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 LEO CHAPTER

Ocular angiogenesis: vascular
endothelial growth factor
and other factors

Anthony P. Adamis, MD

 

INTRODUCTION

Theoriginal visionary proposal by Dr. Judah Folkman!that antiangio-
genic therapy couldoffer an approachto the treatment of manycancers
ultimately led to a major research effort into the mechanisms which
control both physiological and pathological angiogenesis. His work
also contemplated the use of antiangiogenic drugs in ophthalmology.
A principal focus of this research effort has been the identification of
Specific molecules involved in the promotion andinhibition of angio-
enesis, an effort that has already led to the developmentof targeted
therapies against vascular endothelial growth factor (VEGF). In addi-
tion, manyother factors have been identified that act as promoters or
inhibitors of angiogenesis (Table 4.1). This chapter will focus on those
molecules whose roles have been best validated to date, and which
possess particular relevance to ocular neovascularization.

 

PROMOTERSOF ANGIOGENESIS

VASCULAR ENDOTHELIAL
GROWTH FACTOR 

VEGFin physiologic and pathologic
angiogenesis

VEGF(also known as VEGF-A)is a 45-kDa homodimeric glycoprotein
belonging to a family that also includes VEGF-B through VEGF-E,
platelet-derived growth factor (PDGF), and placental growth factor?
Initially isolated as a vascular permeability factor, VEGF was
subsequently cloned and found to be a potent proangiogenic factor,
acting as a master regulator of angiogenesis (reviewed by Ferrara and
Davis-Smyth’ and Ferrara’). VEGFhas subsequently been foundto act
in a wide variety of other physiological contexts,’ some of which,
such as neuroprotection, are completely independentof its role in
angiogenesis.

Alternative splicing of the human VEGFgeneyields six principal
isoforms of 121, 145, 165, 183, 189, and 206 amino acids.> The corre-
sponding rodent isoforms are one aminoacid shorter.? Many studies
have focused on characterizing the functions of VEGF,2, VEGFy¢5, and
VEGFigo. VEGF,.;is freely diffusible, while VEGF) and larger isoforms
are found sequestered in the extracellular matrix; VEGFy5 exists in both
diffusible and matrix-bound forms.’ VEGFacts as a ligand for VEGF
teceptor 1 (VEGFR1) and VEGFR2; these receptor tyrosine kinases in
turn activate downstream signaling cascades.

VEGFacts in many capacities in angiogenesis, including as an endo-
thelial cell mitogen’ and survivalfactor,” and as a chemoattractantfor
bone marrow-derived endothelial progenitorcells.* In addition, VEGF
induces the upregulation of extracellular matrix-degrading enzymes,
such as matrix metalloproteinases (MMPs)’ and plasminogen activa-
tor,'” as well as nitric oxide," a downstream mediator of VEGFsignal-
ing.'’ Moreover, VEGFhas twoadditional properties whichareofdirect
relevance for the pathophysiology of ocular neovascular diseases.First,
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it is the most potent known inducerofvascular permeability," an action
related to the edema which often accompanies ocular neovasculariza-
tion. Secondly, the retinal expression of VEGF, which is produced by
a wide variety ofretinal cell types,'*"* is upregulated by hypoxia,'*"”
a responsethatis believed to be important in maintaining the health
of both retinal neurons® and the choriocapillaris” while also creating
a proangiogenic environment.

Reflecting the original focus of Dr. Folkman’s proposal on the impor-
tance of angiogenesis in cancer growth and metastasis,’ initial investiga-
tions of the role of VEGF in pathological angiogenesis demonstrated
that interference with VEGFsignaling inhibited tumor growth.!? Over
the course of a decade, a role for VEGFin ocular neovascular disease
also wasestablished based on three main lines of evidence: (1) correla-
tions of VEGFelevation with the presence of ocular neovascular disease
in the eyesofpatients; (2) preclinical studies demonstrating that experi-
mental elevation of VEGFlevels in the eye led to neovascularization;
and(3) the converse experiment, in which inhibition of VEGFsignaling
decreased neovascularization.

Correlations betweenelevations in ocular levels of VEGF and ocular

neovascular disease have been reported and include conditions such
as iris neovascularization, retinal vein occlusion, diabetic retinopathy
(DR), diabetic macular edema (DME), neovascular glaucoma,andreti-
nopathy of prematurity (reviewed byStarita etal."). Elevated expres-
sion of VEGFalso has been detected in surgically removed maculae”
and choroidal neovascularization (CNV) membranesof eyes with age-
related macular degeneration (AMD).”

A variety of approaches have been employed to demonstrate that
elevated ocular levels of VEGFare sufficient to induce ocular neovas-

cularization. These haveincluded direct intravitreal injection of VEGE”
and retinal vein photocoagulation” in monkeys; in rodent models,
studies have included intravitreal injection of VEGF-expressing
vectors,“4 and the use of transgenic mice engineered to overexpress
VEGFin the retinal pigment epithelium (RPE).”

The experiments demonstrating that VEGFelevations are necessary
for the developmentof ocular neovascularization have also employed
various techniques. Agents used to block the actions of VEGF have
included VEGFR fusion proteins,”anti-VEGFantibodies,” an anti-
VEGF monoclonalantibody antigen-binding fragment (Figure 4.1);
an aptamer directed against VEGFys," and VEGF,sb, a VEGE variant
which binds VEGFR2 but cannotactivateit.” Agents used to block the
ocular production of VEGF or VEGFR1atthetranscriptional or trans-
lational level have included small interfering RNAs (siRNAs) specific
for VEGF® or VEGFR1,™ and antisense oligonucleotides specific for
VEGE®*Blocking the actions of VEGF in the eye by various means
inhibited neovascularization of theiris,” cornea,” retina," and
choroid.2731334

Further detailed investigations into the mechanisms underlying
VEGF’s importance have revealedthat the isoform VEGF«5 is especially
pathogenic. In a murine model of ischemia-associated ocular neovas-
cularization, retinal expression of VEGF,,; was foundtobe dramatically
elevated compared to other isoforms; moreover, intravitreal injection
of a VEGFi¢5-specific RNA aptamer wasasefficient at inhibiting the
pathological neovascularization as injection of a VEGFR-Fc fusion
protein that inactivated all VEGF isoforms (Figure 4.2).”* In addition,
VEGF;5 acts as an especially potent inflammatory cytokine, a
property of direct relevance given the importance of inflammation in
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Proangiogenic
factors

Angiogenin

Angiopoietin- 1

Complementfactors C3
and C5

Cryptic collagen IV
fragment

Developmentally
regulated endothelial
locus 1 (Del-1)

Fibroblast growth factors:
acidic (aFGF) and basic
(bFGF)
Follistatin

Granulocyte colony-
stimulating factor
(G-CSF)

Hepatocyte growth factor
(HGF)/scatter factor (SF)
Interleukin-8 (IL-8)

a5 integrins

Leptin
Midkine

Pigment epithelium-
derived growth factor

Placental growth factor
Platelet-derived

endothelial cell growth
factor (PDECGF)

Platelet-derived growth
factor-BB (PDGF-BB)

Pleiotrophin (PTN)

Progranulin
Proliferin

Transforming growth
factor-a (TGF-a)

Transforming growth
factor-B (TGF-B)
Tumor necrosis factor-a.

