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Preface

The dream of intelligent automata goes back to antiquity; its first major articulation
in the context of digital computers was by Turing around 1950. Since then, this
dream has been pursued primarily by workers in the field of artificial intelligence,
whose goal is to endow computers with information-processing capabilities
comparable to those of biological organisms. From the outset, one of the goals of
artificial intelligence has been to equip machines with the capability of dealing with
sensory inputs.

Computer vision is the construction of explicit, meaningful descriptions of
physical objects from images. Image understanding is very different from image
processing, which studies image-to-image transformations, not explicit description
building. Descriptions are a prerequisite for recognizing, manipulating, and
thinking about objects.

We perceive a world of coherent three-dimensional objects with many
invariant properties. Objectively, the incoming visual data do not exhibit
corresponding coherence or invariance; they contain much irrelevant or even
misleading variation. Somehow our visual system, from the retinal to cognitive
levels, understands, or imposes order on, chaotic visual input. It does so by using
intrinsic information that may reliably be extracted from the input, and also through
assumptions and knowledge that are applied at various levels in visual processing.

The challenge of computer vision is one of explicitness. Exactly what
information about scenes can be extracted from an image using only very basic
assumptions about physics and optics? Explicitly, what computations must be
performed? Then, at what stage must domain-dependent, prior knowledge about
the world be incorporated into the understanding process? How are world models
and knowledge represented and used? This book is about the representations and
mechanisms that allow image information and prior knowledge to interact in image
understanding.

Computer vision is a relatively new and fast-growing field. The first
experiments were conducted in the late 1950s, and many of the essential concepts

xiii
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X

have been developed during the last five years. With this rapid growth, crucial ideas
have arisen in disparate areas such as artificial intelligence, psychology, computer
graphics, and image processing. Our intent is to assemble a selection of this material
in a form that will serve both as a senior/graduate-level academic text and as a
useful reference to those building vision systems. This book has a strong artificial
intelligence flavor, and we hope this will provoke thought. We believe that both the
intrinsic image information and the internal model of the world are important in
successful vision systems.

The book is organized into four parts, based on descriptions of objects at four
different levels of abstraction.

1. Generalized images—images and image-like entities.

2. Segmented images—images organized into subimages that are likely to
correspond to “interesting objects.”

3. Geometricstructures—quantitative models of image and world structures.

4. Relational structures—complex symbolic descriptions of image and world
structures.

The parts follow a progression of increasing abstractness. Although the four
parts are most naturally studied in succession, they are not tightly interdependent. Part
I is a prerequisite for Part I1, but Parts IIT and IV can be read independently.

Parts of the book assume some mathematical and computing background
(calculus, linear algebra, data structures, numerical methods). However, throughout
the book mathematical rigor takes a backseat to concepts. Qurintent is to transmit a set
of ideas about a new field to the widest possible audience.

In one book it is impossible to do justice to the scope and depth of prior work in
computer vision. Further, we realize that in a fast-developing field, the rapid influx of
new ideas will continue. We hope that our readers will be challenged to think, criticize,
read further, and quickly go beyond the confines of this volume.

D. H. Ballard
C. M. Brown

Preface
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Computer
Vision 1

Computer Vision Issues

1.1 ACHIEVING SIMPLE VISION GOALS

Suppose that you are given an aerial photo such as that of Fig. 1.1a and asked to lo-
cate ships in it. You may never have seen a naval vessel in an aerial photograph be-
fore, but you will have no trouble predicting generally how ships will appear. You
might reason that you will find no ships inland, and so turn your attention to ocean
areas. You might be momentarily distracted by the glare on the water, but realizing
that it comes from reflected sunlight, you perceive the ocean as continuous and
flat. Ships on the open ocean stand out easily (if you have seen ships from the air,
you know to look for their wakes). Near the shore the image is more confusing, but
you know that ships close to shore are either moored or docked. If you have a map
(Fig. 1.1b), it can help locate the docks (Fig. 1.1¢); in a low-quality photograph it
can help you identify the shoreline. Thus it might be a good investment of your
time to establish the correspondence between the map and the image. A search
parallel to the shore in the dock areas reveals several ships (Fig. 1.1d).

Again, suppose that you are presented with a set of computer-aided tomo-
graphic (CAT) scans showing ““slices™ of the human abdomen (Fig. 1.22). These
images are products of high technology, and give us views not normally available
even with x-rays. Your job is to reconstruct from these cross sections the three-
dimensional shape of the kidneys. This job may well seem harder than finding
ships. You first need to know what to look for (Fig. 1.2b), where to find it in CAT
scans, and how it looks in such scans. You need to be able to ‘‘stack up”’ the scans
mentally and form an internal model of the shape of the kidney as revealed by its
slices (Fig. 1.2c and 1.2d).

This book is about computer vision. These two example tasks are typical com-

1
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puter vision tasks; both were solved by computers using the sorts of knowledge
and techniques alluded to in the descriptive paragraphs. Computer vision is the
enterprise of automating and integrating a wide range of processes and representa-
tions used for vision perception. It includes as parts many techniques that are
useful by themselves, such as image processing (transforming, encoding, and
transmitting images) and statistical pattern classification (statistical decision theory
applied to general patterns, visual or otherwise). More importantly for us, it in-
cludes techniques for geometric modeling and cognitive processing.

1.2 HIGH-LEVEL AND LOW-LEVEL CAPABILITIES

The examples of Section 1.1 illustrate vision that uses cognitive processes, geomeiric
models, goals, and plans. These high-level processes are very important; our exam-
ples only weakly illustrate their power and scope. There surely would be some
overall purpose to finding ships; there might be collateral information that there
were submarines, barges, or small craft in the harbor, and so forth. CAT scans
would be used with several diagnostic goals in mind and an associated medical his-
tory available. Goals and knowledge are high-level capabilities that can guide
visual activities, and a visual system should be able to take advantage of them.

(a) (b)

Fig. 1.1 Finding ships in an aerial photograph. (a) The photograph; (b) a corresponding
map; (c) the dock area of the photograph; (d) registered map and image, with ship location.

o Ch. 1 Computer Vision
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Fig. 1.1 (cont.)

Even such elaborated tasks are very special ones and in their way easier to
think about than the commonplace visual perceptions needed to pick up a baby,
cross a busy street, or arrive at a party and quickly ‘‘see’® who you know, your
host’s taste in decor, and how long the festivities have been going on. All these
tasks require judgment and large amounts of knowledge of objects in the world,
how they look, and how they behave. Such high-level powers are so well in-
tegrated into ‘‘vision™ as to be effectively inseparable.

Knowledge and goals are only part of the vision story. Vision requires many
low-level capabilities we often take for granted; for example, our ability to extract
infrinsic images of “‘lightness,”” “‘color,’” and ‘‘range.”” We perceive black as black
in a complex scene even when the lighting is such that some black patches are
reflecting more light than some white patches. Similarly, perceived colors are not
related simply to the wavelengths of reflected light; if they were, we would con-
sciously see colors changing with illumination. Stereo fusion (stereopsis) is a low-
level facility basic to short-range three-dimensional perception.

An important low-level capability is object perception: for our purposes it does
not really matter if this talent is innate, (*‘hard-wired’’), or if it is developmental or
even learned (‘‘compiled-in’*). The fact remains that mature biological vision sys-
tems are specialized and tuned to deal with the relevant objects in their environ-

Sec. 1.2 High-Level and Low-Level Capabilities 3
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(a) (c)

(b)

Fig. 1.2 Finding a kidney in a computer-aided tomographic scan. (a) One slice of scan data;
(b) prototype kidney model; (c) model fitting; (d) resulting kidney and spinal cord instances.

ments. Further specialization can often be learned, but it is built on basic immut-
able assumptions about the world which underlie the vision system.

A basic sort of object recognition capability is the ‘‘figure/ground’’ discrimi-
nation that separates objects from the ‘‘background.”” Other basic organizational
predispositions are revealed by the ““Gestalt laws’’ of clustering, which demon-
strate rules our vision systems use to form simple arrays of stimuli into more
coherent spatial groups. A dramatic example of specialized object perception for

Ch. 1 Computer Vision
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human beings is revealed in our ‘‘face recognition’” capability, which seems to oc-
cupy a large volume of brain matter. Geometric visual illusions are more surprising
symptoms of nonintuitive processing that is performed by our vision systems, ei-
ther for some direct purpose or as a side effect of its specialized architecture. Some
other illusions clearly reflect the intervention of high-level knowledge. For in-
stance, the familiar ‘‘Necker cube reversal’’ is grounded in our three-dimensional
models for cubes.

Low-level processing capabilities are elusive; they are unconscious, and they
are not well connected to other systems that allow direct introspection. For in-
stance, our visual memory for images is quite impressive, yet our quantitative ver-
bal descriptions of images are relatively primitive. The biological visual
“hardware’’ has been developed, honed, and specialized over a very long period.
However, its organization and functionality is not well understood except at ex-
treme levels of detail and generality—the behavior of small sets of cat or monkey
cortical cells and the behavior of human beings in psychophysical experiments.

Computer vision is thus immediately faced with a very difficult problem; it
must reinvent, with general digital hardware, the most basic and yet inaccessible
talents of specialized, parallel, and partly analog biological visual systems. Figure
1.3 may give a feeling for the problem; it shows two visual renditions of a familiar
subject. The inset is a normal image, the rest is a plot of the intensities (gray levels)
in the image against the image coordinates. In other words, it displays information

Fig. 1.3 Two representations of an
image. One is directly accessible to our
low-level processes; the other is not.

Sec. 1.2 High-Level and Low-Level Capabilities 5
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with “‘height’’ instead of ‘‘light.”” No information is lost, and the display is an
image-like object, but we do not immediately see a face in it. The initial representa-
tion the computer has to work with is no better; it is typically just an array of
numbers from which human beings could extract visual information only very
painfully. Skipping the low-level processing we take for granted turns normally
effortless perception into a very difficult puzzle.

