(b)

Fig. 2.26 Intensity and range images. (a) A (synthesized) intensity image of a
street scene with potholes. The roofs all have the same intensity, which is different
from the walls; (b) a corresponding range image. The wall and roof of each house
have similar ranges, but the ranges differ from house to house.

One basic difference between sound and visible light ranging is that a light
beam is usually reflected off just one surface, but that a sound beam is generally
partially transmitted and partially reflected by ‘“‘surfaces.” The returning sound
pulse has structure determined by the discontinuities in impedence to sound found
in the medium through which it has passed. Roughly, a light beam returns infor-
mation about a spot, whereas a sound beam can return information about the
medium in the entire column of material. Thus, although sound itself travels rela-
tively slowly, the data rate implicit in the returning structured sound pulse is quite
high. Figure 2.27 shows an image made using the range data from ultrasound. The
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Fig. 2.27 Image made from
ultrasound ranging.

sound pulses emanate from the top of the image and proceed toward the bottom,
being partially reflected and transmitted along the way. In the figure, it is as if we
were looking perpendicular to the beams, which are being displayed as brighter
where strong reflectance is taking place. A single “‘scan line’’ of sound thus pro-
duces an image of an entire planar slice of medium.

2.3.3 Reconstruction Imaging

Two-dimensional reconstruction has been the focus of much research attention
because of its important medical applications. High-quality images such as that
shown in Fig. 1.2b can be formed by multiple images of x-ray projection data. This
section contains the principles behind the most important reconstruction algo-
rithms. These techniques are discussed in more detail with an expanded list of
references in [Gordon and Herman 1974]. For a view of the many applications of
two-dimensional reconstruction other than transmission scanning, the reader is re-
ferred to [Gordon et al. 1975].

Figure 2.28 shows the basic geometry to collect one-dimensional projections
of two-dimensional data. (Most systems construct the image in a plane and repeat
this technique for other planes; there are few true three-dimensional reconstruc-
tion systems that use planes of projection data simultaneously to construct
volumes.)

In many applications sensors can measure the one-dimensional projection of
two-dimensional image data. The projection g (x") of an ideal image £ (x, y) in the
direction 6 is given by ff(x', y') dy’where x' = Ryx. If enough different projec-
tions are obtained, a good approximation to the image can be obtained with two-
dimensional reconstruction techniques.

From Fig. 2.28, with the source at the first position along line 44, we can ob-
tain the first projection datum from the detector at the first position along BB" The
line AB is termed a ray and the measurement at B a ray sum. Moving the source
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Fig. 2.28 Projection geometry.

and detector along lines 44 and BB’in synchrony allows us to obtain the entire
data for projection 1. Now the lines 44" and BB'are rotated by a small angle 46
about 0 and the process is repeated. In the original x-ray systems 4@ was 1° of an-
gle, and 180 projections were taken. Each projection comprised 160 transmission
measurements. The reconstruction problem is simply this: Given the projection
datag,(x),k =0, ..., N — 1, construct the original image f (x).

Systems in use today use a fan beam rather than the parallel rays shown.
However, the mathematics is simpler for parallel rays and illustrates the funda-
mental ideas. We describe three related techniques: summation, Fourier interpola-
tion, and convolution.

The Summation Method

The summation method is simple: Distribute every ray sum g, (x") over the
image cells along the ray. Where there are N cells along a ray, each such cell is in-

cremented by Wg (x"). This step is termed back projection. Repeating this process

for every ray results in an approximate version of the original [DeRosier 1971].
This technique is equivalent (within a scale factor) to blurring the image, or con-
volving it with a certain point-spread function. In the continuous case of infinitely
many projections, this function is simply the radically symmetric 4 (+) = 1/r.
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Fig. 2.29 Basis of Fourier techniques. (a) Projection axis x"; (b) corresponding
axis in Fourier Space.

Fourier Algorithimns

If a projection is Fourier-transformed, it defines a line through the origin in
frequency space (Fig. 2.29). To show this formally, consider the expression for the
two-dimensional transform

F(u) = fff(x, y)exp [j2m (ux + vy)] dx dy (2.47)
Now consider y = 0 (projection onto the x axis) : x'= xand
g0 = [ e ») v (2.48)
The Fourier transform of this equation is
5 [go(x)] = ff [fx p) dvlexpj2mux dx (2.49)

- fff(x, ¥) expj2mux dy dx
which, by comparison with (2.47), is
§lgo(xD]1 = F(u,0) (2.50)

Generalizing to any 4, the transform of an arbitrary g(x’) defines a line in the
Fourier space representation of the cross section. Where S, () is the cross section
of the Fourier transform along this line,

Silw) = F(ucosb, using) (2.51)
= fgk (x") exp [—j2mu (x)]dx’

Thus one way of reconstructing the original image is to use the Fourier transform
of the projections to define points in the transform of f(x), interpolate the
undefined points of the transform from the known points, and finally take the in-
verse transform to obtain the reconstructed image.
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Fig. 2.30 Convolution method.

This technique can be applied with transforms other than the Fourier
transform, and such methods are discussed in [DeRosier 1971; Crowther and Klug
1971].

The Convolution Method

The convolution method is the natural extension of the summation method.
Since the summation method produces an image degraded from its convolution
with some function #, one can remove the degradation by a “‘deconvolution.”” The
straightforward way to accomplish this is to Fourier-transform the degraded image,
multiply the result by an estimate of the transformed 4!, and inverse-Fourier-
transform the result. However, since all the operations are linear, a faster approach
is to deconvolve the projections before performing the back projection. To show
this formally, we use the inverse transform

7@ = [ [ Fu, v)exp lizm Gux + w)ldu dv (2.52)

Changing to cylindrical coordinates (w, ) yields
fx) = ff Folw) exp [ j2mow (x cosh + y sin 8)]|o|dw d8 (2.53)

Since x'= xcos@ + y sind, rewrite Eq. (2.53) as
& = [FUF, ) H@)}do (2.54)

Since the image is bandlimited at some interval (—o,,, @,,) one can define H (»)
arbitrarily outside of this interval. Therefore, H (w) can be defined as a constant
minus a triangular peak as shown in Fig. 2.30. Finally, the operation inside the in-
tegral in Eq. (2.54) is a convolution. Using the transforms shown in Fig. 2.30,

£ = [1fole) = foxD,sinc(w,,x)] d8 (2.55)

Owing to its speed and the fact that the deconvolutions can be performed
while the data are being acquired, the convolution method is the method employed
in the majority of systems.

EXERCISES

2.1 Ina binocular animal vision system, assume a focal length £ of an eye of 50 mm and a
separation distance 4 of 5 cm. Make a plot of Ax vs. —z using Eq. (2.9). If the resolu-
tion of each eye is on the order of 50 line pairs/mm, what is the useful range of the bi-
nocular system?
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In an opponent-process color vision system, assume that the following relations hold:

R-G

Yellow

For example, if the (R—G, B — Y, W—Bk) components of the opponent-process sys-
tem are (0.5, 3, 4), the perceived color will be blue.
Work out the perceived colors for the following (R,G,B) measurements:

(@) (0.2,03,04) (b)) (02,03,00 (@ (7,41

Develop an indexing scheme for a hexagonal array and define a Euclidean distance
measure between points in the array.

Assume that a one-dimensional image has the following form:
S (x) = cos(2mu,x)

and is sampled with u; = u,. Using the graphical method of Section 2.2.6, find an ex-
pression for f(x) as given by Eq. (2.49). Is this expression equal to the original im-
age? Explain.

A certain image has the following Fourier transform:

nonzero inside a hexagonal domain
Fw =1, otherwise

(a) What are the smallest values for u and v so that F(u) can be reconstructed
from F, (u)?

(b) Suppose now that rectangular sampling is not used but that now the u and v
directions subtend an angle of /3. Does this change your answer as to the
smallest # and v? Explain.

Extend the binocular imaging model of Fig. 2.3 to include convergence: Let the two
imaging systems pivot in the y = 0 plane about the viewpoint. Let the system have a
baseline of 24 and be converged at some angle 8 such that a point (x, y, z) appears at
the origin of each image plane.

(a) Solve for zin terms of rand .
(b) Solve for zin this situation for points with nonzero disparity.
Compute the convolution of two Rect functions, where

1 0<x<]
Rect(x) = 0 otherwise

Show the steps in your calculations.
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2.8

b for|x| < a
Rect(x) = 0 otherwise

(a) WhatisRect(x) x8(x—a)?
(b) What is the Fourier transform of f(x) where f(x) = Rect(x+c) +
Rect{x—c) and ¢ > a?

2.9 A digitizer has a sampling interval of Ax = Ay = A. Which of the following images
can be represented unambiguously by their samples? (Assume that effects of a finite
image domain can be neglected.)

(@) (sin(wx/A))/ (wx/A)
) cos(m/x/24)cos(3mx/44A)
{c) Rect(x) (see Problem 2.8)

@ e
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Early Processing 3

3.1 RECOVERING INTRINSIC STRUCTURE

The imaging process confounds much useful physical information into the gray-
level array. In this respect, the imaging process is a collection of degenerate
transformations. However, this information is not irrevocably lost, because there
is much spatial redundancy: Neighboring pixels in the image have the same or
nearly the same physical parameters. A collection of techniques, which we call
early processing, exploits this redundancy in order to undo the degeneracies in the
imaging process. These techniques have the character of transformations for
changing the image into “‘parameter images” or intrinsic images [Barrow and
Tenenbaum 1978; 1981] which reflect the spatial properties of the scene. Common
intrinsic parameters are surface discontinuities, range, surface orientation, and
velocity.

In this chapter we neglect high-level internal model information even though
it is important and can affect early processing. Consider the case of the perceived
central edge in Fig. 3.1a. As shown by Fig. 3.1b, which shows portions of the same
image, the central edge of Fig. 3.1a is not present in the data. Nevertheless, the hu-
man perceiver ‘‘sees’’ the edge, and one reasonable explanation is that it is a prod-
uct of an internal block model. Model-directed activity is taken up in later
chapters. These examples show how high level models (e.g., circles) can affect
low-level processors (e.g., edge finders). However, for the purposes of study it is
often helpful to neglect these effects. These simplifications make it easier to derive
the fundamental constraints between the physical parameters and gray levels. Once
these are understood, they can be modified using the more abstract structures of
later chapters.

Most early computer vision processing can be done with parallel computa-
tions whose inputs tend to be spatially localized. When computing intrinsic images
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(@) (b)

Fig. 3.1 (a) A perceived edge. (b) Portions of image in (a) showing the lack of image data.

the parallel computations are iterated until the intrinsic parameter measurements
converge to a set of values. A computation that falls in the parallel-iterative
category is known in computer vision as relaxation [Rosenfeld et al. 1976]. Relaxa-
tion is a very general computational technique that is useful in computer vision.
Specific examples of relaxation computations appear throughout the book; general
observations on relaxation appear in Chapter 12.

This chapter covers six categories of early processing techniques:

1. Filtering is a generic name for techniques of changing image gray levels to
enhance the appearance of objects. Most often this means transformations
that make the intensity discontinuities between regions more prominent.
These transformations are often dependent on gross object characteristics. For
example, if the objects of interest are expected to be relatively large, the image
can be blurred to erase small intensity discontinuities while retaining those of
the object’s boundary. Conversely, if the objects are relatively small, a
transformation that selectively removes large discontinuities may be appropri-
ate. Filtering can also compensate for spatially varying illumination.

2. Edge operators detect and measure very local discontinuities in intensity or its

gradient. The result of an edge operator is usually the magnitude and orienta-
tion of the discontinuity.

3. Range transforms use known geometry about stereo images to infer the dis-

tance of points from the viewer. These transforms make use of the inverse per-
spective transform to'interpret how points in three-dimensional space project
onto stereo pairs. A correspondence between points in two stereo images of
known geometry determines the range of those points. Relative range may
also be derived from local correspondences without knowing the imaging
geometry precisely.

4. Surface orientation can be calculated if the source illumination and reflectance

properties of the surface are known. This calculation is sometimes called
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“‘shape from shading.”” Surface orientation is particularly simple to calculate
when the source illumination can be controlled.

5. Optical flow, or velocity fields of image points, can be calculated from local
temporal and spatial variations in sequences of gray-level images.

