

(12) United States Patent

Daly et al.

(54) VEGF-BINDING FUSION PROTEINS AND THERAPEUTIC USES THEREOF

- (75) Inventors: Thomas J. Daly, New City, NY (US); James P. Fandl, LaGrangeville, NY (US); Nicholas J. Papadopoulos, LaGrangeville, NY (US)
- (73) Assignee: Regeneron Pharmaceuticals, Inc., Tarrytown, NY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 12/623,869
- (22) Filed: Nov. 23, 2009

(65)**Prior Publication Data**

US 2010/0087632 A1 Apr. 8, 2010

Related U.S. Application Data

- (63) Continuation of application No. 12/135,549, filed on Jun. 9, 2008, now Pat. No. 7,635,474, which is a continuation of application No. 11/346,008, filed on Feb. 2, 2006, now Pat. No. 7,399,612, which is a continuation-in-part of application No. 10/880,021, filed on Jun. 29, 2004, now Pat. No. 7,279,159, which is a continuation-in-part of application No. 10/609,775, filed on Jun. 30, 2003, now Pat. No. 7,087,411.
- (51) Int. Cl. A61K 38/18 (2006.01)
- (2006.01)C07K 14/71 (52) U.S. Cl. 424/134.1; 424/192.1; 514/1.1;
 - 514/8.1; 530/350
- (58) Field of Classification Search None See application file for complete search history.

(56)**References** Cited

U.S. PATENT DOCUMENTS

5,851,999 A	12/1998	Ullrich et al.
6,011,003 A	1/2000	Charnock-Jones et al.
6,100,071 A	8/2000	Davis-Smyth et al.
6,270,993 B1		Shibuya et al.
6,897,294 B2	5/2005	Davis-Smyth et al.
2005/0281831 A1	12/2005	Davis-Smyth et al.

FOREIGN PATENT DOCUMENTS

WO	WO97/44453	11/1997	
WO	WO 98/13071	4/1998	
WO	WO 00/75319	12/2000	

RM

DOCKE

OTHER PUBLICATIONS

Holash et al., 2002, "VEGF-Trap: a VEGF blocker with potent antitumor effects." PNAS Aug. 20;99(17):11393-8.

Heidaran et al., 1990, "Chimeric alpha- and beta-platelet-derived growth factor (PDGF) receptors define three immunoglobulin-like

US 7,972,598 B2 (10) **Patent No.:** *Jul. 5, 2011

(45) Date of Patent:

domains of the alpha-PDGF receptor that determine PDGF-AA binding specificity." J Biol Chem. Nov. 5;265(31):18741-4.

Cunningham et al., 1997, "Identification of the extracellular domains of Flt-1 that mediate ligand interactions." Biochem Biophys Res Commun. Feb. 24;231(3):596-9.

Fuh et al., "Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor." J Biol Chem. May 1;273(18):11197-204, 1998.

Wiesman et al., 1997, "Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor." Cell. Nov. 28;91(5):695-704.

Barleon et al., 1997, "Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT-1." J Biol Chem. Apr. 18;272(16):10382-8.

Davis-Smyth et al., 1998, "Mapping the charged residues in the second immunoglobulin-like domain of the vascular endothelial growth factor/placenta growth factor receptor Flt-1 required for binding and structural stability." J Biol Chem. Feb. 6;273(6):3216-22.

Wulff et al., 2002, "Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2." Endocrinology. Jul;143(7):2797-807.

Davis-Smyth et al., 1996, "The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade." EMBO J. Sep. 16;15(18):4919-27.

Palu et al., 1999, "In pursuit of new developments for gene therapy of human diseases." J Biotechnol. Feb. 5;68 (1):1-13.

Wang et al., 1999, "Rapid analysis of gene expression (RAGE) facilitates universal expression profiling." Nucleic Acids Res. Dec. 1;27(23):4609-18.

Kaufman et al. 1999, Transgenc anaysis of a 100-kb human B-globin cluster-containing DNA fragment propagated as a bacterial artificial chromosome. Blood 94(9): 3178-3184.

Wigley et al., 1994, "Site-specific transgene insertion: an approach." Reprod. Fertil. Dev. 6:585-588.

Wells, 1990, "Additivity of mutational effects in proteins." Biochemistry 29(37): 8509-8517.

