixels into either object or background:

x is part of the Object iff f(x) > T
Otherwise it is part of the Background

The best way to pick the threshold T'is to search the histogram of gray levels,
assuming it is bimodal, and find the minimum separating the two peaks, as in Fig.
5.2. Finding the right valley between the peaks of a histogram can be difficult when
the histogram is not a smooth function. Smoothing the histogram can help but
does not guarantee that the correct minimum can be found. An elegant method for
treating bimodal images assumes that the histogram is the sum of two composite
normal functions and determines the valley location from the normal parameters
[Chow and Kaneko 1972].

The single-threshold method is useful in simple situations, but primitive. For
example, the region pixels may not be connected, and further processing such as
that described in Chapter 2 may be necessary to smooth region boundaries and re-
move noise. A common problem with this technique occurs when the image has a
background of varying gray level, or when collections we would like to call regions
vary smoothly in gray level by more than the threshold. Two modifications of the
threshold approach to ameliorate the difficulty are: (1) high-pass filter the image to
deemphasize the low-frequency background variation and then try the original
technique; and (2) use a spatiaily varying threshold method such as that of [Chow
and Kaneko 1972].

The Chow-Kaneko technique divides the image up into rectangular subim-
ages and computes a threshold for each subimage. A subimage can fail to have a
threshold if its gray-level histogram is not bimodal. Such subimages receive inter-

Gray level
Fig. 5.2 Threshold determination
Threshold from gray-level histogram.
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polated thresholds from neighboring subimages that are bimodal, and finally the
entire picture is thresholded by using the separate thresholds for each subimage.

5.3.1 Thresholding in Multidimensional Space

An interesting variation to the basic thresholding paradigm uses color images; the
basic digital picture function is vector-valued with red, blue, and green com-
ponents. This vector is augmented with possibly nonlinear combinations of these
values so that the augmented picture vector has a number of components. The
idea is to re-represent the color solid redundantly and hope to find color parame-
ters for which thresholding does the desired segmentation. One implementation of
this idea used the red, green, and blue color components; the intensity, saturation,
and hue components; and the N.T.S.C. ¥, I, Q components (Chapter 2) [Ohlander
etal. 1979].

The idea of thresholding the components of a picture vector is used in a prim-
itive form for multispectral LANDSAT imagery [Robertson et al. 1973]. The novel
extension in this algorithm is the recursive application of this technique to nonrec-
tangular subregions.

The region partitioning is then as follows:

Algorithm 5.2: Region Growing via Recursive Splitting

1. Consider the entire image as a region and compute histograms for each of the
picture vector components.

2. Apply a peak-finding test to each histogram. If at least one component passes
the test, pick the component with the most significant peak and determine two
thresholds, one either side of the peak (Fig. 5.3). Use these thresholds to
divide the region into subregions.

3. Each subregion may have a “‘noisy’’ boundary, so the binary representation of
the image achieved by thresholding is smoothed so that only a single con-
nected subregion remains. For binary smoothing see ch. 8 and [Rosenfeld and
Kak 1976].

4. Repeat steps 1 through 3 for each subregion until no new subregions are
created (no histograms have significant peaks).

A refinement of step 2 of this scheme is to create histograms in higher-
dimensional space [Hanson and Riseman 1978]. Multiple regions are often in the
same histogram peak when a single measurement is used. The advantage of the
multimeasurement histograms is that these different regions are often separated
into individual peaks, and hence the segmentation is improved. Figure 5.4 shows
some results using a three-dimensional RGB color space.

The figure shows the clear separation of peaks in the three-dimensional histo-
gram that is not evident in either of the one-dimensional histograms. How many
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Fig. 5.3 Peak detection and threshold determination. (a) Original image. (b) Histograms. (c) Image segments
resulting from first histogram peak.

154 Ch. 5 Region Crowing

IPR2021-00921
Apple EX1015 Page 170



Fig. 5.3 (d) Final segments.

(d)

dimensions should be used? Obviously, there is a trade-off here: As the dimen-
sionality becomes larger, the discrimination improves, but the histograms are
more expensive to compute and noise effects may be more pronounced.

5.3.2 Hierarchical Refinement

This technique uses a pyramidal image representation (Section 3.7) [Harlow and
Eisenbeis 1973]. Region growing is applied to a coarse resolution image. When the
algorithm has terminated at one resolution level, the pixels near the boundaries of
regions are disassociated with their regions. The region-growing process is then re-
peated for just these pixels at a higher-resolution level. Figure 5.5 shows this struc-
ture.

5.4 SPLITTING AND MERGING

Given a set of regions R, k = 1,...,m, alow-level segmentation might require the
basic properties described in Section 5.1 to hold. The important properties from
the standpoint of segmentation are Egs. (5.5) and (5.6).

If Eq. (5.5) is not satisfied for some k, it means that that region is inhomo-
geneous and should be split into subregions. If Eq. (5.6) is not satisfied for some i
and j, then regions /and jare collectively homogeneous and should be merged into
a single region. -

In our previous discussions we used

true if all neighboring pairs of points
H(R) = in R aresuchthat f(x) — f(y) < T 5.7
false otherwise

and
true if the pointsin R passa
H(R) = bimodality or peak test (5.8)
false otherwise
Sec. 5.4 Splitting and Merging 155
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Fig. 5.4 Multi-dimensional
histograms in segmentation. (a) Image.
(b) RGB histogram showing successive
planes through a 16 x 16 x 16 color
space. (c) Segments. (See color inserts.)
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Fig. 5.5 Hierarchical region refinement.

A way of working toward the satisfaction of these homogeneity criteria is the
split-and-merge algorithm [Horowitz and Pavlidis 1974]. To use the algorithm it is
necessary to organize the image pixels into a pyramidal grid structure of regions. In
this grid structure, regions are organized into groups of four. Any region can be
split into four subregions (except a region consisting of only one pixel), and the ap-
propriate groups of four can be merged into a single larger region. This structure is
incorporated into the following region-growing algorithm.

Algorithm 5.3: Region Growing via Split and Merge [Horowitz and Pavlidis
1974]

1. Pick any grid structure, and homogeneity property H. If for any region R in
that structure, H (R) = false, split that region into four subregions. If for any
four appropriate regions Ry ,..., Rya H Ry | Rz U Ris U Rys) = true,
merge them into a single region. When no regions can be further split or
merged, stop.

2. If there are any neighboring regions R; and R, (perhaps of different sizes) such
that # (R;|J R;) = true, merge these regions.

5.4.1 State-Space Approach to Region Growing

The “‘classical’® state-space approach of artificial intelligence [Nilsson 1971, 1980]
was first applied to region growing in [Brice and Fennema 1970] and significantly
extended in [Feldman and Yakimovsky 1974]. This approach regards the initial
two-dimensional image as a discrete state, where every sample point is a separate
region. Changes of state occur when a boundary between regions is either removed
or inserted. The problem then becomes one of searching allowable changes in state
to find the best partition.