6. A pyramid is a general structure for representing copies of the image at multi-
ple resolutions. A pyramid is a “‘utility structure’” which can dramatically im-
prove the speed and effectiveness of many early processing and later segmen-
tation algorithms.

3.2 FILTERING THE IMAGE

Filtering is a very general notion of transforming the image intensities in some way
so as to enhance or deemphasize certain features. We consider only transforms
that leave the image in its original format: a spatial array of gray levels. Spurred on
by the needs of planctary probes and aerial reconnaissance, filtering initially
received more attention than any other area of image processing and there are ex-
cellent detailed reference works (e.g., [Andrews and Hunt 1977; Pratt 1978; Gon-
zalez and Wintz 1977]1). We cannot afford to examine these techniques in great
detail here; instead, our intent is to describe a set of techniques that conveys the
principal ideas.

Almost without exception, the best time to filter an image is at the image for-
mation stage, before it has been sampled. A good example of this is the way chemi-
cal stains improve the effectiveness of microscopic tissue analysis by changing the
image so that diagnostic features are obvious. In contrast, filtering after sampling
often emphasizes random variations in the image, termed noise, that are undesir-
able effects introduced in the sampling stage. However, for cases where the image
formation process cannot be changed, digital filtering techniques do exist. For ex-
ample, one may want to suppress low spatial frequencies in an image and sharpen
its edges. An image filtered in this way is shown in Fig. 3.2.

Note that in Fig. 3.2 the work of recognizing real-world objects still has to be
done. Yet the edges in the image, which constitute object boundaries, have been
made more prominent by the filtering operation. Good filtering functions are not
easy to define. For example, one hazard with Fourier techniques is that sharp
edges in the filter will produce unwanted "ringing" in the spatial domain, as evi-
denced by Fig. 2.5. Unfortunately, it would be too much of a digression to discuss
techniques of filter design. Instead, the interested reader should refer to the refer-
ences cited earlier.

3.2.1 Template Matching

Template matching is a simple filtering method of detecting a particular feature in
an image. Provided that the appearance of this feature in the image is known accu-
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(a) (b)

Fig. 3.2 Effects of high frequency filtering. (a) Original image. (b) Filtered image.

rately, one can try to detect it with an operator called a template. This template is, in
effect, a subimage that looks just like the image of the object. A similarity measure
is computed which reflects how well the image data match the template for each
possible template location. The point of maximal match can be selected as the loca-
tion of the feature. Figure 3.3 shows an industrial image and a relevant template.
Correlation

One standard similarity measure between a function f(x) and a template (x) is
the Euclidean distance d (y) squared, given by

dy)P=Yfx) - tx—y)? (3.1

X

M N
By Y wemean », Y, ,forsome M, Nwhich define the size of the template ex-
X x==My=—N
tent. If the image at point y is an exact match, then d (y) = 0; otherwise, d (y) >0.

Expanding the expression for d?, we can see that

Py) =Y -2/ xtx—y) + Fx—y)] (3.2)

Notice that ¥ ¢*(x — y) is a constant term and can be neglected. When Y, /2 (x) is
X X
approximately constant it too can be discounted, leaving what is called the cross

correlation between fand ¢

R,(y) =X ftx—y) (3.3)

This is maximized when the portion of the image ‘‘under”’ ¢ is identical to «.
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Template

Industrial Image

Fig. 3.3 An industrial image and template for a hexagonal nut.

One may visualize the template-matching calculations by imagining the tem-
plate being shifted across the image to different offsets; then the superimposed
values at this offset are multiplied together, and the products are added. The result-
ing sum of products forms an entry in the “‘correlation array”’ whose coordinates
:are the offsets attained by the source template.

If the template is allowed to take a/l offsets with respect to the image such that
some overlap takes place, the correlation array is larger than either the template or
the image. An »n X »n image with an m X m template vyields an
(n+m—1xn+m—1) correlation array. If the template is not allowed to
shift off the image, the correlation array is (n — m + 1 X n — m + 1); for
m < n. Another form of correlation results from computing the offsets modulo
the size of the image; in other words, the template ‘‘wraps around’” the image. Be-
ing shifted off to the right, its right portion reappears on the left of the image. This
sort of correlation is called periodic correlation, and those with no such wraparound
properties are called aperiodic. We shall be concerned exclusively with aperiodic
correlation. One can always modify the input to a periodic correlation algorithm by
padding the outside with zeros so that the output is the aperiodic correlation.

Figure 3.4 provides an example of (aperiodic) ‘‘shift, add, multiply”’ tem-
plate matching. This figure illustrates some difficulties with the simple correlation
measure of similarity. Many of the advantages and disadvantages of this measure
stem from the fact that it is linear. The advantages of this simplicity have mainly to
do with the existence of algorithms for performing the calculation efficiently (in a-
transform domain) for the entire set of offsets. The disadvantages have to do with

Template i Cerelation Fig. 3.4 (a) A simple template. (b) An image
with noise. (c) The aperiodic correlation array of
111 11000 742xx the template and image. Ideally peaks in the
111 11100 532xx correlation indicate positions of good match. Here
111 10100 219xx the correlation is only calculated for offsets that
00000 XX XXX leave the template entirely within the image. The
00008 XX XXX correct peak is the upper left one at 0, 0 offset. The
x = undefined ““false alarm’” at offset 2, 2 is caused by the bright

“noise point™ in the lower right of the image.
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the fact that the metric is sensitive to properties of the image that may vary with
the offset, such as its average brightness. Slight changes in the shape of the object,
its size, orientation, or intensity values can also disturb the match.

Nonetheless, the idea of template matching is important, particularly if Eq.
(3.3) is viewed as a filtering operation instead of an algorithm that does all the work
of object detection. With this viewpoint one chooses one or more templates
(filters) that transform the image so that certain features of an object are more
readily apparent. These templates generally highlight subparts of the objects. One
such class of templates is edge templates (discussed in detail in Section 3.3).

We showed in Section 2.2.4 that convolution and multiplication are Fourier
transform pairs. Now note that the correlation operation in (3.3) is essentially the
same as a convolution with a function #'(x) = ¢(—x). Thus in a mathematical
sense cross correlation and convolution are equivalent. Consequently, if the size of
the template is sufficiently large, it is cheaper to perform the template matching
operation in the spatial frequency domain, by the same transform techniques as for
filtering.

Normalized Correlation

A crucial assumption in the development of Eq. (3.3) was that the image en-
ergy covered by the matching template at any offset was constant; this leads to a
linear correlation matching technique. This assumption is approximately correct if
the average image intensity varies slowly compared to the template size, but a
bright spot in the image can heavily influence the correlation by affecting the sum
of products violently in a small area (Fig. 3.4). Even if the image is well behaved,
the range of values of the metric can vary with the size of the matching template.
Are there ways of normalizing the correlation metric to make it insensitive to these
variations?

There is a well-known treatment of the normalized correlation operation. It
has been used for a variety of tasks invoiving registration and stereopsis of images
[Quam and Hannah 1974]. Let us say that two input images are being matched to
find the best offset that aligns them.

Let f,(x) and f,(x) be the images to be matched. g, is the patch of £, (possi-
bly all of it) that is to be matched with a similar-sized patch of f). g, is the patch of
f) that is covered by g, when g, is offset by y.

Let E () be the expectation operator. Then

olg)) = [E(qlz) o (E(Lh))zllﬁ (3.4)
olgy) = [E(q}) — (E(g))4* (3.5)
give the standard deviations of points in patches ¢, and g,. (For notational con-

venience, we have dropped the spatial arguments of ¢, and ¢,.) Finally, the nor-
malized correlation is

_ E(q;qz} - E(Q1)E(q’2)
N = = etz

(3.6)

and E(qq,) is the expected value of the product of intensities of points that are
superimposed by the translation by y.
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The normalized correlation metric is less dependent on the local properties of
the reference and input images than is the unnormalized correlation, but it is sensi-
tive to the signal-to-noise content of the images. High uncorrelated noise in the
two images, or the image and the reference, decreases the value of the correlation.
As a result, one should exercise some care in interpreting the metric. If the noise
properties of the image are known, one indication of reliability is given by the
““(signal + noise)-to-noise”’ ratio. For the normalized correlation to be useful, the
standard deviation of the patches of images to be matched (i.e., of the areas of im-
age including noise) should be significantly greater than that of the noise. Then a
correlation value may be considered significant if it is approximately equal to the
theoretically expected one. Consider uncorrelated noise of identical standard devi-
ation, in a patch of true value f(x, y). Let the noise component of the image be
n (x, y). Then the theoretical maximum correlation is

2
|- gt 67
o’ (f+n)

In matching an idealized, noise-free reference pattern, the best expected

value of the cross correlation is
_zhf) (3.8)
a (f +n)

If the noise and signal characteristics of the data are known, the patch size
may be optimized by using that information and the simple statistical arguments
above. However, such considerations leave out the effects of systematic, nonsta-
tistical error (such as imaging distortions, rotations, and scale differences between
images). These systematic errors grow with patch size, and may swamp the statisti-
cal advantages of large patches. In the worst case, they may vitiate the advantages
of the correlation process altogether.

Since correlation is expensive, it is advantageous to ensure that there is
enough information in the patches chosen for correlation before the operation is
done. One way to do this is to apply a cheap ‘‘interest operator’’ before the rela-
tively expensive correlation. The idea here is to make sure that the image varies
enough to give a usable correlation image. If the image is of uniform intensity,
even its correlation with itself (autocorrelation) is flat everywhere, and no infor-
mation about where the image is registered with itself is derivable. The “‘interest
operator’’ is a way of finding areas of image with high variance. In fact, a common
and useful interest measure is exactly the (directional) variance over small areas of
image. One directional variance algorithm works as follows.

The Moravec interest operator [Moravec 1977] produces candidate match
points by measuring the distinctness of a local piece of the image from its sur-
round. To explain the operator, we first define a variance measure at a pixel (x) as

e 3 = [ ¥ [Fes) = e + k5 + z)]zr (3.9)

k (ins

5= l(O, a), (0, —a), (a, 0), (—q, 0)]
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where a is a parameter. Now the interest operator value is initially the minimum of
itself and surrounding points:

IntOpVal (x) = m<1111 [var (x + y)] (3.10)
y

Next a check is made to see if the operator is a local maximum by checking neigh-
bors again. Only local maxima are kept.

IntOpVal(x) = 0 if
IntOpVal(x) > IntOpVal(x + y) (3.11)
fory <1
Finally, candidate points are chosen from the IntOpVal array by thresholding.

X is a candidate point iff IntOpVal (x) > T (3.12)

The threshold is chosen empirically to produce some fraction of the total image
points.

3.2.2 Histogram Transformations

A gray-level histogram of an image is a function that gives the frequency of oc-
currence of each gray level in the image. Where the gray levels are quantized from
0 to n, the value of the histogram at a particular gray level p, denoted # (p), is the
number or fraction of pixels in the image with that gray level. Figure 3.5 shows an
image with its histogram.

A histogram is useful in many different ways. In this section we consider the
histogram as a tool to guide gray-level transformation algorithms that are akin to
filtering. A very useful image transform is called histogram equalization. Histogram
equalization defines a mapping of gray levels p into gray levels g such that the dis-
tribution of gray levels g is uniform. This mapping stretches contrast (expands the

(b)

(a) Fig. 3.5 (a) Animage. (b) Its intensity histogram.
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range of gray levels) for gray levels near histogram maxima and compresses con-
trast in areas with gray levels near histogram minima. Since contrast is expanded
for most of the image pixels, the transformation usually improves the detectability
of many image features.

The histogram equalization mapping may be defined in terms of the cumula-
tive histogram for the image. To see this, consider Fig. 3.6a. To map a small inter-
val of gray levels dp onto an interval dg in the general case, it must be true that

glg)dg = h(p)dp (3.13)

where g (g) is the new histogram. If, in the histogram equalization case, g (g) is to
be uniform, then

2
(g2) = — (3.14)
&\q2 M
g hip
[ripiae
s T e g
|
1
I
[
L |
bl b
(b)
Fig. 3.6 {a) Basis for a histogram equalization technique. (b) Results of histo-
gram equalization.
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where N2 is the number of pixels in the image and M is the number of gray levels.
Thus combining Egs. (3.13) and (3.14) and integrating, we have

M
glg) = F-Z-h(p) dp (3.15)

But Eq. (3.15) is simply the equation for the normalized cumulative histogram.
Figure 3.6b shows the histogram-equalized image.

