
Transport Layer Identification of P2P Traffic

Thomas Karagiannis
UC Riverside

Andre Broido
CAIDA, SDSC

Michalis Faloutsos
UC Riverside

Kc claffy
CAIDA, SDSC

ABSTRACT
Since the emergence of peer-to-peer (P2P) networking in the
late ’90s, P2P applications have multiplied, evolved and es-
tablished themselves as the leading ‘growth app’ of Internet
traffic workload. In contrast to first-generation P2P net-
works which used well-defined port numbers, current P2P
applications have the ability to disguise their existence through
the use of arbitrary ports. As a result, reliable estimates of
P2P traffic require examination of packet payload, a method-
ological landmine from legal, privacy, technical, logistic, and
fiscal perspectives. Indeed, access to user payload is often
rendered impossible by one of these factors, inhibiting trust-
worthy estimation of P2P traffic growth and dynamics. In
this paper, we develop a systematic methodology to identify
P2P flows at the transport layer, i.e., based on connection
patterns of P2P networks, and without relying on packet
payload. We believe our approach is the first method for
characterizing P2P traffic using only knowledge of network
dynamics rather than any user payload. To evaluate our
methodology, we also develop a payload technique for P2P
traffic identification, by reverse engineering and analyzing
the nine most popular P2P protocols, and demonstrate its
efficacy with the discovery of P2P protocols in our traces
that were previously unknown to us. Finally, our results
indicate that P2P traffic continues to grow unabatedly, con-
trary to reports in the popular media.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks

General Terms
Algorithms, Measurement

Keywords
Peer-to-peer, Measurements, Traffic classification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’04, October 25–27, 2004, Taormina, Sicily, Italy.
Copyright 2004 ACM 1-58113-821-0/04/0010 ...$5.00.

1. INTRODUCTION
Over the last few years, peer-to-peer (P2P) file-sharing

has relentlessly grown to represent a formidable component
of Internet traffic. P2P volume is sufficiently dominant on
some links to incent increased local peering among Inter-
net Service Providers [25], to observable yet unquantified
effect on the global Internet topology and routing system
not to mention competitive market dynamics. Despite this
dramatic growth, reliable profiling of P2P traffic remains
elusive. We no longer enjoy the fleeting benefit of first-
generation P2P traffic, which was relatively easily classi-
fied due to its use of well-defined port numbers. Current
P2P networks tend to intentionally disguise their generated
traffic to circumvent both filtering firewalls as well as legal
issues most emphatically articulated by the Recording In-
dustry Association of America (RIAA). Not only do most
P2P networks now operate on top of nonstandard, custom-
designed proprietary protocols, but also current P2P clients
can easily operate on any port number, even HTTP’s port
80.

These circumstances portend a frustrating conclusion: ro-
bust identification of P2P traffic is only possible by examin-
ing user payload. Yet packet payload capture and analysis
poses a set of often insurmountable methodological land-
mines: legal, privacy, technical, logistic, and financial ob-
stacles abound, and overcoming them leaves the task of re-
verse engineering a growing number of poorly documented
P2P protocols. Further obfuscating workload characteriza-
tion attempts is the increasing tendency of P2P protocols
to support payload encryption. Indeed, the frequency with
which P2P protocols are introduced and/or upgraded ren-
ders packet payload analysis not only impractical but also
glaringly inefficient.

In this paper we develop a systematic methodology to
identify P2P flows at the transport layer, i.e., based on flow
connection patterns of P2P traffic, and without relying on
packet payload. The significance of our algorithm lies in its
ability to identify P2P protocols without depending on their
underlying format, which offers a distinct advantage over
payload analysis: we can identify previously unknown P2P
protocols. In fact during our analysis we detected traffic of
three distinct P2P protocols previously unknown to us. To
validate our methodology we also developed a payload-based
technique for P2P traffic identification, by reverse engineer-
ing and analyzing the nine most popular P2P protocols.