(TNF-a)
Vascular endothelial

growth factor (VEGF)

  
Table 4.1 Proangiogenic and antiangiogenic factors

Antiangiogenic factors

Angioarrestin

Angiostatin (plasminogen
fragment)

Antiangiogenic antithrombin Ill

Cartilage-derived inhibitor (CDI)

CD59 complement fragment

Endostatin (collagen XVIII
fragment)

Fibronectin fragment

Growth-related oncogene (Gro-B)
Heparinases

Heparin hexasaccharide
fragment

Human chorionic gonadotropin
(hCG)

Interferon o/B/y

Interferon-inducible protein
(IP-10)
Interleukin-12

Kringle 5 (plasminogen fragment)
Metalloproteinase inhibitors
(TIMPs)

2-Methoxyestradiol

Pigment epitheliurn-derived
growth factor
Placental ribonuclease inhibitor

Plasminogenactivator inhibitor
Platelet factor-4 (PF4)

Prolactin 16-kDa fragment

Proliferin-related protein (PRP)
Retinoids

Soluble VEGFR-1

Tryptophanyl-tRNA synthase
fragment
VEGF0

Tetrahydrocortisol-S

Thrombospondin-1 (TSP-1)

Transforming growth factor-B
(TGF-B)
Vasculostatin

Vasostatin (calreticulin fragment)

 
 

Adapted from: Angiogenesis Foundation. Understanding angiogenesis.
List of known angiogenic growth factors. Available online at: http://www.
angio.org/understanding/content_understanding. html.

pathological neovascularization. Laser injury has been shown to up-
regulate retinal expression of intercellular cell adhesion molecule-1
(ICAM1), thereby promoting leukocyte adhesion to the vascular endo-
thelium through CD18, the leukocyte ligand for ICAM1.* Genetic
ablation of either molecule significantly reduced the formation of
laser-induced CNV (Figure 4.3). In this context, it is noteworthy that
VEGF,,; was found to be significantly more potent at upregulating
ICAM1expression on endothelial cells than VEGF;>,.” In addition,
depletion of macrophages has been found to inhibit the development
of pathological neovascularization in a rat model of retinopathy of
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prematurity (Figure 4.4)* and in laser-induced CNV.* VEGF,; was
more potent at chemotaxis of monocyte/macrophages than VEGF,).”
Since macrophages produce VEGE,” their infiltration serves as an
amplification mechanism in further promoting angiogenesis.

Investigational approaches to VEGFinhibition
in ocular neovascularization

The extensive research effort into elucidating VEGF’s role in ocular
neovascularization has provided a sound foundation for the develop-
mentofanti-VEGFtherapies. Three agents, pegaptanib,” ranibizumab,"
and bevacizumab,” are already in widespread use, and are discussed
in dedicated chapters of this text. A brief account of other approaches
currently under evaluation in clinicaltrials follows.

RNAinterference

RNAinterference abrogates gene expression througha cellular defense
mechanism mediated by double-stranded RNA sequencesofatleast
21 nucleotides long, resulting in targeted destruction of specific mRNA
species.” RNA interference has been used to target VEGF mRNAin
animal models, leading to suppression of corneal neovascularization™
as well as CNV induced either by laser® or by overexpression of VEGF
from a transgene."* Sirna-027, an agent targeting the expression of
VEGEFR1,also has been shown to suppress both retinal and CNV in
murine models.™

Currently there are two siRNA agents undergoing evaluation in
clinical trials for treatment of neovascular AMD.Bevasiranib (Ophi
Health), directed against VEGF, has successfully completed a phase II
trial and is currently recruiting patients for the phase III COBALTtrial
in which it will be combined with ranibizumab.” In addition, a phase
I trial of the anti-VEGFR1 agent AGN211745 (Allergan; previously
Sirna-027) has been completed,” and enrollment for a phaseII trial is
ongoing.** Recent evidence suggests that antiangiogenic siRNAs work
nonspecifically and through a nonclassical siRNA mechanism in sup-
pressing CNV.”

Soluble VEGFRfusion protein: VEGF-Trap —
Work demonstrating the potential of soluble VEGFR fusion proteins to
suppress retinal neovascularization” provided a basis for the develop-
ment of VEGF-Trap, a fusion protein combining components of both
VEGFR1 and VEGFR2.” VEGF-Trap, which was engineered with a
view to optimizing pharmacokinetic properties as well as efficacy,
binds to all isoforms of VEGF as well as placental growth factor.”
Intravitreal injection of VEGF-Trap inhibited laser-induced CNV in
mice, as well as preventing VEGF-induced blood-tetinal barrier break-
down.”It is now being evaluated in a phase III study.”

Anecortave acetate

Anecortaveacetate is a memberof a group of corticosteroids,first iso-
lated in Dr. Folkman’slaboratory,” that have angiostatic properties but
lack conventional anti-inflammatory activity.” In a rat retinopathy of
prematurity model, anecortave significantly reduced pathologic retinal
neovascularization without affecting normalretinal angiogenesis.” In
other studies with this model, anecortave was foundto reduceretinal

expression of VEGE®andofinsulin growth-factor-1 andits receptor.”
Anecortave also inhibited VEGFR2 expression in a murine model of
retinoblastoma.” These findings suggest that the angiostatic effects of
anecortave mayatleast in part be mediated through VEGFsignaling
pathways.”