3.2.3 Background Subtraction

Background subtraction can be another important filtering step in early processing.
Many images can have slowly varying background gray levels which are incidental
to the task at hand. Examples of such variations are:

« Solution gradients in cell slides
« Lighting variations on surfaces in office scenes
« Lungimages in a chest radiograph

Note that the last example is only a ‘‘background” in the context of looking for
some smaller variations such as tumors or pneumoconiosis.

Background subtraction attempts to remove these variations by first approxi-
mating them (perhaps analytically) with a background image f;, and then subtract-
ing this approximation from the original image. That is, the new image f, is

f(x) = fx - K (3.16)

Various functional forms have been tried for analytic representations of slowly
varying backgrounds. In the simplest cases, f, (x) may be a constant,

fi(x) =c¢ (3.17)
or linear,
[ &) =mx+c¢ (3.18)

A more sophisticated background model is to use a low-pass filtered variant of the
original image:

Fo(x) =57 '[H (u) F(u)] (3.19)

where H (u) is a low-pass filtering function. The problem with this technique is
that it is global; one cannot count on the “‘best™ effect in any local area since the
filter treats all parts of the image identically. For the same reason, it is difficult to
design a Fourier filter that works for a number of very different images.

A workable alternative is to approximate f;,(x), using splines, which are
piecewise polynomial approximation functions. The mathematics of splines is
treated in Chapter 8 since they find more general application as representations of
shape. The filtering application is important but specialized. The attractive feature
of a spline approximation for filtering is that it is variation diminishing and spatially
variant. The spline approximation is guaranteed to be “‘smoother’’ than the origi-
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nal function and will approximate the background differently in different parts of
the image. The latter feature distinguishes the method from Fourier-domain tech-
niques which are spatially invariant. Figure 3.7 shows the results of spline filtering.

3.2.4 Filtering and Reflectance Models

Leaving the effects of imaging geometry implicit (Section 2.2.2), the definitions in
Section 2.2.3 imply that the image irradiance (gray level) at the image point x'is
proportional to the product of the scene irradiance E and the reflectance r at its
corresponding world point x.

&) =EXrkx) (3.20)

The irradiance at x is the sum of contributions from all illumination sources, and
the reflectance is that portion of the irradiance which is reflected toward the ob-
server (camera). Usually Echanges slowly over a scene, whereas rchanges quickly
over edges, due to varying face angles, paint, and so forth. In many cases one
would like to detect these changes in r while ignoring changes in E. One way of do-
ing this is to filter the image f(x’) to eliminate the slowly varying component.
However, as fis the product of illumination and reflectance, it is difficult to define
an operation that selectively diminishes E while retaining r. Furthermore, such an
operation must retain the positivity of f. One solution is to take the logarithm of
Eq. (3.20). Then

logf = logE + logr (3.21)

Equation (3.21) shows two desirable properties of the logarithmic transformation:
(1) the logarithmic image is positive in sign, and (2) the image is a superposition of
the irradiance component and reflectance component. Since reflectance is an in-

Fig. 3.7 The results of spline filtering to remove background variation.

Sec. 3.2 Filtering the Image 73

IPR2021-00921
Apple EX1015 Page 91



74

trinsic characteristic of objects, the obvious goal of image analysis is to recognize
the reflectance component under various conditions of illumination. Since the
separation of two components is preserved under linear transformations and the ir-
radiance component is usually of low spatial frequency compared to the reflectance
component, filtering techniques can suppress the irradiance component of the sig-
nal relative to the reflectance component.

If the changes in r occur over very short distances in the images, r may be iso-
lated by a three-step process [Horn 1974]. First, to enhance reflectance changes,
the image function is differentiated (Section 3.3.1). The second step removes the
low irradiance gradients by thresholding. Finally, the resultant image is integrated
to obtain an image of perceived ‘‘lightness’ or reflectance. Figure 3.8 shows these
steps for the one-dimensional case.

A basic film parameter is density, which is proportional to the logarithm of
transmitted intensity; the logarithmically transformed image is effectively a density
image. In addition to facilitating the extraction of lightness, another advantage of
the density image is that it is well matched to our visual experience. The ideas for
many image analysis programs stem from our visual inspection of the image. How-
ever, the human visual system responds logarithmically to light intensity and also
enhances high spatial frequencies [Stockham 1972]. Algorithms derived from

(a)

(b}

Fig. 3.8 Steps in processing an image
| | | to detect reflectance. (a) Original image.
(b) Differentiation followed by
X thresholding. (c) Integration of function

(c) in (b).
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introspective reasoning about the perceived image (which has been transformed
by our visual system) will not necessarily be successful when applied to an
unmodified intensity image. Thus one argument for using a density transformation
followed by high spatial frequency emphasis filtering is that the computer is then
‘“‘seeing’” more like the human image analyzer.

3.3 FINDING LOCAL EDGES

Boundaries of objects tend to show up as intensity discontinuities in an image. Ex-
periments with the human visual system show that boundaries in images are ex-
tremely important; often an object can be recognized from only a crude outline
[Attneave 1954]. This fact provides the principal motivation for representing ob-
jects by their boundaries. Also, the boundary representation is easy to integrate
into a large variety of object recognition algorithms.

One might expect that algorithms could be designed that find the boundaries
of objects directly from the gray-level values in the image. But when the boun-
daries have complicated shapes, this is difficult. Much greater success has been ob-
tained by first transforming the image into an intermediate image of local gray-
level discontinuities, or edges, and then composing these into a more elaborate
boundary. This strategy reflects the principle: When the gap between representa-
tions becomes too large, introduce intermediate representations. In this case,
boundaries that are highly model-dependent may be decomposed into a series of
local edges that are highly model-independent.

A local edge is a small area in the image where the local gray levels are chang-
ing rapidly in a simple (e.g., monotonic) way. An edge operator is a mathematical
operator (or its computational equivalent) with a small spatial extent designed to
detect the presence of a local edge in the image function.

It is difficult to specify a priori which local edges correspond to relevant boun-
daries in the image. Depending on the particular task domain, different local
changes will be regarded as likely edges. Plots of gray level versus distance along
the direction perpendicular to the edge for some hypothetical edges (Fig. 3.9a-¢)
demonstrate some different kinds of “‘edge profiles’ that are commonly encoun-
tered. Of course, in most practical cases, the edge is noisy (Fig. 3.9d) and may ap-
pear as a composite of profile types. The fact that different kinds of edge operators
perform best in different task domains has prompted the development of a variety
of operators. However, the unifying feature of most useful edge operators is that
they compute a direction which is aligned with the direction of maximal gray-level
change, and a magnitude describing the severity of this change. Since edges are a
high-spatial-frequency phenomenon, edge finders are also usually sensitive to
high-frequency noise, such as ““snow’” on a TV screen or film grain.

Operators fall into three main classes: (1) operators that approximate the
mathematical gradient operator, (2) template matching operators that use multiple
templates at different orientations, and (3) operators that fit local intensities with
parametric edge models. Representative examples from the first two of these
categories appear in this section. The computer vision literature abounds with edge
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Fig. 3.9 Edge profiles.

operators, and we make no attempt to summarize them all here. For a guide to this
literature, see [Rosenfeld and Kak 1976].

Parametric models generally capture more detailed edge structute than the
two-parameter direction and magnitude vector; as a result, they can be more com-
putationally complicated. For this reason and others discussed in Section 3.3.4, we
shall omit a detailed discussion of these kinds of edge operators. One of the best
known parametric models is Hueckel’s [Hueckel 1971, 19731, but several others
have been developed since [Mero and Vassy 1975; Nevatia 1977; Abdou 1978;
Tretiak 1979].

3.3.1 Types of Edge Operators

Gradient and Laplacian

The most common and historically earliest edge operator is the gradient [Roberts
1965]. For an image function f(x), the gradient magnitude s(x) and direction
¢ (x) can be computed as

s(x) = (Af + AD* (3.22)
¢ (x) = atan{A, A;) (3.23)

where
Al=flx+ny)— flyp) (3.24)

Ay=Flx vy +n)— flx y)
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n is a small integer, usually unity, and atan (x, y) returns tan™! (x/y) adjusted to
the proper quadrant. The parameter n is called the ‘““span’’ of the gradient.
Roughly, n should be small enough so that the gradient is a good approximation to
the local changes in the image function, yet large enough to overcome the effects
of small variations in f.

Equation (3.24) is only one difference operator, or way of measuring gray-
level intensities along orthogonal directions using A; and A, . Figure 3.10 shows
the gradient difference operators compared to other operators [Roberts 1965;
Prewitt 1970]. The reason for the modified operators of Prewitt and Sobel is that
the local averaging tends to reduce the effects of noise. These operators do, in fact,
perform better than the Roberts operator for a step edge model.

One way to study an edge operator’s performance is to use an ideal edge such
as the step edge shown in Fig. 3.11. This edge has two gray levels: zero and h units.
If the edge goes through the finite area associated with a pixel, the pixel is given a
value between zero and h, depending on the proportion of its area covered. Com-
parative edge operator performance has been carried out [Abdou 1978). In the case
of the Sobel operator (Fig. 3.10¢) the measured orientation ¢’ is given by

4, 4,
0 1 1 0
=1 0 0 =
(a)
-1 0 1 1 1 1
=1 0 1 0 0 o
| 0 1 -1 -1 =1
(b)
-1 0 1 1 2 1
g 0 2 0 0 0
= 0 1 -1 -2 -1
(c) Fig. 3.10 Gradient operators.
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%
7
2
/ Fig. 3.11 Edge models for orientation
4 and displacement sensitivity analyses.
: 11
o if 0 < ¢ < tan 3
, : —1]1
¢'= iftan || <0< ¢ < w/4 (3.29)
| 7tan’¢ + 6tang — 1 1 R

tan

—9tan’¢ + 22tang — 1

Arguments from symmetry show that only the 0 < ¢ < /4 cases need be exam-
ined. Similar studies could be made using ramp edge models.

A rather specialized kind of gradient is that taken ‘‘between pixels.”” This
scheme is shown in Fig. 3.12. Here a pixel may be thought of as having four crack
edges surrounding it, whose directions of are fixed by the pixel to be multiples of
/2. The magnitude of the edge is determined by |f(x) — f(y)|, where x and y are
the coordinates of the pixels that have the edge in common. One advantage of this
formulation is that it provides an effective way of separating regions and their
boundaries. The disadvantage is that the edge orientation is crude.

The Laplacian is an edge detection operator that is an approximation to the
mathematical Laplacian 8%f/0x2 + 9%f/9y? in the same way that the gradient is an
approximation to the first partial derivatives. One version of the discrete Laplacian
is given by

X y
[~

“Crack” edge  Fig. 3.12 ““Crack’’ edge representation.
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L, y)=r7lpy) Uy +1)+fl,y—1 (3.26)
+fx+1,y)+ flx—1, p)]

The Laplacian has two disadvantages as an edge measure: (1) useful directional in-
formation is not available, and (2) the Laplacian, being an approximation to the
second derivative, doubly enhances any noise in the image. Because of these disad-
vantages, the Laplacian has fallen into disuse, although some authors have used it
as an adjunct to the gradient [Wechsler and Sklansky 1977; Akatsuka 1974] in the
following manner: There is an edge at x with magnitude g (x) and direction ¢ (x) if
glx) > Tyand L (x) > T,

Edge Templates

The Kirsch operator [Kirsch 1971] is related to the edge gradient and is given
by

S (x) = max [1, mfx%lf(xk)] (3.27)
k=1

where f(x,) are the eight neighboring pixels to x and where subscripts are com-
puted modulo 8. A 3-bit direction can also be extracted from the value of k that
yields the maximum in (3.27). In practice, ‘‘pure’’ template matching has replaced
the use of (3.27). Four separate templates are matched with the image and the
operator reports the magnitude and direction associated with the maximum match.
As one might expect, the operator is sensitive to the magnitude of £ (x), so that in
practice variants using large templates are generally used. Figure 3.13 shows
Kirsch-motivated templates with different spans.

