
DISTRIBUTED SYSTEMS FOR
SYSTEM ARCHITECTS

Exhibit 2026 Page 1

Daedalus Blue Exhibit 2026
Microsoft Corp. v. Daedalus Blue, LLC
Case IPR2021-00831

ADVANCES IN
DISTRIBUTED COMPUTING AND

MIDDLEWARE

Consulting Editors

Prof. John A. Stankovic Dr. Richard E. Schantz
University of Virginia Principal Scientist
Dept of Computer Science B B N Technologies
Charlottesville, V A 22903-2442 Cambridge, M A 02138
stankovic @cs. virginia.edu schantz@bbn.com

Exhibit 2026 Page 2

DISTRIBUTED SYSTEMS FOR
SYSTEM ARCHITECTS

by

Paulo Verissimo
University ofLisboa, Portugal

Luis Rodrigues
University ofLisboa, Portugal

SPRINGER SCIENCE+BUSINESS MEDIA, L L C

Exhibit 2026 Page 3

Library of Congress Cataloging-in-Publication Data

Venssimo, Paulo, 1956-
Distributed systems for system architects / Paulo Venssimo, Luis Rodrigues.

p. cm.--(Advances in distributed computing and middleware; distl)
Includes bibliographical references and index.

ISBN 978-1-4613-5666-0 ISBN 978-1-4615-1663-7 (eBook)
DOI 10.1007/978-1-4615-1663-7

1. Electronic data processin-Distributed processing. I. Rodrigues, Luis, 1963- n
Title. III. Series.

QA76.9.D5 V45 2000
005'.36—dc21 00-052178

Copyright © 2001 Springer Science+Business Media New York
Originally published by Kluwer Academic Publisher in 2001
Softcover reprint of the hardcover 1st edition 2001

A l l rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo
copying, recording, or otherwise, without the prior written permission of the publisher,

Printed on acid-free paper.

Exhibit 2026 Page 4

A LUIsa, ao Tiago e ao Vasco,

por esse tern po,

em que 0 tempo era largo

To my parents, Vasco and Lurdes,

my sister, Elsa,

my wife, Ana,

and my children, Hugo and Sara

Exhibit 2026 Page 5

Contents

Preface xiii

Foreword XXI

Part I Distribution

1. DISTRIBUTED SYSTEMS FOUNDATIONS 3

1.1 A Definition of Distributed Systems 3

1.2 Services of Distributed Systems 10

1.3 Distributed System Architectures 11

1.4 Formal Notions 17

1.5 Summary and Further Reading 20

2. DISTRIBUTED SYSTEM PARADIGMS 21

2.1 Naming and Addressing 21

2.2 Message Passing 26

2.3 Remote Operations 28

2.4 Group Communication 31

2.5 Time and Clocks 35

2.6 Synchrony 43

2.7 Ordering 49

2.8 Coord ination 60

2.9 Consistency 70

2.10 Concurrency 81

2.11 Atomicity 85

2.12 Summary and Further Reading 87

3. MODELS OF DISTRIBUTED COMPUTING 89

3.1 Distributed Systems Frameworks 89

3.2 Strategies for Distributed Systems 97

3.3 Asynchronous Models 101

3.4 Synchronous Models 103

viiExhibit 2026 Page 6

viii DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

3.5 Classes of Distributed Activities
3.6 Client-Server with RPC
3.7 Group-Oriented
3.8 Distributed Shared Memory
3.9 Message Buses
3.10 Summary and Further Reading

4. DISTRIBUTED SYSTEMS AND PLATFORMS
4.1 Name and Directory Services
4.2 Distributed File Systems
4.3 Distributed Computing Environment (DCE)
4.4 Object-Oriented Environments (CORBA)
4.5 World-Wide Web
4.6 Groupware Systems
4.7 Summary and Further Reading

5. CASE STUDY: VP'63
5.1 Introduction
5.2 Initial System and First Steps
5.3 Distributed Computing Approaches
5.4 Distribution of Data Repositories
5.5 Distributed File System Access

Part II Fault Tolerance

6. FAULT-TOLERANT SYSTEMS FOUNDATIONS
6.1 A Definition of Dependability
6.2 Fault-Tolerant Computing
6.3 Distributed Fault Tolerance
6.4 Fault-Tolerant Networks
6.5 Fault-Tolerant Architectures
6.6 Summary and Further Reading

7. PARADIGMS FOR DISTRIBUTED FAULT TOLERANCE
7.1 Failure Detection
7.2 Fault-tolerant Consensus
7.3 Uniformity
7.4 Membership
7.5 Fault-Tolerant Communication
7.6 Replication Man;ai~ement in Partition-free Networks
7.7 Replication Management in Partitionable Networks
7.8 Resilience
7.9 Recovery
7.10 Summary and Further Reading

104
108
115
123
129
131

133
133
139
146
148
151
154
155

159
159
160
161
163
166

171
171
180
186
187
189
192

193
193
201
203
204
207
216
219
222
225
233

Exhibit 2026 Page 7

Contents ix

8. MODELS OF DISTRIBUTED FAULT-TOLERANT COMPUTING 235

8.1 Classes of Failure Semantics 235

8.2 Basic Fault tolerance Frameworks 238

8.3 Fault Tolerance Strategies 241

8.4 Fault-Tolerant Remote Operations 245

8.5 Fault-Tolerant Event Services 249

8.6 Transactions 250

8.7 Summary and Further Reading 258

9. DEPENDABLE SYSTEMS AND PLATFORMS 259

9.1 Distributed Fault-Tolerant Systems 259

9.2 Transactional Systems 265

9.3 Cluster architectures 266

9.4 Making Legacy Systems Dependable 267

9.5 Summary and Further Reading 269

10. CASE STUDY: VP'63 271

10.1 First Steps Towards Fault Tolerance 271

10.2 Fault-Tolerant Client-Server D'a'tabase 272

10.3 Fault-Tolerant Data Dissemination 273

10.4 Fault Tolerance of Local Servers 274

Part III Real-Time

11. REAL-TIME SYSTEMS FOUNDATIONS

11.1 A Definition of Real-Time

11.2 Real-Time Networks

11.3 Distributed Real-Time Architectures

11.4 Summary and Further Reading

12. PARADIGMS FOR REAL-TIME

12.1 Temporal Specifications

12.2 Timing Failure Detection

12.3 Entities and Representatives

12.4 Time-Value Duality

12.5 Real-Time Communication

12.6 Flow Control

12.7 Scheduling

12.8 Clock Synchronization

12.9 Input/Output

12.10Summary and Further Reading

13. MODELS OF DISTRIBUTED REAL-TIME COMPUTING

13.1 Classes of Timeliness Guarantees

277

277

283

285

287

289

289

295

296

298

300

302

302

309

317

320

321

321

Exhibit 2026 Page 8

x DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

13.2 Real-Time Frameworks

13.3 Strategies for Real-Time Operation
13.4 Synchronism Models Revisited

13.5 A Generic Real-Time System Model
13.6 The Event-Triggered Approach

13.7 The Time-Triggered Approach
13.8 Real-Time Communication Models
13.9 Real-Time Control

13.10Real-Time Databases
13.11Quality-of-Service Models
13.12Summary and Further Reading

14. DISTRIBUTED REAL-TIME SYSTEMS AND PLATFORMS

14.1 Operating Systems

14.2 Real-Time LANs and Field Buses

14.3 Time Services

14.4 Embedded Systems
14.5 Dynamic Systems
14.6 Real-Time over the Internet

14.7 Summary and Further Reading

15. CASE STUDY: VP'63
15.1 First Steps Towards Control and Automation

15.2 Distributed Shop-Floor Control
15.3 Integration of the Industrial System

Part IV Security

16. FUNDAMENTAL SECURITY CONCEPTS

16.1 A Definition of Security

16.2 What Motivates the Intruder

16.3 Secure Networks
16.4 Secure Distributed Architectures

16.5 Summary and Further Reading

17. SECURITY PARADIGMS

17.1 Trusted Computing Base

17.2 Basic Cryptography

17.3 Symmetric Cryptography

17.4 Asymmetric Cryptography

17.5 Secure Hashes and Message Digests
17.6 Digital Signature

17.7 Digital Cash
17.8 Other Cryptographic Algorithms and Paradigms

323

325
328

330
331

334

337
341

348
350
353

355

355

357

359
361

363
365
366

369
369
370

371

377

377

387

388
390

393

395

395

396

398

401

403
404

410
415

Exhibit 2026 Page 9

17.9 Authentication

17.10Access Control

17.11Secure Communication

17.12Summary and Further Reading

18. MODELS OF DISTRIBUTED SECURE COMPUTING

18.1 Classes of Attacks and Intrusions

18.2 Security Frameworks

18.3 Strategies for Secure Operation

18.4 Using Cryptographic Protocols

18.5 Authentication Models

18.6 Key Distribution Approaches

18.7 Protection Models

18.8 Architectural Protection: Topology and Firewalls

18.9 Formal Security Models

18.10Secure Communication and Distributed Processing

18.11Electronic Transaction Models

18.12Summary and Further Reading

19. SECURE SYSTEMS AND PLATFORMS

19.1 Remote Operations and Messaging

19.2 Intranets and Firewall Systems

19.3 Extranets and Virtual Private Networks

19.4 Authentication and Authorization Services

19.5 Secure Electronic Commerce and Payment Systems

19.6 Managing Security on the Internet

19.7 Summary and Further Reading

20. CASE STUDY: VP'63

20.1 First Steps Towards Security

20.2 Global Security: Extranet and VPN

20.3 Local Security: Intranet and Facility Gateway

Part V Management

Contents xi

417

421

425

426

427

427

433

436

445

451

457

462

464

472

474

481

485

487

487

495

497

500

502

509

509

511

511

513

513

21. FUNDAMENTAL CONCEPTS OF MANAGEMENT 519

21.1 A Definition of Management 519

21.2 Systems Management Architectures 524

21.3 Configuration of Distributed Systems 528

21.4 Summary and Further Reading 529

22. PARADIGMS FOR DISTRIBUTED SYSTEMS MANAGEMENT 531

22.1 Managers and Managed Objects 531

22.2 Domains 533

Exhibit 2026 Page 10

xii DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

22.3 Management Information Base

22.4 Management Functions
22.5 Configuration Management
22.6 Performance and QoS Management
22.7 Name and Directory Management
22.8 Monitoring
22.9 Summary and Further Reading

534

535
536

538
539
539
540

23.MODELS OF NETWORK AND DISTRIBUTED SYSTEMS MANAGEMENT541
23.1 Management Frameworks 541
23.2 Strategies for Distributed Systems Management 543
23.3 A Generic Management Model 544
23.4 Centralized Management Model 547

23.5 Integrated Management Model 548

23.6 Decentralized Management Model 549

23.7 OSI Management Model 550
23.8 ODP Management Model 552
23.9 Monitoring Model 553
23.10Domains Model 554
23.11Summary and Further Reading 555

24. MANAGEMENT SYSTEMS AND PLATFORMS

24.1 CMISE/CMIP: ISO Management
24.2 SNMP: Internet Management
24.3 Standard MISs
24.4 Management and Configuration Tools
24.5 Management Platforms
24.6 DME: Distributed Management Environment
24.7 Managing Security on the Internet
24.8 Summary and Further Reading

25. CASE STUDY: VP'63
25.1 Establishing Management Strategies and Policies
25.2 Towards Integrated Management

References

Index

557

557
559
560
562
S69
572
573
576

581
581
582

585

611

Exhibit 2026 Page 11

Preface

The primary audience for this book are advanced undergraduate students and
graduate students. Computer architecture, as it happened in other fields such
as electronics, evolved from the small to the large, that is, it left the realm
of low-level hardware constructs, and gained new dimensions, as distributed
systems became the keyword for system implementation. As such, the system
architect, today, assembles pieces of hardware that are at least as large as a
computer or a network router or a LAN hub, and assigns pieces of software
that are self-contained, such as client or server programs, Java applets or pro
tocol modules, to those hardware components. The freedom she/he now has,
is tremendously challenging. The problems alas, have increased too. What
was before mastered and tested carefully before a fully-fledged mainframe or
a closely-coupled computer cluster came out on the market, is today left to
the responsibility of computer engineers and scientists invested in the role of
system architects, who fulfil this role on behalf of software vendors and in
tegrators, add-value system developers, R&D institutes, and final users. As
system complexity, size and diversity grow, so increases the probability of in
consistency, unreliability, non responsiveness and insecurity, not to mention the
management overhead.

What System Architects Need to Know

The insight such an architect must have includes but goes well beyond, the
functional properties of distributed systems. Most of the problems in config
uring, deploying and managing a distributed system come not from what the
system does that we have not understood, but from what the system is not
that we have overlooked, that is, from inappropriate non-functional properties:
unreliability, lack of responsiveness, insecurity. In other words, fault tolerance,
real-time, security, are fundamental but sometimes neglected attributes of dis
tributed systems. The mastery of the relevant concepts and techniques is as
important as that of the issues related with distribution itself. Finally, it is
necessary to understand the management of systems with this complexity and
versatility. Together, these issues form the body of knowledge that this book

Exhibit 2026 Page 12

xiv DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

intends to pass on to future distributed system architects. A book covering
all these issues risks being either too long or too shallow. That would happen
if the subjects were treated as if the book were a collection of smaller books
dedicated to each topic. Most of the existing books on distributed systems are
addressed to system programmers, or operating system designers. However,
the knowledge a system architect must have is different.

The system architect must first understand the fundamental concepts and the
most important paradigms concerned with the problem of distribution. Then,
once presented with the main models of distributed systems and with the prob
lems posed by them, such as how to implement a given feature, or how to
overcome a certain limitation, she/he will have the background to understand
the architecture of the solutions, in a logical composition of building blocks,
structure, techniques and algorithms. Specific systems or sub-systems whose
architecture, protocols and modules will be discussed, provide the pretext for
the student to integrate all the material she/he has been exposed to. Finally,
the architect has the opportunity to create her/his own architecture, in a case
study that develops along the book.

The next thing that singles out this book's structure is the way that the fault
tolerance, real-time, security and management parts are treated, once
more addressing architects of distributed systems. Most of the existing books
specializing on each of the above topics do so in a thorough but horizontal way.
Here, the student will see a continuity in the style of addressing each of these
matters, and an integration with distribution. In fact, each of the following
parts is also organized as: concepts; paradigms; models; and systems. Besides,
the contents refer to the basic matters given in the Distributed Systems part
in a problem-oriented manner.

This is further emphasized by the case study, an imaginary wine company
with facilities spread through the country, whose information system, the Vin
tagePort'63 System (VP'63), must adapt to the modern times. The case study
is methodically addressed at the end of each part, so that we progressively make
VP'63: (1) modular, distributed and interactive; (2) dependable; (3) timely;
(4) secure, and (5) manageable.

Finally, at the end of each part there is a repository of web URL's linking to
most of the systems discussed. All URLs were functional at the time of print.
This is a risky endeavour for a printed book, in such a fast changing world.
However, we took the risk, we believe our effort will save a lot of precious time
to many students and readers, and will provide them with a useful database of
over 250 contacts that they can themselves improve and update as time goes
by.

Student information

The book provides solutions to the following general problems:

• Advanced undergraduate students need be exposed to all these subjects, but
one cannot generally afford one course per theme at this level, so this book
provides the teacher with an integrated and homogeneous textbook.

Exhibit 2026 Page 13

PREFACE xv

• Graduate students (MSc) may either take advantage from having a single
book for several thematic introductory courses, and/or from using the book
as a bootstrap text for more in-depth, focused courses, complemented with
research papers.

Parts of this book will thoroughly cover the subjects needed for an advanced
undergraduate course on distributed system architecture, to be preceded by an
introductory course on computer networks and distributed operating systems.
It may be used to teach introductory courses on any combination of "Introduc
tion to-" fault tolerance, real-time, or security, both at advanced undergraduate
or graduate level (e.g. Fault-tolerant Real-time Systems). It may be used to
teach more focused graduate courses on distributed systems, fault-tolerance,
real-time, security, or management, complemented with dedicated books or
research papers (e.g. Secure and Reliable Web Systems, Configuration and
Management of Distributed Systems).

How to use the book

Undergraduate Teaching

Part I provides the support for teaching distributed system architectures, ad
mitting the students had an introductory operating systems course, whose
depth will dictate how much of Chapter 1 is given. Some topics from Chapter 2
may be omitted (addressing all sections is however suggested). Selected parts of
Chapters 3 and 4 consolidate the basic notions. The sections on Client-Server,
WWW and Group-oriented in Chapter 3, and DCE in Chapter 4 are strongly
suggested. Chapter 5 is an excellent pretext and inspiration for assignments. If
enough credits are devoted to this area, the teacher may expand the example
course just suggested, or split it, by further addressing Chapters 6, 16, 21 and
11, in order to provide complementary introductory notions of fault-tolerance,
security, management and real-time, by order of priority.

Postgraduate teaching

Part I in its entirety provides a thorough understanding of distributed system
architecture, admitting the students had previous introductory notions in the
area (for example the undergraduate course just suggested), so that they can
go directly to the in-depth issues of Chapters 2 through 5. Each of Parts II
to V, or combinations thereof, may be used to teach courses on the relevant
themes. It is advisable to start with a review of selected parts of Chapter 2,
and start the case study with Chapter 5, for completeness.

Self-study

The book may be of assistance for support of advanced research studies, both
as a broad body of reference in the disciplines of distributed systems, and as a
pointer to deeper study by means of the bibliography of each part.

Exhibit 2026 Page 14

xvi DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Support

The book readers, students and teachers will find some support in the book
web page, www.navigators.dLfc.ul.ptjdssa. Web copies of the URL tables will
be kept as up-to-date as possible. Electronic versions of all figures will be made
available to teachers by specific request. A mailbox is available on the page for
requests, suggestions and questions.

Guided Tour of the Book

Part I, Distribution, addresses the fundamental issues concerning distribution,
and it is the largest part of the book. It contains a comprehensive set of notions
that will develop in the reader a thorough understanding of distributed system
architecture, from concepts and paradigms, to models and example systems.
Chapter 1, Distributed Systems Foundations, discusses the foundations of dis
tributed systems, and is intended as a review of the basic subjects regarding
distribution, such as computer networks, distributed operating systems and
services, complemented with a few formal notions, useful for a more elaborate
treatment of some subjects. Distributed system architectures are given from
a evolutionary perspective, from remote login to mobile computing, so that
the reader, further to understanding what the several architectural models are,
captures why they appeared or mutated, and what needs each one serves. Inas
much as History is paramount to Architecture, so is the knowledge of comput
ing systems evolution to the system architect. Chapter 2, Distributed System
Paradigms, presents the most important paradigms in distributed systems, in
a problem-oriented manner, purposely addressed to to-be architects. That is,
rather than being exposed to the subjects in a paradigm-centric manner, en
veloped in some formal description, the reader is faced with a problem or a
need, then with a solution in the form of a paradigm, and when appropriate,
with details about relevant mechanisms or algorithms. And finally, should it
be the case, the limitations of that paradigm may also be pointed out, so that
another paradigm, solving the problem, is motivated, and so forth. Namely, the
chapter addresses: message passing, remote operations, group commul'l'rcation,
naming and addressing, time and clocks, ordering, synchrony, coordination,
concurrency, and consistency. Chapter 3, Models of Distributed Computing,
discusses the main models used nowadays in distributed systems, that is: what
are the main classes of distributed activities; why different models serve dif
ferent needs, and how we design the software architecture and structure the
run-time environment of distributed applications. The chapter explains clearly
the main reasons for the known debate between the synchronous and asyn
chronous frameworks for distributed computing. Then, it addresses known
models such as: client-server with RPC, group-oriented, World-Wide Web,
distributed shared memory, message-buses. Chapter 4, Distributed Systems
and Platforms, consolidates the notions learnt along the previous chapters, in
the form of examples of enabling technologies, toolboxes, platforms and sys
tems. The last two chapters do not address· system-call details or system in-

Exhibit 2026 Page 15

PREFACE xvii

ternals, since the scope of the book is designing and building systems, rather
than programming them. Chapter 5 starts a case study: The VP'63 (Vin
tageport'63) Large-Scale Information System. An imaginary Portuguese wine
company, with facilities spread through the country, has a traditional infor
mation system, the VintagePort'63 (VP'63), that must adapt to the modern
times. Centralized, mainframe-based, little interactivity, proprietary, it must
adapt to the distributed nature of the company and its distribution network,
and to the business evolution. The case study is methodically addressed at the
end of each part, so that we progressively solve the above-mentioned problems,
making VP'63: modular, distributed and interactive; dependable; timely; and
secure.

Part II, Fault-Tolerance, addresses dependability of distributed systems, that
is, how to ensure that they keep running correctly. It contains the fundamen
tal notions concerning dependability, such as the trilogy fault-error-failure and
provides a comprehensive treatment of distributed fault-tolerance. Chapter 6,
Fundamental Concepts of Fault-Tolerance, starts with the generic notion of
dependability and its associated concepts, and ends with the introduction of
distributed fault-tolerance. In fact, distribution and fault-tolerance go hand
in hand, since the former requires the latter to keep reliability at an accept
able level, and the latter is made easier by some qualities of the former, such
as independence of failure of individual machines. Chapter 7, Paradigms for
Distributed Fault-Tolerance, discusses the main paradigms of this discipline.
After introductory concepts and notions about fault-tolerant communication,
it addresses issues such as: replication management, resiliency and voting, and
recovery. Chapters 8 and 9, Models of Distributed Fault-Tolerant Comput
ing and Dependable Systems and Platforms, show how to incorporate fault
tolerance in distributed systems. Explaining the main strategies for the diverse
fault models, its materialization in discussed for remote operation, diffusion
and transactional computing models. Finally, examples of relevant systems
are given. Chapter 10 continues the case study: Making the VP'63 System
Dependable.

Part III, Real-Time, takes the same explanatory approach of Part II, and
discusses how to ensure that systems are timely. It contains the fundamental
notions concerning real-time, and provides a comprehensive treatment of the
problem of real-time in distributed systems. Chapters 11 and 12, Fundamental
Concepts of Real-Time and Paradigms for Real-Time, address the fundamen
tal notions and misconceptions about real-time, in a distributed context. The
main paradigms are presented, in a comparative manner when applicable, such
as synchronism versus asynchronism, or event- versus time-triggered opera
tion. Chapter 12 further addresses issues such as: real-time networks, real-time
processing, real-time communication, clock synchronization, and input-output.
Chapters 13 and 14, Models of Distributed Real-Time Computing and Real
Time Systems and Platforms show how to achieve timeliness of distributed sys
tems, in its several forms, from the hard, soft or best-effort real-time classes,
to the time-triggered and event-triggered models. Chapter 14 gives examples

Exhibit 2026 Page 16

xviii DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

of distributed real-time systems in several settings. Chapter 15 continues the
case study: Making the VP'63 System Timely.

Part IV, Security, addresses security of distributed systems, that is, how
to ensure that they resist intruders. Security is paramount to the recognition
of open distributed systems as the key technology in today's global commu
nication and processing scenario. This part contains the fundamental notions
concerning security, and provides a comprehensive treatment of the problem
of security in distributed systems. Chapter 16, Fundamental Concepts of Se
curity, discusses the fundamental principles, such as the notions of risk, threat
and vulnerability, and the properties of confidentiality, authenticity, integrity
and availability. Chapter 17, Fundamental Security Paradigms, treats the most
important paradigms, such as: cryptography, digital signature and payment,
secure networks and communication, protection and access control, firewalls,
auditing. Chapters 18 and 19, Models of Distributed Secure Computing, and
Secure Systems and Platforms, consolidate the notions of the previous chap
ters, in the form of models and systems for building and achieving: information
security, authentication, electronic transactions, secure channels, remote oper
ations and messaging, intranets and firewall systems, extranets and virtual
private networks. Chapter 20 continues the case study, this time: Making the
VP'63 Secure.

Last but not least, Part V on Management, because distributed systems
are too complex to be managed ad-hoc. In essence, there is a contradiction
in the nature of the problem. Distributed systems are geographically spread.
They have a large number of visible- and thus manageable- components,
from computers, routers, modems, and network media, to programs, operat
ing systems, protocols, etc. However, whilst some of the components can be
self or locally managed, thus in a distributed fashion, system management is
human-centric, and by nature centralized. The book does not intend to give
a magic recipe for this problem, which is still an active area of research, but
will give the reader the ability to understand it and become aware of the ex
isting solutions for it. Chapters 21 and 22, Fundamental Concepts of Manage
ment, and Paradigms for Distributed Systems Management, give insight on the
fundamental concepts, architectures and paradigms concerning network and
distributed systems configuration and management. Chapter 22 presents the
main management functions: fault, configuration, accounting, performance, se
curity, quality-of-service, name and directories, and monitoring. Chapters 23
and 24, Models of Network and Distributed Systems Management and Man
agement Systems and Platforms, discuss the main models, such as centralized,
decentralized, integrated, and domain-oriented management, and point to ex
amples of tools, systems and architectures. Chapter 25 finalizes the case study:
Managing the VP'63 System.

Acknowledgments

A number of people, some not knowingly, contributed to this book. It was from
lecturing advanced undergraduate and graduate courses and working together

Exhibit 2026 Page 17

PREFACE XIX

with system architects in international distributed systems projects for the
past few yc:®rs, that we came to figure out what a distributed system architect
should know, clearly enough (so we hope) to cast it in a book. Students and
colleagues at the Technical University of Lisboa (1ST) and more recently at the
University of Lisboa (FCUL), and projects with the Navigators group, such
as the ESPRIT DELTA-4, DINAS or BROADCAST were marvellous thinking
tanks.

Nevertheless, there are some people who, for their direct influence on the
book, deserve a very warm acknowledgment. In alphabetic order, and hop
ing not to forget anyone: Lorenzo Alvisi, Alan Burns, Antonio Casimiro,
Miguel Correia, Yves Deswarte, Elmootazbellah Elnozahy, Matti Hiltunen, Jo
erg Kaiser, Sacha Krakowiak, Jean-Claude Laprie, Jeff Magee, Pedro Martins,
Roger Needham, Nuno Ferreira Neves, Nuno Miguel Neves, Guevara Noubir,
David Powell, Brian Randell, Peter Ryan, Rick Schlichting, Robert Stroud,
Morris Sloman, Neeraj Suri, Irfan Zakiuddin. This passable piece of text would
be unintelligible without their help. The comments and feedback from the re
viewers were also an enormous help and incentive. Our students at FCUL
detected many typos and several less clear parts.

To some fellow architects goes the final word of appreciation for several years
of many chats, discussions and common projects: Ken Birman, Flaviu Cristian,
Hermann Kopetz, David Powell, and Rick Schlichting.

PAULO VERisSIMO, Luis RODRIGUES

LISBOA, AUGUST 2000

Exhibit 2026 Page 18

Foreword

Developers tasked with architecting a functional and dependable system out
of a collection of machines connected by a communications network-Le., a
distributed system-face enormous challenges. Largely because of a loosely
coupled hardware architecture with no physically shared memory, many things
that are straightforward in centralized systems are difficult in distributed sys
tems. For example, synchronizing processes with separate threads of control
typically uses shared variables on a single machine, but must be done with
message passing in a distributed system. The extra time delay associated with
sending messages over a network increases the asynchrony of the processes and
necessitates the use of special protocols to coordinate their respective actions.

Perhaps the most serious open issue in building such systems relates to
ensuring what are sometimes called non-functional attributes: reliability, avail
ability, timeliness, security. For example, providing just the first two attributes
requires systems architects to deal not just with normal operation, but also
failures that may have arbitrary effects on only parts of the system for an un
predictable duration. Timeliness and security are similarly challenging. To
provide the predictable timing behavior needed to build a real-time distributed
system requires controlling literally every part of the system, from the hardware
through the system software to the application. To guarantee a secure com
puting environment that ensures confidentiality, integrity and privacy requires,
among other things, sophisticated mathematical cryptographic techniques and
the ability to do subtle analysis. Even worse, for systems that need all of
these attributes-as is increasingly the case-the challenges are combinatorial,
not additive. The designer can take techniques to guarantee availability and
combine them with techniques to guarantee security and easily end up with a
system that provides neither.

In this book, Paulo Verissimo and Luis Rodrigues provide a comprehensive
and timely treatment of all these challenges. In a clear and consistent way,
they address the fundamental characteristics of such systems and tackle the
issues involved in providing service that is fault tolerant, can meet real-time
guarantees, and is secure. They also address management issues, which are a

Exhibit 2026 Page 19

xxii DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

non-trivial and often neglected part of the problem. In each case, they focus
on the fundamental paradigms associated with that area, describe the building
blocks-both conceptual and practical-needed to address the issues, and give
concrete examples of existing systems that incorporate state-of-the-art solu
tions. The presentation in each section of an evolving case study involving a
hypothetical Portuguese wine producer makes the book even more valuable by
providing a consistent context for discussing issues and for demonstrating the
subtleties that arise when systems have to ensure multiple attributes.

In writing this book, the authors bring to bear a wealth of expertise and
experience, not just in research aspects of the problem, but also as practical
systems architects. Given the challenges involved, no one is better equipped
to guide the reader through the intricacies of the issues and the details of
the techniques needed to realize the vision of highly dependable distributed
systems.

Rick Schlichting
AT&T Labs - Research,
Florham Park, New Jersey, USA
22 September 2000

Exhibit 2026 Page 20

Exhibit 2026 Page 21

| Distribution

A distributed system is the one that prevents you from working because of the
failure of a machine that you had never heard of.

— Leslie Lamport

Contents

DISTRIBUTED SYSTEMS FOUNDATIONS

DISTRIBUTED SYSTEM PARADIGMS

MODELS OF DISTRIBUTED COMPUTING

DISTRIBUTED SYSTEMS AND PLATFORMS

CASE STUDY: VP’63

aoPFWNP
Overview

Part I addresses the fundamental issues concerning distribution, providing a generic
set of notions about the architecture of distributed systems. Chapter 1, Distributed

Systems Foundations, discusses the basic subjects regarding distribution, and reviews
desirable background such as computer networks and distributed operating systems.

The evolution of distributed system architectures is presented, from remote login to

mobile computing. Chapter 2, Distributed System Paradigms, presents the most im-
portant paradigmsin distributed systems, in a problem-oriented manner: the readeris
faced with a problem or a need, then with a solution in the form of a paradigm. Chap-

ter 3, Models of Distributed Computing, discusses the main models used nowadays
in distributed systems. Chapter 4, Distributed Systems and Platforms, consolidates

the notions learnt along the previous chapters, in the form of examples of enabling
technologies, toolboxes, platforms and systems. Chapter 5 starts a case study: the
obsolete information system of an imaginary wine company with facilities spread
through the country must adapt to the modern times. VP’63 (VintagePort’63) is the
name of the project that we will develop throughout the book, with the help of the
reader.

Exhibit 2026 Page 21

1 DISTRIBUTED SYSTEMS

FOUNDATIONS

This chapter discusses the foundations of distributed systems. It begins with
defining distributed systems, and performing a review of the basic subjects re
garding distribution, such as computer networks, distributed operating systems
and services. It introduces some generic formal notation to be used throughout
the book in more elaborate treatments of some subjects. Distributed system
architectures are discussed, namely: remote access; file and memory distribu
tion; client-server; thin clients and network computers; portable and mobile
code; message-based architectures; mobile computing.

1.1 A DEFINITION OF DISTRIBUTED SYSTEMS

Distributed systems have many different facets which are very hard to capture
by a single definition. It is much easier to talk about distributed systems by
referring to specific characteristics, or symptoms, of distribution. One such
characteristic is the presence of a computer network. However, as we will
see, this characteristic is not per se enough to define a distributed system.
Distribution also comes hand in hand with disciplines such as fault tolerance,
real-time, security, and systems management. Because of the shortcomings of
technology, all these issues must be taken into account to build distributed
systems that are efficient, reliable, timely, secure, predictable, stable, and able
to adapt to changes in the environment and in the organization.

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 22

4 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

1.1.1 What is a Distributed System?

A computer network is not a distributed system.

This is our first attempt at defining a distributed system, by clarifying the
most common misunderstanding with this respect. A computer network is
an infrastructure serving a set of computers interconnected through communi
cation links of possibly diverse media and topology, and using a common set
of communication protocols. A distributed system is a system composed of
several computers which communicate through a computer network, hosting
processes that use a common set of distributed protocols to assist the coherent
execution of distributed activities. The Internet for example, is a huge com
puter network, as a matter of fact the most important network today. It uses
TCP lIP as the common protocol suite. However, despite offering a few appli
cational services as tradition, such as e-mail andtelnet.itis not a distributed
system. A lot of distributed systems are however built on top of the Inter
net or using Internet technologies, such as enterprise intranets and extranets,
large-scale distributed file systems and databases, virtual enterprise systems,
home banking and electronic commerce systems, groupware systems, etc. One
important difference is that computer processes in a distributed system share
some common state and cooperate to achieve some common goal (e.g., they
cooperatively run a distributed application). In contrast, computers in a com
puter network may never interact at all, or simply receive or send occasional
messages (e.g., e-mail).

A distributed system is the one that prevents you from working because of the
failure of a machine that you had never heard of.

The famous quote from Leslie Lamport which opened this part illustrates
an important facet of distributed systems that most of us have faced in our
own hard way. Although a lot of what is written on distributed systems starts
with emphasizing the benefits from distribution, it is very important to real
ize that depending on a collection of machines connected by a network has its
pitfalls. In fact each individual machine has a finite reliability, that is, the
probability of not failing. Even assuming that machines fail independently,
they communicate through networks that are often unreliable and exhibit un
predictable delays, and as such they influence each other, both when they work
and, most importantly, when they fail. The simple fact of assembling a system
with a collection of these components only makes the situation worse. This
is explained very easily: the reliability of a system, Rs , composed of n com
ponents of reliability R, is R s == Rn. Now, suppose a "distributed system"
with 10 computers with individual reliability R == 0.9, which is quite good.
If the failure of a single computer can disturb the operation of the complete
system, Lamport's irony is fulfilled: the resulting system will have a reliability
of R s == (0.9)10 == 0.35, which is quite bad. Of course, such a system exhibits
an inadequate architecture. In order to have a useful distributed system, we
should overcome the problems of dependability caused by distribution, with
the adequate architecture and protocols.

Exhibit 2026 Page 23

DISTRIBUTED SYSTEMS FOUNDATIONS 5

Is my multicomputer a distributed system?

There is a thin border between multicomputers and distributed systems. A
multiprocessor is generically considered to be a machine composed of several
tightly-coupled processors, sharing common resources, such as central memory,
secondary storage (disk), and input/output through a common backplane bus.
A multicomputer, on the other hand, is generically defined as a set of closely
coupled fully-fledged computers with their own basic resources such as central
memory and basic input/output. Closely-coupled (Kronenberg et aI., 1987) is
understood as a weaker definition of tightly-coupled that allows for either back
plane or short-range, fast-network interconnection media. Computers mayor
not share other resources such as disk, but do so on a computer-to-computer
basis. Here lies the main difference to distributed systems, characterized with
this regard by the loosely-coupled aspect of a network, with significant and un
certain transmission delays (vis a vis execution delays). Current Internet and
Web-based distributed architectures lie on this side of the spectrum, whereas
the trendy LAN-based cluster architectures (Pfister, 1998) lie towards the mul
ticomputer side of the spectrum.

Generally speaking, and paraphrasing Schroeder in (Mullender, 1993), we
should say that we are in the presence of a distributed system if the following
symptoms are present:

• multiple computers

• interconnected by a network

• sharing state
These symptoms imply a few relevant characteristics. Machines are decou

pled and separated enough that they have independent failure probabilities.
Potentially, communication is unreliable, has variable delays, and speed and
bandwidth are moderate, when compared with intra-computer communication.
Investment costs are often lower than for centralized mainframe-based systems,
for the same computing power. Of course, total cost of ownership may include
costlier terms for distributed systems, such as management costs. Finally, in
a distributed system there is an intrinsic difficulty in determining the order of
events and in assessing the global state of the system from inside of it. This is
due to the fact that sites can only know about each other through the exchange
of messages. Note that communication has variable delays and is significantly
slower than the pace at which events take place inside each site. In conse
quence, two participants at different sites may have a different perception of
the evolution of the system: we say there is a partial order of events. Since
the state of the system is split among the several sites and also influenced by
messages in transit, it is not guaranteed that we can accurately determine the
global state of the system in all situations.

Table 1.1 enumerates a few of the differences between centralized and dis
tributed systems. Centralized systems have a natural accessibility to resources
and information because they are local. Distributed systems (DSs), on the
other hand, have a potentially very wide geographical scope, given the possibil-

Exhibit 2026 Page 24

6 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 1.1. Centralized versus Distributed Systems

Centralized Systems

accessibility
homogeneity
manageability

consistency

security

Distributed Systems

geographical scope
heterogeneity
modularity
scalability
sharing
graceful degradation
security
low cost factor

ity of remote operation and access. Homogeneity of technologies and procedures
is a characteristic of centralized systems, whereas DSs should (and normally
do) support heterogeneity, that is, sites of different makes and operating sys
tems. This difference simplifies the management of centralized systems, but in
turn, allied to modularity, renders DSs incrementally expansible. Note however
that recent mainframe architectures are also extremely modular despite central
ized, and can almost achieve the incremental expandability of DSs. However,
scalability is achieved like in no other system with distributed system archi
tectures, which can reach extremely high scales, both in number of sites and
in geographical span. Consistency is easier to maintain in single-site central
ized applications than in distributed ones, where a snapshot of the global state
of the system is more difficult to capture. On the other hand, distributed
state has its positive side, because it means information sharing among several
sites, remote execution, distributed parallel processing, and so forth. Graceful
degradation is the property of a system that continues to operate, possibly in
a progressively degraded manner, in the measure that its components fail, but
does not fail abruptly because of one such failure. This characteristic underpins
the great potential of DSs for achieving reliability and availability (availability
is the measure in which a system is up and working, during its useful life).
It is yielded by modularity and geographical separation, through redundancy
and reconfiguration techniques aiming at achieving fault tolerance. Security is
easily achieved in centralized systems by physical access control and isolation,
leading to a reduction of the level of threat, that is, of the probability of the
system falling within the reach of an intruder. This is not feasible in DSs,
since the potential for reducing threats in open and public networks and sys
tems with anonymous users is more limited. However, it has lately been shown
that distributed systems can attain a high level of security, provided that it is
achieved more at the cost of reducing the effect of intrusions, than of reducing
threats. In conclusion, we see that there are pros and cons, but distributed sys-

Exhibit 2026 Page 25

DISTRIBUTED SYSTEMS FOUNDATIONS 7

terns have significant advantages over centralized ones, if one makes the right
decision about when to distribute.