Specifically, the highlights of our paper include:

• We develop a systematic methodology for P2P traffic
profiling by identifying flow patterns and character-

121

Cloudflare - Exhibit 1047, page 121

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Table 1: Bulk sizes of OC-48 datasets
Set Bb Date Day Start Dur Dir Src.IP Dst.IP Flows Packets Bytes Aver.Util. Ut.%

D09N 2 2003-05-07 Wed 10:00 2 h Nbd (1) 904 K 2992 K 56.7 M 930.4 M 603 G 651 Mbps 26.2
D09S 2 2003-05-07 Wed 10:00 2 h Sbd (0) 466 K 2527 K 47.3 M 624.2 M 340 G 376 Mbps 15.1
D10N 2 2004-01-22 Thu 14:00 60 m Nbd (1) 812 K 2181 K 23.6 M 412.7 M 288 G 638.9 Mbps 25.7
D10S 2 2004-01-22 Thu 14:00 60 m Sbd (0) 279 K 4177 K 18.6 M 252.7 M 117 G 260.4 Mbps 10.5
D11S 2 2004-02-25 Wed 10:00 2 h Sbd (0) 410 K 7465 K 25.3 M 249.6 M 98.5 G 109.4 Mbps 4.4
D13N 2 2004-04-21 Wed 20:00 122 m Nbd (1) 1971 K 6956 K 86.4 M 1263 M 852 G 930.6 Mbps 37.4
D13S 2 2004-04-21 Wed 20:00 122 m Sbd (0) 306 K 10847 K 27.8 M 266.4 M 106 G 115.5 Mbps 4.6

istics of P2P behavior, without examination of user
payload.
• Our methodology effectively identifies 99% of P2P flows

and more than 95% of P2P bytes (compared to pay-
load analysis), while limiting false positives to under
10%.
• Our methodology is capable of identifying P2P flows

missed by payload analysis. Using our methodology
we identify approximately 10% additional P2P flows
over payload analysis.
• Using data collected at an OC48 (2.5Gbps) link of a

Tier1 Internet Service Provider (ISP), we provide re-
alistic estimates and trends of P2P traffic in the wide-
area Internet over the last few years. We find that in
contrast to claims of a sharp decline, P2P traffic has
been constantly growing.

Our methodology can be expanded to support profiling of
various types of traffic. Since mapping applications by port
numbers is no longer substantially valid, a generalized ver-
sion of our algorithm can support traffic characterization
tasks beyond P2P workload. Indeed, to minimize false pos-
itives in P2P traffic identification, we assess, and then filter
by, connection features of numerous protocols and applica-
tions (such as mail or DNS).

The rest of this paper is structured as follows: Section 2
describes our backbone traces, which span from May 2003
to April 2004. Section 3 discusses previous work in P2P
traffic estimation and analysis. Sections 4 and 5 describe in
detail our payload and nonpayload methodologies for P2P
traffic identification. Section 6 presents an evaluation of our
algorithm by comparing the volume of P2P identified by
our methods. In section 7 we challenge media claims that
the pervasive litigation undertaken by the RIAA is causing
an overall decline in P2P file-sharing activity. Section 8
concludes our paper.

2. DATA DESCRIPTION
Part of the analyzed traces in this paper are included in

CAIDA’s Backbone Data Kit (BDK) [1], consisting of packet
traces captured at an OC-48 link of a Tier 1 US ISP connect-
ing POPs from San Jose, California to Seattle, Washington.

Table 1 lists general workload dimensions of our datasets:
counts of distinct source and destination IP addresses and
the numbers of flows, packets, and bytes observed. We pro-
cessed traces with CAIDA’s Coral Reef suite [20].

We analyze traces taken on May 5, 2003 (D09), January
22, 2004 (D10) February 25, 2004 (D11) and April 21,2004
(D13). We captured the traces with Dag 4 monitors [14]
and packet capture software from the University of Waikato
and Endace [12] that supports observation of one or both
directions of the link.

For our older traces (D01-D10), our monitors captured
44 bytes of each packet, which includes IP and TCP/UDP
headers and an initial 4 bytes of payload for some packets.

However, approximately 60%-80% of the packets in these
traces are encapsulated with an extra 4-byte MPLS label
which leaves no space for payload bytes.

Fortunately we were able to capture the February and
April 2004 traces (D11 and D13) with 16 bytes of TCP/UDP
payload which allows us to evaluate our nonpayload method-
ology. To protect privacy, our monitoring system anonymized
the IP addresses in these traces using the Cryptography-
based Prefix-preserving Anonymization algorithm (Crypto-
PAn) [33].

3. PREVIOUS WORK
Most P2P traffic research has thus far emphasized detailed

characterization of a small subset of P2P protocols and/or
networks [19] [15], often motivated by the dominance of that
protocol in a particular provider’s infrastructure or during
a specific time period. Typical data sources range from aca-
demic network connections [27], [21] to Tier 2 ISPs [22].