] : a

1
n=3
-1 0 1 1 1 1 0 1 1 1T 1 0
n=1 - =B 1 0 0 0 1. O 1 0 -1
=10 1 = =¥ = ={=1 0 0 -1-1
=1-1 01 1 1T 11 11 01 1 11 11110
-1-1 011 1 111 =10 1 1 1 11 1 06~-1
n=2 -1-1 0 1 1 0 00 0O -1-10 1 1 11 0 -1
-1-1 0 1 1 =1 =1 =1 =1=~1 -1-1-10 1 1 0 =1=1~1
=1=1 & 1 3% =1 == == o e O 0 -1 -1-1-1
Fig. 3.13 Kirsch templates.
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This brief discussion of edge templates should not be construed as a com-
ment on their appropriateness or popularity. In fact, they are widely used, and the
template-matching concept is the essence of the other approaches. There is also
evidence that the mammalian visual system responds to edges through special
low-level template-matching edge detectors [Hubel and Wiesel 1979].

3.3.2 Edge Thresholding Strategies

For most images there will be but few places where the gradient magnitude is equal
to zero. Furthermore, in the absence of any special context, small magnitudes are
most likely to be due to random fluctuations, or noise in the image function f.
Thus in practical cases one may use the expedient of only reporting an edge ele-
ment at x if g(x) is greater than some threshoeld, in order to reduce these noise
effects.

This strategy is computationally efficient but may not be the best. An alter-
native thresholding strategy [Frei and Chen 1977] views difference operators as
part of a set of orthogonal basis functions analogous to the Fourier basis of Sec-
tion 2.2.4. Figure 3.14 shows the nine Frei—Chen basis functions. Using this
basis, the image near a point x; can be represented as

8
S&) =3 (f, m) iy (x — x0) / (hy, hy) (3.28)
k=1

where the (f, #,) is the correlation operation given by

(f, b)) = 2 fF (xo) by (x — x¢) (3.29)
D

and D is the nonzero domain of the basis functions. This operation is also regarded
as the projection of the image into the basis function 4,. When the image can be
reconstructed from the basis functions and their coefficients, the basis functions
span the space. In the case of a smaller set of functions, the basis functions span a
subspace.

The value of a projection into any basis function is highest when the image
function is identical to the basis function. Thus one way of measuring the ‘“‘edge-
ness’’ of a local area in an image is to measure the relative projection of the image

_1\/5_1 1 1 1 =2 1

-1 1 -1 1 -2 4 -2

11 1 12 1 =1 - 1 -2 1
o1

i =1 1 vz -1 -1 1 -2 1 -2

V2 V2 g 1 14 1

-1 1 12 1 -1 -2 1 -2

Fig. 3.14 Frei-Chen orthogonal basis.
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into the edge basis functions. The relative projection into the particular ‘‘edge sub-
space’’ is given by

E.,
cos @ = (E)/ (330)

where

E=3( b)?
=1

and
3
S = 2 (f, hk)z
k=0

Thus if @ < T, report an edge; otherwise, not. Figure 3.15 shows the potential ad-
vantage of this technique compared to the technique of thresholding the gradient
magnitude, using two hypothetical projections B; and B,. Even though B, has a
small magnitude, its relative projection into edge subspace is large and thus would
be counted as an edge with the Frei-Chen criterion. This is not true for B).

Under many circumstances it is appropriate to use model information about
the image edges. This information can affect the way the edges are interpreted after
they have been computed or it may affect the computation process itself. As an ex-
ample of the first case, one may still use a gradient operator, but vary the threshold
for reporting an edge. Many versions of the second, more extreme strategies of us-
ing special spatially variant detection methods have been tried [Pingle and Tenen-
baum 1971; Griffith 1973; Shirai 1975]. The basic idea is illustrated in Fig. 3.16.
Knowledge of the orientation of an edge allows a special orientation-sensitive
operator to be brought to bear on it.

3.3.3 Three-Dimensional Edge Operators

In many imaging applications, particularly medicine, the images are three-
dimensional. Consider the examples of the reconstructed planes described in Sec-
tions 1.1 and 2.3.4. The medical scanner that acquires these data follows several
parallel image planes, effectively producing a three-dimensional volume of data.

Non-edge
subspace

Edge
subspace
“g(x)" . -
Fig. 3.15 Comparison of thresholding
(a) (b) techniques.
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(a}

Fig. 3.16 Model-directed edge
(b) detection.

In three-dimensional data, boundaries of objects are surfaces. Edge elements
in two dimensions become surface elements in three dimensions. The two-
dimensional image gradient, when generalized to three dimensions, is the local
surface normal. Just as in the two-dimensional case, many different basis operators
can be used [Liu 1977; Zucker and Hummel 1979]. That of Zucker and Hummel
uses an optimal basis assuming an underlying continuous model. We shall just
describe the operator here; the proof of its correctness given the continuous image
model may be found in the reference. The basis functions for the three-
dimensional operator are given by

g1(x, y 2) = % (3.31)
gz(x, ¥ Z) = ‘%

2
g3(x1 » Z) - r

where r = (x? 4+ y* + z9)". The discrete form of these operators is shown in Fig.
3.17fora 3 x 3 x 3 pixel domain D. Only g, is shown since the others are obvious
by symmetry. To apply the operator at a point xg ,yo zo compute projections a, b,
and ¢, where

a= g, f) =2 g&xrf(x—x)
D

b= (g f) (3.32)
e = (g3, f)

The result of these computations is the surface normal n = (a, b, ¢) at (xy o zo).
Surface thresholding is analogous to edge thresholding: Report a surface element
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only if s (x, y, z) = |n|exceeds some threshold. Figure 3.18 shows the results of
applying the operator to a synthetic three-dimensional image of a torus. The

display shows small detected surface patches.
3.3.4 How Good are Edge Operators?

The plethora of edge operators is very difficult to compare and evaluate. For exam-
ple, some operators may find most edges but also respond to noise; others may be

= =

Fig. 3.18 Results of applying the Zucker-Hummel 3-D operator to synthetic im-

age data in the shape of a torus.
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noise-insensitive but miss some crucial edges. The following figure of merit [Pratt
1978] may be used to compare edge operators:

1 ¥_ 1
. 3.33
max (NA, N[) ) Lk (dez) ( }

where N, and N, represent the number of actual and ideal edge points, respec-
tively, a is a scaling constant, and 4 is the signed separation distance of an actual
edge point normal to a line of ideal edge points. The term ad? penalizes detected
edges which are offset from their true position; the penalty can be adjusted via a.
Using this measure, all operators have surprisingly similar behaviors. Unsurpris-
ingly, the performance of each deteriorates in the presence of noise [Abdou 1978].
(Pratt defines a signal-to-noise ratio as the square of the step edge amplitude di-
vided by the standard deviation of Gaussian white noise.) Figure 3.19 shows some
typical curves for different operators. To make this figure, the threshold for report-
ing an edge was chosen independently for each operator so as to maximize Eq.
(3.33).

These comparisons are important as they provide a gross measure of
differences in performance of operators even though each operator embodies a
specific edge model and may be best in special circumstances. But perhaps the
more important point is that since all real-world images have significant amounts
of noise, all edge operators will generally produce imperfect results. This means
that in considering the overall computer vision problem, that of building descrip-
tions of objects, the efforts are usually best spent in developing methods that can
use or improve the measurements from unreliable edges rather than in a search for
the ideal edge detector.

Prewitt/Sobal
100
80 |~ .
Hueckel with
conf=0.9
diff = 100
w
40 Raoberts
20
0 1 L 1 1 1 .
1.0 2.0 5.0 10 20 50 100

h2/02

Fig. 3.19 Edge operator performance using Pratt’s measure (Eq. 3.33).
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3.3.5 Edge Relaxation

One way to improve edge operator measurements is to adjust them based on meas-
urements of neighboring edges. This is a natural thing to want to do: If a weak hor-
izontal edge is positioned between two strong horizontal edges, it should gain cred-
ibility. The edges can be adjusted based on local information using parallel-
iterative techniques. This sort of process is related to more global analysis and is
complementary to sequential approaches such as edge tracking (Chapter 4).

Early cooperative edge detection techniques used pairwise measurements
between pixels [Zucker et al. 1977]. A later version [Prager 1980] allows for more
complicated adjustment formulas. In describing the edge relaxation scheme, we
essentially follow Prager’s development and use the crack edges described at the
end of the discussion on gradients (Sec. 3.31). The development can be extended
to the other kinds of edges and the reader is invited to do just this in the Exercises.

The overall strategy is to recognize local edge patterns which cause the
confidence in an edge to be modified. Prager recognizes three groups of patterns:
patterns where the confidence of an edge can be increased, decreased, or left the
same. The overall structure of the algorithm is as follows:

Algorithm 3.1 Edge Relaxation

0. Compute the initial confidence of each edge C°(e) as the normalized gradient
magnitude normalized by the maximum gradient magnitude in the image.

1. k=1,
Compute each edge type based on the confidence of edge neighbors;

3. Modify the confidence of each edge C*(e) based on its edge type and its pre-
vious confidence C*1(e);

4. Test the C*(e)’s to see if they have all converged to either 0 or 1. If so, stop;
else, increment k and go to 2.

The two important parts of the algorithm are step 2, computing the edge type, and
step 3, modifying the edge confidence.

The edge-type classification relies on the notation for edges (Fig. 3.20). The
edge type is a concatenation of the left and right vertex types. Vertex types are
computed from the strength of edges emanating from a vertex. Vertical edges are
handled in the same way, exploiting the obvious symmetries with the horizontal
case. Besides the central edge e, the left vertex is the end point for three other pos-
sible edges. Classifying these possible edges into ‘‘edge’” and “‘no-edge’’ provides
the underpinnings for the vertex types in Fig. 3.21.
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(a) (b) Fig. 3.20 Edge notation. (a) Edge
— position with no edge. (b) Edge position
& % . with edge. (c) Edge to be updated. (d)
Edge of unknown strength. (e)
E==d g L Configuration of edges around a central
(c) (d) (e) edgee.

To compute vertex type, choose the maximum confidence vertex, i.e., the
vertex is type jwhere jmaximizes conf ()

and
conf(0) = (m-a)(m-b6(m-0o)
conf(1) = alm-b)(m- o)
conf(2) = ab(m-0)
conf(3) = abc

where

m = max (a, b, c, q)

gis a constant (0.1 is about right)
and a, b, and c are the normalized gradient magnitudes for the three edges.
Without loss of generality, @ > b = ¢. The parameter m adjusts the vertex
classification so that it is relative to the local maximum. Thus (g, b, &) = (0.25,
0.01, 0.01) is a type 1 vertex. The parameter ¢ forces weak vertices to type zero
[e.g., (0.01, 0.001, 0.001) is type zerol.

Once the vertex type has been computed, the edge type is simple. It is merely
the concatenation of the two vertex types. That is, the edge type is (ij), where iand
Jjare the vertex types. (From symmetry, only consider i > j.)

@ ——- 3

b) ——- o -

(c) — E il === —3

(d)
— Fig. 3.21 Classification of vertex type
of left-hand endpoint of edge e, Fig. 3.20.
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Decisions in the second step of modifying edge confidence based on edge
type appear in Table 3.1. The updating formula is:

increment: C**1(e) = min (1, C*(e) + &)
decrement:  C**l(e) = max (0, C*(e) — &)
leave as is: Ck*l(e) = Ck(e)

where & is a constant (values from 0.1 to 0.3 are appropriate). The result of using
the relaxation scheme is shown in Fig. 3.22. The figures on the left-hand side show

- e ()

Fig. 3.22 Edge relaxation results. (a) Raw edge data. Edge strengths have been threshold-
ed at 0.25 for display purposes only. (b) Results after five iterations of relaxation applied to
(a). (c) Different version of (a). Edge strengths have been thresholded at 0.25 for display
purposes only. (d) Results after five iterations of relaxation applied to (c).
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the edges with normalized magnitudes greater than 0.25. Weak edges cause many
gaps in the boundaries. The figures on the right side show the results of five itera-
tions of edge relaxation. Here the confidence of the weak edges has been increased
owing to the proximity of other edges, using the rules in Table 3.1.