1.1.2 When to Distribute

Why do we need a distributed system to solve this problem? If you do not
need a distributed system, do not distribute. An architect should always be
able to answer the question above. In response, the architect must consider
that informatics! systems are distributed essentially for three reasons: when
the problem has a decentralized nature; when distribution techniques are useful
artifacts of the solution; when the problem consists in adapting to changes and
evolution in the activity and location of organizations.

When the problem has a decentralized nature, it is not natural for the locus
of control or the state repository to be centralized. For example: a manu
facturing enterprise network performing concurrent engineering activities from
remote locations; teleconference or other computer supported cooperative work
(CSCW) activities; an industrial automation shop floor with multiple manu
facturing cells, and so forth. Distribution, when used for these applications,
allows the best possible fit between the problem and the computational models.

Other problems exist where there is no obvious decentralization. At the
most, remote access is desired to a central facility where control and state are
centralized, such as a transactional bank database. In other cases, although
the business model is centralized the company has distributed facilities, such
as a commercial company running several shopping malls across the country.
In these cases, distributed techniques come in help of more efficient, efficient
or robust solutions. For example, a central bank database where all account
records ar~ consistent at all times with the real client accounts, is a desirable
model of a banking process. Whilst we wish to retain this view, why not split
the database in several fragments, by geographical regions, located at the main
agencies in each region, so that accesses are faster and not so dependent on
network availability? Going a bit further, why not replicate these fragments in
two or more regions, so that in case of failure, the database service is always
accessible? Distributed techniques would be helpful here, for several purposes:
to direct requests to the adequate fragment; to maintain consistency of the
fragments as a whole database; to maintain mutual consistency of each set of
replicas. However, in this case, good techniques would be those that hide the
fact that the system is distributed. This property is well-known in distributed
systems, and is called distribution transparency.

Finally, for organizational reasons, an enterprise might opt to base its in
frastructure on distributed system technologies. Here, regardless of the nature
of current applications, the driving force are the applications-to-be, that is, the
adaptability to a quickly changing business scenario. The advantages brought by

1 "Informatics" is a word of european origin getting increased acceptance in the community
of computer users and developers. It is used to denote in general terms all that is related
with use of computers and networks in information processing, access and manipulation.

Exhibit 2026 Page 26

8 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

distributed systems in modularity, expandability and scalability may outweigh
the increased burden in management. For example, a fast growing commercial
distribution company may base its central information system on a networked
cluster of co-located servers, instead of a single large mainframe. This setting
is bound to adapt to a number of possible management decisions in the fu
ture: creation of shop divisions in several places of the country; specialization
and autonomy of several functions in larger departments; drastic increase of
the Internet electronic commerce front-ends. An initially modular solution sur
vives these growth crisis with less pain. For example, some of the servers may
easily migrate to other locations and remain connected as they were initially,
through virtual private networks, a distributed technology that extends local
area networks through the Internet. Or else, the initially modest but modular
commerce server can be enhanced by adding, as needed, additional web server
front-ends for load sharing.

1.1.3 Downsizing, Rightsizing and Other Stories

There was a time when downsizing was the keyword for restructuring compa
nies, informatics included. A somewhat unnecessarily literal interpretation of
the term lead to large systems featuring one or more heavyweight mainframes
suddenly being shrunk to hundreds of small PCs, or at the most to many dozens
of RISC servers. This caused enormous organizational trouble. The problem
with downsizing is that it took the wrong perspective. That is of course known
nowadays but probably it is still not clear why, at least judging from the reflux
caused by this disappointment, which lead to repositioning several informatic
systems back around centralized and closed mainframes. A keyword appeared
in the meantime, trying to stress one of the facets of the question: rightsizing.
We might introduce yet another one: rightplacing. In fact, the problem has
to do with how to modularize our system, i.e., how large are the chunks, and
at what level of granularity the architect works. But it also has to do with
where those modules are placed, i.e., how networks are laid out, where servers
and clients are placed, and how software modules are distributed among the
former. If this is understood, the architect will certainly be able to do an ade
quate job at laying out the system architecture, probably (but not necessarily)
distributed, and certainly using whatever fits right, be it mainframes, or RISC
servers, or PCs. There is nothing wrong with a mainframe, but rather with
the way it is used. Old mainframes were closed proprietary systems, with little
versatility. Modern mainframes are modular and expansible inside, and open
to other systems and to the Internet. In a sense, they should be seen as very
big servers, and treated as yet another building block in the solution. What is
wrong with a distributed system of mainframe servers?

1.1.4 Evolution of Distribution

Distribution has been fast evolving and maturing since the mid seventies. It
was not always clear what should and would be distributed, in terms of the

Exhibit 2026 Page 27

DISTRIBUTED SYSTEMS FOUNDATIONS 9

main resources of a computing system: applications, files, memory, processing.
It all started with the need to share the (still scarce) resources of computing
systems.

The first stage of evolution of distribution techniques was the sharing of files
through file transfer protocols (ftp) and the sharing of access to other machines'
applications via remote session or remote login protocols (rlogin). Transferring
files back and forth soon became a nuisance, and file sharing through distributed
file systems was the next and obvious step. The idea seems simple now, but
it revolutionized the panorama of distributed computing: a program should
be able to open a file (fopen) resident in a remote machine, and should do it
pretty much in the same way as a local file open. Furthermore, users should see
a directory tree that looked unique, regardless of where the files were resident,
that is, a distributed virtual file system.

Table 1.2. Major Milestones in Distributed Computing

1972 ARPANET- genesis of the Internet architecture (Postel, 1978)
1976 Ethernet- first widespread local area network (Metcalfe and Boggs, 1976)
1978 OSI- Open Systems Interconnect Reference Model (Zimmermann, 1980)
1980 Internet- first widespread computer network (Leiner et aI., 1997)
1984 RPC- remote procedure call paradigm (Birrell and Nelson, 1984)
1985 NFS- distributed file system (Sandberg, 1985)
1985 AFS- large-scale distrib. file system (Morris/Satyanarayanan et aI., 1986)
1987 Apollo Domain- distributed file/memory system (Levine, 1987)
1987 ODP- Open Distributed Processing Ref. Model (ODP, 1987)
1987 Vax Cluster- networked cluster multicomputer (Kronenberg et aI., 1987)
1987 Camelot/Encina- distributed transactional system (Spector, 1987)
1990 DCE- Distributed Computing Environment (Lockhart Jr., 1994)
1990 WWW- World-Wide Web (Berners-Lee and Cailliau, 1990)
1994 CORBA- object broker distributed architecture (OMG, 1997b)

Machines became more powerful, networked systems more frequent, to the
point of being ripe for more sophisticated forms of distribution. Distributed
concurrent processing consists of running simultaneously, in several machines,
several concurrent processes that communicate and synchronize themselves
through variables and structures resident in shared memory. The body of
techniques that made this possible as a programming paradigm are collectively
called distributed shared memory (DSM): memory distribution by remote pag
ing. Another distributed processing paradigm is remote execution, which con
sists in having a local process invoke the execution of a function or a procedure
on a remote machine. The local and remote processes are for that reason
called respectively client and server, and the programming paradigm using this
principle is thus named client-server. The most distinct representative of this
paradigm is a technique that caused a second revolution in distributed process
ing, the remote procedure call or RPC. Briefly, it consists of allowing a client

Exhibit 2026 Page 28

10 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

process to make a procedure call that looks like a normal one but is in fact
executed on a remote machine.

We conclude this brief portrait of the evolution of distribution techniques
by presenting a few of the major milestones in this evolution over the past few
years, in 1Lable 1.2.

Table 1.3.

Name
Service

Registration
Authentication
and Authorization
Services

File
Service

Networking
Service

Remote
Invocation
Service

Brokerage
Service

Time
Service

Administration
Service

Generic Distributed System Services

Based on a replicated and distributed database, sup
plies the global names and addresses of users, services
and resources

Registers users and services, performs runtime au
thentication of users and control of their access to
services and resources

Provides the abstraction of a unique file system, glob
ally accessible, made of distributed repositories, even
tually replicated for performance or availability

Provides access by users and programs to the basic
networking and communication facilities (e.g. sockets
over TCPlIP on LAN, dial-up, Internet)

Provides for remote operation client-server invocation

Performs trading and binding of services and users in
a heterogeneous environment (e.g., Object Request
Broker)

Supplies and keeps synchronized a global time refer
ence, normally made of local clocks

Performs tactical management tasks, in order to man
age users and keep the system resources and services
operating correctly

1.2 SERVICES OF DISTRIBUTED SYSTEMS

Modern distributed systems feature a set of basic services, which can be com
plemented with specific services depending on the objectives of the system.
1Lhe most relevant generic services of a distributed system are summarized in
1Lable 1.3. In recent systems, the security aspects have been considerably re
inforced, leading to the consolidation of security-related functions- obviously
including any basic registration, authentication and authorization services
in a global Security Service. High quality-of-service (QoS) communication has

Exhibit 2026 Page 29

DISTRIBUTED SYSTEMS FOUNDATIONS 11

also become increasingly important due the need to achieve greater depend
ability, timeliness and security of communications on open systems. This is
stressed everyday by the emergence of demanding applications, in the electronic
business, cooperative (CSCW, teleconference), and multimedia rendering do
mains (games and movies). It would not be surprising to see certain Advanced
Communication Services appear bundled in distributed system support pack
ages, such as: reliable group communication; real-time communication; cryp
tographic communication. The following chapters, amongst other things, are
going to show how to build the services presented in this section.

1.3 DISTRIBUTED SYSTEM ARCHITECTURES

This section gives an overview of the main distributed systems architectures.
Distributed system architecture has evolved due to several factors, including
the change of user requirements, infrastructure modifications, and technology
advances. We describe the several architectural styles that developed accord
ingly to that evolution: remote access; file and memory distribution; 2- and
3-tier client-server; mobile; message-based.

1.3.1 Remote Access

Remote access is the primordial form of distribution. The purpose of such an
architecture is to provide distributed access to central facilities. Its main facets
are represented in Figure 1.1. Figure 1.la shows a primitive form of remote
terminal access through leased or switched telephone lines (analogue, plain
digital, or ISDN) normally used to access central mainframes from terminals.
However, the simplest genuine distributed access forms are those represented by
Figure 1.lb. In the bottom, we have remote session through a data network
to a central server, from terminal servers or PCs and workstations. Next up
is file transfer, a form of remote access to files. In the top of the figure, we
have remote access by dial-up through the telephone network to a network
service provider, which then bridges the circuit through the data network,
up to the server.

1.3.2 File and Memory Distribution

The advent of workstations allowed a democratization of computing power, with
the appearance of facilities containing many workstations collectively owning
a significant amount of resources. Sharing of the resources available in these
workstations on a peer basis becomes thus desirable. File and memory distribu
tion architectures, as represented in Figure 1.2, pursue that objective. These
architectures have similarities. Figure 1.2a portrays the principle of file dis
tribution, whereby a set of machines contribute with their local volumes to
form a global file system. Individual volumes are made available (mounted)
as branches of a global logical tree. Figure 1.2b suggests the principle of dis
tributed memory, whereby virtual pages of the address space of a process can

Exhibit 2026 Page 30

12 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

JdvJ
~\ .·fei:e:p:trlo:ne

~~7k
~\~>

(a)

Mainframe

(b)

Figure 1.1. Remote Access Architectures: (a) Plain Telephone Line; (b) Data Network

be mapped in any of the system's sites and paged back to a common secondary
storage. Depending on the memory distribution policy, these pages can be
replicated in different sites, or migrated from site to site in order to be shared
by different threads. Alternatively, a master copy may reside at one site and
be cached in other sites.

ws ,

a~

'~
""""\
\~

~ ~

Figure 1.2. Distributed File (a) and Memory (b) Architectures

1.3.3 Remote Access II

In this phase, resources are still expensive, and sometimes not perfectly shared.
An effective solution consists of reducing individual workstation's resources and
basing the main services and resources on departmental servers. Figure 1.3 de
picts the two main architectures that represent what can be considered the first

Exhibit 2026 Page 31

DISTRIBUTED SYSTEMS FOUNDATIONS 13

reflux in the evolution of distributed architectures towards decentralization.
Figure 1.3a shows diskless workstations, whereby the file system is concen
trated in one or a few central servers, and files are loaded through the network
directly to the main memory of the workstation. Workstations become obvi
ously simpler, less expensive, and easier to manage. Figure 1.3b shows yet
another step back, materialized by X-terminal architectures. These architec
tures are based on machines whose only computing power is used to run the
graphical PMI (person-machine interface) of the application, typicarIy the X
Windows client-server environment, whereas the file storage and CPU power lie
with departmental servers. Except for the PMI, all programs and applications
execute on the remote servers. In a sense, these models bring us back to remote
access of files and of computing power, though in a more sophisticated way.

&XT .Iii: .' ,.,.,.,.,., - ermma
Ji:aL,~.:::~

Figure 1.3. Diskless and X-Terminal Architectures

1.3.4 Client-server Architectures

The use of fully-fledged client-server architectures, as represented in Fig
ure 1.4a, kept increasing at a steady pace, with the downsizing era. Client
server architectures are among the most deployed today, and are characterized
by having services residing at central servers, shared by the client computers.
However, clients also have local activity: they run autonomous programs
client computations- and call the remote servers whenever necessary.

One problem with this architecture is that clients end-up getting cluttered
with too much code and files, which turn the overhead of garbage-collecting ob
solete files and updating programs difficult to manage, requiring ever increasing
performance and resources. This is called in informatics lingo the fat client
syndrome (Figure 1.4b).

Exhibit 2026 Page 32

14 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

(a) (b)

Figure 1.4. Client-Server Architectures

1.3.5 3-tier Client-server Architectures

Because of the the problems of the client-server architecture described above,
a new reflux took place, and thin-clients made their appearance. A simple
explanation of the rationale for this evolution is depicted in Figure 1.5a, where
we see most of the resources, including disk and processing power, migrate to
central servers. As such, they free the client machines, such that resources, files
and programs become centrally managed. At a first glance, one may wonder
what is the difference to the X-terminal architecture depicted in Figure. 1.3b.
The fact is that architecture evolved indeed, and this reflux was materialized by
a new concept, the 3-tier client-server architecture. The first tier corresponds
to the person-machine interface of the application, the multimedia components
that typically execute on a PMI server. The second tier corresponds to the
application server, where the core of the application executes. Finally the third
tier corresponds to databases and legacy systems where the data is persistently
stored.

In classic client-server computing, the client shared part of the application
code and ran the PMI code. The sharp separation of functions of 3-tier com
puting made it easy to locate all three tier services away from the client., ~vhich

only retained the multimedia client functionality. Looking in retrospective,
the WWW was the catalyst of this evolution, because it brought the missing
links for this architecture to work. This architecture is also called network
computing, since most computing is performed by servers located in the "net
work" , and little code is left resident on the thin clients or network computers,
whose hardware can in consequence be drastically simplified.

Servers can still be configured in a very modular, and perhaps tier-specific
way, even if centrally located. However, since department servers become more
loaded, power- and storage-hungry, a variant of this architecture consists of
consolidating all services in a mainframe, instead of several servers. This is
depicted in Figure 1.5b, and although it simplifies setting-up of an initial con-

Exhibit 2026 Page 33

DISTRIBUTED SYSTEMS FOUNDATIONS 15

figuration and its subsequent management, all benefits of distribution on the
server side are lost: availability, modularity, expandability, heterogeneity.

Figure 1.5. 3-tier Client-Server or Thin-Client Architectures

1.3.6 Mobile-code Architectures

It was soon realized that thin clients were too poor in functionality to per
form useful work. One way to overcome the problem was with add-ons for
installing code back in the client, such as plugins and JavaScripts running in
the W\VW environment, on which network computing is mainly based. En
vironments such as Java provide the basis for genuine portable and mobile
code architectures, since they are capable of shipping code modules (applets)
to heterogeneous systems, where they run in protective environments called
sandboxes. Represented in Figure 1.6a is a refinement of the thin client ar
chitecture where the client, though not having resident code, can import in
runtime the code it needs to perform its task. In other words, architectures
based on mobile code try to bring computing power back to the client, with
out the penalties of classic client-server architectures that we discussed earlier.
Generalizing, mobile code can migrate to machines other than NCs, such as
PCs and workstations.

1.3.7 Mobile Site Architectures

We have addressed mobile code architectures, where code modules traverse the
network from site to site, but sites are fixed. Mobile site architectures are
those where sites themselves move from one place of the network to another.
The generic architecture allows both for clients and servers to be mobile. It is
currently deployed in very few applications, such as emergency networks and
military applications (command, control and communications). Variants sim
plify the problem, for example by allowing only the clients to move, as deployed
in mobile cellular phone technology. Another variant consists in allowing sites
to move only while off-line, and re-appear at another location. This is called

Exhibit 2026 Page 34

16 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

(a) (b)

Figure 1.6. Mobile Code Architectures: (a) Portable and Mobile Code; (b) Mobile Nodes

nomadic, and drastically simplifies the problem posed by genuinely mobile
sites that "travel" through the network while in operation. Nomadic sites are
the most current variant in mobile computing today, materialized by notebooks
and PDAs (Personal Digital Assistants) that are plugged in different networks
by traveling users, but once plugged stay there for some time. These several
scenarios are illustrated in Figure 1.6b.

(a) (b)

Figure 1.7. Event-based Architectures: (a) Multipeer; (b) Publisher-subscriber

1.3.8 Event-based Architectures

The client-server paradigm does not represent all forms of distributed comput
ing. Applications such as bulletin boards, teleconferencing or cooperative work
require a peer nature, where no participant is anyone's server or client. More
over, they require spontaneity, or handling of unsolicited events. These needs
are met by event-based architectures, also called message-based architectures.

Exhibit 2026 Page 35

DISTRIBUTED SYSTEMS FOUNDATIONS 17

In an advanced event-based architecture, communication normally has a
multicast or group nature, and offers several embedded ordering and reliability
attributes. Participants can run distributed multipeer interactions, also called
conversations (Peterson et aI., 1989) on top of this support, that is, directly
sending messages to one another, as depicted in Figure 1.7a. An asymmetric
variant of event-based architectures is producer-consumer. Simple examples of
such applications are e-mail and news. The fashionable web-based information
push technologies fall into this classification. A useful enhancement is to allow
the producers (or publishers) to post their messages without the consumers
being on-line at the moment, providing support for the latter to pull the mes
sages later, when they connect again. Furthermore, consumers should be able
to specify (or subscribe) to given types of messages, and receive only messages
of those types. This variant is called a message-bus or publisher-subscriber
architecture, represented in Figure 1.7b. The message bus is implemented by a
network publishing server, acting as a transparent persistent buffer storage for
the messages posted by the publishers, and as a forwarding agent to disseminate
them by the subscribers, according to their subscription specification.

1.4 FORMAL NOTIONS

This section introduces a few fundamental concepts and notation conventions
that will assist us in more elaborate treatments of some subjects.

1.4.1 Modeling Distributed Systems

Distributed systems are normally modeled as a set of N processes or partici
pants p that live on M processors or sites s. Sites are interconnected by network
links or channels that may have several topologies (e.g., point-to-point, broad
cast). Certain models ignore the site-participant layering and only consider
processes interconnected by point-to-point links. The evolution of the system
can be modeled by a succession of events e~, for the ith event in the timeline
of each process p. Superscripts or subscripts may be selectively omitted when
there is no risk of ambiguity. Whenever necessary, we can associate physical
timestamps to events: t(e) denotes the real time instant at which e took place,
and is thus the timestamp of e as defined by an omniscient external observer.
We can also denote references to real time instants in the timeline as to, ta, tb, ...
The state of a process, S, is modified upon the occurrence of each event. We
model this evolution as a history, H, which is an ordered set of tuples. Each
tuple is composed of an event e and relevant state information related to the
occurrence of event e. A run is an ordered set of events in a process execution,
described by a history. A distributed run is a partially ordered set of events
in the execution of several processes.

Exhibit 2026 Page 36

18 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

1.4.2 Representing Distributed Computations

Events in a process computation can be: execution events, for executing ac
tions internal to the process; send events, for sending messages to other pro
cesses; receive events, denoting the reception of messages from other processes.

In distributed systems algorithms and protocols, it is usual to distinguish
between receive, already defined, and deliver, denoting the delivery of a mes
sage to the upper layer. For example, consider a protocol layer that exchanges
several messages with corresponding entities in other sites, such as a reliable
communication protocol. Several receive events take place from lower layers
(e.g., the network), and at the end of a successful execution, the protocol per
forms a deliver action (of the message) to the end process.

Message exchanges in distributed algorithms, which occur along the timeline
from and to different sites of the system, are best represented by space-time
diagrams, such as depicted on the left of Figure 1.8. For example, execution
events a and b occur in sequence in process Pl. At P2, send event c sends
message m to P3 where its reception generates receive event d. Note that event
e took place after event c in real time. However, can P2 or P3 know about that?
In fact no, unless there is an additional artifact, a global clock that gives the
same time to all processes, and events are timestamped as they happen.

a b a
Pi • • P1 Ie I •

t [g]

c b
P2

~d
P2 .1 I •

P3 P3 ~,• • I •2

Figure 1.8. Space-Time and Lattice Diagrams

A timestamp is of the form T(e) == c(t(e)), meaning that the timestamp T(e)
takes the value of the clock c at the time when event e happened. The granu
larity 9 of a digital timestamping system (a clock) is the minimum increment of
time between two consecutive timestamps, and determines how finely it mea
sures time. Granular timelines, or time lattices are often used in distributed
systems to account for the granularity of the timestamping systems. Events
between two consecutive timestamps in the lattice are considered simultaneous.
For example, as shown on the right of Figure 1.8, events a and b receive the
same timestamp.

Timing variable notations are also important in distributed systems. In
general terms, we use lowercase to denote instantaneous values, such as the
passage of real time or the value of a clock. We use uppercase to denote time
intervals, such as message delivery times, or constants and static variables, such
as timeout values, timestamps, delivery delay bounds. For example, upper and
lower message delivery time bounds are normally denoted by TD'Tnaa:' and by
TD'Tnin. However, the current time of a clock would be c(tnow).

Exhibit 2026 Page 37

DISTRIBUTED SYSTEMS FOUNDATIONS 19

1.4.3 Global States

We are sometimes interested in getting the global picture of a distributed sys
tem. The global state of a distributed system at a given point in real time is a
vector composed by the individual states of its n processes, S == [Si ...SnJ, at that
time. Under this viewpoint, the interleaving view, the system goes through
a succession of states. Another viewpoint focuses on events, the space-time
view, whereby the system evolves as a partially ordered set of events occurring
in the several processes of the system. A cut in the space-time diagram is a
segment intersecting the timelines of all processes. Consider a snapshot con
sisting of the processes' states at each intersection Cij of a cut Ci with process
Pj (see Figure 1.9): the snapshot yielded by a cut does not always provide
a valid representation of the global state (GS) of the system. There are in
consequence three types of cuts, illustrated in Figure 1.9: inconsistent cut
the snapshot gives an invalid picture of the GS of the system; consistent cut
the snapshot gives a correct but possibly incomplete picture of the GS of the
system (for example, it ignores messages in transit); and strongly consistent cut
- the snapshot faithfully represents an actual GS of the system.

Note that in the strongly consistent cut CI in Figure 1.9, there are no mes
sages in transit. We can retrieve the states of the individual processes atom
ically at each Clj, and get a valid global state. In the consistent cut C3 , the
system has messages in transit. If we perform the same operation as above,
reading state at all C3j, we will get a correct though incomplete picture of the
global state, where only the messages in transit (m3 and m4) are missing. How
ever, note that by analyzing C33 and C34, we are told that those messages were
sent. With an adequate protocol we can wait a little longer for them to arrive,
and in consequence, given this waiting time, a consistent cut is as good as a
strongly consistent one. Finally, there are cuts that yield nothing valid, such
as inconsistent cut C2 . Why? Observe that although traversed by messages
in transit as in the consistent cut, there is something wrong with message mI.
What? It seems to be traversing the cut in the wrong direction (backwards in
time). Note that this is so, because in the state information, C23 tells us that
ml arrived, but there is no record of it being sent (that will be recorded later
than C21). This contradicts the fundamental cause-effect relation. Consistent
cuts are important constructs in distributed systems, and the protocols used
to obtain them are called snapshot protocols (Chandy and Lamport, 1985).

1.4.4 Safety, Liveness, and Timeliness

We can specify a system in a formal manner, in terms of high-level properties
written in a formal language, including formulas containing logic (and, or),
temporal (eventually, always) and time (until/from) operators. Two generic
classes in which system properties can be divided are: safety and liveness. In
formally, safety properties specify that wrong events never take place, whereas
liveness properties specify that good events eventually take place. Aliveness
property specifies that a predicate P will eventually be true. A safety property

Exhibit 2026 Page 38

20 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Strongly: l Inconsistent 1Consistent
Consistent ~ \: Cut .:::. Cut

Cut~P1 __..,.....-_~_--I-...--.m............. --I......- t---_

C2•1•••••••••••

P2 __------_- ~-----.:::=L.---=--f----___=__+---

P3----T--_I-.---l~ -- -==---It__....._,::;~--

..
P4 ---"--__~--- ---..._-___l\...C..;:;.,;,34-

Figure 1.9. Cuts and Global States

specifies that a predicate P is always true (Alpern and Schneider, 1987; Manna
and Pnueli, 1992). For example, "any delivered message is delivered to all
correct participants" is a safety property. If it is not secured, the system be
comes incorrect. However, it does not impose that messages are delivered at
all. Property "any message sent is delivered to at least one participant" is a
liveness property. If it is not secured, the system may not progress (messages
are not delivered). Liveness and safety properties complement themselves. A
particular class of property is timeliness, which specifies that a predicate P
will be true at a given instant of real time. Observe property "any transaction
completes until Tt from the start": it is a timeliness property. For it to be
secured, all transactions must execute within Tt time units. We can specify
the properties of any program or protocol in terms of safety, liveness and/or
timeliness.

1.5 SUMMARY AND FURTHER READING

This introductory chapter discussed the fundamental concepts concerning dis
tribution, defining distributed systems and introducing issues such as the differ
ence between centralized and distributed systems, when to distribute, and how
distributed systems have evolved. The fundamental distributed system ser
vices were introduced, and the most common distributed system architectures
were presented. The chapter ended by presenting a few formal notions and
notation for more elaborate treatments, namely on: modeling distributed sys
tems, representing distributed computations and global states, and specifying
properties (safety, liveness, and timeliness). The following chapters will dis
cuss these introductory concepts in greater depth. For more introductory level
material, the reader may consult the books of (Tanenbaum, 1996; Tanenbaum,
1995; Silberschatz et aI., 2000). An elaborate treatment of formal specification
of program properties can be found in (Manna and Pnueli, 1992). A discussion
of the problem of obtaining consistent global states is given in (Babaoglu and
Marzullo, 1993).

Exhibit 2026 Page 39

2 DISTRIBUTED SYSTEM

PARADIGMS

This chapter presents the most important paradigms in distributed systems, in
a problem-oriented manner, purposely addressed to to-be architects. Namely,
the chapter addresses: naming and addressing; message passing; remote op
erations; group communication; time and clocks; synchrony; ordering; coordi
nation; consistency; concurrency; and atomicity. Paradigms are motivated by
showing their problem-solving potential and also their limitations.

2.1 NAMING AND ADDRESSING

Humans associate names with entities, objects and resources, in order to refer
to and to communicate with them. Computers are no exception, thus names
are given to computers, printers, files, mailboxes, etc. Name management is
thus a fundamental component of a computing system and, in particular, of a
distributed computing systems.

Names alone can be used to identify any object or entity in the system if
they are unique, i.e., if we know that no two similar objects or entities can
have the same name. For instance, the name of the father and mother, along
with gender, birth data and location of birth can be used to uniquely identify
most human beings with a few exceptions (for instance, when twins are born).
Humans do have some other attributes that can be used as unique identifiers
such as, for instance, the pattern of their eye's iris. Of course, the iris pattern
is too complex to be described verbally, and cannot be used as a textual name

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 40

22 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

in daily life (although it can be used to identify a credit card holder, if an iris
reading device is available). As a result we tend to assign more practical names
to things and beings.

Soon after we are born, our parents give us a name. In distributed systems,
we call the act of associating a name with an object, binding. This name does
not need to be unique, since it is often used in a certain context that restricts
the set of object in can be associated with. Names can be pure, in which case
they can be seen merely as a pattern that can only be used to compare with
other similar patterns; no information about the object can be extracted from
the name alone. Names can also be impure, in which case their structure and
format yields additional information, such as the internet name of a mail server
"mai1 . di . f c .ul . pt" , that allows us to extract its logical location (". pt" for
Portugal, etc).

Names are useful if they can later be used to obtain attributes of the named
entity. Assume that you want to contact one of the authors of this book to
provide us some feedback. If you want to send us a letter, you would like to use
our name to obtain our mailing address. If you want to make us· a phone call,
you would like to obtain our phone number. If you just want to see our picture,
you may just want to obtain the address of our home page. All these attributes
are called addresses as they can be used to interact with the entity the name
refers to. Obtaining an attribute from a given name, usually an address, is
called in distributed systems resolving the name.

2.1.1 Addressing types

Addresses are also names that have a special meaning to a given communication
protocol. Some addresses can be primitive names, i.e., names that cannot be
further translated into other names. For instance, a mail address consistin'gof
the name of a country, city, street and the door number is a primitive name.
It is used directly to route letters to a specific mailbox in that given physical
location.

The more complex and powerful the protocol, the less likely the address is a
primitive name. For instance, in order to send an e-mail, several protocol layers
need to be traversed, implying several corresponding name-to-address resolu
tions to be performed. From an e-mail addresssuchasdssa@di.fc.ul.pt. one
first obtains the name of a mail server for that domain, likemail@di.fc.ul.pt.
This name needs in turn to be resolved into an IP address used to establish
a TCP connection to that server. At some point, at the lower layers, the IP
address will be translated into an Ethernet address, in order to send individual
packets to a specific network connection.

Addresses that allow a pair of objects to interact are often called point-to
point addresses. However, names can be also given to groups of objects that
can be managed and accessed as a whole. When a group name is resolved we
can obtain a list of point-to-point addresses that allow us to contact each group
member individually or even better, a logical group address that allows us to
interact with the group as a whole, without needing to know the individual

Exhibit 2026 Page 41

DISTRIBUTED SYSTEM PARADIGMS 23

addresses. Group addresses are an abstraction that requires the use of group
communication protocols, able to recognize these addresses.

More powerful protocols hide details from the application code that would
make it complex and difficult to port to other environments. For instance,
when using IP, an application does not need to be concerned with details such
as which type of architecture or operative system is used on the remote machine,
what type of network that machine is connected to, etc. Now, consider a mobile
machine, moving between networks: an IP address is bound to a given network,
thus basic IP cannot be used to address it. On the other hand, if mobile-IP
is used, the application no longer needs to be concerned about the location
of the target machine, since the system reroutes packets to the appropriate
location. Moreover, if multicast-IP is used, the sender does not need to be
concerned about how many recipients are active. Unfortunately, the more
complex the protocols the more expensive in performance they usually are,
thus it is interesting to have different alternatives available to the application
designer.

Sometimes, the application code is shielded from the myriad of low level
communication protocols by some middleware layer, which is responsible for
selecting the most appropriate protocol to contact the desired resource. In
this context, the low level names recognized by the middleware are often called
references, to distinguish them from protocol-specific addresses.

2.1.2 Name to Address Translation

Referring to object and resources using names instead of addresses has several
advantages. To start with, names are often textual and given using intuitive
words. Thus, names are much easier to remember by humans than addresses.
Using a single name is also much more convenient than using the set of possible
addresses required by the several alternative protocols to access a given object.
Additionally, most low-level communication protocols do not provide location
transparency, i.e, the address of an object depends on its physical location.
This happens because for practical reasons low-level addresses are not pure,
they incorporate information about the "location" of the object. If we want to
have the ability to re-configure the system, by re-Iocation of the objects, then
it is mandatory that clients use names instead of addresses, since addresses will
have a short-term validity.

Of course, at some point in time a specific protocol must be selected to inter
act with the object and a concrete address needs to be obtained. A mechanism
is required that dynamically obtains an address given a name, also known as
name resolution. This can be done by having the client broadcast a request
to find out what is the address of the desired server (Figure 2.1a), which is
normally replied by the server itself. This approach is usable in LANs, but
not in larger scale systems. Using a modular approach, we can encapsulate
this functionality in a dedicated service, that we call a name service. The most
important and used primitive of a name service is a lookup primitive: it accepts
a name and returns an address, as exemplified in Figure 2.1b. Additionally,

Exhibit 2026 Page 42

24 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

we may want to add new associations dynamically to the name service. A bind
primitive allows an application to register an association between a name and
an address with the name service. Since it is interesting to allow dynamic re
configuration of the system, we may also add an unbind primitive, that allows
a previous association to be canceled. Of course, onCe\\;\1e have a name service
available we may want to extend it to store other additional attributes asso
ciated with a name, instead of just storing a single address. The number and
types of attributes may vary with the type of objects the name is associated
with. For instance, sensible attributes to associate with a machine name are:
IP address, other addresses associated with different protocols, operating sys
tem, name and contact of the system administrator, etc. Some name services
also support reverse resolutions, Le. the ability to obtain a name given a set
of attributes (e.g., address).

Name Server Client Server
<D @

DNS ~wherels(serverA) C req[393.2] S

repl [557.0}
(557) 4 (393)

whereAreYou(serverA)
C :=l lam@(393~ S

req[393.2] 2

@
reply[557.0]

@

•• II
•• ..

Client CD Server

(a) (b)

Figure 2.1. Name to Address Translation: (a) Broadcast; (b) Name Server

If the functionality of a name service is easy to understand, implementing
it in a distributed system in a scalable way is a significant challenge. Since
components refer to each other by names and need to resolve these names in
order to interact, the availability of the name service is critical to overall system
availability. Furthermore, the service must be available from every node of the
system, since all nodes need to perform name resolutions. A naive approach
to implement a name service is to replicate the name service state in every
node, such that name resolution can be performed locally (by searching a file
or querying a database). This solution is impractical. Replicating the name
service data at every machine can be a significant waste of resources and makes
updates to name service complex and inefficient (since all replicas would need to
be updated). Additionally, in very large-scale systems, the information stored
in the name service may be huge, requiring significant storage and computing
resources. In many cases, like the global Internet, is not feasible to store all
the name service state in a single machine.

As mentioned before, name inquiries can be performed by a broadcast com
munication protocol. A pure broadcast approach is not used in general, because
it easily overloads all nodes with name server inquiries. However, the approach

Exhibit 2026 Page 43

DISTRIBUTED SYSTEM PARADIGMS 25

is used for specific goals, such as the Internet Address Resolution Protocol
(ARP), to obtain the Ethernet address of a node given its IP address.

Most existing implementations of a name service use several servers that
cooperate among each other to preserve the global name service state and to
provide a highly available and efficient resolution service to the other nodes of
the distributed system. The (distributed) name server approach is going to be
the topic of our next section.

2.1.3 Name Server Approach

A scalable approach to the implementation of a name service is to use a set of co
operating name servers. Each name server stores a portion of the name service
data. The division of the name space among the servers can be made according
to several criteria such as geographical locality or, more usually, administrative
boundaries. A host using the name service must exchange messages with one
or several servers to obtain the desired service.

At this point, the reader is probably wondering how does a host obtain the
address of the name server. The answer is that the addresses of name servers
are well-known addresses. In fact, the address of the name server is the only
address that needs to be well-known, since in principle the address of every
other server can be obtained through the name service. However, for both
historical and practical reasons, it is common to find other popular services
running on well-known addresses as well.

Let us focus on the name service. We assume that if an application wants
to resolve a name, it forwards the request to a local name service agent. The
purpose of the local agent is to hide the interaction with the name servers from
the application. Two alternatives are now available for resolving the name: (i)
the agent contacts a single server, which is then responsible for contacting other
servers if needed; (ii) or the agent is responsible for polling all known servers
until a resolution is obtained. In the latter case, the name server contacted
just has to search its local database and return the requested attribute if a
matching name is found, or return error otherwise. In the former approach, it
is up to the name server to contact other servers. Again, two alternatives are
available. The name server can interactively inquire all the remaining servers,
or a recursive procedure can be executed.

A key issue for the efficiency of a name service (and of many other distributed
services) is a wise use of caching. A cache is a copy of a frequently used piece
of information that is kept in a transparent way near to its users. Caching is
used extensively in the implementation of name services because some popular
names are likely to be resolved several times in a short period of time by the
same or related applications. Caches of recent name-to-address resolutions are
kept both at the name servers and at the agents. The use of caches has minor
disadvantages, the most relevant being that it delays the propagation of a new
binding when the address associated with a given name changes. Because of
this problem, many name services allow the clients to request an authoritative

Exhibit 2026 Page 44

26 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

name resolution, that bypasses all caches and obtains a fresh translation from
the name server responsible for managing the concerned name.

2.2 MESSAGE PASSING

The most basic form of interaction in distributed systems is message exchange.
In order to exchange messages, two components must select a protocol and
obtain the address of each other. The components must also agree on the
format of the messages exchanged. The messages are usually structured as
a sequence of fields: the number, meaning, and format of each field must be
understood by both participants in order for the exchange of information to
be successful. We recall that the same logical values can be represented using
different bit patterns in different architectures. Thus, at sending time, the
representation of values is normally converted from the format internal to the
machine to the format agreed for the messages (and later converted again at the
recipient). These steps can be omitted if the participants know a priori that
the same format is used at both ends. A possible message format is illustrated
in Figure 2.2. The message includes the name of the source, a sequence number
to identify the request, the identification of the service being requested, and
the parameters required for that request.

