Building a MAC-Based Security Architecture
for the Xen Open-Source Hypervisor

Reiner Sailer
Ronald Perez

Trent Jacger
Stefan Berger

Enriquillo Valdez Ramoén Céceres
John Linwood Griffin Leendert van Doorn

{sailer ,jaegert,rvaldez,caceres,ronpz,stefanb, jlg, leendert}@us .ibm.com
IBM T. J. Watson Research Center, Hawthorne, NY 10532 USA

Abstract

We present the sHype hypervisor security architecture and
examine in detail its mandatory access control facilities.
While existing hypervisor security approaches aiming at
high assurance have been proven useful for high-security
environments that prioritize security over performance and
code reuse, our approach aims at commercial security
where near-zero performance overhead, non-intrusive im-
plementation, and usability are of paramount importance.
sHype enforces strong isolation at the granularity of a vir-
tual machine, thus providing a robust foundation on which
higher software layers can enact finer-grained controls. We
provide the rationale behind the sHype design and describe
and evaluate our implementation for the Xen open-source
hypervisor.

1 Introduction

As workstation- and server-class computer systems have
increased in processing power and decreased in cost, it has
become feasible to aggregate the functionality of multiple
standalone systems onto a single hardware platform. For
example, a business that has been processing customer or-
ders using three computer systems—a web server front-end,
a database server back-end, and an application server in
the middle—can increase hardware utilization and reduce
its hardware costs, configuration complexity, management
complexity, physical space, and energy consumption by
running all three workloads on a single system.

Virtualization technology is quickly gaining popularity
as a way to achieve these benefits. With this technology,
a software layer called a virtual machine monitor (VMM),
or hypervisor, creates multiple virtual machines out of
one physical machine, and multiplexes multiple virtual re-
sources onto a single physical resource. Virtualization is
facilitated by recent development in terms of broad avail-
ability of fully virtualizable CPUs [2, 15]. These advances

make possible efficient aggregation of multiple virtual ma-
chines on a single physical machine, with each virtual ma-
chine (VM) running its own operating system (OS).

Although co-locating multiple operating systems and
their workloads on the same hardware platform offers great
benefits, it also raises the specter of undesirable interac-
tions between those entities. Mutually distrusted parties re-
quire that the data and execution environment of one party’s
applications are securely isolated from those of a second
party’s applications. As a result, virtualization environ-
ments by default do not give VMs direct access to physical
resources. Instead, physical resources (e.g., memory, CPU)
are virtualized by the hypervisor layer and can be accessed
by a VM only through their virtualized counterparts (e.g.,
virtual memory, virtual CPU). The hypervisor is strongly
protected against software running in VMs, and enforces
isolation of VMs and resources.

However, total isolation is not desirable because today’s
increasingly interconnected organizations require commu-
nication between application workloads. Consequently,
there is a need for secure resource sharing by enforcing ac-
cess control between related groups of virtual machines.

The main focus of this paper is on the controlled sharing
of resources. In current hypervisor systems, such sharing is
not controlled by any formal policy. This lack of formality
makes it difficult to reason about the effectiveness of iso-
lation between VMs. Furthermore, current approaches do
not scale well to large collections of systems because they
rely on human oversight of complex configurations to en-
sure that security policies are being enforced. They also do
not support workload balancing through VM migration be-
tween machines well because the policy representations are
machine-dependent.

This paper explores the design and implementation of
sHype, a security architecture for virtualization environ-
ments that controls the sharing of resources among VMs
according to formal security policies. sHype goals include
(i) near-zero overhead on the performance-critical path, (ii)

YF]',F.

COMPUTE
SOCIETY

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

non-intrusiveness with regard to existing VMM code, (iii)
scalability of system management to many machines via
simple policies, and (iv) support for VM migration via
machine-independent policies.

These goals are derived from the requirements of com-
mercial environments. Hypervisor security approaches
aimed at high assurance have proven useful in environments
that give security the highest priority. These approaches
control both explicit and implicit communication channels
between VMs. We believe that controlling explicit data
flows and minimizing, but not entirely eliminating, covert
channels via careful resource management is sufficient in
commercial environments.