Table 3.1

Decrement  Increment  Leave as is

0-0 1-1 0-1
0-2 1-2 2-2
0-3 1-3 2-3

3-3

3.4 RANGE INFORMATION FROM GEOMETRY

Neither the perspective or orthogonal projection operations, which take the three-
dimensional world to a two-dimensional image, is invertible in the usual sense.
Since projection maps an infinite line onto a point in the image, information is lost.
For a fixed viewpoint and direction, infinitely many continuous and discontinuous
three-dimensional configurations of points could project on our retina in an image
of, say, our grandmother. Simple cases are grandmothers of various sizes cleverly
placed at varying distances so as to project onto the same area. An astronomer
might imagine millions of points distributed perhaps through light-years of space
which happen to line up into a “‘grandmother constellation.”” All that can be
mathematically guaranteed by imaging geometry is that the image point
corresponds to one of the infinite number of points on that three-dimensional line
of sight. The “‘inverse perspective” transformation (Appendix 1) simply deter-
mines the equation of the infinite line of sight from the parameters of the imaging
process modeled as a point projection.

However, a line and a plane not including it intersect in just one point. Lines
of sight are easy to compute, and so it is possible to tell where any image point pro-
jects on to any known plane (the supporting ground or table plane is a favorite).
Similarly, if two images from different viewpoints can be placed in correspon-
dence, the intersection of the lines of sight from two matching image points deter-
mines a point in three-space. These simple observations are the basis of light-
striping ranging (Section 2.3.3) and are important in stereo imaging.

3.4.1. Stereo Vision and Triangulation

One of the first ideas that occurs to one who wants to do three-dimensional sensing
is the biologically motivated one of stereo vision. Two cameras, or one camera
from two positions, can give relative depth or absolute three-dimensional location,
depending on the elaboration of the processing and measurement. There has been
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considerable effort in this direction [Moravec 1977; Quam and Hannah 1974; Bin-
ford 1971; Turner 1974; Shapira 1974]. The technique is conceptually simple:

1. Take two images separated by a baseline.
2. Identify points between the two images.

3. Use the inverse perspective transform (Appendix 1) or simple tri-
angulation (Section 2.2.2) to derive the two lines on which the world
point lies.

4. Intersect the lines,

The resulting point is in three-dimensional world coordinates.

The hardest part of this method is step 2, that of identifying corresponding
points in the two images. One way of doing this is to use correlation, or template
matching, as described in Section 3.2.1. The idea is to take a patch of one image
and match it against the other image, finding the place of best match in the second
image, and assigning a related *‘disparity’” (the amount the patch has been dis-
placed) to the patch.

Correlation is a relatively expensive operation, its naive implementation re-
quiring 0(#?m?) multiplications and additions for an m X m patch and n X n image.
This requirement can be drastically improved by capitalizing on the idea of variable
resolution; the improved technique is described in Section 3.7.2.

Efficient correlation is of technological concern, but even if it were free and
instantaneous, it would still be inadequate. The basic problems with correlation in
stereo imaging have to do with the fact that things can look significantly different
from different points of view. It is possible for the two stereo views to be
sufficiently different that corresponding areas may not be matched correctly.
Worse, in scenes with much obscuration, very important features of the scene may
be present in only one view. This problem is alleviated by decreasing the baseline,
but of course then the accuracy of depth determinations suffers; at a baseline
length of zero there is no problem, but no stereo either. One solution is to identify
world features, not image appearance, in the two views, and match those (the nose
of a person, the corner of a cube). However, if three-dimensional information is
sought as a help in perception, it is unreasonable to have to do perception first in
order to do stereo.

3.4.2 A Relaxation Algorithm for Stereo

Human stereopsis, or fusing the inputs from the eyes into a stereo image, does not
necessarily involve being aware of features to match in either view. Most human
beings can fuse quite efficiently stereo pairs which individually consist of randomly
placed dots, and thus can perceive three-dimensional shapes without recognizing
monocular clues in either image. For example, consider the stereo pair of Fig. 3.23.
In either frame by itself, nothing but a randomly speckled rectangle can be per-
ceived. All the stereo information is present in the relative displacement of dots in
the two rectangles. To make the right-hand member of the stereo pair, a patch of
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Fig. 3.23 A random-dot stereogram.

the randomly placed dots of the left-hand image is displaced sideways. The dots
which are thus covered are lost, and the space left by displacing the patch is filled in
with random dots.

Interestingly enough, a very simple algorithm [Marr and Poggio 1976] can be
formulated that computes disparity from random dot stereograms. First consider
the simpler problem of matching one-dimensional images of four points as de-
picted in Fig. 3.24. Although only one depth plane allows all four points to be
placed in correspondence, lesser numbers of points can be matched in other
planes.

The crux of the algorithm is the rules, which help determine, on a local basis,
the appropriateness of a match. Two rules arise from the observation that most im-
ages are of opaque objects with smooth surfaces and depth discontinuities only at
object boundaries:

1. [Each point in an image may have only one depth value.
2. A pointis almost sure to have a depth value near the values of its neighbors.

F'ig. 3.24 The stereo matching problem.
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Figure 3.24 can be viewed as a binary network where each possible match is
represented by a binary state. Matches have value 1 and nonmatches value 0. Fig-
ure 3.25 shows an expanded version of Fig. 3.24. The connections of alternative
matches for a point inhibit each other and connections between matches of equal
depth reinforce each other. To extend this idea to two dimensions, use parallel ar-
rays for different values of y where equal depth matches have reinforcing connec-
tions. Thus the extended array is modeled as the matrix C(x, y, d) where the
point x, y, d corresponds to a particular match between a point (x;, »;) in the
right image and a point (x;, y,) in the left image. The stereopsis algorithm pro-
duces a series of matrices C, which converges to the correct solution for most
cases. The initial matrix Cy(x, y, d) has values of one where x, y, d correspond to
a match in the original data and has values of zero or otherwise.

Algorithm 3.2 [Marr and Poggio 1976]

Until C satisfies some convergence criterion, do

Coix,y,d)=) Y CUy d)— Y Cixy.,d)+ Clx, p d)|(3.34)
xyd'€S x\y,d'€d

where the term in braces is handled as follows:

1 if¢t>T
[¥}= 0 otherwise

[}

S = set of points x’, y, d" such that|x — x| <l and d = d'
1

| <
6 = set of points x’ y’, d’ such that |x — x| < 1 and |d — d'|=1

S s

T
. &?g?g?&?. Disparity

Match between
x and x’

/ Inhibitory
connection

Excitatory
connection

Fig. 3.25 Extension of stereo matching.
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One convergence criterion is that the number of points modified on an iteration
must be less than some threshold T. Fig. 3.26 shows the results of this computa-
tion; the disparity is encoded as a gray level and displayed as an image for different
values of n.

A more general version of this algorithm matches image features such as
edges rather than points (in the random-dot stereogram, the only features are

SRR

— AT

5

Fig. 3.26 The results of relaxation computations for stereo.

Ch. 3 Early Processing

IPR2021-00921
Apple EX1015 Page 110



points), but the principles are the same. The extraction of features more compli-
cated than edges or points is itself a thorny problem and the subject of Part II. It
should be mentioned that Marr and Poggio have refined their stereopsis algorithm
to agree better with psychological data [Marr and Poggio 1977].

3.5 SURFACE ORIENTATION FROM REFLECTANCE MODELS

The ordinary visual world is mostly composed of opaque three-dimensional ob-
jects. The intensity (gray level) of a pixel in a digital image is produced by the light
reflected by a small area of surface near the corresponding point on the object.

It is easiest to get consistent shape (orientation) information from an image if
the lighting and surface reflectance do not change from one scene location to
another. Analytically, it is possible to treat such lighting as uniform illumination, a
point souirce at infinity, or an infinite linear source. Practically, the human shape-
from-shading transform is relatively robust. Of course, the perception of shape
may be manipulated by changing the surface shading in calculated ways. In part,
cosmetics work by changing the reflectivity properties of the skin and misdirecting
our human shape-from-shading algorithms.

The recovery transformation to obtain information about surface orientation
is possible if some information about the light source and the object’s reflectivity is
known. General algorithms to obtain and quantify this information are compli-
cated but practical simplifications can be made [Horn 1975; Woodham 1978; Ikeu-
chi 1980]. The main complicating factor is that even with mathematically tractable
object surface properties, a single image intensity does not uniquely define the sur-
face orientation. We shall study two ways of overcoming this difficulty, The first al-
gorithm uses intensity images as input and determines the surface orientation by
using multiple light source positions to remove ambiguity in surface orientation.
The second algorithm uses a single source but exploits constraints between neigh-
boring surface elements. Such an algorithm assigns initial ranges of orientations to
surface elements (actually to their corresponding image pixels) on the basis of in-
tensity. The neighboring orientations are ‘‘relaxed’ against each other until each
converges to a unique orientation (Section 3.5.4).

3.5.1 Reflectivity Functions

For all these derivations, consider a distant point source of light impinging on a
small patch of surface; several angles from this situation are important (Fig. 3.27).

A surface’s reflectance is the fraction of a given incident energy flux (irradi-
ance) it reflects in any given direction. Formally, the reflectivity function is defined

asr = g—é, where L is exitant radiance and E is incident flux. In general, for an-

isotropic reflecting surfaces, the reflectivity function (hence L) is a function of all
three angles i, e, and g. The quantity of interest to us is image irradiance, which is
proportional to scene radiance, given by L = | r dE. In general, the evaluation of
this integral can be quite complicated, and the reader is referred to [Horn and
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Fig. 3.27 Important reflectance angles:
4 i, incidence; e, emittance; g, phase.

Sjoberg 1978] for a more detailed study. For our purposes we consider surfaces
with simple reflectivity functions.

Lambertian surfaces, those with an ideal matte finish, have a very simple
reflectivity function which is proportional only to the cosine of the incident angle.
These surfaces have the property that under uniform or collimated illumination
they look equally bright from any direction. This is because the amount of light
reflected from a unit area goes down as the cosine of the viewing angle, but the
amount of area seen in any solid angle goes up as the reciprocal of the cosine of the
viewing angle. Thus the perceived intensity of a surface element is constant with
respect to viewer position. Other surfaces with simple reflectivity functions are
“dusty’” and ‘“‘specular’” surfaces. An example of a dusty surface is the lunar sur-
face, which reflects in all directions equally. Specular (purely mirror-like) surfaces
such as polished metal reflect only at the angle of reflection = angle of incidence,
and in a direction such that the incidence, normal, and emittance vectors are
coplanar.

Most smooth things have a specular component to their reflection, but in
general some light is reflected at all angles in decreasing amounts from the specular
angle. One way to achieve this effect is to use the cosine of the angle between the
predicted specular angle and the viewing angle, which is given by C where

C = 2cos (i) cos (e) — cos (g)

I
2
radians away from it. Convincing specular contributions of greater or less sharp-
ness are produced by taking powers of C. A simple radiance formula that allows the

simulation of both matte and specular effects is

This quantity is unity in the pure specular direction and falls off to zero at

LG e g)=3s(C)"+ (1 — s)cos (i) (3.35)
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Here s varies between 0 and 1 and determines the fraction of specularly reflected
light; » determines the sharpness of specularity peaks. As n increases, the specular
peak gets sharper and sharper. Computer graphics research is constantly extending
the frontiers of realistic and detailed reflectance, refractance, and illumination cal-
culations [Blinn 1978; Phong 1975; Whitted 1980].

3.5.2 Surface Gradient

The reflectance functions described above are defined in terms of angles measured
with respect to a local coordinate frame. For our development, it is more useful to
relate the reflectivity function to surface gradients measured with respect to a
viewer-oriented coordinate frame.

The concept of gradient space, which is defined in a viewer-oriented frame
[Horn 1975], is extremely useful in understanding the recovery transformation al-
gorithm for the surface normal. This gradient refers to the orientation of a physical
surface, notto local intensities. It must not be confused with the intensity gradients
discussed in Section 3.3 and elsewhere in this book.