Sec. 5.4 Splitting and Merging 157
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S R S
0 F0 k0 Qi + Unassigned

;_ 3 + S + 3 + 3 + + Edge data Fig. 5.6 Qrid structure for region
B oL QR B0 O Grey level data  representation [Brice and Fennema
+0 +0 +0 +0 + 1970].

An important part of the state-space approach is the use of data structures to
allow regions and boundaries to be manipulated as units. This moves away from
earlier techniques, which labeled each individual pixel according to its region. The
high-level data structures do away with this expensive practice by representing re-
gions with their boundaries and then keeping track of what happens to these boun-
daries during split-and merge-operations.

5.4.2 Low-level Boundary Data Structures

A useful representation for boundaries allows the splitting and merging of regions
to proceed in a simple manner [Brice and Fennema 1970]. This representation in-
troduces the notion of a supergrid S to the image grid G. These grids are shown in
Fig. 5.6, where - and + correspond to supergrid and O to the subgrid. The
representation is assumed to be four-connected (i.e., x1 is a neighbor of x2 if||x1 —
x2||< D).

With this notation boundaries of regions are directed crack edges (see Sec.
3.1) at the points marked -+. That is, if point x,, is a neighbor of x; and x, isina
different region than x;, insert two edges for the boundaries of the regions contain-
ing x; and x, at the point + separating them, such that each edge traverses its as-
sociated region in a counterclockwise sense. This makes merge operations very
simple: To merge regions R, and R,, remove edges of the opposite sense from the
boundary as shown in Fig. 5.7a. Similarly, to split a region along a line, insert edges
of the opposite sense in nearby points, as shown in Fig. 5.7b.

The method of [Brice and Fennema 1970] uses three criteria for merging re-
gions, reflecting a transition from local measurements to global measurements.
These criteria use measures of boundary strength s;; and w;; defined as

Si'j = ,f(xl) = f(x,)I (59)

Wi = l(l] icft:;r;iszl (5.10)

El‘—”'jl:ljﬁ y:r 7:1‘77

I [N G B
R C

(a)
Fig. 5.7 Region operations on the grid structure of Fig. 5.6.

Ch. 5 Region Growing

IPR2021-00921
Apple EX1015 Page 174



I Y S O 1
| B G o s O
] T

Fig. 5.7 (cont.)

where x; and X; are assumed to be on either side of a crack edge (Chapter 3). The
three criteria are applied sequentially in the following algorithm:

Algorithm 5.4: Region Growing via Boundary Melting (7, £k = 1, 2, 3 are
preset thresholds)

1. For all neighboring pairs of points, remove the boundary between x, and x; if
i#jand w; = 1. When no more boundaries can be removed, go to step 2.

2. Remove the boundary between R; and R; if

W

S A
i o 7] 2.7 (5.11)

where Wis the sum of the w;; on the common boundary between R; and R,
that have perimeters p; and p; respectively. When no more boundaries can be
removed, go to step 3.

3. Remove the boundary between R; and R; if
W =T (5.12)

5.4.3 Graph-Oriented Region Structures

The Brice-Fennema data structure stores boundaries explicitly but does not pro-
vide for explicit representation of regions. This is a drawback when regions must
be referred to as units. An adjunct scheme of region representation can be
developed using graph theory. This scheme represents both regions and their
boundaries explicitly, and this facilitates the storing and indexing of their semantic
properties.

The scheme is based on a special graph called the region adjacency graph, and
its “‘dual graph.” In the region adjacency graph, nodes are regions and arcs exist
between neighboring regions. This scheme is useful as a way of keeping track of re-
gions, even when they are inscribed on arbitrary nonplanar surfaces (Chapter 9).
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Consider the regions of an image shown in Fig. 5.8a. The region adjacency
graph has a node in each region and an arc crossing each separate boundary seg-
ment. To allow a uniform treatment of these structures, define an artificial region
that surrounds the image. This node is shown in Fig. 5.8b. For regions on a plane,
the region adjacency graph is planar (can lie in a plane with no arcs intersecting)
and its edges are undirected, The ““dual’’ of this graph is also of interest. To con-
stuct the dual of the adjacency graph, simply place nodes in each separate region
and connect them with arcs wherever the regions are separated by an arc in the ad-
jacency graph. Figure 5.8c shows that the dual of the region adjacency graph is like
the original region boundary map; in Fig. 5.8b each arc may be associated with a
specific boundary segment and each node with a junction between three or more
boundary segments. By maintaining both the region adjacency graph and its dual,
one can merge regions using the following algorithm:

Algorithm 5.5: Merging Using the Region-Adjacency Graph and Its Dual

Task: Merge neighboring regions R, and R;.

Phase 1. Update the region-adjacency graph.

1. Place edges between R; and all neighboring regions of R; (excluding, of

course, R;) that do not already have edges between themselves and R;.
2. Delete R, and all its associated edges.

Phase 2. Take care of the dual.

1. Delete the edges in the dual corresponding to the borders between R; and R,.
2. For each of the nodes associated with these edges:
(a) if the resultant degree of the node is less than or equal to 2, delete the
node and join the two dangling edges into a single edge.
(b) otherwise, update the labels of the edges that were associated with
to reflect the new region label /.

Figure 5.9 shows these operations.

5.5 INCORPORATION OF SEMANTICS

160

Up to this point in our treatment of region growers, domain-dependent ‘“‘seman-
tics’” has not explicitly appeared. In other words, region-merging decisions were
based on raw image data and rather weak heuristics of general applicability about
the likely shape of boundaries. As in early processing, the use of domain-
dependent knowledge can affect region finding. Possible interpretations of regions
can affect the splitting and merging process. For example, in an outdoor scene pos-
sible region interpretations might be sky, grass, or car. This kind of knowledge is
quite separate from but related to measurable region properties such as intensity

Ch. 5 Region Crowing
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(a)

Fig. 5.8 (a) Animage partition. (b)
The region adjacency graph (solid lines).
(c) The dual of the adjacency graph
(solid lines).

and hue. An example shows how semantic labels for regions can guide the merging
process. This approach was originally developed in [Feldman and Yakimovsky
1974]. it has found application in several complex vision systems [Barrow and
Tenenbaum 1977; Hanson and Riseman 1978].

Early steps in the Feldman-Yakimovsky region grower used essentially the
same steps as Brice-Fennema. Once regions attain significant size, semantic cri-

{a) (b)

Fig. 5.9 Merging operations using the region adjacency graph and its dual. (a) Before
merging regions separated by dark boundary line. (b) After merging.

Sec. 5.5 Incorporation of Semantics 161

IPR2021-00921
Apple EX1015 Page 177



teria are used. The region growing consists of four steps, as summed up in the fol-
lowing algorithm:

Algorithm 5.6 Semantic Region Growing

Nonsemantic Criteria
T, and T, are preset thresholds

1. Merge regions i, j as long as they have one weak separating edge until no two
regions pass this test.

2. Merge regions i, jwhere S(i, j} < T, where

C1 + a,-j

S5 j) = o B

where ¢ and c; are constants,

(area;)” + (area,)”
i gl

perimeter; - perimeter;

alj =

until no two regions pass this test. (This is a similar criterion to Algorithm 5.4,
step 2.)