Input Parameter(s)

Figure 2.2. Possible Message Format

2.2.1 Send-Receive-Acknowledge Protocol

To support message passing two primitives are needed from the communication
system. A send primitive, used to request the transmission of messages, which
accepts a destination address and the message contents. A receive primitive,
used to collect messages sent by others, which returns a message when available
(Figure 2.3a). Typically, one cannot guarantee that every message sent is re
ceived by the intended recipient. Most communication protocols are unreliable,
in the sense that they can occasionally drop messages. Additionally, nodes are
also unreliable, they can crash and become unable to collect messages. Due to
this reason, application designers normally make use of a slightly more sophis
ticated protocol, able to generate an acknowledgement back to the sender every
time the recipient successfully receives a message. Thus, an acknowledged-send
primitive can also be used to support message exchange (Figure 2.3b).

2.2.2 Interface Styles

The previous interface is deceptively simple, almost trivial. It should thus not
be surprising that some subtle design decisions need to made when implement
ing the interface. Let us consider the acknowledged-send primitive again. The

Exhibit 2026 Page 45

DISTRIBUTED SYSTEM PARADIGMS 27

j
j

(0
1ack
\
\
.~

OPER. Svssup.i~~ OPER. Svs SUP.QPER. SVS SUP.

® mmmmm~m

ll[~~i

~
~end

QpER. SVS SUP.

(a) (b)

Figure 2.3. Message Passing Protocols: (a) Send-Receive;(b) Acknowledged-Send

question that the implementor needs to answer is: should the primitive block
the client until an acknowledgment is returned? At first sight it may look like
the answer is a definitive yes, since it seems reasonable to force the application
to be sure that the message was properly received before executing the next
step of the algorithm. Of course, this hides another subtle but fundamental
problem: for how long should the client be blocked if an acknowledgement is
not received? We will return to the issue of timing in distributed systems later
in the chapter.

Even if the acknowledgements are always received, it may be useful to allow
the client to proceed at least a bit further without waiting for the acknowledg
ment. In some applications, a client with a single thread of control may want
to send several messages in order to start the parallel execution of different
requests. If the network delay is significant (an recall that there are physical
limits to the optimization of latency), forcing the client to wait for an acknowl
edgment before it can send another message incurs in a significant performance
penalty. An alternative design consists in providing non-blocking primitives
and supplying additional primitives to allow the application to check later if
an acknowledgment was received.

On the other hand, one should be aware that the use of non-acknowledged
send primitives does not necessarily imply that the send primitive returns im
mediately. In fact, the message may have to be copied to buffers of the protocol
stack before the primitive is allowed to return. If no free buffer space is avail
able, the application may be temporarily blocked until memory is freed. Also,
in some high-performance interfaces, the message may be copied directly from
the application address space to the network, without requiring an additional
copy to intermediate buffers. In this case the application can be temporarily
blocked until network access is granted to the node.

Sometimes, a remote node needs to send information to the client or user in
an unsolicited, spontaneous manner. It does it in an unidirectional manner and
is not interested in receiving any response. Such a message exchange is called a

Exhibit 2026 Page 46

28 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

notification. Notifications play an important role, since they are the adequate
way of conveying information about events. Event-based programming is a
fashionable style today in distributed systems.

2.2.3 Quality of Service of Message Passing

We have just mentioned that there is no way to guarantee that a message is
received, in particular because we cannot prevent the recipient from failing.
We will discuss high reliability protocols in the Fault Tolerance part of the
book. However, as long as both participants remain active and the network
remains connected, plain connection-oriented transport protocols do a good
job at ensuring that all messages sent are actually received (by using low-level
acknowledgments and managing retransmission of lost packets). By adding
sequence numbers to the headers of each message, one can also ensure without
much difficulty that the messages are received in the order they were sent. The
resulting semantics of information flow is also known as a First-In-First-Out
(FIFO) channel. This semantics is very convenient and most protocol families
offer it at the transport level, such that it is frequently taken as a given in
distributed systems research.

2.3 REMOTE OPERATIONS

A simple send primitive, even if acknowledged, is insufficient when the objective
is to invoke some remote operation and get the result or confirmation back.
The acknowledgment only confirms that the request was received, not that
the associated action was completed with success (nor does it send back the
results of that operation). The client-server model mentioned in the previous
chapter is probably the most popular model to structure interactions between
components in distributed systems. In this model, the client invokes a remote
operation by making a request to the remote server and expects to receive a
reply carrying the results of the requested operation.

2.3.1 Request-Reply Protocol

The request-reply protocol can be constructed using the send-receive protocol
described previously (Figure 2.4a). The client sends a requ'est to the server
that, in turn, receives and processes the request. When the request has been
completed, the server builds a reply that is sent back to the client.

Acknowledged send-receive has a limited interest for the implementation
of receive-reply protocols, because it is useful for the acknowledgement to be
produced only in the end, to achieve a closed-loop semantics: the reply confirms
that the associated request was not only received but also processed. However,
when 1111Teliabie channels are combined with requests that take a long time to
process, it may be difficult for the client to distinguish the case where a request
was dropped from the case where a request is taking a very long time to process.
In these extreme cases, immediate acknowledgments become useful, to inform

Exhibit 2026 Page 47

DISTRIBUTED SYSTEM PARADIGMS 29

®
reply

<D
send.:.:.:.:.;.:.;.;.:

OPER. Svs SUP.OPER. Svs SUP.'111~~li sen~ OPER. Svs SUP.OPER. Svs SUP.

(a) (b)

Figure 2.4. Remote Operation Protocols: (a) Plain Request-Reply; (b) Acknowledged

the client that the server has received the relevant message (Figure 2.4b). The
reply itself can be acknowledged to tell the server the result was received.
Intermediate acknowledgements ("I am alive") may also be used by the server,
to reassure the client that the former is still active processing the request.

2.3.2 Interface Styles

As with send-receive-acknowledgement, request-reply interactions can also be
constructed using blocking or non-blocking interfaces. Blocking interfaces are
consistent with the remote operations model (Figure 2.5a). However, the ar
guments in favor of non-blocking interfaces assume some significance, since a
request may take a long time to complete. If the client is allowed to execute
while waiting for the reply, there is an associated increase in performance.
Non-blocking interfaces are also called 'asynchronous' in some operating sys
tems work, although this designation should be reserved to specify the lack of a
notion of time bounds, or of synchronization in terms of time (see A synchronous
Models in Chapter 3).

Unfortunately, non-blocking interfaces involve some degree of complexity.
New primitives that allow the client to collect the replies must be available.
Since several replies can be pending, there must be a way to match the replies
with the associated requests. At some point, the client may want to block until
a specific reply arrives, or just until one reply from a set of useful replies is
available. The client may also not want to be blocked waiting for replies in any
case; or it may want to be notified of the reply as it arrives. Finally, there is
a risk to program correctness, associated with executing some actions further
down the code, ,vhich might implicitly depend on the result of the pending
request.

An alternative allowing parallelism to be exploited is to rely on blocking
interfaces and implement multi-threaded clients. When the client wants to
make several requests in parallel it simply forks as many threads as needed.
Each individual thread performs a single blocking request. This substantially

Exhibit 2026 Page 48

30 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

.PREPAR~
OPER. SVS SUP. i

OPER. SVS SUP.

(a)

OPER. SVS SUP.

TIME
~.

(b)

Figure 2.5. Remote Operation Interfaces: (a) Blocking; (b) Non-Blocking

reduces the complexity of the interface and of the client code. Figure 2.5b
exemplifies this mechanism. Correctness problems deriving from order inversion
may still occur, the responsibility of avoiding them lying with the programmer.

2.3.3 Quality of Service of Remote Operations

As we have noted above, the reception of the reply reassures the sender that the
request was processed. The information contained in the reply usually includes
the results of the service (if any) or the cause of error if the service could not
be provided.

The absence of a reply may also indicate a fault: it may be due to the failure
of the server or to losses in the communication link. In both cases the failure
can occur before or after the request was serviced, so it may happen that the
request was executed but the reply lost. In the part of the book dedicated to
Fault Tolerance we discuss the effect of failures in request-reply systems (see
Fault- Tolerant Remote Operations in Chapter 8).

When request and reply messages are short and can be sent in a single
datagram, a connectionless datagram service can be used to support request
reply communication. If the sender waits for the reply to the previous request
before doing another request, FIFO order is straightforwardly implemented.
However, when request or reply messages are very long, a connection-oriented
transport layer simplifies the implementation of the request-reply, taking care of
fragmentation and reassembly of the messages according to the characteristics
of network.

Exhibit 2026 Page 49

DISTRIBUTED SYSTEM PARADIGMS 31

2.4 GROUP COMMUNICATION

Point-to-point communication is just a particular case of a more general pat
tern of multipoint communication. There are many examples of distributed
constructs based on the notion of a group of participants. These constructs
can obviously benefit from a support to multipoint communication, also called
multicast. Take for instance the implementation of the name service discussed
in Section 2.2: multicasting the name look-up request can speedup name reso
lution, since several servers will look the name up in parallel, and the first hit
will be used. Another striking example of an application where multicast is
extremely relevant is video and audio diffusion, where a stream of data is sent
in parallel to a group of registered recipients.

Note that a multicast is different from a broadcast, where all participants
in the system are addressed. Multicast is selective in the sense that only a
selected group of participants are addressed. The efficiency of this addressing
method depends on the implementation: it should be noted that sending one
multicast message to n participants is quite different from sending n point-to
point messages, one for each participant. If the protocol supports multicast, it
can optimize the message diffusion tree by sharing resources. For instance, if
hardware multicast is available (e.g., LANs), the message can be delivered to
all recipients using the channel only once. If no hardware multicast is available,
significant savings can still be obtained by avoiding that a message traverses
the same link more than once, as illustrated in Figure 2.6: the optimization
here would have consisted of sending only one message in the A-B hop, and so
forth (this is implemented e.g. by multicast-IP routing).

Source

Recipients

Figure 2.6. Multicast Tree

Cooperative applications, such as decision support tools, allow the interac
tion among several users that exchange messages, consult and update shared
white-boards, etc. These applications require not only multicast support, but

Exhibit 2026 Page 50

32 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

also up-to-date information about which participants are active, Le., informa
tion about the group membership.

In the previous examples the notion of group of processes is explicitly used
in support of the functionality of the application. In this case, we say the
groups are visible. Groups can also be a powerful tool to obtain non-functional
requisites. For instance, a group can be used to collectively refer to a set of
replicas of the same component executing the same action. (This is called
replication, a fault tolerance technique to ensure continuity of service despite
crashes of individual components, which will be deeply studied in the Fault
Tolerance part of the book). The idea is for the application to address the
component transparently of the existence of replicas, with the help of group
communication. In this case, we say that groups are invisible.

2.4.1 Groups and Views

Generically, a group membership service provides two functions to participants:
the ability to explicitly create and become member of groups, keeping that in
formation in what is called the group membership; and the provision of updated
information about current mutual reachability, which is called the group view.
In a similar manner, a group communication service allows group members
to exchange information, offering reliability and ordering properties which may
vary with the quality of service selected. A protocol suite that offers both group
membership and group communication services is called a group platform.

The main purpose of a membership service is to dynamically provide group
views, that is, lists of unique identifiers of the processes that are mutually reach
able (it is assumed that processes have a unique identifier and that there is a
total order on these identifiers). Most group membership services offer primi
tives that allow a process to join (or leave) a group. Likewise, other ancillary
services such as failure detectors provide raw information about reachability of
members. Each time a change occurs, a new view is delivered to all members,
so that all agree on the new state. The membership services are distinguished
by the guarantees provided on the delivery order of views and on the delivery
order of messages with respect to view changes. A membership service should
provide two fundamental properties (Hiltunen and Schlichting, 1994), which are
very hard to achieve in the presence of faults, as we will discuss later in the
book:

Accuracy - the information provided reflects the physical scenario

Consistency - the information provided is consistent at all processes

Group communication services can be defined as services that allow to mul-
ticast a message to all (or to a subset) of the group members. From the point
of view of the service provided, there are two main aspects:

• Reliability aspects - regarding the message delivery guarantees.

• Ordering aspects - regarding the message ordering guarantees.

Many different group membership and communication semantics can be de
fined, depending on the reliability and ordering properties of messages, among

Exhibit 2026 Page 51

DISTRIBUTED SYSTEM PARADIGMS 33

each other and with regard to views. It is also useful to distinguish closed group
models where just the members of the group are allowed to send messages to the
group, from open group models where a participant does not need to belong to
a group in order to send messages to it. In group communication services using
a closed model, all members are peers, in the sense that all members can both
send and receive messages to and from the group, respectively. Open models
tend to distinguish different roles, where full members are entitled to receive
messages and views, whereas senders are allowed to send messages to the group
but are not necessarily aware of its membership, nor allowed to receive group
messages.

2.4.2 Multicast Protocol

A multicast protocol is responsible to deliver a message to all group members.
The main components of a multicast protocol are:

• routing, responsible for selecting the message path from its source to the
addressees;

• omission tolerance, responsible for coping with messages that are lost or
corrupted in the physical infra-structure, by redundant transmission or re
transmission;

• flow-control, responsible for minimizing the loss of data caused by lack of
buffer space at the addressees (or at intermediate routers);

• ordering, according to some policy;

• failure recovery, responsible for enforcing predefined ordering and reliability
criteria in relation to view changes.

The first three aspects are addressed by a multicast transport service. Or
dering of messages with regard to each other is offered by ordering protocols.
Delivery guarantees in case of failure of the sender, and ordering of messages
with regard to group views are usually offered by the membership services. The
last two aspects will be dealt with in later sections.

The routing procedure consists in finding a path that minimizes both the
number of messages exchanged and the multicast latency. In order to meet the
first requirement, hardware multicast should be used whenever possible. To
satisfy the second requirement, the path should follow a Minimal Cost Steiner
Tree. Although some reliable multicast protocols address this aspect directly
(Schneider et aI., 1984; Garcia-Molina and Spauster, 1991), the trend is to
delegate the routing procedure to standard protocols (Deering, 1989).

Network omissions are normally tolerated by using acknowledgments to de
tect errors, and retransmitting lost messages. These acknowledgments can be
sent back whenever a message is received (positive acknowledgment) or only
when the loss of a message is detected (negative acknowledgment). The former
method offers a faster failure detection (even with sporadic traffic) while the
later minimizes network traffic.

Exhibit 2026 Page 52

34 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Finally, several techniques exist to implement flow control (Macedo et aI.,
1995), including usage of credits (Powell, 1991), sliding-windows (Tanenbaum,
1996), rate-based control (XTP, 1998), etc.

2.4.3 Interface Styles

Concerning multipoint interactions, it is possible to draw some parallels with
the already studied send-receive-acknowledgment and request-reply interface
styles. Like the point-to-point send-receive primitive, multicast-send can also
be acknowledged or not-acknowledged. If it is acknowledged, the primitive
only returns when the system is in the condition of ensuring that the desired
quality of service can be guaranteed. Consider for instance a primitive with
the following reliability definition:

A message must be delivered to all correct group members as long as the sender
remains correct during the execution of the protocol.

This is a relatively week definition of reliability, since it gives no guarantees
about the outcome of the send primitive when the sender fails. In order to
provide the guarantees stated above, the protocol may require each recipient
to send back an acknowledgement. As soon as an acknowledgment is received
from every group member the primitive may return. On the other hand, if some
acknowledgements are missing, the sender must retransmit the message. To
prevent retransmitting the message indefinitely in case some member crashes,
such a protocol requires the assistance of a failure detector mechanism: an
oracle that tells the protocol that it should no longer wait for replies from this
recipient, since it is failed, and as such is no longer a "correct group member"
as per the definition made above. Obtaining reliability when the sender fails,
and building failure detectors, are rich topics that will be discussed later, in
the Fault Tolerance part of this book.

When the sender is a group member, it usually receives its own messages
(we say that the system offers inclusive multicast). Alternatively, some systems
deliver the message to all members but the sender (the system is then said to
offer exclusive multicast). The reader may wonder why some systems bother
to deliver a message to its own sender, since the sender is aware of what it sent
anyway! This policy is mandatory whenever messages have to be collectively
ordered by some discipline. In fact the sender is only aware of the relative
order of its own messages with regard to messages sent by other members if the
former (or references to them) come integrated in the received flow. This uni
directionality of group information flow may strongly simplify the application
design, and will be addressed again in Chapter 3.

The equivalent to request-reply semantics can also be defined for multipoint
communication. This type of semantics is usually offered in architectures where
group members provide service to clients that do not belong to the group (and
thus, do not receive the messages sent to the group). In this case, clients
send a multicast to the group and expect a reply from one or all of the group
members. One possible use of this model is to support replication as mentioned

Exhibit 2026 Page 53

DISTRIBUTED SYSTEM PARADIGMS 35

before. Another use of the model is to support load balancing. Load balancing is
achieved by sending the request to all members of the group which, implicitly or
explicitly, coordinate themselves to distribute the load (by agreeing on which
member processes each request). In these two models, although the sender
multicasts the request to all group members, it is interested in obtaining a
single reply. Such a multipoint request-reply primitive blocks until the first
reply is obtained.

Finally, groups can also be used to parallelize work. Consider for instance
the problem of image processing using a technique known as ray-tracing (Watt
and Watt, 1992). This technique has the property that each pixel of the final
image is computed independently from the others. Thus, a ray-tracer can be
easily parallelized, by making different servers be responsible for creating a
portion of the picture. In such a setting, the client would send a request to the
group but would block until all replies came, before proceeding.

We have illustrated the need for at-least-n (n 2: 0) and all semantics for
collecting replies in multipoint request-reply primitives. Variants can be con
sidered, such as: majority of members, as many as possible until a deadline,
etc.

2.4.4 Quality of Service of Group Communication

We have briefly addressed the aspect of reliability in multicast communication.
Other important quality of service criteria in group communication are the
ordering policy that is enforced on the message flow, and timeliness, translated
into synchronism properties. These two issues are generic bodies of research
rich enough to deserve sections on their own. In consequence, we spend the next
few sections dealing with them, first discussing the use of time in distributed
systems.

2.5 TIME AND CLOCKS

Time is a very useful artifact to represent the ordering of events in any system.
It plays a very important role in human life: try and picture one day in your life
without looking at a watch or even thinking about time! However, strange as it
may seem, time in the sense of a global reference, has heen neglected for long in
distributed systems. Several reasons explain this: systems and networks were
unpredictable with regard to time, so most of the models used in distributed
systems did not rely on time, they were what we call asynchronous, or time
free; decentralized and distributed algorithms requiring the synchronization of
interactions with multiple sites were not in current use; interactive applications
either with humans or with devices in the environment were not that common.

The situation changed: infrastructures improved their timeliness, yielding
a growing acceptance of time-related models that address problems unsolved
by asynchronous models; real-time architectures pervaded the arena of generic
distributed systems, in areas such as telecommunication intelligent network
architectures, multimedia, on-line distributed transactions, large-scale file sys-

Exhibit 2026 Page 54

36 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

terns, industrial information systems. All this evolution created a growing need
for time-dependent protocols.

This section discusses the role of time and clocks in distributed computing
systems and how a consistent view of time can be obtained in such systems.

2.5.1 The Role of Time

The role of time is intimately related to ordering, sequencing, synchronizing.
The passage of time is marked by an abstract monotonically increasing contin
uous function, which people agreed to call real time!.

By convention, this function increases at a rate equal to 9192631770 times
the period of the radiation emitted by the transition between two hyperfine levels
of the ground state atomic cesium 133, a time unit which people have agreed
to call second. Along history, people have represented time in a number of
ways and the 'second' itself has had other less precise representations, such as
being a sub-multiple of the solar day. We can graphically represent these time
units as a sequence of points over a straight line, called a timeline. We can
reference what we do and what we observe (events) to points over the timeline,
and extract conclusions thereof, such as cause-effect relations. That makes our
life easier. The use of time in computer systems has to do with two aspects:

• recording and observing the place of events in the timeline

• enforcing the future positioning of events in the timeline

In distributed systems, the first is concerned with the distributed recording
of events. The second is concerned with the synchronization of the concurrent
progress of the system.

For instance, we can record the order of all the events that happened during
a working day, in order to establish what are the most recent versions of our
working files. However, if instead we timestamp each file, that is, associate
it to a point in the timeline at the moment we close it, we simply have to
compare timestamps to discover the version containing the most recent update.
Imagine another problem, measuring the performance of two disk controllers
(benchmarking), assessing which of them reads a large file faster. We may
set up our test so that they receive the read command at exactly the same
time, and observe which ends first. Alternatively, we may just run our tests
separately (even in different days), and···n1:easure the duration of each test as
an interval in the timeline, between the start and end points. Generalizing, a
duration is a time chain composed of several added intervals.

We can also quote examples of the use of time to coordinate actions. Con
sider that we need to make a number of computers perform some actions at a
pre-defined time. For instance you may want to switch on the oven half-an-hour
before you get home and switch on the microwave twenty five minutes later.

1 As opposed to "clock time", the way we mimic real time. "Real-Time" (with slash) is still
another convention that refers to the research area concerned with building timely systems.

Exhibit 2026 Page 55

DISTRIBUTED SYSTEM PARADIGMS 37

Clearly, this is easy if your system can schedule actions for future points in the
timeline, or after the end of intervals in that same timeline. As a more concrete
example, suppose you want to trigger both a change of points and a change of
lights in a railway crossing. The specified time may be absolute, or it may be
relative: the controller may be informed of the change of lights at 5:03:25 and
then specify "change points at 5:03:35" or else specify a priori "change points
after 10sec of change of lights".

The use of time references such as timestamps and durations (points and
intervals in time) is current in computers, through timers and local clocks,
devices that implement the timeline abstraction. Computers have used these
devices locally since long. However, the correct use of time gets complicated in
distributed systems, in particular those that interact with the environment or
with humans.

To start with, if a file fB was updated later than a file fA, then we assume
I B 's timestamp is going to be greater than lA'S timestamp, since time increases
monotonically. If file IA is updated at site A and file IB at site B, this assump
tion must still be valid. In other words, we want to be able to timestamp
distributed events, that is, related events that take place in different sites. If
this property does not hold, many things can go wrong. For instance, programs
that create binaries by compiling just the files that have been updated after the
last compilation, such as the popular Unix make program, may give erroneous
results if files are timestamped inconsistently.

In another example, assume we want to measure the message delivery delay
associated with a given link between sites A and B. This duration corresponds
to the interval between the send request and the delivery notification instants, in
a conceptual timeline. In other words, we want to be able to measure distributed
durations, that is, durations whose time chain links may develop across more
than one site.

In our third example, we want to measure the round-trip delay between A
and B (ever tried the Unix ping command?). A request-reply message exchange
is performed and the time elapsed between the sending of the request and the
reception of the reply is measured on the sender's site. This duration has a
particular nature: it is a closed-chain or round-trip distributed duration, that
is, its time chain starts and ends at the same site, after traversing other sites.

These examples require the existence of a timeline on which the relevant
events and durations are mapped. But which timeline? A's? B's? No, it has
to be a global timeline, a timeline that any event at any site can be mapped
on. This notion of system-wide global time implements the abstraction of a
universal time, the same everywhere in the system, also called newtonian time,
and is currently implemented through a global clock, a clock that provides the
same time to all participants in a distributed system.

This may prompt another question: Which global time? Lisboa's? New
York's? Tokyo's? We tend to assume that the timestamp of the file update
can be related to the time in our watch. But can we? The world is an intricate
mesh of interdependent systems, human- and computer-based, and instead of

Exhibit 2026 Page 56

38 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

a single global clock, there are multiple clocks, some of them global only inside
their subsystem, that is, global internal time references. In order to be able to
coordinate these several players, not only computer systems, but also human's
watches and clocks allover the world, a precious artifact was created, even be
fore computers: absolute time. Absolute time references are universally agreed
standards, made available as sources of external time to which any clock and
any internal global clock can synchronize. Only if this is done can we reply to
the question made in the beginning of the paragraph.

2.5.2 Local Clocks

The most common way to provide a source of time in a process is to use a local
physical clock (pc). The clock at a correct process k can then be viewed as im
plementing, in hardware, an increasing (monotonic) discrete function PCk that
maps real time t into a clock time pCk(t). In other words, a device that materi
alizes the timeline. Local physical clocks are typically based on oscillators such
as quartz and are imperfect for two reasons that portray their main character
istics, namely their granularity (g) and their rate of drift (p), described with
more detail in Table 2.1.

Table 2.1. Properties of a Physical Clock

• Physical Clock Granularity - physical clocks are granular, that is, they
tick advancing a unit at each tick ttk, which corresponds to a discrete amount
of time g, the granularity of the clock

• Physical Clock Rate - physical clocks drift from real time, that is, there is
a positive constant pp, the rate of drift, which depends not only on the quality
of the clock but also on environmental conditions such as temperature, such
that the rate of advance of the clock is not exactly real time, but rather

o< 1 - P < pCk(ttk+l) - pCk(ttk) < 1 + P for 0 ~ ttk < ttk+l
- p- 9 - P

Local clocks can be used to timestamp local events and measure local dura
tions. The error caused by drift is normally insignificant for small durations.
Computer clock drift rates are normally around several parts per million (ppm),
that is, they can drift several microseconds per second (pp ~ 10-5). It is also
common to use a local clock as a timer, to set timeouts. Timeouts play an
important role in send-acknowledgement protocols, since a network error is as
sumed if an acknowledgment is not received within a specified period of time.

Exhibit 2026 Page 57

DISTRIBUTED SYSTEM PARADIGMS 39

Timeouts prevent the sender from waiting indefinitely and trigger a retrans
mission, an abort, or some other corrective measure.

Local clocks can also be used to measure round-trip distributed durations. For
example, round-trip communication delays between the local site and another
site and back. Generically, a locally measured duration between events a and b,
t(b) > t(a), given timestamps Ta and Tb from a clock of granularity g, ignoring
p, is given by:

Tb-Ta=t(b)-t(a)±c forO:::;c:::;g

2.5.3 Global Clocks

A global clock in a distributed system is built by synchronizing all local clocks
to the same initial value. More appropriately, what is done is create from the
physical clock at each process p, a virtual clock (vcp). The initial value of
the virtual clocks is set such that for all p, VCp(tinit) are as close as possible.
Since physical hardware clocks can be permanently drifting from each other,
some effort must be made to re-synchronize the clocks periodically. Typical
rates of drift of PP ~ 10-5 seem very small, but note that they can make the
accumulated error of a clock after 60 minutes exceed 30 milliseconds. In essence,
what is done is to bring them back again as close as possible. Both the initial
synchronization and the periodical re-synchronization of the local virtual clocks
are made by a clock synchronization algorithm (see Clock Synchronization in
Section 12.8). The set of virtual clocks under the control of the algorithm forms
a global clock, whose properties, given in Table 2.2, are maintained over time.

Uv

P n
ext r' • . . :1::110:1:

':j:1j:~:1~:: ~ii!i!iiii: ..:.:.:.:.:
P

1

l~l~l~l:l':ral P2 -++-::::_.10+\+-::----:+-H:::.....:~::::----:~ir·:ll:~·:i:-

tEll P3 -~:;:;~:;:;~:;:.~----~·:~·:·.~··:·4:iI...----~·:·~:·:·~:·:..ill--

GLOBAL TICK: r··!······· n~r: IWi:1
j- '! ~

9y : 1t
v

I

•II

Figure 2.7. Properties of a Global Clock

Figure 2.7 depicts the main operational parameters of a global clock system:
granularity (gv), precision Crrv), and accuracy ((Xv). Nate that precision can
be seen as the maximum deviation among equivalent clock ticks at each clock
(see for example tick i + 2). An interesting consequence of the definitions of

Exhibit 2026 Page 58

40 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 2.2. Properties of a Global Clock

• Convergence (8v) - characterizes how close virtual clocks are to each other
immediately after the synchronization algorithm terminates. It determines
how good the algorithm is:

• Precision (1rv) - characterizes how closely virtual clocks remain synchro
nized to each other at any time. Within limits, this is user defined, but: it
depends on how fast the clocks drift; it cannot be better than convergence; it
must not imply too many re-synchronizations. It is defined by:

• Rate (Pv) - is the instantaneous rate of drift of virtual clocks. Defined by:

1 - P < VCk (ttk+l) - VCk (ttk) < 1 + P for 0::; ttk < ttk+lv _ 9 _ v

• Envelope Rate (pQ) - the long-term, or average rate of drift, defined by:

1 - < VCk (t) - VCk (0) < 1 + ~or a ::; tPo. - t - pQ, 11

• Accuracy «(Xv) - characterizes how closely virtual clocks are synchronized
to an absolute real time reference, provided externally. It is defined by:

precision and accuracy is that in a set of clocks with accuracy a v , precision is
at least as good as 6v == 2av .

Global clocks are required to solve distributed event timestamping, and dis
tributed duration measurement. Recall that these are the remaining of the
measurement problems we enumerated. Generically, a distributed duration be
tween events a and b, t(b) > t(a), given timestamps Ta and Tb measured by a
global clock of granularity g and precision 1f, ignoring p, is given by:

Tb-Ta==t(b)-t(a)±c for O::;c::;1f+g

Accuracy makes sense only when there is synchronization to an external
source of absolute time that represents real time, called external synchroniza
tion as opposed to internal synchronization, where clocks only achieve precision

Exhibit 2026 Page 59

DISTRIBUTED SYSTEM PARADIGMS 41

in terms of internal time. In Figure 2.7 the external source is represented by
Pext with a receiver, for example of GPS (see below). Obviously, the external
time reference must be taken into account at each re-synchronization as the
time to synchronize from.

The main international time standards are the Universal Time Coordinated,
UTC, a political time reference carrying all the properties of date and time
as we use them currently, such as leap second insertion, leap days, etc., and
the Temps Atomic International, TAl, a chronoscopic reference, that is, a
monotonically increasing function at a constant rate, without any discontinuity.
TAl is generated from atomic cesium clocks, the devices that currently provide
the most accurate and stable abstraction of the 'second'. Several institutions
have these clocks, and there are several time source methods. We will just
address what we consider to be the simplest and most effective way to get TAl
or UTC (it can be derived from TAl): a GPS satellite signal.

The NavStar Global Positioning System, GPS (Parkinson and Gilbert, 1983),
is a network of 21 satellites covering the earth surface in a very complete way,
so that normally at least 4 of them are above the horizon. Although used
mainly for positioning and navigation, the feature of interest here is that they
provide an extremely good source of absolute time from their cesium atomic
clocks, with a stability in the order of Pg ~ 10-14 , that is, 1 s in 3 000 000
years. Satellite clocks are monitored and corrected periodically in conditions
which ensure an accuracy on ground of o.g :S lOOns for the GPS-receiver clocks,
which may be installed in computers. GPS receivers are currently cheap, and
the availability of signal reception is very high. They offer several interfaces,
and most commercial devices provide UTC. The only caveat is that the GPS
receiver antenna must be under the light cone of the satellites it is receiving
from, that is, the antenna must be placed externally, and reasonably clear of
building walls.

2.5.4 Round-trip duration measurement

With additional algorithmic support, certain distributed durations can be mea
sured without the explicit existence of global clocks, but just assuming that
local clocks have the bounded rate of drift property. Although the notion of
using time chains to prove or extract time-domain properties has been around
in several works, this paradigm was first formalized and later refined by Flaviu
Cristian and his team (Cristian, 1989; Fetzer and Cristian, 1996) in the context
of time and clocks. The basic principle is illustrated in Figure 2.8a. When
a message m1 is sent from p to q, its delivery delay can be measured with a
bounded and known error, provided that there is a sufficiently fresh previous
message (ma) from q to p (shown dashed in the figure) that closes the time chain
between p and q. Why fresh? Because the error caused by the drift of each of
the clocks at p and q is proportional to the magnitude of the rate of drift itself
but most importantly, to the separation between both messages. How does it
work? Observe Figure 2.8a (recall that we want to measure tD(m1)): q knows
Tq1 - Tqa by its clock. If it is told about Tp1 - Tpa (sent in m1), then all it

Exhibit 2026 Page 60

42 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

needs to know is tD(mO). This is impossible, but a sure lower bound is TDmin.
So one can define basic algorithmic guidelines to be followed in any protocol or
application using this method:

• ensure that there are regular messages exchanged between the relevant sites;

• ensure that timestamps of message transmissions and deliveries are are also
exchanged between the relevant sites.

The delay of ml, tD(ml) in Figure 2.8a, is measured by the following expres
sion, which ignores rate of drift for the sake of simplicity. Since the dominant
term here is the message delivery variance, we also ignore g:

(a)

!to(m,}?!.
TK""=

q1

..
~r1p -"---~~-e"'1"1--.,----,...----,.-

II I
/ I I

1 I I
1 I I
j I I

I I I
l I I

11 I
I I I
11 I
If I

q_""'O-_...l-_~_-----

?
(b)

Figure 2.8. Round-trip Duration Measurement: (a) Message delay; (b) Distributed Du
ration

The method we describe next consists of a refinement of the round-trip dura
tion measurement paradigm, whereby sites send or use extra messages to create
round-trip loops, closing otherwise open-loop distributed time chains, so that
the latter can be measured. Suppose we want to measure the duration between
distributed events el and e2 shown in Figure 2.8b. The specific guideline we
need to follow is:

• send a message immediately after the start and end events, el and e2 (for
simplicity we assume t(el) == t(ml) and the same for (e2' m2))

Participant p logs the timestamp of el, T1 == c(t(el)). Observe that q, after
receiving m2, can compute its delivery delay d1 . When event e2 takes place,
timestamped T2 , after local duration dx measured since the timestamp of de
livery of ml, (T(ml))' a message is immediately sent back to p. The latter,
after receiving m2, timestamps that moment as T(m2) == c(t(m2)). Participant
p also computes the delay of m2, as d2. The duration between events el and
e2 can be computed by both p and q as follows:

• at p: d12 == T(m2) - T1 - d2

Exhibit 2026 Page 61

DISTRIBUTED SYSTEM PARADIGMS 43

• at q: d12 == d1 + T2 - T(ml) == -(T(ml) - T2 - d1)

Round-trip measurement with local clocks can measure distributed durations.
Generically, a distributed duration between events el and e2, t(e2) > t(el),
measured by round-trip at the site where the interval starts, ignoring p and
g, and considering a message delivery delay variance of r == T Dmax - TDmin,

is given by the following expression (ml and m2 are respectively the start-of
interval and the end-of-interval messages):

The error of this method is not negligible compared to using a high qual
ity global clock. Besides the drift factor which we ignored, note that in the
basic message delay measurement mechanism (Figure 2.8a), short of knowing
the delay of ma, we stipulated its lowest bound, TDmin. The difference be
tween TDmin and the current delay of ma accounts for an additional error. The
method has the additional disadvantage of not being transparent to user algo
rithms or applications. On the other hand, is does without having to explicitly
establish a global clock in the system. If the interval is long enough that the
drift is no longer negligible, then even global internally synchronized clocks are
not enough, they have to be externally synchronized.

2.6 SYNCHRONY

The terms "synchronous" and "asynchronous" are used in the context of dis
tributed systems with many different meanings. In the context of send-receive
and request-reply interfaces, which we have already discussed in this chapter,
they are often used to denote blocking (synchronous) and non-blocking (asyn
chronous) primitives. In groupware systems, the terms are used to distinguish
respectively between same-time and different-time interactions, that is, when
all participant interact simultaneously, or better said, synchronized, or when
the participants interact in a deferred way, or non-synchronized. In digital
systems and many systems that extend or mimic hardware implementations,
synchronous usually means clock-driven.

In this section we focus on yet another meaning of synchrony, the one com
monly used by the distributed systems community. In this context synchrony
refers to the nature of executions that assume worst-case times for local and
distributed actions.

2.6.1 Synchronism

We say that an algorithm or protocol is synchronous if it is possible to bound its
action delays (processing and network). Synchronism properties are important
because they allow decisions to be taken based on the passage of time. For
instance, if a component is expecting a message at a given moment, and the
message has not arrived past that moment, it can be immediately assumed that
some fault has occurred. This cannot be done in asynchronous settings, where

Exhibit 2026 Page 62

44 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

the passage of time provides no information, since participants and networks
can be arbitrarily slow.

Synchronism can assume different forms that we enumerate from weaker to
stronger: bounds do not exist (asynchronous); bounds exist but are not known,
or they exist and are known but only hold at times (partially synchronous);
bounds exist and are known (synchronous). The latter prefigures the syn
chronous framework in systems design. Synchronism is expressed in terms of
timeliness properties which, as we studied in Section 1.4, specify behavior with
relation to time constraints. For the sake of example, a common definition of
synchronism for message delivery is:

Time-Bounded Delivery - Any message delivered is delivered within
a known bound TDmax from the time of send request

2.6.2 Steadiness and Tightness

There are grades of synchronism in distributed algorithms and protocols. Con
sider a distributed execution that starts in one site and ends in the same or
another site. How synchronous is it? An obvious example of such an execution
is message delivery. In consequence, let us define the following:

Delivery Time (tb(m)) - interval between the send(m) event of mes
sagem, and the deliverp(m) event atp, i.e. tb(m) == t(deliverp(m))
t(send(m))

How synchronous a protocol is can be assessed by two metrics: how steady
(constant) is the delivery delay as seen by one participant; and how tight (si
multaneous) is a delivery to multiple participants.

Steadiness (a) - is the greatest difference between the maximum (Tbmax)
and minimum (Tbmin) delivery times observed at any participant p:
a == maxp (Tbmax - Tbmin)

Tightness (T) - is the greatest difference, for any messages m, between
tb(m) and tb(m), for any p, q: T == maxm,p,q (tb(m) - tb(m))

These definitions are exemplified in Figure 2.9. Delivery time at p is shown
in Figure 2.9a. Steadiness is shown in Figure 2.9b, where message x yields the
maximum delay and y the minimum delay, both at p. Tightness, in the same
figure, is shown with the execution of y.

2.6.3 Achieving Synchrony

If synchronism is important, why not just make all systems synchronous? The
problem is that synchrony is very difficult to achieve, as it is often in con
flict with other important goals: resource sharing, scale, openess, and inter
activity. Consider for instance the important resource that constitutes the
network. Most networks have shared medium, and their operation is highly
unpredictable.