Gradient space is a two-dimensional space of slants of scene surfaces. It
measures a basic ‘‘intrinsic”” (three-dimensional) property of surfaces. Consider
the point-projection imaging geometry of Fig. 2.2, with the viewpoint at infinity
(far from the scene relative to the scene dimensions). The image projection is then
orthographic, nor perspective.

The surface gradient is defined for a surface expressed as —z = f(x, y). The
gradient is a vector (p, ¢), where
_ 9(—z)

0x
_ 08(==2)

oy
Any plane in the image (such as the face plane of a polyhedral face) may be
expressed in terms of its gradient. The general plane equation is

p (3.36)

Ax+By+Cz+D=0 (3.37)
Thus
4, . B D
z = Cx+ Cy+ o (3.38)
and from (3.36) the gradient may be related to the plane equation:
—z=px+q + K (3.39)

Gradient space is thus the two-dimensional space of (p, g) vectors. The pand
g axes are often considered to be superimposed on the x and y image plane coord-
inate axes. Then the (p, ¢) vector is ““in the direction” of the surface slant of im-
aged surfaces. Any plane perpendicular to the viewing direction has a (p, ¢) vector
of (0,0). Vectors on the g (or y) axis correspond to planes tilted about the x axis in
an ““‘upward”’ or “‘downward’” (‘‘yward’’) direction (like the tilt of a dressing table
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mirror). The direction arctan (g/p) is the direction of fastest change of surface
depth (—2) as xand ychange. (p? + ¢2)" is the rate of this change. For instance, a
vertical plane “‘edge on’’ to the viewer has a (p, g) of ( o0, 0).

The reflectance map R (p, q) represents this variation of perceived brightness
with surface orientation. R (p, ¢) gives scene radiance (Section 2.2.3) as a function
of surface gradient (in our usual viewer-centered coordinate system). (Figure 3.27
showed the situation and defined some important angles.) R (p, ¢) is usually
shown as contours of constant scene radiance (Fig. 3.28). The following are a few
useful cases.

In the case of a Lambertian surface with the source in the direction of the
viewer (i = ), the gradient space image looks like Fig. 3.28. Remember that
Lambertian surfaces have constant intensity for constant illumination angle; these
constant angles occur on the concentric circles of Fig. 3.28, since the direction of
tilt does not affect the magnitude of the angle. The brightest surfaces are those
illuminated from a normal direction—they are facing the viewer and so their
gradients are (0, 0).

Working this out from first principles, the incident angle and emittance angle
are the same in this case, since the light is near the viewer. Both are the angle bet-
ween the surface normal and the view vector. Looking at the x—y plane means a
vector to the light source of (0,0,—1), and at a gradient point (p, g), the surface
normal is (p, g, —1). Also,

R =r,cosi (3.40)

2
k\\ \\/\

Fig. 3.28 Contours of constant radiance in gradient space for Lambertian sur-
faces; single light source near the viewpoint.
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where r, is a proportionality constant, and we conventionally use R to denote ra-
diance in a viewer-centered frame. Let n, and n be unit vectors in the source and
surface normal directions. Since cos i = ng'n

ro
Ty (3.41)
Thus cos (i) determines the image brightness, and so a plot of it is the gradient
space image (Figs. 3.29 and 3.30).
For a more general light position, the mathematics is the same; if the light
source is in the (p,, ¢,, —1) direction, take the dot product of this direction and
the surface normal.

R = r,n'n, (3.42)
Or, in other words,
_ rolop + g9 +1)
(1 +p°>+¢q>) d+p2+ qf)]"”
The phase angle g is constant throughout gradient space with orthographic projec-
tion {viewer distant from scene) and light source distant from scene.
Setting R constant to obtain contour lines gives a second-order equatijon,
producing conic sections. In fact, the contours are produced by a set of cones of
varying angles, whose axis is in the direction of the light source, intersecting a

plane at unit distance from the origin. The resulting contours appear in Fig. 3.29.
Here the dark line is the terminator, and represents all those planes that are edge-

\ ‘:// o
W
N

Fig. 3.29 Contours of constant radiance in gradient space. Lambertian surfaces;
light not near viewpoint.
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on to the light source; gradients on the back side of the terminator represent self-
shadowed surfaces (facing away from the light). One intensity determines a con-
tour and so gives a cone whose tangent planes all have that emittance. For a surface
with specularity, contours of constant I (i, e, g) could appear as in Fig. 3.30.

The point of specularity is between the matte component maximum bright-
ness gradient and the origin. The brightest matte surface normal points at the light
source and the origin points at the viewer. Pure specular reflection can occur if the
vector tilts halfway toward the viewer maintaining the direction of tilt. Thus its
gradient is on a line between the origin and the light-source direction gradient po-
int.

3.5.3 Photometric Stereo

The reflectance equation (3.42) constrains the possible surface orientation to a
locus on the reflectance map. Multiple light-source positions can determine the
orientation uniquely [Woodham 1978]. Each separate light position gives a sepa-
rate value for the intensity (proportional to radiance) at each point f(x). If the
surface reflectance r, is unknown, three equations are needed to determine the
reflectance together with the unit normal a. If each source position vector is
denoted by n,, k = 1, ..., 3, the following equations result:

I(x, ) = r,(n;m), k=1,..3 (3.43)
where [ is normalized intensity. In matrix form
=r,Nn (3.44)
q

f\\\\

Fig. 3.30 Contours of constant radiance for a specular/matte surface.
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where
1= [I;(x y),1,(x, y),15(x, y)]7,
and

ni ny ny3
N = |ny nyp  onAp (3.45)

n3i n32 ns;
and I = fcwhere cis the appropriate normalization constant. If ¢ is not known, it
can be regarded as being part of r, without affecting the normal direction calcula-
tion. As long as the three source positions n;, n,, n; are not coplanar, the matrix

Nwill have an inverse. Then solve for r, and n by using (3.44), first using the fact
that n is a unit vector to derive

ro= N1 (3.46)
and then solving for n to obtain

e | (3.47)

o

Examples of a particular solution are shown in Fig. 3.31. Of course, a prerequisite
for using this method is that the surface point not be in shadows for any of the
sources.

R, b, q1=0723 |

A, {p,q) = 0.942

R, (p, g) = 0.505

-2.0 4 Fig. 3.31 A particular solution for

photometric stereo.

3.5.4 Shape from Shading by Relaxation

Combining local information allows improved estimates for edges (Section 3.3.5)
and for disparity (Section 3.4.2). In a similar manner local information can help in
computing surface orientation [Ikeuchi 1980]. Basically, the reflectance equation
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provides one constraint on the surface orientation and another is provided by the
heuristic requirement that the surface be smooth.

Suppose there is an estimate of the surface normal at a point (p(x, y),
g (x, ¥)). If the normal is not accurate, the reflectivity equation I (x, ) = R(p, q)
will not hold. Thus it seems reasonable to seek p and g that minimize (I — R)2.
The other requirement is that p(x, y) and ¢ (x, y) be smooth, and this can be
measured by their Laplacians V2 p and V24. For a smooth curve both of these
terms should be small. The goal is to minimize the error at a point,

E(x,y) =1 y)— R )+ A(V2p)? + (V)2 (3.48)
where the Lagrange multiplier A [Russell 1976] incorporates the smoothness con-

straint. Differentiating E (x, y) with respect to p and ¢ and approximating deriva-
tives numerically gives the following equations for p (x, y) and g (x, y):

G y) =pox, ¥) + T(x v, p, q)%g (3.49)
q(x, ¥) = qa(x, ») + T(x, », p, q)g—}; (3.50)
where
T(x, v p g)= {U/N)I(x y) — R(p, ¢)]
using

Pa(x, y) = %[p(x +1, ) +plx—1,p)+plxy+1)+plxy —1)] (3.51)

and a similar expression for g,, . Now Egs. (3.49) and (3.50) lend themselves to
solution by the Gauss-Seidel method: calculate the left-hand sides with an esti-
mate for p and ¢ and use them to derive a new estimate for the right-hand sides.
More formally,

Algorithm 3.3: Shape from Shading [Ikeuchi 1980].

Step 0. k = 0. Pick an initial p°(x, y) and ¢°(x, y) near boundaries.
Stepl. k =k + 1; compute

. R
p=pit + T%——
p

i aR
qk=qgv1 + T'%

Step 2. If the sum of all the E’s is sufficiently small, stop. Else, go to step 1.
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A loose end in this algorithm is that boundary conditions must be specified. These
are values of p and ¢ determined a priori that remain constant throughout each ite-
ration. The simplest place to specify a surface gradient is at an occluding contour
(see Fig. 3.32) where the gradient is nearly 90° to the line of sight. Unfortunately, p
and ¢ are infinite at these points. Ikeuchi’s elegant solution to this is to use a
different coordinate system for gradient space, that of a Gaussian sphere
(Appendix 1). In this system, the surface normal is described relative to where it
intersects the sphere if the tail of the normal is at the sphere’s origin. This is the
point at which a plane perpendicular to the normal would touch the sphere if tran-
slated toward it (Fig. 3.32b).

In this system the radiance may be described in terms of the spherical coor-
dinates 8, ¢. For a Lambertian surface

R(6,¢) =cos® cos @, +sinf sin @, coslp — ¢,) (3.52)

At an occluding contour ¢ = /2 and @ is given by tan~! (dy / dx), where the
derivatives are calculated at the occluding contour (Fig. 3.32¢).

Occluding
contour

Ay

(b} {c)

Fig. 3.32° (a) Occluding contour. (b) Gaussian sphere. (c) Calculating # from
occluding contour.
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To use the (¢, ¢) formulation instead of the (p, g) formulation is an easy
matter. Simply substitute 6 for pand ¢ for g in all instances of the formula in Algo-
rithm 3.3.

3.6 OPTICAL FLOW

102

Much of the work on computer analysis of visual motion assumes a stationary ob-
server and a stationary background. In contrast, biological systems typically move
relatively continuously through the world, and the image projected on their retinas
varies essentially continuously while they move. Human beings perceive smooth
continuous motion as such.

Although biological visual systems are discrete, this quantization is so fine
that it is capable of producing essentially continuous outputs. These outputs can
mirror the continuous flow of the imaged world across the retina. Such continuous
information is called optical flow. Postulating optical flow as an input to a perceptual
system leads to interesting methods of motion perception.

The optical flow, or instantaneous velocity field, assigns to every point on
the visual field a two-dimensional ‘‘retinal velocity” at which it is moving across
the visual field. This section describes how approximations to instantaneous flow
may be computed from the usual input situation in a sequence of discrete images.
Methods of using optical flow to compute the observer’s motion, a relative depth
map, surface normals of his or her surroundings, and other useful information are
given in Chapter 7.

3.6.1 The Fundamental Flow Constraint

One of the important features of optical flow is that it can be calculated simply, us-
ing local information. One way of doing this is to model the motion image by a
continuous variation of image intensity as a function of position and time, then
expand the intensity function f (x, y, f) in a Taylor series.

fc+de, y+dy t +dt)= (3.53)

fGo oy, 8) + af dx + gf dy + gf dt + higher-order terms

As usual, the higher-order terms are henceforth ignored. The crucial obser-
vation to be exploited is the following: If indeed the image at some time ¢ + dtis
the result of the original image at time 7 being moved translationally by dx and dy,
then in fact

fOct+ax, y+dy, t+dt) = fx p 1) (3.54)
Consequently, from Egs. (3.53) and (3.54),
M7 Sk, 9 (3.55)

ot dOx dt dy dt
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Now a8f of and %f are all measurable quantities, and A& and & are estimates

9’ ax’ dt dt
of what we are looking for—the velocity in the xand y directions. Writing
dx _ dy _
a v a
gives
_8f_3df, , 8f, (3.56)
at dx dy

or equivalently,

_8f _ gy
m Vfu (3.57)

where V fis the spatial gradient of the image and u = (i, v) the velocity.

The implications of (3.57) are interesting. Consider a fixed camera with a
scene moving past it. The equations say that the time rate of change in intensity of a
point in the image is (to first order) explained as the spatial rate of change in the
intensity of the scene multiplied by the velocity that points of the scene move past
the camera. .