Other P2P measurement studies have focused on topo-
logical characteristics of P2P networks based on flow level
analysis [29], or investigating properties such as bottleneck
bandwidths [27], the possibility of caching [22], or the avail-
ability and retrieval of content [3] [13].

Recently, Sen et al. developed a signature-based payload
methodology [28] to identify P2P traffic. The authors focus
on TCP signatures that characterize file downloads in five
P2P protocols based on the examination of user payload.
The methodology in [28] is similar to our payload analysis
and it is further discussed in section 4.

A number of Sprint studies [8] report on P2P traffic as
observed in a major Tier 1 provider backbone. However,
their volume estimates taxonomize applications based on
fixed port numbers from CoralReef’s database [23], which
captures a small and decreasing fraction of p2p traffic.

Our approach differs from previous work in three ways:

• We analyze traffic sources of exceptionally high diver-
sity, from major Tier 1 ISPs at the Internet core.

• We study all popular P2P applications available: Nei-
ther of our methodologies (payload and nonpayload)
are limited to a subset of P2P networks. On the con-
trary we study those P2P applications that currently
contribute the vast majority of P2P traffic.

• We combine and cross-validate identification methods
that use fixed ports, payload, and transport layer dy-
namics.

4. PAYLOAD ANALYSIS OF P2P TRAFFIC
AND LIMITATIONS

Our payload analysis of P2P traffic is based on identify-
ing characteristic bit strings in packet payload that poten-
tially represent control traffic of P2P protocols. We mon-
itor the nine most popular P2P protocols: eDonkey [10]

122

Cloudflare - Exhibit 1047, page 122

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(also includes the Overnet and eMule [11] networks), Fast-
track which is supported by the Kazaa client, BitTorrent [4],
OpenNap and WinMx [32], Gnutella, MP2P [24], Soulseek [30],
Ares [2] and Direct Connect [7].

Each of these P2P networks operate on top of nonstan-
dard, usually custom-designed proprietary protocols. Hence,
payload identification of P2P traffic requires separate anal-
ysis of the various P2P protocols to identify the specific
packet format used in each case. This section describes lim-
itations that inhibit accurate identification of P2P traffic at
the link level. In addition, we present our methodology to
identify P2P flows.

4.1 Limitations
We had to carefully consider several issues throughout our

study. While some of these restrictions are data related, oth-
ers originate from the nature of P2P protocols. Specifically,
these limitations are the following:
Captured payload size: CAIDA monitors capture the

first 16 bytes of user payload1 of each packet (see section 2)
for our February and April traces. While our payload heuris-
tics would be capable of effectively identifying all P2P pack-
ets if the whole payload were available, this 16-byte payload
restriction limits the number of heuristics that can reliably
pinpoint P2P flows. Furthermore, our older traces (May
2003, January 2004) only contain 4 bytes of payload for a
limited number of packets, since our monitors were used to
capture 44 bytes for each packet (e.g., TCP options will push
payload bytes out of the captured segment. Limitations for
our older traces are described in detail in section 7).

HTTP requests: Several P2P protocols use HTTP re-
quests and responses to transfer files, and it can be impos-
sible to distinguish such P2P traffic from typical web traffic
given only 16 bytes of payload, e.g., “HTTP/1.1 206 Partial
Content” could represent either HTTP or P2P .

Encryption : An increasing number of P2P protocols rely
on encryption and SSL to transmit packets and files. Pay-
load string matching misses all P2P encrypted packets.

Other P2P protocols: The widespread use of file-sharing
and P2P applications yields a broad variety of P2P proto-
cols. Thus our analysis of the top nine P2P protocols cannot
guarantee identification of all P2P flows, especially given the
diversity of the OC48 backbone link. However, our experi-
ence with P2P applications and traffic analysis convinces
us that these nine protocols represent the vast majority of
current P2P traffic.

Unidirectional traces: Some of our traces reflect only
one direction of the monitored link. In these cases we cannot
identify flows that carry the TCP acknowledgment stream
of a P2P download, since there is no payload. Even if we
monitored both directions of the link, asymmetric routing
renders it unlikely to find both streams (data and acknowl-
edgment) of a TCP flow on the same link.

We can overcome these limitations with our nonpayload
methodology described in section 5.

4.2 Methodology
Our analysis is based on identifying specific bit strings

in the application-level user data. Since documentation for

1Privacy issues and agreement with the ISP prohibit the
examination of more bytes of user payload.

Table 2: Strings at the beginning of the payload of P2P

protocols. The character “0x” below implies Hex strings.