Computer vision is vitally concerned with both low-level or ‘‘early proc-
essing”’ issues and with the high-level and “‘cognitive’ use of knowledge. Where
does vision leave off and reasoning and motivation begin? We do not know pre-
cisely, but we firmly believe (and hope to show) that powerful, cooperating, rich
representations of the world are needed for any advanced vision system. Without
them, no system can derive relevant and invariant information from input that is
beset with ever-changing lighting and viewpoint, unimportant shape differences,
noise, and other large but irrelevant variations. These representations can remove
some computational load by predicting or assuming structure for the visual world.

Finally, if a system is to be successful in a variety of tasks, it needs some
“‘meta-level’’ capabilities: it must be able to model and reason about its own goals
and capabilities, and the success of its approaches. These complex and related
models must be manipulated by cognitive-like techniques, even though introspec-
tively the perceptual process does not always ““feel’’ to us like cognition.

Computer Vision Systems

1.3 A RANGE OF REPRESENTATIONS

Visual perception is the relation of visual input to previously existing models of the
world. There is a large representational gap between the image and the models
(‘“‘ideas,” ‘“‘concepts’’) which explain, describe, or abstract the image information.
To bridge that gap, computer vision systems usually have a (loosely ordered) range
of representations connecting the input and the ‘‘output’ (a final description, deci-
sion, or interpretation). Computer vision then involves the design of these inter-
mediate representations and the implementation of algorithms to construct them
and relate them to one another.

We broadly categorize the representations into four parts (Fig. 1.4) which
correspond with the organization of this volume. Within each part there may be
several layers of representation, or several cooperating representations. Although
the sets of representations are loosely ordered from ““early”” and ““low-level’’ sig-
nals to “‘late’” and ““cognitive’” symbols, the actual flow of effort and information
between them is not unidirectional. Of course, not all levels need to be used in
each computer vision application; some may be skipped, or the processing may
start partway up the hierarchy or end partway down it.

Generalized images (Part I) are iconic (image-like) and analogical representa-
tions of the input data. Images may initially arise from several technologies.

6 Ch. 17 Computer Vision
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Fig. 1.4 Examples of the four categories of rep-
resentation used in computer vision. (a) Iconic; (b)
segmented; (c) geometric; (d) relational.

Domain-independent processing can produce other iconic representations more
directly useful to later processing, such as arrays of edge elements (gray-level
discontinuities). Intrinsic images can sometimes be produced at this level—they re-
veal physical properties of the imaged scene (such as surface orientations, range,
or surface reflectance). Often parallel processing can produce generalized images.
More generally, most ‘“‘low-level’’ processes can be implemented with parallel
computation.

Segmented images (Part 11) are formed from the generalized image by gather-
ing its elements into sets likely to be associated with meaningful objects in the
scene. For instance, segmenting a scene of planar polyhedra (blocks) might result
in a set of edge segments corresponding to polyhedral edges, or a set of two-

A Range of Representations 7
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Tree 2

Bushes

(d)

Fig. 1.4 (cont)

dimensional regions in the image corresponding to polyhedral faces. In producing
the segmented image, knowledge about the particular domain at issue begins to be
important both to save computation and to overcome problems of noise and inade-
quate data. In the planar polyhedral example, it helps to know beforehand that the
line segments must be straight. Texture and motion are known to be very important
in segmentation, and are currently topics of active research; knowledge in these
areas is developing very fast.

Geometric representations (Part III) are used to capture the all-important idea

Ch. 1 Computer Vision
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of two-dimensional and three-dimensional shape. Quantifying shape is as impor-
tant as it is difficult. These geometric representations must be powerful enough to
support complex and general processing, such as ‘‘simulation’ of the effects of
lighting and motion. Geometric structures are as useful for encoding previously
acquired knowledge as they are for re-representing current visual input. Computer
vision requires some basic mathematics; Appendix 1 has a brief selection of useful
techniques.

Relational models (Part IV) are complex assemblages of representations used
to support sophisticated high-level processing. An important tool in knowledge
representation is semantic nets, which can be used simply as an organizational con-
venience or as a formalism in their own right. High-level processing often uses
prior knowledge and models acquired prior to a perceptual experience. The basic
mode of processing turns from constructing representations to matching them. At
high levels, propositional representations become more important. They are made
up of assertions that are true or false with respect to a model, and are manipulated
by rules of inference. Inference-like techniques can also be used for planning,
which models situations and actions through time, and thus must reason about
temporally varying and hypothetical worlds. The higher the level of representa-
tion, the more marked is the flow of contro! (direction of attention, allocation of
effort) downward to lower levels, and the greater the tendency of algorithms to ex-
hibit serial processing. These issues of control are basic to complex information
processing in general and computer vision in particular; Appendix 2 outlines some
specific control mechanisms.

Figure 1.5 illustrates the loose classification of the four categories into ana-
logical and propositional representations. We consider generalized and segmented
images as well as geometric structures to be analogical models. Analogical models
capture directly the relevant characteristics of the represented objects, and are
manipulated and interrogated by simulation-like processes. Relational models are
generally a mix of analogical and propositional representations. We develop this
distinction in more detail in Chapter 10.

1.4 THE ROLE OF COMPUTERS

The computer is a congenial tool for research into visual perception.

« Computers are versatile and forgiving experimental subjects. They are easily
and ethically reconfigurable, not messy, and their workings can be scrutinized
in the finest detail.

« Computers are demanding critics. Imprecision, vagueness, and oversights are
not tolerated in the computer implementation of a theory.

« Computers offer new metaphors for perceptual psychology (also neurology,
linguistics, and philosophy). Processes and entities from computer science pro-
vide powerful and influential conceptual tools for thinking about perception
and cognition.

+ Computers can give precise measurements of the amount of processing they

Sec. 1.4 The Role of Computers 9
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Fig. 1.5 The knowledge base of a complex computer vision system, showing four basic
representational categories.
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1

Table 1.1

EXAMPLES OF IMAGE ANALYSIS TASKS

Domain Objects Modality Tasks Knowledge Sources
Robotics Three-dimensional Light Identify or describe Models of objects
outdoor scenes X-1ays ) objects in scene Modeis of the reflection of
indoor scenes - Industrial tasks light from objects
Mechanicat parts Light
Structured light
Aerial images Terrain Light Improved images Maps
= Buildings, etc. Infrared Resource analyses Geometrical models of shapes
Radar Weather prediction Models of image formation
Spying
Missile guidance
Tactical analysis
Astronomy Stars Light Chemical composition Geometrical models of shapes
Planets Improved images
Medical Body organs X-rays Diagnosis of abnor- Anatomical models
Macro Ultrasound malities Models of image formation
Isotopes Operative and treatment
Heat planning
Cells Electronmicroscopy . Pathology, cytology
Micro Protein chains Light © . Karyotyping Models of shape
Chromosomes
Chemistry Molecules Electron densities ~ Analysis of molecular Chemical models
compositions Structured models
Neuroanatomy Neurons Light _ Determination of Neural connectivity
Electronmicroscopy spatial orientation
Physics Particle tracks Light Find new particles Atomic physics

Identify tracks

IPR2021-00921
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do. A computer implementation places an upper limit on the amount of compu-
tation necessary for a task.

« Computers may be used either to mimic what we understand about human per-
ceptual architecture and processes, or to strike out in different directions to try
to achieve similar ends by different means.

« Computer models may be judged either by their efficacy for applications and
on-the-job performance or by their internal organization, processes, and
structures—the theory they embody.

1.5 COMPUTER VISION RESEARCH AND APPLICATIONS

12

““Pure’’ computer vision research often deals with relatively domain-independent
considerations. The results are useful in a broad range of contexts. Almost always
such work is demonstrated in one or more applications areas, and more often than
not an initial application problem motivates consideration of the general problem.
Applications of computer vision are exciting, and their number is growing as com-
puter vision becomes better understood. Table 1.1 gives a partial list of “‘classical”’
and current applications areas.

Within the organization outlined above, this book presents many specific
ideas and techniques with general applicability. It is meant to provide enough basic
knowledge and tools to support attacks on both applications and research topics.

Ch. 1 Computer Vision
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14

The first step in the vision process is image formation. Images may arise from a
variety of technologies. For example, most television-based systems convert
reflected light intensity into an electronic signal which is then digitized; other sys-
tems use more exotic radiations, such as x-rays, laser light, ultrasound, and heat.
The net result is usually an array of samples of some kind of energy.

The vision system may be entirely passive, taking as input a digitized image
from a microwave or infrared sensor, satellite scanner, or a planetary probe, but
more likely involves some Kind of active imaging. Automated active imaging sys-
tems may control the direction and resolution of sensors, or regulate and direct
their own light sources. The light source itself may have special properties and
structure designed to reveal the nature of the three-dimensional world; an example
is to use a plane of light that falls on the scene in a stripe whose structure is closely
related to the structure of opaque objects. Range data for the scene may be pro-
vided by stereo (two images), but also by triangulation using light-stripe tech-
niques or by ‘‘spotranging”’ using laser light. A single hardware device may deliver
range and multispectral reflectivity (‘‘color’’) information. The image-forming
device may also perform various other operations. For example, it may automati-
cally smooth or enhance the image or vary its resolution.

The generalized image is a set of related image-like entities for the scene. This
set may include related images from several modalities, but may also include the
results of significant processing that can extract inirinsic images. An intrinsic image
is an “‘image,” or array, of representations of an important physical quantity such
as surface orientation, occluding contours, velocity, or range. Object color, which
is a different entity from sensed red—green—blue wavelengths, is an intrinsic
quality. These intrinsic physical qualities are extremely useful; they can be related
to physical objects far more easily than the original input values, which reveal the
physical parameters only indirectly. An intrinsic image is a major step toward scene
understanding and usually represents significant and interesting computations.

