
c12) United States Patent
Nelson

(54) VIRTUAL MACHINE MIGRATION

(76) Inventor: Michael Nelson, 888 Forest La., Alamo,
CA (US) 94507

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 425 days.

(21) Appl. No.: 10/319,217

(22) Filed: Dec. 12, 2002

(51) Int. Cl.
G06F 9/455 (2006.01)
G06F 12100 (2006.01)

(52) U.S. Cl. ... 718/1; 711/6
(58) Field of Classification Search 718/1;

709/224; 711/153, 6
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,075,938 A *
6,698,017 Bl *

2004/0010787 Al *

6/2000 Bugnion et al. 703/27
2/2004 Adamovits et al. 717/168
1/2004 Traut et al 718/1

I 1111111111111111 11111 lllll 111111111111111 1111111111 111111111111111 11111111
US007484208Bl

(10) Patent No.:
(45) Date of Patent:

US 7,484,208 Bl
Jan.27,2009

OTHER PUBLICATIONS

Theimer, Marvin M., Lantz, Keith A, and Cheriton, David R.,
"Preemptable Remote Execution Facilities for the V-System," Asso
ciation for Computing Machinery, pp. 2-12, Dec. 1985.

* cited by examiner

Primary Examiner-Li B Zhen

(57) ABSTRACT

A source virtual machine (VM) hosted on a source server is
migrated to a destination VM on a destination server without
first powering down the source VM. After optional pre-copy
ing of the source VM's memory to the destination VM, the
source VM is suspended and its non-memory state is trans
ferred to the destination VM; the destination VM is then
resumed from the transferred state. The source VM memory
is either paged in to the destination VM on demand, or is
transferred asynchronously by pre-copying and write-pro
tecting the source VM memory, and then later transferring
only the modified pages after the destination VM is resumed.
The source and destination servers preferably share common
storage, in which the source VM's virtual disk is stored; this
avoids the need to transfer the virtual disk contents. Network
connectivity is preferably also made transparent to the user by
arranging the servers on a common subnet, with virtual net
work connection addresses generated from a common name
space of physical addresses.

4 Claims, 3 Drawing Sheets

,,.? DESTINATION SERVER

1002 ,,..-1300

Server Daemon

✓ 1000)2. CreateVM))4 Ready I
SOURCE SERVER

I

-t ,,....1202

Destination VM

,,..-1200 13. Ready I
Source VM) 3A. Wait for migration I
) 6. Begin save f

) 10. Restore state I
17. Pre-copy memory f ~

) 11. End restore
~

1 s. Save state f~ "' i°"-~ I
19. End save f;:: I'--. ~1602\ l r------. ~ ~ Destination Kernel

I Source Kernel j
: 12. Page In)

: 13. Done I
'-----1600

) 1. Migrate prepare)

15. Suspend I
and migrate I Migration

"-- 2000

Microsoft Ex. 1011, p. 1
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

F
IG

.
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.

1
0

0
0

V
M

f

2
0

0

y
1
I

2
0

0
n

22

0-
-1

G
U

E
S

T
 O

S

2
2

4
-1

 D
R

IV
E

R
S

 I

21
0:

::,
_

~
4

@

23
0:

::,
_

I
•

•
•

I
VM

I
I V

C
P

U
(S

)
I V

M
E

M

V
D

IS
K

I V

D
E

V
IC

E
(S

)
I

8
6

0

I

--._

co
s
~

4
2

0

6
0

0

10
0

S
Y

S
T

E
M

H

A
R

D
W

A
R

E

V
M

M

M
IG

R
A

T
IO

N

J
D

E
V

IC
E

I

E
M

U
L

A
T

O
R

S

I
3

0
0

n

I
3

0
6

1

3
3

0

3
6

0

~
 M

E
M

O
R

Y
 I I

 •
 •

•

I
V

M
M

3

5
0

M

G
M

T

K
E

R
N

E
L

~

W
O

R
L

D
S

I

61
6

61
2

I SC
H

E
D

U
L

E
R

 I
~

J
IN

T
E

R
R

U
P

T

~
 6

50
_,

,.
I

H
A

N
D

L
E

R

E
}cs

oa

s1
0

C

6
1

4

L
O

A
D

A
B

L
E

K

E
R

N
E

L

M
O

D
U

L
E

S

A
N

D
 D

R
IV

E
R

S

~
 IM

M1
J 1

1
M

E
~

O
R

Y
 I
~

~
 I

N

E
T

~
~
 1

30

1
~

16
0
~

1
7

0

7
0

0

~

0
0

• ~

~

~

~
 =

~

~

~
 ? N

~-
-..J

N

0 0 1

,0

rJ
J = ('D ('