Exhibit 2026 Page 63

DISTRIBUTED SYSTEM PARADIGMS 45

p y

s
: :

!-toS(m) ----.j
j. tDP(m)--....I~

(a)

s

.-.-,.-"",-

---------t----
~.~..::x __:~~---'--""~~:.:~ ----- .-:---- ------------1----------_

: :

! : TPomax .;

1+-TP ~///////////h cr ~////////)
Omm

(b)

Figure 2.9. Synchronism Metrics: (a) Delivery Time (tD); (b) Steadiness (0"), Tightness
(7)

Achieving synchrony in a system means securing timeliness properties, that
is, the capacity to execute actions tied to pre-specified time instants or intervals,
specified by constructs such as "at", "within", "until", "every", or "after".
There are a number of informal ways of specifying such behaviors: "task T
must execute with a period of Tp"; "any message is delivered within a delay
Td"; "any transaction must complete within Tt from the start"; "action A
must be triggered at clock time Tc"; "action B must be triggered after delay
Td from now". This implies both infrastructure and algorithmics.

It is not enough to wish for a process to execute an action in "lOOms from
now". There has to be enough processing power, and the process has to be
scheduled in time. It is pointless to demand a packet delivery delay of 100J-lS, if
the sheer transmission delay of that packet amounts to 1ms for that network's
throughput, or if packets are frequently lost in transit. Infrastructure is neces
sary to ensure at the lower levels that the system has some self-determinacy with
regard to time. For example: having network packets reach their destinations
within some delay; scheduling processes when needed; providing clocks with
the necessary granularity, precision and accuracy; reading clocks in a timely
manner. These issues pertain technically to real-time system operation, and
will be addressed in the Real-Time Part of this book.

However, infrastructure alone is not enough to achieve synchrony. For ex
ample, a LAN does not achieve bounded delivery delay per see In a Token-ring
LAN, while the token rotates, it assesses which is the highest priority frame
waiting, and schedules transmission of that frame for the next rotation. This
seems a very elegant native mechanism to achieve bounded delay for priority
frames. However, if a high priority request arrives just after a very long low
priority frame starts to be transmitted, it will have to wait a long time before
the low priority transmission ends, perhaps violating the desired time bound
edness. Some scheduling and/or load control algorithmics must be applied to
solve this problem. A real-time LAN has tight transmission, because frames

Exhibit 2026 Page 64

46 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

arrive almost at the same time everywhere, but it is fairly unsteady, since frame
delays vary with load. And when faults occur, even tightness is lost. Clock
driven algorithms (Le., using global clocks) and error recovery mechanisms are
important contributors to achieving steady and tight transmission.

2.6.4 Implementing Steadiness and Tightness

Recall that steadiness, defined for message delivery, measures the variance of
the relevant delay observed by each participant. Recall also that tightness, in
the same context, measures the simultaneity of delivery instants at the several
recipients of a multicasted message.

The simplest real-time protocols have a timer-driven structure, that is, with
out global clocks, at most using timers. Delivery is potentially unsteady and
untight, but still it can be time-bounded delivery as we defined it earlier. Fig
ure 2.10 shows a systematic method for achieving synchronous message deliv
ery with timer-driven protocols. The basic assumptions are: maximum and
minimum frame delivery latencies of <5mx and <5mn ; a maximum number of con
secutive transmission errors (omissions) k; a retransmission timeout of Ttout ;

and n participants. The approach uses closed time chains to enforce timeliness
and detect errors, and consists of:

• structuring the protocol in a bounded number p of clearly delimited phases,
for modularity (the number of phases depends on the protocol reliability and
order properties, one phase being enough for reliable delivery);

• structuring each phase as a bounded series of up to k + 1 round-trip (send
ack) transmission rounds, to recover from omission errors (the maximum
number of rounds depends on the desired error resilience; in absence of
errors, one round is enough).

Each protocol execution can be represented by a chain in time, bounded
to known values TDmax and TDmin. The maximum message delivery occurs
when the network is slowest and faults occur in all round-trip transmissions
of all phases, yielding the following simplified expression for an upper bound:
T Dmax ~ p(k + l)Ttout . The minimum message delivery delivery occurs when
the network is fastest and no faults occur, each phase being implemented by
one round of one transmission plus n - 1 replies of minimum delay (the last
phase delivers the message), yielding the following simplified expression for a
lower bound: T Dmin ~ (p - l)n <5mn + <5mn .

Steadier and tighter protocols can be built with the help of good global
clocks. For that reason, these protocols are also called clock-driven. One such
method is depicted in Figure 2.11. The basic assumptions are: maximum frame
delivery latencies of <5mx ; reliable frame channels; global time from synchronized
clocks with granularity 9 and precision 1r. The approach relies on the existence
of a reliable transport of low-level frames, and of a global clock both to times
tamp frames and to coordinate message delivery. It consists of the following
steps:

• sender timestamps m to be sent with the value of its local clock (c(m));

Exhibit 2026 Page 65

[k=1]

DISTRIBUTED SYSTEM PARADIGMS 47

Ttout

P1

P2

P3 ---~--+-------Jt-----==~I-------+-""""-

P4 -------i------~ ----~--

PHASE 1 PHASE 2
----. • Delivered

Figure 2.10. Unsteady and Untight Synchronous Protocol

• m is reliably transmitted and arrives everywhere by <5mx ;

• recipients keep m awaiting, and all deliver m at TD(m) == c(m)+~, measured
by their clocks.

The waiting time is a system-wide constant. For that reason, the protocols
of this class are also called ~-protocols. The value of ~ depends on the uses of
the protocol, for example for ordering (see Section 2.7). Note that the actual
message delivery latency is fairly constant, lying somewhere in the interval
[~; ~ - 1r - g]. That is, steadiness is (J' == 1r + g. Furthermore, tightness is
also very good, since all recipients deliver each message when their clocks have
the same value TD(m), which by definition of precision implies that tightness
is T == 1r, as shown in the figure.

send(m,cm)

\
P1

P2

P3
----~-------~:-----~-----------~

P4 -_~.~~_-~~_---_--__:::::~::: ~A':A_-:~_,--_---_-'-__<_.::::__· .. _

t+~ tl

Figure 2.11. Steady and Tight ~-protocol

With a global clock it is straightforward to build a Time Division Multi
ple Access protocol (TDMA) in a distributed system. Local clocks schedule
transmission exactly during that site's slot, and message dissemination periods

Exhibit 2026 Page 66

48 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

occur in regular succession, also called in a time-triggered way, meaning that
it is triggered at pre-defined instants from a clock, as shown in Figure 2.12.
The basic assumptions are: n participants; maximum frame delivery latencies
of 8mx ; transmission period duration of T; reliable frame channels; global time
from synchronized clocks with granularity 9 and precision 1f. The approach re
lies on the existence of a reliable transport of low-level frames, and of a global
clock to coordinate message delivery. It consists of the following steps:

• the timeline is organized as a lattice divided in slots longer than 8mx ;

• each period over the lattice occupies n slots, as many as the participants;

• sites are ranked 1 to n and in a period, each site transmits in its slot;

• at the beginning of each slot (tick of the lattice), one site transmits its frame
to all others, of maximum duration 8mx ;

• all frames from all participants are processed at the end of each period.

SYSTEM PERIOD.r.·-·-·---·-ri----------·;··············.r
-'~~ /" "r;~"~ ~ SlotTime~

