
Live Migration of Virtual Machines

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen†,
Eric Jul†, Christian Limpach, Ian Pratt, Andrew Warfield

University of Cambridge Computer Laboratory † Department of Computer Science
15 JJ Thomson Avenue, Cambridge, UK University of Copenhagen, Denmark

firstname.lastname@cl.cam.ac.uk {jacobg,eric}@diku.dk

Abstract
Migrating operating system instances across distinct phys-
ical hosts is a useful tool for administrators of data centers
and clusters: It allows a clean separation between hard-
ware and software, and facilitates fault management, load
balancing, and low-level system maintenance.

By carrying out the majority of migration while OSes con-
tinue to run, we achieve impressive performance with min-
imal service downtimes; we demonstrate the migration of
entire OS instances on a commodity cluster, recording ser-
vice downtimes as low as 60ms. We show that that our
performance is sufficient to make live migration a practical
tool even for servers running interactive loads.

In this paper we consider the design options for migrat-
ing OSes running services with liveness constraints, fo-
cusing on data center and cluster environments. We intro-
duce and analyze the concept of writable working set, and
present the design, implementation and evaluation of high-
performance OS migration built on top of the Xen VMM.

1 Introduction

Operating system virtualization has attracted considerable
interest in recent years, particularly from the data center
and cluster computing communities. It has previously been
shown [1] that paravirtualization allows many OS instances
to run concurrently on a single physical machine with high
performance, providing better use of physical resources
and isolating individual OS instances.

In this paper we explore a further benefit allowed by vir-
tualization: that of live OS migration. Migrating an en-
tire OS and all of its applications as one unit allows us to
avoid many of the difficulties faced by process-level mi-
gration approaches. In particular the narrow interface be-
tween a virtualized OS and the virtual machine monitor
(VMM) makes it easy avoid the problem of ‘residual de-
pendencies’ [2] in which the original host machine must
remain available and network-accessible in order to service

certain system calls or even memory accesses on behalf of
migrated processes. With virtual machine migration, on
the other hand, the original host may be decommissioned
once migration has completed. This is particularly valuable
when migration is occurring in order to allow maintenance
of the original host.

Secondly, migrating at the level of an entire virtual ma-
chine means that in-memory state can be transferred in a
consistent and (as will be shown) efficient fashion. This ap-
plies to kernel-internal state (e.g. the TCP control block for
a currently active connection) as well as application-level
state, even when this is shared between multiple cooperat-
ing processes. In practical terms, for example, this means
that we can migrate an on-line game server or streaming
media server without requiring clients to reconnect: some-
thing not possible with approaches which use application-
level restart and layer 7 redirection.

Thirdly, live migration of virtual machines allows a sepa-
ration of concerns between the users and operator of a data
center or cluster. Users have ‘carte blanche’ regarding the
software and services they run within their virtual machine,
and need not provide the operator with any OS-level access
at all (e.g. a root login to quiesce processes or I/O prior to
migration). Similarly the operator need not be concerned
with the details of what is occurring within the virtual ma-
chine; instead they can simply migrate the entire operating
system and its attendant processes as a single unit.

Overall, live OS migration is a extremelely powerful tool
for cluster administrators, allowing separation of hardware
and software considerations, and consolidating clustered
hardware into a single coherent management domain. If
a physical machine needs to be removed from service an
administrator may migrate OS instances including the ap-
plications that they are running to alternative machine(s),
freeing the original machine for maintenance. Similarly,
OS instances may be rearranged across machines in a clus-
ter to relieve load on congested hosts. In these situations the
combination of virtualization and migration significantly
improves manageability.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 273

Microsoft Ex. 1006, p. 1
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

We have implemented high-performance migration sup-
port for Xen [1], a freely available open source VMM for
commodity hardware. Our design and implementation ad-
dresses the issues and tradeoffs involved in live local-area
migration. Firstly, as we are targeting the migration of ac-
tive OSes hosting live services, it is critically important to
minimize the downtime during which services are entirely
unavailable. Secondly, we must consider the total migra-
tion time, during which state on both machines is synchro-
nized and which hence may affect reliability. Furthermore
we must ensure that migration does not unnecessarily dis-
rupt active services through resource contention (e.g., CPU,
network bandwidth) with the migrating OS.