Ngo et al., 1994, "Computational complexity, protein structure prediction, and the Levinhal paradox. In Merz and Le Grand (Eds.) The Protein Folding Problem and Tertiary Structure Prediction." Birkhauser: Boston, pp. 491-495.

Skolnick et al., 2000, "From genes to protein structure and function: novel applications of computational appoaches in the genomic era." Trends in Biotechnology 18:34-39.

Phillips, 2001, "The challenge of gene therarpy and DNA delivery." Journal of Pharmacy and Pharmacology 53:1169-1174.

Primary Examiner --- Christine J Saoud

Assistant Examiner - Jon M Lockard

(74) Attorney, Agent, or Firm-Valeta Gregg; Frank R. Cottingham

(57)ABSTRACT

Fusion proteins which bind and inhibit vascular endothelial growth factor (VEGF). The VEGF-binding fusion proteins are therapeutically useful for treating VEGF-associated conditions and diseases, and are specifically designed for local administration to specific organs, tissues, and/or cells.

1 Claim, No Drawings

VEGF-BINDING FUSION PROTEINS AND THERAPEUTIC USES THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 12/135,549 filed 9 Jun. 2008, now U.S. Pat. No. 7,635,474, which is a continuation of application Ser. No. 11/346,008 filed 2 Feb. 2006, now U.S. Pat. No. 7,399,612, which is a ¹⁰ continuation-in-part of application Ser. No. 10/880,021 filed 29 Jun. 2004, now U.S. Pat. No. 7,279,159, which is a continuation-in-part of application Ser. No. 10/609,775 filed 30 Jun. 2003, now U.S. Pat. No. 7,087,411, which applications are herein specifically incorporated by reference in their ¹⁵ entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

The invention encompasses fusion proteins capable of binding vascular endothelial cell growth factor (VEGF), VEGF family members, and splice variants with specifically desirable characteristics, as well as therapeutic methods of ²⁵ use.

Sequence Listing

An ASCII compliant text file of the sequence listing is filed ³⁰ concurrently with the present specification (37 CFR §1.52(e) and 37 CFR §1.821). The contents of the text file are herein incorporated by reference. The text file containing the sequence listing is named "VEGFT_SeqList", was created on 18 Nov. 2009, and contains approximately 40 kilobytes. ³⁵

BRIEF SUMMARY OF THE INVENTION

In a first aspect, the invention features an isolated nucleic acid molecule encoding a fusion protein which binds VEGF, 40 comprising receptor components $(R1R2)_X$ and/or $(R1R3)_Y$, wherein R1 is vascular endothelial cell growth factor (VEGF) receptor component Ig domain 2 of Flt-1 (Flt1D2), R2 is VEGF receptor component Ig domain 3 of Flk-1 (Flk1D3), and R3 is VEGF receptor component Ig domain 3 of Flt-4 45 (Flt1D3 or R3), and wherein X \geq 1 and Y \geq 1. In a preferred embodiment the nucleic acid molecule encodes a fusion protein comprising (R1R2)₂ (SEQ ID NO:24).

In a related second aspect, the invention features a monomeric VEGF-binding fusion protein comprising VEGF 50 receptor components $(R1R2)_x$ and/or $(R1R3)_y$ wherein $X \ge 1$, $Y \ge 1$, and R1, R2, and R3 are as defined above. The VEGF receptor components R1, R2, and R3, may be connected directly to each other or connected via one or more spacer sequences. In one specific embodiment, the fusion protein is 55 $(R1R2)_x$, were X=2. In a more specific embodiment, the fusion protein is SEQ ID NO:24, or a functionally equivalent amino acid variant thereof. The invention encompasses a fusion protein consisting of VEGF receptor components $(R1R2)_x$ and/or $(R1R3)_y$, and functionally equivalent amino 60 acid variants thereof.

The receptor components of the VEGF-binding fusion protein may be arranged in different orders, for example, R1R2-R1R2; R2R1-R2R1; R1R2-R2R1, etc. The components of the fusion protein may be connected directly to each other, or 65 connected via a spacer sequence. In specific embodiments, one or more receptor and/or fusion partner components of the

DOCKE

fusion polypeptide are connected directly to each other without spacers. In other embodiments, one or more receptor and/or fusion partner components are connected with spacers.