This equation also indicates that the velocity (¥, v) must lie on a line
perpendicular to the vector (f,, fy) where f, and f, are the partial derivatives with
respect to x and y, respectively (Fig. 3.33). In fact, if the partial derivatives are very
accurate the magnitude component of the velocity in the direction (£, fy) is (from
3.57):

—fi
[(F2 + £D1*%

3.6.2 Calculating Optical Flow by Relaxation
Equation (3.57) constrains the velocity but does not determine it uniquely. The

development of Section 3.5.4 motivates the search for a solution that satisfies Eq.

»

ffutfv+f =0

Fig. 3.33 Relation between (», v) and

e £))
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(3.57) as closely as possible and also is locally smooth [Horn and Schunck 1980].
In this case as well, the Laplacians of the two velocity components, ¥V 2z and ¥V 2y,
can measure local smoothness.

Again using the method of Lagrange multipliers, minimize the flow error

EXx, y) = (fu + f,v + £+ N1V + (V)2 (3.58)
Differentiating this equation with respect to # and v provides equations for the

change in error with respect to » and v, which must be zero for a minimum.
Writing V2uas u — u,, and V2vas v — v,,, these equations are

O+ fDu + fufyy = Ny~ fof; (3.59)
Fhyu + 02+ £ = M ~ F (3.60)
These equations may be solved for #and v, yielding
P
u= uav_fx_ﬁ (3.6])
P
V= Vay — .f:vB (3.62)

where
P = fxuav = j;/vav o fr
D=3b+ 5+

To turn this into an iterative equation for solving u (x, y) and v(x, y), again use
the Gauss-Seidel method.

Algorithm 3.4: Optical Flow [Horn and Schunck 1980].

k=0.
Initialize all #* and v* to zero.
Until some error measure is satisfied, do

— P
uk = uécvl _fxE

e P
vk= v:';cvl _f:vB

As Horn and Schunck demonstrate, this method derives the flow for two time
frames, but it can be improved by using several time frames and using the final sol-
ution after one iteration at one time for the initial solution at the following time
frame. That is:

Ch. 3 Early Processing
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Algorithm 3.5: Multiframe Optical Flow.

t=0.
Initialize all # (x;, y, 0), v (x, p, 0)
for t=1 yntil maxframes do

ulx, v, 1) = 1y Cx, p, t—1) ffX%

vix, p, ) = v (x, y, t—1) — fy%

The results of using synthetic data from a rotating checkered sphere are shown in
Fig. 3.34.

P R s ]
A el R I Y
bt S R
P""’-’Wﬂ‘)"fﬂ'}*ﬂ'*?I‘i""'fl!t
S bt Gt L ]

B ettt

(b) i ot o e e B A R AT A
Fig. 3.34 Optical flow results. (a), (b) and (c) are three frames from the rotating
sphere, (d) is the derived three-dimensional flow after 32 such time frames.
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3.7 RESOLUTION PYRAMIDS
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What is the best spatial resolution for an image? The sampling theorem states that
the maximum spatial frequency in the image data must be less than half the sam-
pling frequency in order that the sampled image represent the original unambigu-
ously. However, the sampling theorem is not a good predictor of how easily objects
can be recognized by computer programs. Often objects can be more easily recog-
nized in images that have a very low sampling rate. There are two reasons for this.
First, the computations are fewer because of the reduction in dimensionality. Se-
cond, confusing detail present in the high-resolution versions of the images may
not appear at the reduced resolution. But even though some objects are more easily
found at low resolutions, usually an object description needs detail only revealed at
the higher resolutions. This leads naturally to the notion of a pyramidal image data
structure in which the search for objects is begun at a low resolution, and refined at
ever-increasing resolutions until one reaches the highest resolution of interest.
Figure 3.35 shows the correspondence between pixels for the pyramidal structure.

In the next three sections, pyramids are applied to gray-level images and edge
images. Pyramids, however, are a very general tool and can be used to represent
any image at varying levels of detail.

3.7.1 Gray-level Consolidation

In some applications, redigitizing the image with a different sampling rate is a way
to reduce the number of samples. However, most digitizer parameters are difficult
to change, so that often computational means of reduction are needed. A
straightforward method is to partition the digitized image into nonoverlapping

LT

z
A A VA Fig. 3.35 Pyramidal image structure.

Ch. 3 tarly Processing

IPR2021-00921
Apple EX1015 Page 124



neighborhoods of equal size and shape and to replace each of those neighborhoods
by the average pixel densities in that neighborhood. This operation is consolidation.
For an n X n neighborhood, consclidation is equivalent to averaging the original
image over the neighborhood followed by sampling at intervals n units apart.

Consolidation tends to offset the aliasing that would be introduced by sam-
pling the sensed data at a reduced rate. This is due to the effects of the averaging
step in the consolidation process. For the one-dimensional case where

Pl = %[f(x) + e + &) (3.63)

the corresponding Fourier transform [Steiglitz 1974] is

HGw = (1 + ) Fw) (3.64

which has magnitude |H (1) | = coslar (u/u,)] and phase —7 (u/u,). The sampling
frequency u, = 1/A where A is the spacing between samples. Thus the averaging
step has the effect of attenuating the higher frequencies of F(u) as shown in Fig.
3.36. Since the higher frequencies are involved in aliasing, attenuating these fre-
quencies reduces the aliasing effects.

3.7.2 Pyramidal Structures in Correlation

With correlation matching, the use of multiple resolution techniques can some-
times provide significant functional and computational advantages [Moravec
1977]. Binary search correlation uses pyramids of the input image and reference

Flu) | Hiw) |

Uy u Uy

(a) (b)

Fig. 3.36 Consolidation effects viewed in the spatial frequency domain. (a) Original
transform. (b) Transform of averaging operator. (c) Transform of averaged image.
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patterns. The algorithm partakes of the computational efficiency of binary (as op-
posed to linear) search [Knuth 1973]. Further, the low-resolution correlation
operations at high levels in the pyramid ensure that the earlier correlations are on
gross image features rather than details.

In binary search correlation a feature to be located is at some unknown loca-
tion in the input image. The reference version of the feature originates in another
image, the reference image. The feature in the reference image is contained in a
window of n X n pixels. The task of the correlator is to find an n X n window in
the input image that best matches the reference image window containing the
feature. The details of the correlation processes are given in the following algo-
rithm.

Algorithm 3.6: Binary Search Correlation Control Algorithm

Definitions

OrigReference: an N X N image containing a feature centered at (Fea-
tureX, FeatureY).

Originput:  an M X M array in which an instance of the Feature is
to be located. For simplicity, assume that it is at the
same resolution as OrigReference.

n: a window size; an n X n window in OrigReference is
large enough to contain the Feature.
Window: an n X g array containing a varying-resolution subim-
age of OrigReference centered on the Feature.
Input:  a 2n X 2nparray containing a varying-resolution subim-
age of Origlnput, centered on the best match for the
Feature.

Reference:  atemporary array.

Algorithm
1. Input:= Consolidate OrigInput by a factor of 2n/Mto size 2n X 2.

2. Reference := Consolidate OrigReference by the same factor 2n/M to size
2nN/M % 2nN/M. This consolidation takes the Feature to a new (FeatureX,
Feature Y).

3. Window := n x n window from Reference centered on the new (FeatureX,

Feature ¥).
4. Calculate the match metric of the window at the (# + 1)? locations in Input at

which it is wholly contained. Say that the best match occurs at (BestMatchX,
BestMatch ¥) in Input.

Ch. 3 Early Processing
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5. Input := n x n window from Input centered at (BestMatchX, BestMatch Y),

enlarged by a factor of 2.

6. Reference := Reference enlarged by a factor of 2. This takes Feature to a new
(FeatureX, Feature ¥).

7. Goto3.

Through time, the algorithm uses a reference image for matching that is al-
ways centered on the feature to be matched, but that homes in on the feature by
being increased in resolution and thus reduced in linear image coverage by a factor
of 2 each time. In the input image, a similar homing-in is going on, but the search
area is usually twice the linear dimension of the reference window. Further, the
center of the search area varies in the input image as the improved resolution
refines the point of best match.

Binary search correlation is for matching features with context. The template
at low resolution possibly corresponds to much of the area around the feature,
while the feature may be so small in the initial consolidated images as to be invisi-
ble. The coarse-to-fine strategy is perfect for such conditions, since it allows gross
features to be matched first and to guide the later high-resclution search for best
match. Such matching with context is less useful for locating several instances of a
shape dotted at random around an image.

3.7.3 Pyramidal Structures in Edge Detection

As an example of the use of pyramidal structures in processing, consider the use of
such structures in edge detection. This application, after [Tanimoto and Pavlidis
1975], uses two pyramids, one to store the image and another to store the image
edges. The idea of the algorithm is that a neighborhood in the low-resolution im-
age where the gray-level values are the same is taken to imply that in fact there is
no gray-level change (edge) in the neighborhood. Of course, the low-resolution
levels in the pyramid tend to blur the image and thus attenuate the gray-level
changes that denote edges. Thus the starting level in the pyramid must be picked
judiciously to ensure that the important edges are detected.

Algorithm 3.7: Hierarchical Edge Detection

recursive procedure refine (k, x, y)
begin
ifk < MaxLevel then
Jordx =0 until1 do
Jordy =0untill do
ifEdgeOp (k, x + dx, y + dy) > Threshold(x)
thentefine (k + 1,x + dx,y + dy)
end,
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Fig. 3.37 Pyramidal edge detection.
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procedure FindEdges:
begin
comment apply operator to every pixel in the
starting level s, refining where necessary;
SJorx:=0unil25 — 1 do
Jory:=0until2%— 1 do
ifEdgeOp (s, x, ) > Threshold (s)
thenrefine (s. x, y);
end,

Figure 3.37 shows Tanimoto’s results for a chromosome image. The table inset
shows the computational advantage in terms of the calls to the edge operator as a
function of the starting level s.

Similar kinds of edge detection strategies based on pyramids have been
pursued by [Levine 1978; Hanson and Riseman 1978]. The latter effort is a little
different in that processing within the pyramid is bidirectional; information from
edges detected at a high-resolution level is projected to low-resolution levels of the
pyramid.

EXERCISES

3.1 Derive an analytical expression for the response of the Sobel operator to a vertical
step edge as a function of the distance of the edge to the center of the operator.

3.2 Use the formulas of Egs. (3.31) to derive the digital template function for g, in a 5°
pixel domain.

3.3 Specify a version of Algorithm 3.1 that uses the gradient edge operator instead of the
““crack’” edge operator.

3.4 In photometric stereo, three or more light source positions are used to determine a
surface orientation. The dual of this problem uses surface orientations to determine
light source position. What is the usefulness of the latter formulation? In particular,
how does it relate to Algorithm 3.37

3.5 Using any one of Algorithms 3.1 through 3.4 as an example, show how it could be
modified to use pyramidal data structures.

3.6 Write a reflectance function to capture the “‘grazing incidence’ phenomenon—
surfaces become more mirror-like at small angles of incidence (and reflectance).

3.7 Equations 3.49 and 3.50 were derived by minimizing the local error. Show how these

equations are modified when total error li.e., £ E(x, y)] is minimized.
Xy
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The idea of segmentation has its roots in work by the Gestalt psychologists (e.g.,
Kohler), who studied the preferences exhibited by human beings in grouping or
organizing sets of shapes arranged in the visual field. Gestalt principles dictate cer-
tain grouping preferences based on features such as proximity, similarity, and con-
tinuity. Other results had to do with figure/ground discrimination and optical illu-
sions. The latter have provided a fertile ground for vision theories to post-
Gestaltists such as Gibson and Gregory, who emphasize that these grouping
mechanisms organize the scene into meaningful units that are a significant step
toward image understanding.

In computer vision, grouping parts of a generalized image into units that are
homogeneous with respect to one or more characteristics (or features) results in a
segmented image. The segmented image extends the generalized image in a crucial
respect: it contains the beginnings of domain-dependent interpretation. At this
descriptive level the internal domain-dependent models of objects begin to
influence the grouping of generalized image structures into units meaningful in the
domain. For instance, the model may supply crucial parameters to segmentation
procedures.

In the segmentation process there are two important aspects to consider: one
is the data structure used to keep track of homogeneous groups of features; the
other is the transformation involved in computing the features.