Anecortave acetate has shown some promise as a treatment for
neovascular AMD, administered as a juxtascleral depoteither alone®
or in combination with photodynamic therapy.” Although anecortave
acetate did not meetits efficacy endpointin a phase II noninferiority
trial comparing it to photodynamic therapy with verteporfin,® it
remains understudy as a prophylactic treatment to slow the progres-
sion of neovascular AMD.”
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e Figure 4.2 Vascular endothelial growth factor (VEGF64/165) is
€specially potent in promoting pathological neovascularization. In a
_fat modelof ischemia-induced retinal neovascularization, intravitreal
injection of an aptamer specific for VEGF 164165 Was as effective in

"inhibiting pathological neovascularization as a VEGFR1-Fe fusion
_ protein which binds all VEGF isoforms. Adapted from Ishida S, Usui
T, Yamashiro K,et al. VEGF164-mediated inflammation is required
for pathological, but not physiological, ischemia-induced retinal

“neovascularization. J Exp Med 2003;198:483-489.

LATELET-DERIVED GROWTH FACTOR

The PDGF family consists of four related dimeric polypeptides (PDGF-A
thtough PDGF-D)" that are structurally related to VEGF? In general
they occur as homodimers, although the PDGF-AB heterodimer has
also been identified." PDGFs are ligands for two receptor tyrosine
Kinases, PDGFR-o. and PDGER-B, of which PDGER-B is principally
Tesponsible for signal transduction on cells associated with the vascular
system, including endothelial cells, pericytes, and smooth-muscle
cells. Similarly, PDGFalso has a widespread distribution among these
“samecell types.” In addition to its central role in vascular system

_development, PDGF signaling is important for processes such as
_Woundhealing and central nervous system development.”

__ Studies have revealed a central role for the PDGF-B homodimerin
vascular development, as it was found to stimulate the proliferation,”
and inducecapillary tube formation™ of endothelial cells. PDGF-B is
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Figure 4.1 Inactivation ofall vascular endothelial growth factor (VEGF) isoforms potently inhibits laser-induced choroidal neovascularization
(CNV) in the nonhuman primate. (A) Cynomolgus monkeys(n = 10) received 500 pig of recombinant humanized monoclonal anti-VEGF
antibody (rhuFab VEGF) in one eye andvehicle in the other, every 2 weeks. On day 21, CNV wasinducedby laser wounding. The bar
“graph showsthe total number of grade 4 CNV lesions in the eyes receiving rhuFab VEGF(gold bar) compared to thosein control eyes that
‘Teceived vehicle (blue bar); assessments were made 2 weeksafter laser induction (day 35), and 3 weeksafter the laser induction (day 42)
Adapted from Krzystolik MG, Afshari MA, Adamis AP,et al. Prevention of experimental choroidal neovascularization with intravitreal anti-
vascular endothelial growth factor antibody fragment. Arch Ophthalmol 2002;120:338-346.

especially critical for the recruitment of mural cells (pericytes and
smooth-muscle cells) to the developing vasculature.” Genetic ablation
of PDGF-Bleads to perinatal death from hemorrhages and vascular
system abnormalities” while ablation of the PDGFR-generesults in a
similar phenotype.” Proliferation of mural cells was significantly
reduced in mice lacking either PDGF-B or PDGER-B.* Also, administra-
tion of an aptamerspecific for PDGF-Bledfirst to pericyte loss and then
to regression of tumorvessels in a murine tumor model. These find-
ings indicate that PDGF-B produced by endothelial cells is essential for
the proliferation, migration, and recruitmentof muralcells to the devel-
oping capillaries (Figure 4.5)."°

Studies of ocular neovascularization in mice have provided further
evidence in support of this model. Inhibition of PDGF-B signaling,
whether by genetic ablation in endothelial cells or PDGFR kinase
inhibitors,” led to deficient pericyte recruitment in models ofretinal”
and corneal” neovascularization.

Studies using three different models of ocular neovascularization, in
which PDGF-B and VEGFsignaling were blocked by administration of
an antibody to PDGFR-f or pegaptanib,respectively, have furtherdelin-
eated the respective roles of these molecules.” Physiological retinal
angiogenesis wasinhibited on postnatal day 3 by blocking PDGF-B, but
notbyblocking VEGF,«:; however, combined blockadeprovided greater
inhibition. Conversely, VEGFblockadealoneinhibited the development
of laser-induced CNV, whereas blocking PDGF-B signaling was ineffec-
tive on its own,again,greater inhibition occurredifboth pathways were
blocked. Finally, in a corneal model of neovascularization, PDGF-B
blockade between days 10 and 20 postinjury led to detachmentof mural
cells from corneal neovessels; in contrast, VEGF blockade reduced neo-
vascularization when applied immediately after wounding, butit did
not induce regression ofvessels after they were established. However,
vessel regression was enhancedif both inhibitors were given (Figure
4.6).These experiments suggest that a combination strategy targeting
both VEGF and PDGF-B may be more effective, both in treating estab-
lished neovascularization and in preventing new vessel growth.

FIBROBLAST GROWTH FACTOR2 (FGF2) 

FGF2(also knownasbasic FGF)is a heparin-binding growth factorthat
occurs in several isoforms. FGF2 signals throughfour receptor tyrosine
kinases (FGFreceptor 1 through FGFreceptor 4) andacts ina variety
of developmentalprocesses, including angiogenesis.”
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The role of FGF2 in ocular neovascular disease is not well defined.
Elevated expression of FGF2 has been detected in CNV membranes
from patients with AMD” and in epiretinal membranes from patients
with proliferative DR.” However, exogenous administration of FGE2
produced only subretinal neovascularization that did not penetrate
Bruch’s membrane in an experimental model of CNV. Other studies
foundthat transgenic mice with elevated retinal FGF2 expression devel-
oped CNV following low-intensity laser (sufficient to disrupt photo-
receptors but not Bruch’s membrane) while wild-type mice did not.”
Taken together with studies demonstrating that genetic ablation of the
FGF2 genedid notinhibit the formation oflaser-induced CNV,”these
findings suggest that FGF2isin itself not sufficient to provoke CNV in
the absence of an additional stimulus and that FGF2 mayalso not be
required to induce CNV.

TUMOR NECROSIS FACTOR-o (TNF-a)
TNF-a is the prototypic member ofa superfamily of cytokines that
mediate a variety of biological functions, signaling through a corre-
spondingly large family of receptors.” Several studies have examined
the role of TNF-c. as a mediatorof angiogenesis, but a unified picture
is not yet apparent.