D

 0 ~ d r.,;
_

--.
.l
~

0
0

~

'N
 =

0
0

 =

"'""
'

Microsoft Ex. 1011, p. 2
Microsoft v. Daedalus Blue

IPR2021-00832

f

F
in

d
 a

u
th

e
n
ti
c
a
te

d
 c

o
u
rt

 d
o
c
u
m

e
n
ts

 w
it
h
o
u
t

w
a
te

rm
a
rk

s
 a

t
d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

U.S. Patent Jan.27,2009 Sheet 2 of 3 US 7,484,208 Bl

[I]
[I] er:

□· 0,) ~ w
C (/) > CD ,.._ er: 0 0,)

0 O')
~ w

(/)
"<:t
0
0 [I]

0
0
r---..-

[I]
0,)

□· C
N

I.....

0,) "<:t 0 ~ 0
C\I er: O') ..- C ~ w 0 (/) > :.;:;

0 CCI er:
C C w 0 :.;:;

C\I :.;:; Cl) (/)

0 ~~ 0,)

□·
0 ·.;:::;> 0
..-

Cl)
0,)

C\I C\I
□ 0 0

CD O')

.....

0,)
0 □· ~~ 0

5> O')

(J) 0,)
C
I.....

0 0,) er:
0 ~ ~ w
N 0,) (/) > u

0 er: I.....

::J w

[I] 0 (J)
(J)

0
0

[I] 0
0 N ..-
0

■ CD

CJ -LL

Microsoft Ex. 1011, p. 3
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

U.S. Patent Jan.27,2009 Sheet 3 of 3 US 7,484,208 Bl

FIG. 3 / DESTINATION SERVER

1002 /"1300

Server Daemon

~1000 j2. Create VM I j 4. Ready I j" ' SOURCE SERVER

,r /" 1202

Destination VM

/"1200
,3. Readyj

Source VM
j3A Wait for migration I

Begin save ~ 6. I 10.
I,

Pre-copy memory ~ ~
Restore state

7. I "
~~ ""

j 11. End restore

8. Save state
~ ~ ~;:::: 9. End save " 1602\
....______ ~ N " 1, "

l• r---,. Destination Kernel

- I 12 Page In I - I
Source Kernel

~ I Done I - I 13.
' ""1600

j 1. Migrate prepare I
5. Suspend -
and migrate -

Migration

~ 2000

Microsoft Ex. 1011, p. 4
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

US 7,484,208 Bl
1

VIRTUAL MACHINE MIGRATION

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to a computer architecture, in par

ticular, to an architecture that coordinates the operation of
multiple virtual machines.

2. Description of the Related Art
The advantages of virtual machine technology have

become widely recognized. Among these advantages is the
ability to run multiple virtual machines on a single host plat
form. This makes better use the capacity of the hardware,
while still ensuring that each user enjoys the features of a
"complete," isolated computer.

General Virtualized Computer System
As is well known in the field of computer science, a virtual

machine (VM) is a software abstraction-a "virtualiza
tion"----of an actual physical computer system. FIG. 1 illus
trates, in part, the general configuration of a virtual machine
200, which is installed as a "guest" on a "host" hardware
platform 100.

As FIG. 1 shows, the hardware platform 100 includes one
or more processors (CPU's) 110, system memory 130, and a
storage device, which will typically be a disk 140. The system
memory will typically be some form of high-speed RAM,
whereas the disk (one or more) will typically be a non-vola
tile, mass storage device. The hardware 100 will also include
other conventional mechanisms such as a memory manage
ment unit MMU 150, various registers 160, and any conven
tional network connection device 170 (such as a network
adapter or network interface card-"NIC") for transfer of
data between the various components of the system and a
network 700, which may be any known public or proprietary
local or wide-area network such as the Internet, an internal
enterprise network, etc.

Each VM 200 will typically include at least one virtual
CPU 210, a virtual disk 240, a virtual system memory 230, a
guest operating system (which may simply be a copy of a
conventional operating system) 220, and various virtual
devices 230, in which case the guest operating system ("guest
OS") will include corresponding drivers 224. All of the com
ponents of the VM may be implemented in software using
known techniques to emulate the corresponding components
of an actual computer.