Our implementation addresses all of these concerns, allow-
ing for example an OS running the SPECweb benchmark
to migrate across two physical hosts with only 210ms un-
availability, or an OS running a Quake 3 server to migrate
with just 60ms downtime. Unlike application-level restart,
we can maintain network connections and application state
during this process, hence providing effectively seamless
migration from a user’s point of view.

We achieve this by using a pre-copy approach in which
pages of memory are iteratively copied from the source
machine to the destination host, all without ever stopping
the execution of the virtual machine being migrated. Page-
level protection hardware is used to ensure a consistent
snapshot is transferred, and a rate-adaptive algorithm is
used to control the impact of migration traffic on running
services. The final phase pauses the virtual machine, copies
any remaining pages to the destination, and resumes exe-
cution there. We eschew a ‘pull’ approach which faults in
missing pages across the network since this adds a residual
dependency of arbitrarily long duration, as well as provid-
ing in general rather poor performance.

Our current implementation does not address migration
across the wide area, nor does it include support for migrat-
ing local block devices, since neither of these are required
for our target problem space. However we discuss ways in
which such support can be provided in Section 7.

2 Related Work

The Collective project [3] has previously explored VM mi-
gration as a tool to provide mobility to users who work on
different physical hosts at different times, citing as an ex-
ample the transfer of an OS instance to a home computer
while a user drives home from work. Their work aims to
optimize for slow (e.g., ADSL) links and longer time spans,
and so stops OS execution for the duration of the transfer,
with a set of enhancements to reduce the transmitted image
size. In contrast, our efforts are concerned with the migra-
tion of live, in-service OS instances on fast neworks with
only tens of milliseconds of downtime. Other projects that

have explored migration over longer time spans by stop-
ping and then transferring include Internet Suspend/Re-
sume [4] and µDenali [5].

Zap [6] uses partial OS virtualization to allow the migration
of process domains (pods), essentially process groups, us-
ing a modified Linux kernel. Their approach is to isolate all
process-to-kernel interfaces, such as file handles and sock-
ets, into a contained namespace that can be migrated. Their
approach is considerably faster than results in the Collec-
tive work, largely due to the smaller units of migration.
However, migration in their system is still on the order of
seconds at best, and does not allow live migration; pods
are entirely suspended, copied, and then resumed. Further-
more, they do not address the problem of maintaining open
connections for existing services.

The live migration system presented here has considerable
shared heritage with the previous work on NomadBIOS [7],
a virtualization and migration system built on top of the
L4 microkernel [8]. NomadBIOS uses pre-copy migration
to achieve very short best-case migration downtimes, but
makes no attempt at adapting to the writable working set
behavior of the migrating OS.

VMware has recently added OS migration support, dubbed
VMotion, to their VirtualCenter management software. As
this is commercial software and strictly disallows the publi-
cation of third-party benchmarks, we are only able to infer
its behavior through VMware’s own publications. These
limitations make a thorough technical comparison impos-
sible. However, based on the VirtualCenter User’s Man-
ual [9], we believe their approach is generally similar to
ours and would expect it to perform to a similar standard.

Process migration, a hot topic in systems research during
the 1980s [10, 11, 12, 13, 14], has seen very little use for
real-world applications. Milojicic et al [2] give a thorough
survey of possible reasons for this, including the problem
of the residual dependencies that a migrated process re-
tains on the machine from which it migrated. Examples of
residual dependencies include open file descriptors, shared
memory segments, and other local resources. These are un-
desirable because the original machine must remain avail-
able, and because they usually negatively impact the per-
formance of migrated processes.