IE .1

~~~~:~~~~~~~j:«-,-~~~~"-'-~~:~~~~~~/-._/-._!~~~~~~~;-._~-._'~:::~~~~~~
... \',- ,/../~" .../'.'.:.~:///

~-~-~\-\~.-_\_\-~-:-~<-~-~-.-/~/--~h~:-.-/~.-· .. ----
p4 ------\~::~.~."-" 4 ··_····._4- .........-L-~~~~·-·····-····-.. _

~

Figure 2.12. Steady and Tight TDMA Protocol

Macroscopically, since a transmission round is triggered at the beginning of
a period and messages take effect at the end of that period, it is as if all sites
sent their frames in the beginning of a period and delivered them at the end
of the period, by their local clocks. This analysis yields a stable delivery delay,
approximately of one period of the lattice, T, with an error given by steadiness,
of a == 1f. Furthermore, tightness is also very good, since all recipients deliver
each message when their clocks have the same value, the end of the period,
yielding a tightness of T == 1f.

Microscopically, the timing error of each site in entering the medium may
be 1f. In order not to overrun the next slot, there must be a guard interval of
at least 1f in each slot time, as shown in Figure 2.12 (see the transmission of
PI). Then, the period T can be extracted from the expression T 2: n(8mx +1f).

Exhibit 2026 Page 67



DISTRIBUTED SYSTEM PARADIGMS 49

2.7 ORDERING

The notion of order of events appears quite naturally when describing dis
tributed computations. As a matter of fact, it is a fundamental paradigm. To
understand why, recall the timelines we discussed back in Section 2.5. Now
imagine you take the magnitudes of time out of the timeline. What remains is
order, a local sequence of events, where each one happens before the other. For
instance, when describing the send-receive protocol we have mentioned the use
of FIFO order, which ensures that messages are received at the sending site in
the order the send requests happened in the sending site. In this section we
discuss the role of order and mechanisms that can be used to order events and
messages in distributed systems.

2.7.1 The Role of Order

In many distributed applications there is a need to order events. Ordering
assumes two facets. The first one has to do with determining a posteriori the
order in which events happened. This allows us to understand which events
occurred first and to assume or exclude cause-effect relations among them.
Note that our understanding about the universe, and in consequence about
computational systems, wanders about this fundamental relation: message A
"caused" the sending of message B; command C "caused" the execution of
processing step S, and so forth. A typical computational application of a
posteriori ordering is the following: if we log the order by which events occurred,
we can replay a non-deterministic computation. This feature is precious in
distributed debugging. The second use of ordering is to ensure that events take
place according to some pre-defined ordering policy, which must be enforced a
priori. This is achieved by ordered delivery protocols. For instance, in order to
ensure FIFO delivery, one needs to be able to order messages before delivering
them, in the same order they were sent, despite delays or losses.

The most intuitive notion of order is physical order, i.e., the order by which
events occur in a real time timeline as seen by an omniscient observer. There
is a strong reason for that: for event a to cause event b, it must take place
before b. In consequence, we say physical order is a potential causal order, Le.,
it orders all events that may be causally related. This order can be captured
if all events are timestamped with the value of a global clock. However, quite
a few events will be ordered unnecessarily with this approach.

A tighter potential causal relation is precedence, or "happened before", in
troduced in (Lamport, 1978b). Observe Figure 2.13a. It is clear that event a
precedes event b, since they occur in sequence in the same process. This is the
first condition defining precedence, also denoted as (---t). Now note that event
c took place before event e in physical order. However, does it precede e? No,
because it could not 'cause' e. In contrast, if c is the sending of a message,
and d its reception at another site, then c ---t d. This is the second condition
for precedence. The third is the transitive closure of ---t. Events that do not

Exhibit 2026 Page 68



50 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

depend on each other are said to be concurrent, and they can be ordered either
way.

b
Light

a cone of
P1 • • the future

C Light cone
P2

~d
of the

past

P3 • •
(a) (b)

Figure 2.13. Precedence: (a) Space-time View; (b) Relativistic Light Cone

This example shows that not all messages have to be ordered by the physical
order of the send requests. As a matter of fact, if m is the fastest possible trans
mission, then d is the earliest event that can be caused by c, because no other
information departing from P2 could reach P3 earlier. That is, C only precedes
d because they are time-like separated by more than the time it takes to over
come their space-like separation2 . Out of curiosity, precedence in distributed
systems is, on a smaller scale, among the phenomena explained by the Relativ
ity Theory, because of the significant duration of message propagation vis-a-vis
duration of local executions. In Figure 2.13b we see a three-dimensional space
time diagram where a occupies the vertex of an inverted light cone disposed
along the time axis. The cone delimits the fastest speed of propagation. For a
to be said to precede b, b must be inside the cone (Hawking, 1988).

2.7.2 FIFO Order

First-In-First-Out (FIFO) order reflects the potential causal order generated
by a single process.

FIFO Order - Any two messages sent by the same participant, and
delivered to any participant, are delivered in the order sent

Assume that channels are unordered. FIFO order can be recovered from
arriving messages simply by timestamping each message sent with a local se
quence number. A FIFO ordering can thus be implemented by making the
recipient deliver the messages by the order of their sequence numbers. In or-

2 "Time-like" is measured in the time coordinate, "space-like" concerns the space coordinates,
in Relativity jargon.

Exhibit 2026 Page 69



DISTRIBUTED SYSTEM PARADIGMS 51

der to do so, the recipient may have to temporarily buffer messages that are
received out-of-order, and/or request the retransmission of missing messages.

Consider the following example depicted in Figure 2.14a: Paul at site r is
solving the first phase of a problem by executing three modules in sequence.
He disseminates the intermediate results through messages ml, m2, and m3,
to Mary and John, respectively at sand q, who perform the second phase
operations, which depend on the respective order. John has just been delivered
message ml at q, with sequence number 10, and the protocol has just received
message m3 with sequence number 12. The protocol simply waits for message
m2 with number 11, or requests its retransmission if lost, and only then it
delivers messages m2 and m3 in that sequence.

When is FIFO insufficient? Observe the example in Figure 2.14b: the prob
lem was complex, so Paul decided to distribute his part of the job, asking Mary
to perform step 2 after he performed step 1, which he would obviously signal
with mI. Step 2 is executed by Mary, resident at site s, only after ml arrives,
after which message m2 leaves s. This looks correct, the problem is that the
FIFO protocol ignores any relation between sites rand s, and since ml got a
bit delayed, it will be delivered to John at q after m2. Since John is waiting
for the messages in the order they were issued to perform the second phase,
this contradicts the application semantics. What went wrong is that FIFO
cannot be used if competing senders to a site also exchange messages among
themselves.

q-----
John

q----

Mary

s s----..ilIoo-....----~-

Paul

r r~---------+----~-

(a) (b)

Figure 2.14. FIFO Order: (a) An Example; (b) FIFO Insufficient

2.7.3 Causal Order

Consider the scenario of Figure 2.15a: the problem with FIFO order that we
have just analyzed is solved. The protocol used secures potential causality
across sites. It ensures that messages obey causal delivery or causal order.

Exhibit 2026 Page 70



52 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Causal Delivery - For any two messages ml, m2 sent by p, resp q, to
the same destination participant r, if sendp (ml) --t sendq (m2) then
deliverr(ml) --+ deliverr(m2), Le. ml is delivered to r before m2

In consequence, delivery of m2 is delayed until ml arrives (we can see the
dashed causal chain). How is causal order implemented? When participants
communicate solely by exchanging messages, there are simpler and more ac
curate ways of capturing potential causality and implementing causal delivery
than by using physical clocks. They consist of tracing precedence in message
interchanges, since they are the only way of developing causal relations among
sites. This class of protocols secures what we may call logical order. As said be
fore, this order is potential because it captures sequences that may be causally
related.

Logical Order - A message ml logically precedes (~) m2, iff: ml is
sent before m2, by the same participant or ml is delivered to the

sender of m2 before it sends m2 or there exists m3 s.t. ml ~ m3 and
l

m3 --+ m2

q-------......

r .... -+-_----,~ ---

s ---.~---..,...---

(a)

John 1W=2
q....;.-------......,---..,.

Paul r

Mary
s ........----------~~~- ...

(b)

Figure 2.15. Causal Order: (a) An Example; (b) Causal Insufficient

The reader might question the utility of causal order protocols, since most
applications today do not use them and still work correctly. The fact is that the
semantics of most applications is client-server or producer-consumer with little
or no peer interactions at all, in which case FIFO order is enough. However,
to cite just a few useful cases, there are many emerging applications oriented
to peer interactions, such as teleconferencing and interactive multimedia, and
some system support packages for distributed debugging and distributed shared
memory.

Still, causal order does not ensure correct behavior in all situations. The
work lead by Paul implies some computations, whose result is accumulated in
working variable W. W is updated by comparing its previous state to each
new result, taking the greatest and adding 3. There have been some errors in
previous work, so Paul decides that all steps will be done in parallel by him,
Mary and John, and the results disseminated to all, so that they maintain a

Exhibit 2026 Page 71



DISTRIBUTED SYSTEM PARADIGMS 53

replica of Wand compare the results. Anyone finishing a step simply posts a
result to all including himself, in causal order. If everybody is doing the same
steps, it is expected for W to be the same everywhere. Let us study the run in
Figure 2.15b, considering an initial value of W == 2.

Paul at r and Mary at s disseminate their results. Since these two requests
are concurrent, the causal order protocol makes no effort to order them. In
consequence, m a == (1) is received first at r, the previous value W == 2 is kept,
and W evaluates to 5. Later, it is incremented to 8 after mb == (3) is received.
At q and s however, request mb is received first: W evaluates to 6, being later
incremented to 9, after reception of mao This violates Paul's assumption of a
replicated computation at all sites. Of course, subsequent steps depending on
the value of W will not be consistent.

2.7.4 Total Order

Causal order lets concurrent events happen without ordering them. This is
usually a positive feature, because it allows parallel computations to progress
without unnecessary constraints. However, the last example of the previous
section has shown that in some cases it is useful to order concurrent events.
Figure 2.16 points to the solution of the problem that we have identified in
Figure 2.15b, by using total order, which can be defined as follows:

Total Order - Any two messages delivered to any pair of participants
are delivered in the same order to both participants

John
q -------..,....----.....

Paul

r

Mary
s----~-~.........~--.......-::io)

Figure 2.16. Total Order

The need for total order is felt in scenarios such as: achieving determinism of
replicated executions in different processes of a distributed system; or ensuring
that different participants get the same perception of system evolution and state
(same messages in the same order). The latter has also been called common
knowledge (Halpern and Moses, 1987). The kind of replicated server executing
well-defined commands used in the example prefigures a strategy known as
the replicated state-machine approach (see State Machine in Chapter 7). A
precondition for all state-machine replicas to behave identically is to execute the
same command inputs in the same order. In consequence, a protocol providing

Exhibit 2026 Page 72



54 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

total order may be a helpful device. However, note that total order is orthogonal
to causal order, Le., there may exist combinations of the two paradigms, such
as FIFO, causal or non-causal total order protocols.

2.7.5 Temporal Order

Logical order is based on a simple observation: if participants only exchange
information by sending and receiving messages, they can only define causal
ity relations via those messages. However, participants can interact without
necessarily exchanging messages through a given logical order protocol:

• by exchanging messages via a protocol other than the ordering protocol;

• by interacting via the outside world.

In both cases there are hidden channels, that is, information flowing between
participants which is not controlled by the ordering discipline, so to speak,
taking place in a clandestine manner. These messages subvert causal delivery,
since they are not subjected to the ordering discipline (Verissimo, 1994). The
first anomaly is well-known, and its most common example is the mixed use of
a protocol for logical order and another protocol, for example, low-level O.S.
protocols, such as RPC, distributed file system, or shared memory protocols.
The problem is exemplified in figure 2.17a: m2 is issued because of the RPC that
the top sender executed, so in fact it is preceded by ml (note the dashed causal
chain); nevertheless, for the protocol they are concurrent and m2 happens to
be delivered before ml; m3 may carry the undesirable effects of this order
violation.

(a)

Figure 2.17. Hidden Channel Examples: (a) Other Protocols; (b) Physical Feedback

Less known are hidden channels developed by means of feedback paths
through the environment. This can happen with any device, but is common
in process control. Again, logical order implementations cannot possibly know
about these paths. Figure 2.17b presents such an example. A physical process
PHY is under the control of CEo SUP is a supervision unit which detects anoma-

Exhibit 2026 Page 73



DISTRIBUTED SYSTEM PARADIGMS 55

lies and handles alarms. CE issues an output command message ml to valve
controller RI , copied to SUP. RI issues the physical actuation command (CI).
As a consequence of feedback through PHY, a fluid detection sensor notifies
(nl) its controller R2, which signals the fact to CE and SUP through m2. In
the example, ml arrives later than m2 to SUP, because the protocol does not
know about CI or nl. If you follow the dashed causal chain, it is obvious that
there is a causality violation. The consequence in this application is that Sup
issues a leakage! alarm, whereas the system is functioning perfectly.

How is this problem solved? Inasmuch as it is undesirable to have a discrim
ination of physical order for events separated by unnecessarily small intervals,
it should be possible to evaluate the minimum interval that is relevant to define
potential causality. In a distributed computer system or in a physical process,
it takes a finite amount of time for an input event, (e.g., deliver) to cause an
output event (e.g., send). For example, the time for an information to travel
from one site to the other; the execution time of a computer process; the feed
back time of a control loop in a physical process. Supposing Jt is that minimum
time for a given system, we can call it Jt-precedence, to mean that two events
have a potential causal relation only if they are separated by more than Jt .
This definition is more accurate than a mere physical order. As a result, we
can formulate a useful definition of temporal order:

Temporal Order - A message ml is said to temporally precede (~)
m2 iff: ml is sent before m2 by more than Jt , i.e.,
t(send(m2)) - t(send(ml)) > Jt

According to the definition of Jt-precedence and to the definition above, a
protocol delivering messages in temporal order secures causal delivery even if
there are hidden channels, which is not guaranteed by logical order protocols.

2.7.6 Ordering Algorithms

There are many ordering algorithms both to enforce causal order and to enforce
total order. We will address both types of protocols in the following sections.

Causal Order algorithms The purpose of a causal order algorithm is to
ensure that messages are delivered to the application in ways that respect
causal order, i.e., if ml and m2 are to be delivered to the same process, and
ml --* m2, then m2 is delivered after mI. One of the most intuitive ways of
enforcing causal order is to make every message carry its own causal past. In
order to do so, we need to keep at each process p a list of messages that we will
call pastp . This list is used as follows:

• When a message is sent, it carries the past of its sender in a control field.
Note that this field can be much larger than the data field itself, since it may
contain several messages.

• After sending a message m, the sender adds m to its past list.

Exhibit 2026 Page 74



56 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

• When a message m is received, its pastm field is checked. Messages in pastm
that have not yet been delivered, are delivered to the application. These
messages are added to the past list of the recipient. Then, the received
message m itself is delivered to the application. Also, the message is added
to the past of the recipient.

It can be proved that if ml --t m2 then ml is in the past list of the sender
of m2, and thus it will be delivered before m2 according to the rules described
before. A variation of this protocol was actually used in one of the earlier
implementations of causal order, by Birman and Joseph (Birman and Joseph,
1987). It exhibits the very positive feature of never delaying message delivery.
Since a message m carries its own past, messages in m's past can be delivered
as soon as m is received. The negative side is, of course, the very large size
of the control field. Besides, the simple protocol as described is impractical
because the past list (and fields) grows indefinitely. It has to be augmented
with a fundamental mechanism of any practical causal order protocol: some
way to purge obsolete information from the past. For instance, a message that
has been delivered to all intended recipients can be discarded.

In today's networks, where message omissions are infrequent, to send the
whole message in the past field is an overkill. It is very likely that in most of
the runs all messages in pastm will have been received and delivered when m
is received. One way to reduce the size of the control information is to store
and exchange only message identifiers in past, instead of complete messages.
This approach assumes that a third-party component is responsible for provid
ing guaranteed delivery, i.e, if a message is lost it is somehow automatically
retransmitted until delivered to all intended recipients. The rules regarding
sending and receiving messages must be changed to fit this approach:

• When a message is sent, it carries the past of its sender in a control field.
Note that this field contains only message identifiers. However, it can still be
much larger than the data field itself, since it may contain many identifiers.

• After sending a message m, the sender adds m's identifier to its past list.

• When a message m is received, its pastm field is checked. If pastm contains
messages that have not been delivered yet, the message is put on hold, until
these messages arrive and are delivered.

• When all messages in pastm have been delivered, the message m is delivered
to the application. Also, the message identifier is added to the past structure
of the recipient.

Note that now messages are forced to wait until all messages in its past
are received and delivered. Note also that the approach mitigates the problem
of large control fields, but does not solve it completely, Le., we still need a
way to remove obsolete information from past. The question is: even if we
remove all obsolete information from past, what is the worst-case size of the
control structure needed to ensure causal order without enforcing additional
synchronization in the system? It can be proven that, in the general case, the
control information required has n 2 size, where n is the number of processes

Exhibit 2026 Page 75



DISTRIBUTED SYSTEM PARADIGMS 57

in the system. This means that at least one message identifier needs to be
maintained for each pair of communicating processes.

Consider a system of N processes, PI to Pn. The following method can be
used to code and store causal information. Each message is identified by the
identity of its sender and a sequence number local to each process p. This
sequence number can be seen as a local clock that counts send events; it is not
synchronized with the local clocks of other processes. Each process logs the
sequence number of the last message that it has sent to each of the remaining
processes. This information is kept in an array named SENT. For instance,
if we have four processes, and the SENT array at PI is SENTI == [0,2,4,2]'
we can infer that the last message sent by PI was message number (PI, 4) that
was sent to P3. As we have seen before, the causal past of a process is made
not only of the messages that the process has sent, but also of the causal past
of messages delivered by that process. Thus, in order to capture its own causal
past, each process has to log his own knowledge about the messages that the
other processes have sent. In other words, its own causal past is made of its own
SENT array and of an approximation of the SENT arrays of other processes.
This resulting control information is often represented as a matrix, also called a
matrix clock, where each line represents one of the SENT arrays just described.
Thus, the element MATRIXk [i, j] of the matrix keeps the sequence number of
the last message sent by process i to process j, as known by process k.

It is worth to note that even a matrix of size n 2 is an excessive amount of
control information in systems where messages are short, and can thus represent
a significant overhead. Thus, much effort has been made in order to reduce
the size of the control information that needs to be kept and exchanged. For
instance, if processes only send multicast messages (i. e., all messages are sent
to all processes), all elements in the same line of the matrix have the same
value, thus the matrix reduces to a vector of size n, called a vector clock.

Consider the example of Figure 2.I8a. When process PI sends mI its clock is
updated to [1,0,0]. Processes P2 and P3 update the same entry of their clocks
when they deliver mI. The same reasoning applies to messages m2 and m3.
Figure 2.I8b shows how the vector clocks can be used to enforce causal delivery.
Message m5 is sent by P2 after the delivery of m4, so it is timestamped with a
clock value of [2,1,1]; this means that m5 should be delivered after m2, m3 and
m4 (and, transitively, mI). Thus, if because of network delays m5 is received
before m4 at P3, its delivery is delayed until causal order can be ensured.

Another way to reduce the amount of control information is to decrease
the degree of concurrency in the system. In fact, the n2 bound only applies to
systems where we want to keep an exact track of causal dependencies, Le., where
one can always say, by comparing two matrix timestamps, if two messages are
causally related. If we are ready to accept more imprecise information, we can
reduce the size quite effectively. Consider the following scheme to implement
causal order, which only requires a single integer value to be kept and exchanged
(this idea was proposed originally by Leslie Lamport, so the logical clock is often
called a Lamport clock):

Exhibit 2026 Page 76



58 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

p1
[ij [ij

m1 [~] m4 [~
K

[ij
(1.1.1)h

p2 \~1 m5 1

(1,1,1)

[ij (2 1 1):><:::"
p3 ' ' '.,/#' ~~~~~''''

m3

(a) (b)

Figure 2.18. Vector Clocks: (a) Principle; (b) Practical Use

• Each process keeps a single integer called logical clock, or simply lclock.

• When a message is sent, it carries its sender lclock in a control field. The
lclock is incremented.

• Messages are exchanged using FIFO channels, thus two messages from the
same sender to the same destination are received in the order they were sent.

• When a message is received, it is placed in a waiting queue, ordered according
to its lclock (the sender identifier is used to order messages with the same
lclock). The message is kept in waiting state until a message with equal or
greater lclock is received from every sender in the system. By the time this
condition becomes true, because of FIFO channels, all messages with smaller
timestamp have also been received. The message becomes deliverable.

• A message can be delivered if it is in the deliverable state and it is at the
head of the waiting queue. When m is delivered, the recipient lclockp is
updated according to the following rule: lclockp == max(lclockp , lclockm )

According to this scheme, if m ~ n then lclockn > lclockm . However, the
opposite is not true, Le., if lclockp > lclocko this does not necessarily mean
that 0 ~ p. Thus, the protocol orders more messages than those actually
needed to be ordered in order to preserve causal relations. In this scheme, the
delivery latency is bounded by the slowest sending rate in the system. Finally,
it is worth noting that it also possible to exploit knowledge about the topology
of the communication patters to further reduce the amount of information
exchanged (Stephenson, 1991; Rodrigues and Verfssimo, 1995).

Total order algorithms The goal of a total order algorithm is to ensure
that all messages are delivered to all recipients in the same order. How to
achieve this goal? Actually, in the previous section we have just described one
way to do it. Let us look again at the algorithm used to implement causal
order. Messages are delivered according to the order of their timestamps, but
a message is only delivered when all messages with lower lclock values have
been received and delivered. Now assume that all messages are sent to all
participants and that a deterministic rule is used to order messages that have

Exhibit 2026 Page 77



DISTRIBUTED SYSTEM PARADIGMS 59

the same logical clock (for instance, according to the lexical order of their
senders). Then, since the ordering criteria are the same everywhere, messages
are delivered in the same order at every process. Algorithms in this class are
called symmetric algorithms, since all processes execute the same steps.

Symmetric algorithms are interesting for several reasons. To start with they
are simple to implement and rely on a single rnechanism (logical clocks) to
enforce both causal and total order. Also, when all processes are sending mes
sages, total order can be established without any additional exchange of control
messages, so their overhead is relatively small. However, since a message needs
to be received from every process to ensure total order, the latency of message
delivery is limited by the rate of the slowest process in the system. It is possi
ble to alleviate this problem by making the delivery condition depend on just a
majority of processes in the system (Dolev et aI., 1993) but the best results with
symmetric algorithms are obtained when all processes are sending messages at
a fast pace and have their clocks synchronized (Rodrigues et aI., 1996).

Note that if synchronized clocks are available, they can be used instead
of logical clocks to timestamp messages. In this case, the protocol is able to
deliver the messages according to their "birth" time. Additionally, if the system
is synchronous and it is possible to assume a worst-case message delivery time
Ll, one can use the passage of time as a mechanism to be sure that no message
with a lower timestamp is going to be received. This is implemented by the
Ll-protocols. See again the example of Figure 2.11 in Section 2.6: let c(m) be
the timestamp of m, and let Ll == <5mx +1r, <5mx the maximum delivery delay and
1r the precision of clocks. This implies that by c(m) + Ll, all messages sent at or
before m must have reached their destination. Thus, by that time one can safely
deliver m and obtain a total order, e.g., by delivering messages everywhere in
timestamp order, and messages with the same timestamp in lexicographic order
of senders. This overcomes the above-mentioned problem of having to wait for
a message with a higher timestamp from every other process but unfortunately,
unless specialized high-performance architectures are used, the value of Ll can
be quite large. Note that the protocol also enforces a causal order.

A completely different approach consists in selecting a special process in
the system and assigning it the task of ordering all messages. This process
works as a sequencer of all messages and is often called the token site. The
protocol works as follows: all senders send their messages to the sequencer; the
sequencer assigns a unique sequence number to all messages; and it retransmits
them back to all recipients. The total order is the order by which the sequencer
processes the incoming messages. This scheme is illustrated in Figure 2.19a.
A variant is illustrated by Figure 2.19b, in which case the messages are sent
in multicast to all processes and the sequencer just disseminates the sequence
number assigned to each message.

This scheme can be quite fast in systems where the network latency is small
as illustrated by the work of Kaashoek et. al (Kaashoek and Tanenbaum,
1991). Of course, this scheme offers best results for those messages sent by
the sequencer itself. Due to this reason, some systems dynamically move the

Exhibit 2026 Page 78



60 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Token m1 m2 Token
Site Site

q q \ ,\ ,
\ \\ \\ \\ \

r r \ ".
\,
\\\\

S s \
req(m2) m2

(a) (b)

Figure 2.19. Total Ordering with Sequencer: (a) Point-to-Point Send; (b) Broadcast

sequencer to the node that is producing more messages (Birman et aI., 1991a).
If all processes are producing many messages, one can simply rotate the role of
sequencer among all nodes, using a token-passing scheme (Amir et aI., 1993b).
In these protocols, the failure of the sequencer (or token holder) poses a prob
lem of unavailability and may even require complex recovery procedures to
secure a correct ordering. One way to preserve the ordering information estab
lished by the sequencer in case of failure is by requiring the sequence numbers
to be known by a quorum of nodes before delivering the messages (Chang and
Maxemchuck, 1984). There are other alternatives to implement total order.
For instance, the best of the two previous approaches can be combined using
a hybrid protocol (Rodrigues et aI., 1996). It is also possible to use proper
ties of specific networks, for instance by using a shared medium as a physical
sequencer, as suggested in (Verissimo et aI., 1989; Cart et aI., 1987; Rufino
et aI., 1999) or properties of particular message dissemination strategies, such
as a shared spanning tree (Schneider et aI., 1984; Garcia-Molina and Spauster,
1991).

Figure 2.20. Assembly Line of Producer-Consumer

2.8 COORDINATION

There are many ways different processes can interact among each other: they
can explicitly exchange messages, access shared regions of memory or access
shared resources, including physical devices such as printers, plotters, etc.

Exhibit 2026 Page 79



DISTRIBUTED SYSTEM PARADIGMS 61

PRODUCER CONSUMER

00 while (1) { 20 while (1) {
01 item = produceO; 21 while (!n)
02 while (n==MAX) 22
03 23
04 24
05 25 item = buffer[out];
06 buffer[in] = item; 26 out = (out+1)% MAX;
07 in = (in+1)% MAX; 27 n-',
08 n++; 28
09 29 consume(item);
10 } 30 }

Figure 2.21. Naive Producer-Consumer

Consider for instance a classical producer-consumer relationship. In this
pattern of activity, a process designated the producer creates items that need to
be processed by another process called the consumer. Note that the consumer
may in turn produce a result to be processed by another consumer, creating
an "assembly-line" of processes, as illustrated in Figure 2.20. This is one of
the possible strategies to parallelize a task, using functional decomposition.
Each element of the chain, sometimes called a filter, is specialized in a specific
processing step, and n items can be processed concurrently in a chain of n
filters.

Note that several coordination issues appear in this simple example. In
order to implement this structure, the producer has to handout the item to
the consumer. Assume that the item is exchanged by placing it in some shared
device, with a limited amount of storage; to simplify the example, assume that
the device just has space for a single item. Clearly, the producer and the
consumer have to coordinate the access to the device. The producer can only
put the item in the device when the device is empty; the consumer can only
pick the item when the device is full. If there are several producers, we must
also prevent more than one producer from trying to put an item simultaneously
on the device. In consequence, the processes must coordinate in order to ensure
that when a process is accessing the device other processes are excluded from
doing so. This is known as the mutual exclusion problem.

2.8.1 Basics of Synchronization

As we have already mentioned, there are two main paradigms to support com
munication and synchronization in concurrent programs: shared memory and
message passing. In this section we start by discussing some important issues
regarding shared memory systems.

Let us go back to our producer example, assuming that the consumer and
the producer exchange items using a portion of shared memory, in our example

Exhibit 2026 Page 80



62 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

PRODUCER CONSUMER

00
01
02
03
04
05
06
07
08
09
10
11
12

while (1) {
item == produceO;
/ / there is still a
/ / bug here
while (n====MAX)

begin-mutual-exclusion;
buffer[in] == item;
in == (in+1) % MAX;
n++;
end-mutual-exclusion;

}

20
21
22
23
24
25
26
27
28
29
30
31
32

while (1) {
/ / there is still a
/ / bug here
while (!n)

begin-mutual-exclusion;
item == buffer[out];
out == (out+1) % MAX;
n-;
end-mutual-exclusion;
consume(item);

}

Figure 2.22. Naive Producer-Consumer with Mutual Exclusion

an array of size MAX. The code for the consumer and the producer may be
something like depicted in Figure 2.21. The reader does not have to be too
familiar with concurrent programming to check that the program does not
work! We may not predict the order by which processes execute operations,
and in fact the interleaving of the executions depicted may yield unexpected
results. Consider that: the buffer has a size MAX=10; it is empty (N==O), the
first free position being IN=1; and two producers PI and P2 execute the code to
add an item to the array. Since the array is empty, they both pass the guard
at line 02. Now imagine the following interleave of operations: PI executes
line 06, P2 also executes line 06, PI executes lines 07 - 08 and P2 also executes
lines 07 - 08. What happens? We will have IN==3 and N==2 which is correct,
but P2 will place its item in position 1, the same position previously used by
P2, and in consequence no item will be placed in position 2.

This is again a mutual exclusion problem, now in the access of a shared data
structure. The program is designed to work correctly only if processes access
the shared array (and its associated control variables, N and IN) in isolation.
To achieve this goal, one could add explicit instructions in the code to mark
the beginning and end of the code that must be executed in mutual exclusion,
also known as a critical region, as illustrated in Figure 2.22.

The purpose of the begin-mutual-exclusion and end-mutual-exclusion
guards is to make sure that at most one process is executing the code between
the guards at any given moment. When access is granted to a given process,
other processes must wait until the critical region is released. But how to
implement these primitives? One can use the concept of a lock, a mechanism
that can have two states: opened and closed. In order to access a critical region,
a process must find the lock open, even if it has to wait for that, and then close
it. In order to leave the critical region, the process merely releases the lock.

Exhibit 2026 Page 81



DISTRIBUTED SYSTEM PARADIGMS 63

NAIVE LOCK IMPLEMENTATION LOCK USING TEST-AND-SET

00 shared: 00 shared:
01 LOCK lock == OPEN; 01 LOCK lock == OPEN;
02 02
03 begin-mutual-exclusion is 03 begin-mutual-exclusion is

04 while (lock====CLOSED) 04 while (test-and-set(lock))
05 05
06 lock == CLOSED; 06 end;
07 end; 07
08 08
09 end-mutual-exclusion is 09 end-mutual-exclusion is
10 lock == OPEN; 10 lock == OPEN;
11 end; 11 end;

Figure 2.23. Lock Implementation: (a) Naive; (b) Using test-and-set

The algorithm is simple but only works if we have a lock, so now we need to
implement one. Maybe a boolean variable can do the job, as is illustrated in
Figure 2.23a?

Unfortunately, this code suffers from exactly the same concurrency problems
of the previous example. When the lock is released, it is possible to have several
processes evaluate the guard of line 04 and enter the critical region before the
lock is set to CLOSED. If you are a beginner in concurrent programming, you
may feel discouraged right now. Even a simple boolean lock is hard to get right!
Are there solutions to the problem at all?

The answer is yes, of course. The crucial problem with our naive lock im
plementation is that it cannot not ensure the indivisibility of the test-lock and
set-lock sequence in lines 04 - 06. Although there are other approaches, a
lock is normally implemented through an atomic test-and-set CPU instruc
tion, enforced by hardware. Using such an instruction, the code can be simply
re-written as illustrated in Figure 2.23b, which works correctly.

Although correct, the previous code is inefficient, since a waiting process
consumes processor cycles until the lock is released. This behavior is often
called busy-waiting and a lock implemented this way is also called a spinlock.
Spinlocks are efficient when the critical region is known to be short (thus, the
process will not wait for many cycles), but they only work when the concerned
processes run in parallel, such as multiprocessors, or uniprocessors with co
processors (e.g. I/O). Otherwise, while the waiting process loops there is no
chance for the lock-holding process to run and release it.

Since the implementation of the lock and unlock primitives may involve the
use of resource unfriendly busy waiting procedures (or the access to other crit
ical resources, like temporarily disabling interrupts), these services are usually
supported by the operating system kernel itself. This allows the implemen-

Exhibit 2026 Page 82



64 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

PRODUCER

00 while (1) {
01 item = produce();
02 wait (sem-free, 1);
03 wait (mutex);
04 buffer[in] = item;
05 in = (in+1)% MAX;
06 signal(mutex);
07 signal(sem-items);
08 }

CONSUMER

20 while (1) {
21 wait(sem-items);
22 wait (mutex);
25 item = buffer[out];
26 out = (out+1) % MAX;
27 signal (mutex);
28 signal (sem-free);
29 consume(item);
30 }

Figure 2.24. Producer-consumer with semaphores

tation of obvious optimizations such as preventing the scheduling of blocked
processes until the resource is released.

Djisktra proposed an abstraction for synchronization that is more powerful
than locks. This mechanism, called semaphore, exports two operations called
wait and signal respectively. The semaphore holds a number of units, which
is defined when the semaphore is created. The wait (n) primitive decrements
n units from the semaphore. It is blocking if the semaphore does not hold
enough units to satisfy the request, in which case the calling process waits until
enough units are available. The signal primitive is always non-blocking, and
increments the number of units available in the semaphore. A mutual exclusion
lock, also called a mutex, can be implemented using a one-unit semaphore.
The lock operation decrements one unit and the unlock increments one unit.
However, semaphores can be used to express semantically richer concepts, such
as the number of occupied or free entries in the shared array of our producer
consumer example. The code of our example, re-written to use semaphores, is
presented in Figure 2.24.

Other similar synchronization constructs, such as conditional regions, se
quencers and event counters, or barriers have been proposed and supported by
several systems. However, these mechanisms are often considered too low-level
and difficult to master directly. Thus, a significant body of research exists on
mechanisms to support the programming of concurrent applications, including
languages with explicit support for concurrency (Ada is a good example).

2.8.2 Distributed Mutual Exclusion

The shared memory model is not trivial to implement in distributed systems,
specially when a distributed system is defined as a collection of processes that
communicate solely by exchanging messages. Although a distributed shared
memory abstraction can be implemented on top of a message passing system,
it is easier to start by discussing how synchronization problems can be solved
using message passing alone.

Exhibit 2026 Page 83



DISTRIBUTED SYSTEM PARADIGMS 65

Let us start with the problem of mutual exclusion in distributed systems.
This is an interesting problem and the quest for a solution is an excellent way
to get acquainted with the subtleties of distributed algorithms. As a general
rule, it is simpler to start by considering a distributed solution that relies on
centralized control. This can be achieved by putting most of the logic on a
central server with which the other processes exchange messages.

For the mutual exclusion problem, we can for example build a lock server,
which keeps the identity of the current holder of the critical region and manages
a queue of clients waiting for their turn, as illustrated in Figure 2.25a. The
server and clients execute a simple algorithm. When a process wants to access
the critical region, it sends a LOCK request to the server. When the server
receives the LOCK request it immediately sends back a LOCK-GRANTED reply
if the region is free; otherwise, it inserts the client request at the end of the
waiting queue. To release the critical region, a process simply sends an UNLOCK

request to the server. The server picks the first request in the waiting queue,
if any, and sends the LOCK-GRANTED reply to the associated client.

This solution has a number of drawbacks that are worth being enumerated.
To start with, the lock server is a single point-of-failure. If it crashes, informa
tion on who was holding the lock and on the relative order of waiting processes
is lost. The failure of a client that holds the resource also wrecks the algorithm,
since no UNLOCK message will ever be sent. Finally, the lock server may be a
bottleneck for system performance. However, we leave these juicy fault toler
ance aspects for Part II of the book and focus on the functional aspects of the
algorithm.

,.,

(a)

8

••••• LOCK •••••••••

••••••••••••• G~f;;ED ••••••••:Jt
....

•••• LOCK e.

LOCK .......8·~
GRANTED

Client

(b)

Figure 2.25. Distributed Mutual Exclusion Control: (a) Centralized; (b) Distributed

Following our piecemeal approach, we now try to make the previous algo
rithm fully decentralized. One possible way is to replicate the state that was
kept in the central server, in every system process. In this sense, we would
change our interaction style from client-server to multipeer, where all processes
interact in a conversational manner, or if you prefer, where all processes are
clients and servers at the same time. To keep the same design, a process re
questing access to the critical region would send a LOCK request to every other

Exhibit 2026 Page 84



66 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

process, and would wait for a LOCK-GRANTED reply from every other process as
well, as illustrated in Figure 2.25b. Finally, when releasing the critical region,
it would send an UNLOCK request to all other processes.

Unfortunately, things are not that easy! Suppose the following scenario:
there are four processes PI, P2, P3, and P4; the critical region is free; and PI
and P2 try to acquire the lock at the same time. Assume that PI'S request is
received first at P3, and P3 grants access to Pl. Now suppose that P2 's request
is received first at P4: P4 will grant access to P2, a decision inconsistent with
the decision of P3. Worst: actually this scenario would result in deadlock, since
neither PI or P2 would obtain. the lock but would prevent each other and other
processes from obtaining it.

However, we have met this problem before and the solution is easy. This is
a replicated computation requiring totally ordered delivery to all replicas- of
the LOCK request messages in this c~se- so that they remain consistent (see
Total Order in Section 2.7). This can be achieved using a totally ordered mul-
ticast protocol. Another approach consists in merging the total order and the
mutual exclusion algorithms. The following algorithm, proposed by Lamport
(Lamport, 1978b), achieves this goal.

The algorithm can be seen as an extension of our bogus decentralized al
gorithm. It relies on FIFO channels between processes and on logical clocks.
All messages are timestamped with the logical clock of the sender, and clocks
updated whenever a message is sent or received (see Ordering Algorithms in
Section 2.7). When a request is received it is inserted in the waiting list, which
is now organized in the order of the request timestamps. The receiving pro
cess sends every other process an ACK message. As soon as an ACK has been
received from every other process, the request is marked as stable. There is
no need to send explicit LOCK-GRANTED messages, since a process enters the
critical section when: the resource is marked as free; its own request is at the
head of the waiting list; and the request is stable.

Ricart and Agrawala (Ricart and Agrawala, 1981) have proposed an opti
mization of the previous algorithm based on the observation that no process
can enter the critical region until its request is fully acknowledged. Thus, the
process that holds the resource can simply defer all acknowledgments until it
releases the section. This optimization avoids the exchange of explicit UNLOCK

messages.

2.8.3 Leader Election

As we have seen, it is often simpler to solve a distributed problem using an
approach that relies on centralized control, materialized in a control server.
However, this has the drawback that the system becomes unavailable when the
server crashes. A possible strategy is to allow any process to assume the role
of the centralized server, and to use a distributed leader election algorithm to
select, in run-time, which process should play this role. This allows the system
to survive failures of the server.

Exhibit 2026 Page 85



DISTRIBUTED SYSTEM PARADIGMS 67

Leader election has similarities with mutual exclusion. In some sense, the
mutual-exclusion algorithm "elects" which process is granted access to the crit
ical region. Using this observation, we can design a leader-election algorithm
based on the distributed mutual-exclusion algorithm presented in the previous
section.

The algorithm works as follows: every process in the system requests the
lock; the first process to be granted access becomes the leader. Although this
algorithm works, it is possible to make optimizations based on the specific re
quirements of the leader election problem. For instance, in leader election, a
process can abort the execution of the algorithm as soon as a leader is elected
(whereas in mutual exclusion, each requesting process eventually wants to ac
cess the resource). Furthermore, if a process receives a LOCK request from
another process p it may support p's election, instead of competing to become
the leader.

Let us see how the previous approach works when all processes try to be
come leaders at the same time. Each process sends a LOCK request message.
Since messages are concurrent, all carry the same timestamp value (say, 1) and
would be ordered using the order of process identifiers. In this case, the process
with the lowest identifier would always be granted the resource, i.e., it would
always be elected leader. This is a simple and acceptable outcome in most ap
plications. Such an algorithm was proposed by Garcia-Molina (Garcia-Molina,
1982) and it is known as the bully algorithm, as it always elects the strongest
active candidate, i.e., the process with the lowest identifier.

1
AreYouThere?

Figure 2.26. Leader Election

Since the idea of a lower process identifier being stronger than a higher
process identifier is somehow counter-intuitive, we explain the algorithm in
terms of rank. Each process has a rank, and the active process with the highest
rank wins the election. The algorithm, illustrated in Figure 2.26, works as
follows. A given process p knows a priori that only a processes with higher
ranks can be elected. Thus, instead of sending a message to every process, it just
sends a polite ARE-YOU-THERE? message to the higher levels of the hierarchy.
If someone replies, p silently gives up its attempt to become the leader, and
respectfully waits for one of the processes with higher rank to become the new

Exhibit 2026 Page 86



68 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

PRODUCER

00 while (1) {
01 item == produce();
02 wait (mutex);
03 wait (sem-free, 1);
04 buffer[in] == item;
05 in == (in+1) % MAX;
06 signal(mutex);
01 signal(sem-items);
08 }

CONSUMER

20 while (1) {
21 wait(sem-items);
22 wait (mutex);
25 item == buffer[out];
26 out == (out+1) % MAX;
21 signal (mutex);
28 signal (sem-free);
29 consume(item);
30 }

Figure 2.27. Producer-consumer with semaphores (and bug)

leader. If nobody replies, process p attempts to become the leader by making
sure that processes with lower rank know that it is there. This goal is achieved
by having p send an I-AM-TAKING-CHARGE message to processes with lower
rank and waiting for an acknowledgment from each of these processes. When
these acknowledgments have been received (or a timeout occurred, since some
of the processes with lower rank may have crashed) p assumes the leadership
by sending an I-AM-THE-BOSS message to all processes.

2.8.4 Deadlock

In Section 2.8.2, while searching for a solution for the distributed mutual ex
clusion problem, we were faced with a scenario that caused deadlock. Deadlock
occurs when two or more processes are waiting for each other in a configuration
from which no progress can be made.

Deadlock can also occur in centralized systems, when processes need to syn
chronize. Consider for instance the solution for the producer/ consumer problem
depicted in Figure 2.27. The code is almost equal to that of Figure 2.24, but
was deliberately changed to allow deadlock to occur. Actually, the error is
subtle and often made by beginners in concurrent programming: the producer
waits for free space in the shared buffer while holding the mutex lock.

The deadlock occurs in the following scenario: a producer obtains the mutex
and finds that the shared array is full; it is thus blocked in the sem_free
semaphore; unfortunately, consumers need to obtain the mutex in order to
release space in the shared buffers. The producer cannot make progress (and
does not release the mutex) until space is freed and sem-free is incremented;
the consumers and other producers cannot make progress until the mutex is
released.

Deadlock may occur in this case, and in fact in any other case, as long as
the following four necessary conditions hold:

Exhibit 2026 Page 87



DISTRIBUTED SYSTEM PARADIGMS 69

• Mutual exclusion: some resources are not sharable, and can be held only by
one process at a time (in the example, the non-sharable resources are the
mutex and the "empty" slots on the shared array).

• Hold-and-wait: at least one process waits for additional resources while hold
ing non-sharable resources (in our case, the producer waits for free slots while
holding the mutex).

• No-preemption: a process that holds a resource is allowed to keep it until it
is ready to release it (in our case, the producer is not coded to release the
mutex before the item is placed in the shared array).

• Circular-wait: There is a circular chain of n processes, where Po is waiting
for a resource held by PI, which in turn is waiting for a resource held by P2,
... , and Pn-I is waiting for a resource hold by Po (in our case, the producer
is waiting for any consumer and consumers are waiting for the producer).

Given that these four conditions must hold for deadlocks to occur, we might
think that deadlocks could be prevented just by eliminating one of these con
ditions. And indeed they can, but unfortunately it turns out that eliminating
any of these conditions is not a trivial task. Let us understand why.

• Mutual exclusion could be eliminated by having only sharable resources,
but this is too restrictive a condition for most applications (e.g., shared data
structures are simply non-sharable).

• Hold-and-wait may be eliminated if processes just hold one resource at a
time, but again this is too restrictive for most applications (for instance,
if a process is doing a bank transfer, it needs to update two accounts).
Alternatively, one might force a process to request all the resources it needs
a priori, but this may be very inefficient, since some resources are locked
long before they are actually needed.

• No-preemption may be eliminated by... allowing preemption, Le., by forcing
a process to release its resources. Although this might sound simple, it
is actually complex to implement in practice, since a process that holds a
resource is likely to have read or updated the latter, and the correctness of
the algorithm it is executing may depend on the state of the resource it is
holding. Thus, a process that is forced to release a resource may be forced
to rollback to a previous point of the algorithm.

• Finally, the circular-wait condition can be prevented by imposing a total
order on all resources and forcing processes to acquire all resources by the
same order. This suffers from the same drawback as holding all resources
simultaneously. The total order defined for the resources may not be the
order in which the process needs to access the shared resources.

Alternatives to deadlock prevention are deadlock detection and resolution
or deadlock avoidance. Deadlock detection consists in automating the process
of detecting deadlocks, usually by detecting existing circular-wait conditions.
Deadlock resolution consists in automating the process of breaking the dead
lock, usually by aborting one or several of the processes involved. Finally

Exhibit 2026 Page 88



70 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

deadlock avoidance consists in making checks before a resource is given to a
process, to make sure that the conditions for deadlock are not met. Distributed
algorithms for deadlock detection or avoidance are much harder than their cen
tralized counterparts. The problem with distributed deadlock detection is that
the algorithm needs to capture the global state of the computation, in a sys
tem where lock requests can be "in transit" , Le., in messages exchanged among
nodes. The issue of obtaining a consistent global state will be the subject of
the next section.

It is worth mentioning that most systems do not include any built-in mech
anisms to prevent, detect or resolve deadlocks and leave this task to the appli
cation designer. In fact, the mechanisms described above may introduce a non
negligible amount of run-time overhead. Thus, their use should be reserved to
applications where deadlock-free code cannot be obtained trivially by careful
programming.

2.9 CONSilSTENCY

Informally, we can say that the system state is consistent if it does not violate
some integrity constraint imposed upon its specification. In this section we will
briefly discuss some mechanisms that can be used to enforce consistency and
to verify that the system state is consistent.

2.9.1 Consistent Global States

In an active distributed computation, sometimes one needs to assess that some
global property is verified, for instance, that there is still a token rotating, or
that deadlock was not reached. In order to obtain such information, one needs
to take a snapshot of the global system state. The global state is a set of local
states taken at given points of the execution of each process. Due to this reason,
the global state is also called a cut (see Formal Notions in Section 1.4). The
main difficulty is that this snapshot can only be obtained by machines within
the system. Additionally, it is not easy to obtain a global state in a dynamic
system, where the state if each individual process is continuously changing.

To give an example in a non computer-related scenario, imagine that you go
to a Star-Trek convention, where a large number of fans are trading "collector"
cards with the pictures of the popular characters from the series (for those that
do not live in this planet, Star-Trek is an old sci-fi TV serial; due to some
obscure reason, people that spend too much time in front of a computer tend
to be attracted by this show). Your job is to obtain the exact number of cards
circulating in the convention hall (the global state). You can easily imagine
yourself overwhelmed by such an outstanding task, wandering around among
dozens of fans wearing funny outfits and constantly permuting cards, asking
yourself how many times did you count the same card.

The more computer-related example of finding the sum of two accounts, A
and B, will guide us through the problems in getting consistent global states.
You know that the sum must be 700$, but the user can freely transfer money

Exhibit 2026 Page 89



DISTRIBUTED SYSTEM PARADIGMS 71

from one account to the other just by exchanging messages between the nodes
holding the accounts. This is illustrated in Figure 2.28, where 50$ are sent
from node A to node B. The figure illustrates the succession of local states at