Part | Generalized Images
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The information necessary to compute an intrinsic image is contained in the
input image itself, and is extracted by ““inverting”’ the transformation wrought by
the imaging process, the reflection of radiation from the scene, and other physical
processes. An example is the fusion of two stereo images to yield an intrinsic range
image. Many algorithms to recover intrinsic images can be realized with parallel
implementations, mirroring computations that may take place in the lower neuro-
logical levels of biological image processing.

All of the computations listed above benefit from the idea of resolution pyra-
mids. A pyramid is a generalized image data structure consisting of the same image
at several successively increasing levels of resolution. As the resolution increases,
more samples are required to represent the increased information and hence the
successive levels are larger, making the entire structure look like a pyramid.
Pyramids allow the introduction of many different coarse-to-fine image-resolution
algorithms which are vastly more efficient than their single-level, high-resolution-
only counterparts.

Ceneralized Images 15
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Image
Formation 2

2.1 IMAGES

Image formation occurs when a sensor registers radiation that has interacted with

physical objects. Section 2.2 deals with mathematical models of images and image

formation. Section 2.3 describes several specific image formation technologies.
The mathematical model of imaging has several different components.

An image function is the fundamental abstraction of an image.
2. A geometrical model describes how three dimensions are projected into two.

3. A radiometrical model shows how the imaging geometry, light sources, and
reflectance properties of objects affect the light measurement at the sensor.

4. A spatial frequency model describes how spatial variations of the image may
be characterized in a transform domain.

5. A color model describes how different spectral measurements are related to im-
age colors.
6. A digitizing model describes the process of obtaining discrete samples.

This material forms the basis of much image-processing work and is
developed in much more detail elsewhere, e.g., [Rosenfeld and Kak 1976; Pratt
1978]. Our goals are not those of image processing, so we limit our discussion to a
summary of the essentials.

The wide range of possible sources of samples and the resulting different
implications for later processing motivate our overview of specific imaging tech-
niques. Our goal is not to provide an exhaustive catalog, but rather to give an idea
of the range of techniques available. Very different analysis techniques may be
needed depending on how the image was formed. Two examples illustrate this

17
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point. If the image is formed by reflected light intensity, as in a photograph, the im-
age records both light from primary light sources and (more usually) the light
reflected off physical surfaces. We show in Chapter 3 that in certain cases we can
use these kinds of images together with knowledge about physics to derive the
orientation of the surfaces. If, on the other hand, the image is a computed tomo-
gram of the human body (discussed in Section 2.3.4), the image represents tissue
density of internal organs. Here orientation calculations are irrelevant, but general
segmentation techniques of Chapters 4 and 5 (the agglomeration of neighboring
samples of similar density into units representing organs) are appropriate.

2.2 IMAGEMODEL

18

Sophisticated image models of a statistical flavor are useful in image processing
[Jan 1981]. Here we are concerned with more geometrical considerations.

2.2.1 Image Functions

An image function is a mathematical representation of an image. Generally, an im-
age function is a vector-valued function of a small number of arguments. A special
case of the image function is the digital (discrete) image function, where the argu-
ments to and value of the function are all integers. Different image functions may
be used to represent the same image, depending on which of its characteristics are
important. For instance, a camera produces an image on black-and-white film
which is usually thought of as a real-valued function (whose value could be the
density of the photographic negative) of two real-valued arguments, one for each
of two spatial dimensions. However, at a very small scale (the order of the film
grain) the negative basically has only two densities, ‘“‘opaque’ and “‘transparent.”’

Most images are presented by functions of two spatial variables
fx) = f(x, y), where f(x, y) is the brightness of the gray level of the image at a
spatial coordinate (x, y). A multispectral image f is a vector-valued function with
components (f}...f,). One special multispectral image is a color image in which,
for example, the components measure the brightness values of each of three
wavelengths, that is,

FOO = frea(x) :fblue(x)’fgreen (x)

Time-varying images f(x,t) have an added temporal argument. For special
three-dimensional images, x = (x, y, z). Usually, both the domain and range of f
are bounded.-

An important part of the formation process is the conversion of the image
representation from a continuous function to a discrete function; we need some
way of describing the images as samples at discrete points. The mathematical tool
we shall use is the delta function.

Formally, the delta function may be defined by

Ch. 2 Image Formation
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Sec. 2.2

0Owhenx # 0

o when x = 0 2.1

5(x) =

_Tﬁ(x)dx =1

If some care is exercised, the delta function may be interpreted as the limit of a set
of functions:

§(x) = lijl}can(X)

where

g 1
n 1f\xi<2—n

B, = 0  otherwise 2.2)
A useful property of the delta function is the sifting property:
ff(x)ﬁ(x—a)dx=f(a) (2.3)

A continuous image may be multipled by a two-dimensional “‘comb,’’ or array of
delta functions, to extract a finite number of discrete samples (one for each delta
function). This mathematical model of the sampling process will be useful later.

2.2.2 Imaging Geometry

Monocular Imaging

Point projection is the fundamental model for the transformation wrought by
our eye, by cameras, or by numerous other imaging devices. To a first-order ap-
proximation, these devices act like a pinhole camera in that the image results from
projecting scene points through a single point onto an image plane (see Fig. 2.1). In
Fig. 2.1, the image plane is behind the point of projection, and the image is re-
versed. However, it is more intuitive to recompose the geometry so that the point
of projection corresponds to a viewpoint behind the image plane, and the image oc-
curs right side up (Fig. 2.2). The mathematics is the same, but now the viewpoint
is +-fon the zaxis, with z = 0 plane being the image plane upon which the i image is
projected. (f is sometimes called the focal length in this context
this section should not be confus t i
imaged object approaches the viewpoint, its projection gets bigger (try moving
your hand toward your eye). To specify how its imaged size changes, one needs
only the geometry of similar triangles. In Fig. 2.2b y’, the projected height of the
object, is related to its real height y, its position z, and the focal length by

‘

L - L (2.4)
f—z f

Image Model 19
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Fig. 2.1 A geometric camera model.

The case for x' is treated similarly:

2 _ X 2.5)
Sz f
The projected image has z = 0 everywhere. However, projecting away the z com-
ponent is best considered a separate transformation; the projective transform is
usually thought to distort the zcomponent just as it does the x and y. Perspective dis-
tortion thus maps (x, y, z) to

L 2.6)
Frg' Fopgt £~ '

The perspective transformation yields orthographic projection as a special case
when the viewpoint is the point at infinity in the z direction. Then all objects are pro-
jected onto the viewing plane with no distortion of their xand y coordinates.

The perspective distortion yields a three-dimensional object that has been
“‘pushed out of shape’’; it is more shrunken the farther it is from the viewpoint.
The z component is not available directly from a two-dimensional image, being
identically equal to zero. In our model, however, the distorted z component has
information about the distance of imaged points from the viewpoint. When this
distorted object is projected orthographically onto the image plane, the result is a
perspective picture. Thus, to achieve the effect of railroad tracks appearing to come
together in the distance, the-perspective distortion transforms the tracks so that
they do come together (at a point at infinity)! The simple orthographic projection
that projects away the z component unsurprisingly preserves this distortion.
Several properties of the perspective transform are of interest and are investigated
further in Appendix 1.

&,y 2) =

Binocular Imaging

Basic binocular imaging geometry is shown in Fig. 2.3a. For simplicity, we
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(a)

2 xyz)
(', v")

(b}
Fig. 2.2 (a) Camera model equivalent to that of Fig. 2.1; (b) definition of terms.

use a system with two viewpoints. In this model the eyes do not converge; they are
aimed in parallel at the point at infinity in the —z direction. The depth information
about a point is then encoded only by its different positions (disparity) in the two
image planes.

With the stereo arrangement of Fig. 2.3,
et 0 HEE
g =g
oo rdf
JEg
where (x) y") and (x”, y”) are the retinal coordinates for the world point imaged
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z=2'=2"=0

/ i
f |

Image Fig. 2.3 A nonconvergent binocular
plane imaging system.

Tl

through each eye. The baseline of the binocular system is 2d. Thus
(f—2)x'=k-df 2.7
(f—z2)x"=(x+df (2.8)
Subtracting (2.7) from (2.8) gives
(f — 2)(x" — x) = 2df

or

z=f— (2.9)

> e o
Thus if points can be matched to determine the disparity (x” — x’) and the base-
line and focal length are known, the z coordinate is simple to calculate.

If the system can converge its directions of view to a finite distance, conver-
gence angle may also be used to compute depth. The hardest part of extracting
depth information from stereo is the matching of points for disparity calculations.
“Light striping’’ is a way to maintain geometric simplicity and also simplify match-
ing (Section 2.3.3).

2.2.3 Reflectance

Terminology

A basic aspect of the imaging process is the physics of the reflectance of ob-
jects, which determines how their ‘‘brightness’ in an image depends on their in-
herent characteristics and the geometry of the imaging situation. A clear presenta-
tion of the mathematics of reflectance is given in [Horn and Sjoberg 1978; Horn
1977]. Light energy flux ® is measured in watts; ‘‘brightness’’ is measured with
respect to area and solid angle. The radiant intensity I of a source is the exitant flux
per unit solid angle:

1= i3 watts/steradian (2.10)
dw
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Here dw is an incremental solid angle. The solid angle of a small area d4 measured
perpendicular to a radius ris given by

do = — (2.11)

in units of steradians. (The total solid angle of a sphere is 47.)
The irradiance is flux incident on a surface element dA4:

dd 2
= “—  watts/meter (2.12)
dA /
and the flux exitant from the surface is defined in terms of the radiance L, which is
the flux emitted per unit foreshortened surface area per unit solid angle:
d*®

" dA cosbde ‘ : ' 2.13
L dA cosfdw watts/ (meter? steradian) ( )

where 6 is the angle between the surface normal and the direction of emission.