We implemented the sHype architecture in the Xen hy-
pervisor [3], where it controls all inter-VM communication
according to formal security policies. The architecture is
designed to achieve medium assurance (Common Criteria
EALA4 [8]) for hypervisor implementations. Our modifica-
tions to the Xen hypervisor are small, adding about 2000
lines of code. Our hypervisor security enhancements incur
less than 1% overhead on the performance-critical path and
the Xen paravirtualization overhead is between 0%-9% [3].
While this paper describes an sHype implementation tai-
lored to the Xen hypervisor, the sHype architecture is not
specific to any one hypervisor. It was originally imple-
mented in the rHype research hypervisor [14] and is also
being implemented in the PHYP [13] commercial hypervi-
SOT.

Section 2 introduces the Xen hypervisor environment in
which we have implemented our generic security architec-
ture. Mutually suspicious workload types serve as an exam-
ple to illustrate requirements and the use of our hypervisor
security architecture. We describe the design of the sHype
hypervisor security architecture in Section 3, and its Xen
implementation in Section 4. Section 5 evaluates our archi-
tecture and implementation, and Section 6 discusses related
work.

2 Background
2.1 The Xen Hypervisor

We use the Xen [3] open-source hypervisor as an exam-
ple of a virtual machine monitor throughout this paper. Fig-
ure 1 illustrates a basic Xen configuration. The hypervi-
sor consists of a small software layer on top of the physical
hardware. It implements virtual resources (e.g., vMemory,
vCPU, event channels, and shared memory) and it controls
access to I/0 devices.

Virtual machines, also known as domains in Xen, are
built on top of the Xen hypervisor. A special VM, called
Dom0 (domain zero) is created first. It serves to manage
other VMs (create, destroy, migrate, save, restore) and con-
trols the assignment of I/O devices to VMs.

VMs started by DomO are called DomUs (user domains).
They can run any para-virtualized [3] operating system,
e.g., Linux. Guest OSs running on Xen are minimally
changed, for example by replacing privileged operations
with calls to the hypervisor. Such operations cannot be
called directly by the guest OS because they can compro-
mise the hypervisor. In general, calls to the hypervisor
have three characteristics: (1) they offer access to virtual
resources; (2) they speed up critical path operations such
as page table management; and (3) they emulate privileged
operations that are restricted to the hypervisor but might be
necessary in guest operating systems as well.

Dom0

DomU DomU DomU
VM
Management wan
Guest Guest Guest
110 os os os
Management

| Xen Hypervisor (vMem, vCPU, EventChannels, SharedMemory) |

| System Hardware (Real Machine = CPU, MEM, Devices) |

Figure 1. Xen hypervisor architecture

Xen offers just two shared virtual resources on top of
which all inter-VM communication and cooperation is im-
plemented:

e Event channels: An event-channel hypervisor call enables
a VM to setup a point-to-point synchronization channel to
another VM.

e Shared memory: A grant-table hypervisor call enables a
VM to allow another VM access to virtual memory pages
it owns. Event channels are used to synchronize access to
such shared memory.

Shared virtual resources, such as virtual network adapters
and virtual block devices, are implemented as device drivers
inside the Guest OS. Non-shared virtual resources include
virtual memory and virtual CPU.

Physical resources differ from virtualized resources in
a couple of key ways: (1) Input/Output Memory Manage-
ment Units (I0O-MMUSs) are needed to restrict Direct Mem-
ory Access (DMA) to and from a VMM’s memory space.
(2) Performance is best if the devices are co-located with
the code using them in the same VM, and consequently the
optimal case is a physical resource per VM, which may not
be practically feasible. (3) Driver code is too complex for
inclusion in the hypervisor, so a device to be shared by mul-
tiple VMs needs to be managed by a device domain, which
then makes this device available through inter-VM sharing

COMPUTER
SOCIETY

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

to other VMs. In Xen, a SCSI disk or Ethernet device, for
example, can be owned by a device domain and accessed by
other VMs through virtual disk or Ethernet drivers, which
communicate with the device domain using event channels
and shared memory provided by the hypervisor.

2.2 Coalitions of VMs

In the near future, we believe that VM systems will
evolve from a set of isolated VMs into sets of VM coali-
tions. Due to hardware improvements enabling reliable iso-
lation, we believe that some control now done in operating
systems will be delegated to hypervisors. We aim for hyper-
visors to provide isolation between coalitions and provide
limited sharing within coalitions as defined by a Mandatory
Access Control (MAC) policy.