In all embodiments of the fusion protein of the invention, a signal sequence (S) may be included at the beginning (or N-terminus) of the fusion polypeptide of the invention. The signal sequence may be native to the cell, recombinant, or synthetic. When a signal sequence is attached to the N-terminus of a first receptor component, thus a fusion polypeptide may be designated as, for example, S-(R1R2)_X.

The invention encompasses vectors comprising the nucleic acid molecules of the invention, including expression vectors comprising the nucleic acid molecule operatively linked to an expression control sequence. The invention further encompasses host-vector systems for the production of a fusion polypeptide which comprise the expression vector, in a suitable host cell; host-vector systems wherein the suitable host cell; a bacterial, yeast, insect, mammalian cell; an *E. coli* cell, or a COS or CHO cell. Additional encompassed are VEGF-binding fusion proteins of the invention modified by acetylation or pegylation. Methods for acetylating or pegylating a protein are well known in the art.

In a related ninth aspect, the invention features a method of producing a fusion protein of the invention, comprising culturing a host cell transfected with a vector comprising a nucleic acid sequence of the invention, under conditions suitable for expression of the protein from the host cell, and recovering the fusion polypeptides so produced.

The VEG-binding fusion proteins of the invention are therapeutically useful for treating any disease or condition which is improved, ameliorated, or inhibited by removal, inhibition, or reduction of VEGF. A non-exhaustive list of specific conditions improved by inhibition or reduction of VEGF include, for example, undesirable plasma leakage or vascular permeability, undesirable blood vessel growth, e.g., such as in a tumor, edema associated with inflammatory disorders such as psoriasis or arthritis, including rheumatoid arthritis; asthma; generalized edema associated with burns; ascites and pleural effusion associated with tumors, inflammation or trauma; chronic airway inflammation; asthma; capillary leak syndrome; sepsis; kidney disease associated with increased leakage of protein; pancreatic ductal adenocarcinoma (PDAC) and eye disorders such as age related macular degeneration and diabetic retinopathy. The fusion protein of the invention is particularly useful in treatment of eye disorders, and as an adjuvant to eye surgeries, including glaucoma surgery; and the treatment of intra-ocular tumors, such as for example, uveal melanoma, retinoblastoma, via intravitreal delivery.

Accordingly, in a tenth aspect, the invention features a therapeutic method for the treatment of a VEGF-related disease or condition, comprising administering a VEGF-binding fusion protein of the invention to a subject suffering from a VEGF-related disease or condition. Although any mammal can be treated by the therapeutic methods of the invention, the subject is preferably a human patient suffering from or at risk of suffering from a condition or disease which can be improved, ameliorated, inhibited or treated with a VEGF trap.

In a eleventh aspect, the invention further features diagnostic and prognostic methods, as well as kits for detecting, quantitating, and/or monitoring VEGF with the fusion proteins of the invention.

In a twelfth aspect, the invention features pharmaceutical compositions comprising a VEGF-binding fusion protein of the invention with a pharmaceutically acceptable carrier.

5

Such pharmaceutical compositions may comprise a fusion protein or a nucleic acid encoding the fusion protein.

Other objects and advantages will become apparent from a review of the ensuing detailed description.

DETAILED DESCRIPTION OF THE INVENTION

Before the present methods are described, it is to be understood that this invention is not limited to particular methods, and experimental conditions described, as such methods and 10 conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only the appended claims. 15

As used in this specification and the appended claims, the singular forms "a", "an", and "the" include plural references unless the context clearly dictates otherwise. Thus for example, a reference to "a method" includes one or more methods, and/or steps of the type described herein and/or 20 which will become apparent to those persons skilled in the art upon reading this disclosure and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention 25 belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference. 30 General Description

The invention encompasses a fusion protein capable of binding and inhibiting VEGF activity. The molecules of the invention bind and inhibit the biological action of VEGF and/or the physiological reaction or response. For a descrip- 35 tion of VEGF-receptor-based antagonist VEGF traps Flt1D2.Flk1D3.Fc Δ C1(a) (SEQ ID NOs:7-8) and VEGFR1R2-FcΔC1(a) (SEQ ID NOs:9-10), see PCT WO/0075319, the contents of which is incorporated in its entirety herein by reference. The fusion proteins of the inven- 40 tion are smaller than the full sized trap, e.g., about 50-60 kD versus 120 kD of the parent trap, and are monomers. As shown in the experimental section below, the fusion proteins of the invention exhibit unique kinetic properties yet retain a high binding affinity to VEGF.