Image irradiance fis the “‘brightness’’ of the image at a point, and is propor-
tional to scene radiance. A “‘gray-level’’ is a quantized measurement of image irra-
diance. Image irradiance depends on the reflective properties of the imaged sur-
faces as well as on the illumination characteristics. How a surface reflects light
depends on its micro-structure and physical properties. Surfaces may be matre
(dull, flat), specular (mirrorlike), or have more complicated reflectivity charac-
teristics (Section 3.5.1). The reflectance r of a surface is given quite generally by its
Bidirectional Reflectance Distribution Function (BRDF) [Nicodemus et al. 1977].
The BRDF is the ratio of reflected radiance in the direction towards the viewer to
the irradiance in the direction towards a small area of the source.

Effects of Geometry on an Imaging System

Let us now analyze a simple image-forming system shown in Fig. 2.4 with the
objective of showing how the gray levels are related to the radiance of imaged ob-
jects. Following [Horn and Sjoberg 1978], assume that the imaging device is prop-
erly focused; rays originating in the infinitesimal area d4, on the object’s surface
are projected into some area d4, in the image plane and no rays from other por-
tions of the object’s surface reach this area of the image. The system is assumed to
be an ideal one, obeying the laws of simple geometrical optics.

, The energy flux/unit area that impinges on the sensor is defined to be E,. To
show how E, is related to the scene radiance L, first consider the flux arriving at
the lens from a small surface area d4, . From (2.13) this is given as

d® = dd, [ Leoshdw 2.14)

This flux is assumed to arrive at an area dA4,, in the imaging plane. Hence the irradi-
ance is given by [using Eq. (2.12)]

_ d®

= 2.15
- (2.15)

Now relate dd, to d4, by equating the respective solid angles as seen from the
lens; that is [making use of Eq. (2.12)1,
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D IMAGE
PLAN
l dAp
LENS w

J— tp —w»| Fig. 2.4 Geometry of an image
l forming system.

(2] coso
d4, 557 — 44 (2.16)
o e g
Substituting Egs. (2.16) and (2.14) into (2.15) gives
3
E = cosa %’-] dew .17
P

The integral is over the solid angle seen by the lens. In most instances we can as-
sume that L is constant over this angle and hence can be removed from the in-

. tegral. Finally, approximate dw by the area of the lens foreshortened by cos «, that

is, (w/4) D? cosa divided by the distance f,/cosa squared:
3

_ T naC08 @
do = TD T (218)
so that finally
2
E= 11D costamL (2.19)
4| fp

The interesting results here are that (1) the image irradiance is proportional to the
scene radiance L, and (2) the factor of proportionality includes the fourth power of
the off-axis angle «. Ideally, an imaging device should be calibrated so that the
variation in sensitivity as a function of « is removed.

2.2.4 Spatial Properties

The Fourier Transform

An image is a spatially varying function. One way to analyze spatial variations
is the decomposition of an image function into a set of orthogonal functions, one
such set being the Fourier (sinusoidal) functions. The Fourier transform may be
used to transform the intensity image into the domain of spatial frequency. For no-
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tational convenience and intuition, we shall generally use as an example the con-
tinuous one-dimensional Fourier transform. The results can readily be extended to
the discrete case and also to higher dimensions [Rosenfeld and Kak 1976]. In two
dimensions we shall denote transform domain coordinates by (u, v). The one-
dimensional Fourier transform, denoted F , is defined by

Sl =FQ)
where
+oo
F(u) = ff(x)exp (—j2mux)dx (2.20)
where j = +/(=1). Intuitively, Fourier analysis expresses a function as a sum of
sine waves of different frequency and phase. The Fourier transform has an inverse
“1[F(u)] = £(x). This inverse is given by

fx) = J-F(u)exp (j2mux) du (2.21)

The transform has many useful properties, some of which are summarized in Table
2.1. Common one-dimensional Fourier transform pairs are shown in Table 2.2.
The transform F(u) is simply another representation of the image function.
Its meaning can be understood by interpreting Eq. (2.21) for a specific value of x,
say xq :
flxo) = fF(u)exp (j2m uxg) du (2.22)

This equation states that a particular point in the image can be represented by
a weighted sum of complex exponentials (sinusoidal patterns) at different spatial
frequencies u. F(u) is thus a weighting function for the different frequencies. Low-
spatial frequencies account for the “‘slowly” varying gray levels in an image, such
as the variation of intensity over a continuous surface. High-frequency com-
ponents are associated with “‘quickly varying”’ information, such as edges. Figure
2.5 shows the Fourier transform of an image of rectangles, together with the effects
of removing low- and high-frequency components.

The Fourier transform is defined above to be a continuous transform.
Although it may be performed instantly by optics, a discrete version of it, the “‘fast
Fourier transform,’’ is almost universally used in image processing and computer
vision. This is because of the relative versatility of manipulating the transform in
the digital domain as compared to the optical domain. Image-processing texts, e.g.,
[Pratt 1978; Gonzalez and Wintz 19771 discuss the FFT in some detail; we content
ourselves with an algorithm for it (Appendix 1).

The Convolution Theorem
Convolution is a very important image-processing operation, and is a basic

operation of linear systems theory. The convolution of two functions fand gis a
function 4 of adisplacement y defined as

«©

h) = frg = [ gy — x)ax (2.23)

—0
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Table 2.1
PROPERTIES OF THE FOURIER TRANSFORM

Spatial Domain

Frequency Domain

f(x)
g(x)

Fu)=5If(x)]
Gu) =5 [g{x)]

(1)  Linearity
e f(x) + cog(x)
¢y,¢3 scalars

(2)  Scaling
S (ax)

aF(u) + c2Gw)

1 Adu

la] | a

(3)  Shifting
Slx — xp) e "Pop ()

(4)  Symmetry
F(x)

(5)  Conjugation
S (x)

(6) Convolution

hix) = frg = ff(x')g(x —x) dx’

f=u)

F*(—u)

Flu)G ()

(7)  Differentiation
d"f (x)

dx"

Qo ju)" F (u)

Parseval’s theorem:

i]f(x)de = j:fF(é‘)PdE

[ rgr ) ax = [F@)6* @ ae

fx)

F(©)

Real(R)

Real part even (RE)
Imaginary part odd (10)

Imaginary (I)
RE,IO
RE,IE

RE

RO

IE

IO
Complex even (CE)

co

RO,IE

R

I
RE
10
IE
RO
CE
Cco
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Table 2.2

FOURIER TRANSFORM PAIRS

flx)

FL§)

Rectangle function
1

[ 1]

=f 1
2 Rect {x} 2

Triangle function

A_
1 1
2z Fi

Exponential

g il

T
Gaussian

o P,

Unit impulse  §(x)

Unit step

. VI

Sec. 2.2 Image Model

Sinc function
1

Sinc (8) = sin ¢
T

] Sinc? (§)

20

1
1 + —
z & (&) 7
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Table2.2 (cont.)

Comb function
- Xl s
b 8 (x —nxg) 9

IIIU AR ERA

12{51571..)0}+515+w0”

A\ [ | ]
VAR

sin 2rwox

A | Lk
NN

218 (E-wpl +8 (£ + ) ]

Intuitively, one function is ‘‘swept past™ (in one dimension) or *‘rubbed over”’ (in
two dimensions) the other. The value of the convolution at any displacement is the
integral of the product of the (relatively displaced) function values. One common
phenomenon that is well expressed by a convolution is the formation of an image
by an optical system. The system (say a camera) has a ‘‘point-spread function,”
which is the image of a single point. (In linear systems theory, this is the “‘impulse
response,’’ or response to a delta-function input.) The ideal point-spread function
is, of course, a point. A typical point-spread function is a two-dimensional Gaus-
sian spatial distribution of intensities, but may include such phenomena as
diffraction rings. In any event, if the camera is modeled as a linear system (ignor-

Fig. 2.5 (on facing page) (a) An image, f(x, y). (b) A rotated version of (a), filtered to enhance high spatial
frequencies. (c) Similar to (b), but filtered to enhance low spatial frequencies. (d), (e), and (f) show the loga-
rithm of the power spectrum of (a), (b), and (c). The power spectrum is the log square modulus of the Fourier
transform F(u, v). Considered in polar coordinates (p, @), points of small p correspond to low spatial frequencies
(“*slowly-varying’’ intensities), large p to high spatial frequencies contributed by ‘‘fast™ variations such as step
edges. The power at (p, #) is determined by the amount of intensity variation at the frequency p occurring at the
angle 0.
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ing the added complexity that the point-spread function usually varies over the
field of view), the image is the convolution of the point-spread function and the in-
put signal. The point-spread function is rubbed over the perfect input image, thus
blurring it.

Convolution is also a good model for the application of many other linear
operators, such as line-detecting templates. It can be used in another guise (called
correlation) to perform matching operations (Chapter 3) which detect instances of
subimages or features in an image.

In the spatial domain, the obvious implementation of the convolution opera-
tion involves a shift-multiply—integrate operation which is hard to do efficiently.
However, multiplication and convelution are ‘‘transform pairs,’’ so that the calcu-
lation of the convolution in one domain (say the spatial) is simplified by first
Fourier transforming to the other (the frequency) domain, performing a multipli-
cation, and then transforming back.

The convolution of fand g in the spatial domain is equivalent to the point-
wise product of Fand G in the frequency domain,

5(f+g) = FG (2.24)

We shall show this in a manner similar to [Duda and Hart 1973]. First we prove
the shift theorem. If the Fourier transform of £ (x) is F (), defined as

F) = [ £0) exp [ — j2m (w)ldx (2.25)

then
5t —a)l = [ fx—a) exp [— j2m ()ldx (2.26)

changing variables so that x’ = x — aand dx = dx’
= 76 exp (= omlute + @)l .27
Now expl — j2ru(x’ + a)] = exp ( — j2mua) exp ( — j2mwux’), where the first
term is a constant. This means that
FIf(x — a)l = exp(— j2mua) F(u) (shift theorem)
Now we are ready to show that F[f (x)*g (x)] = F(u) G (u).

