
(

,

"Appeared at the USENIX Conference & Exhibition, Portland, Oregon, Summer 1985"

Design and Implementation or the Sun Network Fllesystem

Rwrsd Sartdb,rl

Introduction

Dtnld Goldb,rl
Sin• 1Cl•lm1111

D1111 Wo/JII
Bob Lyo11

Sun Microsystems, Inc.
2550 Oarcla Ave.

Mountain View, CA. 94110
(415) 960-7293

The Sun Network FUesystem (NI'S) provides transparent, remote access to filesystems. Unlike
many other remote filesystem implementations under UNJXt, the NI'S is designed to be easily
portable 10 other operating systems and machine architectures. It uses an External Data
Representation (XOR) specification to describe protocoll in a machine and system Independent
way. The NFS is implemented on top of • Remote Procedure Call package (RPC) to help
simplify protocol deflJlition, Implementation, and maintenance.

In order to build the NFS into the UNIX ·4,2 kernel in a user transparent way, we decided to add
a new Interface 10 the kernel which separates generic mesystem operations from specific
filesystem implementations. The •fi!esystem interface" consists or two parts: the Virtual File
System (VFS) Interface defines the operations that can be done on a filesystem, while the vnode
Interface defines the operations that can be done on a file within that mesystem. This new
inte~face allows us 10 implement and Install new filesystems In much the same way as new device

,drivers are added to the kernel.

,

In this paper we discuss the design and Implementation of the filesystem Interface In the kernel
and the NFS virtual filesystem. We describe some interesting design Issues and how they were
resolved, and point out some of the shoncornings of the current Implementation. We conclude
with some ideas for future enhancel)lents.

Design Goals

The NFS was designed to make sharing of filesystem resources in a network of non-homogeneous
machines easier. Our goal was to provide a UNIX-like way of makln& remote files available to
local programs without having to modify, or even recompile, those programs. In addition, we
wanted remote file access to be comparable in speed to local file access.

The overall design aoals of the NFS were:

Machine and Operating System Independence
The protocols used should be independent or UNIX 10 that an NFS server can
supply files to many different types of clients. The protocols should· also be
simple enouah that they can be implemented on low end machines like the PC.

Crash Recovery
When clients can mount remote filesystems from many different servers ii Is
very Important that clients be able to recover easily from server crashes.

Transparent Access
We want to provide a system which allows programs to access remote files in
exactly the same way as local files. No pathname parsing, no special libraries,
no recompillna. Programs should not be able to tell whether a me is remote or
local. --------t UNIX ii I trademart of Bell Laboratoriea.

119

Microsoft Ex. 1018, p. 1
Microsoft v. Daedalus Blue

IPR2021-00831
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

,

UNIX Semantics Maintained on Client
In order for transparent access to worlr. on UNIX machines, UNIX fllesystem
semantics have to be maintained for remote files.

Reasonable Performance
People will not want to use !be NFS if It is no faster !ban !be existing networlr.lng
utilities, such as rep, even if It II easier to use. Our design goal is to mate NFS
as fast as the Sun Network Dlslr. protocol (ND 1) , or about 8091, u fut as a
local disk.

Basic Design
The NFS design consists of lhree major pieces: !be protocol, !be server side and !be client side.

NFS Protocol
The NFS protocol uses !be Sun Remote Procedure Call (RPC) mechanism I l I. For !be ■ame
reasons that pro<cdllre calls help ■lmpllfy programs, RPC helps ■lmpllfy !be definition,
organization, and implementation of remote services. The NFS protocol II denned In ternu of a
set of procedures, their arguments and results, and !heir effects. Remote procedure calls are
synchronous, that is, the client blocks until !be server bu completed !be call and returned !be
results. This makes RPC very easy to use since It behaves lllr.e a local procedure call.