For example Sprite [15] processes executing on foreign
nodes require some system calls to be forwarded to the
home node for execution, leading to at best reduced perfor-
mance and at worst widespread failure if the home node is
unavailable. Although various efforts were made to ame-
liorate performance issues, the underlying reliance on the
availability of the home node could not be avoided. A sim-
ilar fragility occurs with MOSIX [14] where a deputy pro-
cess on the home node must remain available to support
remote execution.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association274

Microsoft Ex. 1006, p. 2
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

We believe the residual dependency problem cannot easily
be solved in any process migration scheme – even modern
mobile run-times such as Java and .NET suffer from prob-
lems when network partition or machine crash causes class
loaders to fail. The migration of entire operating systems
inherently involves fewer or zero such dependencies, mak-
ing it more resilient and robust.

3 Design

At a high level we can consider a virtual machine to encap-
sulate access to a set of physical resources. Providing live
migration of these VMs in a clustered server environment
leads us to focus on the physical resources used in such
environments: specifically on memory, network and disk.

This section summarizes the design decisions that we have
made in our approach to live VM migration. We start by
describing how memory and then device access is moved
across a set of physical hosts and then go on to a high-level
description of how a migration progresses.

3.1 Migrating Memory

Moving the contents of a VM’s memory from one phys-
ical host to another can be approached in any number of
ways. However, when a VM is running a live service it
is important that this transfer occurs in a manner that bal-
ances the requirements of minimizing both downtime and
total migration time. The former is the period during which
the service is unavailable due to there being no currently
executing instance of the VM; this period will be directly
visible to clients of the VM as service interruption. The
latter is the duration between when migration is initiated
and when the original VM may be finally discarded and,
hence, the source host may potentially be taken down for
maintenance, upgrade or repair.

It is easiest to consider the trade-offs between these require-
ments by generalizing memory transfer into three phases:

Push phase The source VM continues running while cer-
tain pages are pushed across the network to the new
destination. To ensure consistency, pages modified
during this process must be re-sent.

Stop-and-copy phase The source VM is stopped, pages
are copied across to the destination VM, then the new
VM is started.

Pull phase The new VM executes and, if it accesses a page
that has not yet been copied, this page is faulted in
(“pulled”) across the network from the source VM.

Although one can imagine a scheme incorporating all three
phases, most practical solutions select one or two of the

three. For example, pure stop-and-copy [3, 4, 5] involves
halting the original VM, copying all pages to the destina-
tion, and then starting the new VM. This has advantages in
terms of simplicity but means that both downtime and total
migration time are proportional to the amount of physical
memory allocated to the VM. This can lead to an unaccept-
able outage if the VM is running a live service.

Another option is pure demand-migration [16] in which a
short stop-and-copy phase transfers essential kernel data
structures to the destination. The destination VM is then
started, and other pages are transferred across the network
on first use. This results in a much shorter downtime, but
produces a much longer total migration time; and in prac-
tice, performance after migration is likely to be unaccept-
ably degraded until a considerable set of pages have been
faulted across. Until this time the VM will fault on a high
proportion of its memory accesses, each of which initiates
a synchronous transfer across the network.

The approach taken in this paper, pre-copy [11] migration,
balances these concerns by combining a bounded itera-
tive push phase with a typically very short stop-and-copy
phase. By ‘iterative’ we mean that pre-copying occurs in
rounds, in which the pages to be transferred during round
n are those that are modified during round n− 1 (all pages
are transferred in the first round). Every VM will have
some (hopefully small) set of pages that it updates very
frequently and which are therefore poor candidates for pre-
copy migration. Hence we bound the number of rounds of
pre-copying, based on our analysis of the writable working
set (WWS) behavior of typical server workloads, which we
present in Section 4.

Finally, a crucial additional concern for live migration is the
impact on active services. For instance, iteratively scanning
and sending a VM’s memory image between two hosts in
a cluster could easily consume the entire bandwidth avail-
able between them and hence starve the active services of
resources. This service degradation will occur to some ex-
tent during any live migration scheme. We address this is-
sue by carefully controlling the network and CPU resources
used by the migration process, thereby ensuring that it does
not interfere excessively with active traffic or processing.