Semantic Criteria

3. Let B; be the boundary between R; and R;. Evaluate each B; with a Bayesian
decision function that measures the (conditional) probability that B, separates
two regions R, and R; of the same interpretation. Merge R; and R, if this condi-
tional probability is less than some threshold. Repeat step 3 until no regions
pass the threshold test.

4. Evaluate the interpretation of each region R; with a Bayesian decision function
that measures the (conditional) probability that an interpretation is the correct
one for that region. Assign the interpretation to the region with the highest
confidence of correct interpretation. Update the conditional probabilities for
different interpretations of neighbors. Repeat the entire process until all re-
gions have interpretation assignments.

The semantic portion of algorithm 5.6 had the goal of maximizing an evalua-
tion function measuring the probability of a correct interpretation (labeled parti-
tion), given the measurements on the boundaries and regions of the partition. An
expression for the evaluation function is (for a given partition and interpretations X
and ):

max I1 {P[B; isaboundary between X and Y | measurements on B}
» LJ i E
x 1 [PR, isan X | measurements on R,}}
x II {P[R; isan Y | measurements on R]}

162 Ch. 5 Region Growing
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Sec. 5.5

where P stands for probability and II is the product operator.

How are these terms to be computed? Ideally, each conditional probability
function should be known to a reasonable degree of accuracy; then the terms can
be obtained by lookup.

However, the straightforward computation and representation of the condi-
tional probability functions requires a massive amount of work and storage. An
approximation used in [Feldman and Yakimovsky 1974l is to quantize the mea-
surements and represent them in terms of a classification tree. The conditional
probabilities can then be computed from data at the leaves of the tree. Figure 5.10
shows a hypothetical tree for the region measurements of intensity and hue, and
interpretations ROAD, SKY, and CAR. Figure 5.11 shows the equivalent tree for
two boundary measurements m and » and the same interpretations. These two
figures indicate that P[R;isa CAR|0 < i< 1,0 €< h < H|]l = , and P[B; divides
two car regions | M, € m < My, N; < n < N, = . These trees were created
by laborious trials with correct segmentations of test images.

Now, finally, consider again step 3 of Algorithm 5.6. The probability that a
boundary Bj; between regions R; and R; is false is given by

Py

Piyjse = YA (5.13)
where
P, = Y {P[By is between two subregions X | B;,’s measurements]| (5.14a)
x{P[R; is X | measl]x{P[R; is X | meas]}
P, =Y, [PIB; isbetween X and Y | measl} (5.14b)
Xy
x {P[R; is X | meas 1}x{P[R; is ¥ | meas]} .

Fig. 5.10 Hypothetical classification tree for region measurements showing a
particular branch for specific ranges of intensity and hue.
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4 Road/sky
1 Road/car
3 Sky/car

2 Road/road
2 Car/car
1 Sky/sky

Fig. 5.11 Hypothetical classification
tree for boundary measurements
showing a specific branch for specific
ranges of two measurements mand n.

And for step 4 of the algorithm,
P[R; is X1 | meas]

P[R; is X2 | meas] (5.15)

Confidence; =

where X1, X2 are the first and second most likely interpretations, respectively.
After the region is assigned interpretation X 1, the neighbors are updated using

PR, is X | meas]:=Prob [Rj is X | meas] (5.16)
x P[B; isbetween X and X1 |meas]

EXERCISES

5.1 In Algorithm 5.1, show how one can handle the case where colors are equivalent. Do
you need more than one pass over the image?

5.2 Show for the heuristic of Eq. (5.11) that
(@ IT, > WT, > P;
® P, <P+I1/T,—2)
where P, is the perimeter of R; | R;, I is the perimeter common to both j and j
and P,, = min (P; P;). What does part (b) imply about the relation between T and
P,?
5.3 Write a “‘histogram-peak” finder; that is, detect satisfying valleys in histograms
separating intuitive hills or peaks.

5.4 Suppose that regions are represented by a neighbor list structure. Each region has an
associated list of neighboring regions. Design a region-merging algorithm based on
this structure.

5.5 Why do junctions of regions in segmented images tend to be trihedral?

5.6 Regions, boundaries, and junctions are the structures behind the region-adjacency
graph and its dual. Generalize these structures to three dimensions. Is another struc-
ture needed?

5.7 Generalize the graph of Figure 5.8 to three dimensions and develop the merging algo-
rithm analogous to Algorithm 5.5. (Hint: see Exercise 5.6.)

Ch. 5 Region Growing
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Texture 6

6.1 WHAT IS TEXTURE?

166

The notion of texture admits to no rigid description, but a dictionary definition of
texture as ‘‘something composed of closely interwoven elements’’ is fairly apt.
The description of interwoven elements is intimately tied to the idea of texture
resolution, which one might think of as the average amount of pixels for each dis-
cernable texture element. If this number is large, we can attempt to describe the
individual elements in some detail. However, as this number nears unity it be-
comes increasingly difficult to characterize these elements individually and they
merge into less distinct spatial patterns. To see this variability, we examine some
textures.

Figure 6.1 shows ‘‘cane,’” “‘paper,”’ ‘‘coffee beans,”” ‘‘brickwall,”” “‘coins,”’
and “‘wire braid”’ after Brodatz’s well-known book [Brodatz 1966]. Five of these
examples are high-resolution textures: they show repeated primitive elements that
exhibit some kind of variation. “‘Coffee beans,”” “‘brick wall’’ and “‘coins”’ all have
obvious primitives (even if it is not so obvious how to extract these from image
data). Two more examples further illustrate that one sometimes has to be creative
in defining primitives. In “‘cane’’ the easiest primitives to deal with seem to be the
physical holes in the texture, whereas in “‘wire braid’’ it might be better to model
the physical relations of a loose weave of metallic wires. However, the paper tex-
ture does not fit nicely into this mold. This is not to say that there are not possibili-
ties for primitive elements. One is regions of lightness and darkness formed by the
ridges in the paper. A second possibility is to use the reflectance models described
in Section 3.5 to compute ““pits” and “bumps.’® However, the elements seem to
be “‘just beyond our perceptual resolving power>> [Laws 1980], or in our terms, the
elements are very close in size to individual pixels.
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Texture primitives
Structural models
Statistical models

Six examples of texture. (a) Cane. (b) Paper. (c) Coffee beans. (d)
Texturegradients

Brick wall. (e) Coins. () Wire braid.

2.
3.
4.

1.

The exposition of texture takes place under four main headings:

Fig. 6.1
What is Texture

Sec. 6.1



168

We have already described texture as being composed of elements of texture primi-
tives. The main point of additional discussion on texture primitives is to refine the
idea of a primitive and its relation to image resolution.