each node. Assume that you want to take a system snapshot and try to do so
from a node C, not depicted in the figure, solely by exchanging messages with
the target nodes A and B.

Consider the case of cut 1, where the state of node A is taken after the
transfer has been sent but the state of node B is taken before the same transfer
has been received. The global state would sum 650$ because the amount in
transit has not been taken into account. Cut 2 is more awkward. The state
of node A is taken before the transfer message has been sent and the state of
node B is taken after the transfer message has been received and processed.
In this case the (inconsistent) global state would show more money than there
really is in the system. So, the figure illustrates how easy it is to end-up with
a global state that is inconsistent with the system operation.

~/....~,~._._.,.....,\(8 j .COMMUNICATIONS CHANNEL
i 500$ .... ...------------.
~ --',
t.,... S1:A •·•·•· .. ··_· ....,(~u.t 2)

~"" ....

G
51:A

G
52:8

Figure 2.28. Ad-hoc State Snapshots

It seems that the problem consists in not taking into account the messages in
transit. Let us change the previous approach, including the messages received
and sent by each node in the snapshot. In cut 1, the state of node A contains
the value of the local account (450$) and a record of having sent 50$ over the
wire; the state of node B contains the value of the local account (200$) but has
no record of having received the transfer. Is this cut consistent? If the goal of
the global state is to assess the global amount of money in the system, it is quite
obvious that the cut should not contain any messages in transit. A cut with
such property is named strongly consistent. Therefore, cut 1 is not strongly
consistent. However, if the application that is going to analyze the snapshop
is able to take into account that messages can be in transit, cut 1 does not
contradict the expected system behavior: the total amount is less than 700$

Exhibit 2026 Page 90



72 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

because there is some money in transit; it may even wait for those messages to
arrive and update the state. Since this global state still makes sense, we call
cut 1 weakly consistent or just consistent. Consider now cut 2. The state of
node A has no record of sending any message. However, the state of node B
includes a transfer sent by A. Cut 2 is clearly inconsistent with the expectable
system evolution: it should not be possible for B to receive a message from
A when A has no record of having sent such messages. Thus, the snapshot
resulting from cut 2 is of little practical use.

Figure 2.29 shows the problem of inconsistency in an intuitive way. On the
left, we show the history of processes, and a cut obtained ad-hoc. It can be
proven that a cut is only consistent if all events in the cut are concurrent (Le.,
if there is no causal relation between any two events of the same cut). Now,
observe that there is a causal chain between events C21 and C22, created by ml,

which tells us that the cut depicted in the figure is not consistent. A visually
intuitive manner of checking if a cut is inconsistent is to stretch the line that
represents the cut such that it becomes a straight vertical line, as represented
on the right of the figure. The cut is inconsistent if there is a message that
crosses the cut from right to left .

...•. ~\c2;·····.'.

·····················r

Figure 2.29. Inconsistent Cut

From the previous examples it should be clear that trying to obtain a global
state simply by contacting, one by one, each of the target processes without
any additional coordination may lead to inconsistent cuts. Short of a better
solution, we have to stop the system to obtain a consistent cut, as done in a
number of commercial settings. The interesting question is how to devise a
protocol that obtains consistent cuts while the system is active. To illustrate
the problem, we will describe one of the first snapshot protocols, by Chandy
and Lamport (Chandy and Lamport, 1985).

The protocol assumes FIFO channels connecting the processes and uses a
special control message, called a MARKER, to distinguish messages sent before
the snapshot from those sent after the snapshot. The global snapshot includes
the local state of each process and the state of each channel. Each process is
responsible for capturing the state of all its incoming channels. The algorithm

Exhibit 2026 Page 91



DISTRIBUTED SYSTEM PARADIGMS 73

is initiated by some process. That process saves its state and then sends a
MARKER through all its outgoing channels. It then continues its normal oper
ation and waits until it receives a marker from all its incoming channels. The
state of those channels is captured as "containing" all messages received after
the local state of the process has been saved and before the marker is received.

Other processes behave in a similar manner. When they receive the marker
for the first time they immediately save the state of the channel from which the
marker is received as empty. Then they save their own state and send markers
through all outgoing channels. Finally, they wait for markers to be received
from the remaining incoming channels. When a marker is received through
some channel and the local state has already been saved, the corresponding
channel state can be recorded. The algorithm terminates when states from all
processes and all channels have been captured.

2.9.2 Distributed Consensus

Consensus is a fundamental problem in distributed computing, abstracting a
wide class of related problems that appear in the design of distributed applica
tions. In an informal way, the goal of consensus is to make a set of processes
agree on a single value that depends on the initial values of each of the partic
ipants (this excludes the trivial solution, where all agree on some pre-defined
fixed value).

Consider the following example: there is a manufacturing cell where items
of different sizes and forms are packed. Items arrive to the cell through a belt,
one at a time. To speedup processing, a set of packing machines are available
to serve requests. When two or more machines are available, one has to decide
which machine picks the next item. One solution to this problem would be to
create a centralized dispatcher, in charge of selecting the packing machine for
each item. Can this problem be solved in a decentralized way by executing
some protocol among the machines themselves? The answer is yes, if you have
a consensus module. This problem can be expressed in the following way: for
each item, the machines must reach consensus about which one picks the item.

Let us devise a simple protocol to solve this problem. Assume that all ma
chines are numbered. If a machine is free when a new item arrives, it proposes
its own number to serve the item. If a machine is busy when an item arrives, it
simply waits for: i) becoming free to serve that item; or ii) receiving some pro
posal from another machine; in the latter case it supports the proposal of the
other machine. Once a machine has proposed some value, it does not change
its mind. For instance, if machine number 2 has voted in favor of machine
number 1, it will not propose another machine for the same item. Since several
machines can be free or become free in a concurrent way, different proposals
can be sent. Consensus can be reached simply by collecting a proposal from
every machine, discarding the duplicates, ordering the proposals according to
the machine number and picking the first proposal in that set. Since all ma
chines receive exactly the same set of proposals, and the selection algorithm is
deterministic, consensus is reached.

Exhibit 2026 Page 92



74 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

new iteml
p1 CD

p3

[1,1,3,3]=1

[1,1,3,3]=1

[1,1,3,3]=1

[1,1,3,3]=1

Figure 2.30. Simple Consensus Protocol

The operation of the protocol is illustrated by Figure 2.30. In the example,
when a new item arrives processes P2 and P4 are busy, so only PI and P3 offer
to pick the job. Process P2 receives the proposal from PI in the first place, thus
it supports PI, while for the same reason P4 supports P3. When all the votes
are collected, all nodes receive two votes on PI and two votes on P3. Using a
deterministic function the item is assigned to Pl. From this example, it looks
like the solution to the consensus problem is deceptively simple. Actually, it is
deceptively simple if all processes remain correct, in the same measure as it gets
complex in the presence of failures. Consider the algorithm described above.
Imagine that a machine crashes in the step of disseminating its own proposal.
It may happen that some of the remaining machines receive the proposal and
others do not. Since the sets of collected proposals are no longer the same, the
decision is no longer deterministic. In the Fault Tolerance part of the book we
will discuss these issues in detail.

2.9.3 Agreement on Membership

Very often, a set of processes cooperate in a tight fashion to achieve some
common goal. For instance, processes can cooperate to distribute load, each
picking a different request or even partitioning the work of a single request
by all servers. Other examples include cooperative applications, such as tele
conferencing, multiuser chat services, etc. Many of these groups of processes
are not static. New processes can join and old process can leave at any time.
A membership service is responsible for providing each member and possibly
users, with information about who is participating in the computation and who
is not. The list of active participants at a given time is called a view. In order
to be useful, such service must provide consistent information to all members.
In other words, all members of the group need to reach consensus about the
current membership.

In absence of failures, consensus on the membership can be achieved using
an algorithm similar to the one described in the previous section. Consider
that every time there is a membership change, a new view is delivered to all
participants. For sake of clarity, consider also that views are totally ordered;
i.e, after delivering view Vi to all processes, the service delivers the view V i+l ,

Exhibit 2026 Page 93



DISTRIBUTED SYSTEM PARADIGMS 75

and so on. The membership service could work as follows: when a new process
wants to join the group, it sends a message to all members of view Vi. Each
members makes its own proposal for the membership of view V i+1 , according to
the requests it has received. Different members can receive a different number
of join requests and, therefore, can propose different views. Members and
candidates collect all proposals from view Vi , pick one using some deterministic
rule (for instance, the view with the largest number of members), and deliver
the selected view as view V i+1 . This simple approach works in absence of
failures but, naturally, a fault-tolerant membership service is much more useful
(if a members crashes, a new view should exclude the failed member from the
membership). This issue will be addressed the Fault Tolerance part of the
book.

c~~~~----.....------

q

r

s
join

(a) (b)

Figure 2.31. Ad-Hoc View Change

It should be noted that agreement on membership, by itself, may not be
enough to make the design of group-based applications simple. It is often
relevant to understand how membership information is ordered with regard to
the message flow. Let us consider the case of load balancing through a group
of participants, illustrated by Figure 2.31.

In this example a team of servers collect requests from clients (e.g., C), and
divide the work associated with each request in a decentralized and uniform
manner, based on membership information. If the workers have consistent in
formation about the membership at all times, they can use a deterministic
algorithm to distribute the load, without being required to explicitly send mes
sages to each other. In order to do this the workers must simply be aware of
their number and their respective rank in the group. For instance (see Fig
ure 2.31a), if the client request includes tasks 1 ... 6 and there are two workers
available (q and s), each worker performs three of these tasks. After finishing,
they consolidate the results. The team may be dynamic: whenever some worker
enters or leaves it notifies all others of the fact, as shown on the left of Fig
ure 2.31b, where after r joins, the team is [q, r, s] (i.e., number= 3, rank(q)= 1;

Exhibit 2026 Page 94



76 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

rank(r)== 2; rank(s)= 3). The first job works well. Since there are 3 workers, q
picks tasks 1 and 2, r picks tasks 3 and 4, and so forth. Now process s leaves
the group and notifies the others, but the notification crosses the second job
request, leading to an inconsistent perception of the team when dividing that
job. The request from client C is delivered to q after the new view and thus q,
aware that s is no longer in the group, picks half of the tasks (1,2,3). However,
the request is delivered to r before the new view and thus, since r is not aware
that s has left when it receives the request, it just picks a third of the tasks
(3,4). The decisions of q and r are not consistent, and thus task 3 is performed
twice, and tasks 5 and 6 are not executed.

What was wrong with the second scenario? Requests were received in dif
ferent views by different participants. To prevent this problem, one needs to
order view changes with regard to messages, so that any message is received
by all in the same view.

2.9.4 View Synchrony

As we have seen in the previous section, there are cases where it is useful that
membership information is ordered with regard to the message flow. Let us
try to be a bit more precise about this concept (without delving into formal
specifications) .

actual VS
view-chg

[p,q,r][p,q,r,s] KnOWSFailed(S).............1

p-...,.--6ro---------oP.----4P-----

crash or /~/,/ i

leave~ ._:/.,/ would-be
S ~>' non-VS

- ....-----------.. view-chg

q-..MI..---+-----..-;::I""'r-~............- ---

r--.... -------~-----.......,...-~---- ......r__

Figure 2.32. View-Synchronous View Change

As before, we assume that the membership service provides a linear sequence
of views to all processes. Also, we will not consider the effects of faults. We
say that a message m delivered to a process p after the delivery if view Vi and
before the delivery of view V i+l is delivered in view Vi. The view-synchrony
ordering requirement, initially coined virtual synchrony by Birman and Joseph
(Birman and Joseph, 1987), can be expressed as follows: if a message m is
delivered to a process p in view Vi, then for all q E Vi, m is also delivered to
q in view Vi.

Exhibit 2026 Page 95



DISTRIBUTED SYSTEM PARADIGMS 77

How to ensure that all processes deliver the same messages in the same
view? One way to achieve this goal is, again, using the consensus as a building
block. Consensus can be used in the following way: when installing a new
view, say V i+1

, all processes in view Vi must reach agreement, not only on the
membership of V i+1

, but also on the set of messages to be delivered in view
Vi. A simple non fault-tolerant algorithm to implement view synchrony could
work as follows. Assume that all processes are operating in view Vi. Messages
are sent in multicast to all processes. When a process p receives a message
m, it immediately delivers that message. When its time to install a new view,
process p stops sending and delivering more messages. It then sends to every
other process in the group the list of messages already delivered in that view
(this is inefficient, but we are trying to make it simple). All processes collect the
lists sent by every other process. As soon as all lists have been collected, every
process executes the following steps: i) all messages in the collected lists are
delivered; ii) a new view V i+1 is installed and; iii) the processes start accepting
and delivering new messages (now delivered in the new view). Note that this
algorithm artificially delays the delivery of the new view until all messages
from the previous view have been delivered, solving the problem explained in
the previous section, as illustrated in Figure 2.32. The fault tolerance aspects
of this problem are also challenging, and will be discussed in the relevant part
of the book.

2.9.5 Atomic Broadcast

In the example motivating the need for view synchrony, the way each request
was processed depended upon the last view delivered. In some cases, the re
sponse to a given request may depend not only on the membership but also
on previous requests. In these cases, messages need to be ordered not only
with regard to views but also with regard to other messages in a total way (see
Ordering Algorithms in Section 2.7).

An atomic broadcast protocol ensures that all messages are received by all
members in exactly the same order. In other words, atomic broadcast com
bines reliable broadcast with total order. Practical protocols will rather provide
atomic multicast, that is, to a group of participants. Originally, atomic broad
cast was introduced in the context of fault-tolerant systems (and is still used
mostly in that context), and owes its name to the notion of indivisibility with
regard to faults, i.e., the broadcast is either delivered to all correct participants
or to none.

Atomic broadcast can also be expressed as a consensus problem. All the par
ticipants must agree on: i) whether they delivered the message; ii) the order
of that message with regard to other messages. To privilege the understanding
of the reader as we did in the previous sections, we will provide a simple so
lution, even if with a deplorable performance. The algorithm follows the same
lines of the previous algorithms, and also assumes the availability of a linear
membership service. The algorithm works as follows. Messages are sent to
all participants. Participants do not deliver these messages; instead they keep

Exhibit 2026 Page 96



78 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

them in a bag of unordered messages. They do this with every message until a
view needs to be delivered (we have warned you, this is not efficient). When
a new view is about to be installed, processes exchange their bags of unordered
messages. All bags are mixed into a big set of messages to be delivered in the
previous view, ordered using some deterministic rule, and delivered by that
order to the application. Note that this simple algorithm does not deliver any
messages if the view never changes. However, this can be fixed by running
the consensus periodically, just as if a new view '~las about to be delivered.
Actually, there is a class of total order algorithms that work exactly this way
(Chandra and Toueg, 1996).

2.9.6 Replica Determinism

Informally, replication consists of maintaining identical copies of the same pro
cess or data in several locations. Replication is a fundamental technique to
achieve fault tolerance: even if one of the replicas fails the others will be
available for providing service. Replication can also be used to improve the
performance of a system by placing replicas of a service or data close to their
clients. A particular example of the use of replication for better performance
are caches, local copies of a remote item to speedup data access.

Although the notion of maintaining exactly identical copies is intuitive, it
turns out to be much more difficult to implement (and even define) than it looks
at first sight. Actually, the only way to achieve fully identical behavior is to
execute all replicas in lock-step, Le., to ensure that replicas are synchronized at
the instruction level. When a replica executes a given instruction, all replicas
execute that instruction, and so on. In this way, the state of each replica can
be compared at any point in time, and all replicas consume inputs and produce
outputs at approximately the same real time instant. To ensure that replicas
maintain the same state one must also ensure that all replicas receive exactly
the same inputs and that their code responds in exactly the same way to the
same input (programs that have this property are said to be deterministic). Of
course, this level of consistency can only be achieved in the small scale, using
hardware to keep the replicas in lock-step.

Given that the level of synchronization achieved by executing the replicas in
lock-step is not scalable, one needs to use a more generic definition of replication
that can be used in a broader range of systems. The notion of replica determin
ism states that two replicas, departing from the same initial state and subject
to a same sequence of inputs should reach the same final state and produce the
same sequence of outputs. The simpler way of achieving replica determinism
is to use deterministic programs and to rely on an atomic broadcast protocol
to disseminate the inputs (to ensure that all replicas receive exactly the same
sequence of inputs). This is the basis for one of the most intuitive forms of
replicated processing, called the replicated state-machine approach (see State
Machine in Chapter 7).

Note that if the replicas are executed in different nodes, and inputs are
exchanged using multicast messages, it is natural that some degree of de-

Exhibit 2026 Page 97



DISTRIBUTED SYSTEM PARADIGMS 79

synchronization occurs. Due to network delays, omissions and retransmissions,
the inputs can be delivered to different replicas at different moments. Even
if the input is delivered at exactly the same instant, one replica may progress
faster and produce the output sooner than others because of differences in load
or hardware. The amount of de-synchronization allowed between two replicas
depends on factors related with the timing constraints of the application.

It should also be noted that the combination of atomic broadcast and deter
ministic programs is not the only way to ensure replica determinism. Different
replication strategies use different techniques to coordinate the replicas. For
instance, one of the replicas may be elected to decide the order by which input
messages should be processed. This and other techniques will be discussed in
depth in the Fault Tolerance part of the book.

Partition m1 Merge
~p,q,r]

p {5i} {51} El)

q {5i} {51} BJ

r {5i} I~'~'~""""~'~~;"""""{""""""-~©"""'~"""(S-1-;t:.-S2-)I

Figure 2.33. State Divergence with Partitioning

2.9.7 Primary Partition

In order to keep the replicas with a consistent state, one needs to ensure that
communication is possible such that replicas can coordinate. Unfortunately
full connectivity cannot be always ensured in complex networks. Sometimes,
because of link failures or router crashes, the network is split into two or more
partitions. When this happens, nodes in the same partition can communicate
with each other but are isolated from nodes in other partitions.

Unfortunately, there is no way for a process within the system to distinguish
network partitioning from the crash of one or more processes. When replicas
of the same service are separated by network partitioning it may happen that
the replicas in one partition assume that the replicas in the other partition
have failed, continuing to operate in isolation (and vice-versa). Being unable
to coordinate with one another, the state of replicas in different partitions is
likely to diverge. If partitioning is healed later on, it may be impossible to
reconcile the state of replicas in different partitions into a single consistent
state.

Consider the example of Figure 2.33. All the three processes start with the
same state Si. Network partitioning leaves p and q connected and r in another

Exhibit 2026 Page 98



80 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

partition. Message ml is processed by p and q whose state becomes 51. In the
other partition, m2 is processed by r changing its state to 52. When the two
partitions merge, neither 51 or 52 are a prefix of the other, thus the replicas
have diverged. In the general case, automatic reconciliation will not be possible
and human intervention will have to be requested.

Partition m1 Merge

: :::: ~~\~: :::: Ipdat~·~,r]
} {

r {Si} [~~:~ ~ {Si} _~~_
: m2 /j Blocked!

4-·-

Figure 2.34. Primary Partition

Since network partitioning cannot be prevented in large-scale complex net
works (e.g., Internet) a way to prevent divergence needs to be found. A simple
technique consists of preventing two partitions from being active at the same
time. This can be done by selecting a single partition, called the primary par
tition, to remain active and by blocking the activity in all other partitions. Of
course, the criteria for selecting the primary partition must be such that each
partition is able to locally evaluate them without communicating with the other
partitions. One such criterion is to select the partition with the majority of
nodes as the primary partition. By definition, at most one partition will have
the majority of nodes, so no divergence will ever occur.

Consider the example of Figure 2.34. When the partitioning occurs all repli
cas are in state 5i. Replicas p and q form the primary partition, thus they are
allowed to continue processing messages and they move to state 51. However r
is blocked so it does not process message m2 and remains in state 5i. Now the
merger: 5i is in the past (is a prefix) of whatever state the primary partition (p
and q) reaches when the partition is healed (51 in this case). In consequence,
that state represents the current state of the replicated component and can be
safely copied to the out-of-date component r during recovery. The down side of
primary partition is that it is possible that the network is partitioned in such
a way that no partition has a majority of nodes. Techniques to alleviate this
problem will be discussed later (see Replication Management in Partitionable
Networks in Chapter 7).

2.9.8 Weak Consistency

Maintaining strong consistency or, in other words, avoiding inconsistency, sim
plifies distributed concurrent programming. However, the reader has certainly

Exhibit 2026 Page 99



DISTRIBUTED SYSTEM PARADIGMS 81

perceived that it often has non-negligible costs in performance and/or avail
ability, such as preventing progress in one or more partitions, as seen in the
last section. In some applications, the ability to make progress is more relevant
than ensuring that things never diverge. This consistency/availability tradeoff
becomes particularly relevant in environments where partitions are frequent
or even enforced such as mobile computing, where a user may disconnect her
machine from the network but still want to continue working.

It may also happen that the probability of inconsistent updates is very small,
even if progress is allowed in several partitions. Consider a mobile computing
environment: most of the files updated by users are personal files and thus, it is
very unlikely that a file copy is updated in the office while the owner of that file
is updating it on her portable computer. In this case, it is clearly advantageous
to allow progress to be done in any partition. On the other hand, if the same file
happens to be updated concurrently by more than one user, it will be very hard
to merge both updates in a new file in a completely automatic manner. Manual
user intervention is then required. For instance, the system may automatically
preserve both copies of the file and prompt the user to integrate them by hand.

It is worth mentioning that even if partitioning never occurs, ensuring strong
replica consistency is inherently expensive, since all updates to replicated data
need to be totally ordered. For efficiency reasons, one may want to support
weaker consistency models that do not require all updates to be ordered in a
total manner. We will discuss these models when addressing the issue of im
plementing distributed shared memory systems (see Section 3.8 in Chapter 3).

2.10 CONCURRENCY

We have already discussed the need for mutual exclusion when different threads
of control access shared data structures. Mutual exclusion is a particular case
of concurrency control, the body of mechanisms that ensure the consistency of
data despite concurrent access by several threads.

2.10.1 Atomic and Sequential Consistency

Before discussing the notion of consistency applied to sequence of operations,
let us approach the notion of consistency applied to individual pieces of data
when programs read and write from memory positions. In this context, the
intuitive notion of consistency is immediately derived from the behavior of a
single physical memory, what is called atomic consistency. Consider, for sake
of clarity, that each individual access to memory is a single atomic operation.
Atomic consistency can be described as follows: writes and reads are ordered
according to the physical (real time) order. Naturally, writes issued at time t
are immediately observable by all reads issued at time t' > t.

However, for efficiency reasons, in current architectures we do not have just
a single central memory. Several levels of cache exist between the processor
core and main memory. If several processors are available, the same memory
position can be replicated in more than one cache, which raises the problem of

Exhibit 2026 Page 100



82 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

cache coherence. Of course, the most tempting approach is to hide the existence
of caches from the users and ensure that the resulting system behaves exactly as
a system with no caches at all, i.e., ensuring atomic consistency. However, this
may be very hard and inefficient to enforce, since it requires the serialization
of all memory operations.

A slightly weaker model called sequential consistency allows processes to read
data from their caches as long the resulting sequence of memory operations is
equivalent to some serial execution of the same memory operations. Note that
this does not force writes and reads to obey physical order. For instance, a
process is allowed to read some outdated value in its cache even if a write has
already been issued by other processes, as long as that read can be serialized in
the past of the memory update. In this model, the behavior is no longer that
of a single, non-replicated, memory. However, if the processes communicate
exclusively through memory operations they cannot detect the difference to an
atomic execution.

The advantage of a sequentially consistent memory is that it can be imple
mented without serializing all memory operations. In fact, only write opera
tions need to be serialized and reads must only be ordered with regard to writes.
The model also allows for non-conflicting accesses to different data structures
to proceed in parallel.

2.10.2 Serializability

A good understanding of the memory consistency model is paramount to build
ing correct programs. However, it is not enough. As we have seen when dis
cussing the need for mutual exclusion, one is often concerned with the execution
of a sequence of memory operations in a consistent way. Mutual exclusion is
one of the solutions for the problem. By locking all the variables the process
wants to access during the critical region, one is sure that no other correctly
coded process (i.e., that checks the lock at the appropriate locations) is allowed
to update these variables.

Mutual exclusion works by enforcing a serial order on the execution of a
sequence of operations. A process obtains the mutual exclusion lock, accesses
the data and releases the lock. Then another process is allowed to obtain the
lock on the data, and so on. Mutual exclusion works well for small sequences of
operations, where the programmer can easily associate locks with shared data
structures. For programming in the large, mutual exclusion becomes cumber
some and inefficient.

Just consider a large database with thousands of data items and a large
number of complex programs, written by different people, that access different
pieces of the database. It is clearly very difficult, if not impossible, to identify
what pieces constitute critical sections. The conservative approach of accessing
the database in exclusive mode would be unacceptable either, for it would
impose an enormous latency in database access. In most cases, locking the
whole database is an overkill since it is likely that many of the database accesses
are to be performed on unrelated items.

Exhibit 2026 Page 101



DISTRIBUTED SYSTEM PARADIGMS 83

DATABASE

int A, B, C, D;

transaction mvAtoB (int x) is
A:= A-x;
B:= B+x;

end,

transaction mvCtoD (int x) is
C := C-x;
D:= D+x;

end;

Figure 2.35.

transaction sumAll is
x:= 0;
x:= x + A;
x:= x + B;
x:= x + C;
x:= x + D;
print x;

end;

Simple Transactions

What is needed is a mechanism to ensure that these sequences of opera
tions, that we will call transactions, execute in such a way that their outcome
is equivalent to the outcome of their execution in some serial order without
forcing the transactions to actually execute in a serial order. In particular, if
two transactions access unrelated items, they should be allowed to progress in
parallel, since any interleaving would result in an outcome equivalent to a serial
one. This correctness criteria is know as serializability.

2.10.3 Concurrency Control

Consider a database composed of four integers, A, B, C, and D, which are
accessed by the transactions depicted in Figure 2.35. Given that the transac
tions updating the database only move quantities from one variable to another,
the total sum of all variables should be a constant in the system. However, if
the transactions are executed by concurrent threads, one needs to add synchro
nization primitives to ensure that correct results are obtained (see Basics of
Synchronization in Section 2.8).

As we have noted in the previous section, mutual exclusion is the most
straightforward, but not necessarily the most efficient, way of implementing
concurrency control. One way to obtain mutual exclusion would be to asso
ciate a global mutual exclusion semaphore to the complete database. In this
case, each transaction would perform a wait operation on the semaphore before
accessing any variable and a signal operation after the last access, as illustrated
in Figure 2.36. Although the global mutex serializes all accesses (thus, enforcing
a serializable execution) it introduces much more synchronization that strictly
needed. For instance, mvAtoB and mvCtoD should be allowed to execute in
parallel since they access different data items.

One way to increase the degree of concurrency in the system while still en
suring that the resulting execution of concurrent transactions is serializable,
is to associate a mutual exclusion semaphore with each database variable and

Exhibit 2026 Page 102



84 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

DATABASE

int A, B, C, D;

transaction mvAtoB (int x) is
wait (db-lock);
A:= A-x;
B:= B+x;
:signal (db-lock);

end;

transaction mvCtoD (int x) begin
wait (db-lock);
C := c-x;
D:= D+x;
signal (db-lock);

end;

semaphore db-lock;

transaction sumAll begin
x:= 0;
wait (db-lock);
x:= x + A;
x:= x + B;
x:= x + C;
x:= x + D;
signal (db-lock);
print x;

end;

Figure 2.36. Global Concurrency Control

to let each transaction lock just the variable it accesses. The resulting code
is illustrated in Figure 2.37. Note that while there is an active update the
transaction sumAll is blocked, since it needs to obtain a lock on every vari
able. On the other hand, mvAtoB and mvCtoD can proceed in parallel since
they use different semaphores. The concurrency control strategy illustrated in
Figure 2.37 represents the simplest form of locking, a technique that is widely
used in database systems, with several optimizations. In the Fault Tolerance
Part of the book we will discuss different ways to optimize the locking scheme
introduced here.

2.10.4 One-copy Serializability

We have previously discussed the notion of memory consistency in systems
where several copies of the same memory item exist. We recall that the goal
was then to make memory look, as much as possible, like a single centralized
memory. The question now is to define an equivalent criterion for sequences of
operations, or transactions, which access data that is replicated. The criterion
is one-copy equivalence, Le., the set of replicas should behave like a single
copy. Combining one copy equivalence with the serializability criteria described
above, one gets one-copy serializability.

Note that if all copies are available and mutually reachable, they can syn
chronize with each other to ensure that the consistency criteria is not violated.
However, if networks partitions occur, and different copies become located in
non-connected partitions, synchronization becomes impossible. To ensure one
copy serializability it is necessary to guarantee that updates can occur at most
in one partition, but never in concurrent partitions. Techniques to achieve one

Exhibit 2026 Page 103



DATABASE

int A, B, C, D;

transaction mvAtoB (int x) is
wait (lock-A); wait (lock-B);
A:= A-x;
B:= B+x;
signal (lock-B); signal (lock-A);

end;

transaction mvCtoD (int x) is
wait (lock-C); wait (lock-D);
C := C-x;
D:= D+x;
signal (lock-D); signal (lock-C);

end;

DISTRIBUTED SYSTEM PARADIGMS 85

semaphore lock-A, lock-B;
semaphore lock-C, lock-D;

transaction sumAll is
x:= 0;
wait (lock-A); wait (lock-B);
wait (lock-C); wait (lock-D);
x:= x + A;
x:= x + B;
x:= x + C;
x:= x + D;
signal (lock-D); signal (lock-C);
signal (lock-B); signal (lock-A);
print x;

end;

Figure 2.37. A Lock Associated with each Varia ble

copy equivalence will be discussed in the Fault Tolerance part of this book (see
Transactions and Replicated Data in Chapter 7).

2.11 ATOMICITY

Intuitively, an atomic operation is an indivisible operation. In other words, an
atomic operation has no intermediate visible steps. It is very frequent to find
sequences of operations in programs that one would like to make atomic in the
sense described above. Consider for instance that you are booking a sequence
of plane tickets to go from Austin Texas (USA) to Porto (Portugal). You will
probably need to by a ticket from Austin to Houston, from there to New York,
then to Lisboa and finally to Porto. You need all these tickets together and
you probably do not want just part of them, so you would like to make the
sequence of bookings an atomic sequence.

2.11.1 Transactional Atomicity

Atomic transactions are a paradigm that allows arbitrary sequences of op
erations on data items to be transformed into atomic operations. In terms of
programming interface, the desired sequence of operations needs to be bounded
by a pair of begin transaction and end transaction directives. A transaction
that successfully terminates is said to commit. A transaction that, for some
reason, cannot terminate is said to abort.

Two main components are needed to implement atomic transactions. First
one needs a recovery mechanism, i.e., some mechanism to ensure that in the case
a transaction aborts, the system state is left as it was before that transaction
was initiated. Second, we need to ensure that intermediate results from a

Exhibit 2026 Page 104



86 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

transaction are not made visible unless the transaction commits. This is usually
achieved by the concurrency control mechanisms.

To implement recovery, transactional systems need some form of persistent
store, i.e., some (physical or logical) device where data can be safely stored
without being lost. Assuming that such basic component is available (in its
simpler form, it is merely a disk), recovery can be implemented by saving, in
the persistent store, a copy of the original value of all data items updated by
the transaction. These values are kept in a data structure called the transaction
log. If the transaction aborts, the original state can be recovered from the log.

Transactional atomicity also applies with regard to failures. The transaction
outcome is also recorded in the transaction log: before the transaction is con
firmed to the user, an entry stating that the transaction was committed must
be saved in the log. Additionally, a transaction cannot be committed unless all
updates have been saved in the persistent store. If the node crashes, the log is
parsed upon recovery. If a commit record is in the log, the transaction results
are left unchanged. If no such record exists, or if an abort record is found,
the original state is recovered from the log. The reader should be aware that
alternative forms of logging exist, but we will not discuss them in detail at this
point.

2.11.2 Distributed Atomic Commitment

In distributed systems, a transaction may access data items on different nodes.
Such a transaction is called distributed transaction. Like a centralized transac
tion, a distributed transaction should also exhibit the atomicity property. This
means that all nodes involved in the transaction must agree if the transaction
should be aborted or committed. A protocol that ensures this sort of agreement
is a distributed atomic commitment protocol.

In absence of failures, distributed atomic commitment can be solved as illus
trated by Figure 2.38. One of the participants in the transaction is designated
as the coordinator of the protocol. The coordinator sends a PREPARE message
to all other participants, implicitly asking all processes if they are ready to
commit the transaction. If a node detects that some error prevents the trans
action from being committed, it replies NOTOK to the coordinator. If the node
is ready to commit the transaction (this usually means that all the updates are
stored in non-volatile memory and will not be lost) it replies OK to the coor
dinator. This constitutes the first phase of the protocol. In the second phase,
if the coordinator receives OK from all the participants it sends a COMMIT to
all participants. If it receives at least one NOTOK, it sends an ABORT. In any
case, it coordinator awaits an acknowledgment. To ensure a fast dissemination
of the transaction's outcome, the coordinator retransmits the decision if some
acknowledgements are missing. Because of its structure, this protocol is known
as a Two-Phase Atomic Commitment protocol. The disadvantage of this pro
tocol is that it may block if the coordinator fails in some of the protocol steps,
because the remaining processes may be unable to assess which decision (com
mit or abort) if any was issued by the coordinator. In such cases, the system

Exhibit 2026 Page 105



DISTRIBUTED SYSTEM PARADIGMS 87

must halt until the coordinator recovers. Protocols that exhibit higher avail
ability will be discussed in the Fault Tolerance part of the book (see Atomic
Commitment and the Window of Vulnerability in Chapter 7).

Phase 1 Phase 2 Phase 1 Phase 2
Pc Pc ---41-----""2""'711I.-----

Pj Pj __-+-&-I'-+--__----+-~_

Pk Pk__~--:..-_ ____:---a..--

Figure' 2.38. Two-phase Commit Protocol: (a) Commit; (b) Abort

2.12 SUMMARY AND FURTHER READING

In this chapter we have presented the main distributed system paradigms.
Starting from the problem of naming and addressing we have visited the main
interaction styles, including message passing, remote operations and group
communication. Then we have discussed the importance of time, clocks and
the issue of system synchrony. We discussed the issue of ordering distributed
events and from there departed to discuss the main distributed coordination
paradigms.

For further reading, notes about GPS can be found in (Dana, 1996). Clock
synchronization deserves a detailed treatment in Section 12.8 of the Real-Time
Part. There are two related facets of group communication services: those
designed towards dependability, such as (Birman and Joseph, 1987; Cristian,
1990; Moser et aI., 1994), and those designed to disseminate multimedia infor
mation in the Internet, such as DVMRP (Deering, 1989), MOSPF (May, 1994),
PIM (Deering et aI., 1996) and RMTP (Lin and Paul, 1996) among others. For
a good book on multicasting on the Internet see (Paul, 1998).

For different approaches to enforce causal order see (Birman and Joseph,
1987; Peterson et aI., 1989; Ladin et aI., 1992; Raynal et aI., 1991; Rodrigues and
Verissimo, 1995; Ezhilchelvan et aI., 1995). The problem of anomalous behavior
was first identified in general by (Lamport, 1978b), and later pointed out for
real-time control systems (Verissimo et aI., 1991). It was reported in (Cheriton
and Skeen, 1993) as a limitation of causal ordering, which it is not: in fact it is a
limitation of 'logical implementations of causal ordering'. There are also many
published works on total order. The approaches of (Peterson et aI., 1989; Amir
et aI., 1993a; Melliar-Smith et aI., 1990; Dolev et aI., 1993) are examples of
symmetric protocols. Examples of sequencer based protocols are (Chang and
Maxemchuck, 1984; Kaashoek and Tanenbaum, 1991; Birman et aI., 1991b;
Amir et aI., 1993b). A hybrid approach is given in (Rodrigues et aI., 1996).
Protocols based on consensus that operate in asynchronous systems augmented

Exhibit 2026 Page 106



88 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

with failure detectors can be found in (Guerraoui and Schiper, 1997; Rodrigues
et aI., 1998a; Fritzke Jr. et aI., 1998; Rodrigues and Raynal, 2000). For a deeper
discussion on temporal order see (Verfssimo, 1996; Verfssimo and Raynal, 2000).

There are many interesting books on concurrent programming and syn
chronization constructs. The reader will find further information about read
ers/writers, rendez-vous, sequencers, event counters and so forth. The book
of Ben-Ari (Ben-Ari, 1990) includes several interesting examples of concurrent
and distributed programming models. A book that also covers the real-time as
pects of concurrent programming and synchronization is (Burns and Wellings,
1996). The more recent work of (Lea, 1997) presents interesting patterns for
concurrent programming in Java.

Ricart and Agrawala (Ricart and Agrawala, 1981) proposed an optimization
of the mutual exclusion algorithm of Lamport that reduces message complex
ity. A treatment of consistent global states is presented in (Babaoglu and
Marzullo, 1993) and a very interesting survey on checkpoint protocols can be
found in (Elnozahy et aI., 1999). The problem of distributed consensus in differ
ent system models and under different failure assumptions has been discussed
in several papers. Some interesting references are (Dolev et aI., 1983; Fischer
et aI., 1985; Dwork et aI., 1988; Chandra and Toueg, 1996; Aguilera et aI.,
1998; Guerraoui et aI., 2000).

Exhibit 2026 Page 107



3 MODELS OF DISTRIBUTED
COMPUTING

This chapter discusses the main distributed systems models. As an introduc
tion, it sets the context by addressing the main facets of the problem. Frame
works clarify what can be done given different assumptions on failures and
synchronism, explaining that we can structure distributing computing along
different vectors serving different needs. Strategies help the architect reason
about the available ways to go in order to serve her requirements and objec
tives. Then two more fundamental issues are addressed before delving into the
system models: explaining the main differences between the synchronous and
asynchronous formal frameworks for distributed computing; and presenting the
primitive classes of distributed activities and their overall scheme of operation,
for understanding the purposes of distribution. Finally, the chapter presents
known models such as: client-server with RPC, group-oriented, distributed
shared memory, message buses.

3.1 DISTRIBUTED SYSTEMS FRAMEWORKS

In this section we analyze the several frameworks on which an architect can
base the construction of a distributed system. Some are complementary, others
orthogoflal. Some are functional, others are formal. The former are concerned
with specification of infrastructure, architecture and interfacing, in order to
fulfill a certain functionality. The latter address the formalization of hypoth
esis and properties, some of which non-functional, and their implementation

P. Verissimo et al. 
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 108



90 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

and validation through the adequate paradigms and algorithmics. We intend
this section to give the reader a picture of the several vectors along which the
architectural work on distributed systems is developed, namely: infrastructure;
semantics; organization of distributed activities and services; distribution of in
formation repositories; access to distributed services. This material introduces
the basic classes of distributed activities and the main models of distributed
computing, to be addressed later in the chapter, such as: asynchronous; syn
chronous; coordination; sharing; replication; client-server; groups; distributed
shared memory; message buses.

3.1.1 Infrastructure

Infrastructure issues are concerned with the hardware, networking and oper
ating system support. They constitute a basic framework through which the
architect provides the system with enabling functionality for the higher level
activity.

Distributed systems today, looked from afar, are best represented by a large
number of organization sites, with mutual access and access to services and
resources inside the organization (intranet) , and having access to the several
interconnected public networks worldwide (internet). Besides, it is today com
mon that these organizations have facilities, which are interconnected in a
closely-coupled way across different cities or even countries through highly ef
ficient connections called tunnels, and allow remote access from the internet
both to collaborators and outsiders (e.g., e-commerce). This is implemented
by the so-called extranets.

Users have been presented with ever-increasing power and functionality in
their local machines. RISe MIPs in "normal" workstations are today (2000)
rating beyond the many hundreds. Users have already experienced successful
high-performance distributed applications on a LAN scope. They expect to
maintain and improve this status-quo over the "global network", that is, to
cooperate with geographically separated participants and to access remotely
placed services, as if they were inside their intra-organization network.

In order to build architectures satisfying these needs, one cannot ignore the
infrastructure on which the system will rely. What we discuss below are basic
building blocks that should be given consideration in any open distributed
system architecture.

Tightly versus Loosely Coupled Distributed Systems A closer look
into the inside of organizations, shows machines normally plugged to local
area networks. The technological potential of LANs and similar technologies
is considerable: high bandwidth, low and known error rates, multicast, time
boundedness, reliability vis-a-vis partitions. Users are concentrated on a ge
ographically small area. Applications based on tightly-coupled systems such
as backplane multiprocessors or closely-coupled networked multicomputers are
easily deployed and have attractive performance.

Exhibit 2026 Page 109



MODELS OF DISTRIBUTED COMPUTING 91

However, most applications require distribution over wider areas, meaning
connectivity via internetworks such as the Internet, which exhibit weaker at
tributes: low bandwidth, higher and unpredictable error rates, point-to-point,
asynchrony, susceptibility to partitioning.

It is highly desirable to integrate these two styles of computing seamlessly.
As a first step towards integration of tightly and loosely coupled computing,
there are two architectural principles to follow:

• use of common protocols from the network level (e.g., TCP lIP) all the way
up to the applications (e.g., CORBA), both in the intranet and extranet,
and through the Internet;

• extension of this principle to the internal structuring of cluster multicom
puter modules.

However, this integration requires a few additional architectural devices,
both at the network and operating system support levels.

Large-Scale Infrastructures Certain infrastructure issues become more
important in the measure that distributed systems grow in span, complexity
and number of nodes. The implications of scale on the structure of distributed
systems can be read under several facets: the computation participants; the
communication system.

Scale affects computation participants in several ways. The most obvious
aspect of scale concerns the number of participants in the computation. The
number of entities simultaneously involved in a computation varies, accord
ing to the type of interaction concerned. Additionally, that number is often
significantly smaller than the number of nodes in the network. For the sake
of simplifying our forthcoming analysis, we propose to consider a coarse-grain
scale metric, of three "levels": very-Iarge-scale- order of millions and up; large
scale- order of the thousand up to the million; small-scale- order of hundreds
down.

The communication system characteristics have a fundamental impact on
the scale of computations, since they make it extremely difficult, and some
times even impossible, to reproduce in large-scale the operating conditions
that are otherwise found in small-scale systems. In consequence, there is a
need for structuring applications in ways that allow reasonably efficient opera
tion. Hierarchical organization and clustering according to the topology of the
infrastructure, are paradigms addressing this particular issue. In fact, cluster
ing seems one of the most promising structuring techniques to cope with large
scale, providing the means to implement effective divide-and-conquer strategies.

A large-scale network such as the Internet forms what we might call a global
network, for the purpose of a large-scale computing platform. A number of
nodes in the order of 107 , and growing, puts it in the very-large-scale level,
with a number of structural characteristics dictated by its scale and limited
technology: sparse connectivity; limited diffusion capabilities; weak reliability
and timeliness; globe-wide distances; public-domain or standard protocols.

Exhibit 2026 Page 110



92 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

In face of these characteristics, we can extract a set of functional communi
cation properties, the most important of which are listed below, deriving both
from sheer scale and from technology shortcomings: large communication delay
variance; asynchronism; partitioning (e.g. set M of nodes reach each other and
set N of nodes reach each other, but do not reach the other set); non-transitivity
(e.g. A reaches B, Breaches C, but A cannot reach C); non-symmetry (e.g. A
reaches B, but B cannot reach A).

On the other hand, inside what we might call local networks, a moderate
number of nodes puts local networks in the small- to large-scale level. The
infrastructure takes significantly different characteristics that should not be
ignored: availability of LAN or MAN technology (including the foreseen role
of ATM); dense connectivity (normally broadcast-level); good reliability and
timeliness; private operation, enterprise-oriented. Such significant differences
should not be ignored by a large-scale architecture.

Figure 3.1. Decoupling Communication from Processing with Site-Participant Clustering

Site-Participant Clustering Distributed processing involves interactions
among entities in different hosts (e.g., processes, tasks, etc.). We call them
generically participants, denoted P in Figure 3.1. However, it is desirable
to separate these functions from communication functions, highly specialized.
The figure suggests the organization of the host into a site part, which connects
to the network and takes care of all inter-host operations, Le., communication,
and a participant part, which takes care of all distributed activities and re
lies on the services provided by the site-part modules. Participants can be
senders or recipients of information, or both, and interact via the respective
site part, which handles all communication aspects on behalf of the former.
This construct also introduces a first level of clustering, the site as a cluster of
participants, an important architectural construct for two reasons:

• it allows protocols to take advantage of a multiplying factor between the
number of sites and the (sometimes large) number of participants that are
active in communication and distributed processing;

Exhibit 2026 Page 111



MODELS OF DISTRIBUTED COMPUTING 93

• it lets 'sites' concentrate on communication and frees 'participants' to con
centrate on distributed processing activities (algorithms, applications, etc.)

This distinction between sites and participants is normally realized by a com
munication subsystem or site-level communication server approach to structur
ing the operating system's support for the machine's networking.

WANs ofLANs Current large-scale computing infrastructures retain a clear
duality, which is materialized by several aspects, from administration to tech
nology, in what appears to be a logical 2-tier infrastructure, a WAN-of-LANs
structure, as depicted in Figure 3.2: pools of sites with privately managed high
connectivity links, such as LANs or MANs or ATM fabrics, which we call gener
ically local networks, interconnected in the upper tier by a publicly managed
point-to-point global network (e.g., the Internet). The global network is pub
lic and runs standard protocols; each local network is run by a single, private,
entity (e.g., the set of LANs of a university campus, MAN of a large industrial
complex, ATM structure of a regional company department), and can thus
run specific protocols alongside with or in complement to standard ones (Le.,
TC'P/IP).

I
/
I

..,a--""...r.- I

I !
I I

-~i

/~ ~ ~:~~~J\".. //

/ //' i=~ilitY-- ---- ''\

/
(

\

I
I

--~-----~ ------~

Figure 3.2. 2-tier WAN-of-LANs

This second level of clustering, of sites that coexist in the same local net
work, can simplify inter-network addressing, communication and administra
tion. These sites are hidden behind a single logical entry-point, a facility
gateway, which represents the local network members for the global network,
performs routing, firewalling, etc. Ironically, it was because of security that we
started observing ad hoc implementations of this architectural principle: the
concept of closed intranet; firewall routers and gateways; protocol proxying at
the facility gateway; network address translation (see Chapter 18).

Exhibit 2026 Page 112



94 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

3.1.2 Semantics

The growth of networked and distributed systems in several application do
mains has been explosive in the past few years. This has changed the way we
reason about distributed systems in many ways. One issue of definitive im
portance is the following: Which model has the most appropriate semantics for
distributed applications?

One important aspect is the time-related semantics, addressed by timeliness
specifications, as we studied in Section 1.4. A traditional trend when large
scale, unpredictable and unreliable infrastructures are at stake (e.g. Internet)