Nucleic Acid Constructs and Expression

DOCKE

The present invention provides for the construction of nucleic acid molecules encoding fusion proteins capable of binding VEGF. The nucleic acid molecules of the invention may encode wild-type R1, R2, and/or R3 receptor components, or functionally equivalent variants thereof. Amino acid sequence variants of the R1, R2 and/or R3 receptor components of the traps of the invention may also be prepared by creating mutations in the encoding nucleic acid molecules. Such variants include, for example, deletions from, or insersions or substitutions of, amino acid residues within the amino acid sequence of R1, R2 and/or R3. Any combination of deletion, insertion, and substitution may be made to arrive at a final construct, provided that the final construct possesses the ability to bind and inhibit VEGF.

These nucleic acid molecules are inserted into a vector that is able to express the fusion proteins of the invention when introduced into an appropriate host cell. Appropriate host cells include, but are not limited to, bacterial, yeast, insect, and mammalian cells. Any of the methods known to one 65 skilled in the art for the insertion of DNA fragments into a vector may be used to construct expression vectors encoding the fusion proteins of the invention under control of transcriptional/translational control signals.

Expression of the nucleic acid molecules of the invention may be regulated by a second nucleic acid sequence so that the molecule is expressed in a host transformed with the recombinant DNA molecule. For example, expression may be controlled by any promoter/enhancer element known in the art. Promoters which may be used to control expression of the chimeric polypeptide molecules include, but are not limited to, a long terminal repeat (Squinto et al. (1991) Cell 65:1-20); SV40 early promoter region, CMV, M-MuLV, thymidine kinase promoter, the regulatory sequences of the metallothionine gene; prokaryotic expression vectors such as the β-lactamase promoter, or the tac promoter (see also Scientific American (1980) 242:74-94); promoter elements from yeast or other fungi such as Gal 4 promoter, ADH, PGK, alkaline phosphatase, and tissue-specific transcriptional control regions derived from genes such as elastase I.

Expression vectors capable of being replicated in a bacterial or eukaryotic host comprising the nucleic acid molecules of the invention are used to transfect the host and thereby direct expression of such nucleic acids to produce the fusion proteins of the invention which bind and inhibit VEGF. Transfected cells may transiently or, preferably, constitutively and permanently express the fusion proteins of the invention. VEGF Recentor Components

The VEGF receptor components of the fusion proteins of the invention consist of the Ig domain 2 of Flt-1 (Flt1D2) (R1), the Ig domain 3 of Flk-1 (Flk1D3) (R2) (together, R1R2), and/or R1 and Ig domain 3 of Flt-4 (Flt1D3) (R3) (together, R1R3). The term "Ig domain" of Flt-1. Flt-4, or Flk-1 is intended to encompass not only the complete wildtype domain, but also insertional, deletional, and/or substitutional variants thereof which substantially retain the functional characteristics of the intact domain. It will be readily apparent to one of skill in the art that numerous variants of the above Ig domains can be obtained which will retains substantially the same functional characteristics as the wild-type domain.

The term "functional equivalents" when used in reference to R1, R2, or R3, is intended to encompass an R1, R2, or R3 domain with at least one alteration, e.g., a deletion, addition, and/or substitution, which retains substantially the same functional characteristics as does the wild type R1, R2, or R3 domain, that is, a substantially equivalent binding to VEGF. It will be appreciated that various amino acid substitutions can be made in R1, R2, or R3 without departing from the spirit of the invention with respect to the ability of these receptor components to bind and inactivate VEGF. The functional characteristics of the traps of the invention may be determined by any suitable screening assay known to the art for measuring the desired characteristic. Examples of such assays are described in the experimental section below which allow determination of binding characteristics of the traps for VEGF (Kd), as well as their half-life of dissociation of the trap-ligand complex $(T_{1/2})$. Other assays, for example, a change in the ability to specifically bind to VEGF can be measured by a competition-type VEGF binding assay. Modifications of protein properties such as thermal stability, 60 hydrophobicity, susceptibility to proteolytic degradation, or tendency to aggregate may be measured by methods known to those of skill in the art.