The main work that is unique to texture is that which describes how primi-
tives are related to the aim of recognizing or classifying the texture. Two broad
classes of techniques have emerged and we shall study each in turn. The structural
model regards the primitives as forming a repeating pattern and describes such pat-
terns in terms of rules for generating them. Formally, these rules can be termed a
grammar. This model is best for describing textures where there is much regularity
in the placement of primitive elements and the texture is imaged at high resolu-
tion. The “‘reptile’” texture in Fig. 6.9 is an example that can be handled by the
structured approach. The sratistical model usually describes texture by statistical
rules governing the distribution and relation of gray levels. This works well for
many natural textures which have barely discernible primitives. The “‘paper’ tex-
ture is such an example. As we shall see, we cannot be too rigid about this division
since statistical models can describe pattern-like textures and vice versa, but in
general the dichotomy is helpful.

The examples suggest that texture is almost always a property of surfaces.
Indeed, as the example of Fig. 6.2 shows, human beings tend to relate texture ele-
ments of varying size to a plausible surface in three dimensions [Gibson 1950;
Stevens 1979]. Techniques for determining surface orientation in this fashion are
termed texture gradient techniques. The gradient is given both in terms of the
direction of greatest change in size of primitives and in terms of the spatial place-
ment of primitives. The notion of a gradient is very useful. For example, if the tex-
ture is embedded on a flat surface, the gradient points toward a vanishing point in
the image. The chapter concludes with algorithms for computing this gradient.
The gradient may be computed directly or indirectly via the computation of the
vanishing point.

/ﬁ Fig. 6.2 Texture as a surface property.
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6.2 TEXTURE PRIMITIVES

The notion of a primitive is central to texture. To highlight its importance, we shall
use the appelation texe! (for texture element) [Kender 1978]. A texel is (loosely)
a visual primitive with certain invariant properties which occurs repeatedly in
different positions, deformations, and orientations inside a given area. One basic
invariant property of such a unit might be that its pixels have a constant gray level,
but more elaborate properties related to shape are possible. (A detailed discussion
of planar shapes is deferred until Chapter 8.) Figure 6.3 shows examples of two
kinds of texels: (a) ellipses of approximately constant gray level and (b) linear edge
segments. Interestingly, these are nearly the two features selected as texture prim-
itives by [Julesz, 1981], who has performed extensive studies of human texture
perception.

For textures that can be described in two dimensions, image-based descrip-
tions are sufficient. Texture primitives may be pixels, or aggregates of pixels such
as curve segments or regions. The ‘“‘coffee beans’ texture can be described by an
image-based model: repeated dark ellipses on a lighter background. These models
describe equally well an image of texture or an image of a picture of texture. The
methods for creating these aggregates were discussed in Chapters 4 and 5. As with
all image-based models, three-dimensional phenomena such as occlusion must be
handled indirectly. In contrast, structural approaches to texture sometimes require
knowledge of the three-dimensional world producing the texture image. One ex-
ample of this is Brodatz’s “‘coins’ shown in Fig. 6.1. A three-dimensional model of
the way coins can be stacked is needed to understand this texture fully.

An important part of the texel definition is that primitives must occur repeat-
edly inside a given area. The question is: How many times? This can be answered
qualitatively by imagining a window that corresponds approximately to our field of
view superimposed on a very large textured area. As this window is made smaller,
corresponding to moving the viewpoint closer to the texture, fewer and fewer tex-
els are contained in it. At some distance, the image in the window no longer

Fig. 6.3 Examples of texels. (a) Ellipses. (b) Linear segments.
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appears textured, or if it does, translation of the window changes the perceived tex-
ture drastically. At this point we no longer have a texture. A similar effect occurs if
the window is made increasingly larger, corresponding to moving the field of view
farther away from the image. At some distance textural details are blurred into
continuous tones and repeated elements are no longer visible as the window is
translated. (This is the basis for halftone images, which are highly textured pat-
terns meant to be viewed from enough distance to blur the texture.) Thus the idea
of an appropriate resolution, or the number of texels in a subimage, is an implicit
part of our qualitative definition of texture. If the resolution is appropriate, the tex-
ture will be apparent and will “‘look the same’’ as the field of view is translated
across the textured area. Most often the appropriate resolution is not known but
must be computed. Often this computation is simpler to carry out than detailed
computations characterizing the primitives and hence has been used as a precursor
to the latter computations. Figure 6.4 shows such a resolution-like computation,
which examines the image for repeating peaks [Connors 1979].

Textures can be hierarchical, the hierarchies corresponding to different reso-
lutions. The “‘brick wall”’ texture shows such a hierarchy. At one resolution, the
highly structured pattern made by collections of bricks is in evidence; at higher
resolution, the variations of the texture of each brick are visible.

6.3 STRUCTURAL MODELS OF TEXEL PLACEMENT

meRsEiniainIR  Jafadaiaieiadaing

Highly patterned textures tesselate the plane in an ordered way, and thus we must
understand the different ways in which this can be done. In a regular tesselation the
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Fig. 6.4 Computing texture
resolutions. (a) French canvas. (b)
Resolution grid for canvas. (c) Raffia.
(d) Grid for raffia.
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polygons surrounding a vertex all have the same number of sides. Semiregular
tesselations have two kinds of polygons (differing in number of sides) surrounding
a vertex. Figure 2.11 depicts the regular tesselations of the plane. There are eight
semiregular tesselations of the plane, as shown in Fig. 6.5. These tesselations are
conveniently described by listing in order the number of sides of the polygons sur-

A X
XX X

R

(3, 6, 3, 6

(3, 4, 6, 4)

FREnas
GABERR

B
INANNNNN NN
HEEEEEEEN
AN
HENEEREN
/\
(3, 3, 3, 4, 4) (3, 3, 4, 3, 4)
Fig. 6.5 Semiregular tesselations.
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rounding each vertex. Thus a hexagonal tesselation is described by (6,6,6) and
every vertex in the tesselation of Fig. 6.5 can be denoted by the list (3,12,12). It is
important to note that the tesselations of interest are those which describe the
placement of primitives rather than the primitives themselves. When the primitives
define a tesselation, the tesselation describing the primitive placement will be the
dual of this graph in the sense of Section 5.4. Figure 6.6 shows these relationships.

Texel Placement
tesselation Fig. 6.6 The primitive placement

tesselation as the dual of the primitive
tesselation.

6.3.1 Grammatical Models

A powerful way of describing the rules that govern textural structure is through a
grammar. A grammar describes how to generate patterns by applying rewriting rules
to a small number of symbols. Through a small number of rules and symbols, the
grammar can generate complex textural patterns. Of course, the symbols turn out
to be related to texels. The mapping between the stored model prototype texture
and an image of texture with real-world variations may be incorporated into the
grammar by attaching probabilities to different rules. Grammars with such rules
are termed stochastic [Fu 1974].