F(frg) = f{f F)gly — x)) exp (— j2wuy) dx dy (2.28)
Al
=ff(x)[fg(y — x) exp (= j2muy) dy}dx (2.29)
- y

Recognizing that the terms in braces represent 5 [g(y — x)] and applying the shift
theorem, we obtain

§5(fg) = [ Fdexp (— j2mux)G () dx (2.30)

= F(u)Gu) (2.31)
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2.2.5 Color

Not all images are monochromatic; in fact, applications using multispectral images
are becoming increasingly common (Section 2.3.2). Further, human beings intui-
tively feel that color is an important part of their visual experience, and is useful or
even necessary for powerful visual processing in the real world. Color vision pro-
vides a host of research issues, both for psychology and computer vision. We
briefly discuss two aspects of color vision: color spaces and color perception.
Several models of the human visual system not only include color but have proven
useful in applications [Granrath 1981].

Color Spaces

Color spaces are a way of organizing the colors perceived by human beings. It
happens that weighted combinations of stimuli at three principal wavelengths are
sufficient to define almost all the colors we perceive. These wavelengths form a na-
tural basis or coordinate system from which the color measurement process can be
described. Color perception is not related in a simple way to color measurement,
however.

Color is a perceptual phenomenon related to human response to different
wavelengths in the visible electromagnetic spectrum [400 (blue) to 700 nanometers
(red); a nanometer (nm) is 10~° meter]. The sensation of color arises from the
sensitivities of three types of neurochemical sensors in the retina to the visible
spectrum. The relative response of these sensors is shown in Fig. 2.6. Note that
each sensor responds to a range of wavelengths. The illumination source has its
own spectral composition f(A) which is modified by the reflecting surface. Let
r(\) be this reflectance function. Then the measurement R produced by the “‘red”
sensor is given by

R = [£O0)rMW i) ax (2.32)

So the sensor oufput is actually the integral of three different wavelength-

dependent components: the source f, the surface reflectance r, and the sensor /5.
Surprisingly, only weighted combinations of three delta-function approxima-

tions to the different £ (A\) (1), thatis, 8(A ), 8(A), and 8 (A g), are necessary to

I
400 500 6ae h0 Fig. 2.6 Spectral response of human

Wavelength, nm color sensors.
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produce the sensation of nearly all the colors. This result is displayed on a chromati-
city diagram. Such a diagram is obtained by first normalizing the three sensor meas-

urements:
g e
R+(G}'+B
£~ R T GIE (2.33)
P
R+G+ B

and then plotting perceived color as a function of any two (usually red and green).
Chromaticity explicitly ignores intensity or brightness; it is a section through the
three-dimensional color space (Fig. 2.7). The choice of (\ g, Ag, Ag) = (410, 530,
650) nm maximizes the realizable colors, but some colors still cannot be realized
since they would require negative values for some of r, g, and b.

Another more intuitive way of visualizing the possible colors from the RGB
space is to view these measurements as Euclidean coordinates. Here any color can
be visualized as a point in the unit cube. Other coordinate systems are useful for
different applications; computer graphics has proved a strong stimulus for investi-
gation of different color space bases.

Color Perception

Color perception is complex, but the essential step is a transformation of
three input intensity measurements into another basis. The coordinates of the new

(a) (b)
Fig. 2.7 (a) An artist’s conception of the chromaticity diagram—see color insert; (b) a
more useful depiction. Spectral colors range along the curved boundary; the straight boun-
dary is the line of purples.
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basis are more directly related to human color judgments.

Although the RGB basis is good for the acquisition or display of color infor-
mation, it is not a particularly good basis to explain the perception of colors. Hu-
man vision systems can make good judgments about the relative surface reflec-
tance r (A} despite different illuminating wavelengths; this reflectance seems to be
what we mean by surface color.

Another important feature of the color basis is revealed by an ability to per-
ceive in “‘black and white,” effectively deriving intensity information from the
color measurements. From an evolutionary point of view, we might expect that
color perception in animals would be compatible with preexisting noncolor percep-
tual mechanisms.

These two needs—the need to make good color judgments and the need to
retain and use intensity information—imply that we use a transformed, non-RGB
basis for color space. Of the different bases in use for color vision, all are variations
on this theme: Intensity forms one dimension and color is a two-dimensional sub-
space. The differences arise in how the color subspace is described. We categorize
such bases into two groups.

1. Intensity/Saturation/Hue (IHS). In this basis, we compute intensity as

intensity: = R + G + B (2.34)

The saturation measures the lack of whiteness in the color. Colors such as “‘fire
engine’’ red and “‘grass’’ green are saturated; pastels (e.g., pinks and pale blues)
are desaturated. Saturation can be computed from RGB coordinates by the formula
[Tenenbaum and Weyl 1975]

3min (R, G, B)

2.35
intensity ( )

saturation: = 1 —

Hue is roughly proportional to the average wavelength of the color. It can be
defined using RGB by the following program fragment:

1 {LI(R — G) + (R — B)]}
VIR — GY + R —B{G — B)®

If B > Gthenhue: = 2pi — hue

The IHS basis transforms the RGAB basis in the following way. Thinking of the
color cube, the diagonal from the origin to (1, 1, 1) becomes the intensity axis.
Saturation is the distance of a point from that axis and hue is the angle with regard
to the point about that axis from some reference (Fig. 2.8).

This basis is essentially that used by artists [Munsell 1939], who term sat-
uration chrema. Also, this basis has been used in graphics [Smith 1978; Joblove
and Greenberg 1978].

One problem with the IHS basis, particularly as defined by (2.34) through
(2.36), is that it contains essential singularities where it is impossible to define the
color in a consistent manner [Kender 1976]. For example, hue has an essential
singularity for all values of (R, G, B), where R = G = B. This means that special
care must be taken in algorithms that use hue.

2. Opponent processes. The opponent process basis uses Cartesian rather than

(2.36)

hue: = cos™

Image Mode! 33

IPR2021-00921
Apple EX1015 Page 51



(b)

Fig. 2.8 An IHS Color Space. (a) Cross section at one intensity; (b) cross section at one hue—see color inserts.

34

cylindrical coordinates for the color subspace, and was first proposed by Hering
[Teevan and Birney 1961]. The simplest form of basis is a linear transformation
from R, G, B coordinates. The new coordinates are termed “R — G 7,
“Bl— Y, and“W — Bk

R-G 1 -2 1 g
Bl-Y|=|-1 -1 2||G
B

W — Bk 1 1 1

The advocates of this representation, such as [Hurvich and Jameson 1957], theor-
ize that this basis has neurological correlates and is in fact the way human beings
represent (“‘name’’) colors. For example, in this basis it makes sense to talk about
a “‘reddish blue” but not a “‘reddish green.”” Practical opponent process models
usually have more complex weights in the transform matrix to account for psycho-
physical data. Some startling experiments [Land 1977] show our ability to make
correct color judgments even when the illumination consists of only two principal
wavelengths. The opponent process, at the level at which we have developed it,
does not demonstrate how such judgments are made, but does show how stimulus
at only two wavelengths will project into the color subspace. Readers interested in
the details of the theory should consult the references.

Commercial television transmission needs an intensity, or *“W — Bk’ com-
ponent for black-and-white television sets while still spanning the color space. The
National Television Systems Committee (NTSC) uses a ““YIQ” basis extracted
from RGB via
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I 0.60 —0.28 —-0.32 1p
gl=10.21 -0.52 0.31 G
Y| B

0.30 059 0.11
This basis is a weighted form of
(I, O, ¥)= (“R—cyan, ” “magenta—green, ” “W—Bk ")

2.2.6 Digital Images

The digital images with which computer vision deals are represented by m-vector
discrete-valued image functions f(x), usually of one, two, three, or four dimen-
sions.

Usually m = 1, and both the domain and range of f(x) are discrete. The
domain of £ is finite, usually a rectangle, and the range of f is positive and
bounded: 0 € f(x) £ M for some integer M. For all practical purposes, the image
is a continuous function which is represented by measurements or samples at regu-
larly spaced intervals. At the time the image is sampled, the intensity is usually
quantizedinto a number of different gray levels. For a discrete image, f(x) is an in-
teger gray level, and x = (x, y) is a pair of integer coordinates representing a sam-
ple point in a two-dimensional image plane. Sampling involves two important
choices: (1) the sampling interval, which determines in a basic way whether all the
information in the image is represented, and (2) the tesselation or spatial pattern of
sample points, which affects important notions of connectivity and distance. In our
presentation, we first show qualitatively the effects of sampling and gray-level
quantization. Second, we discuss the simplest kinds of tesselations of the plane. Fi-
nally, and most important, we describe the sampling theorem, which specifies how
close the image samples must be to represent the image unambiguously.

The choice of integers to represent the gray levels and coordinates is dictated
by limitations in sensing. Also, of course, there are hardware limitations in
representing images arising from their sheer size. Table 2.3 shows the storage re-
quired for an image in 8-bit bytes as a function of m, the number of bits per sam-
ple, and N, the linear dimension of a square image.

For reasons of economy (and others discussed in Chapter 3) we often use im-
ages of considerably less spatial resolution than that required to preserve fidelity to
the human viewer. Figure 2.9 provides a qualitative idea of image degradation with
decreasing spatial resolution.