P2P Protocol String Trans. prot. Def. ports

eDonkey2000 0xe319010000 TCP/UDP 4661-4665
0xc53f010000

Fasttrack “Get /.hash” TCP 1214
0x270000002980 UDP

BitTorrent “0x13Bit” TCP 6881-6889
Gnutella “GNUT”, “GIV” TCP 6346-6347

“GND” UDP
MP2P GO!!, MD5, SIZ0x20 TCP 41170 UDP

Direct Connect “$MyN”,”$Dir” TCP 411-412
“$SR” UDP

Ares “GET hash:” TCP -
“Get sha1:”

P2P protocols is generally poor, we empirically derived a set
of distinctive bit strings for each case by monitoring both
TCP and UDP traffic using tcpdump[31] after installing var-
ious P2P clients. Table 2 lists a subset of these strings for
some of the analyzed protocols for TCP and UDP. Table 2
also presents the well-known ports for these P2P protocols.
The complete list of bit strings we used is in [18].

We classify packets into flows, defined by the 5-tuple source
IP, destination IP, protocol, source port and destination
port. We use the commonly accepted 64-second flow time-
out [6], i.e., if no packet arrives in a specific flow for 64 sec-
onds, the flow expires. To address the limitations described
in the previous section, we apply three different methods to
estimate P2P traffic, listed by increasing levels of aggres-
siveness as to which flows it classifies as P2P :

M1: If a source or destination port number of a flow
matches one of the well-known port numbers (Table 2) the
flow is flagged as P2P.

M2: We compare the payload (if any) of each packet in a
flow against our table of strings. In case of a match between
the 16-byte payload of a packet and one of our bit strings,
we flag the flow as P2P with the corresponding protocol,
e.g., Fasttrack, eDonkey, etc. If none of the packets match,
we classify the flow as non-P2P.

M3: If a flow is flagged as P2P, both source and destina-
tion IP addresses of this flow are hashed into a table. All
flows that contain an IP address in this table are flagged
as “possible P2P” even if there is no payload match. To
avoid recursive misclassification of non-P2P flows as P2P,
we perform this type of IP tracking only for host IPs that
M2 identified as P2P .

In all P2P networks, P2P clients maintain a large number
of connections open even if there are no active file transfers.
There is thus increased probability that a host identified as
P2P from M2 will participate in other P2P flows. These
flows will be flagged as “possible P2P” in M3. On the other
hand, a P2P user may be browsing the web or sending email
while connected to a P2P network. Thus, to minimize false
positives we exclude from M3 all flows whose source or des-
tination port implies web, mail, FTP, SSL, DNS (i.e., ports
80, 8000, 8080, 25, 110, 21, 22, 443, 53) for TCP and online
gaming and DNS (e.g., 27015-27050, 53) for UDP 2.

In general, we believe that M3 will provide an estimate
closer to the real intensity of P2P traffic, especially with lim-

2Since nothing prevents P2P clients from using these ports
also, excluding specific protocols by looking at port numbers
may result in underestimating P2P flows.

123

Cloudflare - Exhibit 1047, page 123

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ited 4-byte payload traces, while M2 provides a loose lower
bound on P2P volume. M3 takes advantage of our ability to
identify IPs participating in P2P flows as determined by M2,
facilitating identification of flows for which payload analysis
fails. M3 is used only in section 7, where we examine the
evolution of the volume of P2P traffic. In that section, we
use M3 to overcome the problem of the limited 4-byte payload
in our older traces. For all other analysis, payload P2P esti-
mates are strictly based on payload string matching, namely
M2.

Recently, Sen et al. developed a similar signature-based
payload methodology [28]. The authors concentrate on TCP
signatures that characterize file downloads in five P2P proto-
cols and identify P2P traffic based on the examination of all
user payload bytes. [28] describes a subset of the signatures
included in our methodology, since we also use UDP-based
as well as protocol signaling signatures for a larger number
of P2P protocols/networks (e.g., the WinMx/OpenNap net-
work is not analyzed in [28], although it corresponds to a
significant portion of P2P traffic [17]). On the other hand,
[28] presents the advantage of examining all user payload
bytes. While examining all bytes of the payload should in-
crease the amount of identified P2P traffic, we expect only
a minimum difference in the number of identified P2P flows
between [28] and the methodology described in this section.
First, characteristic signatures or bit strings of P2P packets
appear at the beginning of user payload; thus, 16 bytes of
payload should be sufficient to capture the majority of P2P
flows. Second, we expect that missed flows due to the pay-
load limitation will be identified by our M3 method and/or
by TCP and UDP control traffic originating from the specific
IPs.