There is no unique grammar for a given texture; in fact, there are usually
infinitely ‘'many choices for rules and symbols. Thus texture grammars are
described as syntactically ambiguous. Figure 6.7 shows a syntactically ambiguous
texture and two of the possible choices for primitives. This texture is also semanti-
cally ambiguous [Zucker 1976] in that alternate ridges may be thought of in three
dimensions as coming out of or going into the page.

There are many variants of the basic idea of formal grammars and we shall
examine three of them: shape grammars, tree grammars, and array grammars. For
a basic reference, see [Hopcroft and Ullman 1979]. Shape grammars are dis-
tinguished from the other two by having high-level primitives that closely
correspond to the shapes in the texture. In the examples of tree grammars and ar-
ray grammars that we examine, texels are defined as pixels and this makes the
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grammars correspondingly more complicated. A particular texture that can be
described in eight rules in a shape grammar requires 85 rules in a tree grammar [Lu
and Fu 1978]. The compensating trade-off is that pixels are gratis with the image;
considerable processing must be done to derive the more complex primitives used
by the shape grammar.

&

6.3,2 Shape Grammars

A shape grammar [Stiny and Gips 1972] is defined as a four-tuple < ¥, V,,, R, §>
where:

1. V¥, isafinite set of shapes
2. V,isafinite set of shapessuchthat ¥V, (N V, = ¢

3. Ris afinite set of ordered pairs (x, v) such that » is a shape consisting of ele-
ments of ¥;" and v is a shape consisting of an element of ¥, combined with an
element of ¥,

4. Sisashape consisting of an element of ¥, combined with an element of ¥,,.

Elements of the set ¥, are called terminal shape elements (or terminals). Elements
of the set V,, are called nonterminal shape elements (or markers). The sets ¥, and
V,, must be disjoint. Elements of the set ;" are formed by the finite arrangement
of one or more elements of ¥, in which any elements and/or their mirror images
may be used a multiple number of times in any location, orientation, or scale. The
set ¥, = V7 |J {A}, where A is the empty shape. The sets ¥, and V,, are
defined similarly. Elements (u, v) of R are called shape rules and are written u v.
uis called the left side of the rule; v the right side of the rule. ¥ and v usually are en-
closed in identical dashed rectangles to show the correspondence between the two
shapes. S is called the initial shape and normally contains a u such that there is a
(u, v) which is an element of R.
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A texture is generated from a shape grammar by beginning with the initial
shape and repeatedly applying the shape rules. The result of applying a shape rule
R to a given shape sis another shape, consisting of s with the right side of R substi-
tuted in S for an occurrence of the left side of R. Rule application to a shape
proceeds as follows:

1. Find part of the shape that is geometrically similar to the left side of a rule in
terms of both terminal elements and nonterminal elements (markers). There
must be a one-to-one correspondence between the terminals and markers in
the left side of the rule and the terminals and markers in the part of the shape
to which the rule is to be applied.

2. Find the geometric transformations (scale, translation, rotation, mirror im-
age) which make the left side of the rule identical to the corresponding part in
the shape.

3. Apply those transformations to the right side of the rule.

Substitute the transformed right side of the rule for the part of the shape that
corresponds to the left side of the rule.

The generation process is terminated when no rule in the grammar can be applied.
As a simple example, one of the many ways of specifying a hexagonal texture

{Vi, Vs R, Sl is

v,=1O

V,={ -} (6.1)
RIO**CQ;@;E(C.
s={(J}

Hexagonal textures can be generated by the repeated application of the single rule
in R. They can be recognized by the application of the rule in the opposite direction
to a given texture until the initial shape, I, is produced. Of course, the rule will
generate only hexagonal textures. Similarly, the hexagonal texture in Fig. 6.8a will
be recognized but the variants in Fig. 6.8b will not.

o

Fig. 6.8 Textures to be recognized (see text).

(b}
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A more difficult example is given by the “‘reptile’’ texture. Except for the oc-
casional new rows, a (3, 6, 3, 6) tesselation of primitives would model this texture
exactly. As shown in Fig. 6.9, the new row is introduced when a seven-sided pol-
ygon splits into a six-sided polygon and a five-sided polygon. To capture this with a
shape grammar, we examine the dual of this graph, which is the primitive place-
ment graph, Fig. 6.9b. This graph provides a simple explanation of how the extra
row is created; that is, the diamond pattern splits into two. Notice that the dual
graph is composed solely of four-sided polygons but that some vertices are (4, 4,4)
and some are (4,4,4,4,4,4). A shape grammar for the dual is shown in Fig. 6.10.
The image texture can be obtained by forming the dual of this graph. One further
refinement should be added to rules (6) and (7); so that rule (7) is used less often,
the appropriate probabilities should be associated with each rule. This would make
the grammar stochastic.

Fig. 6.9 (a) The reptile texture. (b) The reptile texture as a (3, 6, 3, 6) semireg-
ular tesselation with local deformations.

6.3.3 Tree Grammars

The symbolic form of a tree grammar is very similar to that of a shape grammar. A
grammar

Gi = (I/i‘l me I, Rr S)
is a tree grammar if

V, is a set of terminal symbols
V.. is a set of symbols such that
Vo M V=@
r: ¥,— N (where Nis the set of nonnegative integers)
is the rank associated with symbolsin ¥,
Sis the start symbol
R is the set of rules of the form
X 7 ch or Xo—x
Xoo X0
with xin V,. and Xo Xr(x) in Vm

For a tree grammar to generate arrays of pixels, it is necessary to choose some way
of embedding the tree in the array. Figure 6.11 shows two such embeddings.
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Fig. 6.10 Shape grammar for the reptile texture.

In the application to texture [Lu and Fu 1978], the notion of pyramids or
hierarchical levels of resolution in texture is used. One level describes the place-
ment of repeating patterns in texture windows—a rectangular texel placement
tesselation—and another level describes texels in terms of pixels. We shall illus-
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Fig. 6.11 Two ways of embedding a tree structure in an array.

trate these ideas with Lu and Fu’s grammar for “‘wire braid.’* The texture windows
are shown in Fig. 6.12a. Each of these can be described by a ‘“‘sentence” in a
second tree grammar. The grammar is given by:

G,=(V,V, R, 8)

where
v, =14, C1}
Vo =1X, 1, Z} (6.2)

r=1{0,1, 2}

R.X—X'/I{Y or;':il

¥Y— 4 or Cy
2

Z =iy or 4,
y

and the first embedding in Fig. 6.11 is used. The pattern inside each of these win-
dows is specified by another grammatical level:

G=(W, V,rnRS)
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where
v, =1, 0)
V,, = {41, A2,43, A4, As, As, A7, C1, Ca, C3, Cy, Cs, Cg, C,
No, Ny, Ny, N3, Ny}

r=1{0,1,2}
S= {Al: Cl}
R:
1 0 )
At S P Nt ; 0
No/ AZ\NO Nl./ CZ N“ NO
! 0 1
A + | c,+ | Ny | ; 1
O, i

Ay /|\ i b /T\ Y27

No Ay Ny Ny Gy Ny '