Consider a customer order system. The web services
and data base infrastructure that processes orders must have
high integrity in order to protect the integrity of the busi-
ness. However, browsing and collecting possible items to be
purchased need not be as high integrity. At the same time,
an OEM’s software advertising a product that the company
distributes may be run as another workload that should be
isolated from the order workloads (web service, database,
browsing).

In the customer order example, we merge the VMs per-
forming customer orders into the Order coalition and pro-
tect them from the other VMs on the system. The Order
VMs may communicate, share some memory, network, and
disk resources. Thus, they are as a coalition confined by
the hypervisor. Within the Order coalition, the hypervisor
controls sharing using a MAC policy that permits inter-VM
communication, sharing of network resources and disk re-
sources, and sharing of memory. All this sharing must be
verified to protect security of the order system. However,
the MAC policy also enables the hypervisor and device do-
mains to protect the order database from being shared with
other VMs outside the Order coalition.

2.3 Problem Statement

The problem we address in this paper is the design of
a VMM reference monitor that enforces comprehensive,
mandatory access control policies on inter-VM operations.
A reference monitor is designed to ensure mediation of all
security-sensitive operations, which enables a policy to au-
thorize all such operations [16]. A MAC policy is defined
by system administrators to ensure that system (i.e., VMM)
security goals are achieved regardless of system user (i.e.,
VM) actions. This contrasts with a discretionary access
control (DAC) policy which enables users (and their pro-
grams) to grant rights to the objects that they own.

We apply the reference monitor to control all references
to shared virtual resources by VMs. This allows coalitions

of workloads to communicate or share resources within a
coalition, while isolating workloads of different coalitions.
Figure 2 shows an example of VM coalitions. Domain 0
has started 5 user domains (VMs), which are distinguished
inside the hypervisor by their domain ID (VM-id in Fig. 2).
Domains 2 and 3 are running order workloads. Domain 6 is
running an advertising workload, and domain 8 is running
an unrelated generic computing workload. Finally, domain
1 runs the virtual block device driver that offers two isolated
virtual disks, vDisk Order and vDisk Ads, to the Order and
Advertising coalitions. In this example, we want to enable
efficient communication and sharing among VMs of the Or-
der coalition but contain communication of VMs inside this
coalition. For example, no VM running an Order workload
is allowed to communicate or share information with any
VM running Computing or Advertising workloads, and vice

versa.
VM-id=8 VM-id=2 | Orders __ Ads VM-id=6 VM-id=3 | [VM-id=0
real J Domo
WL-Type: WL-Type: disk ¥ WL-Type: WL-Type: -
Computing Order i VMid=1 | Advertising Order

VDisk Server Mgmt

Orders | Ads
Disk Virt. Disk Virt. | | Virt. Virt. Disk Virt. Disk
Connector Disk | i | Disk Connector Connector
T T T T T

L I 1]
’ Xen Hypervisor ‘

’ System Hardware (Real Machine = CPU, MEM, 1/O) ‘

Figure 2. VM coalitions and payloads in Xen

While the hypervisor controls the ability of the VMs to
connect to the device domain, the device domain is trusted
to keep data of different virtual disks securely isolated in-
side its VM and on the real disk. This is a reasonable re-
quirement since device domains are not application-specific
and can run minimized run-time environments. Device do-
mains thus form part of the Trusted Computing Base (TCB).

3 sHype Design

Figure 3 illustrates the overall sHype security architec-
ture and its integration into the Xen VMM system. sHype is
designed to support a set of security functions: secure ser-
vices, resource monitoring, access control between VMs,
isolation of virtual resources, and TPM-based attestation.

sHype supports interaction with secure services in
custom-designed, minimized, and carefully engineered
VMs. An example is the policy management VM, which
we use to establish and manage the security policies for the
Xen hypervisor. Resource accounting provides control of
resource usage. This enables enforcement of service level
agreements and addresses denial of service attacks on hy-
pervisor or VM resources. The mandatory access control

COMPUTER
SOCIETY

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Secure Services
(Policy Mgmt, Audit, ...)