Two basic sorts of segments are natural: boundaries and regions. These can
be used combined into a single descriptive structure, a set of nodes (one per
region), connected by arcs representing the ‘‘adjacency’’ relation. The ““dual’ of
this structure has arcs corresponding to boundaries connecting nodes representing
points where several regions meet. Chapters 4 and 5 describe segmentation with
respect to boundaries and regions respectively, emphasizing gray levels and gray-
level differences as indicators of segments. Of course, from the standpoint of the
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algorithms involved, it is irrelevant whether the features are intensity gray levels
or intrinsic image values perhaps representing motion, color, or range.

Texture and motion images are addressed in Chapters 6 and 7. Each has
several computationally difficult aspects, and neither has received the attention
given static, nontextured images. However, each is very important in the segmen-
tation enterprise.
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Detection 4

4.1 ON ASSOCIATING EDGE ELEMENTS

Boundaries of objects are perhaps the most important part of the hierarchy of struc-
tures that links raw image data with their interpretation [Marr 1975]. Chapter 3
described how various operators applied to raw image data can yield primitive edge
elements. However, an image of only disconnected edge elements is relatively
featureless; additional processing must be done to group edge elements into struc-
tures better suited to the process of interpretation. The goal of the techniques in
this chapter is to perform a level of segmentation, that is, to make a coherent one-
dimensional (edge) feature from many individual local edge elements. The feature
could correspond to an object boundary or to any meaningful boundary between
scene entities. The problems that edge-based segmentation algorithms have to
contend with are shown by Fig. 4.1, which is an image of the local edge elements
yielded by one common edge operator applied to a chest radiograph. As can be
seen, the edge elements often exist where no meaningful scene boundary does,
and conversely often are absent where a boundary is. For example, consider the
boundaries of ribs as revealed by the edge elements. Missing edge elements and
extra edge elements both tend to frustrate the segmentation process.

The methods in this chapter are ordered according to the amount of
knowledge incorporated into the grouping operation that maps edge elements into
boundaries. ‘“Knowledge’® means implicit or explicit constraints on the likelihood
of a given grouping. Such constraints may arise from general physical arguments
or (more often) from stronger restrictions placed on the image arising from
domain-dependent considerations. If there is much knowledge, this implies that
the global form of the boundary and its relation to other image structures is very
constrained. Little prior knowledge means that the segmentation must proceed
more on the basis of local clues and evidence and general (domain-dependent) as-
sumptions with fewer expectations and constraints on the final resulting boundary.

119
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Fig. 4.1 Edge elementsina chest
radiograph.

These constraints take many forms. Knowledge of where to expect a boun-
dary allows very restricted searches to verify the edge. In many such cases, the
domain knowledge determines the type of curve (its parameterization or func-
tional form) as well as the relevant ‘‘noise processes.’”’ In images of polyhedra,
only straight-edged boundaries are meaningful, and they will come together at
various sorts of vertices arising from corners, shadows of corners, and occlusions.
Human rib boundaries appear approximately like conic sections in chest radio-
graphs, and radiographs have complex edge structures that can compete with rib
edges. All this specific knowledge can and should guide our choice of grouping
method.

If less is known about the specific image content, one may have to fall back
on general world knowledge or heuristics that are true for most domains. For in-
stance, in the absence of evidence to the contrary, the shorter line between two
points might be selected over a longer line. This sort of general principle is easily
built into evaluation functions for boundaries, and used in segmentation algo-
rithms that proceed by methodically searching for such groupings. If there are no a
priori restrictions on boundary shapes, a general contour-extraction method is
called for, such as edge following or linking of edge elements.

The methods we shall examine are the following:

1. Searching near an approximate location. These are methods for refining a boun-
dary given an initial estimate.

2. The Hough transform. This elegant and versatile technique appears in various
guises throughout computer vision. In this chapter it is used to detect boun-
daries whose shape can be described in an analytical or tabular form.

3. Graph searching. This method represents the image of edge elements as a
graph. Thus a boundary is a path through a graph. Like the Hough transform,
these techniques are quite generally applicable.
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4. Dynamic programming. This method is also very general. It uses a mathemati-
cal formulation of the globally best boundary and can find boundaries in noisy
images.

5. Contour following. This hill-climbing technique works best with good image
data.

4.2 SEARCHING NEAR AN APPROXIMATE LOCATION

If the approximate or a priori likely location of a boundary has been determined
somehow, it may be used to guide the effort to refine that boundary [Kelly 1971].
The approximate location may have been found by one of the techniques below ap-
plied to a lower resolution image, or it may have been determined using high-level
knowledge.

4.2.1 Adjusting A Priori Boundaries

This idea was described by [Bolles 19771 (see Fig. 4.2). Local searches are carried
out at regular intervals along directions perpendicular to the approximate (a priori)
boundary. An edge operator is applied to each of the discrete points along each of
these perpendicular directions. For each such direction, the edge with the highest
magnitude is selected from among those whose orientations are nearly parallel to
the tangent at the point on the nearby a priori boundary. If sufficiently many ele-
ments are found, their locations are fit with an analytic curve such as a low-degree
polynomial, and this curve becomes the representation of the boundary.

Fig. 4.2 Search orientations from an
approximate boundary location.

4.2.2 Non-linear Correlation in Edge Space

In this correlation-like technique, the a priori boundary is treated as a rigid tem-
plate, or piece of rigid wire along which edge operators are attached like beads. The
a priori representation thus also contains relative locations at which the existence
of edges will be tested (Fig. 4.3). An edge element returned by the edge-operator
application ‘‘matches’’ the a priori boundary if its contour is tangent to the tem-
plate and its magnitude exceeds some threshold. The template is to be moved
around the image, and for each location, the number of matches is computed. If
the number of matches exceeds a threshold, the boundary location is declared to

Sec. 4.2 Searching near an Approximate Location 121

IPR2021-00921
Apple EX1015 Page 137



122

Fig. 4.3 A template for edge-operator
application.

be the current template location. If not, the template is moved to a different image
point and the process is repeated. Either the boundary will be located or there will
eventually be no more image points to try.

4.2.3 Divide-and-Conquer Boundary Detection

This is a technique that is useful in the case that a low-curvature boundary is
known to exist between two edge elements and the noise levels in the image are
low (Algorithm 8.1). In this case, to find a boundary point in between the two
known points, search along the perpendiculars of the line joining the two points.
The point of maximum magnitude (if it is over some threshold) becomes a break
point on the boundary and the technique is applied recursively to the two line seg-
ments formed between the three known boundary points. (Some fix must be ap-
plied if the maximum is not unique.) Figure 4.4 shows one step in this process.
Divide-and-conquer boundary detection has been used to outline kidney boun-
daries on computed tomograms (these images were described in Section 2.3.4)
[Selfridge et al. 19791,

o
\ \ W
\\ : \ \\“::}( e
.‘\\\.}‘0“
\\
N
\\ &
D \\
\\\ Fig. 4.4 Divide and conquer technique.
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Fig. 4.5 A line (a) in image space; (b) in parameter space.

4.3 THE HOUGH METHOD FOR CURVE DETECTION

The classical Hough technique for curve detection is applicable if little is known
about the location of a boundary, but its shape can be described as a parametric
curve (e.g., a straight line or conic). Its main advantages are that it is relatively
unaffected by gaps in curves and by noise.

To introduce the method [Duda and Hart 1972], consider the problem of
detecting straight lines in images. Assume that by some process image points have
been selected that have a high likelihood of being on linear boundaries. The Hough
technique organizes these points into straight lines, basically by considering all
possible straight lines at once and rating each on how well it explains the data.

Consider the point x’ in Fig. 4.5a, and the equation for a line y = mx + ¢
What are the lines that could pass through x'? The answer is simply all the lines
with mand csatisfying y' = mx’+ c¢. Regarding (x/, ") as fixed, the last equation is
that of a line in m—c space, or parameter space. Repeating this reasoning, a second
point (x"”, y"') will also have an associated line in parameter space and, further-
more, these lines will intersect at the point (m’, ¢’) which corresponds to the line
AB connecting these points. In fact, all points on the line 4B will yield lines in
parameter space which interSéét at the point (m’, ¢’), as shown in Fig. 4.5b.

This relation between image space x and parameter space suggests the follow-
ing algorithm for detecting lines:

Algorithm 4.1: Line Detection with the Hough Algorithm
1. Quantize parameter space between appropriate maximum and minimum

values for cand m.
2. Form an accumulator array 4 (¢, m) whose elements are initially zero.
3. For each point (x,y) in a gradient image such that the strength of the gradient
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exceeds some threshold, increment all points in the accumulator array along
the appropriate line, i.€.,

Ale,m)=A(c,m) +1

for mand ¢satisfying ¢ = —mx + y within the limits of the digitization.

4, Local maxima in the accumulator array now correspond to collinear points in
the image array, The values of the accumulator array provide a measure of the
number of points on the line.

This technique is generally known as the Hough technique [Hough 1962].

Since m may be infinite in the slope-intercept equation, a better parameteri-
zation of the line is xsin® + ycos® = r. This produces a sinusoidal curve in (r, 8)
space for fixed x, y, but otherwise the procedure is unchanged.

The generalization of this technique to other curves is straightforward and
this method works for any curve f(x, a) = 0, where a is a parameter vector. (In
this chapter we often use the symbol fas various general functions unrelated to the
image gray-level function.) In the case of a circle parameterized by

x—a)+ (y—5p)=r> 4.1)

for fixed x, the modified algorithm 4.1 increments values of a, b, rlying on the sur-
face of a cone. Unfortunately, the computation and the size of the accumulator ar-
ray increase exponentially as the number of parameters, making this technique
practical only for curves with a small number of parameters.

The Hough method is an efficient implementation of a generalized matched
filtering strategy (i.e., a template-matching paradigm). For instance, in the case of
acircle, imagine a template composed of a circle of 1’s (at a fixed radius R) and 0’s
everywhere else. If this template is convolved with the gradient image, the result is
the portion of the accumulator array A4 (a, b, R).

In its usual form, the technique yields a set of parameters for a curve that best
explains the data. The parameters may specify an infinite curve (e.g., a line or para-
bola). Thus, if a finite curve segment is desired, some further processing is neces-
sary to establish end points.

4.3.1 Use of the Gradient

Dramatic reductions in the amount of computation can be achieved if the gradient
direction is integrated into the algorithm [Kimme et al. 1975]. For example, con-
sider the problem of detecting a circle of fixed radius R.

Without gradient information, all values a, b lying on the circle given by
(4.1) are incremented. With the gradient direction, only the points near (a,5) in
Fig. 4.6 need be incremented. From geometrical considerations, the point (a,5) is
given by
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Fig 4.6 Reduction in computation with gradient information
a=x—rsing 4.2)
b=y +rcos¢

where ¢ (x) is the gradient angle returned by an edge operator. Implicit in these
equations is the assumption that the circle is the boundary of a disk that has gray
levels greater than its surroundings. These equations may also be derived by
differentiating (4.2), recognizing that dy/dx = tan¢, and solving for a and b
between the resultant equation and (4.2). Similar methods can be applied to other
conics. In each case, the use of the gradient saves one dimension in the accumula-
tor array.

The gradient magnitude can also be used as a heuristic in the incrementing
procedure. Instead of incrementing by unity, the accumulator array location may
be incremented by a function of the gradient magnitude. This heuristic can balance
the magnitude of brightness change across a boundary with the boundary length,
but it can lead to detection of phantom lines indicated by a few bright points, or to
missing dim but coherent boundaries.

4.3.2 Some fxampfes

The Hough technique has been used successfully in a variety of domains. Some ex-
amples include the detection of human hemoglobin fingerprints [Ballard et al.
19751, the detection of tumors in chest films [Kimme et al. 1975], the detection of
storage tanks in aerial images [Lantz et al. 1978], and the detection of ribs in chest
radiographs [Wechsler and Sklansky 1977]. Figure 4.7 shows the tumor-detection
application. A section of the chest film (Fig. 4.7b) is searched for disks of radius 3
units. In Fig. 4.7¢, the resultant accumulator array A4 [a, b, 3] is shown in a pictoral
fashion, by interpreting the array values as gray levels. This process is repeated for
various radii and then a set of likely circles is chosen by setting a radius-dependent
threshold for the accumulator array contents. This result is shown in Fig. 4.7d. The
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