5. NONPAYLOAD IDENTIFICATION OF P2P
TRAFFIC

We now describe our nonpayload methodology for P2P
traffic profiling (PTP). Our method only examines the packet
header to detect P2P flows, and does not in any way exam-
ine user payload. To our knowledge, this is a first attempt to
identity P2P flows on arbitrary ports without any inspection
of user payload.

Our heuristics are based on observing connection patterns
of source and destination IPs. While some of these patterns
are not unique to P2P hosts, examining the flow history of
IPs can help eliminate false positives and reveal distinctive
features.

We employ two main heuristics that examine the behavior
of two different types of pairs of flow keys. The first exam-
ines source-destination IP pairs that use both TCP and UDP
to transfer data (TCP/UDP heuristic, section 5.1). The sec-
ond is based on how P2P peers connect to each other by
studying connection characteristics of {IP, port} pairs (sec-
tion 5.2). A high level description of our algorithm is as
follows:

• Data processing : We build the flow table as we observe
packets cross the link, based on 5-tuples, similar to the
payload method. At the same time we collect infor-
mation on various characteristics of {IP, port} pairs,
including the sets of distinct IPs and ports that an
{IP, port} pair is connected to, packet sizes used and
transferred flow sizes.

Table 3: Excluded ports for TCP/UDP IP pairs heuristic.
Ports Application

135,137,139,445 NETBIOS
53 DNS
123 NTP
500 ISAKMP

554,7070,1755,6970,5000,5001 streaming
7000, 7514, 6667 IRC
6112, 6868, 6899 gaming

3531 p2pnetworking.exe

• Identification of potential P2P pairs: We flag potential
flows as P2P based on TCP/UDP usage and the {IP,
port} connection characteristics.

• False positives: We eliminate false positives by com-
paring flagged P2P flows against our set of heuristics
that identify mail servers, DNS flows, malware, etc.

5.1 TCP/UDP IP pairs
Our first heuristic identifies source-destination IP pairs

that use both TCP and UDP transport protocols. Six out
of nine analyzed P2P protocols use both TCP and UDP as
layer-4 transport protocols. These protocols include eDon-
key, Fasttrack, WinMx, Gnutella, MP2P and Direct Con-
nect. Generally, control traffic, queries and query-replies
use UDP, and actual data transfers use TCP. To identify
P2P hosts we can thus look for pairs of source-destination
hosts that use both transport protocols (TCP and UDP).

While concurrent usage of both TCP and UDP is defi-
nitely typical for the aforementioned P2P protocols, it is also
used for other application layer protocols such as DNS or
streaming media. To determine non-P2P applications in our
traces that use both transport protocols, we examined all
source-destination host pairs for which both TCP and UDP
flows exist. We found that besides P2P protocols, only a few
applications use both TCP and UDP transport protocols:
DNS, NETBIOS, IRC, gaming and streaming, which collec-
tively typically use a small set of port numbers such as 135,
137, 139, 445, 53, 3531, etc. Table 3 lists all such applica-
tions found, together with their well-known ports. Port 445
is related to the Microsoft NETBIOS service. Port 3531 is
used by an application called p2pnetworking.exe which is au-
tomatically installed by Kazaa. Although p2pnetworking.exe
is related to P2P traffic, we choose to exclude it from our
analysis since it is not under user control3 and specific only
to the Kazaa client. Excluding flows using ports presented in
Table 3, 98.5% of the remaining IP source-destination pairs
that use both TCP and UDP in our traces are P2P, based
on the payload analysis with M2 described in Section 4. In
summary, if a source-destination IP pair concurrently uses
both TCP and UDP as transport protocols, we consider flows
between this pair P2P so long as the source or destination
ports are not in the set in Table 3.

5.2 {IP, port} pairs
Our second heuristic is based on monitoring connection

patterns of {IP, port} pairs.
Since the lawsuit against Napster, the prevalence of cen-

tralized P2P networks has decreased dramatically, and dis-
tributed or hybrid P2P networks have emerged. To connect
to these distributed networks, each P2P client maintains a

3The user cannot change the port number or control its
functionality, and all flows of p2p.networking.exe use port
3531.