Isolation of Virtual Resources

<
=
: ool =
£ 38| Guest || Guest 2g|lgd Resource Control
3 0s os S5ll&3
2 S §5168
S =
] <]l = Access Control between VMs
’ sHype / XEN

i J
l Hardware / \ ﬁ

TPM-based Attestation

Hypervisor
Mediation
,Hooks"

Figure 3. sHype architecture

enforces a formal security policy on information flow be-
tween VMs.

sHype leverages existing isolation between virtual re-
sources and extends it with MAC features. TPM-based
attestation [28] provides the ability to generate and re-
port runtime integrity measurements on the hypervisor and
VMs. This enables remote systems to infer the integrity
properties of the running system.

The rest of this paper focuses on the sHype mandatory
access control architecture, consisting of: (1) the policy
manager maintaining the security policy; (2) the access
control module (ACM) delivering authorization decisions
according to the policy; and (3) and mediation hooks con-
trolling access of VMs to shared virtual resources based on
decisions returned by the ACM.

3.1 Design Decisions

Three major decisions shape the design of sHype:

(1) By building on existing isolation properties of virtual
resources, sHype inherits the medium assurance of existing
hypervisor isolation while requiring minimal code changes
in the virtualization layer (hypervisor).

(2) By using bind-time authorization and controlling ac-
cess to spontaneously shared resources only on first-time
access and upon policy changes, sHype incurs very low per-
formance overhead on the critical path.

(3) By enforcing formal security policies, sHype enables
reasoning about the effectiveness of specific policies, pro-
vides the basis for effective defense against denial of ser-
vice attacks (through resource policy enforcement), and en-
ables Service Level Agreement-style security guarantees
(through TPM-based attestation of system properties).

3.2 Access Control Architecture

The key component of the access control architecture is
the reference monitor, which in sHype isolates virtual ma-
chines by default and allows sharing of resources among

virtual machines only when allowed by a mandatory ac-
cess control (MAC) policy. To support various business
requirements, sHype supports various kinds of MAC poli-
cies: Biba [5], Bell-LaPadula [4], Caernarvon [30], Type
Enforcement [6], as well as Chinese Wall [7] policies.

The classical definition of a reference monitor [16]
states that it possesses three properties: (1) it mediates all
security-critical operations; (2) it can protect itself from
modification; and (3) it is as simple as possible to enable
validation of its correct implementation. We examine the
first requirement in more detail. The second and third re-
quirement are covered by generic hypervisor properties: it
is protected against the VMs and consists of a thin software
layer.

Mediating security-critical operations. A security-
critical operation is one that requires MAC policy authoriza-
tion. If such an operation is not authorized against the MAC
policy, the system security guarantees can be circumvented.
For example, if the mapping of memory among VMs is not
authorized, then a VM in one coalition can leak its data to
other VMs.

We identify security-critical operations in terms of re-
sources whose use must be controlled in order to imple-
ment MAC policies. We also identify the location of the
mediation points for these resources. The combination of
resources to be controlled and their mediation points forms
the reference monitor interface. We discuss only virtual
resources, because real resources can only be used exclu-
sively by one VM or shared in the form of virtual resources.
The following resources must be controlled in a typical Xen
VMM environment:

e Sharing of virtual resources between VMs controlled by
the Xen hypervisor (e.g., event channels, shared memory,
and domain operations).

e Sharing of local virtual resources between local VMs con-
trolled by MAC domains (e.g. local VLANs and virtual
disks).

e Sharing of distributed virtual resources between VMs in
multiple hypervisor systems controlled by MAC-bridging
domains (e.g., VLANSs spanning multiple hypervisor sys-
tems).

The hypervisor reference monitor enforces access control
and isolation on virtual resources in the Xen hypervisor.
While sHype enforces mandatory access control on MAC
domains regarding their participation in multiple coalitions,
it relies on MAC domains to isolate the different virtual
resources from each other and allow access to virtual re-
sources only to domains that belong to the same coalition
as the virtual resource. A good example of a MAC domain
is the device domain in Fig. 2, which participates in both
the Order and the Advertising coalition. MAC do-
mains become part of the Trusted Computing Base (TCB)

IIH

COMPUTER
SOCIETY

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

and should therefore be of minimal size (e.g., secure micro-
kernel design). Since MAC domains are generic, the cost of
making them secure will amortize as they are used in many
application environments. We sketch the implementation of
MAC domains in Section 4.4.

