.-

{

-O

»

"Appeared at the USENIX Conference & Exhibition, Portland, Oregon, Summer 1985"

CKE

A R

T
M

Design and Implementation of the Sun Network Filesystem

Russel Sandberg
David Goldberg
Steve Kleiman
Dan Walsh
Bob Lyon

Sun Microsystems, Inc.
2550 Garcia Ave.
Mountain View, CA. 94110
(415) 960~7293

Introduction

The Sun Network Filesystem (NFS) provides transparent, remote access to filesystems. Unlike
many other remote filesystem implementations under UNIXT, the NFS is designed to be easily
poriable 1o other operating systems and machine¢ architectures. It uses an External Data
Representation (XDR) specification to describe protocols in a machine and system independent
way. The NFS is implemented on top of a Remote Procedure Call package (RPC) 10 help
simplify prolocol definition, implementation, and maintenance.

In order to build the NFS into the UNIX 4.2 kerne! in & user transparent way, we decided to add
a new interface to the kernel which separates generic filesystem operations from specific
filesystem implementations. The “filesystem interface™ consists of two parts: the Virtual File
System (VFS) interface defines the operations that can be done on a filesystem, while the vnode
interface defines the operations that can be done on a file within that filesystem. This new
interface allows us to implement and install new filesystemns in much the same way as new device

sdrivers are added to the kernel.

In this paper we discuss the design and implementation of the filesystem interface in the kernel
and the NFS virtual filesystem. We describe some interesting design lssues and how they were
resolved, and poini out some of the shortcomings of the current implementation. We conelude
with some ideas for future enhancements.

Design Goals

The NFS was designed to make sharing of filesystem resources in a network of non-homogeneous
machines easier. Our goal was 1o provide a UNIX-like way of making remote files available to
local programs without having to modily, or even recompile, those programs. In addition, we
wanted remote file access to be comparable in speed to local file access.

The overall design goals of the NFS were:

Machine and Operating System Independence
The protocols used should be independent of UNIX so that an NFS server can
supply files to many different types of elients. The protocols should aiso be
simple enough that they can be implemented on low end machines like the PC.

Crash Recovery
When clients can mount remote filesystems from many different servers it is
very imporiant that clients be able to recover easily from server ¢crashes.

Transparent Access
We want to provide a system which allows programs 1o access remote files in
exactly the same way as local files. No pathname parsing, no special libraries,
no recompiling. Programs should not be able to tell whether a file is remote or
local.

t UNIX is a trademark of Bell Laboratories.

119

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

UNIX Semantics Maintained on Client
In order for transparent access to work on UNIX machines, LUNIX filesystem
semantics have to be maintained for remote files.

Reasonable Performance
People will not want to use the NFS if it is no faster than the existing networking
utilities, such as rep, even if it is easier 10 use. Our design goal is 10 make NF5
as fast as the Sun Network Disk protocol (ND1), or about 80% as fast as a
local disk.

Basic Design ' .
The NFS design consists of three major pieces: the protocol, the server aide and the client side.
NFS Protocol

The NFS protocol uses the Sun Remote Procedure Call (RPC) mechanism [1]. For the same
reasons that procéditre ealls help simplify programs, RPC helps simplify the definition,
organization, and implementation of remote services. The NFS protocol is defined in terms ofa
set of procedures, their arguments and results, and their effects. Remote procedure calls are
synchronous, that is, the client blocks until the server has completed the call and returned the
results. This makes RPC very easy to use since it behaves like a local procedure call. :

The NFS uses a stateless protocol. The parameters 1o each procedure call contain all of the
information necessary to complete the call, and the server does not keep track of any past
requests. This makes crash recovery very easy, when a server crashes, the client resends NFS
requests until a response is received, and the server does no crash recovery at all. When a client
crashes no recovery is necessary for either the client or the server. When state is maintained on
the server, on the other hand, recovery is much harder. Both client and server need to be able to
reliably detect crashes. The server needs to detect client crashes so that it can discard any state it
is holding for the client, and the client musi detect server crashes so that it can rebuild the
server's state.)

Using a staieless protocol allows us (o aveid complex crash recovery and simplifies the protocol.
If a client just resends requests until a response is received, data will never be lost due to a server
crash. In fact the client can not tell the difference between a server that has crashed and
recovered, and a server that is slow.

Sun's remole procedure cail package is designed 1o be transpont independent. New transport
protocols can be “plugged in" to the RPC implementation without affecting the higher level
protccol code. The NFS uses the ARPA User Datagram Protocol (UDP) and Interne! Protoco!
(IP) for its transport level. Since UDP is an unreliable datagram protocol, packets can get lost,
but because the NFS protocol is stateless and the NFS requests are idempotent, the client can
recover by retrying the call until the packel gets through.