0 o 0

" /N i Y, -
Ny A Wy Ny G5 By X,

0 0 0

Ag > /l\ CS"/I\ N, |
Ny Ay Wy By g M Ny

0 [}
As-* /I\ C"* /[\
N3 A;' N NI CT N.i

3
0 0 1 1
A+ s c, + :
7T /IN PR /\
N,‘ A7 ﬂ,‘ N" Pd,. Nu C.’, N0 Ho No
The application of these rules generates the two different patterns of pixels
shown in Fig. 6.13.
6.3.4 Array Grammars

Like tree grammars, array grammars use hierarchical levels of resolution [Milgram
and Rosenfeld 1971; Rosenfeld 1971]. Array grammars are different from tree
grammars in that they do not use the tree-array embedding. Instead, prodigious
use of a blank or null symbol is used to make sure the rules are applied in appropri-
ate contexts, A simple array grammar for generating a checkerboard pattern is

G=1{V, V., R}
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A.' —-—C] - A] - (I1

X — e
AI ——-C1 — AI —I—- C1
A ——CI -4 A 4= C

Fig. 6.12 Texture window and grammar (see text).

where

¥, = {0, 1} (corresponding to black and white pixels, respectively)
v, =1{b S}

b is a “‘blank’ symbol used to provide context for the application of the rules.
Another notational convenience is to use a subscript to denote the orientation of
symbols. For example, when describing the rules R we use

0,5 —0,1 where x is one of (U, D, L, R}

to summarize the four rules

0,0 b_,1
b1 0T 0

Thus the checkerboard rule set is given by
R:S—0orl
0.6 —0,1 xin{U D, L R}
1,6 — 1,0

06—01, b0—10

A compact encoding of textural patterns [Jayaramamurthy 1979] uses levels of ar-
ray grammars defined on a pyramid. The terminal symbols of one layer are the start
symbols of the next grammatical layer defined lower down in the pyramid. This
corresponds nicely to the idea of having one grammar to generate primitives and
another to generate the primitive placement tesselations.

As another example, consider the herringbone pattern in Fig. 6.14a, which is
composed of 4x3 arrays of a particular placement pattern as shown in Fig. 6.14b.
The following grammar is sufficient to generate the placement pattern.

Gy 1Y, Vo By 8}
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V., = {al
v, ={b, 5}
R:§8—a
ab—aa xin{U D, L, R}

We have not been precise in specifying how the terminal symbol is projected onto
the lower level. Assume without loss of generality that it is placed in the upper
left-hand corner, the rest of the subarray being initially blank symbols. Thus a sim-
ple grammar for the primitive is

G, =1{V, V, R, S

# | o# | # | o

st e | #
# | # | o* | #
# | ¥ # | ¥

INITIAL ARRAY AT LEVEL1

a a | a a
Q' ﬂl qi al
ul al al al

al ul qI al

-
N _SEE NN SN .8 \ :
l.l = [ =-l Fig. 6.14 Stepsingenerating a

LI [T U

- herringbone texture with an array
TERMINAL ARRAY AT LEVEL 1 FINAL ARRAY grammar.
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where

v, ={a, b
a b b b 0 010
Rb bbb — 0101
b b b b 1 0 0 0

6.4 TEXTURE AS A PATTERN RECOGNITION PROBLEM

Many textures do not have the nice geometrical regularity of ‘“‘reptile’’ or “‘wire
braid”’; instead, they exhibit variations that are not satisfactorily described by
shapes, but are best described by statistical models. Statistical pattern recognitionis a
paradigm that can classify statistical variations in patterns. (There are other statisti-
cal methods of describing texture [Pratt et al. 19811, but we will focus on statistical
pattern recognition since it is the most widely used for computer vision purposes.)
There is a voluminous literature on pattern recognition, including several excel-
lent texts (e.g., [Fu 1968; Tou and Gonzalez 1974; Fukunaga 1972], and the ideas
have much wider application than their use here, but they seem particularly ap-
propriate for low-resolution textures, such as those seen in aerial images [Weszka
et al. 1976]. The pattern recognition approach to the problem is to classify in-
stances of a texture in an image into a set of classes. For example, given the tex-
tures in Fig. 6.15, the choice might be between the classes “‘orchard,” ““field,”
“residential,”” ‘‘water.”

The basic notion of pattern recognition is the feature vector. The feature vec-
tor v is a set of measurements {v, --- v,} which is supposed to condense the
description of relevant properties of the textured image into a small, Euclidean
Seature space of m dimensions. Each point in feature space represents a value for
the feature vector applied to a different image (or subimage) of texture. The meas-
urement values for a feature should be correlated with its class membership. Fig-
ure 6.16 shows a two-dimensional space in which the features exhibit the desired
correlation property. Feature vector values cluster according to the texture from
which they were derived. Figure 6.16 shows a bad choice of features (measure-
ments) which does not separate the different classes.

The pattern recognition paradigm divides the problem into two phases: train-
ing and test. Usually, during a training phase, feature vectors from known samples
are used to partition feature space into regions representing the different classes.
However, self teaching can be done; the classifier derives its own partitions.
Feature selection can be based on parametric or nonparametric models of the dis-
tributions of points in feature space. In the former case, analytic solutions are
sometimes available. In the latter, feature vectors are clustered into groups which
are taken to indicate partitions. During a test phase the feature-space partitions are
used to classify feature vectors from unknown samples. Figure 6.17 shows this
process.

Given that the data are reasonably well behaved, there are many methods for
clustering feature vectors [Fukunaga 1972; Tou and Gonzales 1974; Fu 1974].
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Fig. 6.15 Aerial image textures for
discrimination.

182 Ch. 6 Texture

IPR2021-00921
Apple EX1015 Page 198



Fig. 6.15 (cont.)

One popular way of doing this is to use prototype points for each class and a
nearest-neighbor rule [Cover 1968]:
assign v to class w; if i minimizes
mind (v, v,,)
i i

where Vo, is the prototype point for class w;.
Parametric techniques assume information about the feature vector probabil-

ity distributions to find rules that maximize the likelihood of correct classification:

assign v to class w; if i maximizes

max p (w;|v)
!
Va va
+ o+
++ a o o o
o B ) a” o +
+ g o o o
o o DD +
+
¢ e R By ©o o ©
o (o] OO +
¥y v

(a) {b)

Fig. 6.16 Feature space for texture discrimination. (a) effective features (b)

ineffective features.
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o l:lﬂli| -
a
++ 5 w
0© +
+ + (2]
(a) (b)

® Classified as cw;

Fig. 6.17 Pattern recognition paradigm.

The distributions may also be used to formulate rules that minimize errors.

Picking good features is the essence of pattern recognition. No elaborate for-
malism will work well for bad features such as those of Fig. 6.15b. On the other
hand, almost any method will work for very good features. For this reason, texture
is a good domain for pattern recognition: it is fairly easy to define features that (1)
cluster in feature space according to different classes, and (2) can separate texture
classes.