As shown in Table 2.3, another way to save space besides using less spatial
resolution is to use fewer bits per gray level sample. Figure 2.10 shows an image
represented with different numbers of bits per sample. One striking effect is the
“‘contouring’ introduced with small numbers of gray levels. This is, in general, a
problem for computer vision algorithms, which cannot easily discount the false
contours. The choice of spatial and gray-level resolution for any particular com-
puter vision task is an important one which depends on many factors. It is typical in
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(d)

(e)

Fig. 2.9 Using different numbers of samples. (a) N = 16; (b) N = 32; (c) N =
64; (d) N = 128; (e) N = 256; () N = 512.
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Table 2.3

NUMBER OF 8-BIT BYTES OF STORAGE FOR
VARIOUS VALUES OF N AND M

N 32 64 128 256 512
m

1 128 512 2,048 8,192 32,768
2 256 1,024 4,096 16,384 65,536
3 512 2,048 8,192 32,768 131,072
4 512 2,048 8,192 32,768 131,072
5 1,024 4,09 16,384 65536 262,144
6 1,024 4,09 16,384 65536 262,144
7 1,024 4,09 16,384 65,536 262,144
8 1,024 4,09 16,384 65,536 262,144

computer vision to have to balance the desire for increased resolution (both gray
scale and spatial) against its cost. Better data can often make algorithms easier to
write, but a small amount of data can make processing more efficient. Of course,
the image domain, choice of algorithms, and image characteristics all heavily
influence the choice of resolutions.

Tesselations and Distance Metrics

Although the spatial samples for £ (x) can be represented as points, it is more
satisfying to the intuition and a closer approximation to the acquisition process to
think of these samples as finite-sized cells of constant gray-level partitioning the
image. These cells are termed pixels, an acronym for picture elements. The pattern
into which the plane is divided is called its tesselation. The most common regular
tesselations of the plane are shown in Fig. 2.11.

Although rectangular tesselations are almost universally used in computer
vision, they have a structural problem known as the ‘‘connectivity paradox.”
Given a pixel in a rectangular tesselation, how should we define the pixels to which
it is connected? Two common ways are four-connectivity and eight-connectivity,
shown in Fig. 2.12.

However, each of these schemes has complications. Consider Fig. 2.12c¢, con-
sisting of a black object with a hole on a white background. If we use four-
connectedness, the figure consists of four disconnected pieces, yet the hole is
separated from the ‘‘outside’” background. Alternatively, if we use eight-
connectedness, the figure is one connected piece, yet the hole is now connected to
the outside. This paradox poses complications for many geometric algorithms. Tri-
angular and hexagonal tesselations do not suffer from connectivity difficulties (if
we use three-connectedness for triangles); however, distance can be more difficult
to compute on these arrays than for rectangular arrays.

The distance between two pixels in an image is an important measure that is
fundamental to many algorithms. In general, a distance dis a metric. That is,
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Fig. 2.10 Using different numbers of bits per sample. (a) m = 1; (b) m = 2; (c)
m=4; (d) m=38.

1) dix, y)=0iff x=1y
2) dx, y)=d(y, x)
3) dix, y) +d(y, z) = d(x, z)

For square arrays with unit spacing between pixels, we can use any of the following
common distance metrics (Fig. 2.13) for two pixels x = (x),y|) and y = (x3,p2).

Euclidean:
dy(x, ¥) = /CGoi—x2)? + (o — p2)? (2.37)
City block:
dey (%, ¥) = |x1=x2] + [y1— 02| (2.38)
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(b)
Fig. 2.11 Different tesselations of the
image plane. (a) Rectangular; (b)
(c) triangular; (c) hexagonal.
Chessboard:
d,(x,y) = max{lxl —x;L|y|—y2|' (2.39)

Other definitions are possible, and all such measures extend to multiple dimen-
sions. The tesselation of higher-dimensional space into pixels usually is confined to
(n-dimensional) cubical pixels.

The Sampling Theorem

Consider the one-dimensional ‘‘image’’ shown in Fig. 2.14. To digitize this
image one must sample the image function. These samples will usually be separat-
ed at regular intervals as shown. How far apart should these samples be to allow
reconstruction (to a given accuracy) of the underlying continuous image from its
samples? This question is answered by the Shannon sampling theorem. An excel-
lent rigorous presentation of the sampling theorem may be found in [Rosenfeld
and Kak 1976]. Here we shall present a shorter graphical interpretation using the
results of Table 2.2. For simplicity we consider the image to be periodic in order to
avoid small edge effects introduced by the finite image domain. A more rigorous
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(a) (b) (c)

Fig. 2.12 Connectivity paradox for rectangular tesselations. (a) A central pixel
and its 4-connected neighbors; (b) a pixel and its 8-connected neighbors; (¢) a
figure with ambiguous connectivity.

232 3 3333333
32223 323 3222223
2211122 32123 3211123
3210123 3210123 3210123
2211122 32123 3211123
32223 323 3222223
232 3 3333338
(a) (b} {c)

Fig. 2.13 Equidistant contours for dif-
ferent metrics.

I S | x

Fig. 2.14 One-dimensional image and its samples.

treatment, which considers these effects, is given in [Andrews and Hunt

1977].
Suppose that the image is sampled with a *‘comb’” function of spacing x, (see

Table 2.2). Then the sampled image can be modeled by
fiG0) = FO T8 (x — nxg) (2.40)

where the image function modulates the comb function. Equivalently, this can be
written as

L) =3 flnxp) 8(x — nxp) (2.41)
The right-hand side of Eq. (2.40) is the product of two functions, so that property
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(6) in Table 2.1 is appropriate. The Fourier transform of £, (x) is equal to the con-
volution of the transforms of each of the two functions. Using this result yields

Fla) = PG »-L X 8w — 2L (2.42)
X0 W X0
But from Eq. (2.3),
F)«stu—2) = Flu—-21) (2.43)
X0 X0
so that
_1 _n
F(u) = x0§”” xo) (2.44)

Therefore, sampling the image function £ (x) at intervals of x, is equivalent
in the frequency domain to replicating the transform of f at intervals of —. This
X

0
limits the recovery of f(x) from its sampled representation, f,(x). There are two
basic situations to consider. If the transform of f(x) is bandlimited such that F(u)
= 0 for| u|> 1/(2x,), then there is no overlap between successive replications of
F(u) in the frequency domain. This is shown for the case of Fig. 2.15a, where we
have arbitrarily used a triangular-shaped image transform to illustrate the effects of
sampling. Incidentally, note that for this transform F(u) = F(—u) and that it has
no imaginary part; from Table 2.2, the one-dimensional image must also be real

and even. Now if F(u) is not bandlimited, i.e., there are u > ?lx— for which F(u)
0

# 0, then components of different replications of F () will interact to produce the
composite function F,(u), as shown in Fig. 2.15b. In the first case f(x) can be
recovered from F, (#) by multiplying F, (1) by a suitable G (u):

1
gy ={1 . 1*1< 5
0 otherwise (2.45)
Then
f(x} =F 71[FS(H)G(H)] (246)

However, in the second case, F, (1) G (u) is very different from the original F ().
This is shown in Fig. 2.15¢. Sampling a F () that is not bandlimited allows infor-
mation at high spatial frequencies to interfere with that at low frequencies, a
phenomenon known as aliasing.

Thus the sampling theorem has this very important result: As long as the im-
age contains no spatial frequencies greater than one-half the sampling frequency,
the underlying continuous image is unambiguously represented by its samples.
However, lest one be tempted to insist on images that have been so sampled, note
that it may be useful to sample at lower frequencies than would be required for to-
tal reconstruction. Such sampling is usually preceded by some form of blurring of
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Fig. 2.15 (a) F{u) bandlimited so that F{(u) = 0 for |u| > 1/2x(. (b} F(u) not band-
limited as in (a). (c) reconstructed transform.

the image, or can be incorporated with such blurring (by integrating the image in-
tensity over a finite area for each sample). Image blurring can bury irrelevant de-
tails, reduce certain forms of noise, and also reduce the effects of aliasing.

2.3 IMAGING DEVICES FOR COMPUTER VISION

There is a vast array of methods for obtaining a digital image in a computer. In this
section we have in mind only ‘‘traditional’’ images produced by various forms of
radiation impinging on a sensor after having been affected by physical objects.
Many sensors are best modeled as an analog device whose response must be
digitized for computer representation. The types of imaging devices possible are
limited only by the technical ingenuity of their developers; attempting a definitive
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Fig. 2.16 Imaging devices (boxes), information structures (rectangles), and processes {circles).

taxonomy is probably unwise. Figure 2.16 is a flowchart of devices, information
structures, and processes addressed in this and succeeding sections.

When the image already exists in some form, or physical considerations limit
choice of imaging technology, the choice of digitizing technology may still be open.
Most images are carried on a permanent medium, such as film, or at least are avail-
able in (essentially) analog form to a digitizing device. Generally, the relevant
technical characteristics of imaging or digitizing devices should be foremost in
mind when a technique is being selected. Such considerations as the signal-to-
noise ratio of the device, its resolution, the speed at which it works, and its ex-

pense are important issues.
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2.3.1 Photographic Imaging

The camera is the most familiar producer of optical images on a permanent
medium. We shall not address here the multitudes of still- and movie-camera op-
tions; rather, we briefly treat the characteristics of the photographic film and of the
digitizing devices that convert the image to machine-readable form. More on these
topics is well presented in the References.

Photographic (black-and-white) film consists of an emulsion of silver halide
crystals on a film base. (Several other layers are identifiable, but are not essential to
an understanding of the relevant properties of film.) Upon exposure to light, the
silver halide crystals form development centers, which are small grains of metallic
silver. The photographic development process extends the formation of metallic
silver to the entire silver halide crystal, which thus becomes a binary (“‘light” or
“no light’) detector. Subsequent processing removes undeveloped silver halide.
The resulting film negative is dark where many crystals were developed and light
where few were. The resolution of the film is determined by the grain size, which
depends on the original halide crystals and on development techniques. Gen-
erally, the faster the film (the less light needed to expose it), the coarser the grain.
Film exists that is sensitive to infrared radiation; x-ray film typically has two emul-
sion layers, giving it more gray-level range than that of normal film.