The NFS uses a stateless protocol. The parameters to each procedure call contain all of !be
Information necessary to complete the call, and the server does not keep track of any past
requests. This makes crash recovery very easy; when a ■erver crashes, !be client resends NFS
requests until a response is received, and the server does no crash recovery at all. When a client
crashes no recovery is necessary for either the client or the server. When state II maintained on
the server, on the other hand, recovery is much harder. Both client and server need to be able to
reliably detect crashes. The server needs to detect client crashes so that It can discard any state it
is holding for the client, and the client must detect server crashes 10 that It can rebuild !be
server's state.
Using a stateless protocol allows us to avoid complex crash recovery and simplifies the protocol.
If a client just resends requests until a response is received, data will never be lost due to a server
crash. In fact the client can not tell the difference between a server that bas crashed and
recovered, and a server that Is slow.
Sun's remote procedure call package is designed to be transpon Independent. New transpon
protocols can be "plugged in" to the RPC irnplementati.on without affecting !be higher level
protocol code. The NFS uses the ARPA User Datagram Protocol (UDP) and Internet Protocol
(IP) for its transpon level. Since UDP Is an unreliable datagram protocol, packets can get Jost,
but because the NFS protocol is stateless and the NFS requests are idempotent, the client can
recover by retrying the call until the packet gets through.
The most common NFS procedure parameter is a strucNre called a me handle (fhandle or fh)
which is provided by the server and used by the client to reference a me. The fbandle is opaque,
that is, the client never looks at the contents of the fbandle, but uses It when operations are done
on that file.
An outline of the NFS protocol procedures Is given below. For the complete specification see the
Sim Nllwork Filrsyst,m Protocol Sp,cification {ZJ.

null() returns ()
Do nothing procedure to ping the server and measure round trip time.

tookup(dirfb, name) returns (fb, attr)
Returns a new fbandle and attributes for the named me In a directory.

cre■ te(dlrfb, name, anr) retum1 (newfb, attr)
Create• a new me and reNmS 111 fhandle and attributes.

remove(dirfh, name) returns (1taNs)
Removes a me from a directory.

aet■ ttr(fh) returns (attr)
Returns file attributes. This procedure is lllr.e a stat call.

[!] NJ>, the Sun Networt Dist Protocol, provide• block-level acce11 to remoll, sub-partitioned diata.

10
....

)

)

Microsoft Ex. 1018, p. 2
Microsoft v. Daedalus Blue

IPR2021-00831
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(aetattr(fh, attr) returns (attr)
Sets the mode, uid, gid, 1ize, access time, and mocllty time or a file. Setting the size to
zero truncates the me.

read(fh, offset, count) return• (anr, data)
Returns up to count bytes of data [rom a me stantn1 off11t bytes tnto the flle. read also
returns the attributes of the file. ·

wrlte(fh, offset, count, data) returns (attr)
Writes count byte, or data to a me beginning 0//111 bytn from the begin.Ding or the file.
Returns the attributes of the me after the write tun place.

rename(dirfh, name, tofb, toname) returns (status) .
Renames the me nam, tn the directory dlr/11, to ton am, ln the directory to/It.

Unk(dirfh, name, tofh, toname) returns (status)
Creates the file tonam, tn lbe directory to/11. which ii a link to the file 11am, ln the
directory dlrflt.

1ymllnk(dirfb, name, 1trin1) returns (status)
Creates a symbolic link 11am, in the directory dir/11 with value 1trln1. The server does not
interpret the 11r;n1 arpunent tn any way, just saves it and mates an usociadon to the new
symbolic link file.

readllnk(fh) returns (string)
Returns the strtna which is associated with the symbolic lint file.

mkdlr(dirfh, name, attr) returns (fh, newanr)
Creates a new directory 11am, in tbe directory dirP, and returns the new fhandle and
attributes.

rmdlr(dirfh, name) retums(status)
Removes the empty directory nam, from the parent directory dirfh.

readdlr(dirfh, cookie, count) retums(entries)
Returns up to count bytes of directory entries from the dir9'tory dirfh. Each entry contains
a file name, file Id, and an opaque pointer to the next directory entry called a coolci,. The
cooki, is used In subsequent readdlr calls to stan reading at a specific entry in the
directory. A readdlr call with the cooA:i, of zero returns entries stanin1 with the first
entry in the directory.