3.2 Local Resources

A key challenge in managing the migration of OS instances
is what to do about resources that are associated with the
physical machine that they are migrating away from. While
memory can be copied directly to the new host, connec-
tions to local devices such as disks and network interfaces
demand additional consideration. The two key problems
that we have encountered in this space concern what to do
with network resources and local storage.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 275

Microsoft Ex. 1006, p. 3
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

For network resources, we want a migrated OS to maintain
all open network connections without relying on forward-
ing mechanisms on the original host (which may be shut
down following migration), or on support from mobility
or redirection mechanisms that are not already present (as
in [6]). A migrating VM will include all protocol state (e.g.
TCP PCBs), and will carry its IP address with it.

To address these requirements we observed that in a clus-
ter environment, the network interfaces of the source and
destination machines typically exist on a single switched
LAN. Our solution for managing migration with respect to
network in this environment is to generate an unsolicited
ARP reply from the migrated host, advertising that the IP
has moved to a new location. This will reconfigure peers
to send packets to the new physical address, and while a
very small number of in-flight packets may be lost, the mi-
grated domain will be able to continue using open connec-
tions with almost no observable interference.

Some routers are configured not to accept broadcast ARP
replies (in order to prevent IP spoofing), so an unsolicited
ARP may not work in all scenarios. If the operating system
is aware of the migration, it can opt to send directed replies
only to interfaces listed in its own ARP cache, to remove
the need for a broadcast. Alternatively, on a switched net-
work, the migrating OS can keep its original Ethernet MAC
address, relying on the network switch to detect its move to
a new port1.

In the cluster, the migration of storage may be similarly ad-
dressed: Most modern data centers consolidate their stor-
age requirements using a network-attached storage (NAS)
device, in preference to using local disks in individual
servers. NAS has many advantages in this environment, in-
cluding simple centralised administration, widespread ven-
dor support, and reliance on fewer spindles leading to a
reduced failure rate. A further advantage for migration is
that it obviates the need to migrate disk storage, as the NAS
is uniformly accessible from all host machines in the clus-
ter. We do not address the problem of migrating local-disk
storage in this paper, although we suggest some possible
strategies as part of our discussion of future work.

3.3 Design Overview

The logical steps that we execute when migrating an OS are
summarized in Figure 1. We take a conservative approach
to the management of migration with regard to safety and
failure handling. Although the consequences of hardware
failures can be severe, our basic principle is that safe mi-
gration should at no time leave a virtual OS more exposed

1Note that on most Ethernet controllers, hardware MAC filtering will
have to be disabled if multiple addresses are in use (though some cards
support filtering of multiple addresses in hardware) and so this technique
is only practical for switched networks.

Stage 0: Pre-Migration
 Active VM on Host A

 Alternate physical host may be preselected for migration

 Block devices mirrored and free resources maintained

Stage 4: Commitment
 VM state on Host A is released

Stage 5: Activation
 VM starts on Host B

 Connects to local devices

 Resumes normal operation

Stage 3: Stop and copy
 Suspend VM on host A

 Generate ARP to redirect traffic to Host B

 Synchronize all remaining VM state to Host B

Stage 2: Iterative Pre-copy
 Enable shadow paging

 Copy dirty pages in successive rounds.

Stage 1: Reservation
 Initialize a container on the target host

Downtime

(VM Out of Service)

VM running normally on

Host A

VM running normally on

Host B

Overhead due to copying

Figure 1: Migration timeline

to system failure than when it is running on the original sin-
gle host. To achieve this, we view the migration process as
a transactional interaction between the two hosts involved:

Stage 0: Pre-Migration We begin with an active VM on
physical host A. To speed any future migration, a tar-
get host may be preselected where the resources re-
quired to receive migration will be guaranteed.