has been to use the so-called asynchronous models. Remember that we have
already addressed 'synchrony' in Section 2.6. As a systems framework, 'asyn
chronous', in order to be simple at this point, means that there are not bounds
on essential timing variables, such as processing speed or communication delay.
This model, that we address in Section 3.3, ignores timeliness, and as such it
has served well a large number of applications where uncertainty about the
provision of service was tolerated.

However, a large part of the services we see emerging has interactivity or
mission-criticality requirements, that is, there is some expectancy that: the
service is indeed provided; it is provided with a reasonably narrow delay vari
ance; if it is not provided or it is provided too late, some loss will arise for the
user. We see thus that these requirements arise from a mixture of real-time and
dependability constraints on one hand (e.g. air traffic control, telecommuni
cations intelligent network architectures), and user-dictated quality-of-service
requirements on the other (e.g. network transaction servers, multimedia ren
dering, synchronized groupware). This behavior requires the fulfillment of
timeliness specifications, which in essence call for synchronous system mod
els, which we study in Section 3.4. Under the 'synchronous' framework there
are known bounds for timeliness variables. Some mechanisms used for securing
synchronous behavior were studied in Section 2.6.

Also of great importance is failure semantics. We are going to study in depth
how systems fail and what can be done about it in Part II, but we need not
be building fault-tolerant systems to give enough concern to failures. We have
already addressed the behavior of basic protocols in the presence of failures in
Chapter 2, such as the remote operations and group communication protocols.
The semantics of failure is also related to the synchrony of the system, as we
are going to discuss in Sections 3.3 and 3.4.

The semantics of system support is important. The underlying layers of
the infrastructure can supply increasingly stronger abstractions. The stronger
they are, the more complex that system support must be, and this is not al
ways desired. On the other hand, the weaker the support is, the more complex
applications must be, and it is not always desired to put this burden on the
application programmers' hands. Let us give an example based on consistency,
a very important paradigm in distributed systems, which is at the root of many
a distributed application. Consider an application that must guarantee consis
tency of actions performed in several sites, as well as consistency of replicated

Exhibit 2026 Page 113



MODELS OF DISTRIBUTED COMPUTING 95

data held in those sites. This application may be built on top of the raw multi
cast networking facilities, such as multicast-IP sockets and ancillary protocols
of the same level of abstraction. In terms of consistency, this goes as much as
ensuring a best-effort multicast message delivery to the group of sites involved
in the application. However, in Chapter 2 we studied paradigms that give bet
ter consistency guarantees. Namely, view synchrony (see Section 2.9) specifies
reliable and consistent message delivery to a group of sites in the presence of
faults and site failures. The view-synchrony layer would be built on top of the
best-effort layer, and our application could be simpler if it did not have to cope
with the problems solved by view synchrony. Still, our application involves
replication, and it would be desirable to guarantee replica consistency despite
failures and network partitioning. The primary partition paradigm could be
built on top of view synchrony, serving as a basic support on top of which
replica determinism could be enforced (see also Section 2.9).

3.1.3 Organization of Distributed Activities and Services

The way distributed processing activities and services are organized deserves
great attention. This framework addresses the core structure of the system
(protocol suites, services and servers) to be accessed by the users. It is con
cerned with the understanding of a few basic informal classes of distributed
activities, such as coordination, sharing and replication, and of the methods
to compound them. Coordination is essential to any decentralized and/or co
operative activity, such as those performed by parallel processes, concurrent
engineering (e.g., CAD) tool managers, fragmented database managers, or dis
tributed transaction managers. Sharing classifies the generic activities that
imply a set of participants competing over a resource. Examples of sharing are
concurrent accesses of distributed participants to a database repository, to a file
system, to a critical region of server code, or to a resource spooler. Replication
is concerned with performing the same sequence of actions or maintaining a set
of replicated data items. Replicated processing or management of replicated
files or databases prefigure this class of activity.

We disyuss the rationale and the main issues related with each class of dis
tributed activity in Section 3.5. Actual distributed processing models materi
alize combinations of these primitive classes. We are going to address several
of them throughout the rest of the chapter, such as client-server with RPC,
groups, distributed shared memory and message buses. Client-server with RPC
materializes the classic centralized service, whose server hosts all processing el
ements that clients may invoke. Concurrency among the competing clients
only exists if allowed by the server, e.g., by multithreading. Group-oriented
processing is based on group communication, and allows highly decentralized
and parallel operation. Its open-loop nature easily supports the coordination
of decentralized or replicated activities. The distributed shared memory (DSM)
model can be highly concurrent and parallel, depending on the DSM coherence
model. Coordination is done indirectly, through the distributed memory shared
by the clients. Message buses support event-based operation, such as publisher-

Exhibit 2026 Page 114



96 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

subscriber or information-push. They have a producer-consumer flavor, where
publishing is managed through shared write accesses to the message bus. Co
ordination and replication may may have relevance if the bus is replicated and
subscriber dissemination (push) distributed by the bus replicas. Certain ac
tivities are organized as centralized services,·· such as file systems or databases,
whereas others are organized in decentralized ways, whereby participants com
municate directly with each other, such as voice over IP or group meeting
support packages.

3.1.4 Distribution of Information Repositories

Complementary to organizing activities is organizing the way information is
stored, retrieved and disseminated, in a distributed way. Information storage
may be performed in a distributed form in essentially two ways: fragmented
and replicated. These ways can obviously be combined to serve the architect's
strategy, for example, fragmenting for locality of accesses to a database, while
replicating the fragments to increase availability. The distribution aspects of
retrieval are normally equated on a client-server basis, and make use of dis
tributed caching to decrease latency. Dissemination can be seen as a form of
automatic retrieval that implies a contract or expression of interest in a matter,
or subscription. It relies on reliable multipoint delivery protocols for efficient
dissemination to communities of subscribers.

This framework is intimately related to the previous one, since certain ser
vices imply both processing and storage. However, it is good systems practice
to try and separate these systems issues whenever possible, and distributed
systems, of all systems, make this separation relatively easy, besides desirable.
Take the example of a database: one can separate the data managers from the
transaction managers, and apply different policies to them. Another example:
a transactional file system deployed through web servers has different informa
tion storage hierarchies, from the file system, through the web server and proxy
caches, to the client caches. There is benefit in taking a data-oriented viewpoint
at this problem. We will be addressing distributed file systems and web-based
systems in Section 4.2. We also study message-bus models in Section 3.9, a
model oriented to information dissemination.

3.1.5 Access to Distributed Services

Last but not least, is the way users access services in distributed systems.
This framework discusses how activities, services and information, are made
available to the users. Several distributed applications are non-interactive, such
as a batch scientific calculation job on a pool of distributed parallel processes.
However, most of the access to applications of distributed systems today is
interactive. Moreover, if the advantages of distribution are in fact used, a
considerable part of that interactive access is remote, that is, it is not made at
a console physically connected to the site providing the service. This creates

Exhibit 2026 Page 115



MODELS OF DISTRIBUTED COMPUTING 97

problems to be solved, such as the need for responsiveness at a human pace;
the need for reliability; the need for security.

The architect has available several mechanisms. Some are compounded in
the computing models, such as the RPC client-server, where the client accesses
the central server, but has a certain local processing autonomy integrated in
the computing model. Client-server access has several facets, from raw RPC
to HTTP requests, or group-based or object-based client-server interactions.
Other access mechanisms are generic, such as the serial line virtual terminal,
the simplest way to access a remote computer, e.g., over a leased or dial-up line.
Remote session protocols allow a user to establish an interactive session over
the network and work off a protocol such as IP (or PPP for serial lines). We
are going to discuss remote access a propos the client-server and group-oriented
models presented in Sections 3.6 and 3.7 in this Chapter, and we discuss web
access technologies in Section 4.5.

3.2 STRATEGIES FOR DISTRIBUTED SYSTEMS

The adequate strategy for the design of a distributed system depends, as any
strategy, on subjective factors, that is, what the architect wants to do in face
of the requirements given to her, and on objective factors, that is, what she can
do in face of constraints of the environment, of cost, etc. The latter present
the architect with a number of tradeoffs. The former depend on the imagina
tion of the architect. We discuss below the strategies we feel most important:
distribution for information and resource sharing; distribution for availability
and performance; distribution for modularity; distribution for decentralization;
distribution for security. After equating her strategy, the architect will develop
the system along the frameworks for the design of distributed systems that we
have just presented.

3.2.1 Fundamental Tradeoffs

To begin with, there are a few fundamental tradeoffs to be made, depending
on the particular application to be deployed or the problem to be solved:

• centralized versus decentralized control

• sequential versus concurrent distribution

• visible versus invisible distribution

• function versus data shipping

• service versus server

• scale versus performance

• openess versus determinacy

• synchrony versus asynchrony

Centralized control of applications renders them easier to build and man
age. However, certain problems of a decentralized and distributed nature are
best addressed through decentralized applications. The best tradeoff should

Exhibit 2026 Page 116



98 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

be devised for each case, since there is a spectrum of intermediate architec
tures available, for example closely coupled, or transparently distributed but
centrally controlled.

The concurrency allowed by each model of distributed processing represents
another tradeoff that has important implications. Let us motivate the issue
with a simple and informal example of a system with N interacting partici
pants. We consider a distributed model to be highly concurrent if the ratio
of activity_periods/elapsed_time of each participant is high. This is the case of
the DSM or the group-oriented models, which by virtue of the model allow to
run several activities simultaneously in several places in a concurrent way. On
the other hand, if that ratio is low, we say we have essentially sequential dis
tribution. For example, in remote operation based models such as RPC, upon
a remote execution request from a client the thread of control is passed to the
server, and so on if calls are recursive. That is, by virtue of the model, control
goes sequentially from one place to another. We say "by virtue of the model"
because: even with concurrent models we may have highly sequential appli
cations; but sequential models do not allow concurrency even when desired.
The tradeoff lies in the fact that sequential distribution models are simpler and
more intuitive to program with.

Another viewpoint at distribution is whether it is visible, or is concealed by
some artifact of the model. Invisible or transparent distribution is achieved by
models that hide distribution, sometimes from the programming model, such
as the RPC model, or even from the architecture, such as the DSM model,
where processes synchronize and communicate through a shared memory, as in
a single-box mono- or multiprocessor, or object models inspired by the ODP
model, such as CORBA, that we discuss in Section 4.4. The distributed system
becomes a huge virtual machine. Visible distribution is carried out by models
that preserve some visibility of message passing, such as the group-oriented and
the message-bus models. The tradeoff relates to whether distribution is also
part of the problem or only part of the solution. In the former, maybe visibility
should be sought, whereas in the latter there is advantage in transparency.

What is it that we distribute? Data or code? Essentially, we distribute data,
or processing functions, or both, and the tradeoff is mainly equated in terms of
the balance of computing and networking resources involved, and in the end, of
performance. We may invoke a remote operation on remote data, which causes
the least overhead at our site (as with database searches). We may invoke a
remote operation on local data that we ship (data shipping) to the server, or
have remote data shipped back to our site and processed (as with file system
operations). Both use some network bandwidth, and the latter also uses local
computing resources. Alternatively, we may have code shipped back to our site
(code shipping), to execute on local data (as with applets).

A common but pernicious misunderstanding is the often made confusion
between service and server. In an environment where modularity is a keyword,
nothing could be more wrong than to equate them as equal. However, it is
common to hear "the name server is down" , without considering asking a few

Exhibit 2026 Page 117



MODELS OF DISTRIBUTED COMPUTING 99

questions, such as: "did the name service go down, but the hosting server is still
up?"; or, "did the server hosting the name service go down?"; in which case,
"can the name service migrate to another hosting server?". The recognition of
this difference opens perspectives for a tradeoff between number of servers and
number and location of services on the former, dictated by parameters such
as per service overhead, load balancing, location, criticality, etc. A physical
server can and should host several services, but these services should not be
"glued" to the machine, but rather be configured and set up to be modular and
portable between the pool of servers of the facility (see also Configuration in
Part V).

Scale is normally detrimental to performance, and this tradeoff is a delicate
one. A good architecture should exhibit scalability, that is, the ability to ex
pand in number of components and geographical span, without the performance
being linearly affected by that growth. Openess is often desired, specially in
large-scale distributed systems. However, an open system has less chances of
being controlled and exhibit determinacy, if compared to smaller scale systems.
Finally, we have the synchrony versus asynchrony tradeoff. Asynchrony means
simple but time-uncertain systems, whereas synchrony means more complexity
but ability to secure timeliness specifications.

In conclusion, a lot of these tradeoffs end up being equated together, since
very often the question is put between:

• distribution in the small- the development of small-scale distributed sys
tems in closed environments, typically of homogeneous nature, over LANs
or high-speed networks, where controlled behavior can be achieved, for ap
plications requiring reliability and synchrony (e.g., real-time);

• distribution in the large - the development of large-scale distributed sys
tems in open environments, typically of heterogeneous nature, over WANs
of-LANs, where behavior is uncertain, and applications can live with asyn
chrony (e.g., Internet).

3.2.2 Distribution for Information and Resource Sharing

This is how distributed systems started, and is still the strategic objective of
the most part of distributed settings, from public-oriented Internet-based sites
and servers, to private organizational facilities, such as intranets. The tech
nologies that are concerned with implementing this strategy have to do with
remote access to central servers: remote session protocols, client-server com
puting, HTTP thin-client and network computing. They also have to do with
classic information dissemination technologies, such as e-mail, news and bul
letin boards. In implementing this strategy, it is advisable to concentrate on
the users side, that is, to guarantee access to the information and resources
residing on central services, assuming the servers have perfect availability and
performance. Assuring this with the quality of service desired requires looking
at: user management (registration, naming, administration); session security
(authentication, authorization, access control policing); communication band-

Exhibit 2026 Page 118



100 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

width and reliability (network planning); client-side software (system support,
protocols, applications).

3.2.3 Distribution for A vailability and Performance

Assume that the strategy of distribution for information and resource sharing
has been laid down in terms of logical servers, in a divide-and-conquer approach,
as we suggested. However, servers are not perfect. They do not have infinite
performance, nor are they always up. Several strategies may be laid down
for the mapping from logical to physical servers. The baseline approach relies
on a single server, multiprocessor if need be, or even a mainframe. This is
simple, but it is a single point of failure and it scales hardly. A central server
providing to a community of users should not be unavailable or overloaded.
Unfortunately, this -is what we see too many often, e.g., in Web sites.

So, can better be done? Recall that distribution has attributes that may
be useful here: geographic separation, and failure independence. Allocating
services wisely to several servers reduces the probability of total failure, achiev
ing graceful degradation. Distributing a service through several servers (load
balancing) improves performance. There is a link here between parallelism and
distribution. Mechanisms for coarse grain parallelism may be relevant to en
hance load balancing. These measures grant an entry level of availability and
performance improvement that may be just enough for most settings.

Introduction of replication, whose methods we will study in detail (see Chap
ter 8), enhances our strategy further. By hosting replicas of the services in dif
ferent servers, the probability that the service is ever down can be drastically
minimized. Incidentally, service duplication (two replicas) is normally enough
to guarantee a reliability above 0.99.

Finally, if replicas are located near the users, or groups of users, performance
and availability may be further improved. This is specially true if the system
scale is considerable, and networking is slow and prone to partitioning. There
are two facets to this strategy: (a) replicating the server, e.g., a distributed
transactional database manager that has replicas located near relevant groups
of users; (b) replicating data, e.g., the cache hierarchies of the web that replicate
pages in proxy servers located near relevant groups of users and even in the
client browsers.

3.2.4 Distribution for Modularity

Imagine a central computing facility of a company, where all services are hosted,
serving the company's headquarters, co-located with the facility. Despite the
fact that services and users are nearby, distribution may still have a relevant
role as a structuring artifact, through a powerful attribute: modularity.

The strategy is materialized by organizing the architecture modularly, as
a distributed system, using distributed systems techniques. The cost of this
approach is that management of such a setting is more complex than its inte
grated counterpart. What is to be gained is explained by two orders of reason.

Exhibit 2026 Page 119



MODELS OF DISTRIBUTED COMPUTING 101

The first is concerned with a greater ability for managing the uncertainty in the
evolution of the organization and its activity (geography, scale, re-engineering,
reorientation, markets). The second is concerned with leveraging investments
in distributed systems technologies aimed at improving performance and avail
ability through distribution, combining two strategies and thus killing two birds
with one stone.

3.2.5 Distribution for Decentralization

There are a number of human-driven activities that are decentralized in their
nature. To this decentralization corresponds a certain local autonomy of means
and procedures, controlled by coordination points with the rest of the struc
ture. Before distributed systems made their appearance, informatic support of
these activities took only two possible forms, whatever their degree of decentral
ization. Either everything was based on centralized computing facilities, with
virtual terminal connections to human operators, or there were several, inde
pendent computing centers or islands, that would transfer information among
each other off-line.

Decentralization occurs in various degrees: highly decentralized operation,
e.g., teleconference, concurrent engineering; moderately decentralized opera
tion, e.g., automated manufacturing cells; little decentralized operation, e.g.,
client-server with client based processing autonomy. Distribution serves to
adapt the activity model to the computing infrastructure. The strategy is
decentralizing control, by placing it where it is required, while retaining the
necessary degree of integration and coordination between the several sites. In
consequence, it develops along two axes: to provide the several loci of control
with a consistent view of the state evolution of the system (distributed state
dissemination); to enforce coordination of actions according to the degree of
decentralization desired (distributed algorithmics).

3.2.6 Distribution for Security

We are reaching a changing point, where systems security is no longer assured
in spite of distribution, but rather, with the help of distribution. This is
emerging in several areas of security, such as protection and cryptography.
Authentication systems based on distributed voting servers provide more robust
operation if compared to single-site systems. Threshold cryptography based
on quorums among groups of distributed participants is a useful paradigm in
emerging areas. Archival systems based on file fragmentation and scattering
through distributed file servers increase resilience if compared to single-site
whole-file hosting.

3.3 ASYNCHRONOUS MODELS

Fully asynchronous distributed systems are those systems where time does not
count. That is, the applications we run on those systems should be satisfied

Exhibit 2026 Page 120



102 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

by guarantees of the liveness kind, such as "a message is eventually delivered" ,
or "the execution eventually terminates". The properties of the asynchronous
system model are defined in Table 3.1. In essence, they show that the system
is free from temporal constraints!, or time-free. Note that it is implied that
processing and message delivery can take an arbitrarily long time, and that
clocks are not useful in their role of providing time references (as we have
defined it in Section 2.5), not even locally, let alone in a distributed way.

Table 3.1. Asynchronous Model Properties

• Processing delays are unbounded or unknown
• Message delivery delays are unbounded or unknown
• Rate of drift of local clocks is unbounded or unknown
• Difference between local clocks is unbounded or unknown

Such a model is simple, and obviously adapted to environments that give
very little guarantees. However, a fully asynchronous model has limitations
that compromise its usefulness for practical systems. If faults occur (even as
simple as machines stopping), it is impossible to guarantee the deterministic
solution of basic problems such as consensus, a statement which became known
as the FLP impossibility result (Fischer et aI., 1985). Moreover, when using
certain paradigms, for example when managing replicas under primary partition
consistency, we cannot even reconfigure the system deterministically (Chandra
et aI., 1996). Last but not least, we cannot guarantee the slightest time bound
for the duration of an execution. In consequence, what practical systems do
is attempt at relaxing the full asynchronism assumptions. Two main tacks or
combinations thereof have been taken:

• considering that the system is not always asynchronous

• considering that the system is not asynchronous everywhere

The main problem haunting correctness of applications in the asynchronous
model is the impossibility of telling a slow site or participant, from a failed one.
Failure detection is a paradigm addressing the correct detection of several
types of failures in distributed systems components. Crash failure detectors
are used in asynchronous systems to detect crashes, that is, sites or partici
pants that fail suddenly by stopping. The trustworthiness of their decisions is
obviously constrained by the difficulty of telling genuine failures from unpre
dictable delays. However, if the system is not always asynchronous, it will have
periods where this detection can be made reliably. Certain systems rely on

lThe last two are essentially equivalent: since a local clock in a time-free system is nothing
more than a sequence counter, synchronized clocks are also impossible in an asynchronous
system. However, they are listed for a better comparison with. synchronous and partially
synchronous models.

Exhibit 2026 Page 121



MODELS OF DISTRIBUTED COMPUTING 103

this hypothesis, for example, the asynchronous systems with failure detectors
(Chandra and Toueg, 1996). Another approach is to consider that for some of
the properties, bounds do exist, which is equivalent to saying that part of the
system structure is not fully asynchronous, or in other words, that the system
is not asynchronous everywhere. For example, that clocks have bounded rate
drifts, and/or can be synchronized, or that there are bounded message delivery
delays, even if large. Certain systems rely on this hypothesis, for example,
the timed asynchronous (Cristian and Fetzer, 1998), or the quasi-synchronous
(Verissimo and Almeida, 1995) systems.

3.4 SYNCHRONOUS MODELS

An asynchronous model expects very little from the environment. It may wait
an undefined amount of time for the completion of a problem, but nothing bad
happens during that period. From that sense, it is a very safe model, but not
live, and from a system's builder and user perspective, availability and continu
ity of service provision are mandatory requirements. Speaking more formally,
we need to solve problems in bounded time and the alternative approach seems
to be a synchronous model. A synchronous model is one where known bounds
exist for execution duration, message delivery delay, etc., such as described in
Table 3.2. In essence, the table shows that the speed of system evolution has
a known lower bound, and furthermore, that clocks can be used to determine
timing variables, such as position of events in the timeline, or measurement of
durations2 .

Table 3.2. Synchronous Model Properties

• Processing delays have a known bound
• Message delivery delays have a known bound
• Rate of drift of local clocks has a known bound
• Difference between local clocks has a known bound

The main problem with the synchronous model is when either the synchrony
of the environment or the worst-case load scenarios of the application are diffi
cult to determine. In these cases, the system may function incorrectly. In the
first case, because the bounds may be violated. For example, our application
relied on the assumption that it took at most lOOms to deliver a message- if
some messages take longer, something may go wrong, such as messages being
delivered out of order, or ignored. In the second case, because the bounds
may become insufficient. For example, we assumed requests arrive at a server

2The last property specifies the existence of synchronized clocks. Whilst not required of every
synchronous system, the first three properties make it possible.

Exhibit 2026 Page 122



104 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

at a rate of 100 per second, which is quite alright for a processing bound per
request of 10ms- if there are peak bursts of arrival, say 100 requests in a half
second interval, some requests may be delayed, or even overrun. This problem
only has to do with the difficulty of ensuring that the assumptions made about
the system and the environment hold. This can measured by a probability
called assumption coverage (see Section 6.2 in Chapter 6). Of course, par
tially synchronous models such as suggested to handle the shortcomings of
asynchronous models may also prove effective to handle the problem of lack of
coverage. Seen from the viewpoint of synchrony now, these models withstand
some uncertainty in system behavior, that is, they tolerate that the system is
not always synchronous, or is not synchronous everywhere.

3.5 CLASSES OF DISTRIBUTED ACTIVITIES

For the sake of· a better understanding of the several models of distributed
processing, it is useful to informally divide distributed activities into three
primitive classes: coordination, sharing, and replication.

o
Pa

Ra(1)

Ra

splitting
dispatching
diffusion

execution

~ ffi Ra(3)
Pa(3) \lJJlY

consolidation

Figure 3.3. Flow Diagram of Coordination Activities

3.5.1 Coordination

Coordination concerns the necessary steps for the execution of actions in sev
eral sites that contribute towards a common goal. The generic information flow
diagram is depicted in Figure 3.3: requests Pa, Pb, ••• are to be executed by a
set of participants, each doing part of the job. The generic scheme involves
the following phases: splitting, dispatching, diffusion, execution, consolidation.
Splitting consists in dividing each job, say Pa, into several tasks Pa(l), Pa(2), ...
to be performed by some or all of the participants. Dispatching consists in al
locating the tasks to participants, in adequate number and capabilities, and in
the order required by the application. Diffusion consists in getting the partial
tasks to the relevant participants. Splitting and dispatching can be done at
the source issuing the request, as is done by a parallelizing compiler that splits
a job and dispatches the parallel tasks by the several available processors in

Exhibit 2026 Page 123



MODELS OF DISTRIBUTED COMPUTING 105

the distributed system, and then disseminates the task requests as appropriate.
Alternatively, the whole job request can be disseminated to the working par
ticipants, in order that splitting and dispatching are done at the destination,
in a decentralized manner. It requires that the participants have an agreed
algorithm that deterministically splits the job and extracts their task at each
site. If the participant team may vary dynamically, paradigms such as view
synchrony and membership are useful tools to develop these algorithms (see
again the example of Figure 2.31 in Section 2.9). Ordered diffusion mayor
may not be necessary, depending on whether the split/dispatch rules depend
on the past history of the system. Certain coordinated decentralized activities,
for example in distributed control, require all participants to have a common
knowledge about system evolution. This is best achieved through a totally and
causally ordered message diffusion flow. Execution takes place at the relevant
participants, and the task results R a (1), R a (2), ... are then consolidated to form
the job result Ra . Once again, consolidation may occur at the source or at the
destination. Consolidation at the destination is simpler, but implies knowledge
by the destination on how to consolidate Ra (l), Ra (2), ... into Ra . Consolida
tion at the source requires the working participants to run an algorithm, after
which the result is returned.

e
Pa

@
Pb

<2900
Pb..Pa..Pc0 _R_b_••_R_a._.R_c.~

@
Pc

serialization execution

Figure 3.4. Flow Diagram of Sharing Activities

3.5.2 Sharing

Sharing concerns the necessary steps to ensure the correct execution of actions
directed at shared resources. As depicted in the flow diagram of Figure 3.4,
several action requests Pa , Pb, ... directed at a common resource are serialized
before execution. This can be done at the destination, or within the proto
col that directs the requests to the resource, or both. The ordering discipline
depends on the semantics of the activity. For example, if all possible rela
tions between the sending participants must be traced, then causal order of the
requests must be ensured, for proper serialization. If participants do not inter
act, then FIFO order is enough to secure correct serialization (see Ordering in
Chapter 2). But if shared actions on the resource are commutative (e.g., cast-

Exhibit 2026 Page 124



106 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

ing votes in an electronic ballot), or if serialization is done at the destination,
then the protocol can be unordered.

3.5.3 Replication

Replication concerns the necessary steps for the execution of the same set of
actions in several sites, such as to produce the same results. The generic infor
mation flow diagram is depicted in Figure 3.5. The same request Pa is executed
by a set of participants, in a process that involves the following phases: diffu
sion, execution, consolidation. Diffusion consists in disseminating the request
to the relevant participants. Depending on the model of replication manage
ment, the protocol mayor not require that all messages are reliably delivered
and totally ordered, in order to enforce replica determinism (see Replica Deter
minism in Chapter 2). Execution takes place at the relevant participants, and
once more according to the replication model. For example, in what is called
active replication, all participants execute the same set of requests in the same
order. However, in passive replication, a primary replica is the only to execute
the requests, whereas the backup replicas simply log them, and receive state
updates from the primary, at specific points in the computation called check
points. The execution results are then consolidated, in order that the correct
result is delivered. For example, if the fault model is omissive, that is, if repli
cation is only used for availability, then it suffices to deliver one of the results,
R a == Ra(i), perhaps the first to be produced. However, if the fault model in
cludes value faults, then majority voting is desired amongst the several replica
results, that is, R a ==vote(Ra(l), ... , Ra(n)) (see Replication Management, and
Resilience and Voting, in Chapter 7). This form of consolidation requires the
working participants to run an algorithm, after which the result is returned.
Alternatively, consolidation can be performed at the destination, that is, all
Ra(i) results are delivered and acted upon by the recipient. Less frequent,
this form of consolidation is however very efficient, specially for cascaded or
recursive replicated computations.

o
Pa

diffusion

~
Pa

execution

Ra(1)

Ra

consolidation

Figure 3.5. Flow Diagram of Replication Activities

Exhibit 2026 Page 125



MODELS OF DISTRIBUTED COMPUTING 107

3.5.4 Combining Activities

Conceptually, it is helpful to see distributed activities as a combination of co
ordination, sharing, and replication. To get an idea, imagine a distributed data
repository (e.g., a database), made of fragments in several sites that are also
replicated, and try and analyze it under the light of the activity classes we
discussed in this section. The repository is shared by several users that access
it competitively. Access to the fragments has to be coordinated, so that each
request is handled by the competent fragment manager. Finally, each fragment
is replicated, so that the logical database is always accessible. Figure 3.6 ex
emplifies the set-up. There are three fragments, each replicated twice, and the
replicas are located by pairs, in three sites 51 to 53, so that each pair of repli
cas in different sites. The user requests, Pa, Pb , ••• , are serialized by a multicast
protocol, which ensures that the repository as a whole receives competitive re
quests in the desired order (e.g. FIFO). Splitting and dispatching are done at
the destination. In consequence, the request multicasts are disseminated to the
several sites. The architect made the multicast reliable and totally ordered,
to ensure that all fragment replicas receive all requests in the same order, and
can thus take deterministic decisions in a decentralized way. For example, a
request concerning fragment a2 will be processed only by the relevant fragment
manager. Likewise, if active replication is used, a request concerning a2 will
be processed by both replica managers, that is, at sites 52 and 53. On the
other hand, in a complex transaction, operations may take place in more than
one fragment. The architect selected consolidation at the source, so the partial
results Ra (i) are consolidated and the final result Ra delivered to the requester.

Pa

Pb

.'Pc

f·········....··..·....··..··..·....··..·....··..·s~l

<CDe Ra(~},Ra(1}
paI31.p;lf) a !

i ;

Ra

serialization execution consolidation

~i2f:ng ~1··~··~:;~I.RaI31
i i

Figure 3.6. Combining Activities

The identification of primitive classes of distributed activity is mainly an
analysis method. For performance and efficiency reasons, the design of real
toolboxes and applications is often not that modular and neat. Still, the ar
chitect has only to gain if the first blueprints of the software architecture of
a distributed system are well structured, even if naive as in the example of

Exhibit 2026 Page 126



108 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

the figure. There is time for compacting and optimizing in the later phases of
design.

3.6 CLIENT-SERVER WITH RPC

The client-server model is the most used model in distributed computing. As
the name implies, it consists of structuring the application around the notion of
servers, which provide services, and clients, which use those services. To obtain
a service, the client sends a request to server which, in turn, sends back a reply
with the results or just a confirmation that the desired service was (or was
not) provided. The approach can be applied to a large number of distributed
applications. In fact, many highly successful applications such as the pervasive
WWW, for instance, have been built around the concept.

In terul'S of programming model, it is possible to establish a parallel between
requesting remote services and requesting local services. Traditionally, when
a program requests a local service (to read a local file for instance) it does so
through a function call. In most modern operating systems this is implemented
as call to a library function that, in turn, performs a system call. Thus, pro
grammers of non-distributed applications are already familiar with the concept
of requesting a service by calling a function. One can preserve this paradigm
when providing support for requesting service from remote servers. The idea
is to organize the software in such a way that the client continues to make a
function call as in the non-distributed case. Instead of just trapping the kernel,
the library function must perform the request-reply protocol already discussed,
ensuring the the service is provide by the remote server (actually, to implement
the request-reply protocol, the libary function may have to trap the local kernel
more than once). For the client application, everything looks like if it was able
to invoke a function on the server to obtain the service. When this approach is
used, we say that client-server interactions are structured as Remote Procedure
Calls (RPC).

3.6.1 RPC Architecture

The RPC concept is very simple and intuitive. To make its use practical and ef
ficient, a software infrastructure is required that provides tools and mechanisms
to help the programmer of distributed applications. This is not as simple as it
may look at first glance. A complete package to support RPC includes com
munication primitives, mechanisms to name and locate servers, mechanisms to
perform data format conversions, and so on. The motivate the need for all
these things, let us describe the interactions with more detail. Assume that
you want to build a server that provides the following procedure as a remote
service:

int dosomething (int param);

This is an extremely simple procedure that takes as input a single parameter
(an integer) and returns a single result (also an integer). The goal of the
RPC system is to allow a client to call dosomething at one machine (the

Exhibit 2026 Page 127



MODELS OF DISTRIBUTED COMPUTING 109

client machine) and allow the computation of the result, based on the input
parameter, to occur at another machine (the server machine). Furthermore,
for convenience of the client code, the call to dosomething should similar to a
local function call. To achieve this goal, the trick is to let the client locally call
a fake dosomething that looks like the real dosomething (which is going to be
executed in the server). This fake function has the same signature, i.e, the same
name, parameters and results, so it really looks like the original. This function
is usually called the client stub or the service proxy (M. Shapiro, 1986).

The sequence of actions concerning the execution of an RPC are illustrated
in Figure 3.7. The client stub is responsible for sending a request to the server
and waiting for a reply. To send the request, the stub must first create the cor
responding message. In order to do so, the stub converts the input parameters
in a format suitable for being transmitted over the wire and recognizable by
the server. This process is known as linearization or marshaling. After being
formatted formatted, the message is sent to the server through some session
level protocol using the communication system. That protocol is responsible for
retransmitting the request, waiting for replies, discarding duplicate or obsolete
replies, etc.

CLIENT II
CODE

I call return

execute service SERVER

local call reply CODE

marSfU:ll; SERVER
STUB

SESSION
LEVEL
PROTOCOL

Figure 3.7. RPC in Action

On the server side, the message follows a symmetric path. It is received
and processed by the session protocol, which identifies the target service and
delivers it to the relevant server stub. The server stub extracts the parameters
from the message (this task is called unmarshaling) and does a local call to the
real dosomething that does the work. When this function returns, the server
stub creates a reply message and hands it to the session protocol in order to be
returned to the client, following the same steps as before, now in the opposite
direction. On the client side, the client stub finally returns the original call to
the client, with any relevant results.

The RPC functionality is cast into a few major building blocks which make
up the architecture of an RPC system, as illustrated in Figure 3.8. The user
package is a library that includes functions that help the application designer to

Exhibit 2026 Page 128



User Package

110 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

deal with the aspects that cannot be hidden by the client proxy. For instance,
the client application may be required to explicitly invoke a naming service to
locate the server. In this case, procedures that perform these functions would
be available in the user package. The client and server stubs are responsible for
marshaling and unmarshaling the procedure parameters. Finally the commu
nication protocol is responsible for making sure that the messages are delivered
to their recipients. It should be noted that at least a portion of the commu
nication protocol is usually executed by the operating system kernel. Thus,
in order to execute a remote procedure call one needs to perform at least the
following calls: a local function call to the client stub, a system call to the
kernel to send the message, to cross the network, to commute from the server
kernel to the server stub, finally a local call to the function that implements
the service (plus the same sequence for the reply).

Comparing the cost of the sequence with the cost of a local function call
it becomes clear that there is a significant overhead in the RPC. However, for
coarse grain services, this overhead may represent a small percentage of the time
required by the server to complete the service. Actually, for certain services
such as file systems, one can achieve performances which are comparable to
the local case or even, in extreme cases, outperform the local calls, by avoiding
other costs, such as context switches.

user interface iiliiiliiiiiiiiiiiil~I~~iil~~~~liiiliiiiiiiiiiiiiiil
RPC interf:ceI----... ---------------'

Client and Server
Stub Procedures

Communication
Service

!iliiiliiiiili!iiiliiiliiili.ililiiiliiiliiiiiiiiiiiliiii
Figure 3.8. RPC Architecture

3.6.2 Handling exceptions

We have stated that the goal of a RPC system is to make remote calls look like
local calls. Unfortunately, in a distributed system this is impossible to achieve
because the client and the server have independent failure modes. In a local
call, if there is a failure, the whole process crashes. In a remote call, the server
can crash and the client remain active. Thus, new errors, that do not appear
in the local case, can occur when a service is provided by a remote server. This

Exhibit 2026 Page 129



MODELS OF DISTRIBUTED COMPUTING 111

also means that it is very hard to take a client written to make just local calls
and, in a fully transparent manner, make it operate using RPCs.

In languages that support exception handling (such as Java), the RPC may
raise new exceptions. If the client is not prepared to handle those exceptions,
it may be forced to crash when some anomaly occurs. If the programming
language has no exception mechanism, error codes have to be returned to the
client as an output parameter of the procedure call. However, this forces the
original signature of the procedure to be changed to include either the error
parameter, or the new error codes if the parameter is already there.

3.6.3 RPC protocols

A fundamental part of the RPC architecture is the session level protocol that
is used to exchange requests and replies between the client and server. The
protocol defines the steps required to exchange requests and replies, the format
of the messages, how and when these are retransmitted, etc.

Naturally, the session level protocol needs a transport level protocol to send
and receive packets. Two alternatives are available for this purpose: to use a
connection-oriented byte-stream protocol, such as TCP, or to use a connection
less protocol such as UDP. In the former case, issues such as reliable delivery,
fragmentation and reassembly, retransmission management, failure detection
and so forth are handled by the transport protocol itself. This makes the life
of the RPC designer much simpler. Unfortunately, establishing a connection
is a costly procedure that introduces a non-negligible latency in the first RPC.
In systems where the interactions between clients and servers are limited to a
small number of calls (often, just one) this overhead can be the primary cause
of RPC latency.

Because of the performance limitation of connection-oriented protocols, one
may be tempted to rely on a connectionless transport service instead. However,
this approach requires the session level protocol to address explicitly problems
such as the need to fragment messages and the need to ensure reliable delivery.
One reason to follow this path is that it is possible to exploit specific RPC
semantics to build a "tailored" protocol that can address these problems in a
more efficient manner than a generic reliable byte-stream protocol.

There are some intuitive arguments in favor of using a tailored transport pro
tocol. For instance, reliable transport protocols usually require the exchange of
acknowledgments. In an RPC protocol, an explicit acknowledgment to confirm
the reception of the request can be redundant, since it may be soon followed by
a reply. On the other hand, if the acknowledgment is suppressed, it is hard for
the client to distinguish the case where the request is lost from the case where
the server is taking a long time to process it. Then, an aggressive approach
(retransmitting the request too soon) wastes resources, whereas a conservative
approach (waiting for a long timeout) increases the latency in the case a real
omission has occurred. In those cases it may be preferable to send the acknowl
edgement back to the client anyway. Unfortunately, when an acknowledgement
is received but no reply follows, the client is still in trouble: does this mean

Exhibit 2026 Page 130



112 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

that the server has crashed while executing the request? Additional "are-you
still-there" requests (followed by a "yes-i'm-just-busy" response) may have to
exchanged to keep the client waiting for the reply. No matter how we im
prove the protocol, there are fundamental limits to this reliability-performance
tradeoff that we address in the Fault Tolerance part (see Fault- Tolerant Remote
Operations in Chapter 8).

If heterogeneous machines are to be supported, then in addition to the trans
port protocol the RPC architecture requires both ends to agree on a common
format to code the procedure parameters. Naturally, the marshaling and un
marshaling procedures can also consume a reasonable amount of time, specially
if type checking is performed in run-time. For high-performance RPC between
machines with the same architecture it may be worth to disable marshaling al
together and to send the data structures exactly as they are stored in the local
memory. The reader should be aware that this trick only works with flat data
structures, such as records or arrays. Complex structures such as linked-lists,
trees, etc, need to be linearized regardless of the architecture in use.

3.6.4 Building Client-Server Systems

In the previous section we have described how an RPC works. In this section
we discuss what code needs to be provided by the programmer when building a
distributed application structured around RPCs. To start with, the application
programmer needs to develop the function that provides the service to be exe
cuted in the server. If she is building the complete system, she will also need to
develop the client that invokes the service. But how about the communication
protocol, the client stub and the server stub? The good news is that there are
many platforms that ease the task of the programmer with this regard.

The RPC protocol can be provided as a library to be linked with both the
client and server code (or as a mixture of library and kernel code). Thus, it does
not need to be re-written by the application programmer. On the other hand,
each service function has its own signature, and the code that performs the
marshaling depends on its specific parameters and result values. This means
that specific client and server stubs need to be coded for each procedure. Im
plementing these procedures manually is an extremely tedious job. In fact,
we have already discussed the need for using some pre-agreed format to lin
earize the procedure parameters, thus there is no room for creativity here. The
solution is to rely on a tool that creates the stubs automatically, based on a
description of the service interface. This tool is called a stub compiler. In order
to implement a stub compiler one needs:

• an Interface Definition Language (IDL) to declare the procedure interface(s);

• a target programming language in which the stubs should be produced;

• mappings to translate the IDL types into the corresponding types of the
target programming language;

• the pre-agreed format for coding the parameters in the RPC messages.

Exhibit 2026 Page 131



MODELS OF DISTRIBUTED COMPUTING 113

The use of an IDL is fundamental to support heterogeneity. As long as
appropriate mappings are defined for several programming languages one can
build a client-server application where the client is implemented in one language
(say, Java) and the server in another (for instance, 'C++' for performance rea
sons). However, it is a bit unfortunate that in order to ensure interoperability
between components written in two different languages, the programmer has
to learn yet another language, IDL, before she can start implementing her
RPC-based client-server application. Why not just pick some "popular" pro
gramming language and use it to define the interfaces? To start with, some
languages are appropriate for some purposes and completely inadequate for
others. Ideally, an RPC package should not favor some types of application
in detriment of others. Additionally, the most widely used languages are not
designed for building distributed systems. For example, they support certain
data types, such as pointers, which make impossible the task of automating
stub creation. Consider for instance, the following function definition in the
'C' programming language:

int foo (char* p);

This definition is clearly ambiguous from a stub generator point of view. To
start with, there is no automatic way of extracting the size of the buffer being
passed as a parameter. For instance, it can be a block of memory whose size is
implicitly agreed between the caller and the callee but not explicitly declared.
It can also be a string, in which case the size can be computed at run time by
parsing the string until a terminator is found. Even if the size is known, there
is no automated manner of discovering if the parameter is an input parameter,
an output parameter (i.e, if the caller just provides the pointer and expects the
callee to fill the buffer) or an in-out parameter (the caller provides a buffer that
is altered by the function). Thus, a stub compiler would have to always include
the buffer in the request and in the reply message, which could be a waste of
resources.

With a powerful, yet unambiguous IDL language, the programmer can focus
on the application design and leave the tedious task of building the client and
server stubs to the stub compiler. In addition to the marshaling and unmar
shaling of parameters, the stubs can also automate the process of establishing
the communication channel between the client and the server. This process is
known as binding. Note that the complexity of the binding procedure depends
on the type of communication protocol used: for instance, a connection-oriented
protocol may require a connection to be established.

The simplest form of binding is static binding, Le., each service is provided
at a pre-defined address (in the IP world, at a pre-defined address and port).
This approach is seldom used, since it does not provide any support for dy
namic system configuration. A slightly better approach is to have the node of
the service provider fixed but allow the port to be defined at run-time. In such
case, the port must be discovered dynamically, for example by letting the client
make an RPC to a small local name server at the target machine. This local

Exhibit 2026 Page 132



114 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

name server, called the port-mapper, maintains an association between ports
and services (the port-mapper itself runs at a well-defined port). The fully
fledged solution is, of course, to rely on an external name service. Thus, before
establishing the communication channel, the client must inquire the name ser
vice to obtain the address of the server. A cache with the addresses of recently
used servers may speed up this step. Naturally, during its initialization step,
the server has to register its own address on the name server.

Server A Client Server B Server A Client Server B

(a) (b)

Figure 3.9. Client Threads: (a) Single-threaded; (b) Multi-threaded

The last issue related with the implementation of RPC systems we want to
discuss is the use of multiple threads, both in the client and in the servers,
leading to different programming styles as illustrated in Figures 3.9 and 3.10.

Let us first discuss the need for the use of multiple threads in the client.
When an RPC is executed, the client is usually blocked until a reply is received.
If the reply takes a long time, either because there is a high network latency,
or because the service takes a long time to execute, it may be worth to allow
processing to proceed in the client. Also, as we have discussed earlier, the
client may want to perform several RPCs in parallel to avoid the serialization
of network latencies depicted in Figure 3.9a. In these cases, a new thread may
be created to execute each RPC and terminated when the RPC completes, as
illustrated in Figure 3.9b.

Client A ServerS ClientS ServerS Client A Server S Server T Partie. A Partie. B

(a) (b) (c) (d)

Figure 3.10. Server Threads: (a) Single-threaded; (b) Multi-threaded; (c) Multi-tiered;
(d) Conversational

Exhibit 2026 Page 133



MODELS OF DISTRIBUTED COMPUTING 115

On the server side, the use of multiple threads is of paramount importance
to increase throughput, namely when the execution of the service requires the
server to execute I/O operations. For example, consider the case of a server
that has to access the disk in order to execute a service (such as a file system
server). If a single threaded server is used, the server will be blocked on the I/O