A repetition of the negative-forming process is used to obtain a photographic
print. The negative is projected onto photographic paper, which responds roughly
in the same way as the negative. Most photographic print paper cannot capture in
one print the range of densities that can be present in a negative. Positive films do
exist that do not require printing; the most common example is color slide film.

The response of film to light is not completely linear. The photographic den-
sity obtained by a negative is defined as the logarithm (base 10) of the ratio of in-
cident light to transmitted light.

a4
1,

The exposure of a negative dictates (approximately) its response. Exposure is
defined as the energy per unit area that exposed the film (in its sensitive spectral
range). Thus exposure is the product of the intensity and the time of exposure. This
mathematical model of the behavior of the photographic exposure process is
correct for a wide operating range of the film, but reciprocity failure effects in the
film keep one from being able always to trade light level for exposure time. At very
low light levels, longer exposure times are needed than are predicted by the prod-
uct rule.

The response of film to light is usually plotted in an “H&D curve’’ (named
for Hurter and Driffield), which plots density versus exposure. The H&D curve of
film displays many of its important characteristics. Figure 2.17 exhibits a typical
H&D curve for a black and white film.

The roe of the curve is the lower region of low slope. It expresses reciprocity
failure and the fact that the film has a certain bias, or fog response, which dom-
inates its behavior at the lowest exposure levels. As one would expect, there is an
upper limit to the density of the film, attained when a maximum number of silver

D= lOgIO

Ch. 2 Image Formation

IPR2021-00921
Apple EX1015 Page 62



Sec. 2.3

Shoulder

Density

Toe
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Log (exposure) Fig. 2.17 Typical H & D curve.

halide crystals are rendered developable. Increasing exposure beyond this max-
imum level has little effect, accounting for the shoulder in the H&D curve, or its
flattened upper end.

In between the toe and shoulder, there is typically a linear operating region of
the curve. High-contrast films are those with high slope (traditionally called
gamma);, they respond dramatically to small changes in exposure. A high-contrast
film may have a gamma between about 1.5 and 10. Films with gammas of approxi-
mately 10 are used in graphics arts to copy line drawings. General-purpose films

have gammas of about 0.5 to 1.0.
The resolution of a general film is about 40 lines/mm, which means that a

1400 x 1400 image may be digitized from a 35mm slide. At any greater sampling
frequency, the individual film grains will occupy more than a pixel, and the resolu-
tion will thus be grain-limited.

Image Digitizers (Scanners)

Accuracy and speed are the main considerations in converting an image on
film into digital form. Accuracy has two aspects: spatial resolution, loosely the level
of image spatial detail to which the digitizer can respond, and gray-level resolution,
defined generally as the range of densities or reflectances to which the digitizer
responds and how finely it divides the range. Speed is also important because usu-
ally many data are involved; images of 1 million samples are commonplace.

Digitizers broadly take two forms: mechanical and ““flying spot.”” In a
mechanical digitizer, the film and a sensing assembly are mechanically transported
past one another while readings are made. In a flying-spot digitizer, the film and
sensor are static. What moves is the “‘flying spot,”” which is a point of light on the
face of a cathode-ray tube, or a laser beam directed by mirrors. In all digitizers a
very narrow beam of light is directed through the film or onto the print at a known
coordinate point. The light transmittance or reflectance is measured, transformed
from analog to digital form, and made available to the computer through interfac-
ing electronics. The location on the medium where density is being measured may
also be transmitted with each reading, but it is usually determined by relative offset
from positions transmitted less frequently. For example, a ““new scan line’” im-
pulse is transmitted for TV output; the position along the current scan line yields
an x position, and the number of scan lines yields a y position.
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The mechanical scanners are mostly of two types, flat-bed and drum. In a flat-
bed digitizer, the film is laid flat on a surface over which the light source and the
sensor (usually a very accurate photoelectric cell) are transported in a raster
fashion. In a drum digitizer, the film is fastened to a circular drum which revolves
as the sensor and light source are transported down the drum parallel to its axis of
rotation.

Color mechanical digitizers also exist; they work by using colored filters,
effectively extracting in three scans three “‘color overlays’ which when superim-
posed would yield the original color image. Extracting some ‘‘composite’’ color
signal with one reading presents technical problems and would be difficult to do as
accurately.

Satellite Imagery

LANDSAT and ERTS (Earth Resources Technology Satellites) have similar
scanners which produce images of 2340 x 3380 7-bit pixels in four spectral bands,
covering an area of 100 x 100 nautical miles. The scanner is mechanical, scanning
six horizontal scan lines at a time; the rotation of the earth accounts for the
advancement of the scan in the vertical direction.

A set of four images is shown in Fig. 2.18. The four spectral bands are num-
bered 4, 5, 6, and 7. Band 4 [0.5 to 0.6 um (green)] accentuates sediment-laden
water and shallow water, band 5 [0.6 to 0.7 um (red)] emphasizes cultural features
such as roads and cities, band 6 [0.7 to 0.8 wm (near infrared}] emphasizes vegeta-
tion and accentuates the contrast between land and water, band 7 [0.8 to 1.1 wm
(near infrared)] is like band 6 except that it is better at penetrating atmospheric
haze.

The LANDSAT images are available at nominal cost from the U.S. govern-
ment (The EROS Data Center, Sioux Falls, South Dakota 57198). They are fur-
nished on tape, and cover the entire surface of the earth (often the buyer has a
choice of the amount of cloud cover). These images form a huge data base of mul-
tispectral imagery, useful for land-use and geological studies; they furnish some-
thing of an image analysis challenge, since one satellite can produce some 6 billion
bits of image data per day.

Television Imaging

Television cameras are appealing devices for computer vision applications for
several reasons. For one thing, the image is immediate; the camera can show
events as they happen. For another, the image is already in electrical, if not digital
form. ‘‘Television camera’ is basically a nontechnical term, because many
different technologies produce video signals conforming to the standards set by the
FCC and NTSC. Cameras exist with a wide variety of technical specifications.

Usually, TV cameras have associated electronics which scan an entire “‘pic-
ture’” at a time. This operation is closely related to broadcast and receiver stand-
ards, and is more oriented to human viewing than to computer vision. An entire
image (of some 525 scan lines in the United States) is called a frame, and consists
of two fields, each made up of alternate scan lines from the frame. These fields are
generated and transmitted sequentially by the camera electronics. The transmitted
image is thus interlaced, with all odd-numbered scan lines being ‘‘painted’’ on the
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Fig. 2.18 The straits of Juan de Fuca as seen by the LANDSAT multispectral scanner. {(a)
Band 4; (b) band 5; (c) band 6; (d} band 7.

screen alternating with all even-numbered scan lines. In the United States, each
field takes Yoo sec to scan, so a whole frame is scanned every Jw sec. The interlacing
is largely to prevent flickering of the image, which would become noticeable if the
frame were painted from top to bottom only once in 3 sec. These automatic scan-
ning electronics may be replaced or overridden in many cameras, allowing ‘‘ran-
dom access’ to the image. In some technologies, such as the image dissector, the
longer the signal is collected from any location, the better the signal-to-noise per-
formance.

There are a number of different systems used to generate television images.
We discuss five main methods below.

Image orthicon tube. This is one of the two main methods in use today (in
addition to the vidicon). It offers very stable performance at all incident light levels
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and is widely used in commercial television. It is a storage-type tube, since it
depends on the neutralization of positive charges by a scanning electron beam.

The image orthicon (Fig. 2.19) is divided into an imaging and readout sec-
tion. In the imaging section, light from the scene is focused onto a semitransparent
photocathode. This photocathode operates the same way as the cathode in a photo-
tube. It emits electrons which are magnetically focused by a coil and are
accelerated toward a positively charged target. The target is a thin glass disk with a
fine-wire-mesh screen facing the photocathode. When electrons strike it, secon-
dary emission from the glass takes place. As electrons are emitted from the photo-
cathode side of the disk, positive charges build up on the scanning side. These
charges correspond to the pattern of light intensity in the scene being viewed.

In the readout section, the back of the target is scanned by a low velocity elec-
tron beam from an electron gun at the rear of the tube. Electrons in this beam are
absorbed by the target in varying amounts, depending on the charge on the target.
The image is represented by the amplitude-modulated intensity of the returned
beam.

Vidicon tube. The vidicon is smaller, lighter, and more rugged than the
image orthicon, making it ideal for portable use. Here the target (the inner surface
of the face plate) is coated with a transparent conducting film which forms a video
signal electrode (Fig. 2.20). A thin photosensitive layer is deposited on the film,
consisting of a large number of tiny resistive globules whose resistance decreases
on illumination. This layer is scanned in raster fashion by a low velocity electron
beam from the electron gun at the rear of the tube. The beam deposits electrons on
the layer, thus reducing its surface potential. The two surfaces of the target essen-
tially form a capacitor, and the scanning action of the beam produces a capacitive
current at the video signal electrode which represents the video signal.

The plumbicon is essentially a vidicon with a lead oxide photosensitive layer.
It offers the following advantages over the vidicon: higher sensitivity, lower dark
current, and negligible persistence or lag.
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Fig. 2.19 The image orthicon.
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Fig. 2.20 The vidicon.

Iconoscope tube. The iconoscope is now largely of historical interest. In it,
an electron beam scans a target consisting of a thin mica sheet or mosaic coated
with a photosensitive layer. In contrast to the vidicon and orthicon, the electron
beam and the light both strike the same side of the target surface. The back of the
mosaic is covered with a conductive film connected to an output load. The arrange-
ment is equivalent to a matrix of small capacitors which discharge through a com-
mon lead.