Stage 1: Reservation A request is issued to migrate an OS
from host A to host B. We initially confirm that the
necessary resources are available on B and reserve a
VM container of that size. Failure to secure resources
here means that the VM simply continues to run on A
unaffected.

Stage 2: Iterative Pre-Copy During the first iteration, all
pages are transferred from A to B. Subsequent itera-
tions copy only those pages dirtied during the previous
transfer phase.

Stage 3: Stop-and-Copy We suspend the running OS in-
stance at A and redirect its network traffic to B. As
described earlier, CPU state and any remaining incon-
sistent memory pages are then transferred. At the end
of this stage there is a consistent suspended copy of
the VM at both A and B. The copy at A is still con-
sidered to be primary and is resumed in case of failure.

Stage 4: Commitment Host B indicates to A that it has
successfully received a consistent OS image. Host A
acknowledges this message as commitment of the mi-
gration transaction: host A may now discard the orig-
inal VM, and host B becomes the primary host.

Stage 5: Activation The migrated VM on B is now ac-
tivated. Post-migration code runs to reattach device
drivers to the new machine and advertise moved IP
addresses.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association276

Microsoft Ex. 1006, p. 4
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Elapsed time (secs)
0 2000 4000 6000 8000 10000 12000

N
um

be
ro

fp
ag

es

0

10000

20000

30000

40000

50000

60000

70000

80000

Tracking the Writable Working Set of SPEC CINT2000

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Figure 2: WWS curve for a complete run of SPEC CINT2000 (512MB VM)

This approach to failure management ensures that at least
one host has a consistent VM image at all times during
migration. It depends on the assumption that the original
host remains stable until the migration commits, and that
the VM may be suspended and resumed on that host with
no risk of failure. Based on these assumptions, a migra-
tion request essentially attempts to move the VM to a new
host, and on any sort of failure execution is resumed locally,
aborting the migration.

4 Writable Working Sets

When migrating a live operating system, the most signif-
icant influence on service performance is the overhead of
coherently transferring the virtual machine’s memory im-
age. As mentioned previously, a simple stop-and-copy ap-
proach will achieve this in time proportional to the amount
of memory allocated to the VM. Unfortunately, during this
time any running services are completely unavailable.

A more attractive alternative is pre-copy migration, in
which the memory image is transferred while the operat-
ing system (and hence all hosted services) continue to run.
The drawback however, is the wasted overhead of trans-
ferring memory pages that are subsequently modified, and
hence must be transferred again. For many workloads there
will be a small set of memory pages that are updated very
frequently, and which it is not worth attempting to maintain
coherently on the destination machine before stopping and
copying the remainder of the VM.

The fundamental question for iterative pre-copy migration

is: how does one determine when it is time to stop the pre-
copy phase because too much time and resource is being
wasted? Clearly if the VM being migrated never modifies
memory, a single pre-copy of each memory page will suf-
fice to transfer a consistent image to the destination. How-
ever, should the VM continuously dirty pages faster than
the rate of copying, then all pre-copy work will be in vain
and one should immediately stop and copy.

In practice, one would expect most workloads to lie some-
where between these extremes: a certain (possibly large)
set of pages will seldom or never be modified and hence are
good candidates for pre-copy, while the remainder will be
written often and so should best be transferred via stop-and-
copy – we dub this latter set of pages the writable working
set (WWS) of the operating system by obvious extension
of the original working set concept [17].

In this section we analyze the WWS of operating systems
running a range of different workloads in an attempt to ob-
tain some insight to allow us build heuristics for an efficient
and controllable pre-copy implementation.

4.1 Measuring Writable Working Sets

To trace the writable working set behaviour of a number of
representative workloads we used Xen’s shadow page ta-
bles (see Section 5) to track dirtying statistics on all pages
used by a particular executing operating system. This al-
lows us to determine within any time period the set of pages
written to by the virtual machine.

Using the above, we conducted a set of experiments to sam-

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 277

Microsoft Ex. 1006, p. 5
Microsoft v. Daedalus Blue

IPR2021-00832
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

