
Isolation of Shared Network Resources in
XenoServers

Andrew Warfield
Cambridge University

Steve Hand
Cambridge University

Timothy Harris
Cambridge University

Ian Pratt
Cambridge University

PDN-02-006

November 2002

Status: Final.

Microsoft Ex. 1007, p. 1
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Isolation of Shared Network Resources in XenoServers

Andrew Warfield, Steve Hand, Timothy L. Harris, Ian Pratt
Computer Laboratory, University of Cambridge

1 Introduction

This document presents some issues involved in virtu-
alizing network resources so that they may be shared
across a set of isolated virtual machines (VMs). After
discussing the issues in design, general details of Xen,
the XenoServers hypervisor1 are presented as a specific
implementation example. We hope that this presenta-
tion will encourage a discussion regarding the best ap-
proach to these issues with other researchers involved
with similar projects, in particular, designers of isola-
tion architectures for PlanetLab.

The contributions that may be most relevant to efforts
to establish a general interface description for network
resource isolation are as follows:

1. The presentation of the hypervisor’s network sys-
tem as being a virtualization of a local area net-
work.

2. The explicit use of a packet classifier with the hy-
pervisor that may be configured to appropriately
manage traffic across virtual hosts.

3. Efforts to move closer to a description of function-
alities that may exist below the virtual network de-
vice and the interface to those services being an
extended API available to guest VMs.

Throughout the discussion of this design it is impor-
tant to consider the major trade-offs involved. Primary
among these is the balance between the utility pro-
vided to virtual machines and the performance overhead
imposed on them. Parallel to this performance over-
head, and perhaps more important is the complexity im-
posed on the hypervisor by any additional functionality.
As a major design goal of the hypervisor is reliability
through simplicity, it seems prudent to give each addi-
tional feature careful consideration.

1A note on terminology: hypervisors are also described as Virtual
Machine Managers (VMM) in other literature

2 Overall System Architecture

Figure 1 presents a generic hypervisor/virtual machine
architecture. The hypervisor layer serves to virtualize
resources and multiplex access from a set of overlying
virtual machines. Within the single host, there are now
two levels of interface to a given resource: at the bottom
level is the raw physical interface between the hypervi-
sor and the device, and above this is the virtual interface
that is presented to the virtual machines.

Hypervisor

Physical Network Interface

Virtual
Machine

1

Virtual
Machine

2

Virtual
Machine

3

Virtualized Network Interfaces

System Architecture

Figure 1: Network Interfaces in a XenoServer

In considering the virtual network interfaces that are
provided to a set of operating system instances, there
are many properties that may be desirable. As the hy-
pervisor is multiplexing network resources, the network
subsystem may be best understood as being a virtual
network switching element. A simple hypervisor im-
plementation might act as a link-layer hub, forwarding
all inbound traffic to all virtual machines and multiplex
outbound traffic to the network. Alternatively, the hy-
pervisor may act as a switch or router, servicing each
VM’s traffic differently and possibly providing addi-
tional services.

1

Microsoft Ex. 1007, p. 2
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Hypervisor

Virtual
Machine 1

Virtual
Machine 2

Virtual
Machine 3

Additional VMs

External Network

A bus or hub-based network model

Hypervisor

Virtual
Machine 1

Virtual
Machine 2

Virtual
Machine 3

Additional VMs

External Network

A switch-based network model

Network Architecture Models

Figure 2: Forwarding Models for ‘Isolated’ Interfaces.

These two models are illustrated in Figure 2. In the first
example, the hypervisor presents all traffic to all vir-
tual machines. Although this may be much closer to a
pure virtualization of the physical resources, it presents
several problems. First, there is a security concern in
that each node can see each other node’s traffic. This
may have management implications as to whether or
not the virtual Ethernet device should allow a promiscu-
ous mode. Second, this model presents a more compli-
cated system structure from a performance standpoint.
Incoming packets must be either copied to each VM’s
receive queue, incurring an overhead, or alternatively
the hypervisor must provide the ability to deliver a com-
mon piece of memory as either read-only or copy-on-
write to a set of VMs. Although this model’s abstraction
is fairly simple – a plain broadcast Ethernet between
VMs, it may prove to be the case that providing what
is essentially a pure virtualization of the underlying re-
source imposes an unreasonable cost, both in terms of
complexity and performance, on the system.