If the VM is properly designed, then it will not be apparent
to the user that any applications 260 running within the VM
are running indirectly, that is, via the guest OS and virtual
processor. Applications 260 running within the VM will act
just as they would if run on a "real" computer, except for a
decrease in running speed that will be noticeable only in
exceptionally time-critical applications. Executable files will
be accessed by the guest OS from the virtual disk or virtual
memory, which will simply be portions of the actual physical
disk or memory allocated to that VM. Once an application is
installed within the VM, the guest OS retrieves files from the
virtual disk just as if they had been pre-stored as the result of
a conventional installation of the application. The design and
operation of virtual machines is well known in the field of
computer science.

Some interface is usually required between a VM and the
underlying host platform (in particular, the CPU), which is
responsible for actually executing VM-issued instructions
and transferring data to and from the actual memory and
storage devices.A common term for this interface is a "virtual
machine monitor" (VMM), shown as component 300. A
VMM is usually a thin piece of software that runs directly on

2
top of a host, or directly on the hardware, and virtualizes all
the resources of the machine. Among other components, the
VMM therefore usually includes device emulators 330,
which may constitute the virtual devices (230) that the VM

5 200 addresses. The interface exported to the VM is then the
same as the hardware interface of the machine, so that the
guest OS cannot determine the presence of the VMM. The
VMM also usually tracks and either forwards (to some form
of operating system) or itself schedules and handles all

10 requests by its VM for machine resources, as well as various
faults and interrupts.

Although the VM (and thus the user of applications run
ning in the VM) cannot usually detect the presence of the
VMM, the VMM and the VM may be viewed as together

15 forming a single virtual computer. They are shown in FIG. 1
as separate components for the sake of clarity.

Virtual and Physical Memory
As in most modern computers, the address space of the

memory 130 is partitioned into pages (for example, in the
20 Intel x86 architecture) or regions (for example, Intel IA-64

architecture). Applications then address the memory 130
using virtual addresses (VAs), which include virtual page
numbers (VPNs). The VAs are then mapped to physical
addresses (PAs) that are used to address the physical memory

25 130. (VAs and PAs have a common offset from a base address,
so that only the VPN needs to be converted into a correspond
ing PPN.) The concepts ofVPN s and PPN s, as well as the way
in which the different page numbering schemes are imple
mented and used, are described in many standard texts, such

30 as "Computer Organization and Design: The Hardware/Soft
ware Interface," by David A. Patterson and John L. Hennessy,
Morgan Kaufmann Publishers, Inc., San Francisco, Calif.,
1994, pp. 579-603 (chapter 7.4 "Virtual Memory"). Similar
mappings are used in region-based architectures or, indeed, in

35 any architecture where relocatability is possible.
An extra level of addressing indirection is typically imple

mented in virtualized systems in that a VPN issued by an
application 260 in the VM 200 is remapped twice in order to
determine which page of the hardware memory is intended.

40 The first mapping is provided by a mapping module within
the guest OS 202, which translates the guest VPN (GVPN)
into a corresponding guest PPN (GPPN) in the conventional
manner. The guest OS therefore "believes" that it is directly
addressing the actual hardware memory, but in fact it is not.

45 Of course, a valid address to the actual hardware memory
must ultimately be generated. A memory management mod
ule 350 in the VMM 300 therefore performs the second map
ping by taking the GPPN issued by the guest OS 220 and
mapping it to a hardware (or "machine") page number PPN

50 that can be used to address the hardware memory 130. This
GPPN-to-PPN mapping is typically done in the main system
level software layer (such as the kernel 600 described below),
depending on the implementation: From the perspective of
the guest OS, the GVPN and GPPN might be virtual and

55 physical page numbers just as they would be if the guest OS
were the only OS in the system. From the perspective of the
system software, however, the GPPN is a page number that is
then mapped into the physical memory space of the hardware
memory as a PPN.

60 System Software Configurations in Virtualized Systems
In some systems, such as the Workstation product of

VMware, Inc., of Palo Alto, Calif., the VMM is co-resident at
system level with a host operating system. Both the VMM and
the host OS can independently modify the state of the host

65 processor, but the VMM calls into the host OS via a driver and
a dedicated user-level application to have the host OS perform
certain I/O operations of behalf of the VM. The virtual com-

Microsoft Ex. 1011, p. 5
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