TNF-o. has been found to stimulate angiogenesis in the corneas of
rats® and rabbits.” It is notclear if these representdirect or indirect
effects since TNF-a has been demonstrated to induce expression of
VEGF” and VEGFR2"potently in cultured endothelial cells. TNEF-o.
also upregulates the synthesis of other factors associated with angio-
genesis, including angiopoietin 1 and angiopoietin 2as well as MMP2
and MMP9.*
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Figure 4.3 Evidenceofthe role of inflammation in the model
oflaser-induced choroidal neovascularization (CNV). (A) Genetic
ablation of either CD18 or intercellular cell adhesion molecule-1
(ICAM1) led to marked diminution of the size of laser-induced CNV.
Two weeks following laser injury, stacked confocal images were
takenof fluorescein Griffonia simplicifolia lectin |-labeled tissue within
the laser scars. CNV membranes were significantly reduced in both
mutant strains, compared to wild-type mice. Scale bar, 100 um.
(B) Loss of either CD18 or ICAM1 resulted in fewer lesions of
pathological significance. Fluorescein angiography performedat
1, 2, and 4 weeksafter laser photocoagulation demonstrated that
ablation of either CD18 (blue bar) or ICAM1 (purple bar) resulted in
Significantly fewer grade 2B lesions (those showing pathologically
significant leakage) than were seen in wild-type mice (gold
bar) (mean + SEM: n =5forall groups). Adapted from Sakurai E
Taguchi H, AnandA,etal. Targeted disruption of the CD18 or
ICAM-1 geneinhibits choroidal neovascularization. Invest Ophthalmol!
Vis Sci 2003;44:2743-2749,

Several studies have assessed therole of TNF-o. signaling in angio- |
genesis. In ischemic-induced neovascularization in the limbs of mice,
TNF-a wasessentialfor the mobilization andsurvival of bone marrow-
derived endothelial progenitorcells, induction of VEGF expression and
collateral vessel development.® In another report, administration of
infliximab (a monoclonal antibody to TNF-a)* or etanercept(a soluble
TNF receptor fusion protein) both inhibited the size of laser-induced
CNV in mice. Gene knockout studies, however, have been inconsis-
tent; somestudies found a dependenceofretinal neovascularization on
TNF-a function® whereas others did not.

In clinical studies, elevated levels of TNF-o. have been found in
fibrovascular membranes of patients with proliferative DR®’ and
in surgically excised CNV membranes. Intriguingly, intravenous
administration of infliximab for treatment of rheumatoid arthritis
caused regression of CNV in patients with AMD”; moreover, intrave-
nous infliximab also led to reductions in macular edemain patients
with DME.” It is notclear if these effects of TNF-a are independent of
its upregulation of VEGF:if separate pathwaysare involved, TNF-a
inhibition aloneorin combination with VEGFinhibition could provide
an additional therapeutic option.

 
 

 
 
 
 
 
 
 
 

 
 
 
 

 

 

EPHS AND EPHRINS
ee

Ephs comprisea large family of receptortyrosine kinases that are acti-
vated upon binding with their cognate membrane-bound ligands, the
ephrins.””” EphrinAsare attached to the cell membrane by a glyco-
sylphosphatidy] anchor while the ephrinBs have transmembrane and
cytoplasmic signaling domains (Figure 4.7).The Ephs alsofall into two
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Figure 4.4 Monocytes contribute to pathological retinal neovascularization. In a retinopathy of prematurity model, postnatal day zero (PO)
rats were maintained for 10 days in 80% oxygen, interrupted daily by 30 minutes in room air, followed by a progressive return to 80%
Oxygen. This treatment led to an avascular retina. On P10, corresponding to study day 0 (D0), retinal revascularization was induced by
maintaining the rats in room air for an additional 7 days (D7). (A-C) At D7, pathological neovascularization (PaNV; arrowsin A and B) was
Significantly inhibited by treatment with clodronate liposomes compared to controlliposomes (n = 8 for both treatments; means + standard
deviation). (D) Physiological neovascular area (PhRV) wasnotsignificantly affected by treatment with clodronateliposomes(P > 0.05).
(E-J) Influx of monocytes was observed just before and during pathological neovascularization. (H-J) Monocytes were labeled with a
fluorescein conjugated antibody to CD13 (E and H), while rhodamine-conjugated Concanavalin A was used to label the retinal vasculature
and adherent leukocytes (F and |). As shown by superposition of these figures (panels G and J), the concanavalin A and CD13 staining
co-localized, indicating that the adherent leukocytes were monocytes. (K) In cultured peripheral blood monocytes obtained from
retinopathologic rats at D7, exposure to hypoxia (1% oxygen) led to marked increase in expression of vascular endothelial growth factor
mRNA compared to exposure to normoxia (21% oxygen). PBS, phosphate-buffered saline. Scale bars: (A and B) 0.5 mm and (E-J) 50 um.
Reproduced from Ishida S, Usui T, Yamashiro K,et al. VEGF164-mediatedinflammation is required for pathological, but not physiological,
ischemia-inducedretinal neovascularization. J Exp Med 2003;198:483-489.

Wild type
PDGF-Bdriven

VSMCproliferation
and migration

Figure 4.5 Platelet-derived growth factor (PDGF)-B regulates
the developmentof blood vessel walls. During blood vessel
development, the nascent endothelial tube (yellow) is surrounded vSMC
by undifferentiated mesenchymalcells (gray) which are induced to induction

differentiate into vascular smooth-muscle cells (VSMC), and to form o ~«@eG“” PDGF-B
 

a surrounding sheath (red). During further development of the
vascular network, with concomitant growth and sprouting of blood
vessels, PDGF-B derived from the endothelium further promotes
VSMCproliferation and migration. These proliferative and migratory
responses are reducedin mice in which PDGF-B or PDGFR-B have
been genetically ablated, leading to defective coating of capillaries
by pericytes, as well as to VSMC hypoplasiain larger vessels.
Reproduced from Hellstrom M, Kalen M, Lindahl P, et al. Role of
PDGF-B and PDGFR-betain recruitment of vascular smooth muscle

Reduced vSMC

proliferation
and migration
 

Cells and pericytes during embryonic blood vessel formation in the PDGFR-B
mouse. Development 1999;126:3047-3055. knock-out
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Anti-VEGF
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Ant-PDGFR-B
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Ant-VEGF aptamer +
anti-PDGFR-6 antibody

Figure 4.6 The role of platelet-derived growth factor (PDGF)-B on blood vessel growth and muralcell coverage in a corneal
neovascularization model. (A) Endothelial cells were labeled by staining with lectin (green) and mural cells were stained with an antibody
against smooth-muscle actin (red). Starting at 10 days following cornealinjury, mice received daily intraperitoneal injections of an anti-
PDGFR-B antibody or phosphate-buffered saline (PBS), and were sacrificed at 20 days postinjury. Treatment with the anti-PDGF-B antibody
led to reduced mural cell coverage compared to controls (arrow). Scale bar = 20 um. (B) Following induction of cornealinjury, mice received
daily intraperitonealinjections of one of the following: PBS, a polyethylene-glycolated anti-vascular endothelial growth factor (VEGF) aptamer,
an anti-PDGFR-B antibody, or both the anti-VEGF aptamer and the anti-PDGFR-B antibody. Neovasculature (green) was stained by
fluorescein isothiocyanate-concanavalin A. Neovascularization wassignificantly reduced by the anti-VEGF aptamer compared with either
PBSorthe anti-PEGFR-B antibody (P < 0.01); inhibition of both VEGF and PDGF-Bsignaling led to a furthersignificant reduction (P < 0.05),
comparedto inhibition of VEGF signaling alone. Scale bar = 100 um. Adapted from Jo N, Mailhos C, Ju M, etal. Inhibition of platelet-
derived growth factor B signaling enhancestheefficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular
neovascularization. Am J Pathol 2006; 168:2036-2053.

broad groups, EphA and EphB, with the EphAs binding primarily,
although notexclusively, to members of ephrinA subclass, while EphBs
similarly tend to bind preferentially to ephrinB ligands.

Owing tothe association of ephrins to cell membranes, ephrin-Eph
signaling requirescell-cell contact. A notable feature oftheir interaction
is that signaling can proceed not only in the forward direction, through
activation of Eph kinases, but also in the reverse direction. Their inter-
actions are critical for a wide variety of process, including prope
patterning in the development of the nervous”+ and cardiovascular”
systems, immunecelltrafficking,” angiogenesis,” and insulin secretion
by pancreatic B cells.”°

Exhibit 2084

Page 10 of 19

There are relatively few studies of ephrinA/EphA signaling in angio-
genesis or ocular neovascularization. EphA--deficient endothelial cells
were unable to migrate and form capillary tubes,” and the administra-
tion of soluble EphA2 receptors, which would be expected to block
EphA2 signaling, was found to inhibit neovascularization in rodent
corneal” and retinal” models.

There is more support for the importance of ephrinB/ephB interac-
tions in angiogenesis, especially with respect to ephrinB2 and EphB4;
ablation of either gene led to defective vascular development.'”!
Their respective expression patterns are believed to underlie the
establishmentofarterial or venous identity, with ephrinB2 reported to
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Figure 4.7 Ephrins and their Eph receptors. While both ephrins and
Eph receptors are membrane-tethered proteins, ephrinBs traverse
the membrane and possess a cytoplasmic signaling domain while
ephrinAs do not. Ephrin-Eph binding results in receptorclustering,
followed by autophosphorylation of multiple tyrosine residues and
docking of downstream effectors through src-homology domains.
The presence ofa sterile alpha motif (SAM) and a PDZ domain
(shown here for the carboxy-terminus of EphA,but also present in
EphB), promotes ligand-induced receptor clustering. Reproduced
from Dodelet VC, Pasquale EB. Eph receptors and ephrin ligands:
embryogenesis to tumorigenesis. Oncogene 2000;19:561 4—-5619.

be expressed primarily on arteries” and EphB4 predominantly on
veins." EphrinB2 also has been foundto be involved in recruitment
of mural cells to microvessels.”

EphrinB2, EphB2, and EphB3 wereall expressedin fibroproliferative
membranesofpatients with retinopathy of prematurity and prolifera-
tive DR."* However, experimental models have yet to resolve com-
pletely the role of EphB/ephrinB signaling in ocular neovascular
disease. Angiogenesis was promoted in corneal models by ephrinB2™
aswell as by fusion proteins EphB1-Fc,” and ephrinB2-Fc';in contrast,
soluble monomeric EphB4"™"’ or ephrinB2 inhibited the development
of pathological neovascularization."® Further investigation is required
to delineate the molecular mechanismsinvolvedin these effects.

NOTCHMe

Notch is a 300-kDa transmembraneprotein, represented in mammals
by four members, Notch1 through Notch4. Notchis activated by trans-
membraneligandsduringcell to cell contact; in mammals,these ligands
are Jagged1, Jagged2, and the Delta-like family (DIl1 through Dil4, with
Dll4 being the mostintensively investigated). Ligand binding leads to
the proteolytic cleavage of Notch,releasing an intracellular domain that
is translocated to the nucleus,inducingtranscription of Notch-activated

genes.” Notch signaling plays a key role in pattern formation in a
__ wide variety of tissues, and is essential for such disparate processes as

_ somitogenesis, neurogenesis, and developmentof the kidney and the
cardiovascular system.”
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Studies on Notch signaling in angiogenesis have identified Dll4 as
the principal Notch ligand mediating vascular development.”° In a
study of the developing retinal vasculature, D1I4 wasexpressedin tip
cells at the end of vascular sprouts, as well as in stalk cells, capillaries,
arterial endothelium, and mural cells of mature arteries.’ In addition,
inhibition of Dll4/Notch signaling caused dramatic increases in tip
cell formation, endothelialcell proliferation, and filopodial extension."”
Furthermore, heterozygous ablation of the murinedll4 gene also led to
hyperbranching of the retinal vasculature (Figure 4.8)” while in a
tumor model, blockade of Dil4 led to increased, but poorly organized,
tumorvascularity and decreased tumor growth.’

Taken together, these findings suggest that Dll4 acts as a negative
regulator of VEGF signaling to control aberrant angiogenic sprouting
and branching.It remains to be seen whether interference with Notch
signaling will provide another means of controlling angiogenesis, inde-
pendentof VEGF, or whetherit leads to excessive sprouting without a
reduction in neovascular mass.

ANGIOPOIETINS

The angiopoietins 1 through 4 (Ang1—Ang#) are secreted ligands for
Tie2, a receptor tyrosine kinasethat is found primarily on endothelial
cells and plays an essential role in the development and remodeling of
the vasculature. Ang and Ang? are the mostintensively investigated
membersof the group, with Ang! activating Tie2 and Ang2 usually
functioningas a Tie2 antagonist." Genetic ablation of Tie2 was found
be embryonically lethal due to vascular defects"; similar defects
occurred with Ang] ablation’ or overexpression of Ang2."”” Both Ang1
and Ang? havebeenstudied extensively as potential therapeutic targets
for affecting angiogenesis.

Angiopoietin 1
In angiogenesis, Ang] acts as a chemoattractantfor endothelial cells"
while also promoting endothelial cell sprouting andfacilitating tissue
invasion by nascent blood vessels through activation of MMPs."” In
transgenic mice, blood vessels induced by overexpression of VEGF
were leaky, while the vessels induced by overexpression of Angl were
nonleaky; coexpression of both molecules had an additive effect on
angiogenesis but the resulting vessels were nonleaky, suggesting that
Angl may reduce the vascular permeability resulting from chronic
inflammationandelevatedlevels of VEGF.” Ang] also has been found
to suppress VEGF-mediated induction of inflammatory markers such
as ICAM-1,vascularcell adhesion molecule-1,""' and tissuefactor.’
These actions are consistent with the overall action of Ang] asa stabi-
lizer of the quiescent vasculature.”

In studies with rodent models, the overexpression of Angl was
found to inhibit laser-induced CNV andischemia-inducedretinal neo-
vascularization, while also reducing VEGF-mediated retinal vascular
permeability,”* butit had no effect onestablished neovascularization.’”
Togetherthese studies suggest that intravitreal injection of Ang1 could
prove a useful approach in preventing ocular neovascularization and
inflammation.

Angiopoietin 2
Theprincipal sites of Ang2 synthesis are endothelial cells,!”° andarterial
smooth-musclecells.’*° Ang? expressionis especially markedatsites of
vascular remodeling,"and it is upregulated by hypoxia and VEGR.7"*
Ang?acts primarily to destabilize the vascular endothelium,it is stored
in Weibel-Palade bodies of endothelial cells (Figure 4.9)" and is
released in response to exogenous stimuli such as proinflammatory
cytokines.'”

Clinically, Ang2 has been foundin association with VEGFin highly
vascular areas of CNV membranesin patients with a variety of ocular
conditions, as well as in the vitreous of eyes of patients with
DR.” There is evidence that Ang2 and VEGF mayact cooperatively
in inducing ocular neovascularization. In rodent models, Ang2
enhanced corneal neovascularization in combination with VEGF, while
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Figure 4.8 Inhibition of Delta4 signaling leads to increased vessel mass. Compared to wild-type (Wt) mice(A), retinal vessels stained at
postnatal day 5 in mice for which al/4 was heterozygously ablated (B) show hyperbranching within the vascular plexus(a, artery; v, vein).
Retinal vessels were stained with isolectin B,, Scale bar, 250 um. Adapted from Suchting S, Freitas C, le Noble F, et al. The Notch ligand
Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 2007;104:3225-3230.

Quiescent/Resting vasculature

Ang-t/Ang-2 gp ®

=
Activation/WPBrelease

Ang-1/Ang-2

a er

Activated/Responsive vasculature

Figure 4.9 Regulation of vascular responsiveness by angiopoietins
Ang1 and Ang2. Ang1 (multimeric, white) is secreted constitutively at
a low level by mural (periendothelial) cells, and acts on the resting
endothelium to sustain a low-level activation of Tie2, thereby helping
to maintain the luminal cell surface in an antithrombotic and

antiadhesive state (upper panel). Ang2 (dimeric, grey) is stored
in Weibel-Palade bodies (WPB) in the endothelium, and during
endothelial cell activation is released from them, along with other
stored factors, leading to the Ang1/Ang2 ratio being altered morein
favor of Ang2 (lower panel). As a result, the endothelial cell layer
becomesdestabilized and more responsive to proinflammatory
stimuli. Reproduced from Pfaff D, Fiedler U, Augustin HG. Emerging
roles of the angiopoietin-Tie and the ephrin-Eph systems as
regulators of cell trafficking. J Leukoc Biol 2006;80:7 19-726.
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insufficient on its own,'” and inhibition of Ang2 prevented VEGF-
induced corneal neovascularization.'* Studies also have shown that
Ang2 and VEGFcan act synergistically to enhance the permeability of
retinal endothelium.’ Depending on the concomitant levels of mole-
cules such as VEGFor Ang], Ang2 can increase or decrease angiogen-
esis.In transgenic mice, induction of Ang? expression in the presence
of elevated VEGFlevels led to increased neovascularization, whereas
induction of Ang2 when VEGFwasnotelevatedledto its regression.'*
These interactions haveled to the suggestion that the administration of
Angz2,in combination with a VEGF antagonist, might provide a thera-
peutic approach in treating ocular neovascularization.'”

ERYTHROPOIETIN 

Erythropoietin is a 30-kDa glycoprotein, upregulated by hypoxia, and
knownprimarily forits actions as an inducer of erythropoiesis.'** Other
functions of erythropoietin are being defined, however, including
neuroprotection,’ and promotion of angiogenesis. Erythropoietin has
been shown to contribute to angiogenesis in response to ischemia
through upregulation of VEGF/VEGFRandin promoting recruitment
of endothelial progenitorcells.”

Clinical evidence supporting a role for erythropoietin in ocular neo-
vascularization comes from studies demonstrating elevations of eryth-
ropoietin in the eyes of patients with DME,'' and DR,especially in
casesofactive proliferative disease,” and an increasedrisk of retinopa-
thy of prematurity in infants treated with erythropoietin.’ Moreover,
in a murine modelof retinopathy of prematurity, neovascularization
was significantly inhibited by a soluble form of the erythropoietin
receptor.'” While these preliminary findingsare suggestive, additional
evidence is required to establish erythropoietin as a molecular target
for antiangiogenesis therapy.

MATRIX METALLOPROTEINASES 

MMPs,a large group of enzymes that promote angiogenesis through
their degradative action on the extracellular matrix, have been exten-
sively investigated given their importance in tumorvascularization and
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metastasis.’ Several studies also have examined theirrole in promot-
ing ocular neovascularization. In cultured RPEcells, MMP expression
was upregulated by angiogenic factors, including VEGF,” FGF2," and
TNF-o." MMPs were also found to cleave matrix-bound forms of
VEGEF, releasing soluble fragments and altering its bioavailability.“
Another MMP action related to angiogenesis involved exposing a
cryptic epitope of collagen IV that is needed forfull expression oflaser-
induced CNV in mice."

INTEGRINS 

Integrins comprise a family of heterodimeric cell surface receptors that
mediate cellular responsesto extracellular matrix ligands suchasfibro-
nectin and vitronectin. They have been studied intensively for their
importance in cancer, where they affect tumor angiogenesis, growth,
and metastasis.” At least two dozen combinations between different
a. and B subunits have been identified.

Several studies have defineda role for , integrins (particularly o,B;,
o%B3, and o,Bs) and osB; in the pathogenesis of ocular neovascular
disease. Expressionof 0,83; was identified in active neovascular lesions
of eyes with AMDandproliferative DR, while o,B; was found only in
eyes with proliferative DR; neither integrin was expressed on mature
quiescent blood vessels." Inhibition of ocular neovascularization by
blocking o.,B; integrin responses has been demonstrated in experimen-
tal models using peptide antagonists,” and a monoclonal antibody
conjugated to mitomycin C.'” Agents that target both a,B3 and Bs
havealso shown utility in preventing experimental ocular neovascular-
ization; these include a peptide antagonist,“ a peptide conjugated to
a proapoptotic sequence,’' and the small-molecule antagonists,
SB-267268,'° EMD478761,' and JNJ-26076713.'*

Interactions between the of, integrin andits ligand fibronectin
have been foundto contribute to an angiogenic pathwaythatis distinct
from that of VEGF'*; moreover, blocking os8;-mediated responses
has been shown to reduce ocular neovascularization in a variety
of murine models. JSM5562, a small-molecule antagonist, decreased
corneal neovascularization,'* while the related molecule JSM6427
reduced the formation of laser-induced CNV’ and ischemia-induced
retinal neovascularization.'* JSM6427 also blocked migration and
tube formation in cultured endothelial cells, suggesting a key role for
asB,/fibronectin interactions in these processes.'* Taken together,
these investigations suggestthat inhibiting integrin-mediated responses
is a promising approach in the treatment of ocular neovascular
disease.

COMPONENTS OF THE COMPLEMENT
CASCADE
 

Several lines of evidence have identified a role for the complement
cascadein ocular neovascular disease. Genetic studies have identified
an association between specific haplotypes of factor H, a regulatory
componentin complementfunction, and an elevated risk of developing
neovascular AMD."” Complement factors C3a and C5a have been
detectedin the drusen foundin the eyesof patients with AMD;further-
more, subretinal deposits of C3a and C5a were generated early in the
course oflaser-induced CNV in mice.’

Studies have demonstrated that genetic ablation of C3"or the recep-
tors for C3a and C5a™inhibited laser-induced CNV in mice. These
findingsalso correlated with reductions in the levels of VEGF'" and
in leukocyte recruitment,supporting the hypothesis that comple-
ment-mediated inflammation plays an active role in CNV.

INHIBITORS OF ANGIOGENESIS

Much research has focused on the factors that promote angiogenesis
in ocular neovascular disease, yet several naturally occurring endoge-
nous inhibitors also have been identified. These include pigment
epithelium-derived factor (PEDF), soluble VEGFR1, the complement
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regulatory protein CD59, VEGF,,,b
tRNAfragment.

PIGMENT EPITHELIUM-DERIVED FACTOR

isoforms, and the tryptophanyl-

 

PEDFis a 50-kDaglycoprotein, highly expressed by the RPE,that
exhibits many properties expected of an endogenousinhibitor of angio-
genesis. Specifically, PEDF inhibited endothelial cell migration’ and
induced endothelial cell apoptosis in vitro! and inhibited aberrant
blood vessel growth in a murine modelof ischemia-induced retinopa-
thy.'** Moreover, PEDF has been shown to downregulate VEGF expres-
sion in endothelial cells,"® to inhibit VEGF-induced endothelial cell
permeability, and to inhibit VEGF-induced signaling throughVEGFR1.'”

Clinical studies have yielded inconsistent findings, in that vitreous
PEDFlevels have beenreported to be lower'® or, alternately, higher"
in patients with proliferative DR. While retinal neovascularization in
preclinical models was shown to be inhibited by PEDF administered
byinjection’ or by expression from a transgene,” another studydeter-
minedthatthe effects of PEDF on laser-induced CNV were dose-depen-
dent, with inhibition occurring at low doses and promotion seen at
higher doses.'”!

PEDFhas undergoneevaluation in a phaseItrial in which a single
intravitreal injection of an adenoviral vector expressing human PEDF
was administered to patients with AMD;results were favorable, with
most subjects experiencing either an improvement or no change
in vision at 6 months postinjection.’” However, until the inconsistencies
found in animal models with regard to dose-related promotion of
CNV are resolved," particular caution is required in theclinical use
of PEDF.

SOLUBLE VEGF RECEPTOR1
eee

Soluble VEGFR1is an alternately spliced, secreted isoform that lacks
the exons coding for the transmembrane and signaling domains."
Since soluble VEGFR1 binds to VEGFandblocks its interaction with
VEGFreceptors,it acts as a naturally occurring inhibitor of neovascu-
larization and has been found to be essential for preserving corneal
avascularity.’* As previously mentioned, an engineered molecule con-
taining the VEGF-binding domains, both VEGFR1 and VEGER2 (VEGF-
Trap), is being examinedclinically as a therapeutic agent.

VEGFyxxb ISOFORMS
ey

VEGF,,,b denotesa family of VEGFisoforms, parallel to those normally
consideredfor their impacts on angiogenesis, but which havean altered
carboxy-terminus dueto alternativesplicing; the resulting variants can
bind VEGFR-2, but since they cannot mediate downstream signaling
they serve as endogenous competitive inhibitors of VEGF VEGF,,,.b
isoformsconstituted 64% of the total VEGFin the vitreous of nondia-
betic patients and only 12%ofthe total VEGFin the vitreousof diabetic
patients.” In studies with murine models of corneal!and retinal”
neovascularization, administration of VEGF,,,b inhibited blood vessel
growth. Together, these findings suggest that VEGF,,,b isoforms may
be a component of normal homeostasis and thattheir downregulation
maycontribute to the pathogenesis of ocular neovascular disease. The
efficacy of anti-VEGF agents may thus depend onthe local VEGF
isoform expression pattern.

COMPLEMENTARY REGULATORY
PROTEIN C59
Sener

As mentioned previously, the extent of laser-induced CNV in a mouse
model was dependent on several components of the complement
cascade. Further support for this mechanism has come from a recent
study showingthatablation of CD59, a complement regulatory protein,
promoted the developmentof CNV in mice, while intravitreal or intra-
peritoneal administration of a soluble CD59-Fe fusion protein was
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inhibitory.'” These findings suggest that C59 serves as an endogenous
inhibitor of ocular neovascularization, by downregulating the comple-
mentcascade, and it has been proposedthata soluble form of C59 could
serve as a therapeutic agent.

TRYPTOPHANYL-tRNA SYNTHASE
FRAGMENT

Tryptophanyl-tRNAsynthase fragment(T2-TrpRS)is a 43-kDa natural
cleavage product of tryptophanyl-tRNA synthase’ that was shown
to inhibit both physiological retinal angiogenesis and VEGF-induced
angiogenesis in murine models.’* In a retinopathy of prematurity
model, T2-TrpRS dramatically inhibited preretinal pathological tuft
formation while enhancing physiological revascularization of the oblit-
erated retinal vasculature.’” These actions may result from its binding
to vascular endothelial cadherin, a componentoftheintercellular junc-
tions between endothelialcells.” Recently, the combination of T2-TrpRS
and an anti-VEGF aptamerstrongly inhibited pathological neovascu-
larization in a retinopathy of prematurity model.’ This promising
combination approach merits further exploration in the treatment of
ocular neovascular disease.

OTHER INHIBITORS

Asindicated in Table 4.1, there are numerous endogenousfactors
which have antiangiogenic activity. While the present chapter
has focused on certain factors for which evidence supports a role in
ocular neovascularization, a comprehensive discussion of endogenous
inhibitors is beyond the scope of this chapter. For a comprehensive
discussionof these factors, the readeris referred to the review by Zhang
and Ma.'?

SUMMARY

Systematic study of the mechanisms underlying pathological ocular
neovascularization in preclinical models as well as in humans
hasyielded a wealth of knowledge about the numerous proangiogenic
andantiangiogenic factors that modulate these processes. A major focus
of research has been the role of the angiogenic promoters, the most
potent of which (identified to date) is VEGF. VEGF’s properties as the
principal inducer of vascular permeability and its upregulation in a
hypoxic environment also greatly influence the pathology associated
with ocular neovascularization. PDGF-B,a molecule structurally related
to VEGE, is especially crucial for the recruitment of pericytes and
smooth-muscle cells to the developing vasculature andplays a key role
in neovascularization of the retina and cornea. The contributions of

TNF-o. and erythropoietin in angiogenesis have not been as well
elucidated.

Investigations involving several other ligand receptor systems
have also provided evidenceof their contributions to vascular develop-
ment. These include the Eph kinases and their ephrin ligands, which
appearto becritical for establishing arterial and venous identity, and
the angiopoietins, Ang1 and Ang2. Overall, Ang] acts to stabilize the
vasculature, and inhibits VEGF-induced increases in vascular perme-
ability, while Ang? is primarily a destabilizing agent, which, depending
on the experimental conditions, can interact with VEGFeither to
promote neovascularization or to induceits regression. Anothersignal-
ing pathway, the Dll4-Notch system, also acts to regulate vascular
patterning by inhibiting VEGF-induced angiogenic sprouting and
branching.

Finally, three other importantclasses of angiogenic promoters have
been identified: the MMPs, integrins, and components of the comple-
ment cascade. The MMPsaffect VEGFsignaling by releasing it from
sequestered deposits in the extracellular matrix and also by exposing a
cryptic collagen epitope that has been found to promote ocular neovas-
cularization. The integrins, which are well established as mediators of
interactions between the extracellular matrix and intercellular compo-
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nents, have recently been shown to beinvolved in ocular neovascular-
ization as well. With respect to the complement cascade, genetic
studies have demonstrated an increased risk of AMD for certain
haplotypes of factor H, while preclinical studies have demonstrated
roles for factors C3a and C5a in the development of ocular
neovascularization.

Several naturally occurring factors have been identified as potential
inhibitors of ocular neovascularization. PEDF acts in many assays to
inhibit angiogenesis, but it may also promote angiogenesis in some
contexts. Endogenous inhibitors of VEGF signaling have also been
found; these include soluble VEGFR1 anda groupofalternately spliced
isoforms, denoted VEGF,,,b. Finally, T2-TrpRS, a naturally occurring
fragment of the enzyme tryptophanyl-tRNA synthase as well as the
complementregulatory protein C59, have been foundto inhibit ocular
neovascularization in experimental models.

Research investigating the roles of these molecules in regulating
angiogenesis has already yielded clinical benefits. Two agentstargeting
VEGE, pegaptanib and ranibizumab, have received clinical approval
for AMD while alternative strategies for inactivating VEGF signaling,
including RNAinterference and a VEGFreceptor fusion protein, are
under active study. Infliximab, an antibody against TNF-a, has also
shown promise in small-scale clinical studies, while preclinical studies
suggest that PDGF-B, components of the complementcascade, and the
a; integrins are potential molecular targets. Moreover, the endogenous
inhibitors mayalso proveclinically useful. Thus a variety of agents,
whether administered alone or as adjunctive therapy with agents tar-
geting VEGF,offer the promise of expanding the range of treatments
for ocular neovascular diseases.

Key points

e Systematic study of the mechanisms controlling angiogenesis
has led to the identification of a number of proangiogenic and
antiangiogenic factors active in ocular neovascularization.

e VEGFhas beenestablished as a master regulator
of angiogenesis and a potent promoter of vascular
permeability, making it an attractive target in treating
ocular neovascularization. Two anti-VEGF agents have
been approved,with othersin clinical trials.

e PDGF-Bplays a crucial role in the recruitment of mural cells to
developing blood vessels; combination approachestargeting
PDGF-B and VEGF are especially effective against ocular
neovascularization in preclinical models.

e TNF-a has been shown to promote pathological angiogenesis in
preclinical studies while small case series involving TNF-a
inhibition have demonstrated therapeutic effects in ocular
neovascular disease.

e In keeping with its inflammatory nature, components C3a and
C5a of the complement cascade may contribute to the
development of ocular neovascularization.

e Integrins are involved in an angiogenic pathway distinct
from that of VEGF; small-molecule inhibitors of a8; have been
shownto reduce ocular neovascularization in preclinical
models.

e MMPspromote angiogenesis by degrading the extracellular
matrix to facilitate invasion by nascent blood vessels, by
releasing matrix-bound growth factors, and by exposing cryptic
proangiogenic epitopes.

e Several ligand receptor systems, including the angiopoietins-
Tie2, ephrins-Eph kinases, and Delta4-Notch,are all
essential for angiogenesis, but further work is required before
this knowledge can be exploited in developing new therapies.

e Various endogenousinhibitors of angiogenesis have been
identified which may prove useful as therapeutic agents. These
include PEDF, complement regulatory protein C59, soluble
VEGFR1, a fragment of tryptophanyl-tRNA synthase, and
alternatively spliced VEGF isoforms.
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