The ensuing subsections describe features that have worked well. These sub-
sections are in reverse order from those of Section 6.2 in that we begin with
features defined on pixels— Fourier subspaces, gray-level dependencies—and con-
clude with features defined on higher-level texels such as regions. However, the
lesson is the same as with the grammatical approach: hard work spent in obtaining
high-level primitives can both improve and simplify the texture model. Space does
not permit a discussion of many texture features; instead, we limit ourselves to a
few representative samples. For further reading, see [Haralick 1978].

6.4.1 Texture Energy

Fourier Domain Basis

If a texture is at all spatially periodic or directional, its power spectrum will
tend to have peaks for corresponding spatial frequencies. These peaks can form the
basis of features of a pattern recognition discriminator. One way to define features
is to search Fourier space directly [Bajcsy and Lieberman 1976]. Another is to par-
tition Fourier space into bins. Two kinds of bins, radial and angular, are commonly
used, as shown in Fig. 6.18. These bins, together with the Fourier power spectrum
are used to define features. If Fis the Fourier transform, the Fourier power spec-
trum is given by | F |2

Radial features are given by

v = J [ 1F G )P du av 6.5)
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(a) (b)

Fig. 6.18 Partitioning the Fourier domain into bins.

where the limits of integration are defined by
rE <+ v < r}
0<u,v<n-l1
where [ry, r,] is one of the radial bins and v is the vector (not related to v) defined

by different values of r; and #,. Radial features are correlated with texture coarse-
ness. A smooth texture will have high values of ¥, ,, for small radii, whereas a

coarse, grainy texture will tend to have relatively higher values for larger radii.
Features that measure angular orientation are given by
Vo8, = ffIF(u, v)|? du dv (6.6)

where the limits of integration are defined by

u

31 < tal'l._1 < 6,

0<uyvEn—l1

where [0, 8,) is one of the sectors and v is defined by different values of #; and 6.
These features exploit the sensitivity of the power spectrum to the directionality of
the texture. If a texture has as many lines or edges in a given direction 8, |F|? will
tend to have high values clustered around the direction in frequency space ¢ +
/2.

Texture Energy in the Spatial Domain

From Section 2.2.4 we know that the Fourier approach could also be carried
out in the image domain. This is the approach taken in [Laws 1980]. The advantage
of this approach is that the basis is not the Fourier basis but a variant that is more
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matched to intuition about texture features. Figure 6.19 shows the most important
of Laws’ 12 basis functions.

The image is first histogram-equalized (Section 3.2). Then 12 new images are
made by convolving the original image with each of the basis functions (i.e., f, =
f * h, for basis functions #y, ..., #12). Then each of these images is transformed
into an “‘energy’’ image by the following transformation: Each pixel in the con-
volved image is replaced by an average of the absolute values in a local window of
15 x 15 pixels centered over the pixel:

FARCTY D Y (A e T)) 6.7)
x4y’ in window
The transformation f— f,;', k=1, ..12is termed a ‘‘texture energy transform”
by Laws and is analogous to the Fourier power spectrum. The £, k = 1, ... 12
form a set of features for each point in the image which are used in a nearest-
neighbor classifier. Classification details may be found in [Laws 1980]. Our in-
terest is in the particular choice of basis functions used.

Figure 6.20 shows a composite of natural textures [Brodatz 1966] used in
Laws’s experiments. Each texture is digitized into a 128 x 128 pixel subimage. The
texture energy transforms were applied to this composite image and each pixel was
classified into one of the eight categories. The average classification accuracy was
about 87% for interior regions of the subimages. This is a very good result for tex-
tures that are similar.

6.4.2 Spatial Gray-Level Dependence

Spatial gray-level dependence (SGLD) matrices are one of the most popular
sources of features [Kruger et al. 1974; Hall et al. 1971; Haralick et al. 1973]. The
SGLD approach computes an intermediate matrix of measures from the digitized
image data, and then defines features as functions on this intermediate matrix.
Given an image f with a set of discrete gray levels I, we define for each of a set of
discrete values of dand # the intermediate matrix S (4, 8) as follows:

S(i, jld, 9), an entry in the matrix, is the number of times gray level i is
oriented with respect to gray level jsuch that where
f&x)=1i and f(y) =/ then
y=x + (dcos@, dsin8)

-1 -4 -6 —4 -1 1T -4 6 -4 1

-2 —8-12 -8 -2 -4 16 -24 16 —4

00 0 0 O 6-24 36-24 6

2 8 12 8 2 -4 16 -24 16 —4

14 6 4 1 L1 -4 6 -4 1|

-1 0 2 0 -1 ~1 0 2 o0 -1]

-2 0 4 0 -2 -4 0 0 -4

0 00 0 O ~6 0 12 0 -6| iy 619 Laws basisfunctions (these
2 0-4 0 2 -4 0 o -4 are the low-order four of twelve actually
1 0-2 0 1 -1 0 2 0 -] yged).
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Fig. 6.20 (a) Texture composite. (b) Classification.

Note that we the gray-level values appear as indices of the matrix .S, implying that
they are taken from some well-ordered discrete set 0, ..., K. Since

§5(d, 0) =5 6+ 7).

common practice is to restrict # to multiples of /4. Furthermore, information is
not usually retained at both 6 and 6 + . The reasoning for the latter step is that
for most texture discrimination tasks, the information is redundant. Thus we
define

S(d 60) =115 6) + S(d 6+ )]

The intermediate matrices S yield potential features. Commonly used features are:

1. Energy
K K
E(d0)=13 Y [SG jla )] (6.8)
i=0 j=0
2. Entropy
H(d 0) = ZK‘, f‘, S, jld, 6) log £, jld ) 6.9
=0 j=0

3. Correlation
K

K
2 Y Gi=p)(—p)SG jld 0)
C(d, 8) = =2 (6.10)
o0
x%y
4. Inertia
K K
IG8) =YY (i—-/)%28G jld 0 (6.11)
i=0 j=0
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5. Local Homogeneity

K K 1
0) = — S, j|d 8 6.12)
L(d, 8) E);Z:o i3 G- (i, j|d, 8) (

where S (i, j|d, ) is the (i, j) th element of (d, 8), and

K K

pe=2% i3 SGjld 0 (6.13a)
i=0 j=0
K K

=3 J X SG jld 6) (6.13b)
=0 jm0
K K

o= (i-u?Y £ jld 0 (6.13¢)
i=0 Jj=0

and

<
I
Mo

=ik, )* f fG, jld, 8) (6.13d)
i=0

i=0

One important aspect of this approach is that the features chosen do not have
psychological correlates [Tamura et al. 1978]. For example, none of the measures
described would take on specific values corresponding to our notions of ‘“‘rough”’
or “‘smooth.” Also, the texture gradient is difficult to define in terms of SGLD
feature values [Bajcsy and Lieberman 19761.