The most common NFS procedure parameter is a structure called a file handle (fhandle or fh)
which is provided by the server and used by the client to reference a file. The fhandle is opaque,
that is, 1he client never looks at the contents of the fhandle, but uses it when operations are done
on that file.

An outline of the NFS protocel procedures is given below, For the complete specification see the
Sun Network Filesystem Protocol Specification [2].

null() returns ()
Do nothing procedure 1o ping the server and measure round trip time.

lookup(dirfh, name) returns (fh, atir)
Returns a new fhandle and atiributes for the named file in 2 directory.

create(dirfh, name, aitr) returns (newth, attr)
Creates 2 new file and returns its fhandle and attributes.

remove(dirfh, name) returns (status)
Removes a file from a directory.

getaitr(fh) returns (attr)
Returns file atiributes. This procedure is like a s1at call.

['[l ND, the Sun Network Disk Protocol, provides block-level access to remote, sub—partitioned disks.

10

L L

DOCKET
ALARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

©
L

CKE

A R

T
M

setattr(fh, attr) returns (atir)
Sets the mode, uid, gid, size, access time, and modify time of a file. Setting the size to
zero truncates the file. :

read(fh, offset, count) returns (attr, data)
Retumns up to count bytes of data from a file slarting offset bytes into the file. read also
returas the atiributes of the file. ’

write(fh, offset, count, data) returns {attr)
Wriles count bytes of data 10 a file beginning offser byles from the beginning of the file.
Returns the attributes of the file after the write takes place.

rename(dirfh, name, tofh, toname) returns (status)
Renames the file name In the directory dirfh, to foname in the directory fofh.

HnX (ditfh, name, tofh, toname) returns (status)
Creates the file toname in the directory fofh, which is a link to the file name in the
direciory dirfh. .

symlnk(dirfh, name, string) returns (stawms)
Creates a symbolic link aame in the directory dirfh with value string. The server does not
interpret the siring argument in any way, fust saves it and makes an association to the new
symbolie link file.

readlink({fh) returns (string)
Returns the string which is associated with the symbolic link file.

mkdir(dirfh, name, anr) returns (fi, newattr)
Creates a new directory name in the directory dir/k and returns the new fhandle and
attributes.

rmdir{dirfh, name) returns(status)
Removes the emply directory name from the parent directory dirfh.

readdir(dirfh, cookie, count) returns(entries)
Returns up to coun? bytes of directory entries from the directory dir/s. Each eniry contains
a file name, file id, and an opaque pointer 1o the nexi directory eniry called a cookie. The
cookie is used in subsequent readdir calls to start reading at a specific entry in the
directory. A readdir call with the cookie of zeto returns entries starting with the first
eniry in the directory.

statfs(fh) returns (fsstats)
Returns filesystem information such as block size, number of free blocks, eic.

New fhandles are returned by the lookup, create, and mkdir procedures which also take an
fnandle as an argument. The first remote fhandle, for the root of a filesystem, is obtained by the
client using another RPC based protocol. The MOUNT protocol 1akes a directory pathname and
returns an fhandie if the client has access permission to the filesystem which contains that
directory. The reason for making this a separate protocol is that this makes it easier to plug in
new filesysiem access ¢checking methods, and it separates out the operating systern dependent
aspects of the protocol. Note that the MOUNT protocol is the only place that UNIX pathnames
are passed 10 the server. In other operating sysiem implementations the MOUNT protocol can
be replaced without having 1o change the NFS protocol.

The NFS protocol and RPC are built on top of an External Data Representation (XDR)
specification [3]. XDR defines the size, bytes order and alignment of basic daia types such as
string, integer, union, boolean and array. Complex structures can be built from the basic data
types. Using XDR not only makes protocols machine and language independent, it also makes
them easy to define. The arguments and results of RPC procedures are defined using an XDR
datla definition language that looks a lot like C declarations.

Server Side

Because the NFS server is stateless, as mentioned above, when servicing an NFS request it must
commit any modified data to stable storage before returning resulis. The implication for UNIX
based servers is that requesis which modify the filesystem must flush all modified data 1o disk
before returning from the call. This means thai, for example on a write request, not only the
data block, bul also any modified indirect blocks and the block containing the inode must be
flushed if they have been modified. ~)

Another modification to UNIX necessary to make the server work is the addition of a generation
number in the inode, and a filesystem id in the superblock. These exira numbers make it
possible for the server to use the inode number, inode generation number, and filesystem id

11

121

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

together as the fhand!e for a file. The inode generation number is necessary because the server
may hand out an fhandle with an inode pumber of a file that is Iater removed and the inode
reused. When the original fhandle comes back, the server must be able to tell that this inode
number now refers 1o a different file. The generation number has to be incremented every time
the inode is freed.