The components of the fusion polypeptide may be connected directly to each other or be connected via spacers. Generally, the term "spacer" (or linker) means one or more molecules, e.g., nucleic acids or amino acids, or non-peptide moieties, such as polyethylene glycol, which may be inserted

between one or more component domains. For example, spacer sequences may be used to provide a desirable site of interest between components for ease of manipulation. A spacer may also be provided to enhance expression of the fusion polypeptide from a host cell, to decrease steric hindrance such that the component may assume its optimal tertiary structure and/or interact appropriately with its target molecule. For spacers and methods of identifying desirable spacers, see, for example, George et al. (2003) Protein Engineering 15:871-879, herein specifically incorporated by ref- 10 erence. A spacer sequence may include one or more amino acids naturally connected to a receptor component, or may be an added sequence used to enhance expression of the fusion polypeptides, provide specifically desired sites of interest, allow component domains to form optimal tertiary structures and/or to enhance the interaction of a component with its target molecule. In one embodiment, the spacer comprises one or more peptide sequences between one or more components which is (are) between 1-100 amino acids, preferably 1-25.

In the most specific embodiments, R1 is amino acids 27-126 of SEO ID NO:8, or 1-126 of SEO ID NO:8 (including the signal sequence 1-26); or amino acids 27-129 of SEQ ID NO:10, or 1-129 of SEQ ID NO:10 (including the signal sequence at 1-26). In the most specific embodiments, R2 is 25 amino acids 127-228 of SEQ ID NO:8, or amino acids 130-231 of SEQ ID NO:10. In the most specific embodiments, R3 is amino acids 127-225 of SEQ ID NO: 13 (without a signal sequence). When, for example, R2 is placed at the N-terminus of the fusion polypeptide, a signal sequence may desirably precede the receptor component. The receptor component(s) attached to the multimerizing component may further comprise a spacer component, for example, the GPG sequence of amino acids 229-231 of SEQ ID NO:7. 35

Therapeutic Uses

DOCKE

The VEGF-binding fusion proteins of the invention are therapeutically useful for treating any disease or condition which is improved, ameliorated, inhibited or prevented by removal, inhibition, or reduction of VEGF. A non-exhaustive list of specific conditions improved by inhibition or reduction 40 of VEGF include, clinical conditions that are characterized by excessive vascular endothelial cell proliferation, vascular permeability, edema or inflammation such as brain edema associated with injury, stroke or tumor; edema associated with inflammatory disorders such as psoriasis or arthritis, including rheumatoid arthritis; asthma; generalized edema associated with burns; ascites and pleural effusion associated with tumors, inflammation or trauma; chronic airway inflammation; capillary leak syndrome; sepsis; kidney disease associated with increased leakage of protein; and eye disorders 50 such as age related macular degeneration and diabetic retinopathy.

The compositions of the invention are therapeutically useful for treating a wide variety of diseases associated with increased VEGF levels. For example, exaggerated Th2 55 inflammation and airway remodeling are characteristic in the pathogenesis of asthma (see, for example, Elias et al. (1999) J. Clin. Invest. 104:1001-6). Elevated VEGF levels have been detected in tissues and biologic samples from patients with asthma, which correlate directly with disease activity (Lee et 60 al. (2001) J. Allergy Clin. Immunol. 107:1106-1108) and inversely with airway caliber and airway responsiveness. Further, VEGF has been postulated to contribute to asthmatic tissue edema.

Another disease associated with increased VEGF is pan- 65 creatic ductal adenocarcinoma (PDAC). This malignancy often exhibits enhanced foci of endothelial cell proliferation

6

and frequently overexpresses VEGF (Ferrara (1999) J. Mol. Med. 77:527-543). PDAC is responsible for over 20% of deaths due to gastrointestinal malignancies, making it the fourth most common cause of cancer-related mortality in the U.S. and other industrialized countries. Experimental evidence supports an important role for VEGF in pancreatic cancer, thus a VEGF inhibitor has promise as a therapeutic to attenuate intrapancreatic tumor growth and regional and distal metastasis.

The fusion proteins of the invention differ from larger VEGF antagonists in being optimized for local/intra-vitreal delivery, ie. a shorter serum half life for faster clearance and minimizing unwanted systemic exposure. In addition due to its smaller size, the fusion proteins of the invention have the ability to penetrate through the inner-limiting membrane (ILM) in the eye, and diffuse through the vitreous to the retina/retinal pigment epithelial (RPE) layer which will help to treat retinal disease. Additionally, the fusion proteins of the invention can be used for local administration for the treatment of ocular disease such as choroidal neovascularization, diabetic macular edema, proliferative diabetic retinopathy, corneal neovascularization/transplant rejection. Still further, the mini-trap can be used in any situation where transient (short-term) blocking of VEGF is required, e.g., to avoid chronic exposure to VEGF blockade, such as, for example, in the treatment of psoriasis.