6.4.3 Region Texels

Region texels are an image-based way of defining primitives above the level of pix-
els. Rather than defining features directly as functions of pixels, a region segmen-
tation of the image is created first. Features can then be defined in terms of the
shape of the resultant regions, which are often more intuitive than the pixel-
related features. Naturally, the approach of using edge elements is also possible.
We shall discuss this in the context of texture gradients.

The idea of using regions as texture primitives was pursued in [Maleson et al.
1977]. In that implementation, all regions are ultimately modeled as ellipses and a
corresponding five-parameter shape description is computed for each region.
These parameters only define gross region shape, but the five-parameter primi-
tives seem to work well for many domains. The texture image is segmented into
regions in two steps. Initially, the modified version of Algorithm 5.1 that works for
gray-level images is used. Figure 6.21 shows this example of the segmentation ap-
plied to a sample of ‘“‘straw’” texture. Next, parameters of the region grower are
controlled so as to encourage convex regions which are fit with ellipses. Figure 6.22
shows the resultant ellipses for the ‘‘straw”’ texture. One set of ellipse parameters
is xq, a, b, @ where X, is the origin, @ and b are the major and minor axis lengths
and @ is the orientation of the major axis (Appendix 1). Besides these shape param-
eters, elliptical texels are also described by their average gray level. Figure 6.23
gives a qualitative indication of how ranges on feature values reflect different tex-
els.
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{a) Image

7
{b} With Region Boundaries
Fig. 6.21 Region segmentation for straw texture.

6.5 THE TEXTURE GRADIENT

embedded on a planar surface,
First, if the texture image has been segmented into primitives, the maximum
rate of change of the projected size of these primitives constrains the orientation of

Fig. 6.22 Ellipses for straw texture.
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Average eccentricity Fig. 6.23 Features defined on ellipses.

the plane in the following manner. The direction of maximum rate of change of
projected primitive size is the direction of the fexture gradient. The orientation of
this direction with respect to the image coordinate frame determines how much
the plane is rotated about the camera line of sight. The magnitude of the gradient
can help determine how much the plane is tilted with respect to the camera, but
knowledge about the camera geometry is also required. We have seen these ideas
before in the form of gradient space; the rotation and tilt characterization is a polar
coordinate representation of gradients.

NI |

m Osps i
W,

\ W

Uk
Vi
AN

(b) (c}

Fig. 6.24 Methods for calculating surface orientation from texture.
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The second way to measure surface orientation is by knowing the shape of
the texel itself. For example, a texture composed of circles appears as ellipses on
the tilted surface. The orientation of the principal axes defines rotation with respect
to the camera, and the ratio of minor to major axes defines tilt [Stevens 1979].

Finally, if the texture is composed of a regular grid of texels, we can compute
vanishing points. For a perspective image, vanishing points on a plane P are the
projection onto the image plane of the points at infinity in a given direction. In the
examples here, the texels themselves are (conveniently) small line segments on a
plane that are oriented in two orthogonal directions in the physical world. The gen-
eral method applies whenever the placement tesselation defines lines of texels.
Two vanishing points that arise from texels on the same surface can be used to
determine orientation as follows. The line joining the vanishing points provides
the orientation of the surface and the vertical position of the plane with respect to
the zaxis (i.e., the intersection of the line joining the vanishing points with x = 0)
determines the tilt of the plane.

Line segment textures indicate vanishing points [Kender 1978]. As shown in
Fig. 6.25, these segments could arise quite naturally from an urban image of the
windows of a building which has been processed with an edge operator.

As discussed in Chapter 4, lines in images can be detected by detecting their
parameters with a Hough algorithm. For example, by using the line parameteriza-
tion

xcosf + ysin® = r

and by knowing the orientation of the line in terms of its gradient g = (Ax, Ay), a
line segment (x, y, Ax, Ay) can be mapped into r, # space by using the relations

- Axx £ A (6.14)
VAx? + Ay?
g = pyr® | BE (6.15)
Ax

These relationships can be derived by using Fig. 6.26 and some geometry. The
Cartesian coordinates of the r—8 space vector are given by

s (6.16)

Fig. 6.25 Orthogonal line segments comprising a texture.
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Ay
x, y) \ Ax

B Fig. 6.26 -0 transform.

Using this transformation, the set of line segments L, shown in Fig. 6.27 are all
mapped into a single point in r—6 space. Furthermore, the set of lines L, which
have the same vanishing point (x, y,) project onto a circle in r—8 space with the
line segment ({0, 0), (x, y,)) as a diameter. This scheme has two drawbacks: (1)
vanishing points at infinity .are projected into infinity, and (2) circles require some
effort to detect. Hence we are motivated to use the transform (x, y, Ax, Ay) —

—]—{—, #| for some constant k. Now vanishing points at infinity are projected into the
.

origin and the locus of the set of points L, is now a line. This line is perpendicular

to the vector x, and - . units from the origin, as shown in Fig. 6.28. It can be

llx, |

detected by a second stage of the Hough transform; each point a is mapped into an
r'—8’ space. Forevery a, compute all the r’, ' such that

acosf’ + bsing' = r’ (6.17)

and increment that location in the appropriate ¢’ 8' accumulator array. In this
second space a vanishing point is detected as

gl B (6.18)
lIx, |
@' = tan”! -ii (6.19)

(x,.v,)

{b)
Fig. 6.27 Detecting the vanishing point with the Hough transform.
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(x,, ¥, \ # (x,. v,)

(a)
Fig. 6.28 Vanishing point loci.

In Kender’s application the texels and their placement tesselation are similar in
that the primitives are parallel to arcs in the placement tesselation graph. In a more
general application the tesselation could be computed by connecting the centers of
primitives.

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

EXERCISES

Devise a computer algorithm that, given a set of texels from each of a set of different
“windows’’ of the textured image, checks to see of the resolution is appropriate. In
other words, try to formalize the discussion of resolution in Section 6.2.

Are any of the grammars in Section 6.3 suitable for a parallel implementation (i.e.,
parallel application of rules)? Discuss, illustrating your arguments with examples or
counterexamples from each of the three main grammatical types (shape, tree, and ar-
ray grammars).

Are shape, array, and tree grammars context free or context-sensitive as defined?
Can such grammars be translated into “‘traditional”” (string) grammars? If not, how
are they different; and if so, why are they useful?

Show how the generalized Hough transform (Section 4.3) could be applied to texel
detection.

In an outdoors scene, there is the problem of different scales. For example, consider
the grass. Grass that is close to an observer will appear ‘‘sharp’® and composed of
primitive elements, yet grass distant from an observer will be much more ‘‘fuzzy”’
and homogeneous. Describe how one might handle this problem.

The texture energy transform (Section 6.4.1) is equivalent to a set of Fourier-domain
operations. How do the texture energy features compare with the ring and sector
features?

The texture gradient is presumably a gradient in some aspect of texture. What aspect
is it, and how might it be quantified so that texture descriptions can be made gradient
independent?

Write a texture region grower and apply it to natural scenes.
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