124

Cloudflare - Exhibit 1047, page 124

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 1: Initial connection from a new P2P host A to the P2P network. Host A connects to a superpeer picked from its

host cache. Peer A informs the superpeer of its IP address and the port willing to accept connections from other peers. The

superpeer propagates the {IP, port} pair to the rest of the P2P network. Peers willing to connect to host A, use the advertised
{IP, port} pair. For the {IP, port} pair {A,1}, the number of distinct IPs (C,B) connected to it is equal to the number of
distinct ports (10,15) used to connect to it. Our {IP, port} pair heuristic is based on such equality between the number of
distinct ports and the number of distinct IPs affiliated with a pair in order to identify potential P2P pairs.

starting host cache. Depending on the network, the host
cache may contain the IP addresses of other peers, servers
or supernodes/superpeers.4 This pool of hosts facilitates
the initial connection of the new peer to the existing P2P
network.

As soon as a connection exists to one of the IPs in the host
cache (we will henceforth refer to these IPs as superpeers),
the new host A informs that superpeer of its IP address and
port number at which it will accept connections from peers.
Host A also provides other information specific to each P2P
protocol but not relevant here. While in first-generation
P2P networks the listening port was well-defined and spe-
cific to each network, simplifying P2P traffic classification,
newer versions of all P2P clients allow the user to config-
ure a random port number (some clients even advise users
to change the port number to disguise their traffic). The
superpeer must propagate this information, mainly the {IP,
port} pair of the new host A, to the rest of the network. This
{IP, port} pair is essentially the new host’s ID, which other
peers need to use to connect to it. In summary, when a P2P
host initiates either a TCP or a UDP connection to peer A,
the destination port will also be the advertised listening port
of host A, and the source port will be an ephemeral random
port chosen by the client.

Normally, peers maintain at most one TCP connection to
each other peer, but there may also be a UDP flow to the
same peer, as described previously. Keeping in mind that
multiple connections between peers is rare in our data sets,
we consider what happens when twenty peers all connect
to peer A. Each peer will select a temporary source port
and connect to the advertised listening port of peer A. The
advertised {IP, port} pair of host A would thus be affiliated
with 20 distinct IPs and 20 distinct ports 5. In other words,
for the advertised destination {IP, port} pair of host A, the
number of distinct IPs connected to it will be equal to the
number of distinct ports used to connect to it. Figure 1
illustrates the procedure whereby a new host connects to
the P2P network and advertises its {IP, port} pair.

4Superpeers/supernodes are P2P hosts that handle ad-
vanced functionality in the P2P network, such as routing
and query propagation.
5The probability that two distinct hosts pick the same ran-
dom source port at the same time is extremely low.

On the other hand, consider what happens in the case of
web and HTTP. As in the P2P case, each host connects to
a pre-specified {IP, port} pair, e.g., the IP address of a web
server W and port 80. However, a host connecting to the
web server will initiate usually more than one concurrent
connection in order to download objects in parallel. In sum-
mary, web traffic will have a higher ratio than P2P traffic of
the number of distinct ports versus number of distinct IPs
connected to the {IP, port} pair {W,80}.
5.3 Methodology

Our nonpayload methodology builds on insights from pre-
vious sections 5.1 and 5.2. Specifically, for a time interval
t we build the flow table for the link, based on the five-
tuple key and 64-second flow timeout as with the payload
methodology described in section 4. We then examine our
two primary heuristics:

• We look for source-destination IP pairs that concur-
rently use both TCP and UDP during t. If such IP
pairs exist and they do not use any ports from table 3,
we consider them P2P.

• We examine all source {srcIP, srcport} and destination
{dstIP, dstport} pairs during t (use of pairs will hence-
forth imply both source and destination {IP, port}
pairs). We seek pairs for which the number of dis-
tinct connected IPs is equal to the number of distinct
connected ports. All pairs for which this equality holds
are considered P2P . In contrast, if the difference be-
tween connected IPs and ports for a certain pair is
large (e.g., larger than 10), we regard this pair as non
P2P.

These two simple heuristics efficiently classify most pairs
as P2P or nonP2P. In particular the {IP, port} heuristic
can effectively identify P2P and nonP2P pairs given a suf-
ficiently large sample of connections for the specific pair.
For example, with time interval t of 5 minutes there are no
false positives for pairs with more than 20 connections in
our February 2004 trace (D11 of Table 1.) That is, for this
specific trace, if an IP pair has more than 20 IPs connect
to it, we can classify it with high confidence as P2P or not
P2P.

125

Cloudflare - Exhibit 1047, page 125

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