A serious problem leading to failure following glaucoma surgery is early inflammation and angiogenesis, as well as too aggressive wound healing. Accordingly, the VEGF-binding fusion proteins of the invention may be usefully employed is as an adjuvant to glaucoma surgery to prevent early hem- and lymphangiogenesis and macrophage recruitment to the filtering bleb after glaucoma surgery, and improve surgical outcome.

Combination Therapies

In numerous embodiments, the fusion protein of the invention may be administered in combination with one or more additional compounds or therapies, including a second VEGF-binding molecule, a chemotherapeutic agent, surgery, catheter devices, and radiation. Combination therapy includes administration of a single pharmaceutical dosage formulation which contains the fusion protein of the invention and one or more additional agents; as well as administration of a the fusion protein of the invention and one or more additional agent(s) in its own separate pharmaceutical dosage formulation. For example, a fusion protein and a cytotoxic agent, a chemotherapeutic agent or a growth inhibitory agent can be administered to the patient together in a single dosage composition such as a combined formulation, or each agent can be administered in a separate dosage formulation. Where separate dosage formulations are used, the VEGF-specific fusion polypeptide of the invention and one or more additional agents can be administered concurrently, or at separately staggered times, i.e., sequentially.

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g. I131, I125, Y90 and Re186), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or fragments thereof.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide (CYTOXAN®)); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylen-

imines and methylamelamines including altretamine, triethtrietylenephosphoramide, vlenemelamine. triethylenethiophosphaoramide and trimethylolomelamine; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics such as aclacinomysins, actinomycin, authramycin, aza-10 serine, bleomycins, cactinomycin, calicheamicin, carabicin, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin, epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine 20 analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepi- 25 tiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; eflornithine; elliptinium acetate; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK®; razoxane; sizofuran; spirogermanium; tenuazonic acid; triaziquone; 2,2',2"- 35 trichlorotriethylamine; urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; taxanes, e.g. paclitaxel (TAXOL®, Bristol-Myers Squibb Oncology, Princeton, N.J.) and docetaxel (TAXOTERE®; 40 Aventis Antony, France); chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; 45 daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoic acid; esperamicins; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included in this definition are anti-hor- 50 monal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY 117018, onapristone, and toremifene (Fareston); and anti-androgens such as 55 flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; and pharmaceutically acceptable salts, acids or derivatives of any of the above.

A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell, 60 invention may be a liquid comprising an agent of the invenespecially a cancer cell either in vitro or in vivo. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), TAXOL®, and topo II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents

DOCKE.

that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C.

Methods of Administration

The invention provides methods of treatment comprising administering to a subject an effective amount of a VEGFbinding fusion protein of the invention. In a preferred aspect, the trap is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired sideeffects). The subject is preferably a mammal, and most preferably a human.

Various delivery systems are known and can be used to administer an agent of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction can be enteral or parenteral and include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, intraocular, and oral routes. The compounds may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. Administration can be acute or chronic (e.g. daily, weekly, monthly, etc.) or in combination with other agents. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

In another embodiment, the active agent can be delivered in a vesicle, in particular a liposome, in a controlled release system, or in a pump. In another embodiment where the active agent of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see, for example, U.S. Pat. No. 4,980,286), by direct injection, or by use of microparticle bombardment, or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see e.g., Joliot et al., 1991, Proc. Natl. Acad. Sci. USA 88:1864-1868), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.

In a specific embodiment, it may be desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment; this may be achieved, for example, and not by way of limitation, by local infusion during surgery, topical application, e.g., by injection, by means of a catheter, or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, fibers, or commercial skin substitutes.

A composition useful in practicing the methods of the tion in solution, in suspension, or both. The term "solution/ suspension" refers to a liquid composition where a first portion of the active agent is present in solution and a second portion of the active agent is present in particulate form, in suspension in a liquid matrix. A liquid composition also includes a gel. The liquid composition may be aqueous or in the form of an ointment. Further, the composition can take the

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.