Client Side

The client side provides the transparent interface to the NFS. To make transparent access 1o
remote files work we had 1o use a method of locating remote files that does not change the
structure of path names. Some UUNIX based remote file access schemes use host;path 1o name
remote files. This does not allow real transparent access since exisiing programs that parse
i pathnames have to be modified.

Rather than doing a “Iate binding™ of file address, we decided to do the hostname lookup and
file address binding once per filesystem by allowing the client to attach a remote filesystem 10 a
directory using the mount program. This method has the advantage that the client only has to
dea! with hostnames once, at mount time. It also allows the server to limit access to filesystems
by checking client credentials. The disadvantage is that remoie files are not available to the
client until a mount is done.

Transparent access to different types of filesystems mounted on a single machine is provided by 2
new filesystems interface in the kernel. Each “filesystem type" supports two sets of operations:
the Virtua! Filesystem (VFS) interface defines the procedures that operate on the filesystem as a
whole; and the Virtual Node (vnode) interface defines the procedures that operate on an
individual file within thai filesystem type. Figure 1 is a schemalic diagram of the filesystem
interface and how the NFS uses it. .

CLIENT SERVER

System Calls System Calls

VNODE/VFS ‘ VNODE/VFS

J N

PC Filesystem 4.2 Filesystem || NFS Filesystem Server Routines

| o RPC / XDR RPC / XDR
Floppy isk
b1
Network
—

Figure 1

The Filesystem Interface

The VFS interface {s implemented using a structure that contains the operations that can be done
on a whole filesystem. Likewise, the vnode interface is a structure that conains the operations
that can be done on a node {file or directory) within a filesysiem. There is one VFS structure per

)

m

DOCKET
A

L A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(

DOCKET

_ ARM

mounted filesystem in the kernel and one vnode structure for each active node. Using this
abstract data type implementation allows the kernel to treat all filesystems and nodes in the same
way without knowing which underlying filesystem implementation it is using.

Each vnode contains a pointer to its parent VFS and a pointer to a mounted-on VFS. This
means that any node in a filesystem tree can be 2 mount point for another filesystem. A root
operation is provided in the VFS 1o return the root vnode of a mounted filesystem. This is used
by the pathname traversal routines in the keme! to bridge mount points. The root operation is
used instead of just keeping a pointer so that the root vaode for each mounted filesysiem can be
released. The VFS of a mounted filesystem also contains a back pointer to the vnode on which it
is mounted so that pathnames that include “.." can also be traversed across mount points.:

In addition to the VFS and vnode operations, each mzs'yue'm type must provide mount and
mount_root operations to mount norma! and root filesystems. The operations defined for uu
mesystem interface are:

Filesystem Operations

mount(varies) System call to mount filesystem
mount_root(') Mount filesystem as root

VFS Operations
unmount(vls) Unmount filesystem
root(vis) returns(vnode) Return the vnode of the filesysiem root
statfs(vis) returns(fsstatbuf) Return filesystem statistics
sync(vfs) Flush delayed write blocks

Vnode Operations
open(vnode, flags) , Mark file open
close(vnode, flags) Mark file closed
rdwr(vnode, uio, rwilag, flags) Read or write a file
foctl(vnode, emd, data, rwflag) Do I/0 control operation
select(vnode, rwflag) Do select
getattr(vnode) returns(atir) Return file attributes
setattr(vnode, attr) Set file attributes
access(vnode, mode) Check access permission
lookup({dvnode, name) returns(vnode) Look up file name in a directory
create(dvnode, name, attr, excl, mode) returns(vnode) Create a file
remove(dvnode, name) Remove a file name from a directory
link(vnode, todvnode, toname) Link 10 a file
rename (dvnode, name, todvnode, toname) Rename a file
mkdir(dvnhode, name, attr) returns(dvnode) Create a directory
rmdir(dvnode, name) Remove a directory
readdir(dvnode) returns(entries) Read directory entries
symlink(dvnode, name, atir, to_name) Create a symbolic link
readlink(vp) returns(data) Read the value of a symbolic link
fsync(vnode) Flush dirty blocks of a file
inactive(vnode) Mark vnode inactive and do clean up
bmap(vnode, blk) returns(devnode, mappedblk) Map block number
strategy(bp) Read and write filesystem blocks
bread(vnode, blockno) returns(buf) Read a block
brelse(vnode, buf) - Release 2 block buffer

Notice that many of the vnode procedures map one-to-one with NFS protocol procedures, while
other, UNIX dependent procedures such as open, close, and loctl do not. The bmap,
sirategy, bread, and brelse procedures are used td do reading and writing using the buffer
cache.

Pathname traversal is done in the kernel by breaking the path into directory components and
doing a lookup call through the vnode for each component. Al first glance it seems like a waste

13

M

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