In the second model, the hypervisor acts as a network
switch. A packet classifier is incorporated to “route”
individual packets to the appropriate virtual machine.
In this model, the hypervisor acts as an IP router, and
may provide additional IP-specific services. In addi-
tion, promiscuous mode can be implemented by al-
lowing each virtual interface to see only those packets
bound for the associated VM; this behaviour is be iden-
tical to what would be expected if all of the VMs were
separate physical machines on a common IP router.

As the vast majority of traffic is likely be TCP/IP-based,
there is an understandable benefit to providing addi-
tional IP services, and the switch model appears to be
a reasonable design direction. However, a limitation
of this approach is that it does not account for non-
IP (and non-ARP) traffic. Developers wishing to ex-
plore alternate protocols may prefer the hub model, as
it does not modify Ethernet frames before they are for-
warded. A hybrid solution to this issue is to act as a
router for all regular (IP/ARP) traffic, as described in
the second model and as a hub for all other traffic. De-
velopers wishing to bypass the IP routing facilities pro-
vided within the hypervisor would be left to use existing
IP overlay protocols such as IP over IP.

3 Hypervisor Packet Handling

The essential network concerns within the hypervisor
can be characterised according to three broad activi-
ties: scheduling, multiplexing/demultiplexing, and pro-
tection. In the case of PlanetLab, as clients have a
vested interest in being able to understand how their
hosts are interacting with the network, it seems wise
that there be a common design philosophy applied by
all isolation system implementors.

3.1 Scheduling

In order to meet the service requirements of specific
VMs, the hypervisor must ensure that network traffic
is scheduled to meet specified limits. Varying imple-
mentations may choose to employ drastically different
approaches to scheduling inbound and outbound traffic.

An idealistic goal here might be that all implemented
isolation models have identical behaviours in schedul-
ing packets. This is obviously unrealistic and the spec-

2

Microsoft Ex. 1007, p. 3
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ification of a uniform model for packet scheduling may
inhibit research in this area. As such, an initial goal
here should be that the network system guarantee some
degree of resiliency against misuse. As much as possi-
ble, the hypervisor should prevent individual hosts from
monopolizing resources in such a manner as to impair
the functionality of other clients. Additionally, the sys-
tem may attempt to protect VMs from being flooded by
inbound traffic.

3.2 Multiplexing/Demultiplexing

Received packets should be delivered only to their tar-
get host. Transmitted packets may need to be translated
to share a single external IP address.

One approach to this problem is to use a table-based
packet classifier/forwarder within the hypervisor to
route packets appropriately. The netfilter and IPTa-
bles modules within Linux serve as a good example,
and form the basis of our implementation, which is de-
scribed in the next section.

An open issue that stems from the use of a rule based
classifier is exactly what operations may be performed
as packets are routed. Specifically, we are concerned
with how specific matching rules should be, what trans-
formations are allowed, and so on.

3.3 Protection

Individual VMs need to be protected from one an-
other and from malicious external traffic. Among other
things, this demands that VMs only be allowed to gener-
ate IP packets that are valid, and that they not be able to
spoof the identity of other hosts. Given the packet clas-
sifier approach described above, this behaviour can be
achieved fairly easily by either dropping invalid pack-
ets, or overwriting the source address and port fields of
all outbound packets.

3.4 Additional Considerations

In addition to the packet classification functionalities
described above, services such as the following may be
desirable:

� Packet Filtering – The hypervisor may act as a
firewall, filtering traffic bound for each virtual ma-
chine.

� Address Translation – By performing network
address translation (NAT) and port forwarding,
many virtual machines may share a common ex-
ternal IP address.