If coalitions are distributed over multiple systems, we
need MAC-bridging domains to control their interaction.
The virtual resource that enables co-operation among VMs
on multiple systems is typically a vLAN. Mac-bridging do-
mains build bridges between their hypervisor systems over
untrusted terrain to connect VLANSs on multiple systems. To
do so, they first establish trust into required security proper-
ties of the peer MAC Bridging domains and their underlying
virtualization infrastructure (e.g., using TPM-based attesta-
tion). Afterwards, they build secure tunnels between each
other, and can from now on be considered as forming a sin-
gle (distributed) MAC domain spanning multiple systems.
Requirements on the resulting distributed MAC domain are
akin the requirements described above for local MAC do-
mains. MAC Bridging domains become part of the TCB,
similarly to MAC domains.

4 Implementation

In this section, we first define simple policies tailored
to the Xen hypervisor environment based on the workload
types and resources that must be controlled. Then we de-
scribe the management of the policies and the labeling of
VMs and resources. Finally, we introduce the access con-
trol enforcement in the hypervisor, which guards access of
VMs to resources based on the policies.

4.1 Security Policies

We implemented two formal security policies for Xen:
(1) a Chinese Wall policy, (ii) a simple Type Enforcement
(TE) policy. Both policies work on their own set of types
(CW- or TE-types), which are assigned to VMs as a func-
tion of the workloads they can run. The CW- and TE-types
define the granularity upon which VMs and resources can
be distinguished. The assignment of types to VMs and re-
sources is an administrative task (i.e., part of policy man-
agement).

Chinese Wall policy: The first policy enables admin-
istrators to ensure that certain VMs (and their supported
workload types) cannot run on the same hypervisor system
at the same time. This is useful to mitigate covert channels
or to meet other requirements regarding certain workload
types (e.g., workload types of competitors) that shall not
run on the same physical system at the same time.

The Chinese Wall policy defines a set Chinese wall types
(CW-types), and these are assigned to a VM according to
the workloads it can run. It also defines conflict sets us-
ing these CW-types and ensures that VMs that are assigned

CW-types in the same conflict set never run at the same time
on the same system.

Type Enforcement policy: The second policy specifies
which running VMs can share resources and which cannot.
It supports the coalitions introduced in Section 2.2 by map-
ping coalition membership onto TE types.

The TE policy defines the set of TE-types (coalitions)
and assigns TE types to VMs (coalition membership). The
TE policy rules enforce that VMs only share virtual re-
sources if they have a TE type in common, i.e., they are
member of at least one common coalition.

4.2 Policy Management

The policy management function is responsible for of-
fering means to create and maintain policy instantiations
for the Chinese Wall and Type Enforcement policies. To
minimize code complexity inside the hypervisor, the policy
management translates an XML-based policy representa-
tion into a binary policy representation that is both system-
independent and efficient to use by the hypervisor layer.

The binary policy created by the Policy Management in-
cludes the assignment of VMs to CW-types and TE-types,
as well as the conflict sets to be enforced on the CW-types.
No other information is needed by the hypervisor to enforce
the policies. The access class of a VM as sHype sees it is
exactly a set of CW-types and TE-types. Access classes of
virtual resources such as virtual disks comprise only TE-
types, typically a single TE-type.

Policy management can either run in a dedicated do-
main on the managed system (the current Xen approach),
or it can run on a separate special-purpose system, such as
the Hardware Management Console (HMC) used by PHYP
and other commercial virtualization solutions. The policy
management is needed to change or validate a policy; it is
not necessary to run the system and enforce the instantiated
policies.

4.3 Policy Enforcement

Mandatory access control is implemented as a reference
monitor. The mediation of references of VMs to shared
virtual resources is implemented by inserting security en-
forcement hooks into the code path inside the hypervisor
where VMs share virtual resources. Hooks call into the ac-
cess control module (ACM) for decisions and enforce them
locally at the hook. Isolation of individual virtual resources
is inherited from Xen since it is a general design issue for
hypervisors rather than a security-specific requirement.

4.3.1 Reference Monitor

sHype strictly separates access control enforcement from
the access control policy, as in the Flask [33] architecture.

COMPUTER
SOCIETY

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