1tatrs(fh) returns (fsstats)
Returns filesystcm information such as block size, number of free blocks, etc.

New fhandles are returned by the lookup. create, and mkdlr procedures which also take an
fhandle as an argument. The first remote fhandle, for the root of a mesystem, Is obtained by the
client using another RPC based protocol. The MOUNT protocol takes a directory pathname and
returns an fhandle if the client has access permission to the mesystem which contains that
directory. The reason for making this a separate protocol is that this makes it easier to plug in
new filesystem access checkin& methods, and it separates out the operating system dependent
aspects of the protocol. Note that the MOUNT protocol ls the only place that UNIX pathnames
are passed to the server. In other operating system implementations the MOUNT protocol can
be replaced without having to chanae the NFS protocol.

The NFS protocol and RPC are built on top or an External Data Representation (XOR)
specification (3}. XOR defines the size, bytes order and alignment or basic data types such as
string, integer, union, boolean and array. Complex structures can be built from tbe basic data
types. Using XDR not only makes protocols machine and lanauage independent, it also makes
them easy to define. The arauments and results or RPC procedures are defined usina an XDR
data definitioq lanauage that looks a lot like C declarations.

Server Side
Because the NFS server ls stateless, u mentioned above, when servicing an NFS request it must
commit any modified data to stable storage before returning results. The implication for UNIX
based servers is that requests which modify the fllesystem must nu.sh all modified data to disk
before returning from the call. This means that, for example on a write request, not only the
data block, but also any modified indirect blocks and the block containing the inode must be
nushed if they have been modified. ~ ~

Another modification to UNIX necessary to make the server work is the addition or a generation
number in the inode, and a rllesystem id in the superbloct. These extra numbers make it
possible ror the server to use the inode number, in ode generation number, and filesysttm id

11
121

Microsoft Ex. 1018, p. 3
Microsoft v. Daedalus Blue

IPR2021-00831
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

101ether as the fhandle !or a me. The inode generation number is neceasary because the aerver
may hand out an !handle with an inode number or a flle that ii later removed and the inode
reused. When the original fhandle comes back, the server must be able to tell that thls lnode
number now refers to a different me. Tbe generation number bu 10 be incremented every time
the inode is !reed.

Cllenl Side
The client side provides the transparent interface to the NFS. To mate transparent access to
remote ftles work we had to uae a method of locating remote rues that does not change the
1tnu:ture of path names. Some UNIX based remote file access 1cheme1 use lto1t:poth to name
remote files. This does not allow real transparent acceu 1ince existing programs that pane
pathnames have to be modified.

Rather than doing a •]ate binding" of me addre11, we declded to do the bostname lookup and
rue address bindins once per fiJesystem by allowing the client to attach a remote fllesystem to a
directory usinJ the mount propam. This method bu the advantage that the client only bu to
deal with bostnames once, at mount time. It also allows the server to limit ac:c:etl to f1111ystem1
by checking client credentials. The disadvantage d that remote rues are not available to the
client until a mount is done.

Transparent access to different types of filesystems mounted on a single machine is provided by a
new filesystems interface in the kernel. Each •ruesy11em type" supports two sets or operations:
the Virtual Filesystem (VFS) interface defmes the procedures lhat operate on the fllesystem u a
whole; and the Virtual Node (vnode) interface defines the procedures that operate on an
individual file within that filesystem type. Figure 1 ls a schematic diagram of the filesystem
interface and how the NFS uses it.