� Traffic Logging – Details regarding connections
may be logged to allow forensic auditing in the
case of a specific virtual machine acting mali-
ciously.

� VM-based Packet Sniffing – Clients may wish
to have some interface approximating promiscu-
ous mode. We suggest above that this is possible,
allowing a VM to see all traffic bound for it as if
all the VMs were on a router. A packet classifier
could be configured to deliver a larger (or even a
complete) version of the traffic visible to the ex-
ternal interface to individual VMs. The resolu-
tion to this issue it partially a performance con-
cern, as it would likely necessitate multiple copies
of inbound message buffers, and partially a politi-
cal/administrative one, for obvious reasons.

Given the proposed system structure, it should be com-
pletely reasonable to provide all of these services. As
mentioned previously, the issue that must be considered
in each case is the impact that their implementation will
have on the efficient processing of VM traffic.

4 Network Virtualization in Xen

This section describes the design approach that has been
taken for the first public release of the XenoServers hy-
pervisor, Xen. Individual virtual machines may have
one or more virtual interfaces, each of which appears as
a point-to-point Ethernet link to an IP router. A diagram
of the system appears in Figure 3.

The network system within Xen consists of a virtual
firewall router, which is a rule-based packet classifi-
cation/forwarding engine (based on the Linux netfil-
ter/IPTables code) responsible for simple, fast packet
handling. Additionally, Xen’s network system incorpo-
rates a network address translation (NAT) module that
provides functions such as address translation and port

3

Microsoft Ex. 1007, p. 4
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

forwarding2.

Packet scheduling in Xen is at the granularity of vir-
tual interfaces. A soft real-time scheduler moves trans-
mit packets from virtual interface send queues through
Xen’s routing tables. Received packets are delivered on
arrival and appropriate RX scheduling is deferred on to
the CPU scheduler as VMs are responsible for empty-
ing their own inbound message buffers. VMs which do
not empty their receive queues at the inbound packet
rate will have extraneous packets dropped.

Rules may be installed into classification engine
through an interface provided within a privileged VM
(known as domain zero). These rules are tuples of the
form (pattern, action). Note that rules may be priori-
tized and a particular packet may match multiple rules
upon classification. This means that, for instance, an ar-
riving packet bound for a VM may be routed to that VM
and trigger the generation of a logging event to domain
zero.

As an example, the following rules are installed prior to
instantiating the Windows XP VM in the diagram. The
rules forward all traffic bound for the static address, but
bar it’s access to privileged ports. The final rules map
it’s outbound traffic ensuring that it is not attempting to
spoof the identity of another host3.

(dstAddr=’128.232.103.201’

dstPort=‘1-1024’, DROP)

(dstAddr=’128.232.103.201’, FORWARD ds-

tIf=pp2)

(srcAddr=’128.232.103.201’ srcPort=‘1-

1024’, DROP)

(srcAddr=’128.232.103.201’ srcIf=pp2,

FORWARD dstIf=eth0)

(srcAddr=’128.232.103.201’, DROP)

Additionally, the following rule is used to log TCP SYN
messages. Message headers are sent to the reporting
and monitoring interface of domain zero.

(proto=TCP flags=SYN, LOG

fmt=LOG PKT HEADER)

2The NAT module does not presently attempt to provide heavier
functionalities such as per-flow connection tracking and application-
specific (e.g. FTP) translations.

3Rules for local delivery to other interfaces have been omitted for
simplicity.

5 Conclusion

This paper has presented a discussion of the issues in-
volved in the sharing of network resources for a set
of isolated virtual machines. By considering the net-
work system implemented in the hypervisor as a virtu-
alization of a local area network, we feel that its role
becomes much more understandable. This approach
presents a model in which VMs appear as isolated as
they would be were they separate physical machines on
a shared switching element.

We hope that this discussion and the overview of our
own approach serve to promote discussion on these is-
sues with other researchers.

[?]

References

4

Microsoft Ex. 1007, p. 5
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