operation and unable to process requests from other clients, as illustrated in
Figure 3.10a. A multi-threaded server allows different requests to be processed
in parallel by different threads, as illustrated in the detail of Figure 3.10b. If
the execution of a request forces a thread to block on an I/O operation, another
thread is scheduled to run and a request from another client is processed. Nat
urally, the gains in performance come at the expense of more complex servers,
since the different threads must synchronize to ensure that shared data is up
dated in a consistent manner. Additionally, it may happen that requests end-up
being executed in an order different from the order they were delivered by the
communication protocol. In many cases, request are unrelated and this makes
no difference, but in cases where causal dependencies exist between requests,
the servers threads must also synchronize to respect these order relations.

It should be noted that, in order to provide a service, the server itself may
have to invoke remote servers, as illustrated in Figure 3.10c. Thus, in logical
terms, we can describe the application as executing a distributed flow of control
that is propagated from client to server according to the sequence of RPCs.
This style of interactions is also called multi-tiered. Note that in this case, the
intermediate processes act both as a client and as a server.

In an extreme case, we have a· scenario where all processes are both clients
and servers, and perform multi-peer or conversational interactions with an ex
tremely free discipline, as shown in Figure 3.10d. Multi-peer interactions do
not fit very well in the asymmetric nature of client-server. However, it is easy
to find simple scenarios where it is useful to let the client also play the role of a
server. One of the most intuitive examples is the case where a client wants to
be informed of the change of some variable in the server. One way to achieve
this goal is to let the client periodically check the status of the server. This
method, known as polling, is not efficient. Another way is to let the client
register a callback procedure in the server and wait for the server to call this
procedure when the value changes. Clearly, in this case, the client must be able
to perform the role of server.

3.7 GROUP-ORIENTED

Despite its enormous utility, there are some limitations of the RPC client-server
model: it is blocking (for the client); it is based on point-to-point interactions
(client to server); and it is asymmetric (only the client initiates the interac
tion). Many current applications require non-blocking, multi-point, and multi
peer interactions. The group-oriented model is one versatile model capable of
meeting those requirements, and implementing several styles of distributed pro
gramming. Group-oriented programming consists basically of representing the
actors and the targets of distributed activities as groups of participants, which

Exhibit 2026 Page 134



116 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

communicate through diffusion, or multicast protocols, with well-defined but
varying order, reliability and synchrony semantics.

This model can thus be used in applications where the notion of grouping
is inherent, such as: cooperative document editing; teleconferencing; commu
nication in multi-tool CAD environments; flexible manufacturing cells; dis
tributed parallel processing. However, groups may also be useful structuring
devices in system software design, by representing sets of objects that must
be referenced together, often in a transparent way, such as: replicated process
groups; replicated databases; and replicated sensors or actuators. Other exam
ples are: grouping internet routers for selective table updates; grouping pools
of system resources for consistent and decentralized allocation; grouping sites
of distributed parallel computations.

3.7.1 Group-Oriented Architecture

The basic building blocks of group oriented systems are illustrated by the archi
tecture depicted in Figure 3.11. Note that it is possible to build group oriented
systems using different architectures, but it is not the purpose of this section
to discuss deeply all the subtle differences among the existing systems. This
particular architecture is based on a hierarchical model, that decouples the
modules in two major classes: modules that manage interaction among sites,
and modules that manage interactions among participants that execute in those
sites.

At the site level, a basic building block is the Site Failure Detector, respon
sible for detecting the failure of other sites. This module is used to provide a
Site Membership Service, responsible for maintaining membership information
about the sites that are participating in the group communication. Site fail
ure detection is also used by the Multicast Networking layer, responsible for
supporting unreliable message multicast services. The Group Communication
module is responsible for providing reliability and ordering guarantees to all
messages exchanged among sites. Group communication uses the Multicast
Networking module to exchange messages and the Site Membership module to
obtain the list of active sites.

Participant-level modules are built on top of the site-level modules. The
Participant Membership module provides membership information at the par
ticipant level. When a participant fails, it is marked as unreachable by the
Participant Failure Detector. The same happens with all participants at a site
that is detected unreachable by the Site Membership Service. The Activity
Support module provides support for several common distributed paradigms,
such as, for instance, replication management.

In terms of interaction among participants, a typical sequence of events
is illustrated by Figure 3.12. A participant becomes member of a group in
response to a join request. If the join succeeds, the participant will receive
the membership and view of the group; the membership information is also
updated at all the other members. After becoming a member of the group,
a participant can multicast to and receive from the group. Messages are sent

Exhibit 2026 Page 135



MODELS OF DISTRIBUTED COMPUTING 117

Group
Communication

Multicast
III Networking

Figure 3.11. Group-Oriented Architecture

with a specified quality of service (in terms of reliability and ordering). At the
sender site messages traverse the protocol stack downwards until they reach
the network and, at all participants, they traverse the protocol stack upwards
and are delivered to the group members with the quality of service requested.

Multicast

\~ Received Data

\ '\ --- // View Data View Data View Data
S \ j~ ~~

~~ ~~ ~~ ~ ~~ ~~

s.

Network

View
Join

Group
Comm

Application

Figure 3.12. Groups in Action

3. 7.2 Design Issues

When building an infrastructure to support the development of group oriented
distributed applications one is faced with many alternative designs. In fact,
many different architectures have been built and can be found in the rich bib
liography on the subject.

Exhibit 2026 Page 136



118 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

The most important design issue is to understand what type of service needs
to be provided. Nothing has more impact on the system architecture than the
user requirements. Is reliability more important than throughput or vice-versa?
Are there any real-time requirements? The behavior of the service with regard
to faults is also extremely important. Must continuity of service be assured
in face of network partitions? What is the appropriate consistency/availability
tradeoff for the target application?

Additionally, it is important to understand the properties of the network in
frastructure. The reader must be aware that there is always a tradeoff between
generality and performance, when designing communication protocols. Generic
approaches make few assumptions about the underlying network. The resulting
protocols are easy to port to different network structures but often exhibit poor
performance. On the other hand, tailored solutions exploit particular features
of a given class of networks in order to achieve better performance. However,
tailoring has also its disadvantages: if the features exploited are peculiar only to
one or two networks, it may be difficult, if not impossible, to port the resulting
protocols to other networks that do not own these characteristics. The success
ful design must capture the right balance between generality and performance
(Rodrigues and Verissimo, 2000).

By matching the application requirements with the properties of the under
lying network, the system architect can select the most appropriate protocol for
his own goal. It is important to emphasize that, for each specific facet of group
communication, different protocols exist that exhibit their best performance
under different scenarios. Consider for example the problem of total order. It
has been shown (Rodrigues et aI., 1996) that some total order protocols are
more efficient when the network latency is small and others are more efficient
when network latency is large. Then, depending on the system usage, it is
preferable to use the former, the latter or some hybrid approach (Rodrigues
et al., 1996).

Given that several alternatives are possible, for different usage patterns, it
may be wise to use a configurable group communication service. A number of
recent systems have been built using a modular approach, where semantically
rich services are constructed by combining several small specialized protocols
(Hiltunen and Schlichting, 1993; Hayden, 1998). This approach, called the
micro-protocol approach, allows the application designer to select the commu
nication stack that precisely matches the application needs. Some of these
architectures also provide support to change the protocol configuration in run
time (Hayden, 1998).

Like any other system service that has strong performance requirements,
the way the group communication subsystem interacts with the operating sys
tem kernel makes a difference. One possible solution is to implement the group
communications package in the kernel itself. This introduces some performance
gains (Vogels et aI., 1992) at the expense of a more complex installation proce
dure. This approach also simplifies the implementation of models that distin-

Exhibit 2026 Page 137



MODELS OF DISTRIBUTED COMPUTING 119

guish between sites and participants, such as the architecture described in the
previous section, since the kernel supports all the application processes.

To simplify the installation, the code that would otherwise run in the kernel
can be executed in a dedicated server. Some operating systems built using the
micro-kernel approach are optimized for this sort of configuration. However,
in most kernels, the context switch overhead introduced in the message path is
non negligible.

To avoid additional context switching, it is possible to run the group com
munications package in the address space of the application process (as a li
brary). This approach is also extremely simple to install. However, in order
to be efficient it requires the use of several threads of control or else requires
the application to be driven by a main thread controlled by the communication
package (this leads to an event driven programming style that may be awkward
in some cases).

3.7.3 Building Group-Oriented Systems

A group communication system offers membership services and group com
munication services. Group membership allows processes to become members
of groups and receive membership information. Group communication allows
processes to send messages to groups and receive messages sent to the groups
they belong to.

Like any other message-passing interface, multicast interfaces have advan
tages and disadvantages. On the negative side, a message passing interface may
be viewed as a low-level construct, not rich enough to be useful for building
complex applications. It lacks the higher-level feel of remote procedure call,
even though a group remote procedure call mechanism can be constructed on
top of a multicast message passing interface. Of course, even remote proce
dure call may be considered too low-level if what an application really needs is
transaction support. On the other hand, a multicast send/receive interface is
very versatile and efficient, and does not restrain participants to play fixed roles
such as client or server that do not fit well in multi-participant interactions.

In fact, many of the applications using group communication are better
served by a multi-peer style of interaction (supported by a multicast message
passing system) than by any other higher-level interface. For instance, many
real-time systems interact with the environment through event notifications
and group communication is perfectly adjusted to disseminate events to many
processes (these systems are often called responsive systems). Other examples
of applications for which message passing is particularly well suited are applica
tions in the area of Computer Supported Collaborative Work (CSCW), where a
number of users may interact in a multi-peer fashion, often in an unstructured
way.

In group communication it is useful to distinguish the role of sender and
recipient. The recipients of a message are typically all the group members (al
though some systems allow just a subset of the group to be addressed). When
several application-level groups have similar membership, it is possible to imple-

Exhibit 2026 Page 138



120 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

ment a form of resource sharing called light-weight groups (Guo and Rodrigues,
1997). This technique consists in mapping several participant-level groups in
a single site-level group. The advantage of such mapping is that site-failure
detection and recovery can be shared by all participant-level groups. This
optimization is illustrated by Figure 3.13. Figure 3.13a shows two participant
level groups Pi and Pk, each supported by a different site-level group SGi and
SGk . Figure 3.13b illustrates the same participant-level (light-weight) groups
supported by a single site-level group.

Figure 3.13. Group Access Methods: (a) Normal; (b) Lightweight

Senders to a group can be either members of the group or processes outside
the group. A system that only allows group members to send to the group
follows a closed group model. A system that allows non-members to send
to the group follows an open group model. The task of sending to a group
without being member of the group is made difficult by the fact that the sender
must first obtain an approximation of the group membership (if not the up
to-date membership) in order to decide where to send the message to. Due to
this reason, some systems distinguish between senders that, whilst not being
members, keep some form of binding to the group and are informed of group
membership changes (called attached senders in the discussion below), and
senders that just keep a soft connection (called detached senders). Detached
senders must interact with some proxy that is either a member or an attached
sender to a group, as illustrated in Figure 3.13c.

These roles in group communication can be used to structure the applica
tion according to several group programming models, such as the client-server
model, the dissemination model and the multi-peer model, as illustrated in
Figure 3.14,.

The client group-server model is an extension of the point-to-point client
server model. In this model, instead of having a single server one has a group
of servers that coordinate to provide service to one or more clients. The group
server can be used for fault tolerance, for load-balancing or just to exploit

Exhibit 2026 Page 139



MODELS OF DISTRIBUTED COMPUTING 121

Figure 3.13 (continued). Grou p Access Methods: (c) Remote

s

0)

/

0
o
o

Publ ~

(a) (b) (c)

Figure 3.14. Basic Group Programming Models: (a) Client-Server; (b) Dissemination; (c)

Multipeer

locality. The key advantage of group communication is that clients do not
need to be aware of the number or location of servers; they can simply send a
message to the group and way for the first reply, as illustrated in Figure 3.14a.
Of course, it is also possible to build clients that are prepared to collect different
replies, one from each server, and combine them in a final result. In this model
one typically has a small set of servers and a possibly large number of clients.

In the dissemination model one has a producer of information that multi
casts messages to a large number of information consumers, as illustrated in
Figure 3.14b. The advantage of group communication in this model is that
the data producer does not need to be aware of the number/location of re
cipients and does not need to explicitly send many point-to-point messages.
This model is commonly used to disseminate multimedia streams on the In
ternet and is supported by reliable multicast protocols that use IP multicast
underneath. This sort of applications have usually weaker requirements than
fault-tolerant applications. Thus, they rely on efficient protocols that, instead

Exhibit 2026 Page 140



122 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

of offering strong guarantees such as virtual synchrony, have better scalability
properties.

Finally, in multi-peer interactions, illustrated by Figure 3.14c, all members
play a similar role. In this model all participants are allowed to send mes
sages to the group and receive messages sent to the group (including their
own messages). Multi-peer interactions are most effective for a small number
of participants, and allow the easy implementation of strong quality-of-service
specifications (e.g., reliability and ordering).

(a)

ce;glient

.' . "'.equest
s~

o
o
o

c

Figure 3.15. Implementing Group Models: (a) Multipeer; (b) Reliable Client-Server

Figure 3.15 illustrates how the sender and receiver roles described previously
can be used to implement some group programming models. For instance,
a multi-peer model can be easily implemented by having each participant P
be both a sender (8) to and a receiver member (M) of the multi-peer group
(Figure 3.15a).

On the other hand, a reliable client-server model can be implemented by
replicating the server. A group (Gdb) is associated to the set of server replicas,
as illustrated with a database server (Rdb) in Figure 3.15b. Each individual
client will play the role of sender to Gdb, and each individual server will be a
member of the group. In the particular configuration illustrated in Figure 3.15b,
a group (Ge) is created to receive the replies. Individual servers are senders to
Ge , and individual clients are members of Ge . Of course, one or several client
groups can be created, and nothing prevents a reply from going to a single
client, as shown in the figure. Note also that the Sand M handles of both the
servers and the clients belong to different groups, unlike the multi-peer example!
Finally, the example suggests that only the bottom server replica is active
sending replies, with the others as backups. In fact, a choice of alternatives
exists: they all send copies of the reply; or they share the load between them.

Exhibit 2026 Page 141



MODELS OF DISTRIBUTED COMPUTING 123

3.8 DISTRIBUTED SHARED MEMORY

Distributed shared memory (DSM) is an intuitive paradigm that emulates the
execution environment of a shared memory multiprocessor in a distributed sys
tem. rrhe model is intuitive in the sense that the paradigms that are valid
for concurrent programming in shared memory systems, remain valid in dis
tributed systems (with some limitations that we discuss below). An applica
tion area where distributed shared memory paradigms are useful is the area of
high-performance computing. Using DSM, parallel programs built for shared
memory multiprocessor systems can be ported to a cluster of workstations.

The ultimate goal of a DSM system is to give the illusion of a centralized
shared memory system, both in terms of semantics and in terms of performance.
In other words, memory distribution should be transparent to the application
designer. As it will be seen, this goal not is easy to attain, in particular the
performance aspects (the semantic aspects can be easily satisfied if efficiency is
not an issue). A fundamental aspect of DSM systems is that the adopted algo
rithms should try to minimize the number of messages exchanged among nodes,
since network throughput can be a system bottleneck. Another fundamental
aspect, even more important, is the minimization of latency. In particular, sce
narios where a node is forced to wait for a message from another node in order
for a memory operation to make progress should be avoided. Another way to
express this requirement is to say that remote accesses should be hidden from
the programmer.

Of course, in order to implement the abstraction of a global shared memory,
the DSM system has to exchange messages. These messages are needed to
propagate updates performed to the global memory by the several participants
involved in the computation. In the management of these message exchanges
two conflicting goals emerge. From the message size point of view, if bigger
messages are used, less messages are exchanged and this minimizes network
overhead. Consider for instance that a process makes several sequential updates
to a given page. Instead of sending a different message for each of these updates,
a single message can be sent at the end with the updated page. Additionally,
managing the state of the distributed memory at a coarser granularity level
(say virtual memory pages), reduces the overhead caused by the maintenance
of control information. On the other hand, the bigger the pages the higher the
chance of running into a scenario known as false sharing. False sharing occurs
when two nodes update unrelated variables that, by coincidence, are located
in the same page. Although at the logical level the nodes are not updating the
same data, from the point of view of the DSM system they are sharing the same
page. As a result, the page may have to be moved back and forward between
both nodes, a phenomenon often called thrashing.

3.8.1 DSM Architectures

The most intuitive behavior for the memory is the one of a centralized system
where all operations are atomic. This model is called atomic consistency or lin-

Exhibit 2026 Page 142



W1

124 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

P
1---...-------:lI~--___4I...._----~

P2 ------++~-- ......----__+__-__t......__~

P3 -----+-~---+-'--........--+-------

P4 ---------_...:.-_--~----~

Figure 3.16. Strong Consistency

earizability (Herlihy and Wing, 1990): all write operations are totally ordered
(obeying the operations' real time order) and read operations always return the
last value written into the memory. The intuition is given in Figure 3.16. If
the temporal order of operations does not need to be respected, the model is
named sequential consistency (Lamport, 1979). The former models of memory
consistency are usually labeled as strong consistency models. Although these
models accurately reflect the programmer's intuitive view of the (single) mem
ory behavior, they are very expensive to implement in a distributed system as
they require a total order to be enforced on memory operations. To understand
why this is not a trivial task, let us survey the main architectures to support
distributed shared memory, depicted in Figure 3.17.

The simplest implementation, actually quite naive, is illustrated by Fig
ure 3.17a. In this architecture, a central server holds the memory pages and all
data accesses by the clients are performed through a remote invocation to the
server. The server serializes all requests, thus ensuring the total order needed
to preserve strong consistency. The system behaves just like if a single central
memory was available. In fact, this architecture relies on having a single central
memory on the server.

1 data
acces
request

e
(a)

Figure 3.17.

2
operations

(b)

DSM architectures: (a) Centralized; (b) Migration

o

If all memory accesses had to be remote, like in the previous architecture, the
performance would be deplorable. Fortunately, programs exhibit some degree
of locality in data accesses. Locality means that if a given memory position

Exhibit 2026 Page 143



MODELS OF DISTRIBUTED COMPUTING 125

is read or written, then it is likely that other adjacent memory positions will
also be accessed. Instead of forcing all accesses to execute remotely, one can
simply migrate a chunk of memory (say a page) from the server to the client, as
illustrated in Figure 3.17b. Subsequent accesses to that same page can then be
performed locally by the client. If another client later wants to access the same
page, the page is migrated again. Since a given page is at a single location at
any given point in time, consistency is also ensured.

The previous architecture performs much better than a centralized one since
it allows most accesses to be executed locally, on the client's machine. However,
it does not allow two clients to access the same page at the same time. The
page has always to be migrated before it can be accessed by another site.
Given that reads are often much more common than writes, and given that
many applications rely on shared structures that can be read in parallel by
many different threads, it is wise to allow several identical copies of the same
page to be replicated in the system. The variant illustrated in Figure 3.17c has
read-only replicas that are read concurrently. Each time a client requests, a new
replica is created. Write requests are coordinated by the server. Naturally, if
several replicas of the same page exist, one has to guarantee that they behave
like a single page. Two approaches can be used to ensure that replicas are
kept with similar contents upon a write: one is to propagate the update to
all replicas; the other is to invalidate outdated copies and keep a single copy
updated. Figure 3.17d depicts the full replication approach, ,vhere read-write
page replicas can be held in several clients. Clients can perform competitive
access requests, which are coordinated by a sequencer. The interleave of local
operations and commands from the sequencer depends on the DSM consistency
semantics. The sequencer function can be distributed, for example performed
by a decentralized protocol run by all concerned clients.

'."''''~'~~~,-".~N-"')0-

1 data
access(request

3
operations
on page

(c)

_"",..,.,..,....,......N•••

1 data
access

(request

2
operations
on page

(d)

Figure 3.17 (continued)
DSM arch. : (c) Read-only Replication; (d) Read-Write Replication

Exhibit 2026 Page 144



126 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

3.8.2 Securing DSM Consistency

A possible strategy to implement distributed shared memory support is as
follows. At the initialization time, each page is located at a single node in the
system. That node is called the owner of the page. When another node wants
to write to the page, it must first obtain control of the page. This requires
the implementation of some form of location service, from which the client can
obtain the current owner of a given page. The location service is, by itself,
a complex component. If a centralized S2rver is used, then it may become
a bottleneck in the whole DSM operation. So, decentralized versions should
be used (for instance, making each node responsible for keeping track of the
location of a subset of the pages). After locating the current owner, the client
requests the migration of the page, and becomes the new owner of that page.
Since the client wants to write to the page, there is no point in keeping a copy
of the page at the previous owner (this copy would become obsolete after the
write).

Assume now that another node wants to read the same page. As before,
the node must first find the current owner of the page and then request a copy
of the page. If the owner is not actively writing to the page, it replicates the
page in the reader's memory. To make sure replica consistency is enforced,
both copies of the page become write protected. Thus when one of the nodes
tries to update the page, an exception is generated and the remaining copies
are invalidated before the writer becomes the owner of the unique valid copy
of the page.

Consider now that a page is read very often by a large number of nodes
but written very infrequently. Following to the steps described in the previous
paragraphs, immediately after an update the writer is the owner of the single
copy of the page. When another node issues a read, the page is replicated on
that node's memory. Since many nodes read the page, many copies are created
on demand, one-by-one, and the same page crosses the network several times.
In those cases, if support for multicast is provided at the network level, it may
be more efficient to send the update to all nodes as soon as the writer finishes
is job. This not only saves duplicate transfers but also ensures that readers find
a valid copy of the page in their caches when the read is issued (and are not
forced to wait for the page to be transferred). This approach, illustrated back
in Figure 3.16, is known as eager up-date. The effectiveness of the eager update
approach greatly depends on the data access pattern. If many readers are able
to benefit from a single multicast update, the eager approach is effective. On
the other hand, if the pages are updated frequently, a new update might have
to be disseminated before the previous update is read. In such case, multicasts
represent a non-productive waste of network resources.

Additionally, in order for the eager approach to be used effectively, the DSM
system has to have a mechanism to detect that the program "has finished" a
batch of updates to a given page. Actually, this may be extremely hard or
even impossible to determine, unless the programmer itself explicitly adds to
the application code directives that define the boundaries of access to shared

Exhibit 2026 Page 145



MODELS OF DISTRIBUTED COMPUTING 127

data. For instance, some models require data accesses to be bounded by spe
cial synchronization primitives, called respectively, acquire and release. When
a process issues an acquire request, it informs the system that it needs to ob
tain an updated copy of the memory pages. When a process issues a release,
it indicates that it has finished updating the shared memory. DSM systems
that use this approach are often said to implement weak models of memory
consistency, which are then labeled according to the strategy used for propa
gating the updates. For instance, if updates are disseminated when the release
operation is issued as illustrated in Figure 3.18, the system is said to implement
release consistency. If after a release the updates are only disseminated when
another node performs an acquire, the system is said to implement lazy release
consistency (see Figure 3.19).

p acq,w(x),rel3---+--------.-..+--------.....---.....---

p ...rel
1

p acq,w(x),rel
2---+-~-----';"~~-'--------+---

P4 __.:......- ---:. a_cq..;..._..

Figure 3.18. Release Consistency

Another way of bounding memory accesses is to use language constructs.
For instance, in object-oriented programming languages, data is encapsulated
and can only be accessed by invoking the object's methods. Also, if the ob
ject is shared by several threads of control, one usually has a synchronization
mechanism associated with that object (for instance, the mutual exclusion lock
associated with synchronized objects in Java). These language constructs can
be used to automatically insert shared memory primitives in the application
program, such as the acquire and release primitives described above, and to
implement distributed shared memory in software.

It should be noted that although the previous models are often said to imple
ment weak consistency, this label is a bit misleading, according to the definition
we made in Chapter 2. In fact, if the programmer does not use synchronization
primitives (such as the acquire and release) in a correct way, the memory will
be weakly consistent indeed. However, the whole purpose of these mechanisms
is to make distributed memory sequentially consistent for those programmers
that use the synchronization primitives in a correct way. In some sense, these
models can be better described as clever implementations of strong consistency,
that use the application programmer knowledge about data access patterns to
optimize the DSM implementation.

Exhibit 2026 Page 146



128 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

p ...rel
1

p acq,w(x),rel
2---~-------'''----------

p acq,w(x),rel
3-------------~\...---

P4 \ acq...

Figure 3.19. Lazy Release Consistency

3.8.3 Building DSM Systems

How can we build a system that makes use of distributed shared memory? In
many different ways, depending on the programming language used and on the
performance requirements. Let us discuss two different alternatives.

One way of using DSM is for implementing high-performance parallel ap
plications. ConsideT for instance that one needs to implement an iterative al
gorithm that requires two large matrices to be multiplied a very large number
of times (until some value converges). If several nodes are available to per
form the computation, the work can be split by making each node responsible
for computing a portion of the matrices. The parallel version of the program
would work like this: the input matrices for round i are divided into n equal
pieces (assuming that all nodes have equivalent processing power); each node
computes its portion of the resulting matrix; when the full matrix is computed,
if the algorithm has not converged, it is taken as input for round i + 1. Note
that all threads have to synchronize at the end of each round, to make sure
the computation is finished before starting a new round. DSM may be a viable
paradigm to implement this sort of algorithm since it spares the application the
burden of exchanging the pieces of the matrix explicitly. If a message-passing
model were used, pieces of the matrix would have to be exchanged explicitly
among nodes.

Note that similar algorithms have been coded for shared memory multipro
cessors. What changes have to be made to multiprocessor code, in order to
re-use it in a DSM environment? To start with, some interface is needed to
specify where each thread should be launched. If a strong consistency model is
supported by the DSM system, maybe nothing else is needed. It may happen
however that the resulting performance on the parallel system turns out not
to be as good as expected. To circumvent the performance problem, weaker
memory consistency models may have to be used. However, in that c~se, the
original code will have to be changed to introduce the synchronization primi
tives required to preserve memory consistency.

Distributed shared memory techniques can also be used to manage the con
sistency of object caches. Assume that an object in a client-server system is
accessed by several clients simultaneously with a pattern where reads are much
more frequent than writes. Instead of implementing all operations as remote

Exhibit 2026 Page 147



MODELS OF DISTRIBUTED COMPUTING 129

procedure calls, one can build smart client stubs that are able to synchronize
directly among themselves to maintain consistent replicas of the object.

3.9 MESSAGE BUSES

A message bus is an abstraction that allows processes to exchange messages
indirectly, through an intermediate component, called the bus. In this model,
some processes called publishers produce messages to the bus, whereas other
processes called subscribers consume messages from the bus. Most message
buses allow a message to be produced at one moment but only be consumed
later on. The message bus maintains the message in a non-volatile store until it
is consumed. Message passing is a much lower level abstraction than the remote
procedure call or the distributed shared memory abstractions described in pre
vious sections. Given the availability of other semantically richer alternatives,
what can be the appeal of a message bus?

To start with, the publish-subscribe paradigm is simple and easy to under
stand. It remains to be seen if this paradigm is powerful enough to build all
sorts of complex distributed applications, but it is certainly a good tool to solve
simple problems, even by the non-expert programmer. Additionally, it does not
require the producer and the consumer to be active at the same time. Thus,
it supports what is often called asynchronous, or better said, non-synchronized
interaction. This type of support is particularly useful when the participants
have lo\V' or sporadic connectivity. For instance, a producer can publish mes
sages during the day and the system can propagate all these messages in batch
at night, such that they are consumed in the next morning by a machine located
in a remote office. This can be a clever way to make two components, located
in different facilities, to interact without requiring permanent connectivity. Fi
nally, since the application components are not directly coupled, but coupled
via the bus instead, it is easier to reconfigure the system. One can change the
number, identity or location of the subscribers without changing the publishers
and vice-versa.

3.9.1 Message-bus Architecture

The abstract architecture of a message bus is very simple. One has publishers
and subscribers connected to common bus, as illustrated by Figure 3.20. The
bus can be volatile, i.e., messages cross the bus and can be consumed at that
time and else vanish in the ether, much like radio broadcast, or persistent, in
the case where messages are stored in the bus until consumed.

Two types of addressing schemes can be used in message buses. The most
simple one allows messages to be deposited on mailboxes. The publisher spec
ifies the name of the mailbox(es) where it wants to place the message and the
subscriber specifies the name of the mailbox(es) from where it wants to col
lect messages. Mailboxes serve as repository of messages, and can have (and
usually do) a maximum storage capacity. If the mailbox capacity is exceeded,
the publisher may obtain an error or be requested to block when producing a

Exhibit 2026 Page 148



130 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Alarm Publish

Subscribe

Figure 3.20. Message-bus Architecture

new message. The subscribers may have the choice of removing the messages
from the mailboxes, or simply obtain a copy of the message, such that several
subscribers can consume the same message.

An alternative addressing scheme, but also more difficult to implement, is to
use subject-based addressing. When messages are published in the bus, they are
labeled with a subject field, including one or several keywords. The subscriber
registers its interest in receiving messages that contain one or more keywords
in their subject fields. Efficient matching of subscriber requests with message
subjects in a large message space can be a complex task.

There are similarities between the message bus abstraction and the Linda
tuple-space (Carriero and Gelertner, 1986). The tuple space is a programming
paradigm where threads communicate and are synchronized through a global
shared repository of tuples. Processes can publish a tuple using an out primi
tive and consume tuples using an in primitive. Tuple consumption uses pattern
matching on the contents of the tuple, what is also named content-based ad
dressing.

3.9.2 Building Publisher-Subscriber Systems

To exemplify how the publisher-subscriber model can be implemented we use
the simplest architecture of all, where the bus abstraction is materialized in a
central server, as illustrated in Figure 3.21.

In this case, the publish activity is very simple. The publisher just sends a
message to the server that stores it in non-volatile memory. Message subscrip
tion can be implemented using two different alternatives: the push strategy
or the pull strategy. In the push strategy the subscribers just register with
the server the interest in receiving a certain class of messages, and the server
is responsible for disseminating these messages to the interested subscribers.
Multicast communication can be used to disseminate messages in a efficient
way, when many subscribers are interested in the same messages. In the pull
strategy, it is up to the subscriber to contact the server periodically to fetch the
messages. This second scheme may look less efficient, but has its advantages

Exhibit 2026 Page 149



MODELS OF DISTRIBUTED COMPUTING 131

in systems where the subscribers are not permanently connected and want to
collect the messages in a deferred way (non-synchronized).

Figure 3.21. Implementing a Publish-Subscriber System

The problem with the architecture exemplified in Figure 3.21 is the cen
tralized server, which is both a performance bottleneck and a single point of
failure. By using replication, both performance and reliability can be improved
(see Event services in Chapter 8).

3.10 SUMMARY AND FURTHER READING

In this chapter, the main distributed computing models were discussed. The ob
jectives of this chapter were the following: to make clear to the system architect
what are the main frameworks to build distributed systems; which strategies
are best fit for the several problems requiring the assistance of distributed solu
tions; which models implement the several strategies. The discussion was lead
in a problem-solving manner, and backtracking to the paradigms introduced in
Chapter 2, whenever appropriate.

Following the original work of Birrell and Nelson (Birrell and Nelson, 1984),
many systems were built using Remote Procedure Calls. A survey can be found
in (Ananda et aI., 1992). A discussion of different implementation alternatives
is given in (Chung et aI., 1989). A way to detect and terminate orphans is
discussed in (Panzieri and Shrivastava, 1988).

The use of group communication to build distributed applications has many
interesting examples. The V system (Cheriton and Zwaenepoel, 1985) was one
of the first to use the process group approach. Birman (Birman and van Re
nesse, 1994) provides many examples of different group interaction styles. Sys
tems that integrate the remote Procedure Call with replication and group com
munication are discussed in (Cooper, 1985; Ladin et aI., 1992; Elnozahy and
Zwaenepoel, 1992b; Wood, 1993; Rodrigues et aI., 1994).

Exhibit 2026 Page 150



132 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

The work of Li and Hudak (Li and Hudak, 1989) addresses the tradeoffs
involved in enforcing strong consistency shared memory with hardware support.
Weaker memory models are proposed in (Goodman, 1989; Gharachorloo et aI.,
1990; Ahamad et aI., 1991; Bershad and Zekauskas, 1991). Systems such as
Munin (Carter et aI., 1991) support different strategies to implement shared
memory. Object oriented distributed shared memory models are described
in (Bal and Tanenbaum, 1988; Guedes and Castro, 1993).

There are several sources of information on messaging systems, including the
book of (Miller, 1999). A book that gives a good description of the underlying
communication protocols is (Paul, 1998).

Exhibit 2026 Page 151



4 DISTRIBUTED SYSTEMS AND
PLATFORMS

This chapter consolidates the matters discussed in the previous chapters, in
the form of examples of enabling technologies, toolboxes, platforms and sys
tems. Namely, we discuss: name and directory services; distributed file systems;
the Distributed Computing Environment (DCE); object-oriented environments
(CORBA); the World-Wide Web; groupware systems.

4.1 NAME AND DIRECTORY SERVICES

We recall that a name service is responsible for storing associations between
names and addresses. More generally, the name service stores associations
between names and attributes. We have also seen that the name service is
usually provided by a set of cooperative name servers.

A naive implementation of a name service can be trivially derived using a
centralized name server that keeps associations between names and attributes
in main memory or in a file. However, such a simple solution does not address
the true challenges of building a real-life name server, namely, the scalability
and administrative issues related with the maintenance of a very large name
space.

Scalability is a challenge, since the name service is used very often by a large
number of applications. Administrative issues are also a challenge, because it
is impractical and undesirable to have all the name servers managed by a single
central entity. Instead, the management of a distributed name service is itself

P. Verissimo et al. 
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 152



134 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

usually distributed, each organization being responsible for managing its own
servers.

4.1.1 DNS

The Domain Name Server (DNS) is the main name service used in the Internet.
The keys to the scalability of DNS are a hierarchical partitioning of the name
service database, careful use of replication (also for higher availability) and
intensive use of caching.

The name format used in the DNS is well know today, mainly because .of
the widespread use of the Internet and the World-Wide Web (WWW). DNS
names consist of a sequence of labels separated by dots, such as for instance
..www.di.fe.ul.pt... The name reflects the hierarchical structure of the DNS
architecture. The domain "pt" is a top-level national domain, in this case
Portugal. Similar top level domains exist for most countries connected to the
Internet. Other top-level domains, include "com" for commercial organizations,
"edu" for educational organizations, "gov" for governmental agencies, and some
others. Below the "pt" domain, is the "ul" domain, which stands for University
of Lisboa, divided in several faculties. The next domains are "fe" for Faculty of
Sciences and "di" for Department of Informatics, the faculty and department
of the authors. Finally "www" is an alias for another name, the machine that
holds the Department's Web server. This hierarchical structure is illustrated
in Figure 4.1.

Top level domae

com edu

ltD·www.di.fc.ul.pt

Figure 4.1. Hierarchical DNS Name Space

Although in the previous example there is some coincidence between logical
a geographical proximity, this is not mandated by the DNS and it is not even a
general rule. The machines from a given domain can be spread through many
different geographical locations, such as, for instance, the sub-domains of the

Exhibit 2026 Page 153



DISTRIBUTED SYSTEMS AND PLATFORMS 135

$ORIGIN fe.ul.pt.
86400 IN
86400 IN

$ORIGIN di.fe.ul.pt.
titanic 86400 IN
navigators 86400 IN
ORIGIN navigators.di.fe.ul.pt.
www 86400 IN

NS
MX

CNAME
CNAME

CNAME

dns.di.fe.ul.pt.
10 mail.di.fe.ul.pt.

mail.di.fe.ul.pt.
navserver.di.fe.ul.pt.

formiga.di.fe.ul.pt.

Figure 4.2. DNS Configuration File

"com" (a.k.a. dotcom) top-level domain that can be placed anywhere in the
world.

When mapping the logical structure onto physical name servers, the DNS
does not enforce a one-to-one mapping. For load balancing and higher avail
ability, more than one server may manage the data for a single domain, and
several small domains can be managed by the same server. The mapping is
performed using the notion of zones, subsets of the address space that are
managed by a server. Several servers may hold information about the same
zone, some of these are designated authoritative, i.e, they are the source of the
most up-to-date bindings for names in that zone.

The purpose of the DNS name servers is to maintain information about
names and to provide this information to clients in response to DNS queries.
The most common DNS queries are host name resolutions and mail host lo
cation queries. The first type of request is used to obtain the IP address of a
machine given its name. The second type of request returns the IP addresses
of machines willing to accept mail for a given domain. Less used queries are re
verse address resolutions (obtain the name given the IP address). Name servers
obtain the information required to answer these queries by reading a configu
ration file, whose format is illustrated in Figure 4.2 (some lines were deleted on
purpose).

In run-time, the name servers are accessed though a resolver, a function
provided as a library and linked with the application code. The resolver is
responsible for contacting one or more servers in order to resolve a name. The
list of name servers to be contacted, sorted by order of preference, is configured
in a file of the client's machine. The servers themselves can be classified in
primary servers, secondary servers and caching-only servers, according to their
role in the hierarchy.

The consistency of the information stored in the DNS configuration files is,
of course, crucial for the correct operation of the Internet. It is easy to create
bugs by incorrectly filling-in these files, such as omitting trailing dots in domain
names, use of invalid characters in IP addresses, missing fields in records, etc.
(Beertema, 1993). Some tools can help the system administrators verify the
contents of DNS information (Romao, 1994).

Exhibit 2026 Page 154



136 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

4.1.2 GNS

One characteristic of the DNS is that it is extremely difficult to reorganize th.e
logical hierarchy. All names are either local (when just the machine name is
given) or absolute narnes. There is no way of moving an organization's name
space from one domain to another. For instance, if Universidade of Lisboa
was to be registered under the "edu" domain, all the absolute names would
have to be changed (the department's Web server would have to be named
"www . di . f c .ul . edu") and the previous names would become invalid.

The Global Name Service (GNS), developed at the DEC Systems Research
Center (now owned by Compaq) was designed to accommodate change. There
fore, it includes mechanisms to support the name space re-organization. In the
GNS, the root name of each organization is assigned a globally valid unique
identifier. Each name must explicitly carry the unique identifier of the organi
zation's root, which remains valid even if the location of the root in the global
tree is changed.

The root directory of the global hierarchy must hold the location of all
organization roots. Thus, according to the GNS architecture, currently the
Universidade de Lisboa root would have an entry in the root directory, placing
it under "PT/UL", as illustrated in Figure 4.3. In our example, the name of
our Web server could be "(#456/FC/DI/ ,WWW)". If our name space would move
under "EDU", this entry would be changed to place it under the new domain.
In its previous location, a forwarding pointer would redirect all requests using
(outdated) full pathnames.

www

o

Figure 4.3. Hierarchical GNS Name Space

Exhibit 2026 Page 155



DISTRIBUTED SYSTEMS AND PLATFORMS 137

4.1.3 X.500

The X.500 Directory Service is a CCITT and ISO standard that provides a
more general service than the name servers previously described. X.500 allows
names to be associated with arbitrary attributes and supports queries based
on combinations of attributes. For instance, the directory service could contain
information about the faculty and students, with attributes such as research
areas, hobbies, contact information, etc. A query to the directory service could
ask for students interested in "neural networks" and "routing algorithms" or
faculty members whose hobby is "sailing". Naturally, performing this sort of
queries in large portions of the name space can be extremely expensive.

The X.500 Directory Service structure is depicted in Figure 4.4. The tree
is named Directory Information Tree (DIT) , and it connects Directory System
Agents (DSA) hierarchically. We see that each of these agents controls a dashed
part which is a portion of the whole tree. The local information under the
agents' control resides in the Directory Information Bases (DIB) located with
each of them. To withstand large scale, but at the same time avoid inconsis
tencies, the name must both be composite and unique. A complete X.500 name
is called Distinguished Name (DN) , and it is an ordered sequence of Relative
Distinguished Names (RDN). An RDN is an unordered sequence of attributes
with well-defined types. Besides this structure, attributes of names that have
specific scopes should be defined from well-known type descriptions, if possible
standards. For example, country attribute types (i.e., country names) should
be chosen from the two-digit country code standard ISO 3166 (FR-France,
PT-Portugal, USA-United States of America,etc.). Names are generally of the
form:

Attributes:
C (country); 0 (organization); U (org. unit); L (location); CN (common name)
Relative DNs:
C==PT, 0== ULisboa; U==FacSciences; L==Dptlnformatics; CN==Luis
DN of Luis at the U.L.:
(C==PT/0== ULisboa/U==FacSciences/L==Dptlnformatics/CN==Luis)

The name scheme of X.500 is extremely powerful, but for that reason it
sometimes looks a bit user unfriendly. However, DNs can be represented
in a much more intuitive way, similar to DNS names, if attributes are hid
den, leaving only the types. Luis, in the example above, would become:
(PT, ULisboa,FacSciences,Dptlnformatics,Luis).

Distinguished Names (DNs) can be organized in a global tree, if they main
tain the desired attributes that we postulated earlier on: being composite and
unique. Let us look at a possible distinguished name tree, shown in Figure 4.5.
The tree shows a hierarchy of university name structures, in two countries,
representing several faculties (or colleges). This tree only makes sense if it
is well-formed, which happens if the following rules are followed: RDNs are
assigned by hierarchically organized agents; and each agent ensures that all
names it assigns are unambiguous and unique in the realm under its control.
That organization relies on the X.500 Directory Service structure depicted in

Exhibit 2026 Page 156



138 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Root DSA . Directory
System Agents
DIS· Directory

Information Bases

DSA6

Figure 4.4. An X.500 Directory Structure

Root

Figure 4.5. An X.500 Distinguished Name Tree

Figure 4.4. Of course, it would make sense for the distinguished name tree pre
sented in Figure 4.5 to have been created under the auspices of the structure
of Figure 4.4: we can observe the complete picture in Figure 4.6.

Exhibit 2026 Page 157



DSA1

DISTRIBUTED SYSTEMS AND PLATFORMS 139

Root

DIT· Directory
Information Tree

Figure 4.6. Name Tree under the X.500 Directory Service

4.2 DISTRIBUTED FILE SYSTEMS

Distributed file systems try to offer the same services as centralized file systems
do. Thus, before going in the details of how to build the distributed version let
we do a brief review of some elementary file systems concepts.

The main purpose of a file system is to provide support for storage of data
on a non-volatile medium, typically a hard-disk. Data is stored on files, which
have one or more names and other attributes, such as protection information,
dates of last access and update, size, etc. Thus, every file system has, implicitly
or explicitly, a directory service attached. In fact, a file system can be described
as a two-layer architecture, as illustrated in Figure 4.7..At the bottom layer, we
have a flat-file service, where each file is identified by some unique file identifier.
The layer on top implements the directory service, storing the associations
between textual names and unique file identifiers. On many file systems, the
directory service data is stored on one or more files of the flat file system.

It is also important to recall how programs use a file system. In order to
access a file, programs must first open it. When opening a file, the application
specifies the file name and the desired access mode (for read, write or both). The
file system uses the directory service to obtain the unique file identifier, checks if
the user has the rights to perform the desired operation on the file and, in case of
success, returns a file handle to the application. The handle acts as a capability:
its possession entitles the owner to access the file (capabilities will be discussed
in detail in Chapter 18). In order to read or write the file, the application
makes a request containing: the handle, a pointer to the buffer where the data
should be copied to/from, and the amount of data to be transferred. Typically,
the system internally keeps a file pointer, the position within the file where the
next read/write operation is going to take place. Finally, when the application

Exhibit 2026 Page 158



140 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

9--P
Directory Service

Flat File System

Figure 4.7. File System Architecture

is done with the file it should close it. Other functions commonly found in the
file system interface are functions to set the file pointer to a given absolute or
relative position, to truncate the file, to delete the file, to read the file attributes
and to manipulate directory information (for instance, rename the file). Finally,
it is worth mentioning that in order to provide good performance, centralized
file systems rely on caching algorithms to minimize I/O operations and keep
in-use data in main memory.

What does it mean to distribute a file system? To start with, a distributed
file system allows data to be stored on a given machine and to be accessed
from other machines. In order to do so, the system can be configured using a
client-server model: files are stored on a server and accessed by many different
remote clients. The server part can itself be distributed, Le., instead of forcing
all the files to be in the same server, different portions of the file system can be
stored on different servers. This makes the system scalable, since more storage
and processing can be added to the system by plugging additional servers.

Although the general idea of implementing a distributed file system based
on a client server model is quite simple, many interesting questions need to be
answered in order to develop an efficient implementation. How does a client
discover which server stores the file it is looking for? Should the directory
service be also distributed, or centralized instead? How many bytes should be
sent at once from the server to the client? Should the cache be located only in
the server, only in the client or in both? If more than one client are allowed
to cache the same file, how is cache consistency maintained? Should the server
keep information about which clients did open a given file?

Naturally, there is not a single answer to all these problems. Figure 4.8
illustrates two extreme alternative designs. In Figure 4.8a the client uses a
download/upload model, retrieving and storing the whole file from/to the file
server. In the model of Figure 4.8b clients cache file blocks that they request
from the server, and contact the latter to validate their caches and get new
blocks. Files remain remote on the server. In the next few paragraphs we

Exhibit 2026 Page 159