CLIENT SERVER

System Calls

VNODE/VFS

PC Filesystem 4 . 2 Filesystem

Floppy

NFS Filesystem Server Routines

RPC I XDR RPC / XDR

Network
•

Flaure I

The Flleayslem lnlerrace

System Calls

VNODE/VFS

The VFS interface is implemented using a structure that contains the operations that can be done
on a whole filesystem. Likewise, the vnode interface is a structure that contains the operations
that can be done on a node (me or dlrectory) within a mesystem. There is one VFS structure per

12
Ill

)

Microsoft Ex. 1018, p. 4
Microsoft v. Daedalus Blue

IPR2021-00831
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(mounted fllesystem In the kemtl and ont vnode structure for ucb active node. U1in1 this
abstract data type implementation allows the kernel to treat all fUesystems and nodn lD the 1&me
way without knowin& wblcb underlytna ftlesysttm implementation it II UJin&.
Each vnode contains a pointer to its puent VFS and a pointer to a mounted•on VFS. 11m
means that any node In a filesystem tree can be a mount point for another ftlaystem. A root
operation is provided in the VFS to retum the root vnode of a mounted filnyatem. This ls used
by the pathname travenal routinn in the kernel to brld&e mount points. Th• root operation ls
used instead or Just teeptns a pointer ao that the root vnode for uch mounted llletyllem an be
released. The VFS of a mounted ftlesystem also contalnJ a back pointer to tbe vnode on ~blcb lt
is mounted 10 that pathnames that Include • •• " can also be trav,ned acrou mount points.· .

In addition to the VfS and vnode operations. each filnystem type must provide mount and
mount_root operations to mount normal and root fi111y1tems. Th• operations defined for the
ftlesystem interface are:

Fil,syst,m Op1rarions

· mount(varies }
mount_root(")

VFS Op1rario11s

unmount(vfs)
root(vfs) retunu(vnode)
atatrs(vfs) returns(f11tatbuf)
aync(vfs)

Vnod, Op,rarions

System call to mount ralnystem
Mount filesystem u root

Unmount fLlesystem
Return the Y'Dode of the fllesystem root
Return n.Ie1y1tem statistics
f1usb delayed write blocks

open(vnode, flags) Mark me open
close(vnode. nags) Mart flle closed
rdwr(vnode, uio, rwflag, naas) Read or writt a file
locll(vnode, cmd, data, rwfla1) Do 1/0 control operation
aelect(vnode, rwna1) Do 11lect
getattr(vnode) retums(attr) Return flle attributes
aetattr(vnode, attr) Set file attributes
access(vnode, mode) Check access permission
lookup(dvnode, name) retums('.(Dode) Loot up file name in a directory
create(dvnode, name, attr, excl, mode) retums(vnode) Create a ftle
remove(dvnode, name) Remove a me name from a direcrory
Jlnk(vnode, todvnodt, toname) Unk to a rue
rename(dvnode, name, todvnode, toname) Rename a file
mkdir(dvnode, name, attr) retums(dvnode) Create a directory
rmdlr(dvnode, name) Remove a diRctory
readdlr(dvnode) retums(entries) Read dlrectory entries
•ymlink(dvnode, name, attr, to_name) Create a symbolic link
readllnk(vp) retums(data) Read the value of a symbolic lint
rsync(vnode) flush cliny blocks of a rue
lnactlve(vnode) Mart vnode inactive and do clean up
bmap(vnode, bit) retumJ(devnode, mappedblk) Map block number
strate1y(bp) Read and write filesysttm blocks
bread(vnode, blockno) returns(buf) Read a block
brelse(vnode, buf) · Releue a block buffer

.·
Notice that many of the vnode procedures map one•to•one with NFS protocol procedurt1, while
other, UNIX dependent procedures such as open, close, and Ioctl do not. The bmap,
1crate1y, bread, and brelae procedures are used to do readina and wrttina usin& the buffer
cai::he.

Pathname traversal is done lD the kernel by breatin& the path into directory componen11 and
doin& a lookup call throu&b the vnode for each compc,,ient. At first glanee it aeemi like a wute

13
,,,

Microsoft Ex. 1018, p. 5
Microsoft v. Daedalus Blue

IPR2021-00831
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