Image dissector tube. The image dissector tube operates on instantaneous
scanning rather than by neutralizing positive charges. Light from the scene is
focused on a cathode coated with a photosensitive layer (Fig. 2.21). The cathode
emits electrons in proportion to the amount of light striking it. These electrons are
accelerated toward a target by the anode. The target is an electron multiplier
covered by a small aperture which allows only a small part of the ‘‘electron image”’
emitted by the cathode to reach the target. The electron image is focused by a
focusing coil that produces an axial magnetic field. The deflection coils then scan
the electron image past the target aperture, where the electron multiplier produces
a varying voltage representing the video signal. The image is thus ‘‘dissected’” as it
is scanned past the target, in an electronic version of a flat-bed digitizing process.

Charge transfer devices. A more recent development in image formation
is that of solid-state image sensors, known as charge transfer devices (CTDs).
There are two main classes of CTDs: charge-coupled devices (CCDs) and charge-
injection devices (CIDs).

CCDs resemble MOSFETs (metal-oxide semiconductor field-effect transis-
tor) in that they contain a ‘‘source’’ region and a ‘‘drain’’ region coupled by a
depletion-region channel (Fig. 2.22). For imaging purposes, they can be con-
sidered as a monolithic array of closely spaced MOS capacitors forming a shift
register (Fig. 2.23). Charges in the depletion region are transferred to the output
by applying a series of clocking pulses to a row of electrodes between the source
and the drain.

Photons incident on the semiconductor generate a series of charges on the
CCD array. They are transferred to an output register either directly one line at a
time (line transfer) or via a temporary storage area (frame transfer). The storage
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Fig. 2.21 Image dissector.

Photosensitive
Cathode

area is needed in frame transfer because the CCD array is scanned more rapidly
than the output can be directly accommodated.

Charge injection devices (CIDs) resemble CCDs except that during sensing
the charge is confined to the image site where it was generated (Fig. 2.24). The
charges are read using an X-Y addressing technique similar to that used in com-
puter memories. Basically, the stored charge is ‘‘injected’’ into the substrate and
the resulting displacement current is detected to create the video signal.

CTD technology offers a number of advantages over conventional-tube-type
cameras: light weight, small size, low power consumption, resistance to burn-in,
low blooming, low dark current, high sensitivity, wide spectral and dynamic range,
and lack of persistence. CIDs have the further advantages over CCDs of tolerance
to processing defects, simple mechanization, avoidance of charge transfer losses,
and minimized blooming. CTD cameras are now available commercially.

Analog-to-Digital Conversion

With current technology, the representation of an image as an analog electri-
cal waveform is usually an unavoidable precursor to further processing. Thus the
operation of deriving a digital representation of an analog voltage is basic to com-
puter vision input devices.

N-TYPE FLICON Fig. 2.22 Charge coupled device.
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Fig. 2.23 A CCD array (line transfer).

The function of an analog-to-digital (A/D) converter is to take as input a vol-
tage such as a video signal and to produce as output a representation of the voltage
in digital memory, suitable for reading by an interface to a digital computer. The
quality of an A/D converter is measured by its temporal resolution (the speed at
which it can perform conversions) and the accuracy of its digital output. Analog-

NN Y Y
:
© Photosensitive
§ element
5
>

Charging transfer

holding elements

. ; ——> Video
Horizontal register out
Fig. 2.24 A CID array.
Imaging Devices for Computer Vision 51

IPR2021-00921
Apple EX1015 Page 69



52

to-digital converters are being produced as integrated circuit chips, but high-
quality models are still expensive. The output precision is usually in the 8- to 12-bit
range.

It is quite possible to digitize an entire frame of a TV camera (i.e., approxi-
mately 525 scan lines by 300 or so samples along a scan line) in a single frame time
(1/30 sec in the United States). Several commercial systems can provide such fast
digitization into a ‘‘frame buffer’” memory, along with raster graphics display capa-
bilities from the same frame buffer, and ‘‘video rate processing’’ of the digital data.
The latter term refers to any of various low-level operations (such as averaging,
convolution with small templates, image subtraction) which may be performed as
fast as the images are acquired.

One inexpensive alternative to digitizing entire TV frames at once is to use an
interface that acquires the TV signal for a particular point when the scan passes the
requested location. With efficient programming, this point-by-point digitization
can acquire an entire frame in a few seconds.

2.3.2 Sensing Range

The third dimension may be derived from binocular images by triangulation, as we
saw earlier, or inferred from single monocular visual input by a variety of “‘depth
cues,’’ such as size and occlusion. Specialized technology exists to acquire ‘‘depth
images’’ directly and reliably. Here we outline two such techniques: ‘‘light strip-
ing,”” which is based on triangulation, and ‘‘spot ranging,”’ which is based on
different principles.

Light Striping

Light striping is a particularly simple case of the use of structured light [Will
and Pennington 1971]. The basic idea is to use geometric information in the illumi-
nation to help extract geometric information from the scene. The spatial frequen-
cies and angles of bars of light falling on a scene may be clustered to find faces; ran-
domly structured light may allow blank, featureless surfaces to be matched in
stereo views; and so forth,

Many researchers [Popplestone et al. 1975; Agin 1972; Sugihara 1977] have
used striping to derive three dimensions. In light striping, a single plane of light is
projected onto a scene, which causes a stripe of light to appear on the scene (Fig.
2.25). Only the part of the scene illuminated by the plane is sensed by the vision
system. This restricts the “‘image’’ to be an essentially one-dimensional entity, and
simplifies matching corresponding points. The plane itself has a known position
(equation in world coordinates), determinable by any number of methods involv-
ing either the measurement of the projecting device or the measurement of the
final resulting plane of light. Every image point determines a single ‘““line of sight”’
in three-space upon which the world peint that produces the image point must lie.
This line is determined by the focal point of the imaging system and the image
point upon which the world point projects. In a light-striping system, any point
that is sensed in the image is also guaranteed to lie on the light plane in three-
space. But the light plane and the line of sight intersect in just one point (as long as

Ch. 2 Image Formation

IPR2021-00921
Apple EX1015 Page 70



Sec. 2.3

PROJECTOR

SCENE

TV IMAGE
/ WITH STRIPE
% TV CAMERA
‘ \ Hl

STRIPE TIMESHARING
ANALYSIS MINICOM SYSTEM
HARDWARE \
(a)

Fig. 2.25 Light striping. (a) A typical arrangement; (b) raw data; (c) data segmented into
strips; (d) strips segmented into two surfaces.

the camera’s focal point is not in the light plane). Thus by computation of the in-
tersection of the line of sight with the plane of light, we derive the three-
dimensional point that corresponds to any image point visible as part of a stripe.

The plane of light may result from a laser or from the projection of a slit. Only
the light stripe should be visible to the imaging device; unless a laser is used, this
implies a darkened room. If a camera is fitted with the proper filter, a laser-based
system can be operated in normal light. Another advantage of the laser is that it can
be focused into a narrower plane than can a slit image.

The only points whose three-dimensional coordinates can be computed are
those that can be ‘‘seen’ by both the light-stripe source and the camera at once.
Since there must be a nonzero baseline if triangulation is to derive three-
dimensional information, the camera cannot be too close to the projector, and thus
concavities in the scene are potential trouble spots, since both the striper and the
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camera may not be able to ‘‘see’’ into them. Surfaces in the scene that are nearly
parallel with the light plane will have a relatively small number of stripes projected
onto them by any uniform stripe placement strategy. This problem is ameliorated
by striping with two sets of parallel planes at right angles to each other [Agin 1972].
A major advantage of light striping over spot ranging is that (barring shadows) its
continuity and discontinuity indicate similar conditions on the surface. It is easy to
‘“‘segment’’ stripe images (Part II): Stripes falling on the same surface may easily
be gathered together. This set of related stripes may be used in a number of ways to
derive further information on the characteristics of the surface (Fig. 2.25b).

Spor Ranging

Civil engineers have used laser-based ‘‘spot range finders”’ for some time. In
laboratory-size environments, they are a relatively new development. There are
two basic techniques. First, one can emit a very sharp pulse and time its return
(“‘lidar,” the light equivalent of radar). This requires a sophisticated laser and
electronics, since light moves 1 ft every billionth of a second, approximately. The
second technique is to modulate the laser light in amplitude and upon its return
compare the phase of the returning light with that of the modulator. The phase
differences are related to the distance traveled [Nitzan et al. 1977]. A representa-
tive image is shown in Fig. 2.26.

Both these techniques produce results that are accurate to within about 1% of
the range. Both of them allow the laser to be placed close to a camera, and thus
“intensity maps’’® (images) and range maps may be produced from single
viewpoints. The laser beam can easily poke into holes, and the return beam may be
sensed close to the emitted one, so concavities do not present a serious problem.
Since the laser beam is attenuated by absorption, it can yield intensity information
as well. If the laser produces light of several wavclengths, it is possible to use filters
and obtain multispectral reflectance information as well as depth information from
the same device [Garvey 1976; Nitzan et al. 1977].

The usual mode of use of a spot ranging device is to produce a range map that
corresponds to an intensity map. This has its advantages in that the correspon-
dence may be close. The structural properties of light stripes are lost: It can be hard
to “‘segment”’ the image into surfaces (to tell which *‘range pixels’” are associated
with the same surface). Range maps are amenable to the same sorts of segmenta-
tion techniques that are used for intensity images: Hough techniques, region grow-
ing, or differentiation-based methods of edge finding (Part II).

Ultrasonic Ranging

Just as light can be pulsed to determine range, so can sound and ultrasound
(frequencies much higher than the audible range). Ultrasound has been used ex-
tensively in medicine to produce images of human organs (e.g., [Waag and
Gramiak 1976]). The time between the transmitted and received signal determines
range; the sound signal travels much slower than light, making the problem of tim-
ing the returning signal rather easier than it is in pulsed laser devices. However,
the signal is severely attenuated as it travels through biological tissue, so that the
detection apparatus must be very sensitive.

Ch. 2 Image formation
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