ELASTIC - EXHIBIT 1010

Data Structures

and Algorithms

ALFRED V. AHO

Bell Laboratories
Murray Hili, New Jersey

JOHN E. HOPCROFT

Cornell University
Ithaca, New York

JEFFREY D. ULLMAN

Stanford University
Stanford, California

This book is in the
ADDISON-WESLEY SERIES IN
COMPUTER SCIENCE AND INFORMATION PROCESSING

Michael A. Harrison
Consulting Editor

Library of Congress Cataloging in Publication Data

Aho, Alfred V.

Deata structures and algorithms.

1. Data structures {Computer science) 2. Algorithms.
I. Hopcroft, John E., 1939~ 11, Ullman,

Jeffrey D., 1942- . III. Title.
QA76.9.D35A38 1982 001.64 82-11596

1SBN 0-201-00023-7

Reproduced by Addison-Wesley from camera-ready copy supplied by the authors.

Reprinted with corrections April, 1987

Copyright © 1983 by Bell Telephone Laboratories, Incorporated.

rt of this publication may be reproduced, stored in a re-
d, in any form or by any means, electronic, mechanical,
herwise, without the prior written permission of the pub-
Published simultaneously in Canada.

All rights reserved. No pa
trieval system, of transmitte

photocopying, recording, or ot
lisher. Printed in the United States of America.

. ISBN: 0-201-00023-7

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6

Chapter 3

3.1
3.2
33
3.4

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12

Contents

Design and Analysis of Algorithms

From Problems to Programscovrirrmieiirer e 1
AbStract Data TYDES ..ocouvenierrrrmriienr et 10
Data Types, Data Structures, and Abstract Data TYPES ..ovirmeenes 13
The Running Time of @ Program ... 16
Calculating the Running Time of a Program............ooooooeeeeen 21
Good Programming Practice ..o 27
SUPEL PASCALL..veivreeeisiren i 29

Basic Data Types

The Data Type “List™ ..oouviiriormmiiiii e ¥
Implementation of Listsccocooiirrii 40
T < TUTTT T U O PP PRSP SSPRTE ST PYSRIVESTEER LD 53
QUGBS 1o emercreesianssrre s e e ees s r s e 56
MAaPPINES «.vvvvneereirin i et 61
Stacks and Recursive Procedurescoooviiiniiinnn 64
Trees

Basic Terminology ... coooeorrrrerrnriiiniimeiier s 75
The ADT TREE ...ttt it 82
Implementations of TrEEsoocoiiiri e 84
BINATY TTEES ..vvniiiiiisrrrvernrrcnniiiiibii st 93

Basic Operations on Sets

INtroduCtion £0 SEESvuirreeeienrinriierarrarire e aieaes 107
An ADT with Union, Intersection, and Difference 109
A Bit-Vector Implementation of Sets........oooooiiniiiniin 112
A Linked-List Implementation of Setscooovviiieennnn 115
The DICHODMAIY «..uveieaiiries sttt 117
Simple Dictionary Implementationsooovinniiiciininin 119
The Hash Table Data Structlre.....o.oooviiiiienainie 122
Estimating the Efficiency of Hash Functions..........ccccooennnns 129
Implementation of the Mapping ADTcoooiiiiiniininns 135
Priority QUELES ...ccoo oo rirnrrmresrsrrrenssanrns s e 135
Impiementations of Priority Queues ..o 138
Some Complex Set SIIUCUTES L.vvverrivrionsiermieiinr e 145

Chapter 5

5.1
52
53
5.4
5.5
5.6

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Chapter 7

7.1
7.2
7.3
7.4
7.5

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Chapter 9

9.1
9.2
9.3
9.4

Chapter 10

10.1
10.2
10.3
10.4
10.5

CONTENTS

Advanced Set Representation Methods

Binary Search Treeso.ovvevvriniimniiiiin 155
Time Analysis of Binary Search Tree Operations 160
S £ T P PSP OP S UOTN 163
Balanced Tree Implementations of Sets...........cccooviiiieeeian,s 169
Sets with the MERGE and FIND Operationsc........ 180
An ADT with MERGE and SPLITc..cooinviiiiiineininnee 189
Directed Graphs

Basic Definttionscoocciviiiiiiiiiiii e 198
Representations for Directed Graphs..........cocciiviiiinnnicinnnn, 199
The Single-Source Shortest Paths Problemcccvveinee. 203
The Ali-Pairs Shortest Path Problem 208
Traversals of Directed Graphsoooccoiiiiiicinnnnn 215
Directed Acyclic Graphs..........ccooviviiiinniniiiiine s 219
Strong COMPONEINTS ...uiieiiiii it e et e e 222
Undirected Graphs

Definitions PP 230
Minimum-Cost Spanning Treesooooeiiiiieciiiiiiciiienen, 233
Traversals c..occeieriiniiiiniiiiriin it e 239
Articulation Points and Biconnected Components.................. 244
Graph Matchingcocoviviniiiiiiiiiieri e e eneea s 246
Sorting

The Internal Sorting Model...........co.oiinininininn i, 253
Some Simple Sorting Schemes..........o..oocivviiinn e 254
L0111 4.0 ¢ S OO OPPTI 260
Heapsort ..., 271
Bin SOTHIMEvviviiiitiiniiiinieiraiiniiie i rsisanairsasnanns 274
A Lower Bound for Sorting by Comparisons.........ccc.vecvviinns 282
Order SEAbISLCS. ... veetyemeeriicnie e e ee e 286
Algerithm Analysis Techniques

Efficiency of Algorithms ..o 293
Analysis of Recursive Programs..........c..coeiviininienicnnnennns 294
Solving Recurrence Equationsco.oeeeiniineninns 296
A General Solution for a Large Class of Recurrences 298

Algorithm Design Techniques

Divide-and-Conquer Algorithms..........coccovvnviiivinnenininnn, 306
Dynamic Programmingcccoverimiinniimininiisinisnnn, in
Greedy Algorithms ..o 321
BackiracKing.....oovveeieiieiieiei et e 324

Local Search Algorithmscoooeiiiiiiiiiiii i 336

CONTENTS

Chapter 11

i1.1
11.2
11.3
11.4

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6

xi

A Mode! of External COMPUEALIONevererrrreerrsnrriseene 347
Eternal SOTENE .veeoverrrerensssmmrsmsirr sty 349
Storing Information in Files ..oy 361
External Search TIBES ..o verrsrmeememinsmseursmmsrmrssnnns 368

Memory Management

The Issues in Memory Managementocurmmerrerssnsmsnses 378
Managing Equal-Sized BLOCKS «eevvieranmerrermenssimnannnanarsnasannens 382
Garbage Collection Algorithms for Equal-Sized Blocks 384
Storage Allocation for Objects with Mixed SHZES vecnrninnarirnns 392
Buddy SYSTEMS ...cvvvverersenirsnenses st 400
Storage COMPACHION ...covrsmesrnersessrensn sy 404
BADHOGIAPRY «..ocovvcevereaeemesssonsms s 411
FRACX o eveereeresemeeeeriesan e e s 419

CHAPTER 3

Trees

A tree imposes a hierarchical structure on a collection of items. Familiar
examples of trees are genealogies and organization charts. Trees are used to
help analyze electrical circuits and to represent the structure of mathematical
formulas. Trees also arise naturally in many different areas of computer sci-
ence. For example, trees are used to organize information in database sys-
tems and to represent the syntactic structure of source programs in compilers.
Chapter 5 describes applications of trees in the representation of data.
Throughout this book, we shall use many different variants of trees. In this
chapter we introduce the basic definitions and present some of the more com-
mon tree operations. We then describe some of the more frequently used data
structures for trees that can be used to support these operations efficiently.

3.1 Basic Terminology

A tree is a collection of elements called nedes, one of which is distinguished as
a root, along with a relation (‘‘parenthood”) that places a hierarchical struc-
ture on the nodes. A node, like an element of a list, can be of whatever type
we wish, We often depict a node as a letter, a string, or a number with a cir-
cle arourd it. Formally, a tree can be defined recursively in the following
manner.

1. A single node by itself is a tree. This node is also the root of the tree.

2. Suppose n is a node and T, T, ...,T, are f(rees with roots
ny, Mg, ..., N, respectively. We can construct a new tree by making n
be the parent of nodes ny, ny, . .. ,m. In this tree »# is the root and

Ty, T3, ...,T, are the subtrees of the root. Nodes nj, n,, . .. ,n are
called the children of node n.

“Sometimes, it is convenient to include among trees the null tree, a “tree” with
no nodes, which we shall represent by A.

“Example 3.1. Consider the table of contents of a book, as suggested by Fig.
: 3.1(a). This table of contents is a tree. We can redraw it in the manner
shown in Fig. 3.1(b). The parent-child relationship is depicted by a line.
Trees are normally drawn top-down as in Fig. 3.1(b), with the parent above
. the child.

""The root, the node called “Book,” has three subtrees with roots
Corresponding to the chapters Cl, C2, and C3. This relationship is
Teépresented by the lines downward from Book to Cl, C2, and C3. Book is
th_e parent of C1, C2, and C3, and these three nodes are the children of Book.

76 TREES

Book . Book
Cli]
st,1
51.2 Ct c2 C3
C2
o / \ / \
s2.1.1 sl.1 s1.2 s2.1 522 2.3
§2.1.2 / \
s2.2
23 s2.11 s2.1.2
C3
(2) (b)

Fig. 3.1. A table of contents and its tree representation.

The third subtree, with root C3, is a tree of a single node, while the other
two subtrees have a nontrivial structure. For example, the subtree with root
C2 has three subtrees, corresponding to the sections s2.1, 52.2, and s2.3; the
last two are one-node trees, while the first has two subtrees corresponding to
 the subsections s2.1.1 and s2.1.2. D

"Example 3.1 is typical of one kind of data that is best represented as a
tree.” In this example, the parenthood relationship stands for containment; a
parent node is comprised of its children, as Book is comprised of C1, C2, and
C3. Throughout this book we shall encounter a variety of other relationships
that can be represented by parenthcod in trees.

If ny,ny ... ,m is a sequence of nodes in a tree such that m; is the
parent of n;y for 1 = i < k, then this sequence is called a path from node n,
to node n;. The length of a path is one less than the number of nodes in the
path, Thus there is a path of length zero from every node to itself. For
exampie, in Fig. 3.1 there is a path of length two, namely (C2, s2.1, s2.1.2)
from C2 to s2,1.2.

If there is a path from node a to node b, then a is an ancestor of b, and b
is a descendant of a. For example, in Fig. 3.1, the ancestors of s2.1, are
itself, C2, and Book, while its descendants.are itself, s2.1.1, and s2.1.2.
Notice that any node is both an ancestor and a descendant of itself.

An ancestor or descendant of a node, other than the node itself, is called
a proper ancestor or proper descendant, respectively. 1n a tree, the root is the
only node with no proper ancestors. A node with no proper descendants is
called a leaf. A subtree of a tree is a node, together with all its descendants,

The height of a node in a tree is the length of a longest path from the
node to a leaf. In Fig. 3.1 node C1 has height 1, nede C2 height 2, and node
C3 height 0. The height of a tree is the height of the root. The depth of a
node is the length of the unique path from the root to that node,

10

11

12

3.1 BASIC TERMINOLOGY g1

at ny, and a+b and a+c are the expressions represented by ny and n,, respec-
tively. O

Fig. 3.7. Expression tree with labels.

Often, when we produce the preorder, inorder, or postorder listing of a
tree, we prefer to list not the node names, but rather the labels. In the case
of an expression tree, the preorder listing of the labels gives us what is known
as the prefix form of an expression, where the operator precedes its left
operand and its right operand. To be precise, the prefix expression for a sin-
gle operand a is a itself. The prefix expression for (E;) @ (E;), with 0 a
binary operator, is 8P ,P;, where P and P, are the prefix expressions for E;
and E,. Note that no parentheses are necessary in the prefix expression, since
we can scan the prefix expression 8P.P, and uniquely identify P, as the shor-
test (and only) prefix of PP, that is a legal prefix expression.

For example, the preorder listing of the labels of Fig. 3.7 is *+ab+ac.
The prefix expression for n,, which is +ab, is the shortest legal prefix of
+ab+tac,

Simiiarly, a postorder listing of the labels of an expression tree gives us
what is known as the postfix (or Polish) representation of an expression. The
expression (£} 8 (E,) is represented by the postfix expression P,P,8, where
Py and P, are the postfix representations of E| and E;, respectively. Again,
no parentheses are necessary in the postfix representation, as we can deduce
what P, is by looking for the shortest suffix of PP, that is a legal postfix
expression. For example, the postfix expression for Fig. 3.7 is ab+ac+*. If
‘we write this expression as P ,P,%, then P, is ac+, the shortest suffix of
ab+ac+ that is a legal postfix expression.

13

14

3.2 THE ADT TREE 83

4, LABEL(n, T) returns the label of node n in tree T. We do not, however,
require labels to be defined for every tree.

5. CREATEi(v, Ty T; ...,T;) is one of an infinite family of functions,
one for each value of i = 0, 1,2, CREATE{ makes a new node r
with label v and gives it i children, which are the roots of trees
T, Ta ...,T; in order from the left. The tree with root r is returned,
Note that if { = 0, then r is both a leaf and the root.

6. ROOT(T) returns the node that is the root of tree T, or A if T is the nuill
tree.

7. MAKENULL{T) makes T be the null 'tree.

Example 3.5. Let us write both recursive and nonrecursive procedures to take
a tree and list the labels of its nodes in preorder. We assume that there are
data types node and TREE already defined for us, and that the data type
TREE is for trees with labels of the type labeltype. Figure 3.8 shows a recur-
sive procedure that, given node n, lists the labels of the subtree rooted at n in
preorder. We call PREORDER(ROOT(T)) to get a preorder listing of tree T.

procedure PREORDER (#: node);
{ list the labels of the descendants of n in preorder }
var
¢: node;
begin
print(LABEL(n, T));
¢ = LEFTMOST_CHILD(n, T);
while ¢ <> A do begin
PREORDER({c);
¢ := RIGHT_SIBLING{c, T)
end
end; { PREORDER }

Fig. 3.8. A recursive preorder listing procedure.

We shall also develop a nonrecursive procedure to print a tree in
preorder. To find our way around the tree, we shall use a stack §, whose
type STACK is really “stack of nodes.” The basic idea underlying our algo-
rithm is that when we are at a node n, the stack will hold the path from the
root to n, with the root at the bottom of the stack and node n at the top.t

T Recall our discussion of recursion in Section 2.6 in which we illustrated how the implementation
of a recursive procedure involves a stack of activation records. If we examine Fig, 3.8, we can
observe that when PREORDER (n) is called, the active procedure cails, and therefore the stack of
activation records, correspond to the calls of PREORDER for all the ancestors of #n. Thus our
nonrecursive preorder procedure, like the example in Section 2.6, models closely the way the re-

" cursive procedure is implemented.

15

84 TREES

One way to perform a nonrecursive preorder traversal of a tree is given
by the program NPREORDER shown in Fig. 3.9. This program has two
modes of operation. In the first mode it descends down the leftmost unex-
plored path in the tree, printing and stacking the nodes along the path, until it
reaches a leaf.

The program then enters the second mode of operation in which it retreats
back up the stacked path, popping the nodes of the path off the stack, until it
encounters a node on the path with a right sibling. The program then reverts
back to the first mode of operation, starting the descent from that unexplored
right sibling. .

The program begins in mode one at the root and terminates when the
stack becomes empty, The complete program is shown in Fig. 3.9.

3.3 Implementations of Trees

In this section we shall present several basic implementations for trees and dis-
cuss their capabilities for supporting the various tree operations introduced in
Section 3.2.

An Array Representation of Trees

Let T be a tree in which the nodes are named 1, 2, . . . ,n. Perhaps the sim-
plest representation of T that supports the PARENT operation is a linear
array A in which entry A[{] is a pointer or a cursor to the parent of node i. .
The root of T can be distinguished by giving it a null pointer or a2 pointer to
itself as parent. In Pascal, peinters to array elements are not feasible, so we
shall have to use a cursor scheme where A[i] = j if node j is the parent of
node i, and A[{] = O if node { is the root,

This representation uses the property of trees that each node has a unique
parent. With this representation the parent of a node can be found in con-
stant time. A path going up the tree, that is, from node to parent to parent,
and so on, can be traversed in time proportional to the number of nodes on
the path. We can also support the LABEL operator by adding another array
L, such that L[] is the Iabel of node i, or by making the elements of array A
be records consisting of an integer (cursor) and a label.

Example 3.6. The tree of Fig. 3.10{a) has the parent representation given by
the array A shown in Fig. 3.10(b). O

The parent pointer representation does not facilitate operations that
require child-of information. Given a node n, it is expensive to determine the
children of r, or the height of n. In addition, the parent pointer representa-
tion does not specify the order of the children of a node. Thus, operations
like LEFTMOST_CHILD and RIGHT_SIBLING are not well defined. We
could impose an artificial order, for example, by numbering the children of
each node after numbering the parent, and numbering the children in

16

3.3 IMPLEMENTATIONS OF TREES 85

procedure NPREORDER (T: TREE);
{ nonrecursive preorder traversal of tree T }

var
m: node; { a temporary }
§: STACK; { stack of nodes holding path from the root
to the parent TOP(S) of the “‘current” node m }

begin
{ initialize }
MAKENULL(S);
m := ROOT(T);

while true do
if m <> A then begin
print{LABEL(m, T));
PUSH(m, S);
{ explore leftmost child of m }
m := LEFTMOST_CHILD(m, T)
end
else begin
{ exploration of path on stack
is now complete }
if EMPTY(S) then
return;
{ explore right sibling of nede
on top of stack }
m 1= RIGHT_SIBLING(TOP(S), T;
POP(S)
end
end; { NPREORDER }

Fig. 3.9. A nonrecursive preorder procedure.

increasing order from left to right. On that assumption, we have written the
.. function RIGHT_SIBLING in Fig. 3.11, for types node and.TREE that are
. defined as follows:

type
node = integer;
TREE = array [1..maxnodes) of node;

For this implementation we assume the null node A is represented by 0.

17

86

(a) a tree

12'345678910
aloliJ1]2]25s1s[3[3]

(b) parent representation.

Fig. 3.10. A tree and its parent pointer representation.

function RIGHT_SIBLING (n: node; T: TREE) : node;
{ return the right sibling of node r in tree T }
*var
i, parent: node;
begin
parent := T[n];
for i ;= n + 1 to maxnodes do
{ search for node after n with same parent }
if T[i] = parent then
return (i); ,
return (0) { null node will be returned
if no right sibling is ever found }
end; { RIGHT_SIBLING }

Fig. 3.11. Right sibling operation using array representation.

18

3.3 IMPLEMENTATIONS OF TREES 87

Representation of Trees by Lists of Children

An important and useful way of representing trees is to form for each node a
list of its children. The lists can be represented by any of the methods sug-
gested in Chapter 2, but because the number of children each node may have
can be variable, the linked-list representations are often more appropriate.

Figure 3.12 suggests how the tree of Fig. 3.10(a) might be represented.
There is an array of header cells, indexed by nodes, which we assume to be
numbered 1, 2, ..., 10, Each header points to a linked list of ‘“‘elements,”
which are nodes. The elements on the list headed by header(i] are the chil-
dren of node i; for example, 9 and 10 are the children of 3.

I N N SN N
e e N = o BN KN
s T [F—ere]
. e 0 = I M= S N

Fig. 3.12. A linked-list representation of a tree.

Let us first develop the data structures we need in terms of an abstract
data type LIST (of nodes), and then give a particular implementation of lists
and see how the abstractions fit together. Later, we shall see some of the
simplifications we can make, We begin with the following type declarations:

type
node = integer;
LIST = { appropriate definition for list of nodes };
position = { appropriate definition for positions in lists };
TREE = record
header: array [1..maxnodes] of LIST;
labels: array [1..maxnodes] of labeltype;
root: node
end; '

19

20

21

22

23

92 TREES

sibling structure as in Fig. 3.16, we give the function CREATE? in Fig. 3.17.
We assume that unused cells are linked in an available space list, headed by
avail, and that available cells are linked by their right-sibling fields. Figure
3.18 shows the old (solid) and the new (dashed) pointers.

function CREATE? (v: labeltype; T1, T2: integer) : integer;
{ returns new tree with root v, having T1 and T2 as subtrees }
var
temp: integer; { holds index of first available cell
for root of new trec }
begin
temp = avail,
avail = cellspace|avail).right_sibling;
celispace(temp).leftmost_child := T1;
cellspace[temp).label ;= v;
cellspace[temp).right_sibling 1= 0;
cellspace|T1].right_sibling .= T2,
cellspace[T2].right_sibling .= 0; { not necessary,
“that field should be O as the cell was formerly a root }
return {femp)
end; { CREATE2}

Fig. 3.17. The function CREATE?Z.

Fig. 3.18, Pointer changes produced by CREATE2.

Alternatively, we can use less space but more time if we put in the right-

24

25

26

27

g6 TREES

remove them and worry about 0i031. We then deduce that the bits 01 came
from ¢, and so on. O

The problem we face is: given a set of characters and their probabilities,
find a code with the prefix property such that the average length of a ¢code for
a character is a minimum. The reason we want to minimize the average code
tength is to compress the length of an average message. The shorter the aver-
age code for a character is, the shorter the length of the encoded message.
For example, Code | has an average code length of 3. This is obtained by
muitiplying the length of the code for each symbol by the probability of
occurrence of that symbol. Code 2 has an average length of 2.2, since sym-
bois @ and 4, which together appear 20% of the time, kave codes of length
three, and the other symbols have codes of length two.

Can we do better than Code 27 A complete answer to this question is to
exhibit a code with the prefix property having an average length of 2.15. This
is the best possible code for these probabilities of symbol occurrences. One
technique for finding optimal prefix codes is called Huffinan’s algorithm. It
‘works by selecting two characters a and b having the lowest probabilities and
replacing them with a single (imaginary) character, say x, whose probability of
occurrence is the sum of the probabilities for a and b. We then find an
optimal prefix code for this smaller set of characters, using this procedure
recursively. The code for the original character set is obtained by using the
code for x with a O appended as the code for ¢ and with a 1 appended as a
code for b.

We can think of prefix codes as paths in binary trees. Think of following
a path from a node to its left child as appending a 0 to a code, and proceeding
from a node to its right child as appending a 1. If we label the leaves of a
binary tree by the characters represented, we can represent any prefix code as
a binary tree. The prefix property guarantees no character can have a code
that is an interior node, and conversely, labeling the leaves of any binary tree
with characters gives us a code with the prefix property for these characters.

Example 3.12. The binary trees for Code ! and Code 2 of Fig. 3.22 are
shown in Fig. 3.23(a) and (b}, respectively. O

We shall implement Huffman’s algorithm using a forest {collection of
trees), each of which has its leaves labeled by characters whose codes we
desire to select and whose roots are labeled by the sum of the probabilities of
all the leaf labels. We cali this sum the weight of the tree. Initially, each
character is in a one-node tree by itself, and when the algorithm ends, there
will be only one tree, with all the characters at its leaves. In this tree, the
path from the root to any leaf represents the code for the label of that leaf,
according to the left == 0, right = 1 scheme of Fig. 3.23.

The essential step of the algorithm is to select the two (rees in the forest
that have the smailest weights {(break ties arbitrarily). Combine these two
trees into one, whose weight is the sum of the weights of the two trees. To
combine the trees we create a new node, which becomes the root and has the

29

30

31

32

3.4 BINARY TREES 101

procedure Huffman;

var
i, j: integer; { the two trees of least weight in FOREST }

newrpot: integer,;
begin
while lasttree > | do begin
lightones{i, j),
newroot (= create(i, j);
{ Now replace tree i by the tree whose root is newroor }
FOREST[il.weight := FOREST[i].weight + FOREST|j].weight,
FOREST(i].root := newroot,
{ next, replace tree j, which is no longer needed, by lasitree,
and shrink FOREST by one }
FOREST]j} := FOREST[lasttree],
lasttree .= lasttree — |
end
end; { Huffman }

Fig. 3.28, Huffman’s algorithm,.

Figure 3.29 shows the data structure of Fig. 3.25 after lasttree has been
reduced to 3, that is, when the forest looks like Fig. 3.24(c).

25 5~ 1} a | a2 1 — 1} 0 0 6
40 | 27T " 2 b | 40 24— =2 0 0 0
7
35 7 3] ¢ 15 3 4 31 0 0 7
weight root 41 d .08 4 —— 47 0 0 6
5] e 25 5 4+ 51 0 0 0
FOREST symbol prob- leaf 6! 4 1 7
ability TE 5 0
ALPHABET lefr- right- parent
child child
TREE

Fig. 3.29. Tree data structure after two iterations.

33

34

35

36

37

38

39

40

41

42

43

44

5.2 TIME ANALYSIS OF BST OPERATIONS 161

n—i-—1
elements > a

{ elements
<a

Fig. 5.7. Binary search tree,

have average path lengths P(;) and P(n—i— 1), respectively. Since these ele-
ments are reached through the root of the complete tree, we must add 1 to the
number of nodes on every path, Thus P(n) can be calculated by averaging,
for all i between O and n—1, the sum

Lipw+n + 1"%‘” (Plr—i—1)+1) + %

The first term is the average path length in the left subtree, weighted by its
size. The second term is the analogous quantity for the right subtree, and the
I/n term represents the contribution of the root. By averaging the above sum
for all i between 1 and n, we obtain the recurrence

n-|
PO =1+ S (i) + (n—i-1) P(r=i-1)) (5.1)
" =g

n—1
The first part of the summation (5.1), > iP(i), can be made identical to

i=0

n—1

the second part 3 (n—i—1)P(n—i~1) if we substitute i for n~i—~1 in the

=0
! a1

second part, Also, the term for i=0 in the summation ¥ iP{i} is zero, so we
i=0
can begin the summation at 1. Thus (5.1) can be written

n—1

P(n) =1+ 2 SiP(i) forn=2 5.2)
n <

i=1

We shall show by induction on r, starting at n=1, that P(n) = 1 + 4logn.
Surely this statement is true for n = I, since P(1) = 1. Suppose it is true for
all i < n. Then by (5.2)

n—1
Py =1+ %S (ilogi + i)
ne o=y

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

10.1 DIVIDE-AND-CONQUER ALGORITHMS 307

Fig. 10.1. Initial position in towers of Hanoi puzzle,

make the only legal move not involving the smallest disk.

The above algorithm is concise, and correct, but it is hard to understand
why it works, and hard to invent on the spur of the moment. Consider
instead the foltowing divide-and-conquer approach. The problem of moving
the n smallest disks from A to B can be thought of as consisting of two sub-
problems of size n—1. First move the n~1 smallest disks from peg A to peg
€, exposing the n'™ smallest disk orn peg A. Move that disk from A to B.
Then move the #—1 smallest disks from C to B. Moving the n—1 smallest
disks is accomplished by a recursive application of the method. As the n disks
involved in the moves are smaller than any other disks, we need not concern
ourselves with what is below them on pegs A, B, or C. Alithough the actual
movement of individual disks is not obvious, and hand simulation is hard
because of the stacking of recursive calls, the algorithm is conceptually simple
to understand, to prove correct and, we would like to think, to invent in the
first place. It is probably the ease of discovery of divide-and-conquer algo-
rithms that makes the technique so important, although in many cases the
algorithms are also more efficient than more conventional ones.t

The Problem of Multiplying Long Integers

Consider the problem of multiplying two n-bit integers X and ¥. Recall that
the algorithm for multiplication of n-bit (or n-digit) integers usually taught in
elementary school involves computing # partial products of size # and thus is
an O(rn® algorithm, if we count single bit or digit muitiplications and addi-
tions as one step. One divide-and-conquer approach to integer multiplication
would break each of X and Y into two integers of n/2 bits each as shown in

t In the towers of Hanoj case, the divide-and-conquer algorithm is really the same as the
one given initially.

83

84

85

86

87

88

89

90

91

92

93

318 ALGORITHM DESIGN TECHNIQUES

subproblems of size four or more. Thus the number of subproblems to be
solved is exponential in s. Since our initial problem is of size n, where n is the
number of vertices in the given polygon, the total number of steps performed
by this recursive procedure is exponential in n.

Yet something is clearly wrong in this apalysis, because we know that
besides the original problem, there are only n(n—4) different subproblems
that ever need to be solved. They are represented by 5, where 0 = ¢ <n
and 4 = 5 < n. Evidently not ali the subproblems soived by the recursive
procedure are different. For example, if in Fig. 10.8 we choose chord
(vq, v3), and then in the subproblem of Fig. 10.9(b) we pick v,, we have to
solve subproblem §,,. But we would also have to solve this problem if we
first picked chord (vg, v4), or if we picked (v, v4) and then, when solving
subproblem 5,5, picked vertex vy to complete a triangle with v, and v,.

This suggests an efficient way to solve the triangulation problem. We
make a table giving the cost C;; of triangulating S;; for all i and 5. Since the
solution to any given problem depends only on the solution to problems of
smaller size, the logical order in which to fill in the table is ip size order.
That is, for sizes s = 4, 5, .. . ,n—1 we fill in the minimum,ggst for prob-
lems §;, for all vertices /. It is convenient to include problems of size
0 = 5 < 4 as well, but remember that §;; has cost 0 if 5 < 4.

By rules (1)-(3) above for finding subproblems, the formula for comput-
ing C;; for s = 4 is:

Cip= min [C.-'.k+l +Civks— T D Vi) + Dy, V;+s—1)] (10.5)
where D (v,, v,) is the length of the chord between vertices v, and v, if v,
and v, are not adjacent points on the polygon; D (v,, v;) is 0 if v, and v, are
adjacent.

Example 10.2. Figure 10.11 holds the table of costs for §; ; for 0 = i =< 6 and
4 < 5 = 6, based on the polygon and distances of Fig. 10,8, The costs for the
rows with s <3 are all zero. We have filled in the entry Cy, in column 0
and the row for s = 7. This entry, like all in that row, represents the triangu-
lation of the entire polygon. To see that, just notice that we can, if we wish,
consider the edge (vg, v4) to be a chord of a larger polygon and the polygon
of Fig. 10.8 to be a subproblem of this polygon, which has a series of addi-
tional vertices extending clockwise from v to vy. Note that the entire row for
s = 7 has the same value as Cy;, to within the accuracy of the computation.

Let us, as an example, show how the entry 38.0% in the column for i = 6
and row for s = 5 is filled in. According to (10.5) the value of this entry,
Cgs, is the minimum of three sums, corresponding to k = 1, 2, or 3. These
sums are: ‘

Cﬁz + Cm + D(‘Jﬁ, VQ) + D(Vo, V3) ,
C63 +C;3 +D(V6, V|)+D(V1,V3)
C64 + sz + D(Vﬁ, V2) + D(Vz, V